KR20190054919A - Reactive oxygen-sensitive ferrocene nano particles and method for preparing the same - Google Patents
Reactive oxygen-sensitive ferrocene nano particles and method for preparing the same Download PDFInfo
- Publication number
- KR20190054919A KR20190054919A KR1020180126529A KR20180126529A KR20190054919A KR 20190054919 A KR20190054919 A KR 20190054919A KR 1020180126529 A KR1020180126529 A KR 1020180126529A KR 20180126529 A KR20180126529 A KR 20180126529A KR 20190054919 A KR20190054919 A KR 20190054919A
- Authority
- KR
- South Korea
- Prior art keywords
- ferrocene
- methyl acrylate
- nanoparticles
- active oxygen
- formula
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F216/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F216/36—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by a ketonic radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Polymers & Plastics (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Nanotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
본 발명은 활성산소 민감성 페로센 나노입자 및 이의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 페로센 기반 고분자가 자가-조립하여 형성된 활성산소 민감성 페로센 나노입자 및 이의 제조방법에 관한 것이다.The present invention relates to active oxygen sensitive ferrocene nanoparticles and a process for their preparation. More particularly, the present invention relates to active oxygen sensitive ferrocene nanoparticles formed by self-assembly of a ferrocene-based polymer and a method for producing the same.
현재까지 조직공학에서는 다양한 생분해성 고분자가 개발되어 광범위하게 이용되었다. 생분해성 고분자는 적합한 물리화학적, 생물학적, 기계적인 특성을 가지고 있으며, 조직공학에 이용된 고분자는 크게 천연 고분자와 합성 고분자로 나눌 수 있다. 천연 고분자에는 콜라겐, 히알루론산, 알지네이트, 젤라틴, 잔탄검, 케라틴, 소장 점막하조직(small intestinal submucosa)등이 포함되며, 이들은 우수한 생체 적합성과 이식 후 낮은 면역 반응을 가지고 있다. 그러나, 천연 고분자는 개별적으로 쓰일 경우 충분한 기계적 특성을 가지고 있지 못한 단점이 있다.To date, various biodegradable polymers have been developed and widely used in tissue engineering. Biodegradable polymers have suitable physico-chemical, biological and mechanical properties. Polymers used in tissue engineering can be divided into natural polymers and synthetic polymers. Natural polymers include collagen, hyaluronic acid, alginate, gelatin, xanthan gum, keratin, and small intestinal submucosa, which have excellent biocompatibility and low immune responses after transplantation. However, natural polymers have disadvantages in that they do not have sufficient mechanical properties when used individually.
합성 고분자에는 PLA(poly(lactic acid)), PGA(poly(glycolic acid)), PLGA(poly(lactic-co-glycolic acid)), PCL(poly(e-caprolactone))등이 포함되며, 주로 소수성 폴리에스테르이다. 그 중 α-하이드록시산 계열인 폴리글리콜라이드(PGA), 폴리락타이드(PLA) 및 그들의 공중합체인 PLGA는 미국 FDA의 승인을 받은 합성 고분자로서 조직공학적 다공성 지지체, 약물전달체 등의 생체재료로 널리 이용되고 있으며, 높은 생체적합성, 생분해성 및 가공성을 가지고 있다. 하지만 생체 활성물질의 결여와 소수성으로 인해 세포부착에 어려움을 가지며, PLGA의 가수분해 과정 중 생성되는 산 분해물이 조직주변의 pH를 감소시켜 염증을 유발하는 단점이 있다. Synthetic polymers include PLA (poly (lactic acid), PGA (poly (glycolic acid), PLGA (poly (lactic-co- glycolic acid)) and PCL (poly (e-caprolactone) Polyester. Among them, α-hydroxy acid-based polyglycolide (PGA), polylactide (PLA), and PLGA, which is a copolymer thereof, are synthesized polymers approved by US FDA and widely used as biomaterials such as tissue- And has high biocompatibility, biodegradability and processability. However, it is difficult to attach cells due to lack of bioactive substances and hydrophobicity, and there is a disadvantage that acid decomposition products generated during the hydrolysis process of PLGA reduce the pH around the tissue and cause inflammation.
한편, 페로센(ferrocene)은 매우 안정한 구조의 무독성 유기금속(organometallic) 복합체로 소수성(hydrophobic) 특성을 가지고 있기 때문에 소수성 결합을 통한 코어 형성이 가능하다. On the other hand, ferrocene is a non-toxic organometallic complex with a very stable structure and has a hydrophobic property, so that a core can be formed through hydrophobic bonding.
본 발명은 활성산소 민감성 페로센-메틸아크릴레이트 나노입자를 제공하는 것을 목적으로 한다.The present invention aims to provide active oxygen sensitive ferrocene-methyl acrylate nanoparticles.
본 발명은 또한 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 제조방법을 제공하는 것을 목적으로 한다. The present invention also aims to provide a process for preparing active oxygen sensitive ferrocene-methyl acrylate nanoparticles.
제1구현예에 따르면, According to a first embodiment,
본 발명은 페로센, 및 상기 페로센에 결합된 메틸아크릴레이트(methyl acrylate, MA)를 포함하는 복합체가 자기-조립(self-assembled)하여 형성된 활성산소 민감성 페로센-메틸아크릴레이트 나노입자를 제공하고자 한다. 본 발명에 따른 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 도식도를 도 1에 나타내었다. The present invention provides active oxygen sensitive ferrocene-methyl acrylate nanoparticles formed by self-assembling a complex comprising ferrocene and methyl acrylate (MA) bonded to the ferrocene. Schematic diagrams of the active oxygen sensitive ferrocene-methyl acrylate nanoparticles according to the present invention are shown in FIG.
본 발명에 따른 활성산소 민감성 페로센-메틸아크릴레이트 나노입자에 있어서, 상기 활성산소 민감성 페로센-메틸아크릴레이트 나노입자는 화학식 1로 표시되는 것을 특징으로 한다:In the active oxygen sensitive ferrocene-methyl acrylate nanoparticles according to the present invention, the active oxygen sensitive ferrocene-methyl acrylate nanoparticles are represented by the formula (1)
<화학식 1>≪ Formula 1 >
(상기 화학식 1에서, (In the
상기 l 및 m은 서로 독립적으로 1 내지 10,000의 정수를 나타낸다.)And l and m independently represent an integer of 1 to 10,000).
본 발명에 따른 활성산소 민감성 페로센-메틸아크릴레이트 나노입자에 있어서, 상기 페로센과 메틸아크릴레이트의 몰비는 1:1 내지 1:10, 바람직하기는 1:2 내지 1:8인 것을 특징으로 한다. In the active oxygen sensitive ferrocene-methyl acrylate nanoparticles according to the present invention, the molar ratio of the ferrocene to the methyl acrylate is 1: 1 to 1:10, preferably 1: 2 to 1: 8.
본 발명에 따른 활성산소 민감성 페로센-메틸아크릴레이트 나노입자에 있어서, 상기 페로센-메틸아크릴레이트 나노입자는 1 nm 내지 5,000 nm의 크기를 갖는 것을 특징으로 한다. 예를 들면, 상기 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 크기는 50-1,000 nm, 바람직하기는 50-500 nm, 더욱 바람직하기는 50-300 nm일 수 있다. In the active oxygen sensitive ferrocene-methyl acrylate nanoparticles according to the present invention, the ferrocene-methyl acrylate nanoparticles have a size of 1 nm to 5,000 nm. For example, the size of the active oxygen sensitive ferrocene-methyl acrylate nanoparticles may be 50-1,000 nm, preferably 50-500 nm, more preferably 50-300 nm.
본 발명에 따른 활성산소 민감성 페로센-메틸아크릴레이트 나노입자에 있어서, 상기 활성산소 민감성 페로센-메틸아크릴레이트 나노입자는 운반대상(cargo)을 봉입하고 있는 것을 특징으로 한다. 본 명세서에서 사용된 용어 "봉입"은 운반대상의 포집을 포함하는 넓은 개념으로 사용된다.In the active oxygen sensitive ferrocene-methyl acrylate nanoparticles according to the present invention, the active oxygen sensitive ferrocene-methyl acrylate nanoparticles are filled with cargo. As used herein, the term " enclosure " is used broadly to encompass collection of objects to be transported.
본 발명에 따른 활성산소 민감성 페로센-메틸아크릴레이트 나노입자에 있어서, 상기 운반대상은 약물인 것을 특징으로 한다. 상기 약물에는 친수성 약물, 소수성 약물, 화학약물 및 바이오 약물이 모두 포함된다. 예를 들면, 상기 약물은 항암제, 항산화제, 항염증증제, 진통제, 항관절염제, 진정제, 항우울증제, 항정신병 약물, 신경안정제, 항불안제, 항혈관신생 억제제, 면역억제제, 항바이러스제, 항생제, 식용억제제, 항히스타민제, 호르몬제, 항혈전제, 이뇨제, 항고혈압제, 심혈관질환 치료제 및 혈관 확장제 등을 포함할 수 있다.In the active oxygen sensitive ferrocene-methyl acrylate nanoparticles according to the present invention, the object to be transported is a drug. Such drugs include all hydrophilic drugs, hydrophobic drugs, chemical drugs and bio drugs. For example, the medicament may be an anti-cancer agent, an antioxidant, an anti-inflammatory agent, an analgesic, an anti-arthritic agent, a sedative, an antidepressant, an antipsychotic, a nystagmus, Antihistamines, hormones, antithrombotic agents, diuretics, antihypertensive agents, agents for treating cardiovascular diseases, vasodilators, and the like.
본 발명에 따른 활성산소 민감성 페로센-메틸아크릴레이트 나노입자에 있어서, 상기 페로센 나노입자는 활성산소 또는 산화제에 의하여 와해(disassembled or disruption) 되어 봉입된 운반대상을 주위로 방출시킬 수 있다. 예를 들면, 본 발명에 따른 페로센-메틸아크릴레이트 나노입자가 항암제를 봉입하는 경우, 상기 나노입자는 종양 조직에 선택적으로 축적될 수 있으므로, 활성산소 또는 산화제에 의하여 나노입자가 와해됨으로써 암조직으로 항암제를 방출할 수 있고, 방출된 항암제에 의하여 암 치료효과를 거둘 수 있다. In the active oxygen sensitive ferrocene-methyl acrylate nanoparticles according to the present invention, the ferrocene nanoparticles may be disassembled or disrupted by active oxygen or an oxidizing agent to release the enclosed object to be transported. For example, when the ferrocene-methyl acrylate nanoparticles according to the present invention encapsulate an anticancer agent, the nanoparticles can selectively accumulate in the tumor tissue. Therefore, when nanoparticles are broken down by active oxygen or oxidizing agents, It is possible to release the anticancer drug, and the cancer treatment effect can be obtained by the released anticancer drug.
제2구현예에 따르면, According to a second embodiment,
본 발명은 The present invention
(a) 페로세닐메틸 메타크릴레이트(ferrocenylmethyl methacrylate, FMMA)에 메틸아크릴레이트(methyl acrylate, MA)를 결합시켜 페로센-메틸아크릴레이트 복합체를 제조하는 단계; (a) preparing a ferrocene-methyl acrylate complex by binding methyl acrylate (MA) to ferrocenylmethyl methacrylate (FMMA);
(b) 상기 페로센-메틸아크릴레이트 복합체를 유기용매에 용해시키는 단계; (b) dissolving the ferrocene-methyl acrylate complex in an organic solvent;
(c) 상기 유기용매를 제거하여 페로센-메틸아크릴레이트 복합체 필름층을 형성시키는 단계; 및 (c) removing the organic solvent to form a ferrocene-methyl acrylate complex film layer; And
(d) 상기 필름 층에 친수성 용매를 처리하여 페로센-메틸아크릴레이트 나노입자를 자기-조립(selfassemble)시키는 단계를 포함하는 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 제조방법을 제공하고자 한다. (d) treating the film layer with a hydrophilic solvent to self-assemble the ferrocene-methyl acrylate nanoparticles, thereby providing an active oxygen-sensitive ferrocene-methyl acrylate nanoparticle.
본 발명에 따른 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 제조방법에 있어서, 상기 활성산소 민감성 페로센-메틸아크릴레이트 나노입자는 하기의 화학식 1로 표시되는 것을 특징으로 한다:In the method of preparing active oxygen sensitive ferrocene-methyl acrylate nanoparticles according to the present invention, the active oxygen sensitive ferrocene-methyl acrylate nanoparticles are represented by the following chemical formula 1:
<화학식 1>≪ Formula 1 >
(상기 화학식 1에서, (In the
상기 l 및 m은 서로 독립적으로 1 내지 10,000의 정수를 나타낸다.)And l and m independently represent an integer of 1 to 10,000).
본 발명에 따른 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 제조방법에 있어서, 상기 페로센과 메틸아크릴레이트의 몰비는 1:1 내지 1:10, 바람직하기는 1:2 내지 1:8인 것을 특징으로 한다. In the method for producing active oxygen sensitive ferrocene-methyl acrylate nanoparticles according to the present invention, the molar ratio of the ferrocene to methyl acrylate is 1: 1 to 1:10, preferably 1: 2 to 1: 8 .
본 발명에 따른 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 제조방법에 있어서, 상기 활성산소 민감성 페로센-메틸아크릴레이트 나노입자는 1 nm 내지 5,000 nm의 크기를 갖는 것을 특징으로 한다. 예를 들면, 상기 페로센-메틸아크릴레이트 나노입자의 크기는 50-1,000 nm, 바람직하기는 50-500 nm, 더욱 바람직하기는 50-300 nm일 수 있다. In the method for preparing active oxygen sensitive ferrocene-methyl acrylate nanoparticles according to the present invention, the active oxygen sensitive ferrocene-methyl acrylate nanoparticles have a size of 1 nm to 5,000 nm. For example, the size of the ferrocene-methyl acrylate nanoparticles may be 50-1,000 nm, preferably 50-500 nm, more preferably 50-300 nm.
본 발명에 따른 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 제조방법에 있어서, 상기 유기용매는 THF, 크실렌, 톨루엔, 염화 메틸렌, CH3OH, CH3CH2OH, CH3CH2CH2OH, 헥산, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 프로필렌글리콜, 부틸렌글리콜, 디에틸렌글리콜 모노메틸 에테르, 디에틸렌글리콜 모노부틸 에테르, 프로필렌글리콜 모노메틸 에테르 또는 DMSO를 포함하나, 이에 한정되는 것은 아니다. In the process for preparing active oxygen sensitive ferrocene-methyl acrylate nanoparticles according to the present invention, the organic solvent is selected from the group consisting of THF, xylene, toluene, methylene chloride, CH3OH, CH3CH2OH, CH3CH2CH2OH, hexane, ethylene glycol, diethylene glycol, But are not limited to, glycol, propylene glycol, butylene glycol, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether or DMSO.
본 발명에 따른 활성산소 민감성 메틸아크릴레이트 나노입자는 산화환원 자극 반응에 의해 적합한 사이즈 변화, 활성 물질 (예를 들면, 항산화, 항암 등) 담지 및 방출이 가능한 원천 소재로 기능성 화장품, 치료용 화장품 및 의약품 등 다양한 플랫폼으로 응용 가능할 것으로 기대된다. The active oxygen-sensitive methyl acrylate nanoparticle according to the present invention is a source material capable of carrying an appropriate size change, an active substance (for example, antioxidant, anticancer, etc.) by redox stimulating reaction, and is a functional cosmetic, It is expected to be applicable to various platforms such as pharmaceuticals.
도 1은 본 발명에 따른 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 제조 과정 및 활성산소 반응에 따른 담지물질 방출에 대한 도식도를 나타낸다.
도 2는 실시예 1에 따른 고분자 라이브러리의 제조방법을 나타낸다.
도 3은 실시예 1에 따라 제조된 고분자 라이브러리의 NMR 측정 결과를 나타낸다.
도 4는 실시예 2에 따라 제조된 고분자 나노입자의 size, PDI 및 zeta potential 측정 결과를 나타낸다.
도 5는 실시예 2에 따라 제조된 고분자 나노입자의 TEM 측정 결과를 나타낸다.
도 6은 실시예 2에 따라 제조된 고분자 나노입자의 4주 동안의 사이즈 변화 값을 나타낸다. FIG. 1 is a schematic diagram illustrating the preparation of active oxygen-sensitive ferrocene-methyl acrylate nanoparticles according to the present invention and the release of a supported material according to an active oxygen reaction.
Fig. 2 shows a method for producing a polymer library according to Example 1. Fig.
Fig. 3 shows NMR measurement results of the polymer library prepared according to Example 1. Fig.
FIG. 4 shows the results of size, PDI and zeta potential measurements of the polymer nanoparticles prepared according to Example 2. FIG.
Fig. 5 shows TEM measurement results of the polymer nanoparticles prepared according to Example 2. Fig.
6 shows the change in size of the polymer nanoparticles prepared in Example 2 for 4 weeks.
이하, 발명의 이해를 돕기 위해 다양한 실시예를 제시한다. 하기 실시예는 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 발명의 보호범위가 하기 실시예에 한정되는 것은 아니다. Hereinafter, various embodiments are provided to facilitate understanding of the present invention. The following examples are provided to facilitate understanding of the invention and are not intended to limit the scope of the invention.
<실시예> <Examples>
실시예 1. 고분자 라이브러리 합성Example 1. Synthesis of polymer library
0.4 mmol FMMA 기준으로 MA의 비율을 0.5 mmol, 1 mmol, 2 mmol 및 3 mmol로 달리하여 monomer 4개를 칭량하였다 (도 2). 칭량한 monomer을 용매 THF에 넣고(monomer 0.1g 기준 THF 1ml의 비율로) 70 ℃ 의 온도에서 24시간 동안 350 rpm으로 합성한 후, NMR을 통해 확인하였다. 그 결과, 제조된 4개의 고분자 모두 6 전후의 monomer peak이 사라지고 2 앞쪽의 Alkyl Chain 이 형성된 것을 보아 합성이 잘 이루어졌음이 확인되었다 (도 3). 0.4 mmol The ratio of MA was 0.5 mmol, 1 mmol, 2 mmol, and 3 mmol, based on FMMA, and four monomers were weighed (FIG. 2). The weighed monomer was synthesized at 350 rpm for 24 hours at a temperature of 70 ° C in a solvent THF (at a ratio of 1 ml of THF based on 0.1 g of monomer) and confirmed by NMR. As a result, it was confirmed that the monomer peaks before and after 6 of all the prepared polymers were disappeared and 2 frontal Alkyl chains were formed.
실시예 2. 고분자 나노입자의 제조Example 2. Preparation of polymer nanoparticles
상기 실시예 1에서 제조된 고분자를 용매 THF에 5mg/ml 의 농도로 희석하고, 고분자 용액을 30G needle을 끼운 syringe 에 담았다. 그 다음, 20ml 의 vial 에 DI.Water 를 5ml 채웠다. 5ml의 DI.water가 담긴 vial을 530rpm의 속도로 strring 하면서 syringe pump를 이용하여 syringe 에 담긴 고분자 용액을 한 방울씩 dropwise 하였다. (syringe pump 가동 속도 : 0.75ml/min) Dropwise가 끝나면 vial 뚜껑을 닫고 5분간 stirring 하여 나노입자를 안정화 시켰다. 5분 후 Vial 뚜껑을 열고 vial 입구에 고무 septa를 끼운 후 18G needle을 2개 꽂아 2시간 동안 vacuum drying 하여 THF를 제거하였다. DI.Water 에서의 농도가 5mg/5ml 인 고분자 나노입자 얻었다. The polymer prepared in Example 1 was diluted to a concentration of 5 mg / ml in a solvent THF, and the polymer solution was placed in a syringe fitted with a 30G needle. Then, 20 ml of vial was filled with 5 ml of DI.Water. The vial containing 5 ml of DI water was stronged at 530 rpm while dropping the polymer solution contained in the syringe dropwise using a syringe pump. (syringe pump operation speed: 0.75 ml / min). After the dropwise addition, the vial lid was closed and the nanoparticles were stabilized by stirring for 5 minutes. After 5 minutes, the vial lid was opened, the rubber septa was inserted into the vial opening, 2 18G needles were inserted, and the THF was removed by vacuum drying for 2 hours. Polymer nanoparticles having a concentration of 5 mg / 5 ml in DI.Water were obtained.
실시예 3. 고분자 나노입자의 안정성 확인Example 3. Confirmation of Stability of Polymer Nanoparticles
상기 실시예 2에서 제조된 고분자 나노입자의 초기 size, PDI 및 zeta potential을 측정하였다. 그 결과, 고분자의 MA의 비율이 높아질수록 작은 사이즈의 안정적인 입자가 형성되는 것으로 나타났으며, MA의 영향으로 - Charge 값이 점점 커지는 것으로 확인되었다 (도 4). 또한, 상기 고분자 나노입자의 제조 직후 형상을 TEM 으로 확인한 결과, 고분자의 MA의 비율이 높아질수록 초기 사이즈가 작아지는 것으로 확인되었다 (도 5).The initial size, PDI and zeta potential of the polymer nanoparticles prepared in Example 2 were measured. As a result, it has been found that as the ratio of MA of the polymer increases, stable particles of small size are formed, and the charge value becomes larger due to the influence of MA (FIG. 4). Further, as a result of TEM observation of the shape of the polymer nanoparticles immediately after the preparation, it was confirmed that the initial size became smaller as the ratio of MA of the polymer was increased (FIG. 5).
한편, 상기 고분자 나노입자를 각각 제조한 후로부터 4주간의 사이즈 변화 값을 측정한 결과, 고분자 Poly-c-0.5는 소수성인 FMMA의 비율이 다른 세 개의 고분자들에 비해 상대적으로 높아 입자의 뭉침 현상이 발생해 사이즈가 점점 커지는 것으로 나타난 반면, 고분자 poly-c-1 ~ poly-c-3 은 4주 동안의 사이즈 변화가 거의 없는 것으로 보아 안정적인 입자임이 확인되었다 (도 6). As a result of measuring the size change value of the polymer nanoparticles for 4 weeks after the production of the polymer nanoparticles, the proportion of the hydrophilic FMMA in the polymer Poly-c-0.5 was relatively higher than that of the other three polymers, (Fig. 6). As a result, the size of the polymer poly-c-1 to poly-c-3 was found to be small.
실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Examples have been mainly described. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, the disclosed embodiments should be considered in an illustrative rather than a restrictive sense. The scope of the present invention is defined by the appended claims rather than by the foregoing description, and all differences within the scope of equivalents thereof should be construed as being included in the present invention.
Claims (9)
Active oxygen-sensitive ferrocene-methyl acrylate nanoparticles formed by self-assembling a complex comprising ferrocene and methyl acrylate (MA) bonded to the ferrocene.
상기 활성산소 민감성 페로센-메틸아크릴레이트 나노입자는 화학식 1로 표시되는 것을 특징으로 하는 것인, 활성산소 민감성 페로센-메틸아크릴레이트 나노입자.
<화학식 1>
(상기 화학식 1에서,
상기 l 및 m은 서로 독립적으로 1 내지 10,000의 정수를 나타낸다.)
The method according to claim 1,
Wherein the active oxygen sensitive ferrocene-methyl acrylate nanoparticles are represented by formula (1).
≪ Formula 1 >
(In the formula 1,
And l and m independently represent an integer of 1 to 10,000).
상기 페로센과 메틸아크릴레이트의 몰비는 1:1 내지 1:10 인 것을 특징으로 하는 것인, 활성산소 민감성 페로센-메틸아크릴레이트 나노입자.
The method according to claim 1,
Wherein the molar ratio of the ferrocene to the methyl acrylate is from 1: 1 to 1:10.
상기 페로센-메틸아크릴레이트 나노입자는 1 nm 내지 5,000 nm의 크기를 갖는 것을 특징으로 하는 것인, 활성산소 민감성 페로센-메틸아크릴레이트 나노입자.
The method according to claim 1,
Wherein the ferrocene-methyl acrylate nanoparticles have a size of 1 nm to 5,000 nm.
(b) 상기 페로센-메틸아크릴레이트 복합체를 유기용매에 용해시키는 단계;
(c) 상기 유기용매를 제거하여 페로센-메틸아크릴레이트 복합체 필름층을 형성시키는 단계; 및
(d) 상기 필름 층에 친수성 용매를 처리하여 페로센-메틸아크릴레이트 나노입자를 자기-조립(selfassemble)시키는 단계를 포함하는 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 제조방법.
(a) preparing a ferrocene-methyl acrylate complex by binding methyl acrylate (MA) to ferrocenylmethyl methacrylate (FMMA);
(b) dissolving the ferrocene-methyl acrylate complex in an organic solvent;
(c) removing the organic solvent to form a ferrocene-methyl acrylate complex film layer; And
(d) treating the film layer with a hydrophilic solvent to self-assemble the ferrocene-methyl acrylate nanoparticles.
상기 활성산소 민감성 페로센-메틸아크릴레이트 나노입자는 화학식 1로 표시되는 것을 특징으로 하는 것인, 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 제조방법.
<화학식 1>
(상기 화학식 1에서,
상기 l 및 m은 서로 독립적으로 1 내지 10,000의 정수를 나타낸다.)
6. The method of claim 5,
Wherein the active oxygen sensitive ferrocene-methyl acrylate nanoparticles are represented by formula (1).
≪ Formula 1 >
(In the formula 1,
And l and m independently represent an integer of 1 to 10,000).
상기 페로센과 메틸아크릴레이트의 몰비는 1:1 내지 1:10 인 것을 특징으로 하는 것인, 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 제조방법.
6. The method of claim 5,
Wherein the molar ratio of the ferrocene to the methyl acrylate is from 1: 1 to 1:10.
상기 페로센-메틸아크릴레이트 나노입자는 1 nm 내지 5,000 nm의 크기를 갖는 것을 특징으로 하는 것인, 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 제조방법.
6. The method of claim 5,
Wherein the ferrocene-methyl acrylate nanoparticles have a size ranging from 1 nm to 5,000 nm.
상기 유기용매는 THF, 크실렌, 톨루엔, 염화 메틸렌, CH3OH, CH3CH2OH, CH3CH2CH2OH, 헥산, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 프로필렌글리콜, 부틸렌글리콜, 디에틸렌글리콜 모노메틸 에테르, 디에틸렌글리콜 모노부틸 에테르, 프로필렌글리콜 모노메틸 에테르 또는 DMSO인 것을 특징으로 하는 것인, 활성산소 민감성 페로센-메틸아크릴레이트 나노입자의 제조방법.6. The method of claim 5,
Wherein the organic solvent is selected from the group consisting of THF, xylene, toluene, methylene chloride, CH3OH, CH3CH2OH, CH3CH2CH2OH, hexane, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, diethylene glycol monomethyl ether, Butyl ether, propylene glycol monomethyl ether, or DMSO. 2. The method of claim 1, wherein the active oxygen-sensitive ferrocene-methyl acrylate nanoparticles are selected from the group consisting of butyl ether, propylene glycol monomethyl ether, and DMSO.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170151739 | 2017-11-14 | ||
KR20170151740 | 2017-11-14 | ||
KR1020170151740 | 2017-11-14 | ||
KR1020170151739 | 2017-11-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190054919A true KR20190054919A (en) | 2019-05-22 |
KR102176982B1 KR102176982B1 (en) | 2020-11-10 |
Family
ID=66680439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180126529A KR102176982B1 (en) | 2017-11-14 | 2018-10-23 | Reactive oxygen-sensitive ferrocene-based nano particles and method for preparing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102176982B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220046720A (en) * | 2020-10-07 | 2022-04-15 | 한국세라믹기술원 | Biocompatible, ferrocene-containing polymer multilayer coatings having antifouling and ROS sensitive controlled release of therapeutic drug and the method for manufacturing the same |
KR20220098911A (en) * | 2021-01-05 | 2022-07-12 | 순천향대학교 산학협력단 | ROS-responsive drug delivery nanoparticles produced by a device for producing nanoparticles |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110076469A (en) * | 2009-12-29 | 2011-07-06 | 포항공과대학교 산학협력단 | Preparation method of self assembling drug and cell delivery system, and self assembling drug and cell delivery system prepraed therefrom |
KR20110126940A (en) * | 2010-05-18 | 2011-11-24 | 한국생명공학연구원 | Thrombin sensor using nanoparticles coated with electron transfer mediator and method for preparing the same |
-
2018
- 2018-10-23 KR KR1020180126529A patent/KR102176982B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110076469A (en) * | 2009-12-29 | 2011-07-06 | 포항공과대학교 산학협력단 | Preparation method of self assembling drug and cell delivery system, and self assembling drug and cell delivery system prepraed therefrom |
KR20110126940A (en) * | 2010-05-18 | 2011-11-24 | 한국생명공학연구원 | Thrombin sensor using nanoparticles coated with electron transfer mediator and method for preparing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220046720A (en) * | 2020-10-07 | 2022-04-15 | 한국세라믹기술원 | Biocompatible, ferrocene-containing polymer multilayer coatings having antifouling and ROS sensitive controlled release of therapeutic drug and the method for manufacturing the same |
KR20220098911A (en) * | 2021-01-05 | 2022-07-12 | 순천향대학교 산학협력단 | ROS-responsive drug delivery nanoparticles produced by a device for producing nanoparticles |
Also Published As
Publication number | Publication date |
---|---|
KR102176982B1 (en) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pereira et al. | Starch-based microspheres for sustained-release of curcumin: preparation and cytotoxic effect on tumor cells | |
CN107550921B (en) | Nanoparticle-polymer injectable composite hydrogel double-drug-loading system and preparation method thereof | |
JP6246421B2 (en) | Carbonate polymer having dithio 5-membered ring functional group in side chain and its application | |
CN102146200B (en) | Temperature-sensitive hydrogel based on chemical cross-linking gel granules and preparation method of temperature-sensitive hydrogel | |
Shao et al. | Synthesis and characterization of amphiphilic poly (ɛ-caprolactone)-b-polyphosphoester diblock copolymers bearing multifunctional pendant groups | |
CN105175758B (en) | A kind of preparation method of polylactic acid stereoscopic composite magnetic Nano vesica | |
CN103599548B (en) | A kind of taxol polymer bond drug and preparation method thereof | |
KR102144749B1 (en) | Biodegradable amphiphilic polymer, polymer vesicle produced therefrom, and use in the manufacture of therapeutic agents for lung cancer | |
CN102352042B (en) | Biodegradable amphiphilic polyester with functionally modified side chains | |
Wang et al. | Amphiphilic carboxylated cellulose-g-poly (l-lactide) copolymer nanoparticles for oleanolic acid delivery | |
CN103204997A (en) | Preparation method of polyactic acid/polyethylene glycol biological hybrid material for PDT (photodynamic therapy) | |
CN101812227A (en) | Micelle based on non-linear polyethylene glycol-polylactic acid block copolymer and preparation method thereof | |
KR20190054919A (en) | Reactive oxygen-sensitive ferrocene nano particles and method for preparing the same | |
CN105030672A (en) | Method for preparing temperature-sensitive stereocomplex polylactic acid copolymer drug-loaded micell | |
CN109922792A (en) | Hydrogel based on functionalization polysaccharide | |
CN1698899A (en) | Novel pharmaceutical composition using chitosan or its derivatives as drug carrier | |
CN103159959A (en) | M-PLGA-TPGS star type amphiphilic copolymer and preparation method and application | |
CN105001426A (en) | Tumor targeting polyamino acid graft copolymer and preparation method thereof | |
Mothe et al. | PVA free-radical diblock copolymer for nanoencapsulation with enhanced biodegradability in the environment | |
CN106177987B (en) | Micromolecule-macromolecule conjugate self-assembly drug-loaded nanoparticle and preparation method thereof | |
CN109265658B (en) | Drug-loaded nanoparticle based on ferulic acid polymer and preparation method and application thereof | |
Sarisuta et al. | pH Effect on Particle Aggregation of Vanillin End-Capped Polylactides Bearing a Hydrophilic Group Connected by a Cyclic Acetal Moiety | |
CN101632834A (en) | Magnetic nano-carrier with targeted hydrophobic drug delivery to tumor and preparation method thereof | |
CN102309763B (en) | Medicinal composition and preparation method thereof | |
CN102010480B (en) | Method for preparing micro-grade polymer gel microspheres capable of loading protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |