KR20190067403A - 3D printing system - Google Patents

3D printing system Download PDF

Info

Publication number
KR20190067403A
KR20190067403A KR1020170167316A KR20170167316A KR20190067403A KR 20190067403 A KR20190067403 A KR 20190067403A KR 1020170167316 A KR1020170167316 A KR 1020170167316A KR 20170167316 A KR20170167316 A KR 20170167316A KR 20190067403 A KR20190067403 A KR 20190067403A
Authority
KR
South Korea
Prior art keywords
gas
unit
laminated
chamber
printing system
Prior art date
Application number
KR1020170167316A
Other languages
Korean (ko)
Other versions
KR102351686B1 (en
Inventor
양순용
김용석
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Priority to KR1020170167316A priority Critical patent/KR102351686B1/en
Publication of KR20190067403A publication Critical patent/KR20190067403A/en
Application granted granted Critical
Publication of KR102351686B1 publication Critical patent/KR102351686B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F3/1055
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/77Recycling of gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B22F2003/1056
    • B22F2003/1058
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention provides a 3D printing system, wherein to reduce contraction stress of a structure printed by sintering metal powder that is a material, a plurality of heat sources are provided in a material storage unit and a working space for the material to be continuously maintained at a high temperature. Moreover, the working space is maintained at a high temperature, and further, to block contact between the material and oxygen, high temperature gas is sprayed to the working space, and the sprayed gas, metal fume scattering as melting the material with a laser, and by-products including smog are collected. Only gas is extracted from the by-products to be circulated into the working space again.

Description

3D 프린팅 시스템{3D printing system}3D printing system

본 발명은 3D 프린팅 시스템에 관한 것으로, 더욱 상세하게는 소재인 금속분말의 레이어 상으로 적층하면서 레이저 조사로 소결시키는 과정을 재차 실시하여 3D 조형물을 프린팅하는 3D 프린팅 시스템에 관한 것이다.The present invention relates to a 3D printing system, and more particularly, to a 3D printing system for printing a 3D sculpture by performing a process of sintering by laser irradiation while being laminated on a layer of metal powder as a material.

일반적으로 3D 프린팅 기술은 3D 입체 도면을 기반으로 조형될 임의형상물의 단면데이터를 이용해 3차원 공간 안에 인쇄하듯 물품을 만들어내는 제조기술이다.Generally, 3D printing technology is a manufacturing technology that produces articles in a three-dimensional space by using cross-sectional data of arbitrary objects to be formed based on a 3D stereoscopic drawing.

하지만, 그간 프린터장비나 소재가 너무 비싸 극히 제한된 용도에만 사용됐다. 개발 초기에는 플라스틱 소재에 국한되고 제한된 용도로 사용되었지만 나일론과 금속 등으로 범위가 확대되고 휴대전화 케이스, 자동차 부속품까지 출력할 수 있는 정도로 전 산업분야에 응용되고 있는 추세이다.However, over the years, printer equipment and materials have been too expensive to be used for very limited applications. In the early stage of development, it was limited to plastic materials and used for limited purposes, but it has been applied to all industrial fields to the extent that nylon and metal etc. can be expanded to output cell phone cases and automobile accessories.

금속분말을 기반으로 하는 금속 3D 프린터는 플랫폼 위로 미세분말을 공급하는 피딩수단, 플랫폼 위의 분말을 가열하여 소결(Sintering)하거나 용융(Melting)하여 조형물을 만드는 레이저기구, 조형물이나 노즐을 승, 하강시키는 승강 및 회전 수단을 구비하고 있다. Metal 3D printers based on metal powders can be used as feeding means for supplying fine powder onto the platform, laser means for heating the powder on the platform to sinter or melting to form sculpture, And raising and lowering means.

또한, 금속분말을 기반으로 하는 프린터방식에는 SLS(PBF)방식과 DED(DMT)방식이 있는데, 평평하게 깔아놓은 분말영역을 선택적 열에너지로 융합하는 PBF(Powder bed fusion)방식과 집중된 열에너지로 소재를 녹여서 증착하는 DED(Directed energy deposition) 방식이 있다. In addition, there are SLP (PBF) method and DED (DMT) method in the printer method based on the metal powder, and the PBF (Powder bed fusion) method which fuses the flat powdered area with the selective thermal energy and the concentrated thermal energy There is a Directed Energy Deposition (DED) method that melts and deposits.

이러한 PBF방식은 비교적 정밀하고 형상자유도 구현에 유리한 반면에 DED방식은 비교적 큰 제품의 제작과 사용소재의 범위가 넓은 장점이 있다.Such a PBF method is advantageous for achieving a relatively precise shape freely, while the DED method has a wide range of fabrication and a wide range of materials to be used.

그리고 DED방식은 고출력 레이저 빔을 국부적으로 조사하여 모재표면에 용융풀을 형성하고, coaxial powder feeder를 통해 실시간으로 공급된 금속분말은 용융과 급속응고 과정을 거쳐 치밀한 조직을 가진 금속층을 형성하게 된다. 이 때 금속분말의 이송 및 산화방지를 위하여 powder gas와 coaxial gas를 공급하게 된다.In the DED method, the high-power laser beam is locally irradiated to form a molten pool on the surface of the base material, and the metal powder supplied in real time through the coaxial powder feeder is melted and rapidly solidified to form a metal layer having a dense structure. In this case, powder gas and coaxial gas are supplied to prevent transfer and oxidation of metal powder.

이러한 종래의 기술로는 공개특허 제10-2017-0014618호(2017.02.08)에서 확인할 수 있다. Such a conventional technique can be confirmed in Published Patent No. 10-2017-0014618 (Feb.

상기한 종래의 SLS 방식의 3D 프린터는 내부가 작업공간으로 형성되는 하우징프레임과, 하우징프레임의 작업공간 내에 임의형상물의 조형공간을 형성하는 조형챔버와, 임의형상물의 소재인 분말소재가 수용되는 소재수용챔버와, 소재수용챔버 내의 분말소재를 조형챔버로 소정의 단면두께씩 공급하는 재료공급장치와, 조형챔버에 공급된 분말소재 중 임의형상물의 단면 데이터에 해당하는 영역을 소결시키는 레이저장치와, 저장된 임의형상물의 단면데이터에 근거하여 전술한 구성기기들의 동작을 제어하는 제어컴퓨터로 구성되어 있다.The conventional SLS type 3D printer includes a housing frame in which an interior is formed as a work space, a molding chamber that forms a molding space of an arbitrary shape in a work space of the housing frame, A laser apparatus for sintering a region corresponding to cross-sectional data of any one of powder materials supplied to the molding chamber; And a control computer for controlling the operation of the above-described components based on the cross-sectional data of the stored arbitrary object.

이러한 SLS 방식의 3D 프린터의 임의형상물 조형과정을 살펴보면 다음과 같다. 제어컴퓨터는 저장된 단면데이터에 근거하여 소재수용챔버의 소재공급테이블과 조형챔버의 조형테이블의 승강 구동과 재료공급장치의 구동을 제어하여 분말소재가 조형테이블 상면에 소정의 두께씩 단계적으로 공급되도록 한다.An arbitrary shape molding process of the SLS type 3D printer will be described below. The control computer controls the elevation driving of the material supply table of the material accommodating chamber and the shaping table of the material accommodating chamber and the driving of the material supplying device based on the stored cross sectional data so that the powder material is supplied to the upper surface of the shaping table step by step .

그리고 조형챔버의 조형테이블 상면에 분말소재가 단계적으로 공급될 때, 제어컴퓨터는 레이저장치의 구동을 제어하여 각 단면데이터에 대응하는 영역의 분말소재 부분을 소결시킨다. When the powder material is supplied to the upper surface of the shaping table of the shaping chamber step by step, the control computer controls the driving of the laser apparatus to sinter the powder material portion corresponding to each cross-sectional data.

이렇게 각 단면이 소결되면 최종적으로는 제어컴퓨터에 저장된 3차원 데이터에 대응하는 임의형상물이 조형된다.When each cross section is thus sintered, an arbitrary shape corresponding to the three-dimensional data stored in the control computer is finally formed.

상기한 종래의 3D 프린터는 미세한 금속분말에 레이저의 높은 에너지를 조사하여 순간적으로 미소영역을 용융시켜 적층되도록 함으로, 냉각 또한 순간적으로 이루어지게 되어 수축응력이 발생하는 요인으로 작용하였다.In the conventional 3D printer described above, the fine metal powder is irradiated with high energy of the laser to instantaneously melt the minute regions to be laminated, and the cooling is also instantaneously performed, which causes shrinkage stress.

또한, 산화방지를 위하여 분사되는 가스속도에 영향을 받아 적층물의 냉각속도를 더욱 가속시키는 역기능으로 작용하였다.In addition, due to the gas velocity being injected for preventing oxidation, the cooling rate of the laminated material accelerated further.

이러한 현상은 적층두께가 늘어남에 따라 수축응력도 비례적으로 누적되게 되어 일정 두께 이상으로 적층하게 되면, 적층부품에 크랙이 발생하는 문제점이 있었다.This phenomenon is accompanied by the accumulation of shrinkage stress proportional to the increase in the thickness of the laminate, and there is a problem in that cracks are generated in the laminated parts when laminated over a certain thickness.

또한, 소재에 레이저가 조사됨에 따라 발생하는 부산물의 비산으로 레이저 조사 초점에 오류가 발생하고, 비산되는 부산물(고 에너지 레이저가 조사되어 미소분말이 용융되는 과정에서 폭발하는 현상이 일어나(용접 시와 유사한 현상이 나타남) 볼 형상의 작은 알갱이 입자들이 만들어져 비산됨.)에 의해 조형물의 품질을 저하시키는 요인으로 작용하였다.In addition, the scattering of the byproducts generated as the laser is irradiated on the material causes an error in the laser irradiation focus, and the scattered by-product (the high energy laser is irradiated to cause the explosion in the process of melting the fine powder (A similar phenomenon appears) and small grain particles in the form of balls are scattered and scattered).

그리고 종래의 DED 방식에는 분말의 원활한 공급이나 산화방지 등에 대한 적층부품의 품질향상을 위한 가스를 이용하는 보조기술이 적용되어지고 있으나, 특히 PBF방식에는 가스를 이용한 적층부품의 품질향상을 위한 보조장치의 구비가 미흡하다.In the conventional DED method, an assistive technology using a gas for improving the quality of a laminated part for smooth supply of powders or prevention of oxidation is applied. Particularly, in the PBF method, an auxiliary device for improving the quality of a laminated part using gas It is insufficient.

본 발명은 소재 및 작업공간이 지속적으로 고온 유지되어, 조형물의 수축응력을 저감시켜 조형물에 크랙이 발생하지 않아, 조형물의 품질을 향상시킬 수 있고, 작업공간 내에서 레이저 조사 지점에서 비산되는 금속 흄 및 스모그를 신속하게 제거함에 레이저 조사에 영향을 미치는 요소(비산입자의 영향: 볼 형태로 비산되는 입자는 적층부에 재 안착되거나 새로이 공급되는 분말에 안착되어 적층조직의 결함으로 작용)가 제거되어, 레이저 초점의 오류 현상을 방지할 수 있으며, 가스처리부를 통해 부산물과 함께 흡입된 가스를 다시 부산물과 분리한 후, 작업공간으로 재공급하여 순환시켜 소모되는 가스뿐만 아니라, 가스를 지정온도로 보온하기 위한 에너지 역시 줄일 수 있는 3D 프린팅 시스템을 제공하는 것을 그 목적으로 한다.The present invention can maintain the material and working space at a high temperature continuously, reduce the shrinkage stress of the molding, prevent cracking in the molding, improve the quality of the molding, and reduce the metal fume And smog are removed quickly. Elements affecting laser irradiation (effects of scattering particles: particles scattered in a ball shape are restored to the lamination part or placed on a newly supplied powder to act as defects in the lamination structure) , And it is possible to prevent the error phenomenon of the laser focus. The gas sucked together with the by-product is separated from the by-product again through the gas processing unit, and then supplied again to the working space to circulate the gas. The present invention also provides a 3D printing system capable of reducing energy required for printing.

본 발명에 따른 3D 프린팅 시스템은 소재인 금속분말을 작업부의 적층베드에 레이어로 도포한 후 레이저를 조사하여 원하는 부분만 소결시키는 과정을 연속반복 실시하여, 조형물을 프린팅하는 3D 프린터와, 상기 3D 프린터부의 상측인 작업공간을 외부로부터 밀폐시키는 챔버와, 상기 챔버의 일측에 구비되어, 상기 챔버 내의 작업부 상에 가스를 분사하는 가스분사부와, 상기 가스분사부와 대향진 상기 챔버의 타측에 구비되어, 상기 작업부로 분사된 가스와, 레이저 조사에 의해 발생한 금속 흄 및 스모그가 포함된 부산물을 수평선상으로 흡입하는 가스흡입부, 및 상기 가스분사부 및 가스흡입부와 유체가 유동하는 튜브로 연결되고, 상기 가스흡입부를 통해 흡입한 부산물에서 금속 흄 및 스모그를 분리하여 가스를 추출한 후, 추출한 가스를 상기 가스분사부로 순환시키는 가스처리부를 포함한다.The 3D printing system according to the present invention includes a 3D printer for printing a molding object by sequentially applying a metal powder as a material to a laminated bed of a work part and then sintering only a desired part by irradiating a laser, A gas spraying part provided at one side of the chamber for spraying a gas on the working part in the chamber; and a gas spraying part provided on the other side of the chamber facing the gas spraying part. A gas suction part for sucking the gas injected to the working part, a by-product containing metal fume and smog generated by the laser irradiation on the horizontal line, and a tube for flowing the fluid to the gas spray part and the gas suction part The metal fume and the smog are separated from the by-product sucked through the gas suction unit to extract the gas, Minutes and a gas processing section for Saburo circulation.

이때 본 발명에 따른 상기 3D 프린터는 소재인 금속분말을 일정량 수용하는 소재저장부와, 상기 소재저장부의 전방에 구비되고, 상기 소재저장부에서 공급된 소재인 금속분말을 적층베드 상에 레이어 형태로 적층하는 작업부와, 상기 작업부의 상부에 구비되고, 선택적으로 X 좌표 및 Y 좌표로 이동하면서 상기 작업부의 적층베드 상에 레이어로 적층된 소재인 금속분말에 레이저를 조사하는 레이저모듈부와, 상기 작업부의 전방에 구비되고, 상기 작업부의 적층베드에서 레이어를 이루고 남은 여분의 소재를 회수하는 소재회수부와, 후방인 상기 소재저장부에서 전방인 상기 소재회수부로 왕복 이동하면서 상기 소재저장부에 저장된 소재를 일정량 공급하는 소재공급유닛을 포함한다.At this time, the 3D printer according to the present invention comprises a material storage part for storing a certain amount of metal powder as a material, and a metal powder, which is provided in front of the material storage part and supplied from the material storage part, A laser module unit for irradiating a laser beam onto a metal powder, which is a material layered on a laminated bed of the working unit, which is provided on an upper portion of the working unit and which is selectively moved in X and Y coordinates; A work recovery unit which is provided in front of the work unit and which recovers the excess material left over from the laminated bed of the work unit and which is left over from the work storage unit; And a material supply unit for supplying a predetermined amount of material.

그리고 본 발명에 따른 상기 3D 프린터는 상기 소재저장부의 일측에 구비되어, 상기 소재저장부에 수용된 소재에 열을 제공하는 제1열원과, 상기 작업부의 적층베드에 구비되어, 상기 적층베드에 도포된 소재에 열을 제공하는 제2열원과, 상기 가스분사부에 구비되어, 상기 챔버 내부로 분사되는 가스에 열을 제공하여 분사되는 가스가 핫가스로 전환되어 분사되도록 하여, 상기 챔버 내의 작업부에 열을 제공하는 제3열원을 포함한다.The 3D printer according to the present invention includes a first heat source provided on one side of the material storage unit and providing heat to the material accommodated in the material storage unit, and a second heat source provided on the laminated bed of the working unit, A second heat source for supplying heat to the workpiece; and a gas supply unit for supplying heat to the gas injected into the chamber to convert the gas to be injected into hot gas to be injected into the chamber, And a third heat source providing heat.

또한, 본 발명에 따른 상기 가스처리부는 상기 가스흡입부를 통해 흡입된 부산물에서 입자를 포집하는 입자포집기와, 상기 입자포집기와 유체가 유동하는 관으로 연결되고, 입자가 포집된 부산물에서 가스를 필터링하는 필터와, 상기 필터와 유체가 유동하는 관으로 연결되고, 상기 필터에서 필터링된 가스를 압축한 후 공급하는 가스압축공급기와, 상기 가스압축공급기와 유체가 유동하는 관으로 연결되고, 상기 가스압축공급기에서 곱급하는 가스를 해당 온도로 가열하여 제공하는 가열기를 포함한다.The gas treatment unit according to the present invention may further include a particle trapping unit for trapping particles in the by-product that is sucked through the gas suction unit, a pipe connected to the particle trapping unit through a pipe through which the fluid flows, A gas compression feeder connected to the filter and a tube through which the fluid flows, for compressing and supplying the gas filtered by the filter; and a pipe connected to the gas compression feeder through which the fluid flows, And a heater for heating the gas to be heated at the temperature.

여기서 본 발명에 따른 상기 가스분사부는 원통형의 노즐몸체 일측에 수평방향으로 길이를 갖는 장공 형태의 노즐을 형성하여 가스를 층류로 분사하거나, 사각형의 노즐몸체의 일측에 수평방향으로 길이를 갖는 장공 형태의 노즐을 형성하여 가스를 층류로 분사할 수 있다.The gas injection unit according to the present invention is characterized in that the gas injection unit comprises a cylindrical nozzle body having a longitudinally elongated nozzle having a length in a horizontal direction to jet the gas into a laminar flow or a long rectangular hole having a length in a horizontal direction on one side of a rectangular nozzle body So that the gas can be injected into the laminar flow.

더불어 본 발명에 따른 상기 가스분사부는 복수 개로 구비되어, 상기 챔버의 전, 후, 좌, 우 사방에 구비되고, 상기 가스흡입부는 상기 레이저모듈에 구비되고, 흡입구가 꼬깔 형태로 레이저 조사 지점 상측에 위치되어, 가스와 부산물을 수직선상으로 흡입할 수 있다.In addition, the gas injection unit according to the present invention is provided in a plurality of the gas injection units, and the gas suction unit is provided in the laser module, and the intake port is formed in a coodle shape on the upper side of the laser irradiation point So that gas and by-products can be sucked in a vertical line.

본 발명의 일 실시예에 따른 3D 프린팅 시스템은 다음과 같은 효과를 가진다.The 3D printing system according to an embodiment of the present invention has the following effects.

첫째, 소재 및 작업공간이 지속적으로 고온 유지되어, 조형물의 수축응력을 저감시켜 조형물에 크랙이 발생하지 않아, 조형물의 품질을 향상시킬 수 있는 효과를 가진다.First, the material and work space are kept at a high temperature continuously, and the shrinkage stress of the molding is reduced, so that no crack is generated in the molding, thereby improving the quality of the molding.

둘째, 레이저의 조사로 발생하는 부산물이 작업공간으로 공급되는 가스와 함께 흡입된 후, 가스에서 분리 처리되어, 작업공간 내에서 레이저 조사 지점에서 비산되는 금속 흄 및 스모그를 신속하게 제거함에, 레이저 조사에 영향을 미치는 요소가 제거되어, 레이저 초점의 오류 현상을 방지할 수 있고, 비산되는 볼 형상의 입자가 새로이 공급되는 분말에 재 안착되어 발생되는 적층조직의 결함을 방지할 수 있는 효과를 가진다.Second, the byproducts generated by the laser irradiation are sucked together with the gas supplied to the work space and then separated from the gas to quickly remove metal fumes and smog scattered at the laser irradiation point in the work space. It is possible to prevent an error phenomenon of the laser focus and to prevent defects of the laminated structure which are generated by resting the scattered ball-shaped particles on the newly supplied powder.

셋째, 가스처리부를 통해 부산물과 함께 흡입된 가스를 다시 부산물과 분리한 후, 작업공간으로 재공급하여 순환시켜 소모되는 가스뿐만 아니라, 가스를 지정온도로 보온하기 위한 에너지 역시 줄일 수 있는 효과를 가진다.Thirdly, the gas sucked together with the by-product is separated from the by-product through the gas processing unit, and thereafter, the energy for keeping the gas at the designated temperature is also reduced as well as the gas consumed by re- .

도 1은 본 발명의 일 실시예에 따른 3D 프린팅 시스템의 구성을 보인 예시도이다.
도 2는 본 발명의 일 실시예에 따라 볼트체결 고정방식을 적용한 적층베드의 상태를 보인 예시도이다.
도 3은 본 발명의 일 실시예에 따라 클램프 고정방식을 적용한 적층베드의 상태를 보인 예시도이다.
도 4는 본 발명의 일 실시예에 따라 한 쌍의 클램프 고정방식을 적용한 적층베드의 상태를 보인 예시도이다.
도 5는 본 발명의 일 실시예에 따른 원통형의 가스분사부 및 그에 대응하는 가스흡입부를 보인 예시도이다.
도 6은 본 발명의 일 실시예에 따른 사각형의 가스분사부 및 그에 대응하는 가스흡입부를 보인 예시도이다.
도 7은 본 발명의 다른 실시예에 따른 3D 프린팅 시스템의 구성을 보인 예시도이다.
도 8은 본 발명의 다른 실시예에 따른 3D 프린팅 시스템의 가스분사부 및 그에 대응하는 가스흡입부를 보인 예시도이다.
FIG. 1 is a view illustrating a configuration of a 3D printing system according to an exemplary embodiment of the present invention. Referring to FIG.
2 is a view illustrating a state of a laminated bed to which a bolt fastening and fixing method is applied according to an embodiment of the present invention.
3 is a view illustrating a state of a laminated bed to which a clamp fixing method is applied according to an embodiment of the present invention.
4 is a view illustrating a state of a laminated bed to which a pair of clamp fixing methods is applied according to an embodiment of the present invention.
FIG. 5 is an exemplary view showing a cylindrical gas ejecting part and a corresponding gas sucking part according to an embodiment of the present invention. FIG.
6 is a view illustrating a quadrangular gas ejector according to an embodiment of the present invention and a corresponding gas suction unit.
FIG. 7 is a view illustrating a configuration of a 3D printing system according to another embodiment of the present invention.
FIG. 8 is an exemplary view showing a gas ejecting portion and a corresponding gas sucking portion of the 3D printing system according to another embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately The present invention should be construed in accordance with the meaning and concept consistent with the technical idea of the present invention.

따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들은 대체할 수 있는 균등한 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the present specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention, and not all of the technical ideas of the present invention are described. Therefore, at the time of the present application, It should be understood that variations can be made.

본 발명은 소재인 금속분말의 용융소결로 프린팅되는 조형물의 수축응력을 저감시켜 크랙 발생을 방지하도록, 소재저장부 및 작업공간에 복수 개의 열원을 구비하여 소재가 지속적으로 고온을 유지하도록 하고, 작업공간을 고온으로 유지함은 물론, 소재와 산소의 접촉을 차단하기 위해 작업공간에 불활성 고온의 가스를 분사하면서 분사된 가스와, 레이저에 따른 소재 용융으로 비산되는 금속 흄 및 스모그가 포함된 부산물을 회수하고, 부산물에서 가스만을 추출하여 다시 작업공간으로 순환시키는 3D 프린팅 시스템에 관한 것으로, 도면을 참조하여 살펴보면 다음과 같다.The present invention provides a plurality of heat sources in a work storage space and a work storage space so as to reduce the shrinkage stress of a molding to be printed by melt sintering of a metal powder as a material so as to prevent cracks, In addition to maintaining the space at a high temperature, it recovers the by-product gas containing injected inert gas at the working space and the by-product containing metal fumes and smog scattered by melting of the material due to the laser, And a 3D printing system for extracting only the gas from the by-product and circulating the gas to the work space again, will be described with reference to the drawings.

도 1 내지 도 8을 참조한 본 발명의 일 실시예에 따른 3D 프린팅 시스템은 3D 프린터(100), 챔버(101), 가스분사부(200), 부산물흡입부(300), 가스처리부(400)가 포함되는데, 먼저 상기 3D 프린터(100)는 분말 형태의 소재를 적층베드(bed)에 레이어 형태로 도포한 후 레이저를 조사하여 원하는 부분만 소결시키는 과정을 연속반복 실시하여, 3D 조형물을 프린팅한다.1 to 8, a 3D printing system according to an embodiment of the present invention includes a 3D printer 100, a chamber 101, a gas injection unit 200, a byproduct suction unit 300, and a gas processing unit 400 First, the 3D printer 100 applies a powdery material to a laminate bed in a layer form, irradiates a laser to sinter the desired portion, and repeats the process repeatedly to print a 3D model.

이때 상기 3D 프린터(100)는 소재인 금속분말을 일정량 수용하는 소재저장부(110)가 포함되는데, 상기 소재저장부(110)는 소재인 금속분말이 일정 고온으로 유지되도록 저장된 소재에 열을 제공하는 제1열원(112)을 구비하여, 소재가 고온을 유지하도록 한다.In this case, the 3D printer 100 includes a material storage unit 110 for storing a predetermined amount of metal powder. The material storage unit 110 may be configured to supply heat to a material And the first heat source 112 is provided to keep the material at a high temperature.

여기서 구비되는 제1열원(112)으로는 외부 전원에 의해 열을 발산하는 전기히터로 구비되는 것이 바람직하다. The first heat source 112 may be an electric heater that dissipates heat by an external power source.

그리고 상기 소재저장부(110)의 전방에는 작업부(120)가 구비되는데, 상기 작업부(120)는 후방에서 전방으로 이동하는 소재공급유닛(111)에 의해 상기 소재저장부(110)에서 공급된 소재인 금속분말을 적층베드(121) 상에 레이어 형태로 적층 한다.The work part 120 is provided in front of the work storage part 110. The work part 120 is supplied from the work storage part 110 by the work supply unit 111 moving forward from the rear side The metal powder as a material is laminated on the laminated bed 121 in the form of a layer.

이때 상기 적층베드(121)에는 레이어 형태로 적층된 소재가 일정 온도로 유지되도록, 상기 적층베드(121)에 열을 제공하는 제2열원(122)을 구비하여, 상기 적층베드(121) 상에 적층된 소재가 고온으로 유지되도록 한다.The second heat source 122 supplies heat to the laminated bed 121 so that the material stacked in the form of a layer is maintained at a predetermined temperature in the laminated bed 121, So that the laminated material is maintained at a high temperature.

여기서도 역시, 구비되는 제2열원(122)으로는 외부 전원에 의해 열을 발산하는 전기히터로 구비되는 것이 바람직하다.Here, it is preferable that the second heat source 122 is provided as an electric heater that dissipates heat by an external power source.

더불어 도 2를 참조한 본 발명의 일 실시 예에 따른 적층베드(121)를 보다 상세하게 살펴보면, 상기 적층베드(121)는 적층기판(123)과, 적층블록(124)이 포함되는데, 상기 적층기판(123)은 판 상으로 그 상면에는 소재가 소결되어 이루어진 조형물이 출력된다.2, the laminated bed 121 includes a laminated substrate 123 and a laminated block 124. The laminated substrate 121 includes a laminated substrate 121, (123) is a plate, and the upper surface thereof is sintered with a workpiece.

이때 상기 적층기판(123)은 그 상면에 가접된 후, 선택적으로 상면에서 박리되는 박리용 박판이 구비되어, 상기 적층기판(123)의 상면에 출력되는 조형물을 취득할 시, 상기 박리용 박판을 상기 적층기판(123)에서 박리함에 따라 조형물이 상기 적층기판(123)에서 분리되므로, 상기 적층기판(123)의 상면에 박리용 박판이 가접됨에 따라 조형물의 취득이 용이하다.At this time, the laminated substrate 123 is provided with a peeling thin plate which is selectively peeled from the upper surface after being bonded to the upper surface of the laminated substrate 123. When the thin film to be peeled off is obtained on the upper surface of the laminated substrate 123, Since the sculpture is detached from the laminate board 123 as it peels off from the laminate board 123, the thin film for peeling is adhered to the upper surface of the laminate board 123, so that the sculpture can be easily obtained.

그리고 상기 적층블록(124)은 상기 적층기판(123)보다 면적이 넓은 육면체로 내부에는 상기 제2열원(122)이 일정한 간격으로 구비되고, 상면에는 상기 적층기판(123)이 안착되는 안착홈이 형성된다. The laminated block 124 is a hexahedron having a larger area than the laminated substrate 123. The second heat source 122 is disposed at a predetermined interval in the interior of the laminated block 124 and a seating groove in which the laminated substrate 123 is seated is formed on the upper surface. .

여기서 상기 적층블록(124)의 안착홈에 의해 상기 적층블록(124)의 전, 후단에는 턱에 형성되어, 상기 적층블록(124)의 안착홈에 안착된 상기 적층기판(123)은 전, 후 방향으로 유동하지 않게 단속되고, 상기 적층블록(124)의 안착홈에 안착된 상기 적층기판(123)은 상기 적층기판(123)의 모서리를 관통하면서 상기 적층블록(124)에 체결되는 볼트의 체결로 상기 적층블록(124)의 안착홈에 상기 적층기판(123)가 고정될 수 있다.The laminated board 123, which is formed on the front and rear ends of the laminated block 124 by the seating grooves of the laminated block 124 and is seated in the seating groove of the laminated block 124, The laminated board 123 that is seated in the seating groove of the laminated block 124 passes through the edge of the laminated board 123 and is fastened to the laminated block 124 The laminated substrate 123 may be fixed to the seating groove of the laminated block 124. [

또한, 본 발명의 일 실시 예에 따른 상기 적층베드(121)는 상기한 볼트 체결로 적층기판(123)을 적층블록(124)에 고정하는 볼트 고정방식에 한정하지 않고, 다양한 넓이를 갖는 적층기판(123)들이 호환되어, 상기 적층블록(124)에 고정되도록 클램핑 고정방식을 적용할 수도 있다. The laminated bed 121 according to an embodiment of the present invention is not limited to the bolt fixing method for fixing the laminated board 123 to the laminated block 124 by the bolt fastening, (123) are compatible with each other, and a clamping and fixing method may be applied so as to be fixed to the lamination block (124).

도 3을 참조한 바와 같이 클램핑 고정방식이 실시되기 위해서는 상기 적층블록(124)의 그 좌, 우 양측에 길이방향을 따라 가이드(125)가 각각 구비될 수 있다. Referring to FIG. 3, in order to implement the clamping and fixing method, guides 125 may be provided along the longitudinal direction on both left and right sides of the laminated block 124.

그리고 상기 적층블록(124)의 안착홈 상에는 상기 안착홈의 전, 후 길이방향을 따라 이동하는 클램프(126)가 구비되는데, 상기 클램프(126)의 좌, 우측에는 상기 적층블록(124)의 좌, 우 양측에 각각 구비된 가이드(125)가 결합되어, 상기 클램프(126)는 한 쌍의 가이드(125)에 의해 안내되어 선택적으로 상기 적층블록(124) 안착홈의 길이방향을 따라 이동한다.A clamp 126 is provided on the seating groove of the lamination block 124 to move along the longitudinal direction of the seating groove. The clamp 126 is provided on the left and right of the clamp 126, And the clamp 126 is guided by the pair of guides 125 and selectively moves along the longitudinal direction of the mounting groove of the lamination block 124. [

이때 상기 적층블록(124)의 안착홈 중앙에는 이송수단(127)이 구비되는데, 상기 이송수단(127)은 선택적으로 상기 클램프(126)를 상기 안착홈의 전, 후 길이방향으로 이송한다.At this time, a conveying means 127 is provided at the center of the seating groove of the stacking block 124, and the conveying means 127 selectively conveys the clamp 126 in the longitudinal direction before and after the seating groove.

이때 상기 이송수단(127)의 일례로 이송스크류가 채용할 경우, 상기 적층블록(124)의 후방측에는 안착홈에 따른 단턱이 형성되고, 상기 단턱의 전방에는 클램프(126)가 구비되고, 상기 클램프(126)의 하부는 상기 이송수단(127)인 이송스크류와 나사결합되어, 상기 이송스크류가 시계방향으로 회전하면 상기 클램프(126)는 상기 안착홈의 전, 후 길이방향을 따라 전진하여 상기 단턱과의 거리가 점점 멀리지고, 상기 이송스크류가 반시계방향으로 회전하면 상기 클램프(126)는 상기 안착홈의 전, 후 길이방향을 따라 후진하여 상기 단턱과의 거리가 점점 좁아진다. At this time, when the conveying screw is employed as one example of the conveying means 127, a step is formed along the seating groove on the rear side of the lamination block 124, a clamp 126 is provided in front of the step, The lower part of the clamping plate 126 is screwed to the conveying screw 127 which is the conveying unit 127. When the conveying screw rotates clockwise, the clamp 126 advances along the longitudinal direction of the receiving groove, And when the conveying screw rotates in the counterclockwise direction, the clamp 126 moves backward along the lengthwise and backward directions of the seating groove, and the distance between the clamp 126 and the step is gradually narrowed.

따라서 상기 안착홈의 단턱과 상기 클램프(126)의 사이에 위치되는 적층기판(123)은 상기 클램프(126)의 후진으로 상기 클램프(126)가 상기 안착홈의 단턱으로 이동하면 상기 안착홈의 단턱과 클램프(126) 사이에 적층기판(123)이 클램핑되어 상기 적층블록(124)의 안착홈 상에 적층기판(123)이 고정되고, 상기 클램프(126)의 전진으로 상기 안착홈의 단턱과 클램프(126) 간의 사이가 멀어지면 상기 안착홈의 단턱과 클램프(126) 사이가 멀어져 적층기판(123)의 클랭핑이 해제되어 상기 적층블록(124)의 안착홈 상에 위치하는 적층기판(123)의 고정이 해제된다.When the clamp 126 is moved backward by the clamp 126 to move the clamp 126 to the end of the mounting recess, the stacked substrate 123, which is positioned between the mounting recess and the clamp 126, The stacked substrate 123 is clamped between the clamp 126 and the stacked block 124 and the stacked substrate 123 is fixed on the seating groove of the stacked block 124. By the advancement of the clamp 126, The clamping of the laminate substrate 123 is released and the laminate substrate 123 positioned on the seating groove of the laminate block 124 moves away from the clamp 126. As a result, Is released.

더불어 도 4에 도시한 바와 같이 상기 적층블록(124)의 안착홈 상에 상기 클램프(126)를 한 쌍으로 구비할 수도 있다.In addition, as shown in FIG. 4, the clamps 126 may be provided on the mounting grooves of the laminated block 124 in pairs.

이때 상기 적층블록(124)의 안착홈 상에서 길이방향을 따라 서로 대칭으로 이동하는 한 쌍의 클램프(126) 사이에 적층기판(123)이 위치되면서, 서로 대칭으로 이동하는 한 쌍의 클램프(126)에 의해 클랭핑이 되어 적층기판(123)이 상기 적층블록(124)의 안착홈 상에 고정된다.The pair of clamps 126 are disposed symmetrically with respect to each other along the longitudinal direction on the seating groove of the laminated block 124, So that the laminated board 123 is fixed on the seating groove of the laminated block 124.

또한, 상기 작업부(120)의 상부에는 레이저모듈부(140)가 구비되는데, 상기 레이저모듈부(140)는 선택적으로 X 좌표 및 Y 좌표로 이동하면서 상기 작업부(120)의 적층베드(121) 상에 레이어를 이루는 소재인 금속분말에 레이저를 조사하여 상기 소재가 용융되면서 단단히 소결되고, 재차 레이어 상으로 적층되는 소재를 재차 소결시켜 조형물을 레이어별로 단계적으로 프린팅한다. The laser module unit 140 is disposed at an upper portion of the work unit 120. The laser module unit 140 selectively moves the X coordinate and the Y coordinate of the work unit 120, ), A laser is irradiated to a metal powder as a layer on a substrate, and the material is sintered firmly while being melted. The material to be laminated again on the layer is sintered again, and the molding is printed step by step.

더불어 상기 작업부(120)의 전방에는 소재회수부(130)가 구비되는데, 상기 소재회수부(130)는 레이어를 이루고 남은 여분의 소재인 금속분말이 상기 소재공급유닛(111)의 후방에서 전방으로 이동함에 따라 회수된다.In addition, a material recovery unit 130 is provided in front of the work unit 120. The material recovery unit 130 is configured such that metal powder, which is an excess material remaining after forming a layer, As shown in FIG.

그리고 상기 3D 프린터(100)의 상측에는 챔버(101)가 구비되는데, 상기 챔버(101)는 상기 3D 프린터(100)의 작업공간을 외부로부터 밀폐시킨다.A chamber 101 is provided on the upper side of the 3D printer 100. The chamber 101 seals the work space of the 3D printer 100 from the outside.

이때 상기 챔버(101)의 내부에 형성되는 작업공간이 고온을 유지하도록 별도의 열원을 구비할 수도 있다.At this time, the work space formed in the chamber 101 may have a separate heat source to maintain a high temperature.

또한, 도 5 및 6을 참조하면 상기 챔버(101)의 일측에는 가스분사부(200)가 구비되는데, 상기 가스분사부(200)는 제3열원이 구비되어, 상기 챔버(101) 내의 작업부(120) 상에 고온의 핫가스를 분사하는데, 이때 분사된 고온의 핫가스는 산소보다 무거운 가스로 작업공간상에 층류로 분사되어, 소재와 산소의 접촉을 차단함은 물론, 상기 작업공간이 고온으로 유지되도록 한다. 5 and 6, a gas injection unit 200 is provided at one side of the chamber 101. The gas injection unit 200 includes a third heat source, Temperature hot gas is injected into the work space as a laminar flow by a gas which is heavier than oxygen so as to prevent contact between the work and oxygen, Keep it at high temperature.

여기서 상기 가스분사부(200)는 원통형의 노즐몸체 일측에 수평방향으로 길이를 갖는 장공 형태의 노즐을 형성하여 고온의 가스를 층류로 분사하거나, 사각형의 노즐몸체의 일측에 수평방향으로 길이를 갖는 장공 형태의 노즐을 형성하여 고온의 가스를 층류로 분사할 수 있다.Here, the gas spraying unit 200 may include a cylindrical nozzle body having a horizontally elongated nozzle formed on one side thereof to jet a hot gas into a laminar flow, or a horizontally long nozzle body on one side of a rectangular nozzle body It is possible to form a nozzle having a long hole shape and to inject a high temperature gas into the laminar flow.

상기 가스분사부(200)와 대향진 상기 챔버(101)의 타측에는 가스흡입부(300)가 구비되는데, 상기 가스흡입부(300)는 상기 작업부(120)의 적층베드(121)로 분사된 고온의 가스와, 레이저 조사에 의해 발생한 금속 흄 및 스모그가 포함된 부산물을 흡입한다.A gas suction unit 300 is provided on the other side of the gas injection unit 200 and opposed to the chamber 101. The gas suction unit 300 is provided on the other side of the chamber 200, And the by-product containing the metal fume and the smog generated by the laser irradiation.

이때 상기 가스흡입부(300)는 상기 가스분사부(200)와 대향진 상기 챔버(101)의 측면에 구비되고, 상기 가스흡입부(300)의 흡입구 형태 역시, 상기 가스분사부(200)의 노즐 형태와 동일한 형태인 장공 형태로 형성하되, 상기 가스흡입부(300)의 측단면은 가스가 유입되는 입구는 넓고 출구로 갈수록 좁아지는 콘 형상으로 이루어져, 상기 가스분사부(200)에서 분사된 가스가 상기 챔버(101) 내에서 확산, 분산, 대류 하지 않고 바로 가스흡입부(300)로 흡입되도록 하여, 상기 가스분사부(200)에서 분사된 가스가 층류로 유동하게 한다.At this time, the gas suction unit 300 is provided on a side surface of the chamber 101 facing the gas spray unit 200, and the suction port of the gas suction unit 300 is also formed on the side surface of the gas spray unit 200 The gas suction part 300 is formed in a shape of a slot having the same shape as that of the nozzle shape. The side surface of the gas suction part 300 is formed in a cone shape having a wide entrance at a gas inlet and a narrower entrance at an exit, The gas is sucked into the gas suction unit 300 without diffusing, dispersing, or convecting in the chamber 101, so that the gas injected from the gas spray unit 200 flows into the laminar flow.

또한, 도 7 및 도 8에 도시한 바와 같이 상기 가스분사부(200)는 복수 개로 구비되어, 상기 챔버(101)의 전, 후, 좌, 우 사방에 구비될 수 있다.As shown in FIGS. 7 and 8, a plurality of the gas injection units 200 may be provided in front, rear, left, and right sides of the chamber 101.

이때 상기 가스흡입부(300)는 상기 가스분사부(200)와 대향진 상기 챔버(101)의 측면에 형성되지 않고, 상기 레이저모듈부(140)에 구비되어, 꼬깔 형태의 흡입구가 레이저 조사 지점 상측에 위치되도록 하여, 가스와 부산물을 수직선상으로 흡입한다.At this time, the gas suction unit 300 is not formed on the side surface of the chamber 101 opposite to the gas spray unit 200, but is provided in the laser module unit 140, and a claw- And the gas and the by-product are sucked in a vertical line.

또한, 상기 가스흡입부(300)의 꼬깔 형상 흡입구는 상기 레이저모듈부(140)의 모션과 연동하여 이동할 수 있도록, 플렉시블한 튜브로 이루어진 몸체와 연결되는 것이 바람직하다. In addition, it is preferable that the coin-shaped inlet of the gas suction unit 300 is connected to a body made of a flexible tube so as to move in conjunction with the motion of the laser module unit 140.

그리고 상기 가스흡입부(300)의 꼬깔 형상 흡입구는 그 하단이 내향상부로 절곡 형성되어 주연을 따라 연결된 포켓을 형성하여, 상기 가스흡입부(300)의 흡입구를 통해 흡입되는 부산물 중 비교적 무거운 입자는 자연 낙하로 상기 포켓에 포집되도록 할 수 있다.The coin-shaped intake port of the gas suction unit 300 is bent at the lower end thereof to form a pocket connected along the periphery thereof. The relatively heavy particles among the by-products sucked through the suction port of the gas suction unit 300 And can be collected in the pocket by natural dropping.

또한, 상기 가스흡입부(300)는 레이저가 관통 투과될 수 있는 재질로 이루어져, 상기 가스흡입부(300)의 상부에 상기 레이저모듈부(140)을 배치시켜, 상기 레이저모듈부(140)에서 수직선상으로 레이저가 조사되도록 하여, 가스와 부산물을 수직선상으로 흡입할 수 있다.The gas sucking unit 300 is made of a material through which a laser can penetrate and the laser module unit 140 is disposed on the gas sucking unit 300 so that the laser module unit 140 The laser can be irradiated on a vertical line, so that gas and by-products can be sucked in a vertical line.

더불어 본 발명의 일 실시예에 따른 3D 프린팅 시스템은 상기 가스분사부(200) 및 가스흡입부(300)와 유체가 유동하는 튜브로 연결되는 가스처리부(400)를 포함하는데, 상기 가스처리부(400)는 상기 가스흡입부(300)를 통해 흡입한 부산물에서 금속 흄 및 스모그를 분리하여 가스를 추출한 후, 추출한 가스를 상기 가스분사부(200)로 순환시킨다.In addition, the 3D printing system according to an embodiment of the present invention includes a gas processing unit 400 connected to the gas spraying unit 200 and the gas suction unit 300 through a tube through which a fluid flows, Separates the metal fume and the smog from the byproduct sucked through the gas suction unit 300, extracts the gas, and circulates the extracted gas to the gas spray unit 200.

이때 상기 가스처리부(400)에는 입자포집기(410)가 포함되어, 상기 입자포집기(410)가 상기 가스흡입부(300)를 통해 흡입된 부산물에서 입자를 포집되고, 상기 입자포집기(410)를 통과한 부산물은 상기 입자포집기(410)와 유체가 유동하는 관으로 연결된 필터(420)로 유입된다.At this time, the gas processing unit 400 includes a particle collecting unit 410. The particle collecting unit 410 collects particles from the by-product sucked through the gas sucking unit 300, passes through the particle collecting unit 410 A byproduct enters the filter 420, which is connected to the particle trap 410 through a tube through which the fluid flows.

상기 필터(420)에서는 입자가 포집된 부산물에서 가스를 필터링하고, 상기 필터에 의해 필터링된 가스는 상기 필터(420)와 유체가 유동하는 관으로 연결된 가스압축공급기(430)로 유입된다.In the filter 420, the gas is filtered by the collected by-products, and the gas filtered by the filter is introduced into the gas compression feeder 430 connected to the filter 420 through a pipe through which the fluid flows.

상기 가스압축공급기(430)는 상기 필터(420)에서 필터링된 가스를 압축한 후 가열기(440)로 공급하는데, 상기 가열기(440)는 상기 가스압축공급기(430)와 유체가 유동하는 관으로 연결되고, 상기 가스압축공급기(430)에서 곱급하는 가스를 해당 온도로 가열하여 제공한다.The gas compression feeder 430 compresses the gas filtered by the filter 420 and supplies the compressed gas to a heater 440. The heater 440 is connected to the gas compression feeder 430 through a pipe And the gas compressed in the gas compression feeder 430 is heated to the corresponding temperature.

이때 제공되는 가스는 상기 가열기(440)와 유체가 유동하는 관으로 연결된 상기 가스분사부(200)로 제공되어 상기 가스가 순환되도록 한다.At this time, the provided gas is supplied to the gas injecting unit 200 connected to the heater 440 through a pipe through which the fluid flows, so that the gas is circulated.

여기서, 상기 가열기(440)와 상기 가스분사부(200)로 관로 상에는 밸브(450)가 구비되어 선택적으로 가스가 유동하는 관로를 개폐한다.Here, a valve 450 is provided on the pipe by the heater 440 and the gas injecting unit 200 to selectively open and close a pipe through which the gas flows.

또한, 상기 가스압축공급기(430)의 후단에는 가스충진부(460)가 더 구비되어, 부족한 가스량을 선택적으로 충진할 수 있다.Further, a gas filling part 460 is further provided at the rear end of the gas compression / supply device 430, so that the amount of the insufficient gas can be selectively filled.

본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

100: 3D 프린터 101: 챔버
110: 소재저장부 111: 소재공급유닛
112: 제1열원 120: 작업부
121: 적층베드 122: 제2열원
130: 소재회수부 140: 레이저모듈부
200: 가스분사부 300: 가스흡입부
400: 가스처리부 410: 입자포집기
420: 필터 430: 가스압축공급기
440: 가열기 450: 밸브
460: 가스충진부
100: 3D printer 101: chamber
110: Material storage unit 111: Material supply unit
112: first heat source 120:
121: laminated bed 122: second heat source
130: material recovery unit 140: laser module unit
200: gas injection part 300: gas suction part
400: gas treatment unit 410: particle trapping unit
420: filter 430: gas compression feeder
440: heater 450: valve
460: gas filling part

Claims (11)

소재인 금속분말을 작업부의 적층베드에 레이어로 도포한 후 레이저를 조사하여 원하는 부분만 소결시키는 과정을 연속반복 실시하여, 조형물을 프린팅하는 3D 프린터;
상기 3D 프린터부의 상측인 작업공간을 외부로부터 밀폐시키는 챔버;
상기 챔버의 일측에 구비되어, 상기 챔버 내의 작업부 상에 가스를 분사하는 가스분사부;
상기 가스분사부와 대향진 상기 챔버의 타측에 구비되어, 상기 작업부로 분사된 가스와, 레이저 조사에 의해 발생한 금속 흄 및 스모그가 포함된 부산물을 수평선상으로 흡입하는 가스흡입부; 및
상기 가스분사부 및 가스흡입부와 유체가 유동하는 튜브로 연결되고, 상기 가스흡입부를 통해 흡입한 부산물에서 금속 흄 및 스모그를 분리하여 가스를 추출한 후, 추출한 가스를 상기 가스분사부로 순환시키는 가스처리부;를 포함하는 3D 프린팅 시스템.
A 3D printer for printing a molding by continuously applying a metal powder as a layer on a laminated bed of a work part and then sintering only a desired part by irradiating a laser;
A chamber for sealing the work space on the upper side of the 3D printer unit from the outside;
A gas spraying part provided at one side of the chamber, for spraying a gas onto the working part in the chamber;
A gas suction part provided on the other side of the chamber facing the gas spraying part and sucking the gas sprayed to the working part and the byproduct including the metal fume and the smog generated by the laser irradiation on the horizontal line; And
A gas processing unit connected to the gas spraying unit and the gas suction unit and connected to the tube through which the fluid flows, separates the metal fume and the smog from the by-product sucked through the gas suction unit, extracts the gas, and circulates the extracted gas to the gas spray unit A 3D printing system.
청구항 1에 있어서,
상기 3D 프린터는
소재인 금속분말을 일정량 수용하는 소재저장부와;
상기 소재저장부의 전방에 구비되고, 상기 소재저장부에서 공급된 소재인 금속분말을 적층베드 상에 레이어 형태로 적층하는 작업부와;
상기 작업부의 상부에 구비되고, 선택적으로 X 좌표 및 Y 좌표로 이동하면서 상기 작업부의 적층베드 상에 레이어로 적층된 소재인 금속분말에 레이저를 조사하는 레이저모듈부와;
상기 작업부의 전방에 구비되고, 상기 작업부의 적층베드에서 레이어를 이루고 남은 여분의 소재를 회수하는 소재회수부와;
후방인 상기 소재저장부에서 전방인 상기 소재회수부로 왕복 이동하면서 상기 소재저장부에 저장된 소재를 일정량 공급하는 소재공급유닛;을 포함하는 3D 프린팅 시스템.
The method according to claim 1,
The 3D printer
A material storage part for storing a predetermined amount of metal powder as a material;
A work unit disposed in front of the work storage unit and stacking the metal powder supplied from the work storage unit in a layer form on a laminated bed;
A laser module unit provided on the work unit and irradiating a laser to a metal powder, which is a material layered on a laminated bed of the work unit, while selectively moving in X coordinate and Y coordinate;
A material collecting unit provided in front of the working unit and collecting a surplus material remaining in the layer in the laminated bed of the working unit;
And a material supply unit for reciprocating from the material storage unit rearward to the material recovery unit forward and supplying a predetermined amount of the material stored in the material storage unit.
청구항 2에 있어서,
상기 3D 프린터는
상기 소재저장부의 일측에 구비되어, 상기 소재저장부에 수용된 소재에 열을 제공하는 제1열원과;
상기 작업부의 적층베드에 구비되어, 상기 적층베드에 도포된 소재에 열을 제공하는 제2열원과;
상기 가스분사부에 구비되어, 상기 챔버 내부로 분사되는 가스에 열을 제공하여 분사되는 가스가 핫가스로 전환되어 분사되도록 하여, 상기 챔버 내의 작업부에 열을 제공하는 제3열원을 포함하는 3D 프린팅 시스템.
The method of claim 2,
The 3D printer
A first heat source provided at one side of the material storage unit to supply heat to the material accommodated in the material storage unit;
A second heat source provided on the laminated bed of the working unit, for providing heat to the material applied to the laminated bed;
And a third heat source provided in the gas injection unit for supplying heat to the gas injected into the chamber so that the injected gas is converted into hot gas and injected thereby to provide heat to the working unit in the chamber. Printing system.
청구항 1에 있어서,
상기 가스처리부는
상기 가스흡입부를 통해 흡입된 부산물에서 입자를 포집하는 입자포집기와;
상기 입자포집기와 유체가 유동하는 관으로 연결되고, 입자가 포집된 부산물에서 가스를 필터링하는 필터와;
상기 필터와 유체가 유동하는 관으로 연결되고, 상기 필터에서 필터링된 가스를 압축한 후 공급하는 가스압축공급기와;
상기 가스압축공급기와 유체가 유동하는 관으로 연결되고, 상기 가스압축공급기에서 곱급하는 가스를 해당 온도로 가열하여 제공하는 가열기;를 포함하는 3D 프린팅 시스템.
The method according to claim 1,
The gas processing unit
A particle collector for collecting particles in the by-product sucked through the gas suction unit;
A filter connected to the particle sorter through a tube through which a fluid flows and to filter the gas in the by-product in which the particles are collected;
A gas compression feeder connected to the filter through a pipe through which the fluid flows, for compressing and supplying the gas filtered by the filter;
And a heater connected to the gas compression feeder through a pipe through which the fluid flows, and heating the gas to be fed from the gas compression feeder to a corresponding temperature.
청구항 1에 있어서,
상기 가스분사부는
원통형의 노즐몸체 일측에 수평방향으로 길이를 갖는 장공 형태의 노즐을 형성하여 가스를 층류로 분사하는 3D 프린팅 시스템.
The method according to claim 1,
The gas-
A 3D printing system for forming a nozzle having a long length in a horizontal direction on one side of a cylindrical nozzle body to inject gas into a laminar flow.
청구항 1에 있어서,
상기 가스분사부는
사각형의 노즐몸체의 일측에 수평방향으로 길이를 갖는 장공 형태의 노즐을 형성하여 가스를 층류로 분사하는 3D 프린팅 시스템.
The method according to claim 1,
The gas-
A 3D printing system in which a nozzle having a long length in a horizontal direction is formed on one side of a rectangular nozzle body to inject gas into a laminar flow.
청구항 1에 있어서,
상기 가스분사부는
복수 개로 구비되어, 상기 챔버의 전, 후, 좌, 우 사방에 구비되는 3D 프린팅 시스템.
The method according to claim 1,
The gas-
A 3D printing system provided in front of, behind, left, and right of the chamber.
청구항 7에 있어서,
상기 가스흡입부는
상기 레이저모듈에 구비되고, 흡입구가 꼬깔 형태로 레이저 조사 지점 상측에 위치되어, 가스와 부산물을 수직선상으로 흡입하는 3D 프린팅 시스템.
The method of claim 7,
The gas-
And a 3D printing system provided in the laser module, the suction port being located above the laser irradiation point in the form of a coil, to draw in gas and by-products vertically.
청구항 3에 있어서,
상기 적층베드는
판 상으로 상면에는 소재가 조형물이 출력되는 적층기판과;
내부에 상기 제2열원을 내부에 일정한 간격으로 구비하고, 상면에는 상기 적층기판이 안착되는 안착홈이 형성된 적층블록을 포함하는 3D 프린팅 시스템.
The method of claim 3,
The laminated bed
A laminate substrate having a plate on which a workpiece is output on an upper surface thereof;
And a stacking block having a second heat source inside the first heat source and spaced apart from the first heat source and having a seating groove on the upper surface thereof for receiving the laminated substrate.
청구항 9에 있어서,
상기 적층기판은
그 상면에 가접되 후, 선택적으로 상면에서 박리되는 박리용 박판을 더 구비하는 3D 프린팅 시스템.
The method of claim 9,
The laminated substrate
And a peelable thin plate which is selectively peeled from the upper surface after the upper surface thereof is contacted.
청구항 9에 있어서,
상기 적층블록은
그 좌, 우 양측에 길이방향을 따라 각각 구비되는 한 쌍의 가이드와;
상기 한 쌍의 가이드가 좌, 우에 각각 결합되고, 상기 안착홈의 길이방향을 따라 선택적으로 이동하는 클램프와;
상기 적층블록의 중앙에서 길이방향으로 구비되어, 선택적으로 상기 클램프를 상기 안착홈의 길이방향으로 이송하는 이송수단을 포함하는 3D 프린팅 시스템.
The method of claim 9,
The laminated block
A pair of guides provided on both left and right sides along the longitudinal direction;
A clamp coupled to the pair of left and right guides, respectively, and selectively moving along the longitudinal direction of the seating groove;
And a transporting means provided longitudinally at the center of the stacking block for selectively transporting the clamp in the longitudinal direction of the mounting recess.
KR1020170167316A 2017-12-07 2017-12-07 3D printing system KR102351686B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170167316A KR102351686B1 (en) 2017-12-07 2017-12-07 3D printing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170167316A KR102351686B1 (en) 2017-12-07 2017-12-07 3D printing system

Publications (2)

Publication Number Publication Date
KR20190067403A true KR20190067403A (en) 2019-06-17
KR102351686B1 KR102351686B1 (en) 2022-01-17

Family

ID=67064680

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170167316A KR102351686B1 (en) 2017-12-07 2017-12-07 3D printing system

Country Status (1)

Country Link
KR (1) KR102351686B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113772B1 (en) * 2019-10-10 2020-05-20 주식회사 에스앤티 Powder feeding device for 3D printer
WO2021015542A1 (en) * 2019-07-25 2021-01-28 주식회사 대건테크 3d printer with residual powder removal device
WO2021015543A1 (en) * 2019-07-25 2021-01-28 주식회사 대건테크 Method for removing 3d printer residual powder by using residual powder removal device
KR102233764B1 (en) * 2020-05-14 2021-04-02 한국생산기술연구원 3d printing device with additional heat source to reduce residual stress and method for 3d printing using the same
KR102238328B1 (en) * 2020-11-09 2021-04-09 주식회사 대건테크 Surplus powder resupply device for 3D printer
KR102451864B1 (en) * 2022-05-30 2022-10-07 주식회사 대건테크 3D printer with separate build room
KR102656993B1 (en) * 2023-01-30 2024-04-15 주식회사 쓰리디프라임 Structure of purification of hazardous substances around 3D printer nozzle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265521A (en) * 2009-05-15 2010-11-25 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped object
JP2016186129A (en) * 2016-04-01 2016-10-27 株式会社ソディック Lamination molding device
KR101682087B1 (en) * 2015-11-27 2016-12-02 한국기계연구원 Apparatus and method for manufacturing three dimensional shapes using laser and powder
JP2017533996A (en) * 2014-10-20 2017-11-16 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265521A (en) * 2009-05-15 2010-11-25 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped object
JP2017533996A (en) * 2014-10-20 2017-11-16 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method
KR101682087B1 (en) * 2015-11-27 2016-12-02 한국기계연구원 Apparatus and method for manufacturing three dimensional shapes using laser and powder
JP2016186129A (en) * 2016-04-01 2016-10-27 株式会社ソディック Lamination molding device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015542A1 (en) * 2019-07-25 2021-01-28 주식회사 대건테크 3d printer with residual powder removal device
WO2021015543A1 (en) * 2019-07-25 2021-01-28 주식회사 대건테크 Method for removing 3d printer residual powder by using residual powder removal device
KR102113772B1 (en) * 2019-10-10 2020-05-20 주식회사 에스앤티 Powder feeding device for 3D printer
KR102233764B1 (en) * 2020-05-14 2021-04-02 한국생산기술연구원 3d printing device with additional heat source to reduce residual stress and method for 3d printing using the same
KR102238328B1 (en) * 2020-11-09 2021-04-09 주식회사 대건테크 Surplus powder resupply device for 3D printer
KR102451864B1 (en) * 2022-05-30 2022-10-07 주식회사 대건테크 3D printer with separate build room
KR102656993B1 (en) * 2023-01-30 2024-04-15 주식회사 쓰리디프라임 Structure of purification of hazardous substances around 3D printer nozzle

Also Published As

Publication number Publication date
KR102351686B1 (en) 2022-01-17

Similar Documents

Publication Publication Date Title
KR20190067403A (en) 3D printing system
US10081131B2 (en) Three-dimensional printer
US10183332B2 (en) Sintering and shaping method
US9592636B2 (en) Three dimensional printer
JP2005089863A (en) Apparatus and method for manufacturing three-dimensional molding
JP7078603B2 (en) Multi-chamber sedimentation equipment for 3D free-form modeling
HK1059761A1 (en) Method and computer-readable medium for rapid prototyping a three- dimensional object
CN108687344B (en) Method for finishing surface of article
US10773342B2 (en) 3D printing device and operation method thereof
JP2015175012A (en) Three-dimensional lamination molding device and method
JP2017523923A (en) Apparatus and method for producing a three-dimensional object
CN109070212B (en) Metal 3D printer
KR20150089240A (en) A 3D Printer
CN111560628A (en) High-precision 3D electrochemical deposition additive manufacturing device
JP2019077939A (en) Lamination molding device
US11000999B2 (en) Build material application device
JP2015157405A (en) Laminate molding method and laminate molding device
KR102008066B1 (en) 3D Printer Cooling System Using Arc Contraction Nozzles by Cooled Shielding Gas
KR20200013131A (en) 3d printer using metal powder
CN215704148U (en) Powder conveying system and equipment for manufacturing three-dimensional workpiece
KR102056825B1 (en) Preheating and sintering processes of the metallic powder using a plasma electron beam
JP6909870B2 (en) Method of forming a support member and method of forming a structure
US20200230883A1 (en) Apparatus for additively manufacturing three-dimensional objects
JP2008240075A (en) Method for producing three-dimensional shaped molding
JP7062795B2 (en) Circuit forming device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant