KR20190054814A - Method for preparing extract of Ginger comprising High Pressure/Enzymatic reaction step and Active ingradients increased Ginger extract prepared by the same - Google Patents

Method for preparing extract of Ginger comprising High Pressure/Enzymatic reaction step and Active ingradients increased Ginger extract prepared by the same Download PDF

Info

Publication number
KR20190054814A
KR20190054814A KR1020170151816A KR20170151816A KR20190054814A KR 20190054814 A KR20190054814 A KR 20190054814A KR 1020170151816 A KR1020170151816 A KR 1020170151816A KR 20170151816 A KR20170151816 A KR 20170151816A KR 20190054814 A KR20190054814 A KR 20190054814A
Authority
KR
South Korea
Prior art keywords
ginger
enzyme
high pressure
treatment
extract
Prior art date
Application number
KR1020170151816A
Other languages
Korean (ko)
Other versions
KR102048833B1 (en
Inventor
최애진
이상훈
최정숙
Original Assignee
대한민국(농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장) filed Critical 대한민국(농촌진흥청장)
Priority to KR1020170151816A priority Critical patent/KR102048833B1/en
Publication of KR20190054814A publication Critical patent/KR20190054814A/en
Application granted granted Critical
Publication of KR102048833B1 publication Critical patent/KR102048833B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • A23L19/10Products from fruits or vegetables; Preparation or treatment thereof of tuberous or like starch containing root crops
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention relates to: a method for manufacturing a ginger extract comprising a high pressure/enzyme treatment step; and a ginger extract having an increased amount of active components manufactured by the same. The method for manufacturing the ginger extract comprising the high pressure/enzyme treatment step and the ginger extract having the increased amount of active components manufactured by the same according to the present invention have low extraction yield. Therefore, unlike existing ginger extracts, which are limited in utilization, various kinds of usable components are increased, thereby being able to widen industrial application of ginger.

Description

고압/효소처리 단계를 포함하는 생강 추출물의 제조 방법 및 이에 의해 제조된 유용성분이 증가된 생강 추출물 {Method for preparing extract of Ginger comprising High Pressure/Enzymatic reaction step and Active ingradients increased Ginger extract prepared by the same}[0001] The present invention relates to a method for preparing a ginger extract comprising a high pressure / enzyme treatment step and an increased ginger extract prepared by the method,

본 발명은 고압/효소처리 단계를 포함하는 생강 추출물의 제조 방법 및 이에 의해 제조된 유용성분이 증가된 생강 추출물에 관한 것이다.The present invention relates to a process for producing ginger extract comprising a high pressure / enzyme treatment step and an increased ginger extract produced by the process.

생강(Zingiber officinale Roscas)은 말레이시아와 인도 등의 열대아시아 지역이 원산지로 추정되며 생강과(Zingiberaceae)에 속하는 다년생 초본식물로 동남아시아 등지에 광범위하게 분포되어 있으며 근경을 주로 식용으로 사용하며 독특한 매운맛과 향기를 지닌 향신료이다. 생강의 국내 생산량은 2014년 기준 약 3만2천여 톤으로 전체 조미 채소중 약 1.3%에 불과하지만 시장 규모는 2,000억원 정도로 재배면적과 생산 농가 수에 비하면 매우 수익성 높은 고소득 작물이다. 국내 생강 식품산업은 흙 묻은 생강이나 껍질을 깐 생강으로 유통되는 비율이 전체 매출액의 50%을 차지하고 있으며 냉장형 생강 다대기가 40%로, 나머지 10%만이 일반 생강 가공제품이 차지하고 있다. Ginger (Zingiber officinale Roscas) is a perennial herbaceous plant belonging to the genus Zingiberaceae which is widely distributed in Southeast Asia and is mainly used for edible use. It has a unique spicy and fragrant spice to be. Domestic production of ginger is about 32,000 tons as of 2014, which is only 1.3% of total seasoning vegetables. However, the market size is about 200 billion won, which is very profitable high-income crop compared to the cultivation area and the number of farmers. The domestic ginger food industry accounts for 50% of the total sales of ginger and peeled ginger, accounting for 40% of refrigerated ginger and the remaining 10% is processed by ordinary ginger processing products.

생강과 생강이 속한 생강속(Zingiber) 식물의 뿌리는 민간요법에서 위통, 멀미, 구토, 간질, 인후통, 기침, 타박상, 상처, 해산, 안질환, 간장병, 류머티즘, 근육통, 백선(버짐), 천식, 발열, 악성종양 및 종기 등의 치료에 이용하고 있으며, 최근들어 생강은 의약학 분야에서 생강의 효능과 관련하여 과학적인 연구도 진행되고 있다. The roots of Zingiber plant, which contains ginger and ginger, are widely used in folk remedies for the treatment of stomach pain, nausea, vomiting, epilepsy, sore throat, cough, bruises, scars, wounds, eye disease, liver disease, rheumatism, muscle pain, , Fever, malignant tumors, and boils. In recent years, ginger has been under scientific research related to the efficacy of ginger in the field of medicine.

생강의 주요 활성 성분으로는 정유성분(essential oil)과 매운맛 성분을 함유하고 있는 올레오레진(oleoresin)성분이 보고되어 있다. 정유 성분은 감기, 두통, 관절염 및 정신적 치료에 효과적이며 올레오레진(oleoresin)의 매운맛 성분인 진저롤(gingerol), 진저론(ginerone), 쇼가올(shogaol) 등은 항산화효과가 높은 것으로 알려져있다. 이외에도 생강의 생리활성 성분들은 항균작용, 항염작용, 혈청 콜레스테롤 저하효과, 종양억제, 소염작용 등을 나타내는 것으로 보고되고 있고, 특히 생강의 올레오레진, 진저롤 및 쇼가올이 자연살해세포(NK cell)의 기능을 활성화시켜 면역능력을 증진시키는 효과를 갖는 생강의 면역과 관련된 연구 결과도 있다.The main active ingredient of ginger is oleoresin, which contains essential oil and hot ingredient. Essential oils are effective in treating colds, headaches, arthritis and mental illnesses. Gingerol, gingerone and shogaol, which are the pungent components of oleoresin, are known to be highly antioxidant . In addition, physiologically active ingredients of ginger have been reported to exhibit antimicrobial action, anti-inflammatory action, serum cholesterol lowering effect, tumor suppression, anti-inflammatory action and the like. In particular, ginger's oleoresin, gingerol, ) To activate the function of the immune system, which has the effect of enhancing the immunity of ginger has also been related.

경제성장과 국민소득의 증대에 따라 건강과 장수에 대한 관심이 빠르게 증대되고 있으며 안전한 먹거리 확보에 대한 관심도 고조되고 있다. 따라서 유용생리활성을 가지면서 부작용이 없는 천연물 유래의 활성물질 탐색에 연구가 집중되고 있으며, 특히 천연 식물자원을 대상으로 항균, 항노화, 성인병 예방, 면역증강, 항산화 효과 등에 대한 연구가 활발히 진행되고 있으며 생강 또한 이를 대상으로 한 연구가 활발히 진행되고 있다. 그러나, 생강은 그 성분중 전분이 전체의 40~60%를 차지하고 있고, 섬유질 함량도 다른 향신료보다 높기 때문에 착즙 수율이 낮을 뿐만 아니라 착즙 중 대부분의 전분이 착즙액에 잔존하고 있어 생강을 가공식품으로 활용하는데 있어 난점이 있으며, 이에 전분을 분해시켜 제거하는 방법등의 기술 개발이 요구되고 있다.With growing economic growth and national income, interest in health and longevity is growing rapidly and interest in securing safe food is also rising. Therefore, studies have been focused on the search for active substances derived from natural products that have useful physiological activities and have no side effects. In particular, studies on antimicrobial, anti-aging, adult disease prevention, immune enhancement, And ginger has also been actively studied. However, since ginger contains 40 ~ 60% of starch as a whole and its fiber content is higher than other spices, not only the yield of the ginger is low but also most of the starch remains in the juice of the ginger. There is a difficulty in utilizing it, and a technique for decomposing and removing starch is required.

최근 각광받고 있는 식품고압기술은 종래 식품의 저온살균과 멸균에 목적을 두었으나, 식품으로의 신속한 압력 투과 및 식품 성분의 입자크기 감소 등과 같은 장점을 제공함과 동시에 가열 조작 등으로 인한 유용성분의 파괴가 적어 적용범위의 확대를 위한 연구가 진행되고 있다. 고압처리 기술은 유용성분의 파괴나 손실 없이 기능성 식품원료, 화장품 및 의약품 원료 등을 저분자화시켜 용해 및 추출할 수 있으므로 고부가가치 생리활성 물질의 생산기술로 활용할 수 있어 식품산업에서 주목받고 있다. 대한민국 공개특허 제10-2013-0028564호에서는 고압 조건하에서시 효소처리를 통한 인삼류의 유용성분 추출방법을 개시하고 있으나, 유용성분을 증가시키기 위한 생강에서의 최적의 고압조건하의 효소처리 방법(고압/효소처리)은 보고된 바가 없다.Recently, food high pressure technology has been aimed at pasteurization and sterilization of conventional food, but it has advantages such as rapid pressure permeation into food and reduction of particle size of food ingredient, and at the same time, destruction of useful ingredient Research is underway to expand the scope of application. The high-pressure treatment technology can dissolve and extract functional food ingredients, cosmetics, pharmaceutical raw materials, and the like with low molecular weight without destroying or loss of useful components, and thus it can be utilized as a high-value physiologically active substance production technology, and is attracting attention in the food industry. Korean Patent Laid-Open Publication No. 10-2013-0028564 discloses a method of extracting useful components of ginseng by treating with enzymes under high-pressure conditions. However, in order to increase useful components, an enzyme treatment method under high- Enzyme treatment) have not been reported.

이에 본 발명자들은 생강으로부터 유용성분의 수득률을 높이기 위해 고압/효소처리를 이용, 유용성분이 증가된 생강 추출물을 제조하는 방법을 확립하여 본 발명을 완성했다. Thus, the present inventors have completed the present invention by establishing a method for producing ginger extract having increased oil content by using high pressure / enzyme treatment in order to increase the yield of useful components from ginger.

대한민국 공개특허 제10-2013-0028564호Korean Patent Publication No. 10-2013-0028564

본 발명의 목적은 고압/효소처리 단계를 포함하는 생강 추출물의 제조 방법 및 이에 의해 제조된 유용성분이 증가된 생강 추출물을 제공하는 것이다.It is an object of the present invention to provide a method for producing ginger extract comprising a high pressure / enzyme treatment step and an increased ginger extract produced by the method.

상기 목적을 달성하기 위하여, 본 발명은 1) 고압하에서 생강에 세포벽 분해 효소를 처리하는 단계; 2) 상기 단계 1)의 세포벽 분해효소가 처리된 생강에 전분 분해효소를 처리하는 단계; 및 3) 상기 단계 2)의 전분 분해효소가 처리된 생강으로부터 추출물을 수득하는 단계를 포함하는 생강 추출물의 제조 방법을 제공한다.In order to accomplish the above object, the present invention provides a method for producing ginger comprising: 1) treating ginger with cell wall degrading enzyme under high pressure; 2) treating the ginger treated with the cell wall degrading enzyme of step 1) with starch hydrolyzing enzyme; And 3) obtaining an extract from ginger treated with the starcholytic enzyme of step 2).

또한, 본 발명은 상기 방법으로 제조된, 생강 추출물을 제공한다.The present invention also provides a ginger extract prepared by the above method.

본 발명에 의한 고압/효소처리 단계를 포함하는 생강 추출물의 제조 방법 및 이에 의해 제조된 유용성분이 증가된 생강 추출물은 착즙수율이 낮고, 그로 인해 활용도가 제한적이었던 종래의 생강 추출물과 달리 생강의 산업적 활용도를 넓힐 수 있다.The method for producing ginger extract containing the high pressure / enzyme treatment step according to the present invention and the ginger extract having an increased amount of the oily ingredient produced by the method according to the present invention, unlike the conventional ginger extract having a low yield and thus limited utilization, .

도 1은 본 발명의 실시예에 따른 생강의 고압/효소처리방법의 예이다.
도 2 내지 5는 효소 종류별 생강 추출물의 수용화 특성 비교 결과이다.(CON: 100℃/2시간 가열군, HP: 고압/효소처리군, WB: 효소단일처리군, Non-E: 효소 무첨가, Cell: Cellulast 1.5L FG 첨가, Pec: Pectinex Ultra SP-L 첨가, Vis: Viscozyme L 첨가, Cell+Vis: Celluclast 1.5L FG 및 Viscozyme L 혼합, Pec+Vis: Pectinex Ultra SP-L 및 Viscozyme L 첨가)
·도 2: 수분용해지수(Water solubility index; WSI)
·도 3: 수분흡착지수(Water absorption index; WAI)
·도 4: 총당(Total sugar; TS)
·도 5: 환원당(Reducing sugar; RS)
도 6 내지 7은 효소 종류별 생강 추출물의 유용성분 비교 결과이다.
·도 6: 총 폴리페놀 함량(Total polyphenol; TP)
·도 7: 총 플라보노이드 함량(Total flavonoids; TF)
도 8은 효소 종류별 생강 추출물의 지표성분 비교 결과이다. (A: 전체 지표성분 함량, 진저롤(Gingerol)류 함량, C: 쇼가올(Shogaol)류 함량)
도 9 내지 12는 효소 처리시간별 생강 추출물의 수용화 특성 비교 결과이다.
·도 9: 수분용해지수(WSI)
·도 10: 수분흡착지수(WAI)
·도 11: 총당(TS)
·도 12: 환원당(RS)
도 13 내지 14는 효소 처리시간별 생강 추출물의 유용성분 비교 결과이다.
·도 13: 총 폴리페놀 함량(TP)
·도 14: 총 플라보노이드 함량(TF)
도 15는 효소 처리시간별 생강 추출물의 지표성분 비교 결과이다. (A: 전체 지표성분 함량, 진저롤(Gingerol)류 함량, C: 쇼가올(Shogaol)류 함량)
도 16은 효소 처리 온도별 생강 추출물의 수용화 특성 비교 결과이다. (A: 수분용해지수(WSI), B: 수분흡착지수(WAI), C: 총당(TS), D: 환원당(RS))
도 17은 효소 처리 온도별 생강 추출물의 유용성분 비교 결과이다. (A: 총 폴리페놀 함량(TP), B: 총 플라보노이드 함량(TF))
도 18은 효소 처리 온도별 생강 추출물의 지표성분 비교 결과이다. (A: 전체 지표성분 함량, 진저롤(Gingerol)류 함량, C: 쇼가올(Shogaol)류 함량)
도 19는 효소 처리 압력별 생강 추출물의 수용화 특성 비교 결과이다. (A: 수분용해지수(WSI), B: 수분흡착지수(WAI), C: 총당(TS), D: 환원당(RS))
도 20은 효소 처리 압력별 생강 추출물의 유용성분 비교 결과이다. (A: 총 폴리페놀 함량(TP), B: 총 플라보노이드 함량(TF))
도 21은 효소 처리 압력별 생강 추출물의 지표성분 비교 결과이다. (A: 전체 지표성분 함량, 진저롤(Gingerol)류 함량, C: 쇼가올(Shogaol)류 함량)
FIG. 1 is an example of a high pressure / enzyme treatment method of ginger according to an embodiment of the present invention.
2 to 5 show the results of comparison of the water-solubility characteristics of the ginger extracts according to the types of enzymes. (CON: 100 캜 / 2 hours heating group, HP: high pressure / enzyme treatment group, WB: enzyme single treatment group, Cell: Cellulast 1.5 L FG, Pec: Pectinex Ultra SP-L, Vis: Viscozyme L, Cell + Vis: Celluclast 1.5 L FG and Viscozyme L, Pec + Vis: Pectinex Ultra SP-L and Viscozyme L)
Figure 2: Water solubility index (WSI)
Figure 3: Water absorption index (WAI)
Figure 4: Total sugar (TS)
Figure 5: Reducing sugar (RS)
Figs. 6 to 7 show the results of comparison of useful components of ginger extracts by enzyme type.
Figure 6: Total polyphenol (TP) content
Figure 7: Total flavonoids (TF)
8 shows the results of comparison of the index components of ginger extracts by enzyme type. (A: total surface component content, Gingerol content, C: Shogaol content)
9 to 12 show the results of comparison of the water-solubility characteristics of the ginger extracts by the time of enzyme treatment.
Figure 9: Water Solubility Index (WSI)
Figure 10: Water absorption index (WAI)
Figure 11: Total (TS)
Figure 12: Reducing sugar (RS)
Figs. 13 to 14 show the results of comparison of useful components of ginger extracts by enzyme treatment time.
Figure 13: Total polyphenol content (TP)
Figure 14: Total flavonoid content (TF)
15 shows the results of comparison of the index components of the ginger extract with respect to the enzyme treatment time. (A: total surface component content, Gingerol content, C: Shogaol content)
FIG. 16 shows the results of comparison of the water-solubility characteristics of ginger extracts by enzyme treatment temperature. (WSI), B: water absorption index (WAI), C: total sugar (TS), D: reducing sugar (RS)
Fig. 17 shows the results of comparison of useful components of the ginger extract according to the enzyme treatment temperature. (A: total polyphenol content (TP), B: total flavonoid content (TF))
18 shows the results of comparison of the index components of the ginger extract with respect to the enzyme treatment temperature. (A: total surface component content, Gingerol content, C: Shogaol content)
FIG. 19 shows the results of comparison of the water-solubility characteristics of the ginger extract according to the enzyme treatment pressure. (WSI), B: water absorption index (WAI), C: total sugar (TS), D: reducing sugar (RS)
FIG. 20 shows the results of comparison of useful components of the ginger extract by enzyme treatment pressure. (A: total polyphenol content (TP), B: total flavonoid content (TF))
21 shows the results of comparison of the index components of the ginger extract according to the enzyme treatment pressures. (A: total surface component content, Gingerol content, C: Shogaol content)

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 하기 단계를 포함하는 생강 추출물의 제조 방법을 제공한다:The present invention provides a method for preparing ginger extract comprising the steps of:

1) 고압하에서 생강에 세포벽 분해 효소를 처리하는 단계;1) treating ginger with cell wall degrading enzyme under high pressure;

2) 상기 단계 1)의 세포벽 분해효소가 처리된 생강에 전분 분해효소를 처리하는 단계; 및2) treating the ginger treated with the cell wall degrading enzyme of step 1) with starch hydrolyzing enzyme; And

3) 상기 단계 2)의 전분 분해효소가 처리된 생강으로부터 추출물을 수득하는 단계.3) obtaining an extract from the ginger treated with the starcholytic enzyme of step 2) above.

상기 고압은 70 내지 200MPa일 수 있으며, 바람직하게는 80 내지 150 MPa 일 수 있다. 처리 압력이 70MPa보다 낮으면 효소의 단백질 구조에 영향이 작아서 대기압중에서의 반응과 유의한 차이가 없고, 200MPa보다 높은 경우 효소의 단백질 구조가 과도하게 변형되거나 분해되어버릴 수 있다.The high pressure may be 70 to 200 MPa, preferably 80 to 150 MPa. When the treatment pressure is lower than 70 MPa, the effect on the protein structure of the enzyme is small and there is no significant difference from the reaction in the atmospheric pressure, and when the pressure is higher than 200 MPa, the protein structure of the enzyme may be excessively deformed or decomposed.

상기 세포벽 분해 효소는 45 내지 55℃에서 1 내지 3시간 동안 처리될 수 있으며, 바람직하게는 47 내지 52℃에서 1.5 내지 2.5시간 동안 처리될 수 있다. 처리 온도가 45℃보다 낮으면 세포벽의 분해가 원활히 일어나지 않으며, 55℃보다 높을 경우 효소의 활성을 저해하여 효율이 떨어질 수 있고, 또한 처리 시간이 1시간보다 짧을 경우 효소 반응이 일어나기에 충분치 않아 미반응된 기질(substrate)로서의 생강이 남을 수 있으며, 3시간보다 길 경우 효소 반응에 소모되는 에너지 및 시간에 비해 추가로 얻어지는 반응물의 양이 적어서 경제성이 떨어질 수 있다. The cell wall degrading enzyme may be treated at 45 to 55 ° C for 1 to 3 hours, preferably at 47 to 52 ° C for 1.5 to 2.5 hours. If the treatment temperature is lower than 45 ° C, the degradation of the cell wall does not occur smoothly. If the treatment temperature is higher than 55 ° C, the enzyme activity may be impaired and the efficiency may be lowered. Also, if the treatment time is shorter than 1 hour, Ginger as a substrate to be reacted may remain, and if it is longer than 3 hours, the amount of reactant to be obtained may be lower than the energy and time consumed in the enzymatic reaction, resulting in lower economical efficiency.

상기 효소반응은 세포벽 분해효소를 생강의 0.5 내지 1.5% 농도로 첨가하는 것일 수 있으나, 이에 한정되지 않는다. 세포벽 분해효소의 양이 0.5%보다 작을 경우 기질인 생강에 비해 효소의 양이 적어 반응이 충분히 일어나지 않을 수 있으며, 1.5% 보다 클 경우 사용되지 않는 효소의 발생으로 인한 경제성의 손실이 생길 수 있다. The enzymatic reaction may include adding a cell wall degrading enzyme at a concentration of 0.5 to 1.5% of ginger, but is not limited thereto. When the amount of the cell wall degrading enzyme is less than 0.5%, the amount of the enzyme may be less than that of the substrate ginger, and the reaction may not be sufficiently performed. If the amount of the enzyme is less than 1.5%, an unused enzyme may be lost.

상기 세포벽 분해효소는 셀룰라아제(cellulase), 폴리갈락투로나아제(polygalacturonase; pectinase), 헤미셀룰라아제(hemicellulase), 아라비나아제(arabinase), 자일라나아제(xylanase), β-글루카나아제(β-glucanase) 및 α-아밀라아제(α-amylase)로 구성된 군에서 선택된 하나 이상일 수 있으며, 이에 한정되지 않는다.The cell wall degrading enzyme may be selected from the group consisting of cellulase, polygalacturonase (pectinase), hemicellulase, arabinase, xylanase,? -Glucanase, glucanase, and? -amylase, but the present invention is not limited thereto.

상기 생강은 생강, 생강 분말 또는 생강 분쇄물 중 선택된 하나를 포함하는 혼합물의 pH를 3.5 내지 6.0으로 조절한 것일 수 있다. 바람직하게는 4.0 내지 5.0으로 조절한 것일 수 있으며, 상기 세포벽 분해효소에 따라 pH의 구체적 범위는 다를 수 있다. pH가 과도하게 낮거나 높은 경우 효소의 활성을 저해하거나 파괴할 수 있으므로 경제성의 손실이 생길 수 있다.The ginger may be prepared by adjusting the pH of the mixture containing ginger, ginger powder or ginger powder to 3.5 to 6.0. Preferably 4.0 to 5.0, and the specific range of the pH may vary depending on the cell wall degrading enzyme. If the pH is excessively low or high, the activity of the enzyme can be inhibited or destroyed, resulting in a loss of economic efficiency.

상기 고압/효소처리 단계는 단계 1) 및 단계 2) 사이에 효소 불활성화 및 냉각 단계를 추가로 포함할 수 있다.  The high pressure / enzyme treatment step may further comprise an enzyme deactivation and cooling step between steps 1) and 2).

상기 전분 분해효소는 80 내지 105℃에서 0.5 내지 2시간 동안 처리될 수 있으며, 바람직하게는 90 내지 95℃에서 0.7 내지 1.5시간 동안 처리될 수 있다. 처리 온도가 80℃보다 낮으면 전분의 분해가 원활히 일어나지 않으며, 105℃보다 높을 경우 효소의 활성을 저해하여 효율이 떨어질 수 있고, 또한 처리 시간이 0.5시간보다 짧을 경우 효소 반응이 일어나기에 충분치 않아 미반응된 기질(substrate)로서의 생강이 남을 수 있으며, 2시간보다 길 경우 효소 반응에 소모되는 에너지 및 시간에 비해 추가로 얻어지는 반응물의 양이 적어서 경제성이 떨어질 수 있다. The starcholytic enzyme may be treated at 80 to 105 ° C for 0.5 to 2 hours, preferably at 90 to 95 ° C for 0.7 to 1.5 hours. If the treatment temperature is lower than 80 ° C, the starch decomposition does not occur smoothly. If the treatment temperature is higher than 105 ° C, the enzyme activity may be inhibited and the efficiency may be lowered. If the treatment time is shorter than 0.5 hour, Ginger as a substrate to be reacted may remain, and when it is longer than 2 hours, the amount of reactant to be obtained is smaller than the energy and time consumed in the enzyme reaction, which may result in lower economical efficiency.

상기 전분분해효소 처리 단계는 전분분해효소를 생강의 0.5 내지 1.5% 농도로 첨가하는 것일 수 있으나, 이에 한정되지 않는다. 세포벽 분해효소의 양이 0.5%보다 작을 경우 기질인 생강에 비해 효소의 양이 적어 반응이 충분히 일어나지 않을 수 있으며, 1.5% 보다 클 경우 사용되지 않는 효소의 발생으로 인한 경제성의 손실이 생길 수 있다. The starch hydrolyzing enzyme treatment may include adding starch hydrolyzate at a concentration of 0.5-1.5% of ginger, but is not limited thereto. When the amount of the cell wall degrading enzyme is less than 0.5%, the amount of the enzyme may be less than that of the substrate ginger, and the reaction may not be sufficiently performed. If the amount of the enzyme is less than 1.5%, an unused enzyme may be lost.

상기 단계 2)의 세포벽 분해 효소가 처리된 생강은 고압/효소처리 단계를 거친 반응물로 pH를 5.0 내지 7.5로 조절한 것일 수 있으나, 이에 한정되지 않으며, 상기 전분분해효소에 따라 pH의 구체적 범위는 다를 수 있다. pH가 과도하게 낮거나 높은 경우 효소의 활성을 저해하거나 파괴할 수 있으므로 경제성의 손실이 생길 수 있다.The ginger treated with the cell wall degrading enzyme of step 2) may be a reaction product after the high-pressure / enzyme treatment step and may be adjusted to a pH of 5.0 to 7.5, but the present invention is not limited thereto. The specific range of the pH according to the starch- can be different. If the pH is excessively low or high, the activity of the enzyme can be inhibited or destroyed, resulting in a loss of economic efficiency.

상기 전분 분해 효소는 내열성을 갖는 α-아밀라아제, β-아밀라아제(β-amylase), 글루코아밀라아제(glucoamylase), α-글루코시다아제(α-glucosidase), 이소아밀라아제(isoamylase) 및 풀루라나아제(pullulanase)로 구성된 군에서 선택된 하나 이상일 수 있으며, 이에 한정되지 않는다. The starch degrading enzyme may be selected from the group consisting of heat resistant α-amylase, β-amylase, glucoamylase, α-glucosidase, isoamylase and pullulanase, , But is not limited thereto.

상기 단계 3)의 추출물은 물, C1 내지 C4의 저급 알코올, 물 또는 알코올의 혼합물을 용매로 사용하여 추출된 것일 수 있으나, 이에 한정되지 않는다. 상기 알코올은 에탄올 또는 메탄올일 수 있다. 상기 추출용매는 추출에 사용되는 효소 처리된 생강의 중량 1 g당 1 내지 50 ㎖의 양으로 첨가될 수 있다. 상기 추출방법은 침지, 진탕추출, Soxhlet 추출 또는 환류추출일 수 있다. 이때, 추출 시간은 0.5 내지 96시간일 수 있다. 상기 추출은 1 내지 5회 반복 추출할 수 있다.The extract of step 3) may be extracted with water, a C 1 to C 4 lower alcohol, water or a mixture of alcohols, but is not limited thereto. The alcohol may be ethanol or methanol. The extraction solvent may be added in an amount of 1 to 50 ml per g of the enzyme treated ginger used for extraction. The extraction method may be immersion, shaking extraction, Soxhlet extraction or reflux extraction. At this time, the extraction time may be 0.5 to 96 hours. The extraction may be repeated one to five times.

본 발명의 구체적인 실시예에서 생강추출물의 유용성분 함량 증가에 적합한 세포벽 분해효소를 찾기 위해 효소의 종류에 따른 수용화특성(도 2 내지 5 및 표 3), 유용성분(도 6, 7 및 표 4) 및 지표성분(도 8 및 표 6)을 비교하여 효소를 선택하였으며, 이에 적합한 고압/효소처리조건을 알아내기 위하여 일련의 실험을 시행하였다. 처리시간별 수용화특성(도 9 내지 12 및 표 7), 유용성분(도 13, 14 및 표 8) 및 지표성분(도 15 및 표 9) 비교를 통해 적정시간 범위를 확인하였으며, 처리온도별 수용화특성(도 16 및 표 10), 유용성분(도 17 및 표 11) 및 지표성분(도 18 및 표 12) 비교를 통해 적정온도 범위를 확인하였다. 또한 처리압력별 수용화특성(도 19 및 표 13), 유용성분(도 20 및 표 14) 및 지표성분(도 21 및 표 15) 비교를 통해 적정압력 범위를 확인하였다. 따라서 본 발명의 고압/효소처리 단계를 통해 유용성분의 함량이 증가된 생강 추출물을 수득할 수 있다.2 to 5 and Table 3), the useful components (Figs. 6 and 7 and Table 4), and the water-soluble components ) And the indicator components (FIG. 8 and Table 6) were selected to select enzymes, and a series of experiments were conducted to find out the conditions of the high pressure / enzyme treatment. The appropriate time range was confirmed through comparison of the treatment time-specific hydration characteristics (Figs. 9-12 and Table 7), the useful components (Figs. 13, 14 and Table 8) and the index components (Fig. 15 and Table 9) The appropriate temperature range was confirmed by comparing the characteristics (Fig. 16 and Table 10), useful components (Fig. 17 and Table 11) and the index component (Fig. 18 and Table 12). The appropriate pressure range was also confirmed by comparing the water solubility characteristics (FIG. 19 and Table 13), the useful components (FIG. 20 and Table 14) and the index component (FIGS. Therefore, the ginger extract having an increased content of useful components can be obtained through the high pressure / enzyme treatment step of the present invention.

또한, 본 발명은 1) 고압하에서 생강에 세포벽 분해 효소를 처리하는 단계;The present invention also relates to a method for producing ginger, comprising: 1) treating ginger with cell wall degrading enzyme under high pressure;

2) 상기 단계 1)의 세포벽 분해효소가 처리된 생강에 전분 분해효소를 처리하는 단계; 및 3) 상기 단계 2)의 전분 분해효소가 처리된 생강으로부터 추출물을 수득하는 단계를 포함하는 생강 추출물의 제조 방법 방법으로 제조된, 생강 추출물을 제공한다.2) treating the ginger treated with the cell wall degrading enzyme of step 1) with starch hydrolyzing enzyme; And 3) obtaining an extract from ginger treated with starch hydrolyzing enzyme of step 2). The ginger extract is prepared by the method of manufacturing ginger extract.

상기 추출물은 폴리페놀, 플라보노이드, 진저롤(gingerol) 및 쇼가올(shogaol)로 구성된 군에서 하나 이상을 포함할 수 있으나, 이에 한정되지 않는다.The extract may include at least one of polyphenol, flavonoid, gingerol, and shogaol, but is not limited thereto.

상기 단계 3)의 추출물은 물, C1 내지 C4의 저급 알코올, 물 또는 알코올의 혼합물을 용매로 사용하여 추출된 것일 수 있으나, 이에 한정되지 않는다. 상기 알코올은 에탄올 또는 메탄올일 수 있다. 상기 추출용매는 추출에 사용되는 효소 처리된 생강의 중량 1 g당 1 내지 50 ㎖의 양으로 첨가될 수 있다. 상기 추출방법은 침지, 진탕추출, Soxhlet 추출 또는 환류추출일 수 있다. 이때, 추출 시간은 0.5 내지 96시간일 수 있다. 상기 추출은 1 내지 5회 반복 추출할 수 있다.The extract of step 3) may be extracted with water, a C 1 to C 4 lower alcohol, water or a mixture of alcohols, but is not limited thereto. The alcohol may be ethanol or methanol. The extraction solvent may be added in an amount of 1 to 50 ml per g of the enzyme treated ginger used for extraction. The extraction method may be immersion, shaking extraction, Soxhlet extraction or reflux extraction. At this time, the extraction time may be 0.5 to 96 hours. The extraction may be repeated one to five times.

본 발명의 구체적인 실시예에서 효소의 종류에 따른 수용화특성(도 2 내지 5 및 표 3), 유용성분(도 6, 7 및 표 4) 및 지표성분(도 8 및 표 6) 을 비교하여 적절한 세포벽 분해효소를 선택후 처리시간별 수용화특성(도 9 내지 12 및 표 7), 유용성분(도 13, 14 및 표 8) 및 지표성분(도 15 및 표 9) 비교; 처리온도별 수용화특성(도 16 및 표 10), 유용성분(도 17 및 표 11) 및 지표성분(도 18 및 표 12) 비교; 및 처리압력별 수용화특성(도 19 및 표 13), 유용성분(도 20 및 표 14) 및 지표성분(도 21 및 표 15) 비교를 통해 본 발명의 방법으로 제조된 생강 추출물의 기능성 및 유용성분이 증가된 것을 확인하였다. 따라서, 본 발명의 생강 추출물은 다양한 가공 식품에 유용하게 사용될 수 있다.(Figs. 2 to 5 and Table 3), useful components (Figs. 6 and 7 and Table 4) and index components (Figs. 8 and 6) according to the type of enzyme in the specific examples of the present invention 9-12 and Table 7), useful components (Figures 13, 14 and Table 8), and indicator components (Figures 15 and Table 9) after the selection of cell wall degrading enzymes; (Fig. 16 and Table 10), useful components (Figs. 17 and 11) and index components (Fig. 18 and Table 12); The functional and useful properties of the ginger extract prepared by the method of the present invention through comparison of water solubility characteristics (Figs. 19 and 13), useful components (Figs. 20 and 14) and surface components (Figs. 21 and 15) Min. ≪ / RTI > Therefore, the ginger extract of the present invention can be usefully used in various processed foods.

이하, 본 발명을 실시예에 의해서 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to examples.

단 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐, 본 발명이 하기 실시예 및 실험예에 의해서 한정되는 것은 아니다.EXAMPLES The following Examples and Experiments are for the purpose of illustrating the present invention, but the present invention is not limited by the following Examples and Experimental Examples.

<< 실시예Example 1> 재료의 준비 1> Preparation of materials

본 발명의 실시예에 사용된 생강은 2016년 10월 전라북도 봉동에서 수확된 국내산 생강을 사용하였다. 추출 방법에 사용된 효소는 Celluclast 1.5L FG, Pectinex Ultra SP-L, Viscozyme L, Termamyl 120L로 Novozyme사에서 구입하여 사용하였다. 분석에 사용된 시약들은 디니트로살리실산(Dinitrosalicylic acid; DNS), 폴린-시오칼토 시약(Folin-Ciocalteu reagent), 갈릭산(gallic acid), 포도당(glucose), 쿼세틴(quercetin) 및 카테킨(catechin)류 화합물 분석을 위한 표준물질들로 Sigma Chemical사로부터 구입하여 사용하였다. 생강의 지표성분 6-진저롤(gingerol), 8-진저롤, 10-진저롤, 6-쇼가올(shogaol), 8-쇼가올, 10-쇼가올은 Chromadex에서 구입하여 사용하였다. 그 외 시약과 용매는 Sigma-Aldrich사에서 구입하여 사용하였다.The ginger used in the examples of the present invention was domestic ginger harvested in Bongdong, Jeollabuk-do in October, The enzymes used in the extraction method were purchased from Novozyme as Celluclast 1.5L FG, Pectinex Ultra SP-L, Viscozyme L and Termamyl 120L. The reagents used for the analysis include dinitrosalicylic acid (DNS), Folin-Ciocalteu reagent, gallic acid, glucose, quercetin and catechin The standard materials for the compound analysis were purchased from Sigma Chemical. The indicator components of ginger were purchased from Chromadex, 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-showol and 10-show. Other reagents and solvents were purchased from Sigma-Aldrich.

<< 실시예Example 2> 고압 하에서 효소 종류별 생강의 효소처리 결과 비교 2> Comparison of enzymatic treatment of ginger by enzyme type under high pressure

실시예Example 2-1. 생강의 고압/효소처리 2-1. High pressure / enzyme treatment of ginger

상기 생강을 탈피, 세척 후 슬라이스 형태로 절단하여 동결건조한 후 분쇄하여 100 mesh의 체에 걸러 -20 ℃ 냉동고에 저장하면서 시료로 사용하였다. 고압하에서 생강에 처리할 효소는 하기 표 1에 나타내었다. 생강의 세포벽 성분을 분해하기 위해 Celluclast 1.5L FG(Cel), Pectinex Ultra SP-L(Pec) 또는 Viscozyme L(Vis)을 생강에 단일 또는 혼합 처리하였으며, 전분은 Termamyl 120L을 처리하여 포도당(glucose) 및 맥아당(maltose) 등으로 분해하였다. 효소 선정을 위한 생강 고압/효소처리 조건과 공정은 하기 표 2 및 도 1과 같다.The ginger was melted, sliced, cut into slices, lyophilized, pulverized and sieved through a 100-mesh sieve and stored in a -20 ° C freezer and used as a sample. The enzymes to be treated in ginger under high pressure are shown in Table 1 below. In order to decompose the cell wall components of ginger, Celluclast 1.5L FG (Cel), Pectinex Ultra SP-L (Pec) or Viscozyme L (Vis) And maltose. The ginger high pressure / enzyme treatment conditions and process for enzyme selection are shown in Table 2 and FIG.

효소enzyme 실시예의 사용 제품Use product of the embodiment 분해단위Decomposition unit 출처 미생물Source microorganisms CellulaseCellulase Celluclast 1.5L FG
(≥700 EGU/g)
Celluclast 1.5L FG
(≥700 EGU / g)
Endo-glucanase unitEndo-glucanase unit TrichodermaTrichoderma reesei reesei
Polygalacturonase
(Pectinase)
Polygalacturonase
(Pectinase)
Pectinex Ultra SP-L
(≥3,800 PGNU/mL)
Pectinex Ultra SP-L
(≥3,800 PGNU / mL)
Polygalacturonase unitPolygalacturonase unit AspergillusAspergillus aculeatus aculeatus
Mixture of cellulase, hemicellulose, arabanase, xylanase, β-glucanaseMixture of cellulase, hemicellulose, arabanase, xylanase, β-glucanase Viscozyme L
(100FBG/g)
Viscozyme L
(100 FBS / g)
Fungal Beta-GlucanaseFungal Beta-Glucanase AspergillusAspergillus aculeatus aculeatus
α-Amylaseα-Amylase Termamyl 120L
(120KNU/g)
Termamyl 120L
(120 KNU / g)
One Kilo Novo alpha -amylase unitOne Kilo Novo alpha-amylase unit Bacillus licheniformisBacillus licheniformis

생강 동결건조 분말 5 g에 대하여 그 20배에 해당하는 증류수 100 mL을 가하여 혼합한 후, 0.1 N 수산화나트륨 용액과 0.1 N 염산 용액으로 각 효소별 최적 pH인 4.0∼5.0으로 조정하였다. 세포벽 분해 효소들은 생강 분말의 1 %(w/w) 농도로 첨가한 후 투명 파우치(PE 재질)에 넣고 공기를 제거하고 밀봉하였다. 고압/효소처리군(HP)은 고압처리기(초고압액화처리장치, (주)캠리시스)를 사용하여 압력은 100 MPa에서 2시간으로, 온도는 50 ℃에서 실시하였다. 고압/효소처리 된 반응물은 전분 분해효소(Termamyl 120L) 처리를 위하여 상온으로 식힌 다음 pH 6.0으로 조정하였다. 전분 분해효소는 생강분말의 1 %(w/w) 농도로 첨가 후 100℃ 항온수조(WiseBath, MaXturdy, 대한과학)에서 1시간 동안 처리하였으며, 이 과정에서 세포벽 분해효소의 불활성화도 동시에 진행되었다. 효소단일처리군(WB)은 고압이 아닌 상압의 50 ℃ 항온수조에서 100 rpm 속도로 2시간 동안 효소처리를 실시한 후, 고압/효소처리군(HP)과 동일한 전분 분해효소 처리(Termamyl 120L 첨가 및 93℃에서 1시간 처리)를 시행하였다. 대조군(CON)으로는 일반적으로 많이 사용하는 냉각환류 추출장치(reflux)를 이용하여 100℃에서 2시간 가열처리한 열수 추출물을 이용하였다. 상기 효소 처리 및 열수 추출된 고압/효소처리군(HP), 효소단일처리군(WB) 및 대조군(CON)을 상온으로 냉각한 후, 여과지(Whatman No. 4)로 감압여과하고 4℃에서 3,000 rpm 속도로 10분간 원심분리(Labogene, Gyro1580MGR, (주)자이로젠, Korea)하였다. 원심분리된 상등액과 침전물은 각각 수분용해지수(Water solubility index : WSI)와 수분흡착지수(Water absorption index : WAI) 분석에 활용하였다. To 5 g of the ginger freeze-dried powder, 100 mL of distilled water corresponding to 20 times of the ginger freeze-dried powder was added and mixed. The pH was adjusted to 4.0-5.0 with 0.1 N sodium hydroxide solution and 0.1 N hydrochloric acid solution for each enzyme. The cell wall degrading enzymes were added at a concentration of 1% (w / w) of ginger powder, placed in a transparent pouch (PE material), air was removed and sealed. The high pressure / enzyme treatment group (HP) was operated at a pressure of 100 MPa for 2 hours and at a temperature of 50 ° C using a high pressure processor (ultrahigh pressure liquefaction apparatus, Camrisys). The high pressure / enzyme treated reaction mixture was cooled to room temperature and adjusted to pH 6.0 for starch degrading enzyme (Termamyl 120L) treatment. Starch hydrolyzate was added at 1% (w / w) concentration of ginger powder and treated at 100 ℃ for 1 hour in a constant temperature water bath (WiseBath, MaXturdy, Korea Science and Engineering) . Enzymes were treated with enzyme treatment at 100 rpm for 2 hours in a constant temperature water bath at 50 ℃, not high pressure, and then treated with the same starch hydrolyzing enzyme treatment (Termamyl 120L, 93 &lt; 0 &gt; C for 1 hour). As a control (CON), a hot water extract which was heated at 100 ° C for 2 hours was used using a commonly used cooling reflux extractor (reflux). After the enzymatic treatment and the hot water-extracted high pressure / enzyme treatment group (HP), the enzyme single treatment group (WB) and the control group (CON) were cooled to room temperature, the mixture was filtered under reduced pressure with a filter paper (Whatman No. 4) (Labogene, Gyro1580MGR, Zyrogen, Korea) for 10 minutes at a rpm rate. The centrifuged supernatant and sediment were used for water solubility index (WSI) and water absorption index (WAI) analysis, respectively.

분해대상Decomposition object 효소enzyme pHpH 온도
(℃)
Temperature
(° C)
시간
(h)
time
(h)
압력
(MPa)
pressure
(MPa)
세포벽Cell wall Celluclast 1.5L FG(Cel)Celluclast 1.5L FG (Cel) 5.05.0 5050 22 100100 Pectinex Ultra pulp(Pec)Pectinex Ultra pulp (Pec) 4.04.0 Viscozyme L(Vis)Viscozyme L (Vis) 5.05.0 Celluclast 1.5L FG + Viscozyme L
(Cel+Vis)
Celluclast 1.5L FG + Viscozyme L
(Cel + Vis)
5.05.0
Pectinex Ultra pulp + Viscozyme L
(Pec+Vis)
Pectinex Ultra pulp + Viscozyme L
(Pec + Vis)
4.54.5
전분Starch Termamyl 120L Type LTermamyl 120L Type L 6.06.0 9393 1One --

실시예Example 2-2. 효소 종류별 생강 추출물의  2-2. Ginger extract by enzyme type 수용화Hydration 특성 비교 Feature comparison

상기 실시예 2-1에 따른 고압하에서 효소를 처리(고압/효소처리)한 생강 추출물의 수분용해지수(Water solubility index : WSI), 수분흡착지수(Water absorption index : WAI), 총당(Total sugar; TS) 함량 및 환원당(Reducing sugar; RS) 함량을 비교하였다. The water solubility index (WSI), the water absorption index (WAI), and the total sugar of the ginger extract treated with the enzyme (high pressure / enzyme treatment) under the high pressure according to Example 2-1 were measured. TS) content and reducing sugar (RS) content were compared.

수분용해지수(WSI)를 비교하기 위해 상기 실시예 2-1의 고압/효소처리군(HP), 단일효소처리군(WB) 및 대조군(CON)의 원심분리된 상등액 5mL를 취하여 수분 칭량병에 넣은 후 50℃에서 24시간 동안 건조시켜 고형물 함량을 측정한 후 WSI를 하기와 같이 계산하였다.To compare the water solubility index (WSI), 5 mL of the centrifuged supernatant of the high pressure / enzyme treated group (HP), the single enzyme treated group (WB) and the control group (CON) And then dried at 50 ° C for 24 hours to determine the solid content. The WSI was then calculated as follows.

[계산식 1][Equation 1]

WSI(%) = (((가용성 고형물 g/5mL)×상등액 부피(mL)) / 5g)×100WSI (%) = (((solids solids g / 5 mL) × supernatant volume (mL)) / 5 g) × 100

또한 상기 실시예 2-1에서 원심분리를 통해 얻어진 각 실험군(HP, WB) 및 대조군(CON)의 침전물을 칭량하고, 이 침전물을 건조기에서 50℃의 온도로 24시간 동안 건조한 후 칭량하여 하기와 같이 건조시료 g당 흡수된 수분량(mL/g)인 수분흡착지수(WAI)를 계산하였다.The precipitates of the test groups (HP, WB) and the control group (CON) obtained through centrifugation in Example 2-1 were weighed and dried in a dryer at 50 DEG C for 24 hours and weighed, Similarly, the moisture adsorption index (WAI), which is the amount of water absorbed per gram of dry sample (mL / g), was calculated.

[계산식 2][Equation 2]

WAI(mL/g) = 침전물 중량 / 건조시료 중량WAI (mL / g) = sediment weight / dry sample weight

또한 총당(TS)은 페놀황산법(Phenol sulfuric acid method)을 이용하여 측정하였다. 상기 실시예 2-1에서 원심분리를 통해 얻어진 상등액 (HP, WB 및 CON)을 100배 희석한 0.5 mL에 Phenol 용액 0.5 mL, Sulfuric acid 2.5 mL를 가하여 잘 섞은 후 20분 동안 상온에 정치한 후 Molecular devices(Us/spectramax, M2e)를 이용하여 470 nm에서 흡광도를 측정, 포도당 표준곡선(glucose standard curve)을 이용하여 총당을 정량하였다. Total sugar (TS) was also measured by the phenol sulfuric acid method. 0.5 mL of the phenol solution and 2.5 mL of sulfuric acid were added to 0.5 mL of the supernatant (HP, WB and CON) obtained by centrifugation in Example 2-1, and the mixture was allowed to stand at room temperature for 20 minutes Absorbance was measured at 470 nm using Molecular devices (Us / spectramax, M2e) and total sugar was quantified using a glucose standard curve.

아울러 환원당(RS)은 DNS 비색법으로 측정하였다. 상기 실시예 2-1에서 원심분리를 통해 얻어진 상등액 (HP, WB 및 CON) 1 mL에 DNS 시약 3 mL를 넣고 5분간 중탕한 후 정용플라스크(volumetric flask)에 넣고, 증류수를 25 mL로 정용하였다. 마이크로플레이트 판독기(microplate reader, Molecular Devices, Sunnyvale)를 이용하여 550 nm에서 흡광도를 측정하였으며, 포도당 함량에 상당하는 값(glucose equivalent, GE, g%)으로 나타내었다.The reducing sugar (RS) was measured by DNS colorimetric method. 3 mL of the DNS reagent was added to 1 mL of the supernatant (HP, WB and CON) obtained through centrifugation in Example 2-1, and the mixture was boiled for 5 minutes, put in a volumetric flask, and diluted with 25 mL of distilled water . Absorbance was measured at 550 nm using a microplate reader (Molecular Devices, Sunnyvale) and the value was expressed as glucose equivalent (GE, g%).

실험 결과의 통계 분석은 SPSS(Version 18.0)을 이용하여 3회 반복측정 후 평균치와 표준편차로 나타내었으며, 각 시료 간 차이를 검증하기 위해 one-way ANOVA와 Student's t-test를 실시하였으며, 통계적 유의성(p<0.05)을 검정하였다.Statistical analysis was performed using SPSS (Version 18.0), which was repeated three times. The mean and standard deviation were measured. One-way ANOVA and Student's t-test were performed to verify the difference between the samples. Statistical significance (p < 0.05).

처리 종류Treatment type 효소enzyme WSI(%)WSI (%) WAI(g/mL)WAI (g / mL) TS(%)TS (%) RS(%)RS (%) CONCON -- D15.35±0.10e D 15.35 + - 0.10 e C1.35±0.04d C 1.35 + 0.04 d F0.24±0.03d F 0.24 0.03 d G0.14±0.02f G 0.14 0.02 f HPHP Non-ENon-E 15.90±0.41e 15.90 + - 0.41 e 1.46±0.07cd 1.46 ± 0.07 cd 3.40±0.13c 3.40 + - 0.13 c 0.32±0.02f 0.32 ± 0.02 f CellCell 64.72±1.23b 64.72 ± 1.23 b 2.13±0.15b 2.13 ± 0.15 b 41.67±1.96a 41.67 ± 1.96 a 18.90±0.11e 18.90 ± 0.11 e PecPec 70.67±0.42a 70.67 + - 0.42 a 1.61±0.12c 1.61 + - 0.12 c 35.33±2.99b 35.33 ± 2.99 b 21.86±0.08d 21.86 ± 0.08 d VisVis 58.81±0.59c 58.81 + - 0.59 c 2.07±0.09b 2.07 ± 0.09 b 42.14±0.28a 42.14 + 0.28 a 26.77±1.08a 26.77 ± 1.08 a Cell+VisCell + Vis 55.91±0.85d 55.91 + - 0.85 d 2.54±0.17a 2.54 + 0.17 a 40.11±1.67a 40.11 + 1.67 a 24.63±0.02c 24.63 0.02 c Pec+VisPec + Vis 59.66±0.41c 59.66 + - 0.41 c 2.16±0.07b 2.16 ± 0.07 b 39.23±1.96a 39.23 + 1.96 a 25.80±0.55b 25.80 ± 0.55 b F-valueF-value 3615.38***3615.38 *** 46.51*** 46.51 *** 373.31***373.31 *** 1925.02***1925.02 *** WBWB Non-ENon-E 7)D16.94±0.68 7) D 16.94 + - 0.68 C1.43±0.04 C 1.43 + 0.04 E2.92±0.11 E 2.92 0.11 F0.40±0.00 F 0.40 ± 0.00 CellCell C54.65±2.06 C 54.65 + 2.06 A2.12±0.32 A 2.12 0.32 B30.79±0.37 B 30.79 + - 0.37 E18.93±0.30 E 18.93 + - 0.30 PecPec AB58.56±2.24 AB 58.56 ± 2.24 AB1.86±0.10 AB 1.86 ± 0.10 B30.99±0.16 B 30.99 + - 0.16 C21.23±0.01 C 21.23 + - 0.01 VisVis BC56.61±2.06 BC 56.61 ± 2.06 B1.78±0.22 B 1.78 ± 0.22 C27.83±0.22 C 27.83 + - 0.22 B22.74±0.24 B 22.74 0.24 Cell+VisCell + Vis A59.71±1.49 A 59.71 + 1.49 AB1.88±0.18 AB 1.88 ± 0.18 A36.81±0.27 A 36.81 + - 0.27 A26.26±0.15 A 26.26 + - 0.15 Pec+VisPec + Vis A60.52±1.17 A 60.52 + 1.17 AB1.91±0.10 AB 1.91 ± 0.10 D21.33±0.24 D 21.33 + - 0.24 D19.67±0.00 D 19.67 ± 0.00 F-valueF-value 502.78***8) 502.78 *** 8) 7.69***7.69 *** 12463.04***12463.04 *** 13820.64***13820.64 ***

(CON: 100℃/2시간 가열처리군, HP: 고압/효소처리군, WB: 효소단일처리군, Non-E: 효소 무첨가, Cell: Cellulast 1.5L FG 첨가, Pec: Pectinex Ultra SP-L 첨가, Vis: Viscozyme L 첨가, Cell+Vis: Celluclast 1.5L FG 및 Viscozyme L 혼합, Pec+Vis: Pectinex Ultra SP-L 및 Viscozyme L 첨가)(CON: 100 ° C / 2h heat treatment group, HP: high pressure / enzyme treated group, WB: single enzyme treatment group, Non-E: no enzyme added, Cell: Cellulast 1.5L FG added, Pec: Pectinex Ultra SP-L added , Vis: Addition of Viscozyme L, Addition of Cell + Vis: Celluclast 1.5L FG and Viscozyme L, Addition of Pec + Vis: Pectinex Ultra SP-L and Viscozyme L)

(A-F, a-f: 알파벳이 다른 것은 p<0.05에서 유의하게 다른 것을 의미함.)(A-F, a-f: different alphabets mean significantly different at p <0.05).

(*: P<0.05, **: P<0.01, ***: P<0.001)(*: P <0.05, **: P <0.01, ***: P <0.001)

그 결과 수분용해지수는 도 2 및 표 3과 같이 고압/효소처리군(HP)이 15.90∼70.67%의 범위로 대조군보다 1.0∼4.6배 높게 나타났다. 효소단일처리군(WB)은 16.94∼60.52% 정도로 대조군 보다 1.1∼3.9배 증가하였으나, HP 보다 유의적으로 낮게 나타나 고압/효소처리가 효소단일처리 보다 생강의 세포벽 성분을 수용화시키는데 좀 더 효과적이라는 결과를 확인할 수 있었다. 효소 종류에 따른 수분용해지수는 HP의 Pec 처리군이 70.67%로 유의적으로 가장 높게 나타났으며(p<0.001), WB에서는 Pec+Vis, Cell+Vis, Pec 처리군들이 각각 60.52, 59.71, 58.56%로 유의적으로 높게 나타났다(p<0.001). As a result, the water solubility index was in the range of 15.90 ~ 70.67% in the high pressure / enzyme treated group (HP) as 1.0 ~ 4.6 times higher than the control group as shown in Fig. 2 and Table 3. [ Enzyme single treatment group (WB) was 16.94 ~ 60.52%, which was 1.1 ~ 3.9 times higher than control group. However, high pressure / enzyme treatment was more effective than enzyme treatment for the cell wall component of ginger The results were confirmed. Pec + Vis, Cell + Vis, and Pec treatment groups were 60.52, 59.71, and 60.0%, respectively, in WB (p <0.001) 58.56%, respectively (p <0.001).

수분흡착지수는 도 3 및 표 3과 같이 HP는 1.46∼2.54 mL/g, WB는 1.43∼2.12 mL/g의 범위로 대조군에 비하여 각각 1.1∼1.9배, 1.1∼1.6배 정도로 유의적으로 높게 나타났다(p<0.001). 이와 같은 결과로 HP와 WB의 침전물에 남아 있는 비전분 다당류의 분자량이 대조군에 비하여 높다는 것을 확인할 수 있었으며, 효소처리에 의해서도 분해되지 않은 세포벽의 다당류일 가능성도 있을 것으로 판단되었다.As shown in FIG. 3 and Table 3, the moisture adsorption index was in a range of 1.46-2.54 mL / g of HP and 1.43-2.12 mL / g of WB, which was 1.1-1.9 times and 1.1-1.6 times higher than that of the control group, respectively (p < 0.001). As a result, it was confirmed that the molecular weight of the nonpolar polysaccharide remaining in the precipitates of HP and WB was higher than that of the control group.

총당은 도 4 및 표 3과 같이 대조군이 0.24%로 나타났으며, 대조군에 비하여 HP는 14∼176배, WB는 12∼153배 정도로 유의적(p<0.001)으로 높게 나타났다. HP는 Vis, Cell, Cell+Vis 처리구들이 42.14, 41.67, 40.11% 정도로 대조군에 비하여 높게 나타났으며, WB는 Cell+Vis 처리군이 36.81% 가장 높게 나타났다. As shown in FIG. 4 and Table 3, the total sugar concentration was 0.24% in the control group, and HP (14-176) and WB (12-153) were significantly higher (p <0.001) than the control group. HP, 42.14, 41.67, 40.11% of Vis, Cell and Cell + Vis treatments were higher than the control group, and WB was highest in Cell + Vis treatment group 36.81%.

환원당은 대조군이 0.14%로 나타났으며, 대조군에 비하여 HP는 2∼191배, WB는 3∼188배 정도로 유의적으로(p<0.001)으로 높게 나타났다. HP는 Vis, Pec+Vis, Cell+Vis 순으로 각각 26.77, 25.80, 24.63%였으며, WB는 Cell+Vis, Vis, Pec순으로 26.26, 22.74, 21.23%를 나타내었다. 이러한 결과는 수분용해지수와 비슷한 경향을 나타내는 것으로 생강의 세포벽 성분과 전분이 고압효소 또는 단일효소처리에 의해 저분자 당으로 수용화되었음을 검증해주는 결과로 생강의 수용화 효율을 증진시키기 위해서는 수분용해지수가 높게 나타난 Pec, Pec+Vis, Cel+Vis 효소를 사용하는 것이 효과적임을 확인할 수 있었다. Reducing sugar was 0.14% in the control group and HP (2 ~ 191) and WB (3 ~ 188) were significantly higher (p <0.001) than the control group. HP was 26.77, 25.80 and 24.63% in order of Vis, Pec + Vis and Cell + Vis respectively, and WB was 26.26, 22.74 and 21.23% in the order of Cell + Vis, Vis and Pec. These results show that the water-solubility index is similar to the water-solubility index. As a result of confirming that the cell wall components and starch of ginger are hydrolyzed into low-molecular sugar by high-pressure enzyme or single enzyme treatment, Pec, Pec + Vis, and Cel + Vis enzymes, which are highly expressed, are effective.

실시예Example 2-3. 효소 종류별 생강 추출물의 유용성분 비교 2-3. Comparison of useful components of ginger extracts by enzyme type

상기 실시예 2-1에 따른 고압/효소처리된 생강 추출물의 총 폴리페놀 함량 및 총 플라보노이드 함량을 비교하였다. The total polyphenol content and total flavonoid content of the high pressure / enzyme treated ginger extracts according to Example 2-1 were compared.

총 폴리페놀 함량은 Folin-Denis법을 응용하여 측정하였다. 구체적으로 상기 실시예 2-1에서 원심분리를 통해 얻어진 상등액 (HP, WB 및 CON) 1 mL에 증류수 1 mL을 가하여 2배 희석한 희석액 0.1 mL에 폴린-시오칼토 시약 0.1 mL을 첨가하고 잘 혼합한 후 3분간 정치하여 2 mL의 2% Na2CO3를 서서히 가하였다. 상기 혼합액을 1시간 동안 정치한 후 Molecular devices(Us/spectramax, M2e, USA)를 사용하여 750 nm에서 흡광도를 측정하였다. 이때 총 폴리페놀 함량은 갈릭산을 정량하여 작성한 표준곡선으로부터 구하였다. Total polyphenol content was measured by Folin-Denis method. Specifically, 1 mL of distilled water was added to 1 mL of the supernatant (HP, WB, and CON) obtained through centrifugation in Example 2-1, and 0.1 mL of a 2-fold dilution of the dilution was added to 0.1 mL of a polynuclear thiol reagent The mixture was allowed to stand for 3 minutes and 2 mL of 2% Na 2 CO 3 was gradually added thereto. After the mixture was allowed to stand for 1 hour, absorbance was measured at 750 nm using Molecular devices (Us / spectramax, M2e, USA). The total polyphenol content was determined from a standard curve prepared by quantifying gallic acid.

또한 총 플라보노이드 함량은 Davis법을 변형한 방법으로 측정하였다. 구체적으로는 상기 생강 추출물 0.34 mL을 증류수 1.92 ml에 희석하고, 2% NaNO2 0.2 mL을 넣어 균질화하였다. 상기 혼합물에 10% AlCl3 0.2 mL과 1M Na2CO3 1.34 mL을 첨가하고, 실온에서 30분간 두어 반응을 일으킨 후 410 nm에서 흡광도를 측정하였다. 이 때 총 플라보노이드 함량은 (+)-카테킨을 이용하여 작성한 표준곡선으로부터 구하였다.Total flavonoid contents were measured by modified Davis method. Specifically, 0.34 mL of the ginger extract was diluted with 1.92 mL of distilled water, and 0.2 mL of 2% NaNO 2 was added to homogenize. 0.2 mL of 10% AlCl 3 and 1.34 mL of 1 M Na 2 CO 3 were added to the mixture, and the reaction was allowed to proceed at room temperature for 30 minutes. Then, the absorbance at 410 nm was measured. The total flavonoid content was determined from the standard curves prepared with (+) - catechin.

처리 종류Treatment type 효소enzyme TP(%)TP (%) TF(%)TF (%) CONCON -- F1.43±0.02e F 1.43 + 0.02 e E0.33±0.02d E 0.33 0.02 d HPHP Non-ENon-E 1.07±0.02f 1.07 ± 0.02 f 0.25±0.01e 0.25 + 0.01 e CellCell 1.98±0.04d 1.98 + 0.04 d 0.73±0.01a 0.73 + 0.01 a PecPec 2.55±0.00a 2.55 ± 0.00 a 0.73±0.01a 0.73 + 0.01 a VisVis 2.11±0.04c 2.11 0.04 c 0.71±0.01b 0.71 ± 0.01 b Cell+VisCell + Vis 2.18±0.05b 2.18 ± 0.05 b 0.58±0.02c 0.58 0.02 c Pec+VisPec + Vis 2.18±0.02b 2.18 + 0.02 b 0.70±0.00b 0.70 ± 0.00 b F-valueF-value 813.82***813.82 *** 806.71***806.71 *** WBWB Non-ENon-E E1.76±0.02 E 1.76 + 0.02 F0.30±0.00 F 0.30 ± 0.00 CellCell B2.29±0.06 B 2.29 0.06 D0.59±0.03 D 0.59 + 0.03 PecPec A2.37±0.05 A 2.37 ± 0.05 B0.68±0.00 B 0.68 ± 0.00 VisVis D2.02±0.02 D 2.02 + 0.02 A0.75±0.00 A 0.75 ± 0.00 Cell+VisCell + Vis C2.12±0.06 C 2.12 + 0.06 C0.66±0.01 C 0.66 + - 0.01 Pec+VisPec + Vis C2.12±0.01 C 2.12 + - 0.01 BC0.67±0.00 BC 0.67 ± 0.00 F-valueF-value 198.83***198.83 *** 511.90***511.90 ***

(기호의 의미는 표 3과 동일)(The meanings of symbols are the same as those in Table 3)

그 결과, 도 6, 도 7 및 상기 표 4와 같이 총 폴리페놀의 함량은 대조군이 1.43%로 나타났으며, HP는 1.98~2.55%, WB는 1.76~2.37%의 범위로 대조군에 비하여 각각 1.4~1.8배, 1.4~1.7배 정도로 유의적(p<0.001)으로 높게 나타났다. 각 효소별로 HP가 WB에 비하여 유의적(p<0.001)으로 높았으며, HP와 WB 모두 Pec 처리군이 각각 2.55, 2.37%로 다른 효소처리에 비하여 가장 높게 나타났다. As a result, as shown in FIG. 6, FIG. 7 and Table 4, the content of total polyphenol was 1.43% in the control group, 1.98 to 2.55% in HP and 1.76 to 2.37% in WB, ~ 1.8 times and 1.4 ~ 1.7 times, respectively (p <0.001). (P <0.001). HP and WB were the highest in the Pec treatment group and 2.55 and 2.37%, respectively, than the other enzyme treatments.

총 플라보노이드 함량은 대조군이 0.33%로 나타났으며, HP는 0.58~0.73%, WB는 0.30~0.75%의 범위로 대조군에 비하여 각각 1.8~2.2배, 1.8~2.3배 정도로 유의적으로 높게 나타났다(p<0.001). 각 효소별로 HP가 WB에 비하여 유의적(p<0.001)으로 높았으나, Vis와 Cell+Vis 처리군은 예외적으로 WB가 높았다. HP는 Pec과 Cell 처리군이 0.73%로 가장 높게 나타났으며, WB는 Vis 처리군이 0.75%로 가장 높게 나타났다. 이러한 결과로 생강의 고압효소 또는 효소단일처리를 위한 효소로는 Pec, Cell, Vis이 적절함을 확인할 수 있었다.Total flavonoid content was 0.33% in the control group, 0.58 ~ 0.73% in HP and 0.30 ~ 0.75% in WB, which were 1.8 ~ 2.2 and 1.8 ~ 2.3 times higher than the control group, respectively (p &Lt; 0.001). HP of each enzyme was significantly higher (p <0.001) than that of WB, but Vis and Cell + Vis treatment groups were exceptionally high in WB. HP showed the highest value of 0.73% in Pec and Cell treatment group and the highest value of WB was 0.75% in Vis treatment group. As a result, it was confirmed that Pec, Cell, and Vis were suitable enzymes for single enzyme treatment of high pressure enzyme or enzyme of ginger.

실시예Example 2-4. 효소 종류별 생강 추출물의 지표성분 비교 2-4. Comparison of Indicative Components of Ginger Extracts by Enzyme Type

상기 실시예 2-1에 따른 고압/효소처리된 생강 추출물의 진저롤(Gingerol) 및 쇼가올(Shogaol) 함량을 비교하였다. The gingerol and shogaol contents of the high pressure / enzyme treated ginger extracts according to Example 2-1 were compared.

상기 실시예 2-1에서 원심분리를 통해 얻어진 상등액 (HP, WB 및 CON) 10mL을 동결건조 한 다음, 메탄올 2 mL에 용해시키고, 0.45 ㎛ syringe filter(Millipore)로 여과한 여액을 검액으로 UPLC(Ultra Performance Liquid Chromatography) 분석을 수행하였다. 각 검액은 0.2 ㎕씩 주입하였으며 UPLC 조건은 하기 표 5와 같다. 생강의 6, 8, 10-진저롤 및 6, 8, 10-쇼가올 함량은 표준 지표물질의 회귀직선 방정식을 이용하여 계산하였으며, 계산된 값은 생강 추출물 전체 부피로 환산하여 생강 건조중량 대비 %로 산출했다. 10 mL of the supernatant (HP, WB, and CON) obtained by centrifugation in Example 2-1 was lyophilized and dissolved in 2 mL of methanol. The filtrate was filtered through a 0.45 μm syringe filter (Millipore) Ultra Performance Liquid Chromatography) analysis. 0.2 μl of each test solution was injected. The UPLC conditions were as shown in Table 5 below. The contents of 6, 8, 10-gingerol and 6, 8, 10-showol contents of ginger were calculated by using the regression linear equation of standard indicator material. The calculated values were calculated as the total volume of ginger extract, Respectively.

파라미터parameter Analysis conditionAnalysis condition UPLC 시스템UPLC system LC-30AD SHIMADZULC-30AD SHIMADZU 검출기Detector DAD, UV, 280 ㎛DAD, UV, 280 탆 컬럼column Kinetex XB.C18 100 Å (1.7 ㎛, 150×2.1 mm)Kinetex XB.C18 100 Å (1.7 μm, 150 × 2.1 mm) 이동상Mobile phase A: 0.1% acetic acid in water (V/V,%)
B: 0.1% acetic acid in acetonitrile (V/V,%)
A: 0.1% acetic acid in water (V / V,%)
B: 0.1% acetic acid in acetonitrile (V / V,%)
기울기inclination 시간(분)Time (minutes) A(%)A (%) B(%)B (%) 0.50.5 9090 1010 2.52.5 6060 4040 4.54.5 4545 5555 6.06.0 4040 6060 8.08.0 3535 6565 9.59.5 3535 6565 11.511.5 3535 6565 13.013.0 3030 7070 14.514.5 2525 7575 16.016.0 2020 8080 17.517.5 1515 8585 20.020.0 1010 9090 25.025.0 1010 9090 26.026.0 9090 1010 29.029.0 9090 1010 주입 볼륨(㎕)Injection volume ([mu] l) 0.20.2 유동율 (mL/min)Flow rate (mL / min) 0.30.3 컬럼 온도 (℃)Column temperature (캜) 3030

처리종류Treatment type 효소enzyme 총량(%)Total amount (%) 6-G
(%)
6-G
(%)
8-G
(%)
8-G
(%)
10-G
(%)
10-G
(%)
6-S
(%)
6-S
(%)
8-S
(%)
8-S
(%)
10-S
(%)
10-S
(%)
CONCON -- A0.57±0.06e A 0.57 + 0.06 e E0.45±0.05e E 0.45 0.05 e E0.03±0.00c E 0.03 0.00 0.00 c D0.00±0.00f D 0.00 0.00 0.00 f B0.05±0.00b B 0.05 ± 0.00 b C0.04±0.01c C 0.04 0.01 c B0.01±0.00c B 0.01 ± 0.00 c HPHP Non-ENon-E 0.44±0.01f 0.44 ± 0.01 f 0.35±0.01f 0.35 + 0.01 f 0.02±0.00d 0.02 ± 0.00 d 0.02±0.00e 0.02 ± 0.00 e 0.03±0.00d 0.03 ± 0.00 d 0.01±0.00d 0.01 ± 0.00 d 0.01±0.00c 0.01 ± 0.00 c CellCell 1.12±0.03d 1.12 ± 0.03 d 0.89±0.03d 0.89 + 0.03 d 0.08±0.00b 0.08 ± 0.00 b 0.09±0.00a 0.09 ± 0.00 a 0.04±0.00c 0.04 ± 0.00 c 0.01±0.00d 0.01 ± 0.00 d 0.02±0.00b 0.02 0.00 b PecPec 1.47±0.01ab 1.47 ± 0.01 ab 1.18±0.01a 1.18 ± 0.01 a 0.08±0.00b 0.08 ± 0.00 b 0.03±0.00d 0.03 ± 0.00 d 0.05±0.00a 0.05 ± 0.00 a 0.11±0.00b 0.11 0.00 b 0.02±0.00b 0.02 0.00 b VisVis 1.43±0.02b 1.43 + 0.02 b 1.10±0.01b 1.10 ± 0.01 b 0.09±0.00a 0.09 ± 0.00 a 0.04±0.00c 0.04 ± 0.00 c 0.05±0.00ab 0.05 ± 0.00 ab 0.13±0.00a 0.13 ± 0.00 a 0.01±0.00bc 0.01 ± 0.00 bc Cell+VisCell + Vis 1.35±0.01c 1.35 + - 0.01 c 1.04±0.01c 1.04 + - 0.01 c 0.08±0.00b 0.08 ± 0.00 b 0.03±0.01cd 0.03 ± 0.01 cd 0.05±0.00ab 0.05 ± 0.00 ab 0.13±0.00a 0.13 ± 0.00 a 0.02±0.00bc 0.02 ± 0.00 bc Pec+VisPec + Vis 1.51±0.03a 1.51 + - 0.03 a 1.15±0.01a 1.15 + 0.01 a 0.08±0.00b 0.08 ± 0.00 b 0.08±0.01b 0.08 ± 0.01 b 0.05±0.00ab 0.05 ± 0.00 ab 0.12±0.01b 0.12 + 0.01 b 0.04±0.01a 0.04 + 0.01 a F-valueF-value 687.40***687.40 *** 635.55***635.55 *** 255.33***255.33 *** 163.25***163.25 *** 20.67***20.67 *** 395.67***395.67 *** 13.78*13.78 * WBWB Non-ENon-E D0.65±0.01 D 0.65 ± 0.01 D0.51±0.01 D 0.51 + - 0.01 D0.04±0.00 D 0.04 ± 0.00 C0.01±0.00 C 0.01 ± 0.00 B0.05±0.00b B 0.05 ± 0.00 b C0.05±0.00 C 0.05 ± 0.00 0.01±0.000.01 ± 0.00 CellCell C1.27±0.02 C 1.27 + 0.02 C0.98±0.00 C 0.98 ± 0.00 C0.08±0.00 C 0.08 ± 0.00 AB0.03±0.00 AB 0.03 ± 0.00 B0.05±0.00b B 0.05 ± 0.00 b B0.11±0.01 B 0.11 + - 0.01 0.02±0.000.02 ± 0.00 PecPec A1.53±0.05A1.53 ± 0.05 A1.22±0.03A1.22 + 0.03 B0.09±0.00B0.09 ± 0.00 B0.03±0.01B 0.03 0.01 A0.06±0.00aA0.06 ± 0.00a B0.11±0.00B0.11 ± 0.00 0.02±0.000.02 ± 0.00 VisVis B1.45±0.02 B 1.45 + 0.02 B1.13±0.02 B 1.13 + 0.02 B0.09±0.00 B 0.09 ± 0.00 A0.04±0.00 A 0.04 0.00 A0.06±0.00a A 0.06 ± 0.00a B0.10±.0.00 B 0.10. + -. 0.00 0.02±0.000.02 ± 0.00 Cell+VisCell + Vis A1.59±0.01 A 1.59 + - 0.01 A1.20±0.01 A 1.20 ± 0.01 A0.11±0.00 A 0.11 0.00 A0.04±0.00 A 0.04 0.00 A0.06±0.00a A 0.06 0.00 a A0.15±0.00 A 0.15 0.00 0.02±0.000.02 ± 0.00 Pec+VisPec + Vis A1.54±0.01 A 1.54 + - 0.01 A1.23±0.01 A 1.23 + - 0.01 B0.09±0.00 B 0.09 ± 0.00 A0.04±0.00 A 0.04 0.00 A0.06±0.00a A 0.06 0.00 a B0.11±0.00 B 0.11 ± 0.00 0.01±0.000.01 ± 0.00 F-valueF-value 555.20***555.20 *** 520.10***520.10 *** 162.75***162.75 *** 31.39***31.39 *** 13.83***13.83 *** 137.24***137.24 *** N.SN.S

(기호의 의미는 표 3과 동일)(The meanings of symbols are the same as those in Table 3)

(N.S: no significance)(N.S: no significance)

도 8 및 표 6과 같이 생강 추출물의 지표성분인 6-진저롤, 8-진저롤, 10-진저롤, 6-쇼가올, 8-쇼가올, 10-쇼가올의 함량을 합산하여 비교한 결과, 대조군은 0.57%로 나타났고, HP는 1.12~1.51%, WB는 0.65~1.59%의 범위로 나타났다. 이는 대조군에 비해 각각 2.0~2.6배, 1.1~2.8배씩 유의적(p<0.001)으로 증가한 것이다. HP는 Pec+Vis와 Pec 처리군이 각각 1.51, 1.47%로 가장 높았으며, WB는 Cell+Vis, Pec+Vis, Pec 처리군이 각각 1.59, 1.54, 1.53%로 가장 높게 나타났다. 생강의 대표적 지표성분인 6-진저롤의 함량은 CON이 0.45%로 나타났으며, HP는 0.35~1.18%, WB는 0.51~1.23%의 함량을 가진 것으로 나타나 대조군에 비해 각각 0.8~2.6배, 1.1~2.7배씩 유의적(p<0.001)으로 증가하여 지표성분의 총 합산 결과와 유사한 경향을 보였다. HP에서는 Pec, Pec+Vis 처리군이 각각 1.18, 1.15%로 가장 높았으며, WB는 Pec+Vis, Pec, Cell+Vis 처리군이 각각 1.23, 1.22, 1.20%로 가장 높았다. 이러한 결과는 고압효소 또는 효소단일처리를 이용하여 생강의 지표성분을 추출하기 위해서는 Pec과 Pec+Vis 효소를 사용하는 것이 효과적임을 제시한다.As shown in Fig. 8 and Table 6, when the contents of indices of 6-gingerol, 8-gingerol, 10-gingerol, 6-showol, 8-showol and 10- , 0.57% in the control group, 1.12 ~ 1.51% in HP and 0.65 ~ 1.59% in WB. This was significantly (p <0.001) increased by 2.0 ~ 2.6 times and 1.1 ~ 2.8 times, respectively, as compared with the control group. HP showed the highest Pec + Vis and Pec treatment groups at 1.51 and 1.47%, respectively. WB was highest at 1.59%, 1.54% and 1.53% in Cell + Vis, Pec + Vis and Pec treated groups, respectively. The content of 6-gingerol was 0.45% for CON, 0.35 ~ 1.18% for HP and 0.51 ~ 1.23% for WB. The content of ginger was 0.8 ~ 2.6 times and 1.1 ~ (P <0.001), which is similar to the total sum of the index components. In HP, Pec and Pec + Vis treatment groups were the highest with 1.18 and 1.15%, respectively, and WB treatment groups with Pec + Vis, Pec and Cell + Vis treatment were the highest with 1.23, 1.22 and 1.20%, respectively. These results suggest that it is effective to use Pec and Pec + Vis enzymes to extract the surface components of ginger using high pressure enzyme or enzyme single treatment.

상기로부터 생강 추출물의 수용화 특성, 유용성분 및 지표성분 함량 결과들을 종합하여 고압효소 또는 효소단일처리를 위한 최적의 효소로 수분용해지수와 지표성분 함량이 높게 나타난 Pec과 Pec+Vis 2종을 선택하였다.From the above, we synthesized the hydrolysis characteristics, useful components, and surface component contents of ginger extracts to select two Pec and Pec + Vis species with high water solubility index and surface content as the best enzymes for single enzyme treatment of high pressure enzymes or enzymes Respectively.

<< 실시예Example 3> 효소 처리 시간별 생강의 고압/효소처리 결과 비교 3> Comparison of high pressure / enzyme treatment results of ginger with respect to time of enzyme treatment

실시예Example 3-1. 생강의 고압/효소처리 3-1. High pressure / enzyme treatment of ginger

고압/효소처리에 있어 처리 시간에 따른 차이를 비교하였다. 기본적인 처리 방법은 실시예 2-1에 기재된 방법과 동일하며, 고압/효소처리 단계에 사용할 효소로는 실시예 2에서 수분용해지수와 지표성분 함량이 높게 나타나 최적 효소로 선택한 Pectinex Ultra SP-L(Pec)와 Pectinex Ultra SP-L과 Viscozyme L 혼합 효소(Pec+Vis) 2종을 선택하였다. 고압효소 처리 시간은 실시예 2-1과 달리 1, 2 및 3시간으로 다르게 하였으며, 비교를 위해 효소단일처리군(WB)도 같은 시간조건으로 효소 처리하였다. The differences in treatment time for high pressure / enzyme treatment were compared. The basic treatment method is the same as that described in Example 2-1, and the enzyme used in the high-pressure / enzyme treatment step showed high water solubility index and surface component content in Example 2, and Pectinex Ultra SP-L Pec), Pectinex Ultra SP-L and Viscozyme L mixed enzyme (Pec + Vis) were selected. The high pressure enzyme treatment time was different from 1, 2 and 3 hours in the case of Example 2-1. For comparison, the enzyme single treatment group (WB) was also treated with the same time condition.

실시예Example 3-2. 효소 종류별 처리시간에 따른 생강 추출물의  3-2. Ginger extracts according to treatment time by enzyme type 수용화Hydration 특성 비교 Feature comparison

상기 실시예 3-1에 따라 고압/효소처리된 생강 추출물의 수분용해지수(WSI), 수분흡착지수(WAI), 총당(TS) 함량 및 환원당(RS) 함량을 실시예 2-2에 기재된 방법으로 측정하여 비교하였다.The water solubility index (WSI), water absorption index (WAI), total sugar (TS) content and reducing sugar (RS) content of the ginger extract treated with high pressure / enzyme according to Example 3-1 were measured according to the method Were measured and compared.

처리process 효소enzyme 시간(h)Time (h) WSI(%)WSI (%) WAI(g/mL)WAI (g / mL) TS(%)TS (%) RS(%)RS (%) HPHP PecPec 1One 61.26±0.47b 61.26 ± 0.47 b 8.40±0.41a 8.40 + - 0.41 a 33.68±0.2933.68 ± 0.29 17.12±0.60b 17.12 + - 0.60 b 22 70.67±0.42a 70.67 + - 0.42 a 1.61±0.12c 1.61 + - 0.12 c 35.33±2.9935.33 + - 2.99 21.86±0.08a 21.86 ± 0.08 a 33 53.29±1.25c 53.29 ± 1.25 c 7.66±0.19b 7.66 ± 0.19 b 33.86±1.7433.86 ± 1.74 16.34±0.09c 16.34 ± 0.09 c F-valueF-value 347.32***347.32 *** 580.80***580.80 *** 0.61(N. S.)0.61 (N. S.) 216.50***216.50 *** Pec+VisPec + Vis 1One 58.38±0.23a 58.38 + - 0.23 a 7.90±0.15a 7.90 + - 0.15 a 23.07±1.44b 23.07 ± 1.44 b 16.75±0.54b 16.75 + - 0.54 b 22 59.66±0.41a 59.66 ± 0.41 a 2.16±0.07c 2.16 ± 0.07 c 39.23±1.96a 39.23 + 1.96 a 25.80±0.55a 25.80 ± 0.55 a 33 46.81±1.50b 46.81 ± 1.50 b 7.45±0.19b 7.45 ± 0.19 b 20.07±0.57c 20.07 ± 0.57 c 16.77±0.51b 16.77 ± 0.51 b F-valueF-value 183.53***183.53 *** 1431.86***1431.86 *** 153.07***153.07 *** 285.52***285.52 *** WBWB PecPec 1One 52.83±1.06b 52.83 ± 1.06 b 6.69±0.28b 6.69 ± 0.28 b 16.53±0.46c 16.53 + - 0.46 c 7.31±0.38c 7.31 + - 0.38 c 22 58.56±2.24a 58.56 ± 2.24 a 1.86±0.10c 1.86 ± 0.10 c 30.99±0.16a 30.99 + 0.16 a 21.23±0.01a 21.23 + - 0.01 a 33 41.51±0.43c 41.51 + - 0.43 c 7.48±0.52a 7.48 ± 0.52 a 21.28±1.36b 21.28 ± 1.36 b 16.27±1.12b 16.27 ± 1.12 b F-valueF-value 107.20***107.20 *** 228.04***228.04 *** 235.74***235.74 *** 321.30***321.30 *** Pec+VisPec + Vis 1One 42.39±1.86b 42.39 ± 1.86 b 7.20±0.23a 7.20 ± 0.23 a 13.29±1.04b 13.29 ± 1.04 b 7.80±0.67b 7.80 ± 0.67 b 22 60.52±1.17a 60.52 ± 1.17 a 1.91±0.10b 1.91 + - 0.10 b 21.33±0.24a 21.33 + - 0.24 a 19.67±0.00a 19.67 ± 0.00 a 33 36.34±0.56c 36.34 ± 0.56 c 7.64±1.21a 7.64 ± 1.21 a 22.42±1.55a 22.42 + 1.55 a 20.40±1.06a 20.40 ± 1.06 a F-valueF-value 276.17***276.17 *** 59.79***59.79 *** 63.27***63.27 *** 288.65***288.65 ***

(기호의 의미는 표 3과 동일)(The meanings of symbols are the same as those in Table 3)

도 9 내지 12 및 상기 표 7과 같이 수분용해지수(WSI)는 HP의 Pec와 Pec+Vis 효소 모두 2시간 처리군이 70.67, 59.66%을 나타내 유의적(p<0.001)으로 가장 높았으며, 각 시간별로 Pec 처리군이 Pec+Vis 처리군에 비하여 1.0~1.2배 정도 높게 나타났다. WB에서도 Pec과 Pec+Vis 효소 모두 2시간 처리군이 58.56%와 60.52%로 유의적(p<0.001)으로 높게 나타났으며, Pec+Vis 효소 2시간 처리군을 제외하고는 HP가 WB에 비하여 수분용해지수가 높은 것을 확인할 수 있었다. 수분흡착지수(WAI)는 HP의 Pec과 Pec+Vis 효소 모두 2시간 처리군이 1.61, 2.16%로 유의적(p<0.001)으로 가장 낮게 나타났으며, WB에서도 같은 경향을 나타내었다. 생강 추출물에서 침전물의 수분흡착지수가 높다는 것은 물리적인 고압처리나 효소처리에 의해서도 전분이나 다당류의 분해가 덜 일어나고 남아있다는 것을 의미하며, 이러한 결과는 수분용해지수와 역의 상관성을 갖는 것으로 나타났다. As shown in FIGS. 9 to 12 and Table 7, the water solubility index (WSI) of the HP treated Pec and Pec + Vis enzymes was 70.67% and 59.66%, respectively, which was the highest (p <0.001) The Pec treatment group was 1.0 ~ 1.2 times higher than the Pec + Vis treatment group. In WB, 58.56% and 60.52% of Pec and Pec + Vis enzymes were significantly higher (p <0.001) than those of 2 hours of Pec + Vis enzyme. It was confirmed that the water solubility index was high. The water adsorption index (WAI) was the lowest in HP treated Pec and Pec + Vis enzymes for 2 hours (1.61 and 2.16%, respectively) (p <0.001) and the same trend was observed in WB. The high water sorption index of the precipitates in the ginger extracts indicates that starch and polysaccharides are less decomposed and remained by physical high pressure treatment or enzyme treatment, and these results are inversely correlated with the water solubility index.

총당(TS)은 HP의 Pec+Vis와 WB의 Pec, Pec+Vis 효소에서는 2시간 처리군이 유의적(p<0.001)으로 높게 나타났으며, HP의 Pec 효소에서만 처리시간별 유의적 차이가 없는 것으로 나타났다. 전체적으로 HP의 Pec+Vis 효소 2시간 처리군의 총당이 39.23%로 가장 높게 나타났다.Total TS (TS) was significantly higher in HP treated Pec + Vis and WB treated Pec and Pec + Vis enzymes for two hours (p <0.001), and HP Pec enzyme showed no significant difference Respectively. Overall, the highest total HP of Pec + Vis enzyme treated group was 39.23%.

환원당(RS) 역시 HP의 Pec과 Pec+Vis 효소 모두 2시간 처리군이 21.86, 25.80%을 나타내어 유의적(p<0.001)으로 가장 높게 나타났으며, WB에서도 같은 경향을 나타냈다. Reduced sugar (RS) also showed significant (p <0.001) as HP and PEC + Vis enzymes showed 21.86 and 25.80% for 2 hours, respectively.

실시예Example 3-3. 효소 종류별 처리시간에 따른 생강 추출물의 유용성분 비교 3-3. Comparison of useful components of ginger extract according to treatment time by enzyme type

상기 실시예 3-1에 따른 고압/효소처리된 생강 추출물의 총 폴리페놀(TP) 함량 및 총 플라보노이드(TF) 함량을 실시예 2-3에 기재된 방법으로 측정하여 비교하였다.The total polyphenol (TP) content and total flavonoid (TF) content of the high pressure / enzyme treated ginger extract according to Example 3-1 were measured and compared by the method described in Example 2-3.

처리process 효소enzyme 시간(h)Time (h) TP(%)TP (%) TF(g/mL)TF (g / mL) HPHP PecPec 1One 2.05±0.01b 2.05 ± 0.01 b 0.64±0.00c 0.64 ± 0.00 c 22 2.55±0.00a 2.55 ± 0.00 a 0.73±0.01a 0.73 + 0.01 a 33 2.12±0.09b 2.12 + 0.09 b 0.67±0.00b 0.67 ± 0.00 b F-valueF-value 75.76***75.76 *** 523.00***523.00 *** Pec+VisPec + Vis 1One 1.94±0.04b 1.94 + 0.04 b 0.62±0.01c 0.62 ± 0.01 c 22 2.18±0.02a 2.18 ± 0.02 a 0.70±0.00a 0.70 ± 0.00 a 33 2.10±0.07a 2.10 0.07 a 0.68±0.00b 0.68 ± 0.00 b F-valueF-value 16.79**16.79 ** 262.50***262.50 *** WBWB PecPec 1One 1.67±0.10c 1.67 + - 0.10 c 0.61±0.00c 0.61 ± 0.00 c 22 2.37±0.05a 2.37 ± 0.05 a 0.68±0.00a 0.68 ± 0.00 a 33 1.96±0.02b 1.96 + 0.02 b 0.66±0.00b 0.66 ± 0.00 b F-valueF-value 90.31***90.31 *** 117.00***117.00 *** Pec+VisPec + Vis 1One 1.58±0.11c 1.58 ± 0.11 c 0.60±0.00c 0.60 ± 0.00 c 22 2.12±0.01a 2.12 ± 0.01 a 0.67±0.00a 0.67 ± 0.00 a 33 1.77±0.02b 1.77 ± 0.02 b 0.64±0.01b 0.64 + 0.01 b F-valueF-value 58.89***58.89 *** 152.00***152.00 ***

(기호의 의미는 표 3과 동일)(The meanings of symbols are the same as those in Table 3)

도 13, 도 14 및 상기 표 8과 같이 총 폴리페놀과 총 플라보노이드 함량은 HP와 WB의 모든 효소처리에서 2시간 처리군이 유의적(p<0.001)으로 가장 높게 나타났으며, HP의 Pec 효소처리군이 각각 2.55%, 0.73%로 가장 높게 나타났다.The total polyphenol and total flavonoid contents of HP and WB were the highest (p <0.001) in the 2 hour treatment group as shown in FIGS. 13, 14 and Table 8, and the HP Pec enzyme And 2.55% and 0.73%, respectively.

실시예Example 3-4. 효소 종류별 생강 추출물의 지표성분 비교 3-4. Comparison of Indicative Components of Ginger Extracts by Enzyme Type

상기 실시예 3-1에 따른 고압/효소처리된 생강 추출물의 진저롤 및 쇼가올 함량을 실시예 2-4에 기재된 방법으로 측정하여 비교하였다.The content of gingerol and showol of the high pressure / enzyme treated ginger extract according to Example 3-1 was measured and compared by the method described in Example 2-4.

처리process 효소enzyme 시간(h)Time (h) Total
(%)
Total
(%)
6-G
(%)
6-G
(%)
8-G
(%)
8-G
(%)
10-G
(%)
10-G
(%)
6-S
(%)
6-S
(%)
8-S
(%)
8-S
(%)
10-S
(%)
10-S
(%)
HPHP PecPec 1One 1.41±0.02b 1.41 ± 0.02 b 1.12±0.01b 1.12 ± 0.01 b 0.08±0.00c 0.08 ± 0.00 c 0.02±0.00c 0.02 ± 0.00 c 0.02±0.000.02 ± 0.00 0.09±0.00c 0.09 ± 0.00 c 0.08±0.01a 0.08 ± 0.01 a 22 1.47±0.01a 1.47 ± 0.01 a 1.18±0.01a 1.18 ± 0.01 a 0.08±0.00b 0.08 ± 0.00 b 0.06±0.00a 0.06 ± 0.00 a 0.03±0.000.03 ± 0.00 0.11±0.00a 0.11 ± 0.00 a 0.02±0.00b 0.02 0.00 b 33 1.46±0.01a 1.46 + 0.01 a 1.19±0.01a 1.19 + 0.01 a 0.09±0.00a 0.09 ± 0.00 a 0.04±0.00b 0.04 ± 0.00 b 0.03±0.000.03 ± 0.00 0.10±0.00b 0.10 ± 0.00 b 0.02±0.00b 0.02 0.00 b F-valueF-value 16.75**16.75 ** 51.87***51.87 *** 19.00**19.00 ** 37.50***37.50 *** N.SN.S 37.00***37.00 *** 108.00***108.00 *** Pec+VisPec + Vis 1One 1.20±0.01c 1.20 ± 0.01 c 0.94±0.01b 0.94 + - 0.01 b 0.08±0.00b 0.08 ± 0.00 b 0.03±0.000.03 ± 0.00 0.03±0.00b 0.03 ± 0.00 b 0.11±0.00c 0.11 ± 0.00 c 0.01±0.00c 0.01 ± 0.00 c 22 1.51±0.03a 1.51 + - 0.03 a 1.15±0.01b 1.15 ± 0.01 b 0.08±0.00a 0.08 ± 0.00 a 0.06±0.000.06 ± 0.00 0.07±0.01a 0.07 ± 0.01 a 0.12±0.01b 0.12 + 0.01 b 0.04±0.01a 0.04 + 0.01 a 33 1.47±0.02b 1.47 ± 0.02 b 1.16±0.01a 1.16 + 0.01 a 0.09±0.00b 0.09 ± 0.00 b 0.04±0.000.04 ± 0.00 0.03±0.00b 0.03 ± 0.00 b 0.13±0.00a 0.13 ± 0.00 a 0.02±0.00b 0.02 0.00 b F-valueF-value 196.78***196.78 *** 672.17***672.17 *** 25.00***25.00 *** N.SN.S 48.00***48.00 *** 28.00***28.00 *** 37.00***37.00 *** WBWB PecPec 1One 1.08±0.01c 1.08 + - 0.01 c 0.88±0.01c 0.88 0.01 c 0.07±0.000.07 ± 0.00 0.02±0.000.02 ± 0.00 0.03±0.00b 0.03 ± 0.00 b 0.07±0.00c 0.07 ± 0.00 c 0.01±0.000.01 ± 0.00 22 1.53±0.05a 1.53 + 0.05 a 1.22±0.03a 1.22 + 0.03 a 0.09±0.000.09 ± 0.00 0.03±0.010.03 ± 0.01 0.06±0.00a 0.06 ± 0.00 a 0.11±0.00b 0.11 0.00 b 0.02±0.000.02 ± 0.00 33 1.35±0.01b 1.35 + 0.01 b 1.07±0.01b 1.07 ± 0.01 b 0.09±0.000.09 ± 0.00 0.03±0.000.03 ± 0.00 0.03±0.00b 0.03 ± 0.00 b 0.12±0.00a 0.12 ± 0.00 a 0.01±0.000.01 ± 0.00 F-valueF-value 148.51***148.51 *** 156.56***156.56 *** N.SN.S N.SN.S 91.00***91.00 *** 181.00***181.00 *** N.SN.S Pec+VisPec + Vis 1One 0.89±0.00c 0.89 ± 0.00 c 0.72±0.00c 0.72 ± 0.00 c 0.06±0.00b 0.06 ± 0.00 b 0.02±0.000.02 ± 0.00 0.02±0.000.02 ± 0.00 0.06±0.00c 0.06 ± 0.00 c 0.01±0.00b 0.01 ± 0.00 b 22 1.54±0.01a 1.54 + 0.01 a 1.23±0.01a 1.23 + 0.01 a 0.09±0.00a 0.09 ± 0.00 a 0.04±0.000.04 ± 0.00 0.06±0.000.06 ± 0.00 0.11±0.00b 0.11 0.00 b 0.01±0.00b 0.01 ± 0.00 b 33 1.37±0.01b 1.37 + 0.01 b 0.99±0.01b 0.99 ± 0.01 b 0.10±0.00a 0.10 0.00 a 0.04±0.000.04 ± 0.00 0.04±0.000.04 ± 0.00 0.17±0.00a 0.17 ± 0.00 a 0.02±0.00a 0.02 ± 0.00 a F-valueF-value 7794.25***7794.25 *** 8682.00***8682.00 *** 133.00***133.00 *** N.SN.S N.SN.S 871.00***871.00 *** 7.00*7.00 *

(기호의 의미는 표 3과 동일)(The meanings of symbols are the same as those in Table 3)

도 15 및 상기 표 9와 같이 고압/효소처리군(HP)와 효소단일처리군(WB)의 모든 효소처리에서 2시간 처리군이 유의적(p<0.01)으로 가장 높게 나타났으며, HP에 비하여 WB가 더 높게 나타났다. 이는 실시예 2-4의 결과와 유사한 경향으로 처리시간별로 처리에 따른 효과에 있어서 생강의 지표성분 추출을 위해서는 고압/효소처리 보다 효소단일처리가 더 효과적인 것으로 나타났다. 지표성분들의 총합은 WB의 Pec, Pec+Vis 효소 2시간 처리구가 1.53 및 1.54%로 가장 높게 나타났으며, 6-진저롤 역시 1.22 및 1.23%로 가장 높았다. 상기 결과로부터 효소 처리 시간별 생강 추출물의 수분용해지수와 유용성분, 지표성분 함량의 결과를 토대로 고압효소 또는 효소단일처리를 위한 최적의 효소로 Pec 1종을 최종 결정하였으며, 처리시간은 2시간으로 선택하였다. As shown in FIG. 15 and Table 9, the enzyme treatment group (HP) and enzyme single treatment group (WB) showed the highest (p <0.01) WB was higher than that of WB. This is similar to the result of Example 2-4, and in the effect of the treatment according to the treatment time, the enzyme single treatment was more effective than the high pressure / enzyme treatment for extracting the ginger surface marker. The total content of total components of the WB was highest at 1.53 and 1.54% for Pec and Pec + Vis enzyme for 2 hours, respectively, and 6 - gingerol was the highest at 1.22 and 1.23%. From the above results, Pec 1 species was determined as the optimum enzyme for the high pressure enzyme or enzyme single treatment based on the water solubility index, the content of useful components, and the content of surface components of the ginger extract by the time of enzyme treatment. Respectively.

<< 실시예Example 4> 효소 처리 온도별 생강의 고압/효소처리 결과 비교 4> Comparison of high pressure / enzyme treatment results of ginger by enzyme treatment temperature

실시예Example 4-1. 생강의 고압/효소처리 4-1. High pressure / enzyme treatment of ginger

생강 추출물의 제조에 있어 고압/효소처리의 처리 온도에 따른 차이를 비교하였다. 기본적인 처리 방법은 실시예 2-1에 기재된 방법과 동일하며, 고압효소 처리단계에 사용되는 효소는 실시예 3의 결과에 기반하여 Pectinex Ultra SP-L(Pec)를 사용하였으며, 고압효소 처리 시간은 2시간으로 하였다. 온도 선정을 위한 고압/효소처리는 각각 45, 50 및 55℃ 조건으로 진행하였으며, 고압효소 처리군(HP)과의 대조를 위해 효소단일처리군(WB)도 같은 조건으로 처리하였다. The differences in processing temperature of high pressure / enzyme treatment in ginger extract preparation were compared. Pectinex Ultra SP-L (Pec) was used for the enzyme used in the high-pressure enzyme treatment step based on the result of Example 3. The high-pressure enzyme treatment time was the same as that described in Example 2-1, 2 hours. The high pressure / enzyme treatment for temperature selection proceeded at 45, 50 and 55 ℃, respectively. For the comparison with the high pressure enzyme treatment group (HP), the enzyme single treatment group (WB) was also treated under the same conditions.

실시예Example 4-2. 효소 종류별 생강 추출물의  4-2. Ginger extract by enzyme type 수용화Hydration 특성 비교 Feature comparison

상기 실시예 4-1에 따른 고압/효소처리된 생강 추출물의 수분용해지수(WSI), 수분흡착지수(WAI), 총당(TS) 함량 및 환원당(RS) 함량을 실시예 2-2에 개시된 방법으로 측정하여 비교하였다. The water solubility index (WSI), water absorption index (WAI), total sugar (TS) content and reducing sugar (RS) content of the high pressure / enzyme treated ginger extract according to Example 4-1 were measured according to the method Were measured and compared.

처리process 온도(℃)Temperature (℃) WSI(%)WSI (%) WAI(g/mL)WAI (g / mL) TS(%)TS (%) RS(%)RS (%) HPHP 4545 63.74±1.12b 63.74 ± 1.12 b 8.26±0.99a 8.26 ± 0.99 a 27.35±1.22b 27.35 ± 1.22 b 19.61±0.61b 19.61 + - 0.61 b 5050 70.67±0.42a 70.67 + - 0.42 a 1.61±0.12b 1.61 + - 0.12 b 35.33±2.99a 35.33 ± 2.99 a 21.86±0.08a 21.86 ± 0.08 a 5555 63.90±0.79b 63.90 ± 0.79 b 7.54±0.61a 7.54 ± 0.61 a 27.35±0.53b 27.35 + - 0.53 b 20.46±1.25ab 20.46 ± 1.25 ab F-valueF-value 64.41***64.41 *** 88.71***88.71 *** 17.87**17.87 ** 5.94*5.94 * WBWB 4545 63.84±0.60a 63.84 + 0.60 a 8.10±0.98a 8.10 ± 0.98 a 24.47±1.93b 24.47 ± 1.93 b 20.74±0.2320.74 ± 0.23 5050 58.56±2.24b 58.56 ± 2.24 b 1.86±0.10b 1.86 ± 0.10 b 30.99±0.16a 30.99 + 0.16 a 21.23±0.0121.23 + - 0.01 5555 55.08±1.85c 55.08 ± 1.85 c 7.53±0.23a 7.53 + - 0.23 a 24.62±1.27b 24.62 ± 1.27 b 21.60±0.6221.60 ± 0.62 F-valueF-value 19.94**19.94 ** 103.44***103.44 *** 23.25**23.25 ** 3.76 (N.S)3.76 (N.S)

(기호의 의미는 표 3과 동일)(The meanings of symbols are the same as those in Table 3)

도 16 및 상기 표 10과 같이 수분용해지수(WSI)는 HP의 50℃ 온도 처리군이 70.67%로 유의적(p<0.001)으로 가장 높게 나타났으며, WB에서는 45℃ 온도 처리군이 63.84%로 가장 높았다. 45℃ 온도 처리군을 제외하고 HP가 WB보다 1.0 내지 1.2배 정도 높게 나타났다. 수분흡수지수(WAI)는 HP와 WB의 50℃ 온도 처리군이 각각 1.61 및 1.86 g/mL으로 다른 온도 처리군에 비하여 유의적(p<0.001)으로 가장 낮게 나타나 생강 세포벽의 고분자 다당류들이 더 많이 수용화 된 것으로 나타났다.As shown in FIG. 16 and Table 10, the water solubility index (WSI) was the highest (70.67%, p <0.001) in the HP treated group at 50 ° C and 63.84% Respectively. Except for the temperature treated group at 45 ° C, HP was 1.0 to 1.2 times higher than WB. The water absorption index (WAI) of HP and WB was 1.61 and 1.86 g / mL, respectively, which were significantly lower than those of other temperature treatment groups (p <0.001) Respectively.

총당(TS)은 수분흡착지수와 마찬가지로 HP와 WB의 50℃ 온도 처리군 각각이 유의적(p<0.01)으로 가장 높은 35.33 및 30.99%로 나타났다. Total TS (TS) was the highest (35.33% and 30.99%, respectively) (p <0.01) in HP and WB treated groups at 50 ℃.

환원당(RS)은 HP의 50℃ 와 55℃ 온도 처리군이 각각 21.86, 20.46%으로 유의적(p<0.05)으로 가장 높게 나타났으며, WB에서는 처리 온도에 따른 유의적인 차이가 나타나지 않았다. Reduced sugar (RS) was the highest (21.86, 20.46%) at 50 ℃ and 55 ℃ temperature of HP, respectively, and the WB showed no significant difference according to treatment temperature.

실시예Example 4-3. 효소 종류별 생강 추출물의 유용성분 비교 4-3. Comparison of useful components of ginger extracts by enzyme type

상기 실시예 4-1에 따른 고압/효소처리된 생강 추출물의 총 폴리페놀 함량 및 총 플라보노이드 함량을 실시예 2-3에 개시된 방법으로 측정하여 비교하였다.The total polyphenol content and total flavonoid content of the high pressure / enzyme treated ginger extracts according to Example 4-1 were measured and compared by the method described in Example 2-3.

처리process 온도(℃)Temperature (℃) TP(%)TP (%) TF(%)TF (%) HPHP 4545 2.24±0.11b 2.24 ± 0.11 b 0.33±0.00c 0.33 ± 0.00 c 5050 2.55±0.00a 2.55 ± 0.00 a 0.73±0.01a 0.73 + 0.01 a 5555 2.41±0.10ab 2.41 ± 0.10 ab 0.39±0.01b 0.39 + 0.01 b F-valueF-value 9.13*9.13 * 1347.11***1347.11 *** WBWB 4545 2.18±0.06b 2.18 ± 0.06 b 0.41±0.07b 0.41 + 0.07 b 5050 2.37±0.05a 2.37 ± 0.05 a 0.68±0.00a 0.68 ± 0.00 a 5555 2.36±0.08a 2.36 + 0.08 a 0.44±0.02b 0.44 + 0.02 b F-valueF-value 8.86*8.86 * 36.10***36.10 ***

(기호의 의미는 표 3과 동일)(The meanings of symbols are the same as those in Table 3)

도 17 및 상기 표 11과 같이 총 폴리페놀(TP)의 함량은 HP와 WB 모두 50℃ 및 55℃ 온도 처리군이 유의적(p<0.05)으로 가장 높게 나타났으며, 두 처리군 간에는 유의적인 차이가 나타나지 않았다. HP는 50℃ 온도 처리구가 2.41%, WB는 2.37%를 나타내었으며 HP가 WB 보다 1.0~1.1배 높게 나타났다.As shown in FIG. 17 and Table 11, the content of total polyphenols (TP) was the highest at 50 ° C and 55 ° C in HP and WB, respectively (p <0.05) There was no difference. HP showed 2.41% at 50 ℃ and 2.37% at WB, and HP was 1.0 ~ 1.1 times higher than WB.

또한 총 플라보노이드(TF)는 HP와 WB 모두 50℃ 온도 처리군이 각각 0.73%와 0.68%로 나타나 유의적(p<0.001)으로 가장 높았으며, HP의 경우 다른 온도 처리군에 비하여 1.9~2.2배 정도로 월등히 높은 함량을 나타내었다. WB의 45℃ 및 55℃ 온도 처리군은 HP의 같은 온도 처리군들보다 함량이 높게 나타나 다른 성분 변화와는 다른 경향을 나타내었다. The total flavonoids (TF) were 0.73% and 0.68% at 50 ℃ in HP and WB, respectively. The highest (T <0.001) , Respectively. WB at 45 ℃ and 55 ℃ showed higher contents than those of the same temperature treatment groups of HP.

실시예Example 4-4. 효소 종류별 생강 추출물의 지표성분 비교 4-4. Comparison of Indicative Components of Ginger Extracts by Enzyme Type

상기 실시예 4-1에 따른 고압/효소처리된 생강 추출물의 진저롤 및 쇼가올 함량을 실시예 2-4에 개시된 방법으로 비교하였다.The gingerol and showol contents of the high pressure / enzyme treated ginger extract according to Example 4-1 were compared by the method described in Example 2-4.

처리process 온도(℃)Temperature (℃) Total(%)Total (%) 6-G(%)6-G (%) 8-G(%)8-G (%) 10-G(%)10-G (%) 6-S(%)6-S (%) 8-S(%)8-S (%) 10-S(%)10-S (%) HPHP 4545 1.09±0.02b 1.09 0.02 b 0.89±0.02b0.89 + 0.02b 0.07±0.01b0.07 ± 0.01 b 0.06±0.02b0.06 + 0.02b 0.03±0.00b0.03 ± 0.00b 0.01±0.00b0.01 ± 0.00b 0.02±0.000.02 ± 0.00 5050 1.47±0.01a1.47 + 0.01a 1.18±0.01a1.18 ± 0.01a 0.08±0.00a0.08 ± 0.00a 0.06±0.00a0.06 ± 0.00a 0.03±0.00a0.03 ± 0.00a 0.11±0.00a0.11 ± 0.00a 0.02±0.000.02 ± 0.00 5555 0.98±0.06c0.98 + 0.06c 0.82±0.05c0.82 ± 0.05 c 0.06±0.00c0.06 ± 0.00c 0.06±0.00a0.06 ± 0.00a 0.02±0.00b0.02 ± 0.00b 0.01±0.00b0.01 ± 0.00b 0.02±0.000.02 ± 0.00 F-valueF-value 99.26***99.26 *** 100.50***100.50 *** 28.00**28.00 ** 9.88*9.88 * 33.50**33.50 ** 961.00***961.00 *** 1.00N.D1.00 N.D WBWB 4545 0.98±0.07b0.98 + 0.07b 0.81±0.06b0.81 + 0.06b 0.06±0.00b0.06 ± 0.00b 0.06±0.00a0.06 ± 0.00a 0.03±0.00c0.03 ± 0.00c 0.01±0.00b0.01 ± 0.00b 0.02±0.000.02 ± 0.00 5050 1.53±0.05a1.53 ± 0.05a 1.22±0.03a1.22 ± 0.03a 0.09±0.00a0.09 ± 0.00a 0.03±0.01b0.03 ± 0.01 b 0.06±0.00a0.06 ± 0.00a 0.11±0.00a0.11 ± 0.00a 0.02±0.000.02 ± 0.00 5555 1.01±0.02b1.01 0.02b 0.80±0.02b0.80 + 0.02b 0.07±0.01b0.07 ± 0.01 b 0.08±0.02a0.08 0.02a 0.03±0.00b0.03 ± 0.00b 0.01±0.00b0.01 ± 0.00b 0.03±0.000.03 ± 0.00 F-valueF-value 107.89***107.89 *** 90.27***90.27 *** 21.00**21.00 ** 13.12**13.12 ** 418.50***418.50 *** 17.07**17.07 ** 3.50N.D3.50 N.D

(기호의 의미는 표 3과 동일)(The meanings of symbols are the same as those in Table 3)

도 18 및 상기 표 12와 같이 HP와 WB의 50℃ 온도 처리군이 유의적(p<0.001)으로 가장 높게 나타났으며, 지표성분의 총합 및 6-진저롤의 함량에 있어 HP는 각각 1.47% 및 1.18% WB는 각각 1.53% 및 1.22%를 나타내었으며, 50℃와 55℃ 온도 처리군 모두 HP에 비하여 WB가 더 높게 나타났다. 이는 실시예 2의 효소종류별 생강추출물의 비교 및 실시예 3의 처리시간별 생강추출물의 비교 결과와도 유사한 것이다. As shown in FIG. 18 and Table 12, HP and WB treatment groups showed the highest (p <0.001) as the treatment group at 50 ° C, and HP and HP were 1.47% 1.18% WB were 1.53% and 1.22%, respectively, and WB was higher than HP at both 50 ℃ and 55 ℃ treatment groups. This is also similar to the comparison of ginger extracts by enzyme type in Example 2 and the comparison of ginger extracts by treatment time in Example 3.

<< 실시예Example 5> 효소 처리 압력별 생강의 고압/효소처리 결과 비교 5> Comparison of high pressure / enzyme treatment results of ginger by enzyme treatment pressure

실시예Example 5-1. 생강의 고압/효소처리 5-1. High pressure / enzyme treatment of ginger

고압/효소처리에 있어 처리 압력에 따른 차이를 비교하기 위해 고압/효소처리시 생강 추출물의 차이를 비교하였다. 기본적인 처리 방법은 실시예 2-1에 기재된 방법과 동일하며, 고압효소 처리단계에 사용되는 효소는 실시예 3의 전체 결과에 기초하여 Pectinex Ultra SP-L(Pec)를 사용하였으며, 고압효소 처리 시간과 온도는 실시예 3 및 4의 전체 결과를 참조하여 2시간, 50℃로 하였다. 고압효소 처리 압력은 실시예 2-1과 달리 50, 70 및 100MPa로 다르게 하였다. In order to compare the differences in treatment pressure in high pressure / enzyme treatment, differences in ginger extracts were compared between high pressure / enzyme treatment. Pectinex Ultra SP-L (Pec) was used for the enzyme used in the high pressure enzyme treatment step based on the overall result of Example 3, and the high pressure enzyme treatment time And the temperature were set at 50 캜 for 2 hours with reference to the overall results of Examples 3 and 4. Unlike Example 2-1, the pressure of the high-pressure enzyme treatment was changed to 50, 70 and 100 MPa.

실시예Example 5-2. 효소 종류별 생강 추출물의  5-2. Ginger extract by enzyme type 수용화Hydration 특성 비교 Feature comparison

상기 실시예 5-1에 따른 고압/효소처리된 생강 추출물의 수분용해지수(Water solubility index : WSI), 수분흡착지수(Water absorption index : WAI), 총당(Total sugar; TS) 함량 및 환원당(Reducing sugar; RS) 함량을 실시예 2-2에 개시된 방법으로 측정하여 비교하였다. The water solubility index (WSI), water absorption index (WAI), total sugar (TS) content and reducing sugar (Reducing) of the ginger extract treated with high pressure / sugar; RS) content was measured and compared by the method described in Example 2-2.

처리process 압력(MPa)Pressure (MPa) WSI(%)WSI (%) WAI(g/mL)WAI (g / mL) TS(%)TS (%) RS(%)RS (%) HPHP 5050 62.52±0.67b 62.52 + - 0.67 b 4.47±0.10c 4.47 + - 0.10 c 30.03±0.41b 30.03 + - 0.41 b 19.30±0.34c 19.30 ± 0.34 c 7070 63.21±1.29b 63.21 + - 1.29 b 3.59±0.07b 3.59 + 0.07 b 35.99±0.25a 35.99 + - 0.25 a 20.89±0.10b 20.89 ± 0.10 b 100100 70.67±0.42a 70.67 + - 0.42 a 1.61±0.12a 1.61 + - 0.12 a 35.33±2.99a 35.33 ± 2.99 a 21.86±0.08a 21.86 ± 0.08 a F-valueF-value 80.74***80.74 *** 645.52***645.52 *** 10.50*10.50 * 114.28***114.28 ***

(기호의 의미는 표 3과 동일)(The meanings of symbols are the same as those in Table 3)

도 19 및 상기 표 13과 같이 처리압력별 생강 추출물의 수용화 특성은 압력이 높아질수록 수분용해지수(WSI), 총당(TS), 환원당(RS)의 함량은 유의적(p<0.05)으로 높아졌으며, 수분흡착지수(WAI)는 유의적(p<0.001)으로 낮아지는 결과를 보여 고압/효소처리시 100MPa 압력 조건이 생강 세포벽 성분 다당류들의 수용화율이 가장 높은 것으로 나타났다. As shown in FIG. 19 and Table 13, the water solubility characteristics of ginger extracts according to the treatment pressures were significantly (p <0.05) higher as the pressure increased, the water solubility index (WSI), total sugar (TS) and reducing sugar (WAI) was significantly lowered (p <0.001). At 100 MPa under high pressure / enzyme treatment, the polysaccharide content of ginger cell wall component was the highest.

실시예Example 5-3. 효소 종류별 생강 추출물의 유용성분 비교 5-3. Comparison of useful components of ginger extracts by enzyme type

상기 실시예 5-1에 따른 고압/효소처리된 생강 추출물의 총 폴리페놀 함량 및 총 플라보노이드 함량을 실시예 2-3에 개시된 방법으로 비교하였다.The total polyphenol content and total flavonoid content of the high pressure / enzyme treated ginger extract according to Example 5-1 were compared by the method described in Example 2-3.

처리process 압력(MPa)Pressure (MPa) TP(%)TP (%) TF(%)TF (%) HPHP 5050 2.45±0.01b 2.45 ± 0.01 b 0.39±0.00c 0.39 ± 0.00 c 7070 2.51±0.04a 2.51 + 0.04 a 0.41±0.01b 0.41 + 0.01 b 100100 2.55±0.00a 2.55 ± 0.00 a 0.73±0.01a 0.73 + 0.01 a F-valueF-value 11.26**11.26 ** 1572.67***1572.67 ***

(기호의 의미는 표 3과 동일)(The meanings of symbols are the same as those in Table 3)

도 20 및 상기 표 14와 같이 총 폴리페놀 함량(TP)은 70 및 100MPa 압력 처리구가 각각 2.51 및 2.55%로 유의적으로 가장 높게 나타났으며, 두 처리구 간에는 유의적인 차이가 없었다. 총 플라보노이드 함량은 100MPa 압력 처리구가 0.73%로 다른 압력 처리구에 비하여 1.8배 이상 높은 결과를 나타내었다. As shown in FIG. 20 and Table 14, the total polyphenol content (TP) of 70 and 100 MPa pressure treatments was the highest at 2.51 and 2.55%, respectively, and there was no significant difference between the two treatments. The total flavonoid content was 0.73% at 100 MPa pressure treatment and 1.8 times higher than other pressure treatment.

실시예Example 5-4. 효소 종류별 생강 추출물의 지표성분 비교 5-4. Comparison of Indicative Components of Ginger Extracts by Enzyme Type

상기 실시예 5-1에 따른 고압/효소처리된 생강 추출물의 진저롤 및 쇼가올 함량을 실시예 2-4에 개시된 방법으로 비교하였다.The gingerol and showol contents of the high pressure / enzyme treated ginger extract according to Example 5-1 were compared by the method described in Example 2-4.

처리process 압력(MPa)Pressure (MPa) Total(%)Total (%) 6-G(%)6-G (%) 8-G(%)8-G (%) 10-G(%)10-G (%) 6-S(%)6-S (%) v8-S(%)v8-S (%) 10-S(%)10-S (%) HPHP 5050 0.79±0.03c 0.79 + 0.03 c 0.67±0.02b 0.67 + 0.02 b 0.05±0.00c 0.05 ± 0.00 c 0.05±0.01c 0.05 ± 0.01 c 0.01±0.00c 0.01 ± 0.00 c 0.00±0.00b 0.00 ± 0.00 b 0.01±0.000.01 ± 0.00 7070 0.85±0.03b 0.85 + 0.03 b 0.72±0.02b 0.72 + 0.02 b 0.06±0.00b 0.06 ± 0.00 b 0.05±0.01b 0.05 ± 0.01 b 0.01±0.00b 0.01 ± 0.00 b 0.00±0.00b 0.00 ± 0.00 b 0.01±0.000.01 ± 0.00 100100 1.47±0.01a 1.47 ± 0.01 a 1.18±0.01a 1.18 ± 0.01 a 0.08±0.00a 0.08 ± 0.00 a 0.06±0.00a 0.06 ± 0.00 a 0.03±0.00a 0.03 ± 0.00 a 0.01±0.00a 0.01 ± 0.00 a 0.02±0.000.02 ± 0.00 F-valueF-value 1487.82***1487.82 *** 52595.31***52595.31 *** 110.27***110.27 *** 1222.85***1222.85 *** 56565.05***56565.05 *** 2305.06***2305.06 *** N.DN.D.

(기호의 의미는 표 3과 동일)(The meanings of symbols are the same as those in Table 3)

도 21 및 상기 표 15와 같이 처리압력별 생강 추출물의 지표성분 함량은 압력이 높아질수록 10-쇼가올을 제외하고 유의적(p<0.001)으로 높아졌으며, 압력별로 6-gingerol의 함량은 각각 0.67, 0.72, 1.18%로 나타났다. 생강 추출물의 수용화 특성, 유용성분 함량 결과에서 100MPa 압력 조건이 가장 우수한 것으로 나타나 고압/효소처리를 위한 최적조건은 100MPa에서 2시간동안 50℃로 처리하는 것임을 확인하였다.As shown in FIG. 21 and Table 15, the ginger extract content of the ginger extract was significantly increased (p <0.001) except for 10-showol as the pressure increased, and the content of 6-gingerol 0.67, 0.72, and 1.18%, respectively. The optimum conditions for high pressure / enzyme treatment were 50 ℃ for 2 hours at 100 MPa.

Claims (11)

1) 고압하에서 생강에 세포벽 분해 효소를 처리하는 단계;
2) 상기 단계 1)의 세포벽 분해효소가 처리된 생강에 전분 분해효소를 처리하는 단계; 및
3) 상기 단계 2)의 전분 분해효소가 처리된 생강으로부터 추출물을 수득하는 단계를 포함하는 생강 추출물의 제조 방법.
1) treating ginger with cell wall degrading enzyme under high pressure;
2) treating the ginger treated with the cell wall degrading enzyme of step 1) with starch hydrolyzing enzyme; And
3) obtaining an extract from the ginger treated with the starch hydrolyzing enzyme of step 2).
제 1항에 있어서, 상기 고압은 70 내지 200MPa인, 생강 추출물의 제조 방법.
The method for producing ginger extract according to claim 1, wherein the high pressure is 70 to 200 MPa.
제 1항에 있어서, 상기 세포벽 분해 효소는 45 내지 55℃에서 1 내지 3시간 동안 처리되는 것인, 생강 추출물의 제조 방법.
2. The method according to claim 1, wherein the cell wall degrading enzyme is treated at 45 to 55 DEG C for 1 to 3 hours.
제 1항에 있어서, 상기 세포벽 분해효소는 생강의 0.5 내지 1.5% (w/w) 농도로 첨가하는 것인, 생강 추출물의 제조 방법.
The method according to claim 1, wherein the cell wall degrading enzyme is added at a concentration of 0.5 to 1.5% (w / w) of ginger.
제 1항에 있어서, 상기 세포벽 분해효소는 셀룰라아제(cellulase), 폴리갈락투로나아제(polygalacturonase; pectinase), 헤미셀룰라아제(hemicellulase), 아라비나아제(arabinase), 자일라나아제(xylanase), β-글루카나아제(β-glucanase) 및 α-아밀라아제(α-amylase)로 구성된 군에서 선택된 하나 이상인, 생강 추출물의 제조 방법.
The cell wall degrading enzyme according to claim 1, wherein the cell wall degrading enzyme is selected from the group consisting of cellulase, polygalacturonase (pectinase), hemicellulase, arabinase, xylanase, Wherein the extract is at least one selected from the group consisting of glucanase and? -Amylase.
제 1항에 있어서, 상기 단계 1) 이후에 세포벽 분해 효소의 불활성화 및 냉각 단계를 추가로 포함하는, 생강 추출물의 제조 방법.
The method of claim 1, further comprising the step of inactivating and cooling the cell wall degrading enzyme after step 1).
제 1항에 있어서, 상기 전분 분해효소는 80 내지 105℃에서 0.5 내지 2시간 동안 처리되는 것인, 생강 추출물의 제조 방법.
2. The method according to claim 1, wherein the starcholytic enzyme is treated at 80 to 105 DEG C for 0.5 to 2 hours.
제 1항에 있어서, 상기 전분 분해효소는 생강의 0.5 내지 1.5% (w/w) 농도로 첨가하는 것인, 생강 추출물의 제조 방법.
The method according to claim 1, wherein the starch degrading enzyme is added at a concentration of 0.5 to 1.5% (w / w) of ginger.
제 1항에 있어서, 상기 전분 분해 효소는 내열성을 갖는 α-아밀라아제(α-amylase), β-아밀라아제(β-amylase), 글루코아밀라아제(glucoamylase), α-글루코시다아제(α-glucosidase), 이소아밀라아제(isoamylase) 및 풀루라나아제(pullulanase)로 구성된 군에서 선택된 하나 이상인, 생강 추출물의 제조 방법.
The method of claim 1, wherein the starch degrading enzyme is selected from the group consisting of heat resistant α-amylase, β-amylase, glucoamylase, α-glucosidase, Wherein the ginger extract is at least one selected from the group consisting of isoamylase and pullulanase.
제 1항에 있어서, 상기 추출물은 물, C1 내지 C4의 저급 알코올, 물 또는 알코올의 혼합물을 용매로 사용하여 추출된 것인, 생강 추출물의 제조 방법.
The method according to claim 1, wherein the extract is extracted using water, a C 1 to C 4 lower alcohol, water or a mixture of alcohols as a solvent.
제 1항의 방법으로 제조된, 생강 추출물.
A ginger extract prepared by the method of claim 1.
KR1020170151816A 2017-11-14 2017-11-14 Method for preparing extract of Ginger comprising High Pressure/Enzymatic reaction step and Active ingradients increased Ginger extract prepared by the same KR102048833B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170151816A KR102048833B1 (en) 2017-11-14 2017-11-14 Method for preparing extract of Ginger comprising High Pressure/Enzymatic reaction step and Active ingradients increased Ginger extract prepared by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170151816A KR102048833B1 (en) 2017-11-14 2017-11-14 Method for preparing extract of Ginger comprising High Pressure/Enzymatic reaction step and Active ingradients increased Ginger extract prepared by the same

Publications (2)

Publication Number Publication Date
KR20190054814A true KR20190054814A (en) 2019-05-22
KR102048833B1 KR102048833B1 (en) 2019-11-27

Family

ID=66680841

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170151816A KR102048833B1 (en) 2017-11-14 2017-11-14 Method for preparing extract of Ginger comprising High Pressure/Enzymatic reaction step and Active ingradients increased Ginger extract prepared by the same

Country Status (1)

Country Link
KR (1) KR102048833B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210029548A (en) 2019-09-06 2021-03-16 대한민국(농촌진흥청장) Extract of root plant with increased active ingredients and methods for their preparation
KR20210029513A (en) 2019-09-06 2021-03-16 대한민국(농촌진흥청장) Ginger Blended Concentrate and Health Functional Food Containing the Same
KR102248062B1 (en) * 2020-10-20 2021-05-04 군산대학교 산학협력단 Barley paste composition and method for preparing noodle using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102435400B1 (en) * 2020-06-08 2022-08-24 광동제약 주식회사 Steamed ginger extract with increased 6-gingerol contents and a method of preparation thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130028564A (en) 2011-09-09 2013-03-19 한국식품연구원 An extracting method of ginseng by high pressure/enzyme decomposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130028564A (en) 2011-09-09 2013-03-19 한국식품연구원 An extracting method of ginseng by high pressure/enzyme decomposition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Nagendra chari, K.L. et al., Enzyme-assisted extraction of bioactive compounds from ginger. Food Chemistry 139:509-514(2013.)* *
문소희. High hydrostactic pressure extract of ginger exerts anti-stress effect in immobilization-stressed rats. 이화여자대학교 석사학위 논문 (2016.08.01.)* *
정문철 외 2명. 효소적 가수분해에 의한 생강 추출액의 수율 및 품질특성. 한국식품과학회지 31(2):391~398(1999.)* *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210029548A (en) 2019-09-06 2021-03-16 대한민국(농촌진흥청장) Extract of root plant with increased active ingredients and methods for their preparation
KR20210029513A (en) 2019-09-06 2021-03-16 대한민국(농촌진흥청장) Ginger Blended Concentrate and Health Functional Food Containing the Same
KR20210127675A (en) 2019-09-06 2021-10-22 대한민국(농촌진흥청장) Extract of root plant with increased active ingredients and methods for their preparation
KR20220003492A (en) * 2019-09-06 2022-01-10 대한민국(농촌진흥청장) Ginger Blended Concentrate and Health Functional Food Containing the Same
KR102248062B1 (en) * 2020-10-20 2021-05-04 군산대학교 산학협력단 Barley paste composition and method for preparing noodle using the same

Also Published As

Publication number Publication date
KR102048833B1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
Nadar et al. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review
Nishad et al. Enzyme‐and ultrasound‐assisted extractions of polyphenols from Citrus sinensis (cv. Malta) peel: A comparative study
Luo et al. Ultrasound extraction of polysaccharides from guava leaves and their antioxidant and antiglycation activity
Ng et al. The antioxidant index and chemometric analysis of tannin, flavonoid, and total phenolic extracted from medicinal plant foods with the solvents of different polarities
Ruviaro et al. Enzyme-assisted biotransformation increases hesperetin content in citrus juice by-products
Salar et al. Optimization of extraction conditions and enhancement of phenolic content and antioxidant activity of pearl millet fermented with Aspergillus awamori MTCC-548
Varzakas et al. Plant food residues as a source of nutraceuticals and functional foods
Ghandahari Yazdi et al. Optimization of the enzyme‐assisted aqueous extraction of phenolic compounds from pistachio green hull
Tang et al. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata)
Zheng et al. Solid-state bioconversion of phenolics from cranberry pomace and role of Lentinus edodes β-glucosidase
Joana Gil‐Chávez et al. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview
Kim et al. Enhanced antioxidant activity of rice bran extract by carbohydrase treatment
KR20190054814A (en) Method for preparing extract of Ginger comprising High Pressure/Enzymatic reaction step and Active ingradients increased Ginger extract prepared by the same
Madeira Jr et al. Simultaneous extraction and biotransformation process to obtain high bioactivity phenolic compounds from Brazilian citrus residues
Jo et al. The effects of subcritical water treatment on antioxidant activity of golden oyster mushroom
Zhang et al. Chemical composition and antioxidant properties of five edible Hymenomycetes mushrooms
Feitosa et al. Solid-state fermentation with Aspergillus niger for the bio-enrichment of bioactive compounds in Moringa oleifera (moringa) leaves
Shen et al. Evaluation of proximate composition, flavonoids, and antioxidant capacity of ginkgo seeds fermented with different rice wine starters
Zhang et al. Eleocharis dulcis corm: phytochemicals, health benefits, processing and food products
Rajan et al. Enhancement of polyphenolics and antioxidant activities of jambolan (Syzygium cumini) fruit pulp using solid state fermentation by Aspergillus niger and A. flavus
Barbosa et al. Conditions of enzyme-assisted extraction to increase the recovery of flavanone aglycones from pectin waste
KR102159806B1 (en) Method for preparing extract of ginger comprising ethanol treatment and active ingredients increased Ginger extract prepared by the same
KR20210029548A (en) Extract of root plant with increased active ingredients and methods for their preparation
Villasante et al. Extrusion and solid-state fermentation with Aspergillus oryzae on the phenolic compounds and radical scavenging activity of pecan nut (Carya illinoinensis) shell
KR101868225B1 (en) A method of extracting shogaol from ginger

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant