KR20190069118A - Method for manufacturing magnesium hydroxide for high strength non-toxic flame-retardant crosslinking compound - Google Patents

Method for manufacturing magnesium hydroxide for high strength non-toxic flame-retardant crosslinking compound Download PDF

Info

Publication number
KR20190069118A
KR20190069118A KR1020170169522A KR20170169522A KR20190069118A KR 20190069118 A KR20190069118 A KR 20190069118A KR 1020170169522 A KR1020170169522 A KR 1020170169522A KR 20170169522 A KR20170169522 A KR 20170169522A KR 20190069118 A KR20190069118 A KR 20190069118A
Authority
KR
South Korea
Prior art keywords
magnesium hydroxide
hydroxide powder
flame
particle size
silane
Prior art date
Application number
KR1020170169522A
Other languages
Korean (ko)
Inventor
신길재
Original Assignee
(주)포스코케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코케미칼 filed Critical (주)포스코케미칼
Priority to KR1020170169522A priority Critical patent/KR20190069118A/en
Publication of KR20190069118A publication Critical patent/KR20190069118A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a manufacturing method of magnesium hydroxides for a high strength, non-toxic and flame-retardant cross-linking compound. The manufacturing method of the present invention comprises the steps of: mixing high purity magnesium hydroxide powder having 1.0-2.0 μm of average particle size with natural magnesium hydroxide powder having 2.5-3.5 μm of average particle size at a predetermined ratio to prepare a magnesium hydroxide powder mixture, and injecting water to the same to manufacture slurry; after raising the temperature to 80°C or higher, injecting 1.5-2.5 parts by weight of acrylic silane based on 100 parts by weight of the magnesium hydroxide powder mixture to the slurry, and coating magnesium hydroxide powder; and filtering the magnesium hydroxide powder having the acrylic silane coated thereon, and drying the same to manufacture flame-retardant magnesium hydroxides.

Description

고강도 무독성 난연 가교 컴파운드 용 수산화마그네슘 제조방법{Method for manufacturing magnesium hydroxide for high strength non-toxic flame-retardant crosslinking compound}FIELD OF THE INVENTION [0001] The present invention relates to a process for preparing magnesium hydroxide for high-strength non-toxic flame retardant crosslinking compounds,

본 발명은 고강도 무독성 난연 가교 컴파운드 용 수산화마그네슘 제조방법에 관한 것으로, 보다 상세하게는, 가교반응를 위해서 수산화마그네슘 표면처리제로 실란을 사용하고, 강도를 올리기 위해서 수산화마그네슘의 입자 특성을 제어하함으로써 고강도 특성이 요구되는 자동차, 파워케이블 등의 제조에 이용되는 난연 컴파운드 용 수산화마그네슘의 제조방법에 관한 것이다. The present invention relates to a process for producing magnesium hydroxide for a high-strength, non-toxic, flame retardant crosslinking compound, and more particularly, to a process for preparing magnesium hydroxide for a crosslinking reaction by using silane as a magnesium hydroxide surface treating agent and controlling the particle characteristics of magnesium hydroxide To a method for producing magnesium hydroxide for a flame retardant compound used in the manufacture of automobiles, power cables and the like.

일반적으로 난연 컴파운드에 사용하는 수산화마그네슘은 요구 특성에 따라 입자특성과 표면처리제의 종류를 달리한다. 요구 특성의 면에서, 독일, 프랑스 등 유럽에서 컴파운드 제품은 인장강도를, 일본, 한국 등 아시아에서 신장율을 중시하는 경향이 있다. Generally, the magnesium hydroxide used in the flame retardant compound has different particle characteristics and different kinds of surface treatment agent depending on the required properties. In terms of demand characteristics, compound products in Germany, France and Europe tend to emphasize tensile strength and elongation rate in Asia such as Japan and Korea.

종래에 알려진 기술을 토대로 수산화마그네슘의 특성은 아래와 같이 정의될 수 있다. 수산화마그네슘은 난연성을 부여하기 사용되며, 난연성 평가방법으로 수직불꽃시험과 산소지수 측정이 있다. The characteristics of magnesium hydroxide can be defined as follows on the basis of a conventionally known technique. Magnesium hydroxide is used for imparting flame retardancy, and flame resistance evaluation method is vertical flame test and oxygen index measurement.

상기 난연성을 향상시키기 위해서 난연제의 사용량 증가시키거나, 브롬계, 적인 등을 보조 난연제로 수산화마그네슘과 혼합 사용한다. 그러나 난연제 사용량을 증가시킬 경우 수지와 배합작업 중 부하 상승으로 균일한 분산이 어려우며, 브롬계, 적인 등을 혼합 사용시 비용 증가와 환경적인 문제가 발생된다. 따라서 수산화마그네슘의 입자특성 중 입자크기 제어로 난연성을 조절하는 것이 일반적이다. 이때, 수산화 마그네슘 입자크기의 조절은 염-알카리 반응시 첨가제 사용, 교반속도, 반응온도, 반응시간, 농도 등으로 제어한다. In order to improve the flame retardancy, the amount of the flame retardant is increased, or bromine or the like is mixed with magnesium hydroxide as an auxiliary flame retardant. However, when the amount of flame retardant is increased, it is difficult to uniformly disperse the resin due to the load increase during the mixing process with the resin. Therefore, it is general to control the flame retardancy by particle size control among the particle characteristics of magnesium hydroxide. In this case, the control of the particle size of magnesium hydroxide is controlled by the use of additives, stirring speed, reaction temperature, reaction time and concentration in salt-alkali reaction.

한편 가교 컴파운드에서 인장강도와 신장율 등의 기계적 물성은 1차적으로 입자크기, 형상 또는 비표면적으로 제어하고, 2차적으로 표면처리제인 실란 종류 및 그 투입량 등으로 조절한다. 수산화마그네슘 입자 크기가 작거나 비표면적이 높은 경우에는 인장강도가 올라가고 신장율 떨어지는 경향을 보이나, 이 또한 수지와 분산성이 균일하다는 전제가 있다. 실란 코팅제의 종류는 크게 비닐, 아미노, 에폭시, 아크릴계가 있으며 통상적으로 알려진 바로는 비닐계 실란을 선진사에서 사용중에 있다. On the other hand, in the crosslinking compound, the mechanical properties such as tensile strength and elongation are primarily controlled by the particle size, shape or specific surface area, and secondly, the type of silane as the surface treatment agent and the amount of the silane are adjusted. When the magnesium hydroxide particle size is small or the specific surface area is high, the tensile strength tends to increase and the elongation percentage tends to fall, but this also assumes that the resin and dispersibility are uniform. The silane coating agent is mainly composed of vinyl, amino, epoxy, and acrylic, and commonly known vinyl silanes are used in advanced resins.

또한 실란 코팅된 수산화마그네슘 처방된 가교 컴파운드는 제조방법에 따라 수가교, 조사가교, 화학가교로 나눌 수 있다. 수가교는 제조비용이 가장 적게 소요되나, 가교도가 50% 수준으로 품질적으로 불리하다. 조사가교는 전선사에서 대형 조사장비가 필요하여 초기 투자비가 많이 소요되는 단점이 있으며, 가교도 70% 수준이다. 화학가교는 화학적 가교제(Dicumyl Peroxide 등) 투입하여 150℃ 이상의 고온에서 가교시키는 방식으로 제조비용이 가장 많이 소요되어 비경제적이나 가교도 90% 수준으로 품질적으로 가장 우수하다. In addition, the silane-coated magnesium hydroxide-prescribed crosslinked compound can be divided into water-bridge, irradiation-crosslinking and chemical-crosslinking depending on the manufacturing method. It takes the least amount of manufacturing cost, but the quality is 50%. Surveying bridge requires a large-scale surveying equipment at all shipping companies, and it has a disadvantage that it requires a large initial investment, and the degree of bridging is about 70%. Chemical crosslinking is a method of cross-linking at a high temperature of 150 ° C or higher by injecting a chemical crosslinking agent (Dicumyl Peroxide, etc.), which is the most expensive in terms of manufacturing cost, and is not economical.

파워케이블, 자동차 엔진용 내열전선의 종류는 다양하며 최근에는 고강도를 요구하는 추세이다. 현재 시장에서 널리 통용되는 실란 코팅 수산화마그네슘은 염-알카리 수열반응을 통해 제조되는 제품으로 평균입경 1.0~1.5㎛, 비표면적 5.0~6.0㎡/g, 육각판상구조를 지니고 있으며, 순도가 99.5%이상으로 내열특성을 고려하여 Fe+Mn 함량 100 pmm 제한하고 있다. Power cables, and automobile engine heat-resistant wires, and recently, high strength is required. Silane-coated magnesium hydroxide, widely used in the market today, is a product made by a salt-alkali hydrothermal reaction and has an average particle size of 1.0 to 1.5 μm, a specific surface area of 5.0 to 6.0 m 2 / g, a hexagonal plate structure, a purity of 99.5% And the Fe + Mn content is limited to 100 pmm considering the heat resistance characteristics.

그런데 현재까지 시장에서 통용되는 실란 코팅 수산화마그네슘을 사용시 가교 컴파운드품의 인장강도는 1.5 kgf/㎠ (수지 100 Part, Mg(OH)2 100 Part 기준)이상 나오기 어렵다는 한계가 있다. However, when the silane-coated magnesium hydroxide used in the market is used up to now, the tensile strength of the crosslinking compound is limited to 1.5 kgf / cm 2 (100 parts of resin, based on 100 parts of Mg (OH) 2 ).

따라서 본 발명은 가교 컴파운드 제품의 신장율 유지하면서 인장강도가 1.5 kgf/㎠ 이상을 얻을 수 있는 수산화마그네슘 제공함을 목적으로 한다. Accordingly, it is an object of the present invention to provide magnesium hydroxide capable of obtaining a tensile strength of 1.5 kgf / cm < 2 > or more while maintaining the elongation of the crosslinked compound product.

또한 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들에 한정되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Further, the technical problems to be solved by the present invention are not limited to the technical problems mentioned above, and other technical problems which are not mentioned can be understood from the following description in order to clearly understand those skilled in the art to which the present invention belongs .

따라서 본 발명의 일측면은, Accordingly, in one aspect of the present invention,

평균입경 1.0~2.0㎛의 고순도 수산화마그네슘 분말과 평균입경 2.5~3.5㎛의 천연산 수산화마그네슘 분말을 일정 비율로 혼합하여 수산화마그네슘 분말 혼합물을 마련한 후, 여기에 물을 투입함으로써 슬러리를 제조하는 단계;Mixing a high purity magnesium hydroxide powder having an average particle diameter of 1.0 to 2.0 탆 and a natural magnesium hydroxide powder having an average particle diameter of 2.5 to 3.5 탆 at a predetermined ratio to prepare a magnesium hydroxide powder mixture and then adding water thereto to prepare a slurry;

상기 슬러리를 80℃ 이상 승온 후, 상기 수산화마그네슘 분말 혼합물 100중량부 기준 아크릴계 실란을 1.5~2.5중량부를 투입함으로써 수산화마그네슘 분말을 코팅하는 단계; 및 Coating the magnesium hydroxide powder by adding 1.5 to 2.5 parts by weight of acrylic silane based on 100 parts by weight of the magnesium hydroxide powder mixture after raising the slurry to 80 DEG C or higher; And

상기 아크릴계 실란이 코팅된 수산화 마그네슘 분말을 여과한 후 건조함으로난연성 수산화마그네슘을 제조하는 단계;를 포함하는 고강도 무독성 난연 가교 컴파운드 용 수산화마그네슘 제조방법에 관한 것이다.The present invention also relates to a process for preparing magnesium hydroxide for a high strength non-toxic flame retardant crosslinking compound, which comprises filtering and drying the acrylic silane coated magnesium hydroxide powder to prepare flame-retardant magnesium hydroxide.

상기 고순도 수산화마그네슘 분말은 수화반응으로 제조된 분말인 것이 바람직하다. The high-purity magnesium hydroxide powder is preferably a powder produced by a hydration reaction.

상기 고순도 수산화마그네슘 분말에 대한 천연산 수산화마그네슘 분말의 혼합비는 10~50중량%인 것이 바람직하다. The mixing ratio of the natural magnesium hydroxide powder to the high purity magnesium hydroxide powder is preferably 10 to 50 wt%.

상기 건조는 100~120℃에서 행함이 바람직하다.The drying is preferably performed at 100 to 120 ° C.

상술한 바와 같은 제조공정으로 제조된 실란 코팅된 수산화마그네슘이 처방된 가교 컴파운드품은 그 인장강도 1.5 kgf/㎠ 이상이 효과적으로 확보될 수 있다. The crosslinked compound having the silane-coated magnesium hydroxide prepared by the above-described production process can effectively secure a tensile strength of 1.5 kgf / cm 2 or more.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

일반적으로 수산화마그네슘으로 제조된 가교 컴파운드품의 인장강도 높이기 위해서, 실란 코팅제 종류, 투입량, 수산화마그네슘의 입자크기, 비표면적 값을 조절하는 방법을 채택하고 있다.Generally, in order to increase the tensile strength of the crosslinked compound product made of magnesium hydroxide, a method of adjusting the type of the silane coating agent, the amount of the particles, the particle size of the magnesium hydroxide, and the specific surface area are adopted.

이에 대하여, 본 발명에서는 가교 컨파운더폼의 1.5 kgf/㎠ 이상의 인장강도를 확보하기 위해, 그 입경이 다른 고순도 수산화마그네슘 분말과 천연산 수산화마그네슘 분말을 혼합 사용하는 것을 특징으로 한다. 또한 상술한 실란 코팅제로서 소수성의 아크릴계 실란을 이용함으로써 종래 비닐계 실란으로 코팅한 수산화마그네슘이 수분에 취약해 장기간 보존시 경화되는 문제가 발생한 문제를 효과적으로 해소할 수 있다. On the other hand, in the present invention, in order to secure a tensile strength of 1.5 kgf / cm 2 or more of the crosslinked contour foam, a high purity magnesium hydroxide powder having a different particle size and a natural acid magnesium hydroxide powder are mixed and used. In addition, by using hydrophobic acrylic silane as the silane coating agent described above, the problem that magnesium hydroxide coated with vinyl silane in the prior art is vulnerable to moisture and is hardened during long-term storage can be effectively solved.

이러한 본원발명의 가교 컨파운더폼 용 난연성 수산화마그네슘 제조방법은, 평균입경 1.0~2.0㎛의 고순도 수산화마그네슘 분말과 평균입경 2.5~3.5㎛의 천연산 수산화마그네슘 분말을 일정 비율로 혼합하여 수산화마그네슘 분말 혼합물을 마련한 후, 여기에 물을 투입함으로써 슬러리를 제조하는 단계; 상기 슬러리를 80℃ 이상 승온 후, 상기 수산화마그네슘 분말 혼합물 100중량부 기준 아크릴계 실란을 1.5~2.5중량부를 투입함으로써 수산화마그네슘 분말을 코팅하는 단계; 및 상기 아크릴계 실란이 코팅된 수산화 마그네슘 분말을 여과한 후 건조함으로난연성 수산화마그네슘을 제조하는 단계;를 포함한다. The method for producing a flame-retardant magnesium hydroxide for a crosslinked contour foam of the present invention comprises mixing a high-purity magnesium hydroxide powder having an average particle size of 1.0 to 2.0 탆 and a natural magnesium hydroxide powder having an average particle size of 2.5 to 3.5 탆 at a predetermined ratio to prepare a magnesium hydroxide powder mixture Preparing a slurry by adding water thereto; Coating the magnesium hydroxide powder by adding 1.5 to 2.5 parts by weight of acrylic silane based on 100 parts by weight of the magnesium hydroxide powder mixture after raising the slurry to 80 DEG C or higher; And filtering the acrylic magnesium silicate-coated magnesium hydroxide powder and drying the acrylic magnesium silicate powder to produce flame-retardant magnesium hydroxide.

먼저, 본 발명에서는 평균입경 1.0~2.0㎛의 고순도 수산화마그네슘 분말과 평균입경 2.5~3.5㎛의 천연산 수산화마그네슘 분말을 일정 비율로 혼합하여 수산화마그네슘 분말 혼합물을 마련한 후, 여기에 물을 투입함으로써 슬러리를 제조한다.First, in the present invention, a high purity magnesium hydroxide powder having an average particle diameter of 1.0 to 2.0 탆 and a natural magnesium hydroxide powder having an average particle diameter of 2.5 to 3.5 탆 are mixed at a predetermined ratio to prepare a magnesium hydroxide powder mixture, .

수산화마그네슘의 입자 크기는 난연성, 기계적인 물성에 영향을 미친다. 입자 크기가 작을수록 난연성은 우수해지는 경향을 보이며, 기계적인 물성에서는 비가교 컴파운드에서 인장강도 올라가고 신장율 떨어지는 반면에, 가교 컴파운드에서 반대경향을 보인다. Particle size of magnesium hydroxide influences flame retardancy and mechanical properties. The smaller the particle size, the better the flame retardancy. The mechanical properties of the non - crosslinked compound increase the tensile strength and decrease the elongation at the non - crosslinked compound, but tend to be opposite in the crosslinked compound.

본 발명은 가교 컴파운드에 해당하는 것으로 발명의 목적을 달성하기 위해서 시장에서 통용되고 있는 제품보다 입자크기가 큰 수산화마그네슘이 요구된다.The present invention corresponds to a crosslinking compound. In order to achieve the object of the present invention, magnesium hydroxide having a larger particle size than that of a product commonly used in the market is required.

따라서 본 발명에서 상기 난연제용 수산화마그네슘 분말은 고순도 수산화마그네슘 분말과 평균입경이 상대적으로 큰 천연산 수산화마그네슘 분말의 혼합분말로 이루어짐을 특징으로 한다. Therefore, in the present invention, the magnesium hydroxide powder for a flame retardant is characterized by comprising a high purity magnesium hydroxide powder and a mixed powder of a natural acid magnesium hydroxide powder having an average particle diameter relatively large.

상기 고순도 수산화마그네슘 분말을 제조는 아래의 크게 2개의 방법에 의해 마련된다. The high purity magnesium hydroxide powder is prepared by the following two methods.

첫째, 염-알카리 수열반응에 의해 제조되는 고순도 수산화마그네슘은 품질적인 측면에서 가장 우수하나, 고순도화를 위한 세정 등의 추가 공정이 필요하여 생산적인 측면에서 불리하며, 고온 고압반응이므로 스팀 등의 에너지 비용이 추가로 필요하므로 비경제적이다. 염-알카리 수열반응에서 입자크기를 크게 하기 위해서 반응온도 올리거나 반응시간 오래하면 된다. 반응온도를 올릴 경우 스팀 등의 에너지 비용이 추가로 들어가며, 고온 고압조건이 가혹해질수록 반응기 사양이 높아진다. 또한 반응시간을 오래하면 고온 조건을 유지시키기 위해서 스팀 등이 에너지가 추가로 들어가며, 생산성이 떨어진다. 그러므로 소량 제조는 가능하나, 산업현장에서 적용이 불가능하다. First, the high purity magnesium hydroxide produced by the salt-alkaline hydrothermal reaction is the most excellent in terms of quality, but it is disadvantageous from the viewpoint of productivity because it requires an additional process such as washing for high purity. Since the reaction is high temperature and high pressure, It is uneconomical because it requires additional cost. In order to increase the particle size in the salt-alkali hydrothermal reaction, it is necessary to raise the reaction temperature or to prolong the reaction time. When the reaction temperature is raised, the energy cost of steam is further increased. As the high temperature and high pressure condition becomes severe, the reactor specification becomes higher. In addition, if the reaction time is long, steam or the like is added to the energy to maintain the high temperature condition, and the productivity is decreased. Therefore, although it is possible to manufacture a small amount, it is not applicable in the industrial field.

둘째, 고순도 산화마그네슘 수화 반응시켜 제조하는 수산화마그네슘은 염-알카리 수열반응품보다 비용은 적게 소요되나 품질적인 측면에서 입자가 작고 입자끼리 응집이 심하며, 비표면적이 큰 단점이 있다. 이와 같은 점 때문에 비가교 컴파운드 제품에는 쉽게 적용이 되지 않으나, 흐름성이 덜 중요한 가교 컴파운드에서 일부 적용되고 있다. 상기 제조법에서는 입자크기를 크게 하기 위해서 첨가제 사용 내지는 수열합성법처럼 반응시간을 오래하면 된다. 첨가제는 마그네슘 염, 초산 등을 사용하며, 투입량은 1% 내외이다. 반응시간을 오래 할 경우 수화반응이 80℃ 이상 실시하므로 온도 유지를 위해서 스팀, 전기 등의 에너지 비용이 추가로 들어가며 생산성이 열위 해진다. 수화반응은 염-알카리 수열반응보다 반응온도가 낮고, 자체발열반응이므로 목표온도까지 도달시간이 짧고 반응전체시간이 덜 소요되어 스팀 등의 에너지 비용이 저렴하고 생산성이 양호하다.Second, the magnesium hydroxide produced by the high purity magnesium oxide hydration requires less cost than the salt-alkaline hydrothermal reaction product, but has a disadvantage in that the particles are small in size from the viewpoint of quality, the particles agglomerate strongly, and the specific surface area is large. Because of this, it is not easily applicable to non-crosslinked compound products, but some of them are applied to crosslinking compounds of less flowability. In the above production method, the reaction time may be prolonged such as the use of an additive or a hydrothermal synthesis method in order to increase the particle size. Magnesium salt, acetic acid and the like are used as additives, and the dosage is about 1%. When the reaction time is long, the hydration reaction is carried out at 80 ° C or more. Therefore, the energy cost such as steam and electricity is further added to maintain the temperature, resulting in poor productivity. The hydration reaction has a lower reaction temperature than the salt-alkaline hydrothermal reaction and has a self-exothermic reaction. Therefore, the time required to reach the target temperature is short and the reaction time is less, and the energy cost of steam and the like is low and productivity is good.

상술한 바와 같이, 입자 크기가 큰 고순도 수산화마그네슘 분말 제조는 가능하나, 비용과 생산성 측면에서 불리하므로 본 발명에서는 천연산 수산화마그네슘울 활용하였다. 천연산수산화마그네슘은 수활석을 제트밀 등의 미립 분쇄기 이용하여 원하는 입도까지 분쇄함으로써 입자형상이 판상이 아닌 Random하며, 비표면적이 수열합성품보다 크다. 또한 수열합성품 내지 수화반응품의 순도는 일반적으로 99.5% 이상이나, 천연품은 96% 수준으로 금속 성분 함유양이 매우 많으며 백색도가 떨어진다. 그러나 수열합성품 내지 수화반응법 보다 분쇄방법, 세기 등 조절하여 입자크기를 크게 만들 수 있는 장점이 있다. As described above, although it is possible to produce a high purity magnesium hydroxide powder having a large particle size, it is disadvantageous from the viewpoints of cost and productivity, and thus, natural magnesium hydroxide hydroxide wool is utilized in the present invention. Natural magnesium hydroxide is a random magnesium oxide powder whose particle shape is not a plate shape by pulverizing water talc to a desired particle size by using a fine grinder such as a jet mill, and the specific surface area is larger than that of the hydrothermal composite. In addition, the purity of the hydrothermal synthesis product or the hydration reaction product is generally 99.5% or more, but the content of the metal component is very high and the whiteness is low. However, there is an advantage in that the particle size can be made larger by adjusting the pulverization method and intensity than the hydrothermal synthesis method or hydration reaction method.

이때, 본 발명에서는 평균입경 1.0~2.0㎛의 고순도 수산화마그네슘 분말과 평균입경 2.5~3.5㎛의 천연산 수산화마그네슘 분말을 혼합함이 바람직하다.At this time, in the present invention, it is preferable to mix high-purity magnesium hydroxide powder having an average particle diameter of 1.0 to 2.0 m and natural magnesium hydroxide powder having an average particle diameter of 2.5 to 3.5 m.

그리고 상기 고순도 수산화마그네슘 분말에 대한 천연산 수산화마그네슘 분말의 혼합비를 10~50중량% 범위로 함이 바람직하다. The mixing ratio of the natural magnesium hydroxide powder to the high purity magnesium hydroxide powder is preferably in the range of 10 to 50% by weight.

이어, 상기와 같이 혼합된 수산화마그네슘 분말 혼합물에 물을 투입함으로써 슬러리를 제조하며, 이때, 슬러리중 고형분의 농도는 10% 내외로 할 수 있다 Then, water is added to the mixed magnesium hydroxide powder mixture to prepare a slurry. At this time, the concentration of the solid content in the slurry may be about 10%

그리고 본 발명에서는 상기 마련된 슬러리를 80℃ 이상 승온 후, 상기 수산화마그네슘 분말 혼합물 100중량부 기준 아크릴계 실란을 1.5~2.5중량부를 투입함으로써 수산화마그네슘 분말을 코팅한다. In the present invention, after the temperature of the slurry is elevated to 80 ° C or higher, 1.5 to 2.5 parts by weight of acrylic silane based on 100 parts by weight of the magnesium hydroxide powder mixture is added to coat the magnesium hydroxide powder.

본 발명에서 사용한 실란 코팅제는 유일하게 소수특성 지닌 실란계로 아크릴계을 선정하였다. 친수성인 비닐계, 아미노계 실란을 검토하였으나, 코팅 후 필터프레스 이용한 여과시 효율이 나오지 않아 건조 등의 후 공정에서 트러블이 발생되었다. As the silane coating agent used in the present invention, acrylic system was selected as silane system having only a small number of properties. Although hydrophilic vinyl and amino silanes were studied, the efficiency of filtration by filter press after coating did not come out and troubles occurred in post-process such as drying.

본 발명에서는 상기 수산화마그네슘 분말 혼합물 100중량부 기준 아크릴계 실란을 1.5~2.5중량부 범위로 투입한다. 실란의 투입량이 1.5중량부 미만에서는 가교 특성이 발휘되지 않으며, 2.5중량부를 초과하면 가교특성 상승 효과가 없으며 비경제적일 수 있다. In the present invention, 100 parts by weight of the magnesium hydroxide powder mixture is added to the acrylic silane in the range of 1.5 to 2.5 parts by weight. When the amount of silane added is less than 1.5 parts by weight, the crosslinking property is not exhibited. When the amount of the silane is more than 2.5 parts by weight, the crosslinking property is not increased and the composition is not economical.

한편, 일반적으로 실란코팅 수산화마그네슘이 처방된 가교 컴파운드 제품을 가장 많이 사용하는 분야는 열이 많이 발생하는 자동차 엔진용 전선이다. 열변형이 없는 전선에 사용하는 난연제는 내열성이 가장 중요한 특성이다. 통상적으로 알려진 바로는 수산화마그네슘 내열성을 만족시시키기 위해서 함유되어있는 금속 성분의 양을 제한하고 있다. 열이 많이 받는 조건에서 전선 내에 있는 수산화마그네슘에 함유되어있는 철, 망간, 니켈, 구리 등의 금속성분이 용출되어 전선의 열변형을 일으키는 요인으로 알려져 있다. 그러나 본 발명자의 연구결과에 의하면, 내열성에 영향을 미치는 주요 요인으로 상술한 금속성분보다 실란 코팅의 균일성이 더 중요함을 확이하였다. 따라서 본 발명에서는 상기 금속성분의 양에는 제한을 두지 않았으나, 컴파운드 제품의 백색도를 고려하여 단지 최소화 하였다. On the other hand, the most common use of crosslinked compound products, in which silane-coated magnesium hydroxide is prescribed, is a wire for an automobile engine that generates a lot of heat. Heat resistance is the most important characteristic of flame retardants used in wires without thermal deformation. The amount of the metal component that is commonly known is limited to satisfy the magnesium hydroxide heat resistance. It is known that the metal components such as iron, manganese, nickel, and copper contained in the magnesium hydroxide in the wire are eluted under heat-receiving conditions and cause thermal deformation of the wire. However, according to the results of the present inventors, it has been found that the uniformity of the silane coating is more important than the above-mentioned metal components as the main factors affecting the heat resistance. Therefore, in the present invention, although the amount of the metal component is not limited, only the whiteness of the compound product is minimized.

후속하여, 본 발명에서는 상기 아크릴계 실란이 코팅된 수산화 마그네슘 분말을 여과한 후 건조함으로난연성 수산화마그네슘을 제조한다. 즉, 코팅을 완료한 후, 여과하고 건조함으로써 최종 실란 코팅된 수산화마그네슘 분말을 얻을 수 있다.Subsequently, in the present invention, the magnesium silicate-coated magnesium hydroxide powder is filtered and dried to prepare a flame-retardant magnesium hydroxide. That is, after the coating is completed, it is filtered and dried to obtain a final silane-coated magnesium hydroxide powder.

이때, 본 발명에서는 상기 건조 온도를 100~120℃ 범위로 관리함이 바람직하다. 만일 그 온도가 100℃ 미만이면 건조시간이 오래 소요되므로 생산성이 불리하고 , 120℃를 초과하면 수산화마그네슘 입자 표면에 코팅된 실란이 변형을 일으켜 코팅막을 손상시키는 문제가 있기 때문이다. At this time, in the present invention, the drying temperature is preferably controlled in the range of 100 to 120 ° C. If the temperature is less than 100 ° C, the drying time is long, which is disadvantageous in productivity. If the temperature exceeds 120 ° C, there is a problem that the coated silane on the surface of the magnesium hydroxide particles deforms to damage the coating film.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

(실시예 1)(Example 1)

하기 표 1과 같이, 산화마그네슘 수화반응에 의해 제조한 평균입경 1.5 ㎛ 고순도 수산화마그네슘과 수활석 제트밀으로 분쇄한 평균입경 3.0 ㎛ 천연산 수산화마그네슘을 일정 비율[10%(발명예1), 30%(발명예2), 50%(발명예3))로 정량 혼합 후 물을 투입하여 고형분 농도 10% 슬러리 제조하였다. 이때, 비교를 위하여, 산화마그네슘 수화반응에 의해 제조한 고순도 수산화마그네슘 단독으로 이루어진 분말(종래예1)과, 천연산 수산화마그네슘 단독으로 이루어진 분말(종래예2)을 각각 마련한 후, 또한 물을 투입하여 고형분 농도 10%의 슬러리를 제조하였다.  As shown in Table 1 below, magnesium hydroxide having a mean particle diameter of 3.0 占 퐉 obtained by pulverizing magnesium hydroxide having a mean particle size of 1.5 占 퐉 with high purity magnesium hydroxide and a water talc jet mill at a certain ratio [10% (Inventive Example 1), 30 % (Inventive Example 2), 50% (Inventive Example 3)), and water was added thereto to prepare a slurry having a solid content concentration of 10%. At this time, for comparison, powder (Conventional Example 1) made of high purity magnesium hydroxide alone prepared by magnesium oxide hydration reaction and powder made of natural magnesium hydroxide alone (Conventional Example 2) were separately provided, To prepare a slurry having a solid concentration of 10%.

10% 수산화마그네슘 슬러리 제조 후, 80℃ 이상 승온 후 아크릴계 실란을 수산화마그네슘 100중령부 기준 2중량부 투입한 후, 1시간 동안 코팅을 실시하였다. 이어, 코팅이 완료된 후 여과하여 100~120℃온도에서 24 시간 동안 건조하였다. After the 10% magnesium hydroxide slurry was prepared, the acrylic silane was added to 2 parts by weight of magnesium hydroxide (100 parts by weight) after the temperature was raised to 80 ° C or higher, and the coating was carried out for 1 hour. After completion of the coating, the resultant was filtered and dried at 100 to 120 ° C for 24 hours.

한편 시중에 시판중인 천연산 수산화마그네슘 분말을 이용하지 않은, 실란 코팅된 고순도 마그네슘에 대한 비교예 1-2에 대해서 특성을 평가하여 하기 표 1에 또한 나타내었다. On the other hand, the properties of the comparative example 1-2 for the silane-coated high purity magnesium without using the natural magnesium hydroxide powder commercially available in the market were evaluated and also shown in Table 1 below.

구분division 고순도 Mg(OH)2
(종래예1)
High purity Mg (OH) 2
(Conventional Example 1)
천연산 Mg(OH)2
(종래예2)
Natural acid Mg (OH) 2
(Conventional Example 2)
발명예 1Inventory 1 발명예 2Inventory 2 벌명예 3Honor Honor 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2
입자크기
Particle size
0.60.6 1.81.8 0.70.7 1.01.0 1.31.3 0.40.4 0.50.5
평균입경
Average particle diameter
1.51.5 3.03.0 1.91.9 2.22.2 2.42.4 1.11.1 1.41.4
비표면적 값
㎡/g
Specific surface value
M 2 / g
5.25.2 10.810.8 5.85.8 6.66.6 8.18.1 5.85.8 5.65.6
금속성분 양
ppm
Metal content
ppm
FeFe 113113 1,5011,501 253253 520520 807807 3030 2424
MnMn 1010 179179 2323 6565 9494 66 1One Fe+Mn
+Cu+Ni
Fe + Mn
+ Cu + Ni
153153 1,6861,686 307307 632632 921921 6464 7777

표 1에 나타난 바와 같이, 천연산 수산화마그네슘(종래예2)은 비록 그 제조비용은 낮으나 금속성분 양이 약 1500 ppm 이상으로 단독으로 가교 컴파운드에 처방시 고강도화는 가능하나, 내열성이 떨어지고 백색도에 영향을 미치는 Fe 함량이 매우 많으므로 단독으로 사용할 수 없음을 확인할 수 있다. 한편 고순도 수산화마그네슘 분말을 단독으로 사용한 비교예 1-2는 금속성분이 100ppm 이하로 상기 종래예 2 대비 그 특성이 우수하나, 그 제조비용이 많이 소요된다는 단점이 있다. As shown in Table 1, the natural magnesium hydroxide (Conventional Example 2) has a low manufacturing cost, but the amount of the metal component is about 1500 ppm or more, and when it is prescribed in the crosslinking compound alone, the strength can be increased. However, Can not be used alone because the Fe content is very high. On the other hand, Comparative Example 1-2 using the high purity magnesium hydroxide powder alone has a metal component of 100 ppm or less, which is superior to the conventional Example 2, but has a disadvantage in that it requires a large production cost.

이에 반하여, 본 발명의 발명예(1-3)은 고순도 수산화마그네슘 분말에 일정 비율의 천연산 마그네슘 분말을 혼합한 경우로서, 금속 성분의 점에서는 비교예 1-2 대비 그 특성이 다소 떨어지나, 제조비용이 저가이므로 경제적인 방법으로 가교 컨파운더폼 용 난연성 수산화마그네슘을 제조할 수 있음을 알 수 있다.On the contrary, Inventive Example (1-3) of the present invention is a case of mixing a high-purity magnesium hydroxide powder with a high-purity magnesium hydroxide powder, and its properties are somewhat lower than those of Comparative Example 1-2 in terms of metal components, It can be seen that flame-retardant magnesium hydroxide for crosslinked constituent foam can be produced by an economical method because the cost is low.

(실시예 2)(Example 2)

실시예 1의 발명예 1-3에서 제조한 실란코팅 Mg(OH)2를 이용하여 가교 컴파운드 테스트품을 제조한 후, 상온과 Aging 후 물성을 확인하였다. 가교 컴파운드 테스트품은 아래와 같은 순서로 제조하였으며, 물성 측정 결과는 하기 표 2와 같다.A crosslinked compound test article was prepared using the silane-coated Mg (OH) 2 prepared in Example 1-3 of Example 1, and then physical properties were confirmed at room temperature and after aging. The crosslinked compound test articles were prepared in the following order, and the results of the physical property measurement are shown in Table 2 below.

구분division 1One 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 배합
Part









combination
Part









수지
Suzy
EVAEVA 100100 100100 100100 100100 100100 100100 100100 7070 7070 7070 7070 7070 7070 7070
PEPE 3030 3030 3030 3030 3030 3030 3030
Mg(OH)2




Mg (OH) 2



종래예1Conventional Example 1 100100 100100
종래예2Conventional Example 2 100100 100100 발명예1Inventory 1 100100 100100 발명예2Inventory 2 100100 100100 발명예3Inventory 3 100100 100100 비교예1Comparative Example 1 100100 100100 비교예2Comparative Example 2 100100 100100 산화방지제Antioxidant Irganox 1010Irganox 1010 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 가교제Cross-linking agent Dicumyl PeroxideDicumyl Peroxide 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 물성




Properties




상온
Room temperature
인장강도The tensile strength 1.381.38 1.731.73 1.551.55 1.641.64 1.471.47 1.311.31 1.261.26 1.291.29 1.591.59 1.471.47 1.481.48 1.501.50 1.231.23 1.211.21
신장율Elongation rate 220220 160160 230230 233233 247247 513513 247247 190190 140140 230230 200200 180180 463463 177177 Aging 후
After Aging
인장강도The tensile strength 1.431.43 1.561.56 1.601.60 1.741.74 1.561.56 1.181.18 1.361.36 1.381.38 1.331.33 1.551.55 1.761.76 1.721.72 1.261.26 1.391.39
신장율Elongation rate 218218 128128 220220 248248 217217 474474 245245 186186 120120 215215 174174 179179 430430 189189 내열성
Heat resistance
인장잔율Tensile Residue 104104 9090 103103 106106 106106 9090 108108 107107 8484 105105 119119 115115 102102 115115
신장잔율Renal survival rate 9999 8080 9696 106106 8888 9292 9999 9898 8686 9393 8787 9999 9393 107107
교도
end
correctional
Hot/SetHot / Set 90/
10
90 /
10
65/
30
65 /
30
90/
10
90 /
10
90/
10
90 /
10
85/
10
85 /
10
90/
10
90 /
10
90/
10
90 /
10
85/
15
85 /
15
65/
30
65 /
30
90/
10
90 /
10
85/
10
85 /
10
70/
20
70 /
20
75/
15
75 /
15
90/
8
90 /
8

가교 컴파운드 Crosslinking compound

수지는 EVA(Ethyl Vinyl Acetate) 단독 또는 PE (Poly ethylene)과 혼합 사용하였다. 산화방지제로 Irganox 1010, 가교제로 Dicumyl Peroxide를 사용하였다. 사전 가열된 Keader에 수지를 투입하여 분산하면서 용해를 시켰다. 이 때 Keander의 온도는 EVA 단독사용시 90~100℃, EVA+PE 혼합사용시 130~140℃으로 조절하였다.The resin was mixed with EVA (Ethyl Vinyl Acetate) alone or PE (Poly ethylene). Irganox 1010 as an antioxidant and Dicumyl Peroxide as a crosslinking agent were used. The resin was put into a preheated Keader to dissolve while dispersing. The temperature of Keander was adjusted to 90 ~ 100 ℃ when using EVA alone and 130 ~ 140 ℃ when EVA + PE was mixed.

수지를 용해한 후, 상기 발명예 1-2에서 제조한 실란 코팅 Mg(OH)2 샘플과 산화방지제, 가교제를 투입하여 10분간 분산시켰다. 분산 완료 후 혼련품을 Keander에서 제거 후, 히팅프레스에서 180~190℃온도에서 10분 동안 가교시켰다. After dissolving the resin, the silane-coated Mg (OH) 2 sample prepared in Preparation Example 1-2, the antioxidant and the crosslinking agent were added and dispersed for 10 minutes. After completion of the dispersion, the kneaded product was removed from the Keander, and then crosslinked at 180 to 190 ° C for 10 minutes in a heating press.

내열성Heat resistance

히팅프레스에서 가교된 컴파운드 시편을 자연 냉각 후, 담벨기로 시편을 아령형으로 컷팅 후 만능재료시험기 이용하여 상온에서 인장강도와 신장율 측정하였다. 또한 시편을 추가 컷팅하여 120~130℃으로 조절된 노화시험기에 7일동안 Aging후 상온에서 인장강도와 신장율을 다시 측정하였다. The crosslinked compound specimen was naturally cooled in a heating press, and then the specimen was cut into a dumbbell shape with a felt ring. The tensile strength and elongation were measured at room temperature using a universal material testing machine. After aging for 7 days, tensile strength and elongation were measured again at room temperature.

내열성은 인장잔율과 신장잔율으로 표시하며, 하기 관계식 1-2에 의해 구해진다. The heat resistance is represented by the tensile residual rate and the elongation percentage, and is determined by the following relational expression 1-2.

[관계식 1][Relation 1]

인장잔율 (%) = (Aging 후 인장강도 /Aging 전 인장강도)×100 Tensile residual rate (%) = (tensile strength after Aging / tensile strength before Aging) 占 100

[관계식 2][Relation 2]

신장잔율 (%) = (Aging 후 신장율 /Aging 전 신장율)×100 Elongation percentage (%) = (elongation after aging / elongation before aging) x 100

Hot-Set 지수Hot-Set Index

히팅프레스에서 가교시킨 컴파운드을 담벨기 이용하여 아령형 시편으로 컷팅 후, 200℃에 맞춰진 열변형 시험기에 20N/㎠하중으로 15분간 잡아당겼을때의 길이변화율 Hot으로 정의하고, 하중을 제거한 후 5분간 200℃ 방치 후 꺼내 상온에서 냉각하여 측정한 길이변화율 Set값으로 정의하여 하기 표 2에 나타내었다. The compound crosslinked in the heating press was cut into dumbbell-shaped specimens using a mortar, and then defined as a rate of change in length when the specimen was pulled for 15 minutes under a load of 20 N / cm 2 at a temperature of 200 ° C. After removing the load, The results are shown in Table 2 below, which is defined as a set value of the rate of change in length measured after being left at 200 DEG C and then taken out and cooled at room temperature.

Hot-Set 값은 일반적으로 가교도(율)을 나타내는 수치로 본 발명에서는 화학가교이므로 약 90% 정도 나오는 것이 정상이다. Hot-Set 값은 하기 관계식 3-4에 의해 구해진다. The hot-set value is generally a value indicating the degree of crosslinking. In the present invention, it is normal that the amount of hot-set is about 90% because it is a chemical crosslinking. The hot-set value is obtained by the following Expression 3-4.

[관계식 3][Relation 3]

Hot (%) = 100-{(늘어난 길이 /원래의 길이)×100} (200℃, 20N/㎠, 15분)Hot (%) = 100 - {(length increased / original length) x 100} (200 캜, 20 N / cm 2, 15 min)

[관계식 4][Relation 4]

Set (%) = (하중 제거 후 회복된 늘어난 길이 /원래의 길이)×100 (200℃, 5분)Set (%) = (length recovered after removal of load / original length) × 100 (200 ° C., 5 minutes)

상기 표 2에 나타난 바와 같이, EVA 단독 사용하는 배합(시험 1~7)은 일반적으로 파워케이블용이며, 천연산 수산화마그네슘 단독 사용시 인장강도는 매우 높지만, 신장잔율이 가장 낮았다. 또한 천연산 수산화마그네슘을 50% 혼합시 인장강도가 떨어지는데(시험 5), 이는 입자형상이 Random하여 충분히 가교가 안되어 입자크기가 큼에도 불구하고 역효과가 발생한 것으로 보인다. As shown in Table 2, EVA alone (Examples 1 to 7) was generally used for a power cable. When using natural magnesium hydroxide alone, the tensile strength was very high, but the elongation percentage was the lowest. In addition, when the natural magnesium hydroxide is mixed at 50%, the tensile strength is lowered (Test 5), which appears to be counterproductive even though the particle size is large due to the random shape of the particles.

자동차용 전선에 주로 쓰이는 EVA+PE 배합(시험 8~14)에서는 입자 크기가 큰 천연산 수산화마그네슘을 혼합시 시판 중인 Huber사의 H5A 실란코팅품이나 KYOWA사 KISUMA 5P 실란코팅품에 비하여 20% 이상 인장강도는 높아졌으나, 혼합량이 증가할수록 효과는 미비함을 알 수 있었다. In EVA + PE formulations (Tests 8 to 14), which are mainly used for automotive wires, magnesium oxide with a large particle size is mixed with H5A silane coating product of Huber Co., Ltd. or KYOWA KISUMA 5P silane coating product, The strength was increased, but the effect was not significant as the mixing amount increased.

한편 표 2의 시험 1-14로부터 알 수 있는 바와 같이, 천연산 수산화마그네슘 사용량이 증가할수록 Hot / Set 값이 떨어졌다. 입자 크기가 큰 천연산 수산화마그네슘 단독 사용시 일반적으로 관리하는 범위인 Hot 70% 이상, Set 10% 이하를 만족하지 못한다. 이는 수산화마그네슘 내에 함유하고 있는 금속성분이 열을 받는 조건에서 용출되어, 수지와 수산화마그네슘의 가교결합력을 약하게 함으로써 초래되는 원인으로 보인다. On the other hand, as can be seen from the test 1-14 of Table 2, the Hot / Set value decreased as the amount of natural magnesium hydroxide used increased. In case of using only natural magnesium hydroxide with a large particle size, it can not satisfy the general management range of Hot 70% or more and set 10% or less. This seems to be caused by the fact that the metal component contained in the magnesium hydroxide is eluted under the condition of receiving heat and weakening the cross-linking force between the resin and magnesium hydroxide.

이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.While the present invention has been particularly shown and described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, Of course, this is possible. Therefore, the scope of the present invention should not be limited to the above-described embodiments but should be defined by the following claims as well as equivalents thereof.

Claims (4)

평균입경 1.0~2.0㎛의 고순도 수산화마그네슘 분말과 평균입경 2.5~3.5㎛의 천연산 수산화마그네슘 분말을 일정 비율로 혼합하여 수산화마그네슘 분말 혼합물을 마련한 후, 여기에 물을 투입함으로써 슬러리를 제조하는 단계;
상기 슬러리를 80℃ 이상 승온 후, 상기 수산화마그네슘 분말 혼합물 100중량부 기준 아크릴계 실란을 1.5~2.5중량부를 투입함으로써 수산화마그네슘 분말을 코팅하는 단계; 및
상기 아크릴계 실란이 코팅된 수산화 마그네슘 분말을 여과한 후 건조함으로난연성 수산화마그네슘을 제조하는 단계;를 포함하는 고강도 무독성 난연 가교 컴파운드 용 수산화마그네슘 제조방법.
Mixing a high purity magnesium hydroxide powder having an average particle diameter of 1.0 to 2.0 탆 and a natural magnesium hydroxide powder having an average particle diameter of 2.5 to 3.5 탆 at a predetermined ratio to prepare a magnesium hydroxide powder mixture and then adding water thereto to prepare a slurry;
Coating the magnesium hydroxide powder by adding 1.5 to 2.5 parts by weight of acrylic silane based on 100 parts by weight of the magnesium hydroxide powder mixture after raising the slurry to 80 DEG C or higher; And
A method for preparing magnesium hydroxide for a high-strength, non-toxic, flame-retardant crosslinking compound, comprising the steps of: (1) filtering magnesium hydroxide powder coated with acrylic silane and then drying to obtain flame-retardant magnesium hydroxide;
제 1항에 있어서, 상기 고순도 수산화마그네슘 분말은 마그네슘 수화반응으로 제조된 분말인 것을 특징으로 하는 고강도 무독성 난연 가교 컴파운드 용 수산화마그네슘 제조방법.
The method of claim 1, wherein the high purity magnesium hydroxide powder is a powder prepared by a magnesium hydration reaction.
제 1항에 있어서, 상기 고순도 수산화마그네슘 분말에 대한 천연산 수산화마그네슘 분말의 혼합비는 10~50중량%인 것을 특징으로 하는 고강도 무독성 난연 가교 컴파운드 용 수산화마그네슘 제조방법.
The method of claim 1, wherein the mixing ratio of the natural magnesium hydroxide powder to the high purity magnesium hydroxide powder is 10 to 50 wt%.
제 1항에 있어서, 상기 건조는 100~120℃에서 행함을 특징으로 하는 고강도 무독성 난연 가교 컴파운드 용 수산화마그네슘 제조방법.
The method of claim 1, wherein the drying is performed at 100 to 120 ° C.
KR1020170169522A 2017-12-11 2017-12-11 Method for manufacturing magnesium hydroxide for high strength non-toxic flame-retardant crosslinking compound KR20190069118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170169522A KR20190069118A (en) 2017-12-11 2017-12-11 Method for manufacturing magnesium hydroxide for high strength non-toxic flame-retardant crosslinking compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170169522A KR20190069118A (en) 2017-12-11 2017-12-11 Method for manufacturing magnesium hydroxide for high strength non-toxic flame-retardant crosslinking compound

Publications (1)

Publication Number Publication Date
KR20190069118A true KR20190069118A (en) 2019-06-19

Family

ID=67104667

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170169522A KR20190069118A (en) 2017-12-11 2017-12-11 Method for manufacturing magnesium hydroxide for high strength non-toxic flame-retardant crosslinking compound

Country Status (1)

Country Link
KR (1) KR20190069118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874494A (en) * 2022-03-28 2022-08-09 洛阳中超新材料股份有限公司 High-flow magnesium hydroxide flame retardant, preparation thereof and low-smoke halogen-free cable
CN116574341A (en) * 2023-07-12 2023-08-11 河北信泰新材料有限公司 Graphite composite polystyrene particle and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874494A (en) * 2022-03-28 2022-08-09 洛阳中超新材料股份有限公司 High-flow magnesium hydroxide flame retardant, preparation thereof and low-smoke halogen-free cable
CN114874494B (en) * 2022-03-28 2023-10-17 洛阳中超新材料股份有限公司 High-flow magnesium hydroxide flame retardant, preparation method thereof and low-smoke halogen-free cable
CN116574341A (en) * 2023-07-12 2023-08-11 河北信泰新材料有限公司 Graphite composite polystyrene particle and preparation method thereof
CN116574341B (en) * 2023-07-12 2023-10-03 河北信泰新材料有限公司 Graphite composite polystyrene particle and preparation method thereof

Similar Documents

Publication Publication Date Title
CN103525076B (en) A kind of Halogen-free low-smoke flame-retardant TPE cable material
CN103694595B (en) A kind of environmental protection filled cable material
KR20160060760A (en) Magnesium Hydroxide Fire Retardant Nanoparticles and Production Method Thereof
CN109851946B (en) Flame-retardant and aging-resistant plastic shell
CN103524844A (en) High-temperature-resistant cable sheath material and preparation method thereof
KR20190069118A (en) Method for manufacturing magnesium hydroxide for high strength non-toxic flame-retardant crosslinking compound
CN109627643B (en) Insulating ageing-resistant plastic shell
DE4117034A1 (en) CATIONIC LAYER CONNECTIONS MODIFIED WITH POLYMERS
CN110092983B (en) Synergistic halogen-free flame retardant and application thereof, EPDM/PP thermoplastic elastomer and preparation method and application thereof
JP4953421B2 (en) Method for producing composite magnesium hydroxide particles
KR20100001283A (en) Magnesium hydroxide-melamine complex particle and flame retardant compositions including the same
CN103524867A (en) Radiation cross-linking type low-smoke halogen-free flame-retardant polyolefin cable material for photovoltaic cable
CN108659514B (en) Preparation and application of polyurethane efficient smoke suppressant
CN106566039A (en) A semiconductive shield cable material including surface-grafted modified carbon black
JP3776325B2 (en) Method for producing magnesium hydroxide flame retardant coated with silane coupling agent
CN105111667A (en) Novel halogen-free flame retardant modification thermoplastic elastomer data line sheath material and manufacturing method thereof
EP2420474A1 (en) Method for manufacturing aluminium trihydroxide
CN109401126B (en) High-performance communication cable sheath material
CN112029217A (en) Cross-linked polyethylene insulation low-smoke halogen-free fire-resistant cable
CN109456550B (en) Anti-cracking water supply pipe and preparation method thereof
KR100442635B1 (en) Improved method for preparation of antimony-containing flame retardant
CN112920490A (en) High-tinting-strength flame-retardant general color master batch and preparation method thereof
CN111607165A (en) High-expansion insulating ethylene-propylene rubber cold-contraction material, and preparation method and application thereof
CN115710377B (en) Ni@Mg enhanced sepiolite composite carbon agent, preparation method thereof and application thereof in EVA
WO2018198650A1 (en) Alumina hydrate particles, flame retardant, resin composition and electric wire/cable

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application