KR20190050546A - 발광소자 패키지 및 이를 포함하는 조명장치 - Google Patents

발광소자 패키지 및 이를 포함하는 조명장치 Download PDF

Info

Publication number
KR20190050546A
KR20190050546A KR1020170146065A KR20170146065A KR20190050546A KR 20190050546 A KR20190050546 A KR 20190050546A KR 1020170146065 A KR1020170146065 A KR 1020170146065A KR 20170146065 A KR20170146065 A KR 20170146065A KR 20190050546 A KR20190050546 A KR 20190050546A
Authority
KR
South Korea
Prior art keywords
light emitting
emitting device
layer
opening
device package
Prior art date
Application number
KR1020170146065A
Other languages
English (en)
Other versions
KR102509064B1 (ko
Inventor
송준오
김원중
임창만
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020170146065A priority Critical patent/KR102509064B1/ko
Publication of KR20190050546A publication Critical patent/KR20190050546A/ko
Application granted granted Critical
Publication of KR102509064B1 publication Critical patent/KR102509064B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

실시예는 발광소자 패키지 및 조명장치에 관한 것이다.
실시예에 따른 발광소자 패키지는, 제1 개구부를 포함하는 제1 프레임; 상기 제1 프레임과 이격되고, 제2 개구부를 포함하는 제2 프레임; 상기 제1 및 제2 프레임을 지지하고, 캐비티를 포함하는 몸체; 상기 캐비티 내에 배치되는 발광소자; 상기 몸체와 상기 발광소자 사이에 배치되는 제1 수지층; 상기 캐비티의 측면에 배치되며, 유선형의 경사면을 포함하는 반사층; 및 상기 반사층 상에 배치되고, 상기 발광소자를 에워싸는 몰딩부;를 포함할 수 있다.
상기 제1 및 제2 개구부는 상기 발광소자와 서로 중첩될 수 있다.
상기 몸체는 상기 제1 및 제2 개구부 사이에 리세스(R)를 포함할 수 있다.
상기 제1 수지층은 상기 리세스에 배치될 수 있다.

Description

발광소자 패키지 및 이를 포함하는 조명장치{LIGHT EMITTING DEVICE PACKAGE AND LIGHTING APPARATUS}
실시예는 반도체 소자에 관한 것으로, 보다 상세하게는 발광소자 패키지 및 이를 포함하는 조명장치에 관한 것이다.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.
특히, 3족-5족 또는 2족-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 파장 대역의 빛을 구현할 수 있는 장점이 있다. 또한, 3족-5족 또는 2족-6족 화합물 반도체 물질을 이용한 발광 다이오드나 레이저 다이오드와 같은 발광소자는, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광원도 구현이 가능하다. 이러한 발광소자는, 형광등, 백열등 등 기존의 광원에 비해 저 소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 3족-5족 또는 2족-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한, 이와 같은 수광 소자는 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용될 수 있다.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 가스(Gas)나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.
발광소자(Light Emitting Device)는 예로서 주기율표상에서 3족-5족 원소 또는 2족-6족 원소를 이용하여 전기에너지가 빛 에너지로 변환되는 특성의 p-n 접합 다이오드로 제공될 수 있고, 화합물 반도체의 조성비를 조절함으로써 다양한 파장 구현이 가능하다.
예를 들어, 질화물 반도체는 높은 열적 안정성과 폭 넓은 밴드갭 에너지에 의해 광소자 및 고출력 전자소자 개발 분야에서 큰 관심을 받고 있다. 특히, 질화물 반도체를 이용한 청색(Blue) 발광소자, 녹색(Green) 발광소자, 자외선(UV) 발광소자, 적색(RED) 발광소자 등은 상용화되어 널리 사용되고 있다.
예를 들어, 자외선 발광소자의 경우, 200nm~400nm의 파장대에 분포되어 있는 빛을 발생하는 발광 다이오드로서, 상기 파장대역에서, 단파장의 경우, 살균, 정화 등에 사용되며, 장파장의 경우 노광기 또는 경화기 등에 사용될 수 있다.
자외선은 파장이 긴 순서대로 UV-A(315nm~400nm), UV-B(280nm~315nm), UV-C (200nm~280nm) 세 가지로 나뉠 수 있다. UV-A(315nm~400nm) 영역은 산업용 UV 경화, 인쇄 잉크 경화, 노광기, 위폐 감별, 광촉매 살균, 특수조명(수족관/농업용 등) 등의 다양한 분야에 응용되고 있고, UV-B(280nm~315nm) 영역은 의료용으로 사용되며, UV-C(200nm~280nm) 영역은 공기 정화, 정수, 살균 제품 등에 적용되고 있다.
한편, 종래기술에서는 발광소자 패키지에서, 광휘도 향상을 위해 발광소자 패키지의 캐비티 내에 반사층을 배치하는 기술이 연구되고 있다.
그런데, 종래기술에서 패키지 몸체의 캐비티에 형성되는 반사층은 소정의 둔턱이나 스텝을 구비함에 따라, 둔턱이나 스텝에서 발광소자에서 발생된 빛의 차단이 발생함에 따라, 빛의 차단을 방지하기 위해 발광소자와 반사층을 소정 거리 이상 이격시켜야 하는 기술적 한계가 있었다. 이에 따라 종래기술에서는 발광소자 패키지에서의 반사율 저하와 아울러 발광소자 패키지의 사이즈가 커져야 하는 문제가 있다.
또한, 종래기술에서 고 출력을 제공할 수 있는 반도체 소자가 요청됨에 따라 고 전원을 인가하여 출력을 높일 수 있는 반도체 소자에 대한 연구가 진행되고 있다.
또한, 반도체 소자 패키지에 있어, 반도체 소자의 광 추출 효율을 향상시키고, 패키지 단에서의 광도를 향상시킬 수 있는 방안에 대한 연구가 진행되고 있다.
또한, 반도체 소자 패키지에 있어, 패키지 전극과 반도체 소자 간의 본딩 결합력을 향상시킬 수 있는 방안에 대한 연구가 진행되고 있다.
또한, 반도체 소자 패키지에 있어, 공정 효율 향상 및 구조 변경을 통하여 제조 단가를 줄이고 제조 수율을 향상시킬 수 있는 방안에 대한 연구가 진행되고 있다.
실시예는 발광소자 패키지에서 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공하고자 한다.
실시예는 광 추출 효율 및 전기적 특성을 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공하고자 한다.
실시예는 공정 효율을 향상시키고 새로운 패키지 구조를 제시하여 제조 단가를 줄이고 제조 수율을 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공하고자 한다.
실시예는 발광소자 패키지가 기판 등에 재 본딩되는 과정에서 발광소자 패키지의 본딩 영역에서 리멜팅(re-melting) 현상이 발생되는 것을 방지할 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법을 제공하고자 한다.
실시예에 따른 발광소자 패키지는, 제1 개구부(TH1)를 포함하는 제1 프레임(111); 상기 제1 프레임(111)과 이격되고, 제2 개구부(TH2)를 포함하는 제2 프레임(112); 상기 제1 및 제2 프레임을 지지하고, 캐비티(C)를 포함하는 몸체(113); 상기 캐비티 내에 배치되는 발광소자(120); 상기 몸체(113)와 상기 발광소자(120) 사이에 배치되는 제1 수지층(130); 상기 캐비티의 측면에 배치되며, 유선형의 경사면을 포함하는 반사층(190); 및 상기 반사층(190) 상에 배치되고, 상기 발광소자를 에워싸는 몰딩부(140);를 포함할 수 있다.
상기 제1 및 제2 개구부는 상기 발광소자와 서로 중첩될 수 있다.
상기 몸체(113)는 상기 제1 및 제2 개구부 사이에 리세스(R)를 포함할 수 있다.
상기 제1 수지층(130)은 상기 리세스에 배치될 수 있다.
실시예에 따른 조명장치는 상기 발광소자 패키지를 구비하는 발광 유닛을 포함할 수 있다.
실시예는 발광소자 패키지에서 발광소자 주의에 반사층을 유선형으로 배치함으로써 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
또한 실시예는 발광소자 패키지에서 발광소자와 반사층을 근접하게 배치시킴으로써 컴팩트한 발광소자 패키지를 제공함과 아울러 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
또한 실시예에 의하면, 광 추출 효율 및 전기적 특성과 신뢰성을 향상시킬 수 있는 장점이 있다.
또한 실시예에 의하면, 공정 효율을 향상시키고 새로운 패키지 구조를 제시하여 제조 단가를 줄이고 제조 수율을 향상시킬 수 있는 장점이 있다.
또한 실시예는 반사율이 높은 몸체를 제공함으로써, 반사체가 변색되지 않도록 방지할 수 있어 발광소자 패키지의 신뢰성을 개선할 수 있는 장점이 있다.
또한 실시예에 의하면, 발광소자 패키지가 기판 등에 재 본딩되는 과정에서 발광소자 패키지의 본딩 영역에서 리멜팅(re-melting) 현상이 발생되는 것을 방지할 수 있는 장점이 있다.
도 1은 제1 실시예에 따른 발광소자 패키지의 단면도.
도 2a는 제2 실시예에 따른 발광소자 패키지의 평면도.
도 2b는 도 2a에 도시된 발광소자 패키지의 저면도.
도 3a는 도 2a에 도시된 제2 실시예에 따른 발광소자 패키지의 D-D 선에 따른 단면도.
도 3b는 제3 실시예에 따른 발광소자 패키지 단면도.
도 4 내지 도 8은 실시예에 따른 발광소자 패키지의 제조공정의 단면도.
도 9는 제4 실시예에 따른 발광소자 패키지의 단면도.
도 10은 실시예에 따른 발광소자 패키지에 적용된 발광소자를 설명하는 평면도.
도 11은 도 10에 도시된 발광소자의 A-A 선에 따른 단면도.
도 12는 실시예에 따른 발광소자 패키지에 적용된 발광소자의 다른 예를 설명하는 평면도.
도 13은 도 12에 도시된 발광소자의 F-F 선에 따른 단면도.
이하 상기의 과제를 해결하기 위한 구체적으로 실현할 수 있는 실시예를 첨부한 도면을 참조하여 설명한다.
실시예의 설명에 있어서, 각 element의 " 상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
반도체 소자는 발광소자, 수광 소자 등 각종 전자 소자 포함할 수 있으며, 발광소자와 수광소자는 모두 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다.
본 실시예에 따른 반도체 소자는 발광소자일 수 있다.
발광소자는 전자와 정공이 재결합함으로써 빛을 방출하게 되고, 이 빛의 파장은 물질 고유의 에너지 밴드갭에 의해서 결정된다. 따라서, 방출되는 빛은 상기 물질의 조성에 따라 다를 수 있다.
(실시예)
제1 실시예에 따른 발광소자 패키지(100)는, 도 1에 도시된 바와 같이, 몸체(110), 발광소자(120)를 포함할 수 있다.
상기 몸체(110)는 마운트부(111)와 반사부(113)를 포함할 수 있다. 상기 반사부(113)는 상기 마운트부(111) 위에 배치될 수 있으며, 상기 마운트부(111)의 물질과 같은 물질로 형성될 수 있으나 이에 한정되는 것은 아니다. 상기 반사부(113)는 상기 마운트부(111)의 상부 면 둘레에 배치될 수 있다. 상기 반사부(113)는 상기 마운트부(111)의 상부 면 위에 캐비티(C)를 제공할 수 있다.
다른 표현으로서, 상기 마운트부(111)는 하부 몸체, 상기 반사부(113)는 상부 몸체로 지칭될 수도 있다.
상기 반사부(113)는 상기 발광소자(120)로부터 방출되는 빛을 상부 방향으로 반사시킬 수 있다. 상기 몸체(110)는 상기 캐비티(C)를 포함할 수 있다. 또한, 상기 몸체(110)는 TiO2와 SiO2와 같은 고굴절 필러를 포함하여 고반사 하우징을 할 수 있다.
한편, 앞서 기술한 바와 같이, 종래기술에서는 발광소자 패키지에서, 광도 향상을 위해 발광소자 패키지의 캐비티 내에 반사층을 배치하는 기술이 연구되고 있다.
그런데, 종래기술에서 패키지 몸체의 캐비티는 소정의 둔턱이나 스텝을 구비하여 발광된 빛을 차단하는 문제가 있었고, 이러한 둔턱이나 스텝에서 빛의 차단을 방지하기 위해 발광소자와 반사층을 소정 거리 이상 이격시켜야 하는 기술적 한계에 따라 발광소자 패키지의 사이즈가 커져야하는 문제가 있었고, 발광소자 패키지에서 반사율의 저하문제도 있었다.
이에 실시예는 발광소자 패키지에서 광도를 현저히 향상시키면서, 컴팩트 한 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공함을 기술적 과제로 한다.
도 1을 참조하면, 실시예에서 캐비티(C)를 포함하는 몸체(110) 형성시, 캐비티(C)의 측면을 유선형의 경사면(113S)으로 형성함으로써, 몸체(110)의 반사부(113)도 유선형의 경사면(113S)을 구비할 수 있도록 할 수 있다.
예를 들어, 실시예에 의하면 몸체(110)를 몰딩 공정으로 형성 시, 상대적으로 흐름성이 낮은 폴리프탈아미드(PPA: Polyphthalamide) 또는 PCT(Polychloro Tri phenyl) 등으로 형성함으로써, 유선형의 경사면(113S)을 구비할 수 있도록 형성할 수 있다.
실시예에 의하면, 몸체(110)에서 반사부(113)는 유선형의 경사면(113S)을 구비하여 광 반사 효율을 향상시킴과 아울러, 유선형의 경사면(113S)에 의해 캐비티(C) 하단(113B)에 둔턱이나 스텝이 없어 반사부(113)를 발광소자(120)에 매우 인접하게 배치할 수 있으므로 컴팩트한 발광소자 패키지를 구현할 수 있다.
예를 들어, 실시예에 의하면, 유선형의 경사면의 반사부(113)에 의해, 반사부에서 반사된 빛 들이 몰딩부(140)을 통해 외부 공기로 광 추출되는 경우에, 몰딩부(140)와 공기와의 경계면에서 전반사 되지 않는 임계각도 이하로 입사될 가능성을 높임으로써 광 추출효율을 현저히 향상시킬 수 있다.
상기 몸체(110)의 반사부(113)는 캐비티(C) 상측에서 갭필 공정으로 진행될 수 있으나 이에 한정되는 것은 아니다. 또는 상기 몸체(110)는 지지부(111)에 형성되는 제1 개구부(TH1) 또는 제2 개구부(TH2)를 통해 하측 갭필 공정을 통해 형성될 수 있다. 또는 상기 상측 갭필 공정과 하측 갭필 공정이 동시 진행되어 형성될 수도 있다.
한편, 종래기술은 캐비티를 유선형의 경사면으로 형성하는 점에 어려움이 있었다. 이에 따라 광 캐비티(light cavity)의 구현의 어려움이 있었다.
그런데, 실시예에 의하면 캐비티가 유선형의 경사면(113S)을 구비하도록 함으로써 반사부(113)도 유선형의 경사면을 구비함에 따라 확산 반사(diffusing Reflection)이 가능하여 광 캐비티(light cavity)의 구현함으로써 광의 휘도가 현저히 향상될 수 있다.
또한 종래기술은 반사층의 저면이 소정의 둔턱이나 스텝을 구비함에 따라 광차단을 방지하기 위해, 반사층과 발광소자를 소정 거리 이상을 이격시켜야 하는 기술적 한계가 있었다.
그런데, 도 1과 같이, 실시예에는 캐비티가 유선형의 경사면(113S)을 구비하도록 함으로써 반사부(113)도 유선형의 경사면을 구비함에 따라 반사부 하단(113B)이 둔턱 또는 스텝(step)이 없이 형성 또는 배치가 가능하다. 상기 반사부 하단(113B)은 유선형의 경사면(113S)의 하단을 의미할 수 있다. 또는, 상기 반사부 하단(113B)은 유선형의 경사면(113S)과 상면이 플랫한 반사부(113)와의 경계부를 의미할 수도 있다.
이에 따라 도 1에서와 같이, 발광소자(120)를 반사부 하단(113B)으로부터 매우 인접하도록 배치함으로써 컴팩트한 발광소자 패키지를 제공함과 아울러 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
예를 들어, 도 1을 참조하면, 상기 발광소자(120)는 제1 축 방향으로 제1 폭(W10)을 구비하고, 상기 발광소자(120)와 상기 반사부(113) 사이는 제1 축 방향으로 제2 거리(D20)로 이격될 수 있다.
예를 들어, 상기 발광소자(120)는 제1 축 방향으로 500 ㎛ 내지 1500㎛의 제1 폭(W10)을 구비할 수 있고, 상기 발광소자(120)와 상기 반사부(113) 사이는 제1 축 방향으로 10㎛ 내지 50㎛ 제2 거리(D20)로 이격될 수 있다. 이에 따라, 상기 제2 거리(D20)는 상기 제1 폭의 1/150~1/10 범위일 수 있다.
이에 따라 실시예에서 상기 발광소자(120)의 측면과 몸체의 반사부 하단(113B) 사이의 거리는 약 50 ㎛ 이내일 수 있다. 예를 들어, 상기 발광소자(120)의 측면과 상기 반사부 하단(113B) 사이의 거리는 약 10 ㎛ 내지 약 50 ㎛이내일 수 있다. 상기 반사부 하단(113B)은 유선형의 경사면(113S)의 하단을 의미할 수 있다. 또는, 상기 반사부 하단(113B)은 유선형의 경사면(113S)과 상면이 플랫한 반사부(113)와의 경계부를 의미할 수도 있다.
실시예에 의하면, 상기 발광소자(120)의 측면과 몸체의 반사부 하단(113B) 사이의 거리가 약 10 ㎛ 내지 약 50 ㎛이내로 배치됨에 따라, 발광소자(120)를 반사부(113)으로부터 매우 인접하도록 배치함으로써 컴팩트한 발광소자 패키지를 제공함과 아울러 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다. 이때, 상기 발광소자(120)의 측면과 몸체의 반사부 하단(113B) 사이의 거리가 제1 폭의 1/10을 초과하는 경우 컴팩트 한 발광소자 패키지를 구현하기 어려울 수 있다. 또한 상기 발광소자(120)의 측면과 몸체의 반사부 하단(113B) 사이의 거리가 제1 폭의 1/150을 미만의 경우 발광층과 반사부가 너무 인접하여 반사영역의 확보가 협소하여 광 캐비티(light cavity) 구현이 어려울 수 있다.
실시예에 의하면, 상기 발광소자(120)의 측면과 몸체의 반사부 하단(113B) 사이의 거리가 약 10 ㎛ 내지 약 50 ㎛이내로 배치됨에 따라, 발광소자(120)를 반사부(113)으로부터 매우 인접하도록 배치함으로써 컴팩트한 발광소자 패키지를 제공함과 아울러 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
실시예에 의하면, 발광소자 패키지에서 발광소자 주의에 반사부를 유선형으로 배치함으로써 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
또한 실시예는 발광소자 패키지에서 발광소자와 반사부를 근접하게 배치시킴으로써 컴팩트한 발광소자 패키지를 제공함과 아울러 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
다음으로, 실시예에 의하면, 발광소자(120)는 제1 전극(121), 제2 전극(122), 반도체층(123) 및 기판(124)을 포함할 수 있다.
상기 반도체층(123)은 제1 도전형 반도체층, 제2 도전형 반도체층, 제1 도전형 반도체층과 제2 도전형 반도체층 사이에 배치된 활성층을 포함할 수 있다. 상기 제1 전극(121)은 상기 제1 도전형 반도체층과 전기적으로 연결될 수 있다. 또한, 상기 제2 전극(122)은 상기 제2 도전형 반도체층과 전기적으로 연결될 수 있다.
상기 발광소자(120)는 상기 몸체(110) 위에 배치될 수 있다. 상기 발광소자(120)는 상기 마운트부(111) 위에 배치될 수 있다. 상기 발광소자(120)는 상기 반사부(113)에 의해 제공되는 상기 캐비티(C) 내에 배치될 수 있다.
상기 제1 전극(121)은 상기 발광소자(120)의 하부 면에 배치될 수 있다. 상기 제2 전극(122)은 상기 발광소자(120)의 하부 면에 배치될 수 있다. 상기 제1 전극(121)과 상기 제2 전극(122)은 상기 발광소자(120)의 하부 면에서 서로 이격되어 배치될 수 있다.
상기 제1 전극(121)은 상기 반도체층(123)과 상기 마운트부(111) 사이에 배치될 수 있다. 상기 제2 전극(122)은 상기 반도체층(123)과 상기 마운트부(111) 사이에 배치될 수 있다.
상기 제1 전극(121)과 상기 제2 전극(122)은 Ti, Al, In, Ir, Ta, Pd, Co, Cr, Mg, Zn, Ni, Si, Ge, Ag, Ag alloy, Au, Hf, Pt, Ru, Rh, ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, Ni/IrOx/Au/ITO를 포함하는 그룹 중에서 선택된 하나 이상의 물질 또는 합금을 이용하여 단층 또는 다층으로 형성될 수 있다.
한편, 실시 예에 따른 발광소자 패키지(100)는, 도 1에 도시된 바와 같이, 제1 개구부(TH1)과 제2 개구부(TH2)을 포함할 수 있다.
상기 몸체(110)는 상기 캐비티(C)의 바닥면에서 상기 몸체(110)의 하면을 관통하는 상기 제1 개구부(TH1)을 포함할 수 있다. 상기 몸체(110)는 상기 캐비티(C)의 바닥면에서 상기 몸체(110)의 하면을 관통하는 상기 제2 개구부(TH2)을 포함할 수 있다.
상기 제1 개구부(TH1)은 상기 마운트부(111)에 제공될 수 있다. 상기 제1 개구부(TH1)은 상기 마운트부(111)를 관통하여 제공될 수 있다. 상기 제1 개구부(TH1)은 상기 마운트부(111)의 상면과 하면을 제1 방향으로 관통하여 제공될 수 있다.
상기 제1 개구부(TH1)은 상기 발광소자(120)의 상기 제1 전극(121) 아래에 배치될 수 있다. 상기 제1 개구부(TH1)은 상기 발광소자(120)의 상기 제1 전극(121)과 중첩되어 제공될 수 있다. 상기 제1 개구부(TH1)은 상기 마운트부(111)의 상면에서 하면으로 향하는 제1 방향으로 상기 발광소자(120)의 상기 제1 전극(121)과 중첩되어 제공될 수 있다.
상기 제2 개구부(TH2)은 상기 마운트부(111)에 제공될 수 있다. 상기 제2 개구부(TH2)은 상기 마운트부(111)를 관통하여 제공될 수 있다. 상기 제2 개구부(TH2)은 상기 마운트부(111)의 상면과 하면을 제1 방향으로 관통하여 제공될 수 있다.
상기 제2 개구부(TH2)은 상기 발광소자(120)의 상기 제2 전극(122) 아래에 배치될 수 있다. 상기 제2 개구부(TH2)은 상기 발광소자(120)의 상기 제2 전극(122)과 중첩되어 제공될 수 있다. 상기 제2 개구부(TH2)은 상기 마운트부(111)의 상면에서 하면으로 향하는 제1 방향으로 상기 발광소자(120)의 상기 제2 전극(122)과 중첩되어 제공될 수 있다.
상기 제1 개구부(TH1)과 상기 제2 개구부(TH2)은 서로 이격되어 배치될 수 있다. 상기 제1 개구부(TH1)과 상기 제2 개구부(TH2)은 상기 발광소자(120)의 하부 면 아래에서 서로 이격되어 배치될 수 있다.
실시 예에 의하면, 상기 제1 개구부(TH1)의 상부 영역의 폭(W1)이 상기 제1 전극(121)의 폭에 비해 작거나 같게 제공될 수 있다. 또한, 상기 제2 개구부(TH2)의 상부 영역의 폭이 상기 제2 전극(122)의 폭에 비해 작거나 같게 제공될 수 있다. 따라서, 상기 발광소자와 상기 발광소자 패키지의 몸체(110)가 더 견고히 부착될 수 있다.
상기 제2 개구부(TH2)의 상부 영역으로부터 상기 제2 전극(122)의 측면 끝단까지의 거리(W6)는 수십 마이크로 미터로 제공될 수 있다. 예로서, 상기 제2 개구부(TH2)의 상부 영역으로부터 상기 제2 전극(122)의 측면 끝단까지의 거리(W6)는 40 마이크로 미터 내지 60 마이크로 미터로 제공될 수 있다.
상기 제2 개구부(TH2)의 상부 영역으로부터 상기 제2 전극(122)의 측면 끝단까지의 거리(W6)가 40 마이크로 미터 이상일 때 상기 제2 전극(122)이 상기 제2 개구부(TH2)의 저면에서 노출되지 않도록 하기 위한 공정 마진을 확보할 수 있다.
또한, 상기 제2 개구부(TH2)의 상부 영역으로부터 상기 제2 전극(122)의 측면 끝단까지의 거리(W6)가 60 마이크로 미터 이하일 때 상기 제2 개구부(TH2)에 노출되는 상기 제2 전극(122)의 면적을 확보할 수 있고, 상기 제2 개구부(TH2)에 의해 노출되는 제2 전극(122)의 저항을 낮출 수 있어 상기 제2 개구부(TH2)에 의해 노출되는 상기 제2 전극(122)으로 전류 주입을 원활히 할 수 있다.
또한, 상기 제1 개구부(TH1)의 상부 영역의 폭(W1)이 상기 제1 개구부(TH1)의 하부 영역의 폭(W2)에 비해 작거나 같게 제공될 수 있다. 또한, 상기 제2 개구부(TH2)의 상부 영역의 폭이 상기 제2 개구부(TH2)의 하부 영역의 폭에 비해 작거나 같게 제공될 수 있다.
상기 제1 개구부(TH1)은 하부 영역에서 상부 영역으로 가면서 폭이 점차적으로 작아지는 경사진 형태로 제공될 수 있다. 상기 제2 개구부(TH2)은 하부 영역에서 상부 영역으로 가면서 폭이 점차적으로 작아지는 경사진 형태로 제공될 수 있다.
다만 이에 한정하지 않고, 상기 제1 및 제2 개구부(TH1, TH2)의 상부 영역과 하부 영역 사이의 경사면은 기울기가 서로 다른 복수의 경사면을 가질 수 있고, 상기 경사면은 곡률을 가지며 배치될 수 있다. 상기 마운트부(111)의 하면 영역에서 상기 제1 개구부(TH1)과 상기 제2 개구부(TH2) 사이의 폭(W3)은 수백 마이크로 미터로 제공될 수 있다. 상기 마운트부(111)의 하면 영역에서 상기 제1 개구부(TH1)과 상기 제2 개구부(TH2) 사이의 폭(W3)은 100 마이크로 미터 내지 150 마이크로 미터로 제공될 수 있다.
상기 마운트부(111)의 하면 영역에서 상기 제1 개구부(TH1)과 상기 제2 개구부(TH2) 사이의 폭(W3)은, 실시 예에 따른 발광소자 패키지(100)가 추후 회로기판, 서브 마운트 등에 실장되는 경우에, 본딩패드 간의 단락(short)이 발생되는 것을 방지하기 위하여 일정 거리 이상으로 제공되도록 선택될 수 있다.
실시 예에 따른 발광소자 패키지(100)는, 도 1에 도시된 바와 같이, 리세스(R)를 포함할 수 있다. 상기 리세스(R)는 상기 캐비티(C)의 바닥면에서 상기 몸체(110)의 하면으로 오목하게 제공될 수 있다.
또한, 상기 제1 및 제2 전극패드(121,122) 사이에 배치되는 상기 제1 및 제2 개구부(TH1, TH2)의 경사면은 상기 리세스(R)와 수직으로 중첩될 수 있다.
상기 리세스(R)는 상기 마운트부(111)에 제공될 수 있다. 상기 리세스(R)는 상기 제1 개구부(TH1)과 상기 제2 개구부(TH2) 사이에 제공될 수 있다. 상기 리세스(R)는 상기 마운트(111)의 상면에서 하면 방향으로 오목하게 제공될 수 있다. 상기 리세스(R)는 상기 발광소자(120) 아래에 배치될 수 있다.
실시 예에 따른 발광소자 패키지(100)는, 도 1에 도시된 바와 같이, 수지부(130)를 포함할 수 있다.
상기 수지부(130)는 상기 리세스(R)에 배치될 수 있다. 상기 수지부(130)는 상기 발광소자(120)와 상기 마운트부(111) 사이에 배치될 수 있다. 상기 수지부(130)는 상기 제1 전극(121)과 상기 제2 전극(122) 사이에 배치될 수 있다. 예로서, 상기 수지부(130)는 상기 제1 전극(121)의 측면과 상기 제2 전극(122)의 측면에 접촉되어 배치될 수 있다.
상기 수지부(130)는 상기 발광소자(120)와 상기 마운트부(111) 간의 안정적인 고정력을 제공할 수 있다. 상기 수지부(130)는 예로서 상기 마운트부(111)의 상면에 직접 접촉되어 배치될 수 있다. 또한, 상기 수지부(130)는 상기 발광소자(120)의 하부 면에 직접 접촉되어 배치될 수 있다.
예로서, 상기 수지부(130)는 에폭시(epoxy) 계열의 물질, 실리콘(silicone) 계열의 물질, 에폭시 계열의 물질과 실리콘 계열의 물질을 포함하는 하이브리드(hybrid) 물질 중에서 적어도 하나를 포함할 수 있다.
상기 수지부(130)는 상기 마운트부(111)와 상기 발광소자(120) 간의 안정적인 고정력을 제공할 수 있고, 상기 발광 소자(120)의 하면으로 광이 방출되는 경우, 상기 발광소자와 상기 몸체 사이에서 광확산기능을 제공할 수 있다. 상기 발광소자(120)로부터 상기 발광소자(120)의 하면으로 광이 방출될 때 상기 수지부(130)는 광확산기능을 제공함으로써 상기 발광소자 패키지(100)의 광추출효율을 개선할 수 있다.
실시 예에 의하면, 상기 리세스(R)의 깊이(T1)는 상기 제1 개구부(TH1)의 깊이(T2) 또는 상기 제2 개구부(TH2)의 깊이(T2)에 비해 작게 제공될 수 있다.
상기 리세스(R)의 깊이(T1)는 상기 수지부(130)의 접착력을 고려하여 결정될 수 있다. 또한, 상기 리세스(R)이 깊이(T1)는 상기 마운트부(111)의 안정적인 강도를 고려하거나 및/또는 상기 발광소자(120)에서 방출되는 열에 의해 상기 발광소자패키지(100)에 크랙이 발생하지 않도록 결정될 수 있다.
상기 리세스(R)는 상기 발광소자(120) 하부에 일종의 언더필 공정이 수행될 수 있는 적정 공간을 제공할 수 있다. 상기 리세스(R)는 상기 발광소자(120)의 하면과 상기 마운트부(111)의 상면 사이에 상기 수지부(130)가 충분히 제공될 수 있도록 제1 깊이 이상으로 제공될 수 있다. 또한, 상기 리세스(R)는 상기 마운트부(111)의 안정적인 강도를 제공하기 위하여 제2 깊이 이하로 제공될 수 있다.
상기 리세스(R)의 깊이(T1)와 폭(W4)은 상기 수지부(130)의 형성 위치 및 고정력에 영향을 미칠 수 있다. 상기 리세스(R)의 깊이(T1)와 폭(W4)은 상기 마운트부(111)와 상기 발광소자(120) 사이에 배치되는 상기 수지부(130)에 의하여 충분한 고정력이 제공될 수 있도록 결정될 수 있다.
예로서, 상기 리세스(R)의 깊이(T1)는 수십 마이크로 미터로 제공될 수 있다. 상기 리세스(R)의 깊이(T1)는 40 마이크로 미터 내지 60 마이크로 미터로 제공될 수 있다.
또한, 상기 리세스(R)의 폭(W4)은 수백 마이크로 미터로 제공될 수 있다. 상기 리세스(R)의 폭(W4)은 상기 제1 전극(121)과 상기 제2 전극(122) 간의 간격에 비해 좁게 제공될 수 있다. 상기 리세스(R)의 폭(W4)은 140 마이크로 미터 내지 160 마이크로 미터로 제공될 수 있다. 예로서, 상기 리세스(R)의 폭(W4)은 150 마이크로 미터로 제공될 수 있다.
상기 제1 개구부(TH1)의 깊이(T2)는 상기 마운트부(111)의 두께에 대응되어 제공될 수 있다. 상기 제1 개구부(TH1)의 깊이(T2)는 상기 마운트부(111)의 안정적인 강도를 유지할 수 있는 두께로 제공될 수 있다.
예로서, 상기 제1 개구부(TH1)의 깊이(T2)는 수백 마이크로 미터로 제공될 수 있다. 상기 제1 개구부(TH1)의 깊이(T2)는 180 마이크로 미터 내지 220 마이크로 미터로 제공될 수 있다. 예로서, 상기 제1 개구부(TH1)의 깊이(T2)는 200 마이크로 미터로 제공될 수 있다.
예로서, 상기 (T2-T1)의 두께는 적어도 100 마이크로 미터 이상으로 선택될 수 있다. 이는 상기 마운트부(111)의 크랙 프리(crack free)를 제공할 수 있는 사출 공정 두께가 고려된 것이다.
실시 예에 의하면, T1 두께와 T2 두께의 비(T2/T1)는 2 내지 10으로 제공될 수 있다. 예로서, T2의 두께가 200 마이크로 미터로 제공되는 경우, T1의 두께는 20 마이크로 미터 내지 100 마이크로 미터로 제공될 수 있다.
또한, 상기 리세스(R)의 폭은 제2 방향으로 균일하게 배치될 수 있고, 제3 방향으로 돌출부를 가질 수 있다. 상기 리세스(R)는 상기 발광소자(120)를 상기 마운트부(111)에 배치하기 위한 얼라인키(Align key) 기능을 할 수 있다. 따라서, 상기 리세스(R)를 통해 상기 발광소자(120)를 상기 마운트부(111)에 배치할 때 상기 발광소자(120)를 원하는 위치에 배치할 수 있도록 기준이 되는 기능을 제공할 수 있다.
또한, 실시 예에 따른 발광소자 패키지(100)는, 도 1에 도시된 바와 같이, 몰딩부(140)를 포함할 수 있다.
상기 몰딩부(140)는 상기 발광소자(120) 위에 제공될 수 있다. 상기 몰딩부(140)는 상기 마운트부(111) 위에 배치될 수 있다. 상기 몰딩부(140)는 상기 반사부(113)에 의하여 제공된 캐비티(C)에 배치될 수 있다.
상기 몰딩부(140)는 절연물질을 포함할 수 있다. 또한, 상기 몰딩부(140)는 상기 발광소자(120)로부터 방출되는 빛을 입사 받고, 파장 변환된 빛을 제공하는 파장변환 수단을 포함할 수 있다. 예로서, 상기 몰딩부(140)는 형광체, 양자점 등을 포함할 수 있다.
또한, 실시 예에 의하면, 상기 반도체층(123)은 화합물 반도체로 제공될 수 있다. 상기 반도체층(123)은 예로서 2족-6족 또는 3족-5족 화합물 반도체로 제공될 수 있다. 예로서, 상기 반도체층(123)은 알루미늄(Al), 갈륨(Ga), 인듐(In), 인(P), 비소(As), 질소(N)로부터 선택된 적어도 두 개 이상의 원소를 포함하여 제공될 수 있다.
상기 반도체층(123)은 제1 도전형 반도체층, 활성층, 제2 도전형 반도체층을 포함할 수 있다.
상기 제1 및 제2 도전형 반도체층은 3족-5족 또는 2족-6족의 화합물 반도체 중에서 적어도 하나로 구현될 수 있다. 상기 제1 및 제2 도전형 반도체층은 예컨대 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 형성될 수 있다. 예컨대, 상기 제1 및 제2 도전형 반도체층은 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 등을 포함하는 그룹 중에서 선택된 적어도 하나를 포함할 수 있다. 상기 제1 도전형 반도체층은 Si, Ge, Sn, Se, Te 등의 n형 도펀트가 도핑된 n형 반도체층일 수 있다. 상기 제2 도전형 반도체층은 Mg, Zn, Ca, Sr, Ba 등의 p형 도펀트가 도핑된 p형 반도체층일 수 있다.
상기 활성층은 화합물 반도체로 구현될 수 있다. 상기 활성층은 예로서 3족-5족 또는 2족-6족의 화합물 반도체 중에서 적어도 하나로 구현될 수 있다. 상기 활성층이 다중 우물 구조로 구현된 경우, 상기 활성층은 교대로 배치된 복수의 우물층과 복수의 장벽층을 포함할 수 있고, InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 배치될 수 있다. 예컨대, 상기 활성층은 InGaN/GaN, GaN/AlGaN, AlGaN/AlGaN, InGaN/AlGaN, InGaN/InGaN, AlGaAs/GaAs, InGaAs/GaAs, InGaP/GaP, AlInGaP/InGaP, InP/GaAs을 포함하는 그룹 중에서 선택된 적어도 하나를 포함할 수 있다.
실시예에 따른 발광소자 패키지는 소정의 회로기판(310)에 실장될 수 있다.
상기 회로기판(310)은 제1 패드(310), 제2 패드(320), 지지기판(313)을 포함할 수 있다. 상기 지지기판(313)에 상기 발광소자(120)의 구동을 제어하는 전원 공급 회로가 제공될 수 있다.
상기 몸체(110)는 상기 회로기판(310) 위에 배치될 수 있다. 상기 제1 패드(311)와 상기 제1 전극(121)이 전기적으로 연결될 수 있다. 상기 제2 패드(312)와 상기 제2 전극(122)이 전기적으로 연결될 수 있다.
상기 제1 패드(311)와 상기 제2 패드(312)는 도전성 물질을 포함할 수 있다. 예컨대, 상기 제1 패드(311)와 상기 제2 패드(312)는 Ti, Cu, Ni, Au, Cr, Ta, Pt, Sn, Ag, P, Fe, Sn, Zn, Al를 포함하는 그룹 중에서 선택된 적어도 하나의 물질 또는 그 합금을 포함할 수 있다. 상기 제1 패드(311)와 상기 제2 패드(312)는 단층 또는 다층으로 제공될 수 있다.
실시예에 의하면, 발광소자 패키지에서 발광소자 주의에 반사부를 유선형으로 배치함으로써 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
또한 실시예는 발광소자 패키지에서 발광소자와 반사부를 근접하게 배치시킴으로써 컴팩트한 발광소자 패키지를 제공함과 아울러 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
다음으로, 도 2a는 실시예에 따른 발광소자 패키지(100)의 평면도이며, 도 2b는 도 2a에 도시된 발광소자 패키지의 저면도이다. 도 3a는 도 2a에 도시된 발광소자 패키지의 D-D 선에 따른 단면도이다.
도 2a를 참조하면, 실시예에 따른 발광소자 패키지(100)는, 패키지 몸체(110)와 발광소자(120)를 포함할 수 있다.
상기 패키지 몸체(110)는 제1 프레임(111)과 제2 프레임(112)을 포함할 수 있다.
상기 패키지 몸체(110)는 몸체(113)를 포함할 수 있다. 상기 몸체(113)는 상기 제1 프레임(111)과 상기 제2 프레임(112) 사이에 배치될 수 있다. 상기 몸체(113)는 일종의 전극 분리선의 기능을 수행할 수 있다. 상기 몸체(113)는 절연부재로 지칭될 수도 있다.
도 2b를 참조하면, 실시예에 따른 발광소자 패키지(100)는, 제1 하부 리세스(R11)와 제2 하부 리세스(R12)를 포함할 수 있다. 상기 제1 하부 리세스(R11)와 상기 제2 하부 리세스(R12)는 서로 이격되어 배치될 수 있다.
상기 제1 하부 리세스(R11)는 상기 제1 프레임(111)의 하면에 제공될 수 있다. 상기 제1 하부 리세스(R11)는 상기 제1 프레임(111)의 하면에서 상면 방향으로 오목하게 제공될 수 있다. 상기 제1 하부 리세스(R11)는 상기 제1 개구부(TH1)로부터 이격되어 배치될 수 있다.
또한, 상기 제2 하부 리세스(R12)는 상기 제2 프레임(112)의 하면에 제공될 수 있다. 상기 제2 하부 리세스(R12)는 상기 제2 프레임(112)의 하면에서 상면 방향으로 오목하게 제공될 수 있다. 상기 제2 하부 리세스(R12)는 상기 제2 개구부(TH2)로부터 이격되어 배치될 수 있다.
상기 제1 개구부(TH1)와 제2 개구부(TH2)에는 각각 상기 제1 및 제2 도전층(321,322)이 배치될 수 있다.
도 3a는 도 2a에 도시된 제2 실시예에 따른 발광소자 패키지의 D-D 선에 따른 단면도이며, 도 3b는 제3 실시예에 따른 발광소자 패키지의 단면도이다.
도 4 내지 도 8은 실시예에 따른 발광소자 패키지 제조방법을 설명하는 도면이며, 제3 실시예의 제조방법을 중심으로 설명되나 이에 한정되는 것은 아니다.
이하 도 3a와 도 3b를 중심으로 설명하되, 필요시 도 4 내지 도 8도 함께 참조하여 설명하기로 한다.
<패키지 몸체(몸체, 제1 프레임, 제2 프레임)>
실시예에 따른 발광소자 패키지(100)는, 도 3a에 도시된 바와 같이, 패키지 몸체(110), 발광소자(120)를 포함할 수 있다.
우선 도 3a를 참조하면, 상기 패키지 몸체(110)는 제1 프레임(111)과 제2 프레임(112)을 포함할 수 있다. 상기 제1 프레임(111)과 상기 제2 프레임(112)은 서로 이격되어 배치될 수 있다.
상기 패키지 몸체(110)는 몸체(113)를 포함할 수 있다. 상기 몸체(113)는 상기 제1 프레임(111)과 상기 제2 프레임(112) 사이에 배치될 수 있다. 상기 몸체(113)는 일종의 전극 분리선의 기능을 수행할 수 있다. 상기 몸체(113)는 절연부재로 지칭될 수도 있다.
상기 몸체(113)는 상기 제1 프레임(111) 위에 배치될 수 있다. 또한, 상기 몸체(113)는 상기 제2 프레임(112) 위에 배치될 수 있다.
상기 몸체(113)는 상기 제1 프레임(111)과 상기 제2 프레임(112) 위에 배치된 경사면을 제공할 수 있다. 상기 몸체(113)의 경사면에 의하여 상기 제1 프레임(111)과 상기 제2 프레임(112) 위에 캐비티(C)가 제공될 수 있다.
실시예에 의하면, 상기 패키지 몸체(110)는 캐비티(C)가 있는 구조로 제공될 수도 있으며, 캐비티(C) 없이 상면이 평탄한 구조로 제공될 수도 있다.
예로서, 상기 몸체(113)는 폴리프탈아미드(PPA: Polyphthalamide), PCT(Polychloro Tri phenyl), LCP(Liquid Crystal Polymer), PA9T(Polyamide9T), 실리콘, 에폭시 몰딩 컴파운드(EMC: Epoxy molding compound), 실리콘 몰딩 컴파운드(SMC), 세라믹, PSG(photo sensitive glass), 사파이어(Al2O3) 등을 포함하는 그룹 중에서 선택된 적어도 하나로 형성될 수 있다.
또한, 제2 실시예에서 상기 몸체(113)가 반사물질을 포함하는 경우, 몸체(113)는 반사층으로 기능할 수 있다. 예를 들어, 상기 몸체(113)는 TiO2와 SiO2와 같은 고굴절 필러를 포함할 수 있다.
한편, 도 3b와 같이, 몸체(113) 상에 별도의 반사층(190)을 형성할 수도 있다. 예를 들어, 실시예는 상기 반사층(190)은 화이트 계열 실리콘(white silicone)을 포함할 수 있다. 예를 들어, 상기 반사층(190)은 실리콘에 TiO2, ZnO, Al2O3, BN 등을 포함하는 물질로 구성될 수 있으나 이에 한정되는 것은 아니다.
다음으로, 상기 제1 프레임(111)과 상기 제2 프레임(112)은 도전성 프레임으로 제공될 수도 있다. 상기 제1 프레임(111)과 상기 제2 프레임(112)은 상기 패키지 몸체(110)의 구조적인 강도를 안정적으로 제공할 수 있으며, 상기 발광소자(120)에 전기적으로 연결될 수 있다.
다시 도 3a를 참조하면, 실시예에 의하면, 상기 발광소자(120)는 제1 본딩부(121), 제2 본딩부(122), 발광 구조물(123), 기판(124)을 포함할 수 있다.
상기 발광 구조물(123)은 제1 도전형 반도체층, 제2 도전형 반도체층, 제1 도전형 반도체층과 제2 도전형 반도체층 사이에 배치된 활성층을 포함할 수 있다. 상기 제1 본딩부(121)는 상기 제1 도전형 반도체층과 전기적으로 연결될 수 있다. 또한, 상기 제2 본딩부(122)는 상기 제2 도전형 반도체층과 전기적으로 연결될 수 있다.
상기 발광소자(120)는 상기 패키지 몸체(110) 위에 배치될 수 있다. 상기 발광소자(120)는 상기 제1 프레임(111)과 상기 제2 프레임(112) 위에 배치될 수 있다. 상기 발광소자(120)는 상기 패키지 몸체(110)에 의해 제공되는 상기 캐비티(C) 내에 배치될 수 있다.
상기 제1 본딩부(121)는 상기 발광소자(120)의 하부 면에 배치될 수 있다. 상기 제2 본딩부(122)는 상기 발광소자(120)의 하부 면에 배치될 수 있다. 상기 제1 본딩부(121)와 상기 제2 본딩부(122)는 상기 발광소자(120)의 하부 면에서 서로 이격되어 배치될 수 있다.
상기 제1 본딩부(121)는 상기 제1 프레임(111) 위에 배치될 수 있다. 상기 제2 본딩부(122)는 상기 제2 프레임(112) 위에 배치될 수 있다.
상기 제1 본딩부(121)는 상기 발광 구조물(123)과 상기 제1 프레임(111) 사이에 배치될 수 있다. 상기 제2 본딩부(122)는 상기 발광 구조물(123)과 상기 제2 프레임(112) 사이에 배치될 수 있다.
상기 제1 본딩부(121)와 상기 제2 본딩부(122)는 Ti, Al, Sn, In, Ir, Ta, Pd, Co, Cr, Mg, Zn, Ni, Si, Ge, Ag, Ag alloy, Au, Hf, Pt, Ru, Rh, ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, Ni/IrOx/Au/ITO를 포함하는 그룹 중에서 선택된 하나 이상의 물질 또는 합금을 이용하여 단층 또는 다층으로 형성될 수 있다.
한편, 실시예에 따른 발광소자 패키지(100)는, 도 3a 및 도 4에 도시된 바와 같이, 제1 개구부(TH1)와 제2 개구부(TH2)를 포함할 수 있다. 예를 들어, 상기 제1 프레임(111)은 상기 제1 개구부(TH1)를 포함할 수 있다. 상기 제2 프레임(112)은 상기 제2 개구부(TH2)를 포함할 수 있다.
상기 제1 개구부(TH1)는 상기 제1 프레임(111)에 제공될 수 있다. 상기 제1 개구부(TH1)는 상기 제1 프레임(111)을 관통하여 제공될 수 있다. 상기 제1 개구부(TH1)는 상기 제1 프레임(111)의 상면과 하면을 제1 방향으로 관통하여 제공될 수 있다.
도 3a를 참조하면, 상기 제1 개구부(TH1)는 상기 발광소자(120)의 상기 제1 본딩부(121) 아래에 배치될 수 있다. 상기 제1 개구부(TH1)는 상기 발광소자(120)의 상기 제1 본딩부(121)와 중첩되어 제공될 수 있다. 상기 제1 개구부(TH1)는 상기 제1 프레임(111)의 상면에서 하면으로 향하는 제1 방향으로 상기 발광소자(120)의 상기 제1 본딩부(121)와 중첩되어 제공될 수 있다. 상기 제1 본딩부(121)는 상기 제1 개구부(TH1) 상에 배치될 수 있다.
상기 제2 개구부(TH2)는 상기 제2 프레임(112)에 제공될 수 있다. 상기 제2 개구부(TH2)는 상기 제2 프레임(112)을 관통하여 제공될 수 있다. 상기 제2 개구부(TH2)는 상기 제2 프레임(112)의 상면과 하면을 제1 방향으로 관통하여 제공될 수 있다.
상기 제2 개구부(TH2)는 상기 발광소자(120)의 상기 제2 본딩부(122) 아래에 배치될 수 있다. 상기 제2 개구부(TH2)는 상기 발광소자(120)의 상기 제2 본딩부(122)와 중첩되어 제공될 수 있다. 상기 제2 개구부(TH2)는 상기 제2 프레임(112)의 상면에서 하면으로 향하는 제1 방향으로 상기 발광소자(120)의 상기 제2 본딩부(122)와 중첩되어 제공될 수 있다. 상기 제2 본딩부(122)는 상기 제2 개구부(TH2) 상에 배치될 수 있다.
상기 제1 개구부(TH1)와 상기 제2 개구부(TH2)는 서로 이격되어 배치될 수 있다. 상기 제1 개구부(TH1)와 상기 제2 개구부(TH2)는 상기 발광소자(120)의 하부 면 아래에서 서로 이격되어 배치될 수 있다.
실시예에 의하면, 상기 제1 개구부(TH1)의 상부 영역의 폭(W1)이 상기 제1 본딩부(121)의 폭에 비해 작거나 같게 제공될 수 있다. 또한, 상기 제2 개구부(TH2)의 상부 영역의 폭이 상기 제2 본딩부(122)의 폭에 비해 작거나 같게 제공될 수 있다.
따라서, 상기 발광소자(120)의 상기 제1 본딩부(121)와 상기 제1 프레임(111)이 더 견고하게 부착될 수 있다. 또한, 상기 발광소자(120)의 상기 제2 본딩부(122)와 상기 제2 프레임(112)이 더 견고하게 부착될 수 있다.
또한, 상기 제1 개구부(TH1)의 상부 영역의 폭(W1)이 상기 제1 개구부(TH1)의 하부 영역의 폭(W2)에 비해 작거나 같게 제공될 수 있다. 또한, 상기 제2 개구부(TH2)의 상부 영역의 폭이 상기 제2 개구부(TH2)의 하부 영역의 폭에 비해 작거나 같게 제공될 수 있다.
상기 제1 개구부(TH1)는 상기 제1 프레임(111)의 상면에 인접하여 배치된 상부 영역 및 상기 제1 프레임(111)의 하면에 인접하여 배치된 하부 영역을 포함할 수 있다. 예로서, 상기 제1 개구부(TH1)의 상부 영역 둘레는 상기 제1 개구부(TH1)의 하부 영역 둘레보다 작게 제공될 수 있다.
상기 제1 개구부(TH1)는 제1 방향의 둘레가 제일 작은 제1 지점을 포함하고, 상기 제1 지점은 상기 제1 방향과 수직한 방향을 기준으로 상기 제1 개구부(TH1)의 하부 영역 보다 상기 제1 개구부(TH1)의 상부 영역에 더 가깝게 배치될 수 있다.
또한, 상기 제2 개구부(TH2)는 상기 제2 프레임(112)의 상면에 인접하여 배치된 상부 영역 및 상기 제2 프레임(112)의 하면에 인접하여 배치된 하부 영역을 포함할 수 있다. 예로서, 상기 제2 개구부(TH2)의 상부 영역 둘레는 상기 제2 개구부(TH2)의 하부 영역 둘레보다 작게 제공될 수 있다.
상기 제2 개구부(TH2)는 제1 방향의 둘레가 제일 작은 제1 지점을 포함하고, 상기 제1 지점은 상기 제1 방향과 수직한 방향을 기준으로 상기 제2 개구부(TH2)의 하부 영역 보다 상기 제2 개구부(TH2)의 상부 영역에 더 가깝게 배치될 수 있다.
도 4를 참조하면, 상기 제1 및 제2 개구부(TH1, TH2)를 형성하는 공정에서, 상기 제1 및 제2 리드 프레임(111, 112)의 상면 방향과 하면 방향에서 식각이 각각 수행된 경우를 나타낸 것이다.
상기 제1 및 제2 리드 프레임(111, 112)의 상면 방향과 하면 방향에서 각각 식각이 진행됨에 따라, 상기 제1 및 제2 개구부(TH1, TH2)의 형상이 일종의 눈사람 형상으로 제공될 수 있다.
상기 제1 및 제2 개구부(TH1, TH2)는 하부 영역에서 중간 영역으로 가면서 폭이 점차적으로 증가되다가 다시 감소될 수 있다. 또한, 폭이 감소된 중간 영역에서 다시 상부 영역으로 가면서 폭이 점차적으로 증가되다가 다시 감소될 수 있다.
앞에서 설명된 상기 제1 및 제2 개구부(TH1, TH2)의 제1 지점은 눈사람 형상에서 개구부의 크기가 하부 영역에서 상부 영역으로 가면서 작아졌다가 다시 커지는 경계 영역을 지칭할 수 있다.
상기 제1 및 제2 개구부(TH1, TH2)는 상기 제1 및 제2 프레임(111, 112) 각각의 상면에 배치된 제1 영역, 상기 제1 및 제2 프레임(111, 112) 각각의 하면에 배치된 제2 영역을 포함할 수 있다. 상기 제1 영역의 상면의 폭은 상기 제2 영역의 하면의 폭 보다 작게 제공될 수 있다.
또한, 상기 제1 및 제2 프레임(111, 112)은 지지부재와 상기 지지부재를 감싸는 제1 및 제2 금속층(111a, 112a)을 포함할 수 있다.
실시예에 의하면, 상기 제1 및 제2 개구부(TH1, TH2)를 형성하는 식각 공정이 완료된 후, 상기 제1 및 제2 프레임(111, 112)을 구성하는 상기 지지부재에 대한 도금 공정 등을 통하여 상기 제1 및 제2 금속층(111a, 112a)이 형성될 수 있다. 이에 따라, 상기 제1 및 제2 프레임(111, 112)을 구성하는 지지부재의 표면에 상기 제1 및 제2 금속층(111a, 112a)이 형성될 수 있다.
상기 제1 및 제2 금속층(111a, 112a)은 상기 제1 및 제2 프레임(111, 112)의 상면 및 하면에 제공될 수 있다. 또한, 상기 제1 및 제2 금속층(111a, 112a)은 상기 제1 및 제2 개구부(TH1, TH2)와 접하는 경계 영역에 제공될 수도 있다.
한편, 상기 제1 및 제2 개구부(TH1, TH2)와 접하는 경계 영역에 제공된 상기 제1 및 제2 금속층(111a, 112a)은 상기 제1 및 제2 개구부(TH1, TH2)에 제공되는 제1 및 제2 도전층(321, 322)과 결합되어 제1 및 제2 합금층(111b, 112b)으로 형성될 수 있다.
예로서, 상기 제1 및 제2 프레임(111, 112)은 기본 지지부재로서 Cu층으로 제공될 수 있다. 또한, 상기 제1 및 제2 금속층(111a, 112a)은 Ni층, Ag층 등에서 적어도 하나를 포함할 수 있다.
상기 제1 및 제2 금속층(111a, 112a)이 Ni층을 포함하는 경우, Ni층은 열 팽창에 대한 변화가 작으므로, 패키지 몸체가 열 팽창에 의하여 그 크기 또는 배치 위치가 변화되는 경우에도, 상기 Ni층에 의하여 상부에 배치된 발광소자의 위치가 안정적으로 고정될 수 있게 된다. 상기 제1 및 제2 금속층(111a, 112a)이 Ag층을 포함하는 경우, Ag층은 상부에 배치된 발광소자에서 발광되는 빛을 효율적으로 반사시키고 광도를 향상시킬 수 있다.
실시예에 의하면, 상기 광 추출 효율을 개선하기 위해 발광소자(120)의 제1 및 제2 본딩부(121, 122)의 크기를 작게 배치하는 경우, 상기 제1 개구부(TH1)의 상부 영역의 폭이 상기 제1 본딩부(121)의 폭에 비해 더 크거나 같게 제공될 수 있다. 또한, 상기 제2 개구부(TH2)의 상부 영역의 폭이 상기 제2 본딩부(122)의 폭에 비해 더 크거나 같게 제공될 수 있다.
또한, 상기 제1 개구부(TH1)의 상부 영역의 폭이 상기 제1 개구부(TH1)의 하부 영역의 폭에 비해 작거나 같게 제공될 수 있다. 또한, 상기 제2 개구부(TH2)의 상부 영역의 폭이 상기 제2 개구부(TH2)의 하부 영역의 폭에 비해 작거나 같게 제공될 수 있다.
예로서, 상기 제1 개구부(TH1)의 상부 영역의 폭은 수십 마이크로 미터 내지 수백 마이크로 미터로 제공될 수 있다. 또한, 상기 제1 개구부(TH1)의 하부 영역의 폭은 상기 제1 개구부(TH1)의 상부 영역의 폭에 비하여 수십 마이크로 미터 내지 수백 마이크로 미터 더 크게 제공될 수 있다.
또한, 상기 제2 개구부(TH2)의 상부 영역의 폭은 수십 마이크로 미터 내지 수백 마이크로 미터로 제공될 수 있다. 또한, 상기 제2 개구부(TH2)의 하부 영역의 폭은 상기 제2 개구부(TH2)의 상부 영역의 폭에 비하여 수십 마이크로 미터 내지 수백 마이크로 미터 더 크게 제공될 수 있다.
상기 제1 프레임(111) 및 상기 제2 프레임(112)의 하면 영역에서 상기 제1 개구부(TH1)와 상기 제2 개구부(TH2) 사이의 폭(W3)은 수백 마이크로 미터로 제공될 수 있다. 상기 제1 프레임(111) 및 상기 제2 프레임(112)의 하면 영역에서 상기 제1 개구부(TH1)와 상기 제2 개구부(TH2) 사이의 폭(W3)은 예로서 100 마이크로 미터 내지 150 마이크로 미터로 제공될 수 있다.
상기 제1 프레임(111) 및 상기 제2 프레임(112)의 하면 영역에서 상기 제1 개구부(TH1)와 상기 제2 개구부(TH2) 사이의 폭(W3)은, 실시예에 따른 발광소자 패키지(100)가 추후 회로기판, 서브 마운트 등에 실장되는 경우에, 패드 간의 전기적인 단락(short)이 발생되는 것을 방지하기 위하여 일정 거리 이상으로 제공되도록 선택될 수 있다.
<반사층>
실시예에 따른 발광소자 패키지(100)는, 도 3a과 같이 몸체(113)가 반사층을 기능을 하거나, 도 3b 및 도 4과 같이 별도의 반사층(190)을 포함할 수 있다.
앞서 기술한 바와 같이, 종래기술에서는 발광소자 패키지에서, 광도 향상을 위해 발광소자 패키지의 캐비티 내에 반사층을 배치하는 기술이 연구되고 있다.
그런데, 종래기술에서 패키지 몸체의 캐비티에 형성되는 반사층은 소정의 둔턱이나 스텝을 구비함에 따라 둔턱이나 스텝에서 빛의 차단을 방지하기 위해 발광소자와 반사층을 소정 거리 이상 이격시켜야 하는 기술적 한계에 따라 발광소자에서의 반사율 저하와 아울러 발광소자 패키지의 사이즈가 커져야하는 문제가 있다.
이에 실시예는 발광소자 패키지에서 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공함을 기술적 과제로 한다.
도 3a와 도 3b를 참조하면, 실시예에서 캐비티(C)를 포함하는 몸체(113) 형성시, 캐비티(C)의 측면을 유선형의 경사면(113S)으로 형성함으로써, 이후 캐비티(C)의 측면에 형성되는 반사층(190)이 유선형의 경사면을 구비할 수 있도록 할 수 있다.
예를 들어, 실시예에 의하면 몸체(113)를 몰딩 공정으로 형성 시, 흐름성이 낮은 폴리프탈아미드(PPA: Polyphthalamide) 또는 PCT(Polychloro Tri phenyl) 등으로 형성함으로써 유선형의 경사면을 구비할 수 있도록 형성할 수 있다.
이에 따라 몸체(113)에서 캐비티(C)의 측면하단(113B)이 유선형이면서, 캐비티(C) 하단 끝단에 둔턱이나 스텝이 없이 캐비티(C)를 형성할 수 있다.
또한 제3 실시예는 상기 캐비티(C)의 측면에 상기 반사층(190)이 몰딩 또는 도팅(dotting) 공정으로 배치될 수 있다. 상기 반사층(190)은 반사성 수지층일 수 있으나 이에 한정되는 것은 아니다.
상기 반사층(190)은 화이트 계열 실리콘(white silicone)을 포함할 수 있다. 예를 들어, 기 반사층(190)은 실리콘에 TiO2, ZnO, Al2O3, BN 등을 포함하는 물질로 구성될 수 있으나 이에 한정되는 것은 아니다.
상기 몸체(113)나 반사층(190)은 캐비티(C) 상측에서 갭필 공정으로 진행될 수 있다.
또는 상기 몸체(113)는 프레임에 형성된 제1 개구부(TH1) 또는 제2 개구부(TH2)를 통해 하측 갭필 공정을 통해 형성될 수 있다. 또는 상기 반사층(190)은 상측 갭필 공정과 하측 갭필 공정이 동시 진행되어 형성될 수도 있다.
한편, 종래기술은 반사층을 유선형의 경사면으로 형성하는 점에 어려움이 있었다. 이에 따라 광 캐비티(light cavity)의 구현의 어려움이 있었다.
그런데, 실시예에 의하면 몸체(113)의 캐비티 하단(113B)이나 반사층(190)을 유선형의 경사면(113S)을 구비하도록 발광소자 주위에 배치하여 확산 반사(diffusing Reflection)이 가능하여 광 캐비티(light cavity)의 구현함으로써 광의 휘도가 현저히 향상될 수 있다.
또한 종래기술은 반사층의 저면이 소정의 둔턱이나 스텝을 구비함에 따라 광차단을 방지하기 위해, 반사층과 발광소자를 소정 거리 이상을 이격시켜야 하는 기술적 한계가 있었다.
그런데, 도 4와 같이, 실시예에서 몸체(113)나 반사층 저면(190B)이 둔턱 또는 스텝(step)이 없이 형성 또는 배치가 가능하다.
이에 따라 도 3a와 도 3b에서와 같이, 발광소자(120)를 캐비티 하단(113B)이나 반사층의 하단(190B)으로부터 매우 인접하도록 배치함으로써 컴팩트한 발광소자 패키지를 제공함과 아울러 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
예를 들어, 도 3a와 도 3b을 참조하면, 상기 발광소자(120)는 제1 축(X) 방향으로 제1 폭(W10)을 구비하고, 상기 발광소자(120)와 상기 반사층(190) 사이는 제1 축(X) 방향으로 제2 거리(D20)로 이격될 수 있다. 상기 제1 축(X)은 도 1에서 D-D라인과 평행한 방향일 수 있다. 제2 축(Y)은 제1 축(X)에 수직한 방향일 수 있다.
예를 들어, 상기 발광소자(120)는 제1 축(X) 방향으로 500 ㎛ 내지 1500㎛의 제1 폭(W10)을 구비할 수 있고, 상기 발광소자(120)와 상기 반사층(190) 사이는 제1 축(X) 방향으로 10㎛ 내지 50㎛ 제2 거리(D20)로 이격될 수 있다. 이에 따라, 상기 제2 거리(D20)는 상기 제1 폭(W10)의 1/150~1/10 범위일 수 있다.
예를 들어, 상기 발광소자(120)의 측면과 몸체의 캐비티 하단(113B)이나 상기 반사층(190)의 하단(190B) 사이의 거리는 약 50 ㎛ 이내일 수 있다. 예를 들어, 상기 발광소자(120)의 측면과 상기 반사층(190)의 하단(190B) 사이의 거리는 약 10 ㎛ 내지 약 50 ㎛이내일 수 있다.
상기 발광소자(120)의 측면과 몸체의 캐비티 하단(113B)이나 반사층(190)의 하단(190B) 사이의 거리가 약 10 ㎛ 내지 약 50 ㎛이내로 배치됨에 따라, 발광소자(120)를 반사층(190)으로부터 매우 인접하도록 배치함으로써 컴팩트한 발광소자 패키지를 제공함과 아울러 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
실시예는 발광소자 패키지에서 발광소자 주의에 반사층을 유선형으로 배치함으로써 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
또한 실시예는 발광소자 패키지에서 발광소자와 반사층을 근접하게 배치시킴으로써 컴팩트한 발광소자 패키지를 제공함과 아울러 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
<제1 수지층, 발광소자>
다음으로, 도 3b 및 도 5을 참조하면, 실시예에 따른 발광소자 패키지(100)는 제1 수지층(130)을 포함할 수 있다.
상기 제1 수지층(130)은 상기 몸체(113)와 상기 발광소자(120) 사이에 배치될 수 있다. 상기 제1 수지층(130)은 상기 몸체(113)의 상면과 상기 발광소자(120)의 하면 사이에 배치될 수 있다.
또한, 실시예에 따른 발광소자 패키지(100)는, 도 3b, 도 4에 도시된 바와 같이, 리세스(R)를 포함할 수 있다.
상기 리세스(R)는 상기 몸체(113)에 제공될 수 있다. 상기 리세스(R)는 상기 제1 개구부(TH1)와 상기 제2 개구부(TH2) 사이에 제공될 수 있다. 상기 리세스(R)는 상기 몸체(113)의 상면에서 하면 방향으로 오목하게 제공될 수 있다. 상기 리세스(R)는 상기 발광소자(120) 아래에 배치될 수 있다. 상기 리세스(R)는 상기 발광소자(120)와 상기 제1 방향에서 중첩되어 제공될 수 있다.
예로서, 도 5 및 도 6과 같이 상기 제1 수지층(130)은 상기 리세스(R)에 배치될 수 있다. 상기 제1 수지층(130)은 상기 발광소자(120)와 상기 몸체(113) 사이에 배치될 수 있다. 상기 제1 수지층(130)은 상기 제1 본딩부(121)와 상기 제2 본딩부(122) 사이에 배치될 수 있다. 예로서, 상기 제1 수지층(130)은 상기 제1 본딩부(121)의 측면과 상기 제2 본딩부(122)의 측면에 접촉되어 배치될 수 있다.
상기 제1 수지층(130)은 상기 발광소자(120)와 상기 패키지 몸체(110) 간의 안정적인 고정력을 제공할 수 있다. 상기 제1 수지층(130)은 상기 발광소자(120)와 상기 몸체(113) 간의 안정적인 고정력을 제공할 수 있다. 상기 제1 수지층(130)은 예로서 상기 몸체(113)의 상면에 직접 접촉되어 배치될 수 있다. 또한, 상기 제1 수지층(130)은 상기 발광소자(120)의 하부 면에 직접 접촉되어 배치될 수 있다.
예로서, 상기 제1 수지층(130)은 에폭시(epoxy) 계열의 물질, 실리콘(silicone) 계열의 물질, 에폭시 계열의 물질과 실리콘 계열의 물질을 포함하는 하이브리드(hybrid) 물질 중에서 적어도 하나를 포함할 수 있다. 또한 예로서, 상기 제1 수지층(130)가 반사 기능을 포함하는 경우 상기 접착제는 화이트 실리콘(white silicone)을 포함할 수 있다.
상기 제1 수지층(130)은 상기 몸체(113)와 상기 발광소자(120) 간의 안정적인 고정력을 제공할 수 있고, 상기 발광소자(120)의 하면으로 광이 방출되는 경우, 상기 발광소자(120)와 상기 몸체(113) 사이에서 광 확산 기능을 제공할 수 있다. 상기 발광소자(120)로부터 상기 발광소자(120)의 하면으로 광이 방출될 때 상기 제1 수지층(130)은 광 확산 기능을 제공함으로써 상기 발광소자 패키지(100)의 광 추출 효율을 개선할 수 있다. 또한, 상기 제1 수지층(130)은 상기 발광소자(120)에서 방출하는 광을 반사할 수 있다. 상기 제1 수지층(130)가 반사 기능을 포함하는 경우, 상기 제1 수지층(130)은 TiO2, SiO2 등을 포함하는 물질로 구성될 수 있다.
실시예에 의하면, 상기 리세스(R)의 깊이(T1)는 상기 제1 개구부(TH1)의 깊이(T2) 또는 상기 제2 개구부(TH2)의 깊이(T2)에 비해 작게 제공될 수 있다.
상기 리세스(R)의 깊이(T1)는 상기 제1 수지층(130)의 접착력을 고려하여 결정될 수 있다. 또한, 상기 리세스(R)이 깊이(T1)는 상기 몸체(113)의 안정적인 강도를 고려하거나 및/또는 상기 발광소자(120)에서 방출되는 열에 의해 상기 발광소자 패키지(100)에 크랙(crack)이 발생하지 않도록 결정될 수 있다.
상기 리세스(R)는 상기 발광소자(120) 하부에 일종의 언더필(under fill) 공정이 수행될 수 있는 적정 공간을 제공할 수 있다. 여기서, 상기 언더필(Under fill) 공정은 발광소자(120)를 패키지 몸체(110)에 실장한 후 상기 제1 수지층(130)을 상기 발광소자(120) 하부에 배치하는 공정일 수 있고, 상기 발광소자(120)를 패키지 몸체(110)에 실장하는 공정에서 상기 제1 수지층(130)을 통해 실장하기 위해 상기 제1 수지층(130)을 상기 리세스(R)에 배치 후 상기 발광소자(120)를 배치하는 공정일 수 있다. 상기 리세스(R)는 상기 발광소자(120)의 하면과 상기 몸체(113)의 상면 사이에 상기 제1 수지층(130)가 충분히 제공될 수 있도록 제1 깊이 이상으로 제공될 수 있다. 또한, 상기 리세스(R)는 상기 몸체(113)의 안정적인 강도를 제공하기 위하여 제2 깊이 이하로 제공될 수 있다.
상기 리세스(R)의 깊이(T1)와 폭(W4)은 상기 제1 수지층(130)의 형성 위치 및 고정력에 영향을 미칠 수 있다. 상기 리세스(R)의 깊이(T1)와 폭(W4)은 상기 몸체(113)와 상기 발광소자(120) 사이에 배치되는 상기 제1 수지층(130)에 의하여 충분한 고정력이 제공될 수 있도록 결정될 수 있다.
예로서, 상기 리세스(R)의 깊이(T1)는 수십 마이크로 미터로 제공될 수 있다. 상기 리세스(R)의 깊이(T1)는 40 마이크로 미터 내지 60 마이크로 미터로 제공될 수 있다.
또한, 상기 리세스(R)의 폭(W4)은 수십 마이크로 미터 내지 수백 마이크로 미터로 제공될 수 있다. 여기서, 상기 리세스(R)의 폭(W4)은 상기 발광소자(120)의 장축 방향으로 제공될 수 있다.
상기 리세스(R)의 폭(W4)은 상기 제1 본딩부(121)와 상기 제2 본딩부(122) 간의 간격에 비해 좁게 제공될 수 있다. 상기 리세스(R)의 폭(W4)은 140 마이크로 미터 내지 160 마이크로 미터로 제공될 수 있다. 예로서, 상기 리세스(R)의 폭(W4)은 150 마이크로 미터로 제공될 수 있다.
상기 제1 개구부(TH1)의 깊이(T2)는 상기 제1 프레임(111)의 두께에 대응되어 제공될 수 있다. 상기 제1 개구부(TH1)의 깊이(T2)는 상기 제1 프레임(111)의 안정적인 강도를 유지할 수 있는 두께로 제공될 수 있다.
상기 제2 개구부(TH2)의 깊이(T2)는 상기 제2 프레임(112)의 두께에 대응되어 제공될 수 있다. 상기 제2 개구부(TH2)의 깊이(T2)는 상기 제2 프레임(112)의 안정적인 강도를 유지할 수 있는 두께로 제공될 수 있다.
상기 제1 개구부(TH1)의 깊이(T2) 및 상기 제2 개구부(TH2)의 깊이(T2)는 상기 몸체(113)의 두께에 대응되어 제공될 수 있다. 상기 제1 개구부(TH1)의 깊이(T2) 및 상기 제2 개구부(TH2)의 깊이(T2)는 상기 몸체(113)의 안정적인 강도를 유지할 수 있는 두께로 제공될 수 있다.
예로서, 상기 제1 개구부(TH1)의 깊이(T2)는 수백 마이크로 미터로 제공될 수 있다. 상기 제1 개구부(TH1)의 깊이(T2)는 180 마이크로 미터 내지 220 마이크로 미터로 제공될 수 있다. 예로서, 상기 제1 개구부(TH1)의 깊이(T2)는 200 마이크로 미터로 제공될 수 있다.
예로서, 상기 (T2-T1)의 두께는 적어도 100 마이크로 미터 이상으로 선택될 수 있다. 이는 상기 몸체(113)의 크랙 프리(crack free)를 제공할 수 있는 사출 공정 두께가 고려된 것이다.
실시예에 의하면, T1 두께와 T2 두께의 비(T2/T1)는 2 내지 10으로 제공될 수 있다. 예로서, T2의 두께가 200 마이크로 미터로 제공되는 경우, T1의 두께는 20 마이크로 미터 내지 100 마이크로 미터로 제공될 수 있다.
<몰딩부>
다음으로, 도 6과 같이, 상기 캐비티(C)에 몰딩부(140)가 배치될 수 있다.
상기 몰딩부(140)는 광투광성 물질일 수 있고, 광확산 입자를 포함할 수 있다. 예를 들어, 상기 몰딩부(140)는 에폭시(epoxy) 계열의 물질, 실리콘(silicone) 계열의 물질, 에폭시 계열의 물질과 실리콘 계열의 물질을 포함하는 하이브리드(hybrid) 물질 중에서 적어도 하나를 포함할 수 있다. 예를 들어, 상기 몰딩부(140)는 클리어(Clear) 계열 실리콘(silicone) 또는 광확산 입자, 예를 들어 ZrO2, ZnO, Al2O3 등이 함유된 실리콘(Silicone)을 포함할 수 있다.
상기 몰딩부(140)에는 파장변환물질이 포함될 수 있다. 예를 들어, 상기 몰딩부(140)는 형광체층을 포함할 수 있으며, 형광체층은 상기 발광소자(120)로부터 방출되는 빛을 입사 받고, 파장 변환된 빛을 제공하는 파장변환 수단일 수 있다. 예로서, 상기 형광체층은 형광체, 양자점 등을 포함하는 그룹 중에서 선택된 적어도 하나를 할 수 있다.
<제1 도전층, 제2 도전층, 제1 및 제2 합금층>
또한, 실시예에 따른 발광소자 패키지(100)는, 도 3a, 도 3b 및 도 7에 도시된 바와 같이, 제1 도전층(321)과 제2 도전층(322)을 포함할 수 있다. 상기 제1 도전층(321)은 상기 제2 도전층(322)과 이격되어 배치될 수 있다.
상기 제1 도전층(321)은 상기 제1 개구부(TH1)에 제공될 수 있다. 상기 제1 도전층(321)은 상기 제1 본딩부(121) 아래에 배치될 수 있다. 상기 제1 도전층(321)의 폭은 상기 제1 본딩부(121)의 폭에 비해 더 작게 제공될 수 있다.
상기 제1 본딩부(121)는 상기 제1 개구부(TH1)가 형성된 제1 방향과 수직한 제2 방향의 폭을 가질 수 있다. 상기 제1 본딩부(121)의 폭은 상기 제1 개구부(TH1)의 상기 제2 방향의 폭보다 더 크게 제공될 수 있다.
상기 제1 도전층(321)은 상기 제1 본딩부(121)의 하면과 직접 접촉되어 배치될 수 있다. 상기 제1 도전층(321)은 상기 제1 본딩부(121)와 전기적으로 연결될 수 있다. 상기 제1 도전층(321)은 상기 제1 프레임(111)에 의하여 둘러 싸이게 배치될 수 있다. 상기 제1 도전층(321)의 하면은 하부에서 상부 방향으로 오목한 형상으로 배치될 수 있다.
상기 제2 도전층(322)은 상기 제2 개구부(TH2)에 제공될 수 있다. 상기 제2 도전층(322)은 상기 제2 본딩부(122) 아래에 배치될 수 있다. 상기 제2 도전층(322)의 폭은 상기 제2 본딩부(122)의 폭에 비해 더 작게 제공될 수 있다.
상기 제2 본딩부(122)는 상기 제2 개구부(TH2)가 형성된 제1 방향과 수직한 제2 방향의 폭을 가질 수 있다. 상기 제2 본딩부(122)의 폭은 상기 제2 개구부(TH2)의 상기 제2 방향의 폭보다 더 크게 제공될 수 있다.
상기 제2 도전층(322)은 상기 제2 본딩부(122)의 하면과 직접 접촉되어 배치될 수 있다. 상기 제2 도전층(322)은 상기 제2 본딩부(122)와 전기적으로 연결될 수 있다. 상기 제2 도전층(322)은 상기 제2 프레임(112)에 의하여 둘러 싸이게 배치될 수 있다. 상기 제2 도전층(322)의 하면은 하부에서 상부 방향으로 오목한 형상으로 배치될 수 있다.
상기 제1 도전층(321)과 상기 제2 도전층(322)은 Ag, Au, Pt, Sn, Cu 등을 포함하는 그룹 중에서 선택된 하나의 물질 또는 그 합금을 포함할 수 있다. 다만 이에 한정하지 않고, 상기 제1 도전층(321)과 상기 제2 도전층(322)으로 전도성 기능을 확보할 수 있는 물질이 사용될 수 있다.
예로서, 상기 제1 도전층(321)과 상기 제2 도전층(322)은 도전성 페이스트를 이용하여 형성될 수 있다. 상기 도전성 페이스트는 솔더 페이스트(solder paste), 실버 페이스트(silver paste) 등을 포함할 수 있고, 서로 다른 물질로 구성되는 다층 또는 합금으로 구성된 다층 또는 단층으로 구성될 수 있다. 예로서, 상기 제1 도전층(321)과 상기 제2 도전층(322)은 SAC(Sn-Ag-Cu) 물질을 포함할 수 있다.
실시예에 의하면, 상기 제1 및 제 2 도전층(321, 322)이 형성되는 과정 또는 상기 제1 및 제2 도전층(321, 322)이 제공된 후 열처리 과정에서, 상기 제1 및 제2 도전층(321, 322)과 상기 제1 및 제2 프레임(111, 112) 사이에 금속간 화합물(IMC; intermetallic compound)층이 형성될 수 있다.
예로서, 상기 제1 및 제2 도전층(321, 322)을 이루는 물질과 상기 제1 및 제2 프레임(111, 112)의 제1 및 제2 금속층(111a, 112a) 간의 결합에 의해 제1 및 제2 합금층(111b, 112b)이 형성될 수 있다.
이에 따라, 상기 제1 도전층(321)과 상기 제1 프레임(111)이 물리적으로 또한 전기적으로 안정하게 결합될 수 있게 된다. 상기 제1 도전층(321), 상기 제1 합금층(111b), 상기 제1 프레임(111)이 물리적으로 또한 전기적으로 안정하게 결합될 수 있게 된다.
또한, 상기 제2 도전층(322)과 상기 제2 프레임(112)이 물리적으로 또한 전기적으로 안정하게 결합될 수 있게 된다. 상기 제2 도전층(322), 상기 제2 합금층(212b), 상기 제2 프레임(112)이 물리적으로 또한 전기적으로 안정하게 결합될 수 있게 된다.
예로서, 상기 제1 및 제2 합금층(111b, 112b)은 AgSn, CuSn, AuSn 등을 포함하는 그룹 중에서 선택된 적어도 하나의 금속간 화합물층을 포함할 수 있다. 상기 금속간 화합물층은 제1 물질과 제2 물질의 결합으로 형성될 수 있으며, 제1 물질은 상기 제1 및 제2 도전층(321, 322)으로부터 제공될 수 있고, 제2 물질은 상기 제1 및 제2 금속층(111a, 112a) 또는 상기 제1 및 제2 프레임(111, 112)의 지지부재로부터 제공될 수 있다.
상기 제1 및 제2 도전층(321, 322)이 Sn 물질을 포함하고 상기 제1 및 제2 금속층(111a, 112a)이 Ag 물질을 포함하는 경우, 상기 제1 및 제2 도전층(321, 322)이 제공되는 과정 또는 제공된 후의 열처리 과정에서 Sn 물질과 Ag 물질의 결합에 의하여 AgSn의 금속간 화합물층이 형성될 수 있다.
또한, 상기 제1 및 제2 도전층(321, 322)이 Sn 물질을 포함하고 상기 제1 및 제2 금속층(111a, 112a)이 Au 물질을 포함하는 경우, 상기 제1 및 제2 도전층(321, 322)이 제공되는 과정 또는 제공된 후의 열처리 과정에서 Sn 물질과 Au 물질의 결합에 의하여 AuSn의 금속간 화합물층이 형성될 수 있다.
또한, 상기 제1 및 제2 도전층(321, 322)이 Sn 물질을 포함하고 상기 제1 및 제2 프레임(111, 112)의 지지부재가 Cu 물질을 포함하는 경우, 상기 제1 및 제2 도전층(321, 322)이 제공되는 과정 또는 제공된 후의 열처리 과정에서 Sn 물질과 Cu 물질의 결합에 의하여 CuSn의 금속간 화합물층이 형성될 수 있다.
또한, 상기 제1 및 제2 도전층(321, 322)이 Ag 물질을 포함하고 상기 제1 및 제2 금속층(111a, 111b) 또는 상기 제1 및 제2 프레임(111, 112)의 지지부재가 Sn 물질을 포함하는 경우, 상기 제1 및 제2 도전층(321, 322)이 제공되는 과정 또는 제공된 후의 열처리 과정에서 Ag 물질과 Sn 물질의 결합에 의하여 AgSn의 금속간 화합물층이 형성될 수 있다.
이상에서 설명된 금속간 화합물층은 일반적인 본딩 물질에 비해 더 높은 용융점을 가질 수 있다. 또한, 상기 금속한 화합물층이 형성되는 열처리 공정은 일반적인 본딩 물질의 용융점에 비해 더 낮은 온도에서 수행될 수 있다.
따라서, 실시예에 따른 발광소자 패키지(100)는 메인 기판 등에 리플로우(reflow) 공정을 통해 본딩되는 경우에도 리멜팅(re-melting) 현상이 발생되지 않으므로 전기적 연결 및 물리적 본딩력이 열화되지 않는 장점이 있다.
또한, 실시예에 따른 발광소자 패키지(100) 및 발광소자 패키지 제조방법에 의하면, 발광소자 패키지를 제조하는 공정에서 패키지 몸체(110)가 고온에 노출될 필요가 없게 된다. 따라서, 실시예에 의하면, 패키지 몸체(110)가 고온에 노출되어 손상되거나 변색이 발생되는 것을 방지할 수 있다.
이에 따라, 몸체(113)를 구성하는 물질에 대한 선택 폭이 넓어질 수 있게 된다. 실시예에 의하면, 상기 몸체(113)는 세라믹 등의 고가의 물질뿐만 아니라, 상대적으로 저가의 수지 물질을 이용하여 제공될 수도 있다.
예를 들어, 상기 몸체(113)는 PPA(PolyPhtalAmide) 수지, PCT(PolyCyclohexylenedimethylene Terephthalate) 수지, EMC(Epoxy Molding Compound) 수지, SMC(Silicone Molding Compound) 수지를 포함하는 그룹 중에서 선택된 적어도 하나의 물질을 포함할 수 있다.
또한 실시예에서 캐비티(C)를 포함하는 몸체(113) 형성시, 캐비티(C)의 측면을 유선형의 경사면으로 형성함으로써, 이후 캐비티(C)의 측면에 형성되는 반사층(190)이 유선형의 경사면을 구비할 수 있도록 할 수 있다.
예를 들어, 실시예에 의하면 몸체(113)를 몰딩 공정으로 형성 시, 흐름성이 낮은 폴리프탈아미드(PPA: Polyphthalamide) 또는 PCT(Polychloro Tri phenyl) 등으로 형성함으로써 유선형의 경사면을 구비할 수 있도록 형성할 수 있다.
이에 따라 실시예는 발광소자 패키지에서 발광소자 주의에 반사층을 유선형으로 배치함으로써 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
또한 실시예에서 몸체(113)에서 캐비티(C)의 측면이 유선형이면서, 캐비티(C) 하단 끝단에 둔턱이 없이 캐비티(C)를 형성할 수 있다.
이에 따라 실시예는 발광소자 패키지에서 발광소자와 반사층을 근접하게 배치시킴으로써 컴팩트한 발광소자 패키지를 제공함과 아울러 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
한편, 실시예에 의하면, 상기 제1 및 제2 본딩부(121, 122)와 상기 제1 및 제2 도전층(321, 322) 사이에도 금속간 화합물층이 형성될 수도 있다.
이상에서 설명된 바와 유사하게, 실시예에 의하면, 상기 제1 및 제 2 도전층(321, 322)이 형성되는 과정 또는 상기 제1 및 제2 도전층(321, 322)이 제공된 후 열처리 과정에서, 상기 제1 및 제2 도전층(321, 322)과 상기 제1 및 제2 본딩부(121, 122) 사이에 금속간 화합물(IMC; intermetallic compound)층이 형성될 수 있다.
예로서, 상기 제1 및 제2 도전층(321, 322)을 이루는 물질과 상기 제1 및 제2 본딩부(121, 122) 간의 결합에 의해 합금층이 형성될 수 있다.
이에 따라, 상기 제1 도전층(321)과 상기 제1 본딩부(121)가 물리적으로 또한 전기적으로 더 안정하게 결합될 수 있게 된다. 상기 제1 도전층(321), 합금층, 상기 제1 본딩부(121)가 물리적으로 또한 전기적으로 안정하게 결합될 수 있게 된다.
또한, 상기 제2 도전층(322)과 상기 제2 본딩부(122)가 물리적으로 또한 전기적으로 더 안정하게 결합될 수 있게 된다. 상기 제2 도전층(322), 합금층, 상기 제2 본딩부(122)가 물리적으로 또한 전기적으로 안정하게 결합될 수 있게 된다.
예로서, 상기 합금층은 AgSn, CuSn, AuSn 등을 포함하는 그룹 중에서 선택된 적어도 하나의 금속간 화합물층을 포함할 수 있다. 상기 금속간 화합물층은 제1 물질과 제2 물질의 결합으로 형성될 수 있으며, 제1 물질은 상기 제1 및 제2 도전층(321, 322)으로부터 제공될 수 있고, 제2 물질은 상기 제1 및 제2 본딩부(121, 122)로부터 제공될 수 있다.
상기 제1 및 제2 도전층(321, 322)이 Sn 물질을 포함하고 상기 제1 및 제2 본딩부(121, 122)가 Ag 물질을 포함하는 경우, 상기 제1 및 제2 도전층(321, 322)이 제공되는 과정 또는 제공된 후의 열처리 과정에서 Sn 물질과 Ag 물질의 결합에 의하여 AgSn의 금속간 화합물층이 형성될 수 있다.
또한, 상기 제1 및 제2 도전층(321, 322)이 Sn 물질을 포함하고 상기 제1 및 제2 본딩부(121, 122)가 Au 물질을 포함하는 경우, 상기 제1 및 제2 도전층(321, 322)이 제공되는 과정 또는 제공된 후의 열처리 과정에서 Sn 물질과 Au 물질의 결합에 의하여 AuSn의 금속간 화합물층이 형성될 수 있다.
또한, 상기 제1 및 제2 도전층(321, 322)이 Ag 물질을 포함하고 상기 제1 및 제2 본딩부(121, 121)가 Sn 물질을 포함하는 경우, 상기 제1 및 제2 도전층(321, 322)이 제공되는 과정 또는 제공된 후의 열처리 과정에서 Ag 물질과 Sn 물질의 결합에 의하여 AgSn의 금속간 화합물층이 형성될 수 있다.
이상에서 설명된 금속간 화합물층은 일반적인 본딩 물질에 비해 더 높은 용융점을 가질 수 있다. 또한, 상기 금속한 화합물층이 형성되는 열처리 공정은 일반적인 본딩 물질의 용융점에 비해 더 낮은 온도에서 수행될 수 있다.
따라서, 실시예에 따른 발광소자 패키지(100)는 메인 기판 등에 리플로우(reflow) 공정을 통해 본딩되는 경우에도 리멜팅(re-melting) 현상이 발생되지 않으므로 전기적 연결 및 물리적 본딩력이 열화되지 않는 장점이 있다.
또한, 실시예에 따른 발광소자 패키지(100)는, 도 3a, 도 3b 및 도 7에 도시된 바와 같이, 제1 하부 리세스(R11)와 제2 하부 리세스(R12)를 포함할 수 있다. 상기 제1 하부 리세스(R11)와 상기 제2 하부 리세스(R12)는 서로 이격되어 배치될 수 있다.
상기 제1 하부 리세스(R11)는 상기 제1 프레임(111)의 하면에 제공될 수 있다. 상기 제1 하부 리세스(R11)는 상기 제1 프레임(111)의 하면에서 상면 방향으로 오목하게 제공될 수 있다. 상기 제1 하부 리세스(R11)는 상기 제1 개구부(TH1)로부터 이격되어 배치될 수 있다.
상기 제1 하부 리세스(R11)는 수 마이크로 미터 내지 수십 마이크로 미터의 폭으로 제공될 수 있다. 상기 제1 하부 리세스(R11)에 수지부가 제공될 수 있다. 상기 제1 하부 리세스(R11)에 채워진 수지부는 예로서 상기 몸체(113)와 동일 물질로 제공될 수 있다.
다만, 이에 한정하지 않고, 상기 수지부는 상기 제1 및 제2 도전층(321, 322)과 접착력, 젖음성이 좋지 않은 물질 중에서 선택되어 제공될 수 있다. 또는 상기 수지부는 상기 제1 및 제2 도전층(321,322)과의 표면 장력이 낮은 물질 중에서 선택되어 제공될 수 있다.
예로서, 상기 제1 하부 리세스(R11)에 채워진 수지부는 상기 제1 프레임(111), 상기 제2 프레임(112), 상기 몸체(113)가 사출 공정 등을 통하여 형성되는 과정에서 제공될 수 있다.
상기 제1 하부 리세스(R11)에 채워진 수지부는 상기 제1 개구부(TH1)를 제공하는 상기 제1 프레임(111)의 하면 영역 주위에 배치될 수 있다. 상기 제1 개구부(TH1)를 제공하는 상기 제1 프레임(111)의 하면 영역은 일종의 아일랜드(island) 형상으로 주위의 상기 제1 프레임(111)을 이루는 하면으로부터 분리되어 배치될 수 있다.
예로서, 도 2에 도시된 바와 같이, 상기 제1 개구부(TH1)를 제공하는 상기 제1 프레임(111)의 하면 영역은 상기 제1 하부 리세스(R11)에 채워진 수지부와 상기 몸체(113)에 의하여 주변의 상기 제1 프레임(111)으로부터 아이솔레이션(isolation)될 수 있다.
따라서, 상기 수지부가 상기 제1 및 제2 도전층(321, 322)과 접착력, 젖음성이 좋지 않은 물질 또는 상기 수지부와 상기 제1 및 제2 도전층(321,322) 사이의 표면 장력이 낮은 물질로 배치되는 경우 상기 제1 개구부(TH1)에 제공된 상기 제1 도전층(321)이 상기 제1 개구부(TH1)로부터 벗어나, 상기 제1 하부 리세스(R11)에 채워진 수지부 또는 상기 몸체(113)를 넘어 확산되는 것이 방지될 수 있다.
이는 상기 제1 도전층(321)과 상기 수지부 및 상기 몸체(113)의 접착 관계 또는 상기 수지부와 상기 제1 및 제2 도전층(321,322) 사이의 젖음성, 표면 장력 등이 좋지 않은 점을 이용한 것이다. 즉, 상기 제1 도전층(321)을 이루는 물질이 상기 제1 프레임(111)과 좋은 접착 특성을 갖도록 선택될 수 있다. 그리고, 상기 제1 도전층(321)을 이루는 물질이 상기 수지부 및 상기 몸체(113)와 좋지 않은 접착 특성을 갖도록 선택될 수 있다.
이에 따라, 상기 제1 도전층(321)이 상기 제1 개구부(TH1)에서 상기 수지부 또는 상기 몸체(113)가 제공된 영역 방향으로 흘러 넘쳐, 상기 수지부 또는 상기 몸체(113)가 제공된 영역 외부로 넘치거나 퍼지는 것이 방지되고, 상기 제1 도전층(321)이 상기 제1 개구부(TH1)가 제공된 영역에 안정적으로 배치될 수 있게 된다.
따라서, 상기 제1 개구부(TH1)에 배치되는 제1 도전층(321)이 흘러 넘치는 경우, 상기 수지부 또는 상기 몸체(113)가 제공된 제1 하부 리세스(R11)의 바깥 영역으로 상기 제1 도전층(321)이 확장되는 것을 방지할 수 있다. 또한, 상기 제1 도전층(321)이 상기 제1 개구부(TH1) 내에서 상기 제1 본딩부(121)의 하면에 안정적으로 연결될 수 있게 된다.
따라서, 상기 발광소자 패키지가 회로 기판에 실장되는 경우 제1 도전층(321)과 제2 도전층(322)이 서로 접촉되어 단락되는 문제를 방지할 수 있고, 상기 제1 및 제2 도전층(321,322)을 배치하는 공정에 있어서 상기 제1 및 제2 도전층(321,322)의 양을 제어하기 매우 수월해질 수 있다.
또한, 상기 제2 하부 리세스(R12)는 상기 제2 프레임(112)의 하면에 제공될 수 있다. 상기 제2 하부 리세스(R12)는 상기 제2 프레임(112)의 하면에서 상면 방향으로 오목하게 제공될 수 있다. 상기 제2 하부 리세스(R12)는 상기 제2 개구부(TH2)로부터 이격되어 배치될 수 있다.
상기 제2 하부 리세스(R12)는 수 마이크로 미터 내지 수십 마이크로 미터의 폭으로 제공될 수 있다. 상기 제2 하부 리세스(R12)에 수지부가 제공될 수 있다. 상기 제2 하부 리세스(R12)에 채워진 수지부는 예로서 상기 몸체(113)와 동일 물질로 제공될 수 있다.
다만, 이에 한정하지 않고, 상기 수지부는 상기 제1 및 제2 도전층(321, 322)과 접착력, 젖음성이 좋지 않은 물질 중에서 선택되어 제공될 수 있다. 또는 상기 수지부는 상기 제1 및 제2 도전층(321,322)과의 표면 장력이 낮은 물질 중에서 선택되어 제공될 수 있다.
예로서, 상기 제2 하부 리세스(R12)에 채워진 수지부는 상기 제1 프레임(111), 상기 제2 프레임(112), 상기 몸체(113)가 사출 공정 등을 통하여 형성되는 과정에서 제공될 수 있다.
상기 제2 하부 리세스(R12)에 채워진 수지부는 상기 제2 개구부(TH2)를 제공하는 상기 제2 프레임(112)의 하면 영역 주위에 배치될 수 있다. 상기 제2 개구부(TH2)를 제공하는 상기 제2 프레임(112)의 하면 영역은 일종의 아일랜드(island) 형상으로 주위의 상기 제2 프레임(112)을 이루는 하면으로부터 분리되어 배치될 수 있다.
예로서, 도 2에 도시된 바와 같이, 상기 제2 개구부(TH2)를 제공하는 상기 제2 프레임(112)의 하면 영역은 상기 제2 하부 리세스(R12)에 채워진 수지부와 상기 몸체(113)에 의하여 주변의 상기 제2 프레임(112)으로부터 아이솔레이션(isolation)될 수 있다.
따라서, 상기 수지부가 상기 제1 및 제2 도전층(321, 322)과 접착력, 젖음성이 좋지 않은 물질 또는 상기 수지부와 상기 제1 및 제2 도전층(321,322) 사이의 표면 장력이 낮은 물질로 배치되는 경우 상기 제2 개구부(TH2)에 제공된 상기 제2 도전층(322)이 상기 제2 개구부(TH2)로부터 벗어나, 상기 제2 하부 리세스(R12)에 채워진 수지부 또는 상기 몸체(113)를 넘어 확산되는 것이 방지될 수 있다.
이는 상기 제2 도전층(322)과 상기 수지부 및 상기 몸체(113)의 접착 관계 또는 상기 수지부와 상기 제1 및 제2 도전층(321,322) 사이의 젖음성, 표면 장력 등이 좋지 않은 점을 이용한 것이다. 즉, 상기 제2 도전층(322)을 이루는 물질이 상기 제2 프레임(112)과 좋은 접착 특성을 갖도록 선택될 수 있다. 그리고, 상기 제2 도전층(322)을 이루는 물질이 상기 수지부 및 상기 몸체(113)와 좋지 않은 접착 특성을 갖도록 선택될 수 있다.
이에 따라, 상기 제2 도전층(322)이 상기 제2 개구부(TH2)에서 상기 수지부 또는 상기 몸체(113)가 제공된 영역 방향으로 흘러 넘쳐, 상기 수지부 또는 상기 몸체(113)가 제공된 영역 외부로 넘치거나 퍼지는 것이 방지되고, 상기 제2 도전층(322)이 상기 제2 개구부(TH2)가 제공된 영역에 안정적으로 배치될 수 있게 된다.
따라서, 상기 제2 개구부(TH2)에 배치되는 제2 도전층(322)이 흘러 넘치는 경우, 상기 수지부 또는 상기 몸체(113)가 제공된 제2 하부 리세스(R12)의 바깥 영역으로 상기 제2 도전층(322)이 확장되는 것을 방지할 수 있다. 또한, 상기 제2 도전층(322)이 상기 제2 개구부(TH2) 내에서 상기 제2 본딩부(122)의 하면에 안정적으로 연결될 수 있게 된다.
따라서, 상기 발광소자 패키지가 회로 기판에 실장되는 경우 제1 도전층(321)과 제2 도전층(322)이 서로 접촉되어 단락되는 문제를 방지할 수 있고, 상기 제1 및 제2 도전층(321,322)을 배치하는 공정에 있어서 상기 제1 및 제2 도전층(321,322)의 양을 제어하기 매우 수월해질 수 있다.
한편, 실시예에 따른 발광소자 패키지(100)에 의하면, 상기 리세스(R)에 제공된 상기 제1 수지층(130)가, 도 3a, 도 3b에 도시된 바와 같이, 상기 발광소자(120)의 하부면과 상기 패키지 몸체(110)의 상부면 사이에 제공될 수 있다. 상기 발광소자(120)의 상부 방향에서 보았을 때, 상기 제1 수지층(130)은 상기 제1 및 제2 본딩부(121, 122) 둘레에 제공될 수 있다. 또한, 상기 발광소자(120)의 상부 방향에서 보았을 때, 상기 제1 수지층(130)은 상기 제1 및 제2 개구부(TH1, TH2) 둘레에 제공될 수 있다.
상기 제1 수지층(130)은 상기 발광소자(120)를 상기 패키지 몸체(110)에 안정적으로 고정시키는 기능을 수행할 수 있다. 또한, 상기 제1 수지층(130)은 상기 제1 및 제2 본딩부(121, 122)의 측면에 접촉되어 상기 제1 및 제2 본딩부(121, 122) 둘레에 배치될 수 있다.
상기 제1 수지층(130)은 상기 제1 본딩부(121)와 상기 제2 본딩부(122)의 주위를 밀봉시킬 수 있다. 상기 제1 수지층(130)은 상기 제1 도전층(321)과 상기 제2 도전층(322)이 상기 제1 개구부(TH1) 영역과 상기 제2 개구부(TH2) 영역을 벗어나 상기 발광소자(120) 외측면 방향으로 확산되어 이동되는 것을 방지할 수 있다. 상기 제1 및 제2 도전층(321, 322)이 상기 발광소자(120)의 외측면 방향으로 확산되어 이동할 경우 상기 제1 및 제2 도전층(321,322)이 상기 발광소자(120)의 활성층과 접할 수 있어 단락에 의한 불량을 유발할 수 있다. 따라서, 상기 제1 수지층(130)가 배치되는 경우 상기 제1 및 제2 도전층(321,322)과 활성층에 의한 단락을 방지할 수 있어 실시예에 따른 발광소자 패키지의 신뢰성을 향상시킬 수 있다.
또한, 상기 제1 수지층(130)은 상기 제1 도전층(321)과 상기 제2 도전층(322)이 상기 제1 개구부(TH1) 영역과 상기 제2 개구부(TH2) 영역을 벗어나 상기 발광소자(120)의 하부면 아래에서 상기 리세스(R) 방향으로 확산되어 이동되는 것을 방지할 수 있다. 이에 따라, 상기 제1 도전층(321)과 상기 제2 도전층(322)이 상기 발광소자(120) 아래에서 전기적으로 단락되는 것을 방지할 수 있다.
또한, 실시예에 의하면, 상기 발광 구조물(123)은 화합물 반도체로 제공될 수 있다. 상기 발광 구조물(123)은 예로서 2족-6족 또는 3족-5족 화합물 반도체로 제공될 수 있다. 예로서, 상기 발광 구조물(123)은 알루미늄(Al), 갈륨(Ga), 인듐(In), 인(P), 비소(As), 질소(N)로부터 선택된 적어도 두 개 이상의 원소를 포함하여 제공될 수 있다.
상기 발광 구조물(123)은 제1 도전형 반도체층, 활성층, 제2 도전형 반도체층을 포함할 수 있다.
실시예에 따른 발광소자 패키지(100)는 상기 제1 개구부(TH1) 영역을 통해 상기 제1 본딩부(121)에 전원이 연결되고, 상기 제2 개구부(TH2) 영역을 통해 상기 제2 본딩부(122)에 전원이 연결될 수 있다.
이에 따라, 상기 제1 본딩부(121) 및 상기 제2 본딩부(122)를 통하여 공급되는 구동 전원에 의하여 상기 발광소자(120)가 구동될 수 있게 된다. 그리고, 상기 발광소자(120)에서 발광된 빛은 상기 패키지 몸체(110)의 상부 방향으로 제공될 수 있게 된다.
한편, 이상에서 설명된 실시예에 따른 발광소자 패키지(100)는 서브 마운트 또는 회로기판 등에 실장되어 공급될 수도 있다.
그런데, 종래 발광소자 패키지가 서브 마운트 또는 회로기판 등에 실장됨에 있어 리플로우(reflow) 등의 고온 공정이 적용될 수 있다. 이때, 리플로우 공정에서, 발광소자 패키지에 제공된 리드 프레임과 발광소자 간의 본딩 영역에서 리멜팅(re-melting) 현상이 발생되어 전기적 연결 및 물리적 결합의 안정성이 약화될 수 있게 된다.
그러나, 실시예에 따른 발광소자 패키지 및 발광소자 패키지 제조방법에 의하면, 실시예에 따른 발광소자의 본딩부는 개구부에 배치된 도전층을 통하여 구동 전원을 제공 받을 수 있다. 그리고, 개구부에 배치된 도전층의 용융점 및 금속간 화합물층의 용융점이 일반적인 본딩 물질의 용융점에 비해 더 높은 값을 갖도록 선택될 수 있다.
따라서, 실시예에 따른 발광소자 소자 패키지(100)는 메인 기판 등에 리플로우(reflow) 공정을 통해 본딩되는 경우에도 리멜팅(re-melting) 현상이 발생되지 않으므로 전기적 연결 및 물리적 본딩력이 열화되지 않는 장점이 있다.
또한, 실시예에 따른 발광소자 패키지(100) 및 발광소자 패키지 제조방법에 의하면, 발광소자 패키지를 제조하는 공정에서 패키지 몸체(110)가 고온에 노출될 필요가 없게 된다. 따라서, 실시예에 의하면, 패키지 몸체(110)가 고온에 노출되어 손상되거나 변색이 발생되는 것을 방지할 수 있다.
이에 따라, 몸체(113)를 구성하는 물질에 대한 선택 폭이 넓어질 수 있게 된다. 실시예에 의하면, 상기 몸체(113)는 세라믹 등의 고가의 물질뿐만 아니라, 상대적으로 저가의 수지 물질을 이용하여 제공될 수도 있다.
예를 들어, 상기 몸체(113)는 PPA(PolyPhtalAmide) 수지, PCT(PolyCyclohexylenedimethylene Terephthalate) 수지, EMC(Epoxy Molding Compound) 수지, SMC(Silicone Molding Compound) 수지를 포함하는 그룹 중에서 선택된 적어도 하나의 물질을 포함할 수 있다.
다음으로, 도 3a, 도 3b 및 도 8과 같이, 실시예는 제1 및 제2 개구부(TH1, TH2)에 배치된 제2 수지층(115)을 포함할 수 있다. 상기 제2 수지층(115)은 상기 제1 및 제2 도전층(321, 322) 아래에 배치될 수 있다.
상기 제2 수지층(115)은 상기 제1 및 제2 도전층(321, 322)을 보호할 수 있다. 상기 제2 수지층(115)은 상기 제1 및 제2 개구부(TH1, TH2)를 밀봉시킬 수 있다. 상기 제2 수지층(115)은 상기 제1 및 제2 도전층(321, 322)이 상기 제1 및 제2 개구부(TH1. TH2) 하부로 확산되어 이동되는 것을 방지할 수 있다.
예로서, 상기 제2 수지층(115)은 상기 몸체(113)와 유사한 물질을 포함할 수 있다. 상기 제2 수지층(115)은 PPA(PolyPhtalAmide) 수지, PCT(PolyCyclohexylenedimethylene Terephthalate) 수지, EMC(Epoxy Molding Compound) 수지, SMC(Silicone Molding Compound) 수지를 포함하는 그룹 중에서 선택된 적어도 하나의 물질을 포함할 수 있다.
또한, 상기 제2 수지층(115)은 에폭시(epoxy) 계열의 물질, 실리콘(silicone) 계열의 물질, 에폭시 계열의 물질과 실리콘 계열의 물질을 포함하는 하이브리드(hybrid) 물질 중에서 적어도 하나를 포함할 수 있다.
도 9는 제4 실시예에 따른 발광소자 패키지(102)의 단면도이다. 제4 실시예는 제1 실시예 내지 제3 실시예의 기술적 특징을 채용할 수 있다.
제4 실시예에서 발광소자 패키지(102)는 발광소자(120) 상에 형광체층(145)을 포함할 수 있고, 몰딩부(140)에는 광변환 물질이 포함되지 않을 수 있다.
상기 형광체층(145)은 컨포멀 코팅 등의 공정으로 형성될 수 있으나 이에 한정되는 것은 아니다.
도 10은 실시예에 따른 발광소자를 나타낸 평면도이고, 도 11은 도 10에 도시된 발광소자의 A-A 선에 따른 단면도이다.
한편, 이해를 돕기 위해, 도 10를 도시함에 있어, 제1 본딩부(2171)와 제2 본딩부(2172) 아래에 배치되지만, 상기 제1 본딩부(2171)에 전기적으로 연결된 제1 서브전극(2141)과 상기 제2 본딩부(2172)에 전기적으로 연결된 제2 서브전극(2142)이 보일 수 있도록 도시되었다.
실시예에 따른 발광소자(2100)는, 도 10 및 도 11에 도시된 바와 같이, 기판(2105) 위에 배치된 발광 구조물(1110)을 포함할 수 있다.
상기 기판(2105)은 사파이어 기판(Al2O3), SiC, GaAs, GaN, ZnO, Si, GaP, InP, Ge을 포함하는 그룹 중에서 선택될 수 있다. 예로서, 상기 기판(2105)은 상부 면에 요철 패턴이 형성된 PSS(Patterned Sapphire Substrate)로 제공될 수 있다.
상기 발광 구조물(1110)은 제1 도전형 반도체층(1111), 활성층(1112), 제2 도전형 반도체층(1113)을 포함할 수 있다. 상기 활성층(1112)은 상기 제1 도전형 반도체층(1111)과 상기 제2 도전형 반도체층(1113) 사이에 배치될 수 있다. 예로서, 상기 제1 도전형 반도체층(1111) 위에 상기 활성층(1112)이 배치되고, 상기 활성층(1112) 위에 상기 제2 도전형 반도체층(1113)이 배치될 수 있다.
실시예에 의하면, 상기 제1 도전형 반도체층(1111)은 n형 반도체층으로 제공되고, 상기 제2 도전형 반도체층(1113)은 p형 반도체층으로 제공될 수 있다. 물론, 다른 실시예에 의하면, 상기 제1 도전형 반도체층(1111)이 p형 반도체층으로 제공되고, 상기 제2 도전형 반도체층(1113)이 n형 반도체층으로 제공될 수도 있다.
이하에서는 설명의 편의를 위해 상기 제1 도전형 반도체층(1111)이 n형 반도체층으로 제공되고 상기 제2 도전형 반도체층(1113)이 p형 반도체층으로 제공된 경우를 기준으로 설명하기로 한다.
실시예에 따른 발광소자(2100)는, 도 11에 도시된 바와 같이, 투광성 전극층(2130)을 포함할 수 있다. 상기 투광성 전극층(2130)은 전류 확산을 향상시켜 광출력을 증가시킬 수 있다.
예로서, 상기 투광성 전극층(2130)은 금속, 금속 산화물, 금속 질화물을 포함하는 그룹 중에서 선택된 적어도 하나를 포함할 수 있다. 상기 투광성 전극층(2130)은 투광성의 물질을 포함할 수 있다.
상기 투광성 전극층(2130)은, 예를 들어 ITO(indium tin oxide), IZO(indium zinc oxide), IZON(IZO nitride), IZTO (indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IrOx, RuOx, RuOx/ITO, Ni/IrOx/Au, Ni/IrOx/Au/ITO, Pt, Ni, Au, Rh, Pd를 포함하는 그룹 중에서 선택된 적어도 하나를 포함할 수 있다.
실시예에 따른 발광소자(2100)는, 도 10 및 도 11에 도시된 바와 같이, 반사층(2160)을 포함할 수 있다. 상기 반사층(2160)은 제1 반사층(2161), 제2 반사층(2162), 제3 반사층(2163)을 포함할 수 있다. 상기 반사층(2160)은 상기 투광성 전극층(2130) 위에 배치될 수 있다.
상기 제2 반사층(2162)은 상기 투광성 전극층(2130)을 노출시키는 제1 개구부(h1)를 포함할 수 있다. 상기 제2 반사층(2162)은 상기 투광성 전극층(2130) 위에 배치된 복수의 제1 개구부(h1)를 포함할 수 있다.
상기 제1 반사층(2161)은 상기 제1 도전형 반도체층(1111)의 상부 면을 노출시키는 복수의 제2 개구부(h2)를 포함할 수 있다.
상기 제3 반사층(2163)은 상기 제1 반사층(2161)과 상기 제2 반사층(2162) 사이에 배치될 수 있다. 예로서, 상기 제3 반사층(2163)은 상기 제1 반사층(2161)과 연결될 수 있다. 또한, 상기 제3 반사층(2163)은 상기 제2 반사층(2162)과 연결될 수 있다. 상기 제3 반사층(2163)은 상기 제1 반사층(2161)과 상기 제2 반사층(2162)에 물리적으로 직접 접촉되어 배치될 수 있다.
실시예에 따른 상기 반사층(2160)은 상기 투광성 전극층(2130)에 제공된 복수의 컨택홀을 통하여 상기 제2 도전형 반도체층(1113)에 접촉될 수 있다. 상기 반사층(2160)은 상기 투광성 전극층(2130)에 제공된 복수의 컨택홀을 통하여 상기 제2 도전형 반도체층(1113)의 상부 면에 물리적으로 접촉될 수 있다.
상기 반사층(2160)은 절연성 반사층으로 제공될 수 있다. 예로서, 상기 반사층(2160)은 DBR(Distributed Bragg Reflector)층으로 제공될 수 있다. 또한, 상기 반사층(2160)은 ODR(Omni Directional Reflector)층으로 제공될 수 있다. 또한, 상기 반사층(2160)은 DBR층과 ODR층이 적층되어 제공될 수도 있다.
실시예에 따른 발광소자(2100)는, 도 10 및 도 11에 도시된 바와 같이, 제1 서브전극(2141)과 제2 서브전극(2142)을 포함할 수 있다.
상기 제1 서브전극(2141)은 상기 제2 개구부(h2) 내부에서 상기 제1 도전형 반도체층(1111)과 전기적으로 연결될 수 있다. 상기 제1 서브전극(2141)은 상기 제1 도전형 반도체층(1111) 위에 배치될 수 있다. 예로서, 실시예에 따른 발광소자(2100)에 의하면, 상기 제1 서브전극(2141)은 상기 제2 도전형 반도체층(1113), 상기 활성층(1112)을 관통하여 제1 도전형 반도체층(1111)의 일부 영역까지 배치되는 리세스 내에서 상기 제1 도전형 반도체층(1111)의 상면에 배치될 수 있다.
상기 제1 서브전극(2141)은 상기 제1 반사층(2161)에 제공된 제2 개구부(h2)를 통하여 상기 제1 도전형 반도체층(1111)의 상면에 전기적으로 연결될 수 있다.
상기 제2 서브전극(2142)은 상기 제2 도전형 반도체층(1113)에 전기적으로 연결될 수 있다. 상기 제2 서브전극(2142)은 상기 제2 도전형 반도체층(1113) 위에 배치될 수 있다. 실시예에 의하면, 상기 제2 서브전극(2142)과 상기 제2 도전형 반도체층(1113) 사이에 상기 투광성 전극층(2130)이 배치될 수 있다.
상기 제2 서브전극(2142)은 상기 제2 반사층(2162)에 제공된 제1 개구부(h1)를 통하여 상기 제2 도전형 반도체층(1113)과 전기적으로 연결될 수 있다. 예로서, 상기 제2 서브전극(2142)은, 도 10 및 도 11에 도시된 바와 같이, 복수의 P 영역에서 상기 투광성 전극층(2130)을 통하여 상기 제2 도전형 반도체층(1113)에 전기적으로 연결될 수 있다.
상기 제2 서브전극(2142)은, 도 10 및 도 11에 도시된 바와 같이, 복수의 P 영역에서 상기 제2 반사층(2162)에 제공된 복수의 제1 개구부(h1)를 통하여 상기 투광성 전극층(2130)의 상면에 직접 접촉될 수 있다.
실시예에 의하면, 도 10 및 도 11에 도시된 바와 같이, 상기 제1 서브전극(2141)과 상기 제2 서브전극(2142)은 서로 극성을 가질 수 있고, 서로 이격되어 배치될 수 있다.
상기 제1 서브전극(2141)은 예로서 복수의 라인 형상으로 제공될 수 있다. 또한, 상기 제2 서브전극(2142)은 예로서 복수의 라인 형상으로 제공될 수 있다. 상기 제1 서브전극(2141)은 이웃된 복수의 제2 서브전극(2142) 사이에 배치될 수 있다. 상기 제2 서브전극(2142)은 이웃된 복수의 제1 서브전극(2141) 사이에 배치될 수 있다.
상기 제1 서브전극(2141)과 상기 제2 서브전극(2142)이 서로 다른 극성으로 구성되는 경우, 서로 다른 개수의 전극으로 배치될 수 있다. 예를 들어 상기 제1 서브전극(2141)이 n 전극으로, 상기 제2 서브전극(2142)이 p 전극으로 구성되는 경우 상기 제1 서브전극(2141)보다 상기 제2 서브전극(2142)의 개수가 더 많을 수 있다. 상기 제2 도전형 반도체층(1113)과 상기 제1 도전형 반도체층(1111)의 전기 전도도 및/또는 저항이 서로 다른 경우, 상기 제1 서브전극(2141)과 상기 제2 서브전극(2142)에 의해 상기 발광 구조물(1110)로 주입되는 전자와 정공의 균형을 맞출 수 있고 따라서 상기 발광소자의 광학적 특성이 개선될 수 있다.
한편, 실시예에 따른 발광소자가 적용될 발광소자 패키지에서 요청되는 특성에 따라, 상기 제1 서브전극(2141)과 상기 제2 서브전극(2142)의 극성이 서로 반대로 제공될 수도 있다. 또한, 상기 제1 서브전극(2141)과 상기 제2 서브전극(2142)의 폭/길이/형상 및 개수 등은 발광소자 패키지에서 요청되는 특성에 따라 다양하게 변형되어 적용될 수 있다.
상기 제1 서브전극(2141)과 상기 제2 서브전극(2142)은 단층 또는 다층 구조로 형성될 수 있다. 예를 들어, 상기 제1 서브전극(2141)과 상기 제2 서브전극(2142)은 오믹 전극일 수 있다. 예를 들어, 상기 제1 서브전극(2141)과 상기 제2 서브전극(2142)은 ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나 또는 이들 중 2개 이상의 물질의 합금일 수 있다.
실시예에 따른 발광소자(2100)는, 도 10 및 도 11에 도시된 바와 같이, 보호층(2150)을 포함할 수 있다.
상기 보호층(2150)은 상기 제2 서브전극(2142)을 노출시키는 복수의 제3 개구부(h3)를 포함할 수 있다. 상기 복수의 제3 개구부(h3)는 상기 제2 서브전극(2142)에 제공된 복수의 PB 영역에 대응되어 배치될 수 있다.
또한, 상기 보호층(2150)은 상기 제1 서브전극(2141)을 노출시키는 복수의 제4 개구부(h4)를 포함할 수 있다. 상기 복수의 제4 개구부(h4)는 상기 제1 서브전극(2141)에 제공된 복수의 NB 영역에 대응되어 배치될 수 있다.
상기 보호층(2150)은 상기 반사층(2160) 위에 배치될 수 있다. 상기 보호층(2150)은 상기 제1 반사층(2161), 상기 제2 반사층(2162), 상기 제3 반사층(2163) 위에 배치될 수 있다.
예로서, 상기 보호층(2150)은 절연물질로 제공될 수 있다. 예를 들어, 상기 보호층(2150)은 SixOy, SiOxNy, SixNy, AlxOy 를 포함하는 그룹 중에서 선택된 적어도 하나의 물질로 형성될 수 있다.
실시예에 따른 발광소자(2100)는, 도 10 및 도 11에 도시된 바와 같이, 상기 보호층(2150) 위에 배치된 제1 본딩부(2171)와 제2 본딩부(2172)를 포함할 수 있다.
상기 제1 본딩부(2171)는 상기 제1 반사층(2161) 위에 배치될 수 있다. 또한, 상기 제2 본딩부(2172)는 상기 제2 반사층(2162) 위에 배치될 수 있다. 상기 제2 본딩부(2172)는 상기 제1 본딩부(2171)와 이격되어 배치될 수 있다.
상기 제1 본딩부(2171)는 복수의 NB 영역에서 상기 보호층(2150)에 제공된 복수의 상기 제4 개구부(h4)를 통하여 상기 제1 서브전극(2141)의 상부 면에 접촉될 수 있다. 상기 복수의 NB 영역은 상기 제2 개구부(h2)와 수직으로 어긋나도록 배치될 수 있다. 상기 복수의 NB 영역과 상기 제2 개구부(h2)가 서로 수직으로 어긋나는 경우, 상기 제1 본딩부(2171)로 주입되는 전류가 상기 제1 서브전극(2141)의 수평 방향으로 골고루 퍼질 수 있고, 따라서 상기 복수의 NB 영역에서 전류가 골고루 주입될 수 있다.
또한, 상기 제2 본딩부(2172)는 복수의 PB 영역에서 상기 보호층(2150)에 제공된 복수의 상기 제3 개구부(h3)를 통하여 상기 제2 서브전극(2142)의 상부 면에 접촉될 수 있다. 상기 복수의 PB 영역과 상기 복수의 제1 개구부(h1)가 수직으로 중첩되지 않도록 하는 경우 상기 제2 본딩부(2172)로 주입되는 전류가 상기 제2 서브전극(2142)의 수평 방향으로 골고루 퍼질 수 있고, 따라서 상기 복수의 PB 영역에서 전류가 골고루 주입될 수 있다.
이와 같이 실시예에 따른 발광소자(2100)에 의하면, 상기 제1 본딩부(2171)와 상기 제1 서브전극(2141)은 상기 복수의 제4 개구부(h4) 영역에서 접촉될 수 있다. 또한, 상기 제2 본딩부(2172)와 상기 제2 서브전극(2142)이 복수의 영역에서 접촉될 수 있다. 이에 따라, 실시예에 의하면, 복수의 영역을 통해 전원이 공급될 수 있으므로, 접촉 면적 증가 및 접촉 영역의 분산에 따라 전류 분산 효과가 발생되고 동작전압이 감소될 수 있는 장점이 있다.
또한, 실시예에 따른 발광소자(2100)에 의하면, 도 11에 도시된 바와 같이, 상기 제1 반사층(2161)이 상기 제1 서브전극(2141) 아래에 배치되며, 상기 제2 반사층(2162)이 상기 제2 서브전극(2142) 아래에 배치된다. 이에 따라, 상기 제1 반사층(2161)과 상기 제2 반사층(2162)은 상기 발광 구조물(1110)의 활성층(1112)에서 발광되는 빛을 반사시켜 제1 서브전극(2141)과 제2 서브전극(2142)에서 광 흡수가 발생되는 것을 최소화하여 광도(Po)를 향상시킬 수 있다.
예를 들어, 상기 제1 반사층(2161)과 상기 제2 반사층(2162)은 절연성 재료로 이루어지되, 상기 활성층(1112)에서 방출된 빛의 반사를 위하여 반사율이 높은 재료, 예를 들면 DBR 구조를 이룰 수 있다.
상기 제1 반사층(2161)과 상기 제2 반사층(2162)은 굴절률이 다른 물질이 서로 반복하여 배치된 DBR 구조를 이룰 수 있다. 예를 들어, 상기 제1 반사층(2161)과 상기 제2 반사층(2162)은 TiO2, SiO2, Ta2O5, HfO2 중 적어도 하나 이상을 포함하는 단층 또는 적층 구조로 배치될 수 있다.
또한, 다른 실시예에 의하면, 이에 한정하지 않고, 상기 제1 반사층(2161)과 상기 제2 반사층(2162)은 상기 활성층(1112)에서 발광하는 빛의 파장에 따라 상기 활성층(1112)에서 발광하는 빛에 대한 반사도를 조절할 수 있도록 자유롭게 선택될 수 있다.
또한, 다른 실시예에 의하면, 상기 제1 반사층(2161)과 상기 제2 반사층(2162)은 ODR층으로 제공될 수도 있다. 또 다른 실시예에 의하면, 상기 제1 반사층(2161)과 상기 제2 반사층(2162)은 DBR층과 ODR층이 적층된 일종의 하이브리드(hybrid) 형태로 제공될 수도 있다.
실시예에 따른 발광소자가 플립칩 본딩 방식으로 실장되어 발광소자 패키지로 구현되는 경우, 상기 발광 구조물(1110)에서 제공되는 빛은 상기 기판(2105)을 통하여 방출될 수 있다. 상기 발광 구조물(1110)에서 방출되는 빛은 상기 제1 반사층(2161)과 상기 제2 반사층(2162)에서 반사되어 상기 기판(2105) 방향으로 방출될 수 있다.
또한, 상기 발광 구조물(1110)에서 방출되는 빛은 상기 발광 구조물(1110)의 측면 방향으로도 방출될 수 있다. 또한, 상기 발광 구조물(1110)에서 방출되는 빛은, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)가 배치된 면 중에서, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)가 제공되지 않은 영역을 통하여 외부로 방출될 수 있다.
구체적으로, 상기 발광 구조물(1110)에서 방출되는 빛은, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)가 배치된 면 중에서, 상기 제1 반사층(2161), 상기 제2 반사층(2162), 상기 제3 반사층(2163)이 제공되지 않은 영역을 통하여 외부로 방출될 수 있다.
이에 따라, 실시예에 따른 발광소자(2100)는 상기 발광 구조물(1110)을 둘러싼 6면 방향으로 빛을 방출할 수 있게 되며, 광도를 현저하게 향상시킬 수 있다.
한편, 실시예에 따른 발광소자에 의하면, 발광소자(2100)의 상부 방향에서 보았을 때, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)의 면적의 합은, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)가 배치된 상기 발광소자(2100)의 상부 면 전체 면적의 60%에 비해 같거나 작게 제공될 수 있다.
예로서, 상기 발광소자(2100)의 상부 면 전체 면적은 상기 발광 구조물(1110)의 제1 도전형 반도체층(1111)의 하부 면의 가로 길이 및 세로 길이에 의하여 정의되는 면적에 대응될 수 있다. 또한, 상기 발광소자(2100)의 상부 면 전체 면적은 상기 기판(2105)의 상부 면 또는 하부 면의 면적에 대응될 수 있다.
이와 같이, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)의 면적의 합이 상기 발광소자(2100)의 전체 면적의 60%에 비해 같거나 작게 제공되도록 함으로써, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)가 배치된 면으로 방출되는 빛의 양이 증가될 수 있게 된다. 이에 따라, 실시예에 의하면, 상기 발광소자(2100)의 6면 방향으로 방출되는 빛의 양이 많아지게 되므로 광 추출 효율이 향상되고 광도(Po)가 증가될 수 있게 된다.
또한, 상기 발광소자(2100)의 상부 방향에서 보았을 때, 상기 제1 본딩부(2171)의 면적과 상기 제2 본딩부(2172)의 면적의 합은 상기 발광소자(2100)의 전체 면적의 30%에 비해 같거나 크게 제공될 수 있다.
이와 같이, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)의 면적의 합이 상기 발광소자(2100)의 전체 면적의 30%에 비해 같거나 크게 제공되도록 함으로써, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)를 통하여 안정적인 실장이 수행될 수 있고, 상기 발광소자(2100)의 전기적인 특성을 확보할 수 있게 된다.
실시예에 따른 발광소자(2100)는, 광 추출 효율 및 본딩의 안정성 확보를 고려하여, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)의 면적의 합이 상기 발광소자(2100)의 전체 면적의 30% 이상이고 60% 이하로 선택될 수 있다.
즉, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)의 면적의 합이 상기 발광소자(2100)의 전체 면적의 30% 이상 내지 100% 이하인 경우, 상기 발광소자(2100)의 전기적 특성을 확보하고, 발광소자 패키지에 실장되는 본딩력을 확보하여 안정적인 실장이 수행될 수 있다.
또한, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)의 면적의 합이 상기 발광소자(2100)의 전체 면적의 0% 초과 내지 60% 이하인 경우, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)가 배치된 면으로 방출되는 광량이 증가하여 상기 발광소자(2100)의 광추출 효율이 향상되고, 광도(Po)가 증가될 수 있다.
실시예에서는 상기 발광소자(2100)의 전기적 특성과 발광소자 패키지에 실장되는 본딩력을 확보하고, 광도를 증가시키기 위해, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)의 면적의 합이 상기 발광소자(2100)의 전체 면적의 30% 이상 내지 60% 이하로 선택하였다.
또한, 실시예에 따른 발광소자(2100)에 의하면, 상기 제3 반사층(2163)이 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172) 사이에 배치될 수 있다. 예로서, 상기 제3 반사층(2163)의 상기 발광소자(2100)의 장축 방향에 따른 길이는 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172) 사이의 간격에 대응되어 배치될 수 있다. 또한, 상기 제3 반사층(2163)의 면적은 예로서 상기 발광소자(2100)의 상부 면 전체의 10% 이상이고 25% 이하로 제공될 수 있다.
상기 제3 반사층(2163)의 면적이 상기 발광소자(2100)의 상부 면 전체의 10% 이상일 때, 상기 발광소자의 하부에 배치되는 패키지 몸체가 변색되거나 균열의 발생을 방지할 수 있고, 25% 이하일 경우 상기 발광소자의 6면으로 발광하도록 하는 광추출효율을 확보하기에 유리하다.
또한, 다른 실시예에서는 이에 한정하지 않고 상기 광추출효율을 더 크게 확보하기 위해 상기 제3 반사층(2163)의 면적을 상기 발광소자(2100)의 상부 면 전체의 0% 초과 내지 10% 미만으로 배치할 수 있고, 상기 패키지 몸체에 변색 또는 균열의 발생을 방지하는 효과를 더 크게 확보하기 위해 상기 제3 반사층(2163)의 면적을 상기 발광소자(2100)의 상부 면 전체의 25% 초과 내지 100% 미만으로 배치할 수 있다.
또한, 상기 발광소자(2100)의 장축 방향에 배치된 측면과 이웃하는 상기 제1 본딩부(2171) 또는 상기 제2 본딩부(2172) 사이에 제공된 제2 영역으로 상기 발광 구조물(1110)에서 생성된 빛이 투과되어 방출될 수 있다.
또한, 상기 발광소자(2100)의 단축 방향에 배치된 측면과 이웃하는 상기 제1 본딩부(2171) 또는 상기 제2 본딩부(2172) 사이에 제공된 제3 영역으로 상기 발광구조물에서 생성된 빛이 투과되어 방출될 수 있다.
실시예에 의하면, 상기 제1 반사층(2161)의 크기는 상기 제1 본딩부(2171)의 크기에 비하여 수 마이크로 미터 더 크게 제공될 수 있다. 예를 들어, 상기 제1 반사층(2161)의 면적은 상기 제1 본딩부(2171)의 면적을 완전히 덮을 수 있을 정도의 크기로 제공될 수 있다. 공정 오차를 고려할 때, 상기 제1 반사층(2161)의 한 변의 길이는 상기 제1 본딩부(2171)의 한 변의 길이에 비해 예로서 4 마이크로 미터 내지 10 마이크로 미터 정도 더 크게 제공될 수 있다.
또한, 상기 제2 반사층(2162)의 크기는 상기 제2 본딩부(2172)의 크기에 비하여 수 마이크로 미터 더 크게 제공될 수 있다. 예를 들어, 상기 제2 반사층(2162)의 면적은 상기 제2 본딩부(2172)의 면적을 완전히 덮을 수 있을 정도의 크기로 제공될 수 있다. 공정 오차를 고려할 때, 상기 제2 반사층(2162)의 한 변의 길이는 상기 제2 본딩부(2172)의 한 변의 길이에 비해 예로서 4 마이크로 미터 내지 10 마이크로 미터 정도 더 크게 제공될 수 있다.
실시예에 의하면, 상기 제1 반사층(2161)과 상기 제2 반사층(2162)에 의하여, 상기 발광 구조물(1110)로부터 방출되는 빛이 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)에 입사되지 않고 반사될 수 있게 된다. 이에 따라, 실시예에 의하면, 상기 발광 구조물(1110)에서 생성되어 방출되는 빛이 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)에 입사되어 손실되는 것을 최소화할 수 있다.
또한, 실시예에 따른 발광소자(2100)에 의하면, 상기 제3 반사층(2163)이 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172) 사이에 배치되므로, 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172) 사이로 방출되는 빛의 양을 조절할 수 있게 된다.
앞에서 설명된 바와 같이, 실시예에 따른 발광소자(2100)는 예를 들어 플립칩 본딩 방식으로 실장되어 발광소자 패키지 형태로 제공될 수 있다. 이때, 발광소자(2100)가 실장되는 패키지 몸체가 수지 등으로 제공되는 경우, 상기 발광소자(2100)의 하부 영역에서, 상기 발광소자(2100)로부터 방출되는 단파장의 강한 빛에 의하여 패키지 몸체가 변색되거나 균열이 발생될 수 있다.
그러나, 실시예에 따른 발광소자(2100)에 의하면 상기 제1 본딩부(2171)와 상기 제2 본딩부(2172)가 배치된 영역 사이로 방출되는 빛의 양을 조절할 수 있으므로, 상기 발광소자(2100)의 하부 영역에 배치된 패키지 몸체가 변색되거나 균열되는 것을 방지할 수 있다.
실시예에 의하면, 상기 제1 본딩부(2171), 상기 제2 본딩부(2172), 상기 제3 반사층(2163)이 배치된 상기 발광소자(2100)의 상부 면의 20% 이상 면적에서 상기 발광 구조물(1110)에서 생성된 빛이 투과되어 방출될 수 있다.
이에 따라, 실시예에 의하면, 상기 발광소자(2100)의 6면 방향으로 방출되는 빛의 양이 많아지게 되므로 광 추출 효율이 향상되고 광도(Po)가 증가될 수 있게 된다. 또한, 상기 발광소자(2100)의 하부 면에 근접하게 배치된 패키지 몸체가 변색되거나 균열되는 것을 방지할 수 있게 된다.
또한, 실시예예 따른 발광소자(2100)에 의하면, 상기 투광성 전극층(2130)에 복수의 컨택홀(C1, C2, C3)이 제공될 수 있다. 상기 투광성 전극층(2130)에 제공된 복수의 컨택홀(C1, C2, C3)을 통하여 상기 제2 도전형 반도체층(1113)과 상기 반사층(2160)이 접착될 수 있다. 상기 반사층(2160)이 상기 제2 도전형 반도체층(1113)에 직접 접촉될 수 있게 됨으로써, 상기 반사층(2160)이 상기 투광성 전극층(2130)에 접촉되는 것에 비하여 접착력이 향상될 수 있게 된다.
상기 반사층(2160)이 상기 투광성 전극층(2130)에만 직접 접촉되는 경우, 상기 반사층(2160)과 상기 투광성 전극층(2130) 간의 결합력 또는 접착력이 약화될 수도 있다. 예를 들어, 절연층과 금속층이 결합되는 경우, 물질 상호 간의 결합력 또는 접착력이 약화될 수도 있다.
예로서, 상기 반사층(2160)과 상기 투광성 전극층(2130) 간의 결합력 또는 접착력이 약한 경우, 두 층 간에 박리가 발생될 수 있다. 이와 같이 상기 반사층(2160)과 상기 투광성 전극층(2130) 사이에 박리가 발생되면 발광소자(2100)의 특성이 열화될 수 있으며, 또한 발광소자(2100)의 신뢰성을 확보할 수 없게 된다.
그러나, 실시예에 의하면, 상기 반사층(2160)이 상기 제2 도전형 반도체층(1113)에 직접 접촉될 수 있으므로, 상기 반사층(2160), 상기 투광성 전극층(2130), 상기 제2 도전형 반도체층(1113) 간의 결합력 및 접착력이 안정적으로 제공될 수 있게 된다.
따라서, 실시예에 의하면, 상기 반사층(2160)과 상기 제2 도전형 반도체층(1113) 간의 결합력이 안정적으로 제공될 수 있으므로, 상기 반사층(2160)이 상기 투광성 전극층(2130)으로부터 박리되는 것을 방지할 수 있게 된다. 또한, 상기 반사층(2160)과 상기 제2 도전형 반도체층(1113) 간의 결합력이 안정적으로 제공될 수 있으므로 발광소자(2100)의 신뢰성을 향상시킬 수 있게 된다.
한편, 이상에서 설명된 바와 같이, 상기 투광성 전극층(2130)에 복수의 컨택홀(C1, C2, C3)이 제공될 수 있다. 상기 활성층(1112)으로부터 발광된 빛은 상기 투광성 전극층(2130)에 제공된 복수의 컨택홀(C1, C2, C3)을 통해 상기 반사층(2160)에 입사되어 반사될 수 있게 된다. 이에 따라, 상기 활성층(1112)에서 생성된 빛이 상기 투광성 전극층(2130)에 입사되어 손실되는 것을 감소시킬 수 있게 되며 광 추출 효율이 향상될 수 있게 된다. 이에 따라, 실시예에 따른 발광소자(2100)에 의하면 광도가 향상될 수 있게 된다.
다음으로, 도 12 및 도 13을 참조하여 실시예에 따른 발광소자 패키지에 적용된 플립칩 발광소자의 다른 예를 설명하기로 한다.
도 12은 실시예에 따른 발광소자 패키지에 적용된 발광소자의 전극 배치를 설명하는 평면도이고, 도 13은 도 11에 도시된 발광소자의 F-F 선에 따른 단면도이다.
한편, 이해를 돕기 위해, 도 12을 도시함에 있어, 제1 전극(127)과 제2 전극(128)의 상대적인 배치 관계 만을 개념적으로 도시하였다. 상기 제1 전극(127)은 제1 본딩부(121)와 제1 가지전극(125)을 포함할 수 있다. 상기 제2 전극(128)은 제2 본딩부(122)와 제2 가지전극(126)을 포함할 수 있다.
실시예에 따른 발광소자는, 도 12 및 도 13에 도시된 바와 같이, 기판(124) 위에 배치된 발광 구조물(123)을 포함할 수 있다.
상기 기판(124)은 사파이어 기판(Al2O3), SiC, GaAs, GaN, ZnO, Si, GaP, InP, Ge을 포함하는 그룹 중에서 선택될 수 있다. 예로서, 상기 기판(124)은 상부 면에 요철 패턴이 형성된 PSS(Patterned Sapphire Substrate)로 제공될 수 있다.
상기 발광 구조물(123)은 제1 도전형 반도체층(123aa), 활성층(123b), 제2 도전형 반도체층(123c)을 포함할 수 있다. 상기 활성층(123b)은 상기 제1 도전형 반도체층(123a)과 상기 제2 도전형 반도체층(123c) 사이에 배치될 수 있다. 예로서, 상기 제1 도전형 반도체층(123a) 위에 상기 활성층(123b)이 배치되고, 상기 활성층(123b) 위에 상기 제2 도전형 반도체층(123c)이 배치될 수 있다.
실시예에 의하면, 상기 제1 도전형 반도체층(123a)은 n형 반도체층으로 제공되고, 상기 제2 도전형 반도체층(123c)은 p형 반도체층으로 제공될 수 있다. 물론, 다른 실시예에 의하면, 상기 제1 도전형 반도체층(123a)이 p형 반도체층으로 제공되고, 상기 제2 도전형 반도체층(123c)이 n형 반도체층으로 제공될 수도 있다.
실시예에 따른 발광소자는, 도 12 및 도 13에 도시된 바와 같이, 제1 전극(127)과 제2 전극(128)을 포함할 수 있다.
상기 제1 전극(127)은 제1 본딩부(121)와 제1 가지전극(125)을 포함할 수 있다. 상기 제1 전극(127)은 상기 제2 도전형 반도체층(123c)에 전기적으로 연결될 수 있다. 상기 제1 가지전극(125)은 상기 제1 본딩부(121)로부터 분기되어 배치될 수 있다. 상기 제1 가지전극(125)은 상기 제1 본딩부(121)로부터 분기된 복수의 가지전극을 포함할 수 있다.
상기 제2 전극(128)은 제2 본딩부(122)와 제2 가지전극(126)을 포함할 수 있다. 상기 제2 전극(128)은 상기 제1 도전형 반도체층(123a)에 전기적으로 연결될 수 있다. 상기 제2 가지전극(126)은 상기 제2 본딩부(122)로부터 분기되어 배치될 수 있다. 상기 제2 가지전극(126)은 상기 제2 본딩부(122)로부터 분기된 복수의 가지전극을 포함할 수 있다.
상기 제1 가지전극(125)와 상기 제2 가지전극(126)은 핑거(finger) 형상으로 서로 엇갈리게 배치될 수 있다. 상기 제1 가지전극(125)과 상기 제2 가지전극(126)에 의하여 상기 제1 본딩부(121)와 상기 제2 본딩부(122)를 통하여 공급되는 전원이 상기 발광 구조물(123) 전체로 확산되어 제공될 수 있게 된다.
상기 제1 전극(127)과 상기 제2 전극(128)은 단층 또는 다층 구조로 형성될 수 있다. 예를 들어, 상기 제1 전극(127)과 상기 제2 전극(128)은 오믹 전극일 수 있다. 예를 들어, 상기 제1 전극(127)과 상기 제2 전극(128)은 ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나 또는 이들 중 2개 이상의 물질의 합금일 수 있다.
한편, 상기 발광 구조물(123)에 보호층이 더 제공될 수도 있다. 상기 보호층은 상기 발광 구조물(123)의 상면에 제공될 수 있다. 또한, 상기 보호층은 상기 발광 구조물(123)의 측면에 제공될 수도 있다. 상기 보호층은 상기 제1 본딩부(121)와 상기 제2 본딩부(122)가 노출되도록 제공될 수 있다. 또한, 상기 보호층은 상기 기판(124)의 둘레 및 하면에도 선택적으로 제공될 수 있다.
예로서, 상기 보호층은 절연물질로 제공될 수 있다. 예를 들어, 상기 보호층은 SixOy, SiOxNy, SixNy, AlxOy 를 포함하는 그룹 중에서 선택된 적어도 하나의 물질로 형성될 수 있다.
실시예에 따른 발광소자는, 상기 활성층(123b)에서 생성된 빛이 발광소자의 6면 방향으로 발광될 수 있다. 상기 활성층(123b)에서 생성된 빛이 발광소자의 상면, 하면, 4개의 측면을 통하여 6면 방향으로 방출될 수 있다.
실시예에 의하면, 상기 제1 및 제2 본딩부(121, 122)의 면적의 합은 상기 기판(124)의 상면 면적을 기준으로 10% 이하로 제공될 수 있다. 실시예에 따른 발광소자 패키지에 의하면, 발광소자로부터 방출되는 발광 면적을 확보하여 광추출 효율을 높이기 위해 상기 제1 및 제2 본딩부(121, 122)의 면적의 합은 상기 기판(124)의 상면 면적을 기준으로 10% 이하로 설정될 수 있다.
또한, 실시예에 의하면, 상기 제1 및 제2 본딩부(121, 122)의 면적의 합은 상기 기판(124)의 상면 면적을 기준으로 0.7% 이상으로 제공될 수 있다. 실시예에 따른 발광소자 패키지에 의하면, 실장되는 발광소자에 안정적인 본딩력을 제공하기 위해 상기 제1 및 제2 본딩부(121, 122)의 면적의 합은 상기 기판(124)의 상면 면적을 기준으로 0.7% 이상으로 설정될 수 있다.
예로서, 상기 제1 본딩부(121)의 상기 발광소자의 장축 방향에 따른 폭은 수십 마이크로 미터로 제공될 수 있다. 상기 제1 본딩부(121)의 폭은 예로서 70 마이크로 미터 내지 90 마이크로 미터로 제공될 수 있다. 또한, 상기 제1 본딩부(121)의 면적은 수천 제곱 마이크로 미터로 제공될 수 있다.
또한, 상기 제2 본딩부(122)의 상기 발광소자의 장축 방향에 따른 폭은 수십 마이크로 미터로 제공될 수 있다. 상기 제2 본딩부(122)의 폭은 예로서 70 마이크로 미터 내지 90 마이크로 미터로 제공될 수 있다. 또한, 상기 제2 본딩부(122)의 면적은 수천 제곱 마이크로 미터로 제공될 수 있다.
이와 같이, 상기 제1 및 제2 본딩부(121, 122)의 면적이 작게 제공됨에 따라, 상기 발광소자(120)의 하면으로 투과되는 빛의 양이 증대될 수 있다.
실시예는 발광소자 패키지에서 발광소자 주의에 반사층을 유선형으로 배치함으로써 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
또한 실시예는 발광소자 패키지에서 발광소자와 반사층을 근접하게 배치시킴으로써 컴팩트한 발광소자 패키지를 제공함과 아울러 광도를 현저히 향상시킬 수 있는 발광소자 패키지 및 발광소자 패키지 제조방법, 광원 장치를 제공할 수 있다.
또한 실시예에 의하면, 광 추출 효율 및 전기적 특성과 신뢰성을 향상시킬 수 있는 장점이 있다.
또한 실시예에 의하면, 공정 효율을 향상시키고 새로운 패키지 구조를 제시하여 제조 단가를 줄이고 제조 수율을 향상시킬 수 있는 장점이 있다.
또한 실시예는 반사율이 높은 몸체를 제공함으로써, 반사체가 변색되지 않도록 방지할 수 있어 발광소자 패키지의 신뢰성을 개선할 수 있는 장점이 있다.
또한 실시예에 의하면, 발광소자 패키지가 기판 등에 재 본딩되는 과정에서 발광소자 패키지의 본딩 영역에서 리멜팅(re-melting) 현상이 발생되는 것을 방지할 수 있는 장점이 있다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 실시예를 한정하는 것이 아니며, 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 설정하는 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
제1 개구부(TH1), 제1 프레임(111),
제2 개구부(TH2), 제2 프레임(112),
캐비티(C), 몸체(113), 발광소자(120),
제1 수지층(130), 반사층(190), 몰딩부(140)

Claims (5)

  1. 제1 개구부를 포함하는 제1 프레임;
    상기 제1 프레임과 이격되고, 제2 개구부를 포함하는 제2 프레임;
    상기 제1 및 제2 프레임을 지지하고, 캐비티를 포함하는 몸체;
    상기 캐비티 내에 배치되는 발광소자;
    상기 몸체와 상기 발광소자 사이에 배치되는 제1 수지층; 및
    상기 캐비티 상에 배치되고, 상기 발광소자를 에워싸는 몰딩부;를 포함하고,
    상기 몸체의 상기 캐비티의 측면 하단은 제1 유선형의 경사면을 포함하며,
    상기 제1 및 제2 개구부는 상기 발광소자와 서로 중첩되고,
    상기 몸체는 상기 제1 및 제2 개구부 사이에 리세스를 포함하고,
    상기 제1 수지층은 상기 리세스에 배치되는 발광소자 패키지.
  2. 제1 항에 있어서,
    상기 캐비티의 측면에 배치되며, 상기 제1 유선형의 경사면에 대응하는 제2 유선형의 경사면을 포함하는 반사층을 더 포함하는 발광소자 패키지.
  3. 제1 항에 있어서,
    상기 발광소자의 측면과 상기 반사층의 유선형의 경사면 사이의 거리는 10 ㎛ 내지 50㎛인 발광소자 패키지.
  4. 제1 항에 있어서,
    상기 발광소자 상에 배치된 형광체층을 더 포함하는 발광소자 패키지.
  5. 제1 항 내지 제4 항 중 어느 하나에 기재된 발광소자 패키지를 구비하는 발광유닛을 포함하는 조명장치.
KR1020170146065A 2017-11-03 2017-11-03 발광소자 패키지 및 이를 포함하는 조명장치 KR102509064B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170146065A KR102509064B1 (ko) 2017-11-03 2017-11-03 발광소자 패키지 및 이를 포함하는 조명장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170146065A KR102509064B1 (ko) 2017-11-03 2017-11-03 발광소자 패키지 및 이를 포함하는 조명장치

Publications (2)

Publication Number Publication Date
KR20190050546A true KR20190050546A (ko) 2019-05-13
KR102509064B1 KR102509064B1 (ko) 2023-03-10

Family

ID=66581885

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170146065A KR102509064B1 (ko) 2017-11-03 2017-11-03 발광소자 패키지 및 이를 포함하는 조명장치

Country Status (1)

Country Link
KR (1) KR102509064B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120060469A (ko) * 2010-12-02 2012-06-12 삼성엘이디 주식회사 발광소자 패키지 및 그 제조 방법
KR20140108172A (ko) * 2013-02-28 2014-09-05 서울반도체 주식회사 발광 모듈
KR101568757B1 (ko) * 2014-03-05 2015-11-12 주식회사 루멘스 리드 프레임, 발광 소자 패키지, 백라이트 유닛, 조명 장치 및 발광 소자 패키지의 제조 방법
JP2015226056A (ja) * 2014-05-28 2015-12-14 エルジー イノテック カンパニー リミテッド 発光素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120060469A (ko) * 2010-12-02 2012-06-12 삼성엘이디 주식회사 발광소자 패키지 및 그 제조 방법
KR20140108172A (ko) * 2013-02-28 2014-09-05 서울반도체 주식회사 발광 모듈
KR101568757B1 (ko) * 2014-03-05 2015-11-12 주식회사 루멘스 리드 프레임, 발광 소자 패키지, 백라이트 유닛, 조명 장치 및 발광 소자 패키지의 제조 방법
JP2015226056A (ja) * 2014-05-28 2015-12-14 エルジー イノテック カンパニー リミテッド 発光素子

Also Published As

Publication number Publication date
KR102509064B1 (ko) 2023-03-10

Similar Documents

Publication Publication Date Title
KR102401826B1 (ko) 발광소자 패키지 및 이를 포함하는 조명장치
KR20190001188A (ko) 발광소자 패키지 및 광원 장치
JP6964345B2 (ja) 発光素子パッケージ及び光源装置
EP3471156B1 (en) Light-emitting device package
KR20190083042A (ko) 발광소자 패키지
KR20190029399A (ko) 발광소자 패키지
KR20190031089A (ko) 발광소자 패키지
KR20190031087A (ko) 발광소자 패키지
KR20190065011A (ko) 발광소자 패키지
KR20190086099A (ko) 발광소자 패키지
KR20190031105A (ko) 발광소자 및 이를 포함하는 발광소자 패키지
KR102610607B1 (ko) 발광소자 패키지
KR102509064B1 (ko) 발광소자 패키지 및 이를 포함하는 조명장치
KR20190044449A (ko) 발광소자 패키지 및 광원 장치
KR102542297B1 (ko) 발광소자 패키지
KR20190029250A (ko) 발광소자 패키지 및 조명 모듈
KR102433841B1 (ko) 발광소자 패키지
KR102379834B1 (ko) 발광소자 패키지
KR102369237B1 (ko) 발광소자 패키지 및 그 제조방법
KR102369245B1 (ko) 발광소자 패키지
KR20190087710A (ko) 발광소자 패키지
KR20190078749A (ko) 발광소자 패키지
KR20190079076A (ko) 발광소자 패키지
KR20190025400A (ko) 발광소자 패키지 및 광원장치
KR20190010352A (ko) 발광소자 패키지 및 그 제조방법

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant