KR20190070456A - 이산화염소와 키틴 용해제를 포함하는 닭 진드기 방제용 조성물 및 이를 이용한 방제방법 - Google Patents

이산화염소와 키틴 용해제를 포함하는 닭 진드기 방제용 조성물 및 이를 이용한 방제방법 Download PDF

Info

Publication number
KR20190070456A
KR20190070456A KR1020170170969A KR20170170969A KR20190070456A KR 20190070456 A KR20190070456 A KR 20190070456A KR 1020170170969 A KR1020170170969 A KR 1020170170969A KR 20170170969 A KR20170170969 A KR 20170170969A KR 20190070456 A KR20190070456 A KR 20190070456A
Authority
KR
South Korea
Prior art keywords
chlorine dioxide
composition
chitin
chicken
organic solvent
Prior art date
Application number
KR1020170170969A
Other languages
English (en)
Other versions
KR102311287B1 (ko
Inventor
조정혁
김효준
박순심
Original Assignee
주식회사 오투파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오투파워 filed Critical 주식회사 오투파워
Priority to KR1020170170969A priority Critical patent/KR102311287B1/ko
Publication of KR20190070456A publication Critical patent/KR20190070456A/ko
Application granted granted Critical
Publication of KR102311287B1 publication Critical patent/KR102311287B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0003Atomisers or mist blowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N29/00Biocides, pest repellants or attractants, or plant growth regulators containing halogenated hydrocarbons
    • A01N29/02Acyclic compounds or compounds containing halogen attached to an aliphatic side-chain of a cycloaliphatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/02Acyclic compounds
    • Y10S514/919

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Insects & Arthropods (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 0.005~0.1중량% 농도의 이산화염소용액과; 염화리튬, 트리클로로아세트산, 포름산 및 극성 유기용매를 포함하는 키틴 용해제를 10:1~5의 중량비로 포함하는 닭 진드기 방제용 조성물과 이를 이용한 닭 진드기 방제방법에 관한 것이다. 본 발명은 닭 진드기를 사멸시킬 수 있는 이산화염소와 닭 진드기 성충 외피의 키틴질을 용해시켜 이산화염소의 침투를 용이하게 하는 키틴 용해제를 혼합하여 사용함으로써 닭 진드기의 성충은 물론이고 알과 애벌레까지 동시에 효과적으로 방제할 수 있다.

Description

이산화염소와 키틴 용해제를 포함하는 닭 진드기 방제용 조성물 및 이를 이용한 방제방법 {Composition for control of Dermanyssus gallinae comprising chlorine dioxide and chitin dissolving agent and control method using it}
본 발명은 양계에 막대한 피해를 주고 있는 닭 진드기를 방제하기 위한 조성물에 관한 것으로, 보다 구체적으로는 이산화염소와 키틴 용해제를 포함하는 닭 진드기 방제용 조성물 및 이를 이용한 닭 진드기의 방제방법에 관한 것이다
닭 진드기(ワクモ: Dermanyssus gallinae; Red mite, Poultry mite)는 절지동물문 거미강 응애목에 속하고 크기는 1mm 이하인 해충이다.
닭 진드기는 지속적으로 양계 농가들을 괴롭히는 불청객으로 닭 진드기에 의한 양계 농가의 피해는 매우 심각하다. 특히 고온다습한 여름철에는 닭 진드기의 번식이 빨라 양계 농가들에게 더 큰 골칫거리가 된다.
최근 시스템화된 계사 구조의 도입에 따라 닭의 일상관리가 기계화되었고 또한 계사 내부의 온·습도 환경도 연간 일정하게 유지된다. 이러한 계사환경으로 인하여 닭 진드기가 상관없이 증식하거나 약제에 대한 저항성을 나타내는 닭 진드기의 출현으로 피해가 가중되고 있는 실정이다.
닭 진드기는 닭 1마리당 최고 200㎍을 흡혈하므로, 닭의 빈혈, 폐사, 가려움, 불안, 불면으로 인한 스트레스, 면역 저하, 백신효능의 감소, 질병 전파, 산란율 저하, 난질 저하, 작업 효율 저하 등으로 닭 1마리당 약 1,500원 가량의 손실을 입히는 것으로 추정된다. 유럽의 경우 추정한 피해액의 규모는 연간 1억 3천만유로로 우리나라 돈으로 환산하면 1,820억 수준이다. 나라마다 다르지만 60~85% 정도의 닭이 이미 닭 진드기에 감염되어 있다.
닭 진드기의 생활주기를 나타낸 도 1에서와 같이, 닭 진드기는 알에서 2~3일 후 부화하게 된다. 부화 후 유충의 상태로 1~2일이 지나면 제1약충으로 변태를 하고, 제1약충 시기에서 1~2일이 지난 후 제2약충으로 변태를 하며, 다시 2~3일이 지나면 성충으로 변태를 하게 된다. 닭 진드기는 성충이 된 후 12~24시간이 지나면 다시 알을 낳고 번식을 하는 빠른 성장 주기를 가지므로 완벽한 구제가 매우 어려운 실정이다.
현재까지 닭 진드기 방제제로는 신경계 작용물질, 알코올, 탄닌산, 실리카겔 등이 사용되고 있다.
현재 개발되어 사용 중인 대부분의 약제는 피레스로이드(pyrethroid)계, 카바메이트(carbamate)계, 유기인(organo phosphorus)계 및 페닐피라졸 (phenylpyrezole)계 약제로서 신경계에 작용하는 물질이다. 이들 약제는 주로 중추 신경계나 말단 신경계에 작용하므로 성충이나 제2약충 단계의 진드기에만 그 약효를 나타내어 알이나 유충 상태의 진드기에는 효과가 없다. 따라서, 이러한 약제를 사용하여도 알이나 유충은 살아남게 되므로 곧바로 닭 진드기가 다시 창궐하게 된다.
또한 성충이나 제2약충은 외피(exoskeleton)가 키틴(chitin)질로 구성되어 있어 약제가 효과적으로 침투할 수 없는 문제점이 있다. 키틴질은 N-아세틸-D-글루코사민(N-acetyl-D-glucosamine)의 중합체로서, 셀룰로스(cellulose)의 히드록실(hydroxyl)기가 아세틸아미노(acetylamino)기로 모두 치환된 구조를 가짐으로서 인접하는 고분자간의 수소 결합이 가능하여 매우 치밀한 성능을 가지고 있다.
또한 사용되는 약제인 아미드라즈(amitraz), 카바릴(carbaryl), 페르메트린(permethrin) 등에 대한 내성이 증가하고(Zeman & , 1985, Beugnet et al., 1997, Marangi et al.,2009), 닭 진드기의 유전적 변이가 출현한 것(Bret al., 2008, Potenza et al., 2009 ,Roy & Buronfosse, 2011)이 보고됨으로써 닭 진드기 구제제의 시급한 개발이 촉구되고 있다.
닭 진드기 구제에 관한 특허기술로, 대한민국 특허공개 제10-2017-0020768호는 4-[5-(3,5-디클로로페닐)-4,5-디하이드로-5-(트리플루오로메틸)이소옥사졸-3-일]-2-메틸-N-[2-옥소-2-[(2,2,2-트리플루오로에틸)아미노]에틸] 벤즈아미드 또는 (Z)-4-[5-(3,5-디클로로페닐)-5-트리플루오로메틸-4,5-디하이드로이소옥사졸-3-일] -N-(메톡시이미노메틸)-2-메틸안식향산아미드를 주성분으로 하는, 살충, 살진드기, 살선충, 살연체동물, 살균 또는 살박테리아 조성물 및 병해충의 방제방법을 개시하고 있다. 또한 대한민국 특허등록 제10-1295228호는 개미산 및 피리다벤을 주성분으로 하는 축사 및 양계 소독용 살충제 조성물 및 이의 제조방법을 개시하고 있으며, 대한민국 특허등록 제10-1537197호는 비결정형 실리카, 중탄산나트륨(NaHCO3) 또는 이산화규소(SiO2)를 주성분으로 하는 가금류의 와구모 사멸용 살포제 및 가금류의 와구모 사멸방법 및 상기 가금류 와구모 사멸방법으로부터 생산된 가금류 및 알을 개시하고 있다. 또한 대한민국 특허등록 제10-1705543호는 다공성의 산호석(fossilized coral)을 주성분으로 하는 와구모 유인용 조성물 및 그를 포함하는 포충기를 개시하고 있고, 대한민국 특허등록 제10-1505018호는 국화과 식물, 콩과식물, 천남성과 식물, 백부과 식물, 소나무과 식물 및 개구리밥과 식물을 주성분으로 하는 해충제거제의 제조방법 및 이에 의하여 제조된 해충제거제를 개시하고 있다.
또한 서울대의 보고서인 "천연 집 먼지 진드기 중화제 및 닭 진드기 살비제 개발(2009년)"을 포함하여 국내외에서 닭 진드기를 방제하기 위한 다양한 연구가 진행되고 있다.
이와 같이, 닭 진드기는 우리나라뿐만 아니라 전세계적으로 문제가 되고 있으며 지금까지 진드기를 방제하기 위한 수많은 노력이 있었지만 아직까지도 진드기를 완벽히 제거하는 것은 불가능에 가깝다.
이산화염소(ClO2)는 대표적인 살균, 탈취제로서(Volk et al. 2002), 염소 등 염소계 살균제와 달리 소독부산물로서 발암성을 가져 유해한 트리할로메탄 (THM, TriHaloMethane)을 생성하지 않고(Don 1998), 물에 대한 용해도가 높고, pH에 무관한 효과를 가지며, 액상 및 기체 상태의 제제화가 가능하여 여러 용도의 소독제로 사용 가능성을 넓히고 있다. 최근 이산화염소는 야채 등의 식품과 과일 등의 장기 보관 및 수출 운반에 널리 사용되고 있다(식품의약품안전청고시 제2007-74호).
이산화염소는 강력한 산화력으로 세균 및 바이러스를 제거하는데, 이는 미생물의 구성 기본 물질인 아미노산 중 시스테인, 트립토판, 세린, 타이로신 등과 같이 OH 나 -SH 작용기를 가지고 있는 아미노산을 강력하게 산화시켜 각각 -C=O 형태의 카르보닐과 -S=O 형태의 설폰(설폭시드)으로 변화시킴으로써 기능이 정지되고 형태가 변형되도록 하는 것으로 알려져 있다. 이산화염소에 의한 아미노산 산화과정을 도 2에 나타내었다.
이산화염소에 의해 아미노산이 변형됨으로써, 미생물은 단백질 합성을 할 수 없거나 단백질이 생촉매 기능을 상실하게 되므로 사멸된다(Bernarde, M.A., et al., 1967., Kinetics and Mechanism of Bacterial Disinfection by Chlorine Dioxide, J. Appl. Microbiol. 15(2):257.)
또한, 이산화염소는 미생물의 세포막 단백질과 지방산 등과 반응(산화)하여 세포막을 파괴하면서(Chen et al. 2002 Wang et al. 2010) K+, Ca2 + 및 Mg2 + 이온 등의 세포 내부물질을 용출되게 하며(Zhang et.al. 2007 Wei et al. 2008), 세포 내 세포핵의 DNA, RNA 등을 산화 변형시키기도 하는 것으로 알려져 있다. 이산화염소에 의한 핵산파괴를 도 3에 나타내었다.
최근 이산화염소가 곰팡이류인 사카로마이세스 세레비지애(Saccharomyces cerevisiae)를 비활성화시키는 메카니즘을 조사한 결과에 대한 문헌보고에 의하면, 세포 내의 K+, Ca2 + 및 Mg2 + 이온들이 용출되고, 포도당-6-인산 탈수소효소(glucose-6-phosphate dehydrogenase), 구연산염 합성효소(citrate synthase), 포스포프룩토인산화효소(phosphofructokinase)가 저해되어 비활성화되며, 100ppm 이상의 농도에서는 유전자(genomic) DNA도 손상되는 것으로 확인되었다(Zhu et.al.,2012).
또 다른 연구에 의하면,이산화염소는 포자의 외막을 손상시켜 포자의 발아(germination)를 효과적으로 저해하고(Young et.al.,2003, Radziminsk et.al.,2002), 포자에서 단백질, DNA, 다당류, K+ 이온, Ca2 + 이온을 밖으로 용출시킬 뿐 아니라, 포자의 지방질을 변질시키고 아데노신 가수분해효소 활성까지 저해하는 것으로 나타났다(Wang et.al.,2010). 이산화염소를 처리한 포자를 전자현미경으로 관찰한 결과를 나타낸 도 4와 5에서와 같이, 세포 표면(막)이 뚜렷하게 손상되었고 세포 성분들의 손상도 명백히 확인되었다.
이와 같이 이산화염소는 세포 내 이온 용출, 대사 경로 중요 효소 저해 및 세포 구조에 심각한 손상을 주어 세균, 바이러스 뿐 아니라 원생동물, 곰팡이(포자 포함)를 사멸시킨다.
최근 기체 상태로 훈증 처리가 가능한 이산화염소는 위생해충 및 저곡해충에 대한 살충력을 탁월하게 나타내고 있다. 병원시설에 발생하는 빈대류(Cimex lectularius, Cimex hemipterus)에 대해서는 비교적 높은 농도(약 1,000ppm)의 이산화염소에 노출시켰을 때 속효성의 방제효과를 나타냈으며(Gibbs et al. 2012), 저곡류를 가해하는 화랑곡나방(Plodia interpunctella)에 대해서는 비교적 낮은 농도(200ppm)의 이산화염소에 노출시켰을 때 완전방제 효과를 나타냈다(Kumar et al. 2015). 또한, 거짓쌀도둑거저리(Tribolium castaneum)의 알, 유충 및 성충의 구제에도 이산화염소는 500ppm이하의 중간 농도에서 탁월한 효능을 나타내었다(Channaiah et.al.).
이러한 이산화염소의 살충효과는 이산화염소에 의하여 곤충 체내에서 발생하는 활성산소(Reactive Oxygen Species: ROS)에서 기인하는 것으로 확인되었다(Kumar et al. 2015). ROS는 비교적 다양한 생체분자에 영향을 줄 수 있으며, 생체 내 다양한 기능 단백질의 변형을 유발하여 궁극적으로 살충작용을 나타낸다.
대한민국 특허공개 제10-2017-0020768호 대한민국 특허등록 제10-1295228호 대한민국 특허등록 제10-1537197호 대한민국 특허등록 제10-1705543호 대한민국 특허등록 제10-1505018호
천연 집 먼지 진드기 중화제 및 닭 진드기 살비제 개발, 서울대 보고서, 2009년. Shohreh Faghihzadeh Gorji & Sina Faghihzadeh Gorji &Mohammad Rajabloo, The field efficacy of garlic extract against Dermanyssus gallinae in layer farms of Babol, Iran, Parasitol Res (2014) 113:12091213. Soon-Il Kim, Jee-Hwan Yi, Jun-hyung Tak, Young-Joon Ahn, Acaricidal activity of plant essential oils against Dermanyssus gallinae (Acari: Dermanyssidae), Veterinary Parasitology (2004) 120: 297304. Tabari MA, Youssefi MR, Benelli G,, Eco-friendly control of the poultry red mite, Dermanyssus gallinae (Dermanyssidae), using the α-thujone-rich essential oil of Artemisia sieberi (Asteraceae): toxic and repellent potential, Parasitol Res (2017) 116(5):1545-1551. Immediato D, Figueredo LA, Iatta R, Camarda A, de Luna RLN, Giangaspero A, BrandSP, Otranto D, Cafarchia C., Essential oils and Beauveria bassiana against Dermanyssus gallinae (Acari: Dermanyssidae): Towards new natural acaricides, Vet Parasitol (2016) 229:159-165. Masoumi F, Youssefi MR, Tabari MA., Combination of carvacrol and thymol against the poultry red mite (Dermanyssus gallinae), Parasitol Res(2016) 115(11):4239-4243. Schulz J1, Berk J, Suhl J, Schrader L, Kaufhold S, Mewis I, Hafez HM, Ulrichs C., Characterization, mode of action, and efficacy of twelve silica-based acaricides against poultry red mite (Dermanyssus gallinae) in vitro, Parasitol Res (2014) 113(9):3167-75. Aieta, E., and J.D.Berg.(1986), A Review of Chlorine Dioxide in Drinking Water Treatment, J. AWWA. 78(6):62-72 Bernarde, M.A., et al., (1967), Kinetics and Mechanism of Bacterial Disinfection by Chlorine Dioxide, J. Appl. Microbiol. 15(2):257. Beugnet, F., Chauve, C., Gauthey, M. & Beert, L. (1997), Resistance of the red poultry mite to pyrethroids in France, The Veterinary Record, 140:577-579. Brannstrom, S., Morrison, D.A., Mattsson, J.G. & Chirico, J. (2008), Genetic differences in internal transcribed spacer 1 between Dermanyssus gallinae from wild birds and domestic chickens, Medical andVeterinary Entomology, 22: 152-155. Lakshmikantha H. Channaiah1,*, Chassity Wright2, Bhadriraju Subramanyam1, and Dirk E.Maier1 (2012), Evaluation of Chlorine Dioxide Gas Against Eggs, Larvae, and Adults of Tribolium Castaneum and Tribolium Confusum ,Proc 9th. Int. Conf. on Controlled Atmosphere and Fumigation in Stored Products, Antalya, Turkey. 15-19 October 2012. Chen C, Li D, Liu X, Bao L, Liu Z (2002), Experimental observation on mechanism of bactericidal effect of chlorine dioxide, Chinese J .Disinfect 19:137-141. Cho M, Kim J, Kim JY, Yoon J, Kim J (2010), Mechanisms of Escherichia coli inactivation by several disinfectants. Water Res 44:3410-3418. Don, G. (1998), The chlorine dioxide handbook. Am. Water Works Assoc. 3-4. Gibbs, S.G., J. J. Lowe, P. W. Smith and A. L. Hewlett (2012), Gaseous chlorine dioxide as an alternative for bedbug control. Infect. Control Hosp. Epidemiol. 33:495-499. Hauchman FS, Noss CI, Olivieri VP (1986), Chlorine dioxide reactivity with nucleic acids. Water Res 20:357-361. Kumar, S., J. Park, E. Kim, J. Na, Y. S. Chun, H. Kwon, W. Kim and Y. Kim (2015), Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella. Pestic. Biochem. Physiol. 124:48-59. Li JW, Xin ZT, Wang XW, Zheng JL, Chao FH (2004), Mechanisms of inactivation of hepatitis a virus in water by chlorine dioxide. Water Res 38:1514-1519. Marangi, M., Cafiero, M.A., Capelli, G., Camarda, A., Sparagano, O.A.E. & Giangaspero, A. (2009), Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae) susceptibility to some acaricides in field populations from Italy. In O.E. Sparagano (Ed.). Control of Poultry Mites (Dermanyssus) (pp. 11-18). Dordrecht:Springer. Noss CI, Hauchman FS, Olivieri VP (1986) Chlorine dioxide reactivity with proteins. Water Res 20:351-356. Potenza, L., Cafiero, M.A., Camarda, A., La Salandra, G., Cucchiarini, L. & Dacha M. (2009), Characterization of Dermanyssus gallinae (Acarina: Dermanissydae) by sequence analysis of the ribosomal internal transcribed spacer regions. Veterinary Research Communications, 33, 611-618. Radziminski, C., L. Ballantyne, J. Hodson, R. Creason, R.C. Andrews, and C. Chauret. (2002), Disinfection of Bacillus subtilis spores with chlorine dioxide: a bench-scale and pilot-scale study. Water Res. 36: 1629-1639. Roller, S. D. et al. (1980), Mode of Bacterial Inactivation by Chlorine Dioxide, Water Res. 14:635. Roy, L. & Buronfosse, T. (2011), Using mitochondrial and nuclear sequence data for disentangling population structure in complex pest species: a case study with Dermanyssus gallinae. PLoS One, 6, e22305. Simonet J, Gantzer C (2006), Degradation of the Poliovirus 1 genome by chlorine dioxide. J Appl Microbiol 100:862-870. Volk, C. J., R. Hofmann, C. Chauret, G. A. Gagnom, G. Ranger and R. C. Andrews (2002), Implementation of chlorine dioxide disinfection: effects of the treatment change on drinking water quality in a full-scale distribution system. J. Environ. Eng. Sci. 1:323-330. Young S.B. and Setlow P. (2003), Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide,Journal of Applied Microbiology 95: 54-67. Wang Z, Liao F, Lin J, Li W, Zhong Y, Tan P, Huang Z (2010), Inactivation and mechanisms of chlorine dioxide on Nosema bombycis. J Invertebr Pathol 104:134-139. Wei MK, Wu QP, Huang Q, Wu JL, Zhang JM (2008), Plasma membrane damage to Candida albicans caused by chlorine dioxide (ClO2). Lett Appl Microbiol 47:67-73 Zeman, P. & ZZelezny J. (1985), The susceptibility of the poultry red mite, Dermanyssus gallinae (De Geer, 1778), to some acaricides under laboratory conditions. Experimental and Applied Acarology, 1: 17-22. Zhang X,Wu Q, Zhang J,Wu H, Que S (2007), Study on mechanism of effect of chlorine dioxide on Escherichia coli. Chinese J Disinfect 24:16-20. Chuanhe Zhu & Zhao Chen & Guoyong Yu (2012), Fungicidal mechanism of chlorine dioxide on Saccharomyces cerevisiae, Ann Microbiol DOI 10.1007/s13213-012-0494-8.
상기 문제점을 해결하기 위하여, 본 발명은 닭 진드기 내부로 침투하여 체내 성분을 산화 및 변형시키고 성충의 호흡기로 침투하여 기도 등을 파괴하며 산화 스트레스를 일으켜 닭 진드기를 사멸하게 하는 이산화염소와, 닭 진드기 성충 외피의 키틴질을 용해시켜 이산화염소의 침투를 용이하게 하는 키틴 용해제를 혼합하여 닭 진드기의 성충은 물론 알과 애벌레를 동시에 구제할 수 있는 닭 진드기 방제용 조성물 및 닭 진드기 방제방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 0.005~0.1중량% 농도의 이산화염소용액과; 염화리튬, 트리클로로아세트산, 포름산 및 극성 유기용매를 포함하는 키틴 용해제를 10:1~5의 중량비로 포함하는 닭 진드기 방제용 조성물을 제공한다.
상기 조성물에서, 상기 이산화염소용액의 용매는 물 또는 유기용매인 것이 바람직하다.
상기 조성물에서, 상기 유기용매는 디에틸 에테르 등 에테르류, 아세톤 등 케톤류, 사염화탄소 등 할로겐화 탄화수소류, 헥산 등 탄화수소류, 디메틸포름아미드 및 디메틸설폭시드 중 선택된 1종 또는 2종 이상인 것이 바람직하다.
상기 조성물에서, 상기 극성 유기용매는 디메틸포름아미드, 디메틸설폭시드 및 디메틸아세트아미드 중 선택된 1종 또는 2종 이상의 혼합물인 것이 바람직하다.
상기 조성물에서, 상기 키틴 용해제는 염화리튬, 트리클로로아세트산 및 포름산을 극성 유기용매에 각 성분의 농도가 0.5~10.0중량%가 되도록 용해시킨 용액인 것이 바람직하다.
상기 조성물에서, 상기 키틴 용해제는 염화리튬, 트리클로로아세트산 및 포름산을, 디메틸포름아미드, 디메틸설폭시드 및 디메틸아세트아미드 중 선택된 1종 또는 2종 이상의 용매에 각 성분의 농도가 0.5~10.0중량%가 되도록 용해시킨 용액인 것이 바람직하다.
상기 조성물은 최종 조성물 총중량에 대하여 0.5~1.0중량%의 부식방지제를 더 포함할 수 있다.
상기 조성물에서, 상기 부식방지제는 벤조트리아졸, 벤조산 나트륨, 디헥실아민 및 인산계 화합물 중 선택된 1종 또는 2종 이상의 혼합물인 것이 바람직하다.
또한 본 발명은 상기 닭 진드기 방제용 조성물을 닭 진드기에 감염된 계사에 분무하는 것을 특징으로 하는 닭 진드기 방제방법을 제공한다.
상기 방법에서, 상기 조성물은 2~3일 간격으로 분무하는 것이 바람직하다.
본 발명의 조성물은 조성물 중의 이산화염소 성분이 외피가 없는 닭 진드기 알과 애벌레의 피부로 바로 침투하거나 키틴 용해제에 의하여 외피가 용해된 성충의 피부로 침투하여 막 단백질, 막 탄수화물 및 체내의 성분의 주요 구성 성분 분자들을 산화 및 변형시키고, 기화하여 닭 진드기의 호흡기로 침투하여 닭 진드기의 기도 등을 파괴하며, 닭 진드기 체내에서 활성산소(ROS)의 발생을 대폭 증가시킴으로써 산화 스트레스를 유발시켜 닭 진드기를 사멸시키고, 조성물 중의 염화리튬/트리클로로아세트산/포름산 성분과 유기물 용해력이 우수한 극성유기용매의 상승작용으로 닭 진드기 성충 외피의 키틴질을 용해시켜 이산화염소의 침투를 용이하게 함으로써 닭 진드기의 성충은 물론이고 알과 애벌레까지 동시에 효과적으로 방제할 수 있다.
도 1은 닭 진드기의 생활주기(Life-Cycle)를 나타낸 것이다.
도 2는 이산화염소에 의한 아미노산 산화과정을 나타낸 것이다.
도 3은 이산화염소에 의한 핵산 파괴를 나타낸 것이다.
도 4와 5는 이산화염소에 의하여 세포막 및 내부물질이 파괴되는 것을 확인한 전자현미경 사진이다.
도 6은 이산화염소 농도와 ROS(Reactive Oxygen Species)의 관계를 확인한 그래프이다.
본 발명의 닭 진드기 조성물은 0.005~0.1중량% 농도의 이산화염소용액과; 염화리튬, 트리클로로아세트산, 포름산 및 극성 유기용매를 포함하는 키틴 용해제를 포함한다.
이하 본 발명을 보다 구체적으로 설명한다.
(1) 이산화염소용액
기체 상태의 이산화염소는 아염소산나트륨과 염산의 반응에 의한 제조방법 등 공지의 방법으로 제조하거나, 상업용으로 판매되는 제품을 사용할 수 있다. 예를 들어, (주)데오테크 등이 살균 탈취용으로 공급하는 이산화염소 가스 발생기 오도킬러 제품 등을 사용할 수 있다.
이산화염소는 기체 상태의 이산화염소를 용매에 용해시킨 용액의 형태로 사용한다.
이때 용매로는 물이나 유기용매를 사용하며, 유기용매로는 디에틸 에테르 등 에테르류, 아세톤 등 케톤류, 사염화탄소 등 할로겐화 탄화수소류, 헥산 등 탄화수소류, 디메틸포름아미드 및 디메틸설폭시드 중 선택된 1종 또는 2종 이상을 혼합하여 사용한다.
이산화염소는 상기 용매에 0.005~0.1중량%의 농도로 용해시켜 사용하며, 0.01~0.05중량%의 농도로 용해시켜 사용하는 것이 보다 바람직하다.
시판되는 이산화염소 수용액, 예를 들어, (주)케모피아 등이 살균 탈취용으로 공급하는 이산화염소 가스 수용액 제품 등을 사용할 수도 있다.
이산화염소는 기화되어 닭 진드기 성충의 호흡기로 들어가 호흡기를 파괴하고, 외피가 없는 닭 진드기의 알이나 애벌레의 피부로 바로 침투하거나 키틴 용해제에 의하여 외피가 용해된 성충의 피부로 침투하여 막 단백질, 막 탄수화물 및 체내의 성분의 주요 구성 성분 분자들을 산화 및 변형시켜 닭 진드기를 사멸시킨다.
또한 호흡기, 피부 및 외피를 통해 들어간 이산화염소는 닭 진드기 체내에서 활성산소(ROS)의 발생을 대폭 증가시킴으로써 산화 스트레스를 유발시켜 사멸에 이르게 한다.
(2) 키틴 용해제
키틴 용해제는 염화리튬(LiCl, lithium chloride), 트리클로로아세트산(trichloroacetic acid), 포름산(formic acid) 및 극성 유기용매를 포함한다.
키틴 용해제는 염화리튬, 트리클로로아세트산 및 포름산을 극성 유기용매에 용해시킨 용액의 형태로 사용한다.
극성 유기용매로는 디메틸포름아미드(Dimethylformamide, DMF), 디메틸설폭시드(Dimethylsulfoxide, DMSO) 및 디메틸아세트아미드(Dimethylacetamide, DMA) 중 선택된 1종 또는 2종 이상의 혼합물을 사용하는 것이 바람직하다. 극성 유기용매는 유기물을 용해시키는 특성이 우수하여 키틴질 용해력을 강화하는 역할을 한다.
상기 염화리튬, 트리클로로아세트산 및 포름산은 극성 유기용매 중에 각 성분의 농도가 0.5~10.0중량%가 되도록 용해시키는 것이 바람직하며, 각 성분의 농도가 1.0~5.0중량%가 되도록 용해시키는 것이 보다 바람직하다.
키틴 용해제는 염화리튬/트리클로로아세트산/포름산 성분과 유기물에 대한 용해력이 우수한 극성 유기용매의 상승작용으로 닭 진드기 성충 외피의 키틴질을 용해시켜 이산화염소의 침투를 용이하게 한다.
(3) 닭 진드기 방제용 조성물
상기 이산화염소와 키틴 용해제를 10:1~5의 중량비로 혼합하여 닭 진드기 방제용 조성물을 제조한다. 이산화염소용액과 키틴용해제는 10:2~3의 중량비로 혼합하는 것이 보다 바람직하다.
상기 조성물은 이산화염소 성분으로 인하여 별도의 안정제가 필요하지 않지만, 반복되는 분무로 분무기나 계사 구조물이 부식되는 것으로 방지하기 위하여 부식방지제를 더 포함할 수 있다. 부식방지제로는 벤조트리아졸, 벤조산 나트륨, 디헥실아민, 인산계 화합물 등의 통상적으로 사용되는 부식방지제를 사용한다. 부식방지제는 최종 조성물에 0.5~1.0중량% 농도로 첨가하는 것이 바람직하다.
상기 조성물은 분무기를 사용하여 닭 진드기에 감염된 계사에 분무하여 사용한다. 닭 진드기의 성장 변이 단계가 2~3일이므로, 2~3일 간격으로 분무하는 것이 바람직하다.
이하 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 이들 실시예는 본 발명을 예시하는 것으로서 본 발명의 범위가 이들에 한정되는 것은 아니다.
<실시예 1>
조성물의 제조
25% 아염소산 나트륨 14.4g과 10% 차아염소산 나트륨 14.8g을 물 968.8g과 자석 교반기를 사용하여 혼합하였다. 여기에 황산(98%) 2g을 천천히 적가하면, 0.2 %의 이산화염소 수용액 1Kg 이 생성된다. 생성되는 0.2중량% 농도(농도는 요드화칼륨과 인산 완충액을 사용하여 pH 7 에서 티오황산 나트륨 적정법으로 측정한다)의 이산화염소 수용액을 물로 희석하여 0.01중량%, 0.02중량%, 0.03중량%, 0.04중량% 및 0.05중량% 농도의 이산화염소용액을 제조하였다.
염화리튬 20g,트리클로로아세트산 50g, 포름산 30g을 디메틸포름아미드 3kg 에 용해시켜 키틴 용해제를 제조하였다.
상기 제조된 이산화염소용액과 키틴 용해제를 10:3의 중량비로 혼합하고, 부식방지제인 디헥실 아민을 최종 조성물 중량에 대하여 0.5중량% 농도로 첨가하여 조성물을 완성하였다.
[ 실험예 ]
<실험장소 및 조건>
닭 진드기 방제효과에 대한 실험은 경북 봉화군 봉화읍 양계 단지길 91 소재 이레팜에서 2017년 10월에 실시하였다. 실험실 환경은 온도 23±1℃와 상대습도 54±5%를 유지하였다.
< 실험예 1>
닭 진드기 성충에 대한 방제효과 확인
본 발명의 조성물의 닭 진드기 성충에 대한 방제효과를 확인하기 위하여 다음과 같이 실험하였다.
(1) 닭 진드기 채취 및 보관
감염된 산란계에서 진드기를 채취하여, 즉시 직경 10cm, 높이 20cm의 원통에 보관하였다. 원통의 상부에는 20mesh의 망사를 배치하였고, 원통의 바닥에는 여과지(Whatman No.2)를 2장 배치하였으며, 그 위에 직경 2cm의 증류수에 적신 면솜을 10개 배치하였다. 채취한 닭 진드기는 채취 2일 이내에 시험에 사용하였다.
(2) 실험방법 및 결과
1ℓ 비이커 용기에 바닥에는 여과지(Whatman No.2)를 1장 구비하고, 보관된 닭 진드기 성충 30마리를 각각 배치하였다.
여기에 상기 실시예 1에서 제조된 각 농도의 조성물 5±1㎖를 마이크로 분무기를 사용하여 분무하였다.
분무 1시간, 3시간, 6시간, 12시간, 24시간 및 36시간 후에 닭 진드기 성충을 가는 주사 바늘로 접촉하여 움직임을 확인하는 방법으로 사멸을 판정하였다. 이산화 염소 농도와 처리후 경과시간에 따른 닭 진드기 성충의 사멸율 변화를 확인한 결과를 하기 표 1에 나타내었다(단위: %).
이산화염소 농도(%) 처리 후
1시간
처리 후
3시간
처리 후
6시간
처리 후
12시간
처리 후
24시간
처리 후
36시간
0.01 75 89 99 100 - -
0.02 87 99 100 - - -
0.03 96 100 - - - -
0.04 100 - - - - -
0.05 100 - - - - -
상기 표 1의 결과에서, 이산화염소의 농도가 높아질수록 처리 후 닭 진드기 성충이 100% 사멸하는 시간이 짧아지는 것을 알 수 있다. 즉, 이산화염소 농도가 0.04중량% 이상에서는 처리 1시간 후에 닭 진드기 성충이 100% 사멸하였고, 0.01중량%의 농도에서도 처리 12시간 후에는 닭 진드기 성충이 100% 사멸하였다.
< 실험예 2>
닭 진드기 알에 대한 방제효과 확인
본 발명의 조성물의 닭 진드기 알에 대한 방제효과를 시험하기 위하여 다음과 같이 실험하였다.
(1) 닭 진드기 알의 채취
닭 진드기에 감염된 산란계에서 닭 진드기의 알을 채취하여 즉시 실험에 사용하였다. 채취된 알은 애벌레로의 변이하기 전인 산란 후 2일 이내의 알을 사용하였다.
(2) 실험방법 및 결과
1ℓ 비이커 등 용기에 바닥에는 여과지(Whatman No.2) 1장을 구비하고 닭 진드기 알 10개를 각각 배치하였다.
여기에 상기 실시예 1에서 제조된 각 농도의 조성물 5±1㎖를 마이크로 분무기를 사용하여 분무하였다.
이산화염소 각 농도당 처리 36시간 후에 알의 발아(germination)을 확인하는 방법으로 알의 사멸을 판정하였다. 그 결과를 하기 표 2에 나타내었다(단위: %).
이산화염소 농도(%) 처리 후 36시간
0.01 90
0.02 100
0.03 100
0.04 100
0.05 100
상기 표 2의 결과에서와 같이, 이산화염소 농도 0.02중량% 이상에서는 처리 36시간 후에 닭 진드기 알이 모두 사멸하였다.
< 실험예 3>
닭 진드기 애벌레에 대한 방제효과 확인
본 발명의 조성물의 닭 진드기 애벌레에 대한 구제효능을 시험하기 위하여 다음과 같이 실험하였다.
(1) 닭 진드기 애벌레의 채취
닭 진드기에 감염된 산란계에서 닭 진드기의 애벌레를 채취하여 즉시 실험에 사용하였다. 애벌레는 제1약충으로 변이하기 전인 애벌레 변이 후 1일 이내의 애벌레를 사용하였다.
(2) 실험방법 및 결과
1ℓ 비이커 등 용기에 바닥에는 여과지(Whatman No.2) 1장을 구비하고 닭 진드기 애벌레 10마리를 각각 배치하였다.
여기에 상기 실시예 1에서 제조된 각 농도의 조성물 5±1㎖를 마이크로 분무기를 사용하여 분무하였다.
이산화염소 각 농도당 처리 36시간 후에 닭 진드기 애벌레의 사멸을 확인하여 결과를 하기 표 3에 나타내었다(단위: %).
이산화염소 농도(%) 처리 후 36시간
0.01 100
0.02 100
0.03 100
0.04 100
0.05 100
상기 표 3의 결과에서와 같이, 닭 진드기 애벌레는 모든 이산화염소 농도에서 처리 36시간 후 모두 사멸하였다.

Claims (10)

  1. 0.005~0.1중량% 농도의 이산화염소용액과; 염화리튬, 트리클로로아세트산, 포름산 및 극성 유기용매를 포함하는 키틴 용해제를 10:1~5의 중량비로 포함하는 닭 진드기 방제용 조성물.
  2. 제1항에 있어서,
    상기 이산화염소용액의 용매는 물 또는 유기용매인 것을 특징으로 하는 닭 진드기 방제용 조성물.
  3. 제2항에 있어서,
    상기 유기용매는 디에틸 에테르 등 에테르류, 아세톤 등 케톤류, 사염화탄소 등 할로겐화 탄화수소류, 헥산 등 탄화수소류, 디메틸포름아미드 및 디메틸설폭시드 중 선택된 1종 또는 2종 이상인 것을 특징으로 하는 닭 진드기 방제용 조성물.
  4. 제1항에 있어서,
    상기 극성 유기용매는 디메틸포름아미드, 디메틸설폭시드 및 디메틸아세트아미드 중 선택된 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 닭 진드기 방제용 조성물.
  5. 제1항에 있어서,
    상기 키틴 용해제는 염화리튬, 트리클로로아세트산 및 포름산을 극성 유기용매에 각 성분의 농도가 0.5~10.0중량%가 되도록 용해시킨 용액인 것을 특징으로 하는 닭 진드기 방제용 조성물.
  6. 제5항에 있어서,
    상기 키틴 용해제는 염화리튬, 트리클로로아세트산 및 포름산을, 디메틸포름아미드, 디메틸설폭시드 및 디메틸아세트아미드 중 선택된 1종 또는 2종 이상의 용매에 각 성분의 농도가 0.5~10.0중량%가 되도록 용해시킨 용액인 것을 특징으로 하는 닭 진드기 방제용 조성물.
  7. 제1항에 있어서,
    상기 조성물은 최종 조성물 총중량에 대하여 0.5~1.0중량%의 부식방지제를 더 포함하는 것을 특징으로 하는 닭 진드기 방제용 조성물.
  8. 제7항에 있어서,
    상기 부식방지제는 벤조트리아졸, 벤조산 나트륨, 디헥실아민 및 인산계 화합물 중 선택된 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 닭 진드기 방제용 조성물.
  9. 제1항 내지 제8항 중 어느 한 항의 조성물을 닭 진드기에 감염된 계사에 분무하는 것을 특징으로 하는 닭 진드기 방제방법.
  10. 제9항에 있어서,
    상기 조성물은 2~3일 간격으로 분무하는 것을 특징으로 하는 방법.
KR1020170170969A 2017-12-13 2017-12-13 이산화염소와 키틴 용해제를 포함하는 닭 진드기 방제용 조성물 및 이를 이용한 방제방법 KR102311287B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170170969A KR102311287B1 (ko) 2017-12-13 2017-12-13 이산화염소와 키틴 용해제를 포함하는 닭 진드기 방제용 조성물 및 이를 이용한 방제방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170170969A KR102311287B1 (ko) 2017-12-13 2017-12-13 이산화염소와 키틴 용해제를 포함하는 닭 진드기 방제용 조성물 및 이를 이용한 방제방법

Publications (2)

Publication Number Publication Date
KR20190070456A true KR20190070456A (ko) 2019-06-21
KR102311287B1 KR102311287B1 (ko) 2021-10-13

Family

ID=67056529

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170170969A KR102311287B1 (ko) 2017-12-13 2017-12-13 이산화염소와 키틴 용해제를 포함하는 닭 진드기 방제용 조성물 및 이를 이용한 방제방법

Country Status (1)

Country Link
KR (1) KR102311287B1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970703098A (ko) * 1994-06-01 1997-07-03 리글리 바바라 에이 실온 멸균제(room temperature sterilant)
JPH11318310A (ja) * 1998-05-18 1999-11-24 Chisso Corp 木材の燻蒸方法
WO2012108480A1 (ja) * 2011-02-10 2012-08-16 大幸薬品株式会社 殺虫剤、及び殺虫方法
KR101295228B1 (ko) 2011-01-05 2013-08-09 동부팜한농 주식회사 축사 및 양계 소독용 살충제 조성물 및 이의 제조방법
KR101505018B1 (ko) 2014-07-02 2015-03-23 정두희 해충제거제의 제조방법 및 이에 의하여 제조된 해충제거제
KR101537197B1 (ko) 2014-11-29 2015-07-15 유종철 가금류의 와구모 사멸용 살포제 및 가금류의 와구모 사멸방법 및 상기 가금류 와구모사멸방법로부터 생산된 가금류 및 알
KR101705543B1 (ko) 2016-12-16 2017-02-22 주식회사 백광시엔에스 와구모 유인용 조성물 및 그를 포함하는 포충기
KR20170020768A (ko) 2014-06-30 2017-02-24 닛산 가가쿠 고교 가부시키 가이샤 살충, 살진드기, 살선충, 살연체동물, 살균 또는 살박테리아 조성물 및 병해충의 방제방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970703098A (ko) * 1994-06-01 1997-07-03 리글리 바바라 에이 실온 멸균제(room temperature sterilant)
JPH11318310A (ja) * 1998-05-18 1999-11-24 Chisso Corp 木材の燻蒸方法
KR101295228B1 (ko) 2011-01-05 2013-08-09 동부팜한농 주식회사 축사 및 양계 소독용 살충제 조성물 및 이의 제조방법
WO2012108480A1 (ja) * 2011-02-10 2012-08-16 大幸薬品株式会社 殺虫剤、及び殺虫方法
KR20170020768A (ko) 2014-06-30 2017-02-24 닛산 가가쿠 고교 가부시키 가이샤 살충, 살진드기, 살선충, 살연체동물, 살균 또는 살박테리아 조성물 및 병해충의 방제방법
KR101505018B1 (ko) 2014-07-02 2015-03-23 정두희 해충제거제의 제조방법 및 이에 의하여 제조된 해충제거제
KR101537197B1 (ko) 2014-11-29 2015-07-15 유종철 가금류의 와구모 사멸용 살포제 및 가금류의 와구모 사멸방법 및 상기 가금류 와구모사멸방법로부터 생산된 가금류 및 알
KR101705543B1 (ko) 2016-12-16 2017-02-22 주식회사 백광시엔에스 와구모 유인용 조성물 및 그를 포함하는 포충기

Non-Patent Citations (34)

* Cited by examiner, † Cited by third party
Title
Aieta, E., and J.D.Berg.(1986), A Review of Chlorine Dioxide in Drinking Water Treatment, J. AWWA. 78(6):62-72
Bernarde, M.A., et al., (1967), Kinetics and Mechanism of Bacterial Disinfection by Chlorine Dioxide, J. Appl. Microbiol. 15(2):257.
Beugnet, F., Chauve, C., Gauthey, M. & Beert, L. (1997), Resistance of the red poultry mite to pyrethroids in France, The Veterinary Record, 140:577-579.
Brannstrom, S., Morrison, D.A., Mattsson, J.G. & Chirico, J. (2008), Genetic differences in internal transcribed spacer 1 between Dermanyssus gallinae from wild birds and domestic chickens, Medical andVeterinary Entomology, 22: 152-155.
C.K.S. Pillai 외 2인, "Chitin and chitosan polymers: Chemistry, solubility and fiber formation", Progress in Polymer Science, 34, pp.641-678 (2009.04.11.)* *
Chen C, Li D, Liu X, Bao L, Liu Z (2002), Experimental observation on mechanism of bactericidal effect of chlorine dioxide, Chinese J .Disinfect 19:137-141.
Cho M, Kim J, Kim JY, Yoon J, Kim J (2010), Mechanisms of Escherichia coli inactivation by several disinfectants. Water Res 44:3410-3418.
Chuanhe Zhu & Zhao Chen & Guoyong Yu (2012), Fungicidal mechanism of chlorine dioxide on Saccharomyces cerevisiae, Ann Microbiol DOI 10.1007/s13213-012-0494-8.
Don, G. (1998), The chlorine dioxide handbook. Am. Water Works Assoc. 3-4.
Gibbs, S.G., J. J. Lowe, P. W. Smith and A. L. Hewlett (2012), Gaseous chlorine dioxide as an alternative for bedbug control. Infect. Control Hosp. Epidemiol. 33:495-499.
Hauchman FS, Noss CI, Olivieri VP (1986), Chlorine dioxide reactivity with nucleic acids. Water Res 20:357-361.
Immediato D, Figueredo LA, Iatta R, Camarda A, de Luna RLN, Giangaspero A, BrandSP, Otranto D, Cafarchia C., Essential oils and Beauveria bassiana against Dermanyssus gallinae (Acari: Dermanyssidae): Towards new natural acaricides, Vet Parasitol (2016) 229:159-165.
Kumar, S., J. Park, E. Kim, J. Na, Y. S. Chun, H. Kwon, W. Kim and Y. Kim (2015), Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella. Pestic. Biochem. Physiol. 124:48-59.
Lakshmikantha H. Channaiah1,*, Chassity Wright2, Bhadriraju Subramanyam1, and Dirk E.Maier1 (2012), Evaluation of Chlorine Dioxide Gas Against Eggs, Larvae, and Adults of Tribolium Castaneum and Tribolium Confusum ,Proc 9th. Int. Conf. on Controlled Atmosphere and Fumigation in Stored Products, Antalya, Turkey. 15-19 October 2012.
Li JW, Xin ZT, Wang XW, Zheng JL, Chao FH (2004), Mechanisms of inactivation of hepatitis a virus in water by chlorine dioxide. Water Res 38:1514-1519.
Marangi, M., Cafiero, M.A., Capelli, G., Camarda, A., Sparagano, O.A.E. & Giangaspero, A. (2009), Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae) susceptibility to some acaricides in field populations from Italy. In O.E. Sparagano (Ed.). Control of Poultry Mites (Dermanyssus) (pp. 11-18). Dordrecht:Springer.
Masoumi F, Youssefi MR, Tabari MA., Combination of carvacrol and thymol against the poultry red mite (Dermanyssus gallinae), Parasitol Res(2016) 115(11):4239-4243.
Noss CI, Hauchman FS, Olivieri VP (1986) Chlorine dioxide reactivity with proteins. Water Res 20:351-356.
Potenza, L., Cafiero, M.A., Camarda, A., La Salandra, G., Cucchiarini, L. & Dacha M. (2009), Characterization of Dermanyssus gallinae (Acarina: Dermanissydae) by sequence analysis of the ribosomal internal transcribed spacer regions. Veterinary Research Communications, 33, 611-618.
Radziminski, C., L. Ballantyne, J. Hodson, R. Creason, R.C. Andrews, and C. Chauret. (2002), Disinfection of Bacillus subtilis spores with chlorine dioxide: a bench-scale and pilot-scale study. Water Res. 36: 1629-1639.
Roller, S. D. et al. (1980), Mode of Bacterial Inactivation by Chlorine Dioxide, Water Res. 14:635.
Roy, L. & Buronfosse, T. (2011), Using mitochondrial and nuclear sequence data for disentangling population structure in complex pest species: a case study with Dermanyssus gallinae. PLoS One, 6, e22305.
Schulz J1, Berk J, Suhl J, Schrader L, Kaufhold S, Mewis I, Hafez HM, Ulrichs C., Characterization, mode of action, and efficacy of twelve silica-based acaricides against poultry red mite (Dermanyssus gallinae) in vitro, Parasitol Res (2014) 113(9):3167-75.
Shohreh Faghihzadeh Gorji & Sina Faghihzadeh Gorji &Mohammad Rajabloo, The field efficacy of garlic extract against Dermanyssus gallinae in layer farms of Babol, Iran, Parasitol Res (2014) 113:12091213.
Simonet J, Gantzer C (2006), Degradation of the Poliovirus 1 genome by chlorine dioxide. J Appl Microbiol 100:862-870.
Soon-Il Kim, Jee-Hwan Yi, Jun-hyung Tak, Young-Joon Ahn, Acaricidal activity of plant essential oils against Dermanyssus gallinae (Acari: Dermanyssidae), Veterinary Parasitology (2004) 120: 297304.
Tabari MA, Youssefi MR, Benelli G,, Eco-friendly control of the poultry red mite, Dermanyssus gallinae (Dermanyssidae), using the α-thujone-rich essential oil of Artemisia sieberi (Asteraceae): toxic and repellent potential, Parasitol Res (2017) 116(5):1545-1551.
Volk, C. J., R. Hofmann, C. Chauret, G. A. Gagnom, G. Ranger and R. C. Andrews (2002), Implementation of chlorine dioxide disinfection: effects of the treatment change on drinking water quality in a full-scale distribution system. J. Environ. Eng. Sci. 1:323-330.
Wang Z, Liao F, Lin J, Li W, Zhong Y, Tan P, Huang Z (2010), Inactivation and mechanisms of chlorine dioxide on Nosema bombycis. J Invertebr Pathol 104:134-139.
Wei MK, Wu QP, Huang Q, Wu JL, Zhang JM (2008), Plasma membrane damage to Candida albicans caused by chlorine dioxide (ClO2). Lett Appl Microbiol 47:67-73
Young S.B. and Setlow P. (2003), Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide,Journal of Applied Microbiology 95: 54-67.
Zeman, P. & ZZelezny J. (1985), The susceptibility of the poultry red mite, Dermanyssus gallinae (De Geer, 1778), to some acaricides under laboratory conditions. Experimental and Applied Acarology, 1: 17-22.
Zhang X,Wu Q, Zhang J,Wu H, Que S (2007), Study on mechanism of effect of chlorine dioxide on Escherichia coli. Chinese J Disinfect 24:16-20.
천연 집 먼지 진드기 중화제 및 닭 진드기 살비제 개발, 서울대 보고서, 2009년.

Also Published As

Publication number Publication date
KR102311287B1 (ko) 2021-10-13

Similar Documents

Publication Publication Date Title
Yang et al. Insecticidal activities of garlic substances against adults of grain moth, Sitotroga cerealella (Lepidoptera: Gelechiidae)
KR102094916B1 (ko) 닭진드기 살충제 조성물 및 이의 제조방법
Gahukar Potential and utilization of plant products in pest control
Kumar et al. Insecticidal activity Aegle marmelos (L.) Correa essential oil against four stored grain insect pests
EP3646730A1 (en) Miticide and application thereof
EP1896045B1 (en) Composition comprising brassicacea seeds meal and their use as biopesticides in plants
CN1329825A (zh) 蛇床子素在农业上的应用
Alrawe et al. Acute and sub-acute toxicity effects of lambda-cyhalothrin in chicks
CN107873701A (zh) 一种用于驱虫、灭菌及杀螨的气雾剂及其制备方法
Özdemir et al. Prevention of Saprolegniasis in rainbow trout (Oncorhynchus mykiss) eggs using oregano (Origanum onites) and laurel (Laurus nobilis) essential oils
Boyko et al. The impact of certain flavourings and preservatives on the survivability of eggs of Ascaris suum and Trichuris suis
Kordalı et al. Fumigant toxicity of essential oils from fifteen plant species against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae)
Suroshe et al. Safety of insecticides against Aenasius bambawalei hayat (Hymenoptera: Encyrtidae)
KR102311287B1 (ko) 이산화염소와 키틴 용해제를 포함하는 닭 진드기 방제용 조성물 및 이를 이용한 방제방법
Zohry et al. Toxicity of ten native edible and essential plant oils against the Granary Weevil, Sitophilus granarius L.(Coleoptera: Curculionidae)
KR20190070457A (ko) 이산화염소를 포함하는 닭 대장균증 예방을 위한 음용수 첨가용 조성물
KR100456133B1 (ko) 살균 소독용 조성물
KR100947580B1 (ko) 시트랄, 피레트린, 리나릴 아세테이트를 유효성분으로 함유하는 기록물 및 문화재 소독용 조성물
Majid et al. Laboratory bioassay on efficacy of dual mode of action insecticides (beta-cyfluthrin and imidacloprid) towards tropical bed bugs, Cimex hemipterus (Hemiptera: Cimicidae)
CN107467083A (zh) 一种八桂生物除虫剂
Puvača et al. Influence of essential oils as natural poultry red mite (Dermanyssus gallinae) repellents
RU2433589C1 (ru) Способ борьбы с личинками кровососущих насекомых
CN103918705B (zh) 含有螺虫乙酯和高效氯氟氰菊酯的杀虫组合物及其应用
Xiaohu et al. A Comparative Study on Toxicity of Pyrethrin and Three Conventional Pesticides against Coptotermes formosanus Shiraki.
Hiremath Review on Study of Insecticidal Activity of Cymbopogon citratus, and Aloe vera against Musca domestica

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant