KR20190041304A - Composition for direct conversion of somatic cell into hepatocyte using non-viral vector and method of direct conversion using the same - Google Patents

Composition for direct conversion of somatic cell into hepatocyte using non-viral vector and method of direct conversion using the same Download PDF

Info

Publication number
KR20190041304A
KR20190041304A KR1020170132734A KR20170132734A KR20190041304A KR 20190041304 A KR20190041304 A KR 20190041304A KR 1020170132734 A KR1020170132734 A KR 1020170132734A KR 20170132734 A KR20170132734 A KR 20170132734A KR 20190041304 A KR20190041304 A KR 20190041304A
Authority
KR
South Korea
Prior art keywords
hepatocytes
viral vector
somatic cells
differentiation
direct
Prior art date
Application number
KR1020170132734A
Other languages
Korean (ko)
Other versions
KR102010840B1 (en
Inventor
옥선아
오건봉
황성수
임기순
Original Assignee
대한민국(농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장) filed Critical 대한민국(농촌진흥청장)
Priority to KR1020170132734A priority Critical patent/KR102010840B1/en
Publication of KR20190041304A publication Critical patent/KR20190041304A/en
Application granted granted Critical
Publication of KR102010840B1 publication Critical patent/KR102010840B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4705Regulators; Modulating activity stimulating, promoting or activating activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a method of direct conversion and a composition for direct conversion of somatic cells into hepatocytes using a non-viral vector. More particularly, the present invention provides highly efficient directly converted induced hepatocytes (iHep) by using a non-viral vector, and to a method of direct conversion from somatic cells into hepatocytes in a more rapid, accurate and economical way using the same.

Description

비-바이러스 벡터를 이용한 체세포의 간세포로의 직접교차분화용 조성물 및 직접교차분화 방법{Composition for direct conversion of somatic cell into hepatocyte using non-viral vector and method of direct conversion using the same}[Technical Field] The present invention relates to a composition for directly crossing differentiation of somatic cells into a hepatocyte using a non-viral vector, and a direct crossing differentiation method.

본 발명은 비-바이러스 벡터를 이용한 체세포의 간세포로의 직접교차분화용 조성물 및 직접교차분화 방법에 관한 것이다. 더욱 상세하게 본 발명은 비-바이러스성(non-viral) 벡터를 사용함으로써 고효율 직접교차분화된 간줄기세포(converted induced Hepatocyte, iHep)를 제공하고, 이를 이용하여 보다 신속하고 정확하며, 경제적인 체세포에서 간세포로의 고효율의 직접교차분화방법에 관한 것이다.The present invention relates to a composition for direct crossing differentiation of somatic cells into hepatocytes using a non-viral vector and a direct cross-differentiation method. More specifically, the present invention provides highly efficient direct crossed differentiated hepatocytes (iHep) using non-viral vectors, which can be used to produce faster, more accurate, and economical somatic cells To a method for directly crossing differentiation of hepatocytes into high efficiency.

유도만능줄기세포(induced pluripotent stem cells, iPSCs)란 Oct4, Sox2, Klf4, cMyc이라는 4가지의 외래 유전자를 일반 체세포에 도입하여 체내 모든 세포로 분화(differentiation)가 가능한 전능성 배아줄기세포의 상태로 역분화(de-differentiation)시킨 세포를 말한다.Induced pluripotent stem cells (iPSCs) are four types of foreign genes, Oct4, Sox2, Klf4, and cMyc, which are introduced into general somatic cells to produce differentiated pluripotent stem cells. Refers to cells that have been de-differentiated.

2006년, 생쥐 섬유아세포에 네 개의 전사인자를 도입하여 유도만능줄기세포를 만드는 데 성공한 야마나카 교수는, 이듬해에 인간 피부 섬유아세포에도 같은 네 개의 전사인자로 유도시킨 인간 유도만능줄기세포를 만드는 것도 성공하였다. 같은 해에 미국 위스콘신 메디슨 대학 제임스 톰슨 교수팀은 레트로바이러스로 유전자(Oct4, Sox2, Nanog and Lin28)를 도입하여 인간의 피부세포로부터 유도만능줄기세포를 만드는데 성공하였다.In 2006, Professor Yamanaka succeeded in creating inducible pluripotent stem cells by introducing four transcription factors into mouse fibroblasts. In the following year, he succeeded in producing human induced pluripotent stem cells, which are induced by the same four transcription factors in human dermal fibroblasts Respectively. In the same year, James Thompson, a professor at the University of Wisconsin-Madison, USA, succeeded in introducing genes (Oct4, Sox2, Nanog and Lin28) as retroviruses to produce induced pluripotent stem cells from human skin cells.

그러나, 유도만능줄기세포는 배아줄기세포와 같은 전능성(pluripotency)을 가진다는 장점에도 불구하고, 특정 세포로 분화시키는 특수한 배양조건하에서 충분히 분화되지 못한 소량의 '미분화 상태의 세포' 가 잔존할 가능성이 있어, 체내 이식 시 종양(기형종, teratoma)을 형성할 가능성을 가지고 있으므로 사람을 대상으로 하는 임상연구 적용에 큰 장애로 판단된다.However, although inducible pluripotent stem cells have the advantage of pluripotency as embryonic stem cells, there is a possibility that a small amount of 'undifferentiated cells' that do not sufficiently differentiate under specific culture conditions to differentiate into specific cells may remain Because of the potential for tumor formation (teratoma) during transplantation, it is considered to be a major impediment to the application of clinical research to humans.

이에 유도만능줄기세포의 단점을 보완하고 극복하기 위해, 직접교차분화(direct conversion)시키는 기술이 각광을 받고 있다. '직접교차분화'는 임의의 체세포(cell type A)를 모든 세포로 분화가 가능한 유도만능줄기세포로 역분화시킨 후 다시 하위로 분화시키는 과정(re-differentiation)을 거치지 않고, 원하는 세포인 B로 직접 전환하는 기술이다. 이러한 다양한 조직 특이적 세포 분화를 유도하는 직접교차분화법(direct conversion)은 효율성이 낮은 문제점이 있다. In order to overcome and overcome the disadvantages of inducible pluripotent stem cells, a technique of direct direct conversion has been spotlighted. 'Direct cross-differentiation' is a process that does not re-differentiate a given somatic cell (cell type A) into inducible pluripotent stem cells capable of differentiating into all cells, It is a technology to switch directly. Direct conversion, which induces various tissue-specific cell differentiation, has a problem of low efficiency.

본 발명의 배경기술로는 한국공개특허 제10-2015-0052228(2015.05.13.)이 있으며, 상기 특허에는 FOXA3, HNF1A, 및 HNF4A 등의 리프로그래밍 인자를 이용하여, 비-간세포를 리프로그래밍함으로써 유도 간세포를 생성시키는데 사용하기 위한 방법이 개시되어 있다.The background of the present invention is Korean Patent Laid-Open No. 10-2015-0052228 (May 05, 2015), which discloses a method of reprogramming non-hepatocytes using reprogramming factors such as FOXA3, HNF1A, and HNF4A A method for use in generating induced hepatocytes is disclosed.

본 발명은 바이러스 시스템 기반이 아닌 비-바이러스성 시스템 기반으로, 돼지의 체세포를 대상으로 한 교차분화 간 줄기세포주 확립에 관한 것으로서, 코돈 최적화(codon optimization)와 GC 함량 최적화(GC content optimization)된 HNF1A를 삽입한 에피소말 벡터(episomal vector), 및 hHN4A 및 hFOX3을 삽입한 에피소말 벡터(episomal vector)를 효율적으로 세포 내에 삽입하여, 안정적인 세포 분화가 가능하도록 하였으며, 소분자 화합물(A-83-01)의 첨가와 적합한 배양 방법을 선택하여 증식 가능한 교차 간 줄기세포주를 구축하였다.The present invention relates to the establishment of a cross-differentiation stem cell line based on a non-viral system based on a virus system, and to a somatic cell of a pig, wherein codon optimization and GC content optimization (HNF1A (A-83-01), and an episomal vector inserted with hHN4A and hFOX3 were efficiently introduced into the cells to enable stable cell differentiation. And a suitable culture method were selected to construct a proliferative cross-over stem cell line.

본 발명의 목적은 상기 비-바이러스 벡터를 이용한 체세포의 간세포로의 직접 교차분화용 조성물을 제공하는 것이다.It is an object of the present invention to provide a composition for direct cross-differentiation of somatic cells into hepatocytes using the non-viral vector.

본 발명의 다른 목적은 상기 조성물을 이용함으로써 고효율 직접교차분화된 줄기세포주(converted induced Hepatocyte, iHep)를 제공하는 것이다.Another object of the present invention is to provide a highly efficient Directed Differentiated Hepatocyte (iHep) using the above composition.

본 발명의 또 다른 목적은 상기 조성물을 이용하여 신속하고 정확하며, 경제적인 체세포에서 간세포로의 고효율의 직접교차분화 방법을 제공하는 것이다. It is still another object of the present invention to provide a method for directly crossing differentiation from somatic cells to hepatocytes with high efficiency using the above composition in a fast, accurate and economical manner.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 더욱 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 측면에 따르면, 서열번호 1의 HNF1A 유전자 단편을 포함하는 비-바이러스성 벡터; 및 서열번호 2의 Hnf4a-F2A-Foxa3 유전자 단편을 포함하는 비-바이러스성 벡터를 포함하는, 체세포의 간세포로의 직접교차분화용 조성물이 제공된다.According to one aspect of the present invention, there is provided a non-viral vector comprising the HNF1A gene fragment of SEQ ID NO: 1; And a non-viral vector comprising the Hnf4a-F2A-Foxa3 gene fragment of SEQ ID NO: 2, for direct cross-differentiation of somatic cells into hepatocytes.

본 발명의 일 실시예에 의하면, 상기 비-바이러스성 벡터는 에피소말 벡터(episomal vector)인, 체세포의 간세포로의 직접교차분화용 조성물이 제공된다.According to one embodiment of the present invention, there is provided a composition for direct cross-differentiation of somatic cells into hepatocytes, wherein said non-viral vector is an episomal vector.

본 발명의 일 실시예에 의하면, 상기 비-바이러스성 벡터는 코돈 최적화(codon optimization)와 GC 함량 최적화(GC content optimization)된 전사 인자가 삽입된 벡터인, 체세포의 간세포로의 직접교차분화용 조성물이 제공된다.According to one embodiment of the present invention, the non-viral vector is a vector for direct crossing differentiation of somatic cells into hepatocytes, which is a vector into which a transcription factor inserted with codon optimization and GC content optimization is inserted / RTI >

본 발명의 일 실시예에 의하면, 소분자 화합물 A83-01을 더 포함하는 체세포의 간세포로의 직접교차분화 촉진용 조성물이 제공된다.According to one embodiment of the present invention, there is provided a composition for promoting direct crossing differentiation of somatic cells further comprising a small molecule compound A83-01 into hepatocytes.

본 발명의 일 실시예에 의하면, 상기 체세포는 돼지의 섬유아세포인 것을 특징으로 하는, 체세포의 간세포로의 직접교차분화용 조성물이 제공된다.According to one embodiment of the present invention, there is provided a composition for direct cross-differentiation of somatic cells into hepatocytes, wherein the somatic cells are fibroblasts of pigs.

본 발명의 다른 측면에 따르면, 상기 조성물을 이용하여 직접교차분화된 줄기세포주가 제공된다.According to another aspect of the present invention, there is provided a directly cross-differentiated stem cell line using the composition.

본 발명의 또 다른 측면에 따르면, (a) 서열번호 1의 HNF1A 유전자 단편을 포함하는 비-바이러스성 벡터 및 서열번호 2의 Hnf4a-F2A-Foxa3 유전자 단편을 포함하는 비-바이러스성 벡터로, 전사인자를 체세포에 도입하여 배양하는 단계; 및 (b) 상기 전사 인자가 도입된 체세포를 소분자 화합물을 포함하는 배양액에서 배양하여 체세포를 간세포로 직접교차분화(direct reprogramming)시키는 단계;를 포함하는 체세포에서 간세포로의 직접교차분화 방법이 제공된다.(A) a non-viral vector comprising the HNF1A gene fragment of SEQ ID NO: 1 and a non-viral vector comprising the Hnf4a-F2A-Foxa3 gene fragment of SEQ ID NO: 2, Introducing factor into somatic cells and culturing; And (b) culturing the somatic cells into which the transcription factor has been introduced in a culture medium containing a small molecule compound to directly reprogram the somatic cells to hepatocytes (direct reprogramming), thereby providing a method of directly crossing differentiation into hepatocytes .

본 발명의 일 실시예에 의하면, 상기 체세포는 돼지 유래의 섬유아세포인 체세포에서 간세포로의 직접교차분화 방법이 제공된다.According to one embodiment of the present invention, the somatic cell is provided with a method of directly crossing differentiation from somatic cells, which are fibroblasts derived from pigs, into hepatocytes.

본 발명의 일 실시예에 의하면, 상기 비-바이러스성 벡터는 에피소말 벡터(episomal vector) 인 체세포에서 간세포로의 직접교차분화 방법이 제공된다.According to an embodiment of the present invention, the non-viral vector is provided with a method of directly crossing differentiation from a somatic cell, which is an episomal vector, into a hepatocyte.

본 발명의 일 실시예에 의하면, 상기 소분자 화합물은 A83-01인, 체세포를 간세포로 직접교차분화 방법이 제공된다.According to one embodiment of the present invention, there is provided a method for directly cross-dividing somatic cells into hepatocytes, wherein the small molecule compound is A83-01.

본 발명의 일 실시예에 의하면, 코돈 최적화(codon optimization)와 GC 함량 최적화(GC content optimization)된 전사 인자가 삽입된 벡터를 포함하여, 체세포의 간세포로의 직접교차분화에 이용 가능한 비-바이러스성 벡터를 제공할 수 있다. 상기 비-바이러스성(nonviral) 벡터를 사용함으로써 일반적으로 면역반응을 유도하지 않고, 독성이 낮으며, 대량생산이 용이하다는 장점이 있다. According to one embodiment of the present invention, there is provided a vector comprising a vector inserted with a transcription factor that is optimized for codon optimization and GC content optimization (GC content optimized), and which can be used for direct crossing differentiation of somatic cells into hepatocytes Vector. ≪ / RTI > The use of the non-viral vector generally has the advantage that it does not induce an immune response, has low toxicity, and is easy to mass-produce.

본 발명의 일 실시예에 의하면, 체세포의 간세포로의 직접교차분화에 이용 가능한 체세포의 간세포로의 직접교차분화용 조성물을 제공할 수 있다.According to one embodiment of the present invention, it is possible to provide a composition for direct cross-differentiation of somatic cells into hepatocytes that can be used for direct crossing differentiation of somatic cells into hepatocytes.

본 발명의 일 실시예에 의하면, 상기 비-바이러스성 벡터를 이용하여 직접 교차분화된 줄기세포주를 제공할 수 있다.According to an embodiment of the present invention, the non-viral vector may be used to directly provide a cross-differentiated stem cell line.

본 발명의 일 실시예에 의하면, 보다 신속하고 정확하며, 경제적인 체세포에서 간세포로의 고효율의 직접교차분화방법을 제공하여, 이종 장기 공급을 확대할 수 있고, 부족한 장기 이식문제 해결에 도움이 된다.According to one embodiment of the present invention, a method of direct crossing differentiation from a somatic cell to a hepatocyte in a more efficient and economical manner is provided, thereby expanding supply of heterologous organs and helping to solve insufficient organ transplantation problems .

본 발명에 의하면, 신약개발을 위한 독성 테스트용 세포주로 개발이 가능하고, 간 부전 환자에 맞춤형인 안전한 세포치료제의 개발에 활용될 수 있다.According to the present invention, it is possible to develop a cell line for toxicity testing for the development of a new drug, and can be utilized in the development of a safe cell therapy agent customized for liver failure patients.

도 1은 본 발명의 일 실시예에 의한, HNF1A 유전자 단편을 포함하는 비-바이러스성 벡터의 모식도이다.
도 2는 본 발명의 일 실시예에 의한, Hnf4a-F2A-Foxa3 유전자 단편을 포함하는 비-바이러스성 벡터의 모식도이다.
도 3a 및 도 3b는 본 발명의 일 실시예에 의한, 코돈 최적화(codon optimization) 및 GC 함량 최적화(GC content optimization)를 보여주는 그래프이다.
도 4는 본 발명의 일 실시예에 따른 체세포의 간세포로의 직접교차분화용 조성물을 이용하여 직접교차분화된 간세포의 2번째 계대배양 및 3번째 계대배양을 한 세포의 형태학적 변화 양상을 보여주는 사진이다.
도 5는 본 발명의 일 실시예에 의한, 직접교차분화된 간세포에 대한 소분자 화합물(A83-01)의 첨가 기간에 따른 piHep의 유전자 발현 특성을 나타내는 그래프이다.
도 6은 본 발명의 일 실시예에 의한, 직접교차분화된 간세포의 생리학적 특성을 조직면역염색(immunohistochemistry, IHC) 분석한 결과를 보여주는 사진이다.
도 7은 본 발명의 일 실시예에 의한, 직접교차분화된 간세포의 생리학적 특성을 Integrated Optical Density(IOD)로 보여주는 그래프이다.
도 8은 본 발명의 일 실시예에 의한, 직접교차분화된 간세포에 간특이 유도자(inducer)를 처리한 후 CYP 효소의 발현 양상을 보여주는 그래프이다.
도 9a 및 도 9b는 본 발명의 일 실시예에 의한, 직접교차분화된 간세포의 성숙도를 지방분화를 통해 보여주는 사진 및 그래프이다.
도 10a 및 도 10b는 본 발명의 일 실시예에 의한, 직접교차분화된 간세포의 성숙도를 글라이코겐 축적을 통해 보여주는 사진 및 그래프이다.
1 is a schematic diagram of a non-viral vector comprising a HNF1A gene fragment according to an embodiment of the present invention.
2 is a schematic diagram of a non-viral vector comprising the Hnf4a-F2A-Foxa3 gene fragment according to an embodiment of the present invention.
Figures 3A and 3B are graphs showing codon optimization and GC content optimization according to an embodiment of the present invention.
FIG. 4 is a photograph showing morphological changes of cells subjected to second passage passage and third passage passage of direct cross-differentiated hepatocytes using a composition for direct crossing differentiation of somatic cells according to an embodiment of the present invention to be.
FIG. 5 is a graph showing the gene expression characteristics of piHep according to the addition period of the small molecule compound (A83-01) for directly cross-differentiated hepatocytes according to an embodiment of the present invention.
FIG. 6 is a photograph showing immunohistochemistry (IHC) analysis of the physiological characteristics of direct cross-differentiated hepatocytes according to an embodiment of the present invention.
FIG. 7 is a graph showing physiological characteristics of direct crossed differentiated hepatocytes according to Integrated Optical Density (IOD) according to an embodiment of the present invention.
FIG. 8 is a graph showing the expression pattern of CYP enzyme after direct inducible treatment of direct cross-differentiated hepatocytes according to an embodiment of the present invention.
9A and 9B are photographs and graphs showing the maturation of the directly cross-differentiated hepatocytes through lipid differentiation according to an embodiment of the present invention.
FIGS. 10A and 10B are photographs and graphs showing the maturation of direct cross-differentiated hepatocytes through glycogen accumulation according to an embodiment of the present invention. FIG.

본 발명을 더 쉽게 이해하기 위해 편의상 특정 용어를 본원에 정의한다. 본원에서 달리 정의하지 않는 한, 본 발명에 사용된 과학 용어 및 기술 용어들은 해당 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미를 가질 것이다. 또한, 문맥상 특별히 지정하지 않는 한, 단수 형태의 용어는 그것의 복수 형태도 포함하는 것이며, 복수 형태의 용어는 그것의 단수 형태도 포함하는 것으로 이해되어야 한다.Certain terms are hereby defined for convenience in order to facilitate a better understanding of the present invention. Unless otherwise defined herein, scientific and technical terms used in the present invention shall have the meanings commonly understood by one of ordinary skill in the art. Also, unless the context clearly indicates otherwise, the singular form of the term also includes plural forms thereof, and plural forms of the term should be understood as including its singular form.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일 측면에 의하면, 서열번호 1의 HNF1A 유전자 단편을 포함하는 비-바이러스성 벡터; 및 서열번호 2의 Hnf4a-F2A-Foxa3 유전자 단편을 포함하는 비-바이러스성 벡터를 포함하는, 체세포의 간세포로의 직접교차분화용 조성물을 제공할 수 있다. According to an aspect of the present invention, there is provided a non-viral vector comprising the HNF1A gene fragment of SEQ ID NO: 1; And a non-viral vector comprising the Hnf4a-F2A-Foxa3 gene fragment of SEQ ID NO: 2, for direct cross-differentiation of somatic cells into hepatocytes.

여기서, 직접교차분화란, 임의의 체세포(cell type A)를 모든 세포로 분화가 가능한 유도만능줄기세포로 역분화시킨 후 다시 하위로 분화시키는 과정(re-differentiation)을 거치지 않고, ‘직접’원하는 특정 세포(cell type B)로 전환시키는 기술이다.Direct cross-differentiation refers to a process in which a cell type A is de-differentiated into an inducible pluripotent stem cell capable of differentiating into all cells, and then re-differentiation is performed without re-differentiation. (Cell type B).

유전자 치료법에 있어서 기존에 사용되어 오던 바이러스성 벡터 시스템은 숙주 유전자에 외래 유전자가 삽입되어 추후 임상 적용에 있어서 면역원성 등의 생물학적 안정성의 문제점이 있었다. 한편, 비-바이러스성 벡터 시스템은 전달 효율이 낮은 문제점이 있었다. 본 발명자들은 상기 문제점을 동시에 해결하기 위해 간 전사인자 유전자를 목적 세포에 효율적으로 전달할 수 있으며, 상기 유전자를 지속적이고 오랫동안 발현시킬 수 있는 안전성이 높은 비-바이러스성 벡터 시스템을 개발하였다.The viral vector system which has been used in the gene therapy method has a problem of biological stability such as immunogenicity in the clinical application after the foreign gene is inserted into the host gene. On the other hand, the non-viral vector system has a problem of low transfer efficiency. The present inventors have developed a highly safe nonviral vector system capable of efficiently transferring an interstitial factor gene to a target cell and capable of expressing the gene continuously and for a long time in order to solve the above problems simultaneously.

즉, 본 발명은 HNF1A 유전자 단편을 포함하는 비-바이러스성 벡터 및 Hnf4a-F2A-Foxa3 유전자 단편을 포함하는 비-바이러스성 벡터를 이용하는 것을 특징으로 하여, 이러한 특징에 의해 비-바이러스성 벡터 시스템이지만 전달 효율을 높일 수 있다. That is, the present invention is characterized by using a non-viral vector comprising the HNF1A gene fragment and a non-viral vector comprising the Hnf4a-F2A-Foxa3 gene fragment, and is thus a non-viral vector system The transmission efficiency can be increased.

본 발명의 일 실시예에 의하면, 상기 비-바이러스성 벡터는 에피소말(episomal) 벡터인, 고효율 형질전환 세포주 제작이 가능한 체세포의 간세포로의 직접교차분화용 조성물이 제공된다.According to one embodiment of the present invention, there is provided a composition for direct cross-differentiation of somatic cells capable of producing a high-efficiency transformed cell line, wherein the non-viral vector is an episomal vector, into hepatocytes.

“에피소말 벡터(episomal vector)”는 비삽입성(integration-free) 벡터로서, 유전적 삽입 없이, 염색체 외로 감염된 세포에서 복제하고 전파할 수 있는 장점이 있다. An " episomal vector " is an integration-free vector, which has the advantage of being able to replicate and propagate in chromosomally infected cells, without genetic insertions.

본 발명의 일 실시예에 의하면, 상기 비-바이러스성 벡터는 발현 최적화를 위해 코돈 최적화(codon optimization) 및 GC 함량 최적화(GC content optimization)된 전사 인자가 삽입된 벡터인, 체세포의 간세포로의 직접교차분화용 조성물이 제공된다. 이에 한정되는 것은 아니나, 종내 발현 최적화를 위해 GC 함량은 80% 이상이나 30% 이하를 피해서 조정하는 것이 발현 최적화에 적합하다. According to one embodiment of the present invention, the non-viral vector is a vector directly inserted into a hepatocyte of a somatic cell, in which a transcription factor inserted with codon optimization and GC content optimization is optimized for expression optimization A composition for cross-differentiation is provided. For optimization of expression in a species, it is preferable to optimize the expression by adjusting the GC content to 80% or more but not to 30% or less.

본 발명의 경우, 돼지의 유전자의 코돈에 맞추어 유전자 최적화 프로그램(GeneOptimizer)를 사용하여, HNF1A 유전자의 경우 평균 GC함량이 65%가 되도록 하였으며, Hnf4a-F2A-Foxa3 유전자의 경우 평균 GC함량이 64%가 되도록 최적화하였다(도 3a 및 3b 참조). 상기 최적화 과정에서 하기의 시스-액팅 서열 모티브(cis-acting sequence motifs)는 회피되었다. In the case of the present invention, the average GC content of the HNF1A gene was 65% and the average GC content of the Hnf4a-F2A-Foxa3 gene was 64% using a gene optimization program in accordance with the codon of the pig gene. (See Figs. 3A and 3B). In the optimization process, the following cis-acting sequence motifs were avoided.

- internal TATA-boxes, chi-sites and ribosomal entry sites- internal TATA-boxes, chi-sites and ribosomal entry sites

- AT-rich or GC-rich sequence stretches- AT-rich or GC-rich sequence stretches

- RNA instability motifs- RNA instability motifs

- repeat sequences and RNA secondary structures- repeat sequences and RNA secondary structures

- (cryptic) splice donor and acceptor sites in higher eucaryotes- (cryptic) splice donor and acceptor sites in higher eucaryotes

본 발명에서, "코돈 최적화(Codon Optimization)"란 단백질을 코딩하는 부위의 아미노산 코돈 중에서 편중되어 사용되는 코돈(prefered codon)을 부각시키고 희귀 코돈(rare codom)을 변형시켜 단백질의 생산을 증진시키는 방법을 말한다.In the present invention, " Codon Optimization " refers to a method of enhancing the production of proteins by highlighting a prefered codon that is biased in the amino acid codon at a site coding for the protein and modifying the rare codom .

본 발명에 있어서, 상기 코돈 최적화된 염기서열은 서열번호 1의 HNF1A 유전자 단편 및 서열번호 2의 Hnf4a-F2A-Foxa3 유전자 단편을 나타내며, 이러한 코돈 최적화에 의해 비-바이러스성 벡터 시스템이지만 전달 효율을 높일 수 있다. In the present invention, the codon-optimized nucleotide sequence represents the HNF1A gene fragment of SEQ ID NO: 1 and the Hnf4a-F2A-Foxa3 gene fragment of SEQ ID NO: 2, and although this is a non-viral vector system by the codon optimization, .

본 발명에 있어서, 상기 체세포는 돼지의 섬유아세포인 것을 특징으로 한다.In the present invention, the somatic cell is a fibroblast of porcine.

본원발명은 이종 간 장기이식 시 장기 이식용 공여자(donor)로 이용되는 돼지의 섬유아세포를 이용하였다.The present invention utilizes porcine fibroblasts which are used as donors for organ transplantation in xenotransplantation.

“돼지”는 이종 이식에 적합한 동물로 현재로서는 돼지가 가장 뛰어난 후보로 꼽히고 있다. 돼지는 공급가용성이 높으며, 이들 장기는 인간의 것과 크기가 비슷하다. 게다가, 의약용이 아니더라도 수세기 동안 인간에 의해 사육되어 온 동물이기 때문에 취급이 비교적 용이하다고 평가받고 있다."Pigs" are suitable for xenotransplantation, and for now pigs are considered to be the best candidates. Pigs are highly available in supply, and these organs are similar in size to humans. Moreover, even though it is not medicines, it has been regarded as relatively easy to handle because it has been raised by humans for centuries.

본 발명의 일 실시예에 의하면, 소분자 화합물 A83-01을 더 포함하는, 체세포의 간세포로의 직접교차분화용 조성물이 제공된다.According to one embodiment of the present invention, there is provided a composition for direct cross-differentiation of somatic cells into hepatocytes further comprising the small molecule compound A83-01.

상기 소분자 화합물인 A83-01은 조합 1(hHNF1A) 및 조합 2(hHF4A 및 hFOX3)으로 각각 처리된 체세포를 Tgfβ 신호전달(signaling)을 차단 및 억제하는 효과가 있어 체세포의 간세포로의 직접교차분화 효율을 높일 수 있다.The small molecule compound A83-01 has an effect of blocking and inhibiting Tgfβ signaling in somatic cells treated with combination 1 (hHNF1A) and combination 2 (hHF4A and hFOX3), respectively. Thus, direct crossing differentiation efficiency of somatic cells into hepatocytes .

본 발명의 조성물에는 공지의 소분자 화합물이 추가로 더 포함될 수 있다. 이에 한정되는 것은 아니나 예를 들어 세포의 증식을 유도하는 Wnt 신호전달활성화 소분자화합물(CHIR99021)을 더 포함할 수 있다. The composition of the present invention may further include a known small molecule compound. But are not limited to, for example, a Wnt signaling activating small molecule compound (CHIR99021) that induces cell proliferation.

본 발명의 다른 측면에 따르면, 상기 체세포의 간세포로의 직접교차분화용 조성물을 이용하여 직접교차 분화된 줄기세포주가 제공된다.According to another aspect of the present invention, there is provided a directly cross-differentiated stem cell line using a composition for direct cross-differentiation of somatic cells into hepatocytes.

본 발명에 의한 직접교차 분화된 줄기세포주는 야생주에 비하여, 돼지의 대표적인 효소인 CYP의 상대적인 유전자 발현이 높고, 계대배양이 진행됨과 상관없이 iHep의 간 기능을 확인할 수 있는 지방세포와 글리코겐 축적 정도가 높은 것으로 나타났다.The direct-differentiated stem cell line according to the present invention has higher relative gene expression of CYP, which is a representative enzyme of pig, than wild-type strain, and the degree of accumulation of adipocytes and glycogen, which can confirm liver function of iHep, Respectively.

본 발명의 또 다른 측면에 따르면, (a) 서열번호 1의 HNF1A 유전자 단편을 포함하는 비-바이러스성 벡터; 및 서열번호 2의 Hnf4a-F2A-Foxa3 유전자 단편을 포함하는 비-바이러스성 벡터로, 전사인자를 도입하여 배양하는 단계; 및 (b) 상기 전사 인자가 도입된 체세포를 소분자 화합물을 포함하는 배양액에서 배양하여 체세포를 간세포로 직접교차분화(direct reprogramming)시키는 단계;를 포함하는 체세포에서 간세포로의 직접교차분화 방법이 제공된다.According to another aspect of the present invention there is provided a kit comprising: (a) a non-viral vector comprising the HNF1A gene fragment of SEQ ID NO: 1; And a non-viral vector comprising the Hnf4a-F2A-Foxa3 gene fragment of SEQ ID NO: 2; And (b) culturing the somatic cells into which the transcription factor has been introduced in a culture medium containing a small molecule compound to directly reprogram the somatic cells to hepatocytes (direct reprogramming), thereby providing a method of directly crossing differentiation into hepatocytes .

상기 단계 (a)는 체세포에 간세포로 전사를 유도하는 전사인자인 HNF1A, HF4A, 및 FOX3를 조합 1(hHNF1A) 및 조합 2(hHF4A 및 hFOX3)으로 도입한 후, 배양하는 단계이다.The step (a) is a step of introducing HNF1A, HF4A, and FOX3, which are transcription factors inducing transcription into hepatocytes into somatic cells, into the combination 1 (hHNF1A) and combination 2 (hHF4A and hFOX3) and then culturing.

상기 체세포는 섬유아세포 유래의 세포를 사용하는 것이 바람직하며, 돼지의 섬유아세포가 바람직하다.The somatic cells are preferably cells derived from fibroblasts, and fibroblasts from pigs are preferred.

상기 단계 (b)에서는 상기와 전사 유전자가 도입되어 직접교차분화가 유도된 체세포에 직접교차분화 효율을 향상시킬 수 있도록, 상기 체세포를 소분자 화합물을 포함하는 배양액에서 배양하여 체세포를 간세포로 직접교차분화시켜 직접교차분화 효율을 향상시키도록 구성할 수 있다.In the step (b), the somatic cells are cultured in a culture medium containing a small molecule compound to directly cross-differentiate the somatic cells into which the transcription genes and the transcription genes are directly induced, thereby directly cross- So as to directly improve the crossing differentiation efficiency.

이를 위해, 소분자화합물을 간세포 특이적인 배양액에서 상기 전사 유전자가 도입된 체세포를 48시간 배양하도록 구성할 수 있으며, 상기 배양액의 조성은 표 2와 같다.For this, the small molecule compound can be constructed to cultivate the somatic cells into which the transcription gene has been introduced for 48 hours in a hepatocyte-specific culture medium, and the composition of the culture solution is shown in Table 2.

본 발명의 일 실시예에 의하면, 상기 체세포는 돼지 유래의 섬유아세포인 체세포에서 간세포로의 직접교차분화 방법이 제공된다.According to one embodiment of the present invention, the somatic cell is provided with a method of directly crossing differentiation from somatic cells, which are fibroblasts derived from pigs, into hepatocytes.

본 발명의 일 실시예에 의하면, 상기 비-바이러스성 벡터는 에피소말(episomal) 벡터인 체세포에서 간세포로의 직접교차분화 방법이 제공된다.According to one embodiment of the present invention, the non-viral vector is provided as a direct cross-differentiating method from a somatic cell, which is an episomal vector, to a hepatocyte.

본 발명의 일 실시예에 의하면, 상기 소분자 화합물이 A83-01인, 체세포를 간세포로 직접교차분화 방법이 제공된다. 상기 소분자 화합물인 A83-01은 조합 1(hHNF1A) 및 조합 2(hHF4A 및 hFOX3)으로 각각 처리된 체세포를 Tgfβ 신호전달(signaling)을 차단 및 억제하는 효과가 있다.According to one embodiment of the present invention, there is provided a method for directly cross-dividing somatic cells into hepatocytes, wherein the small molecule compound is A83-01. The small molecule compound A83-01 has an effect of blocking and inhibiting Tgf [beta] signaling in somatic cells treated with combination 1 (hHNF1A) and combination 2 (hHF4A and hFOX3), respectively.

이하, 본 발명을 실시예에 의해 상세히 설명하기로 한다. 그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. However, these examples are intended to further illustrate the present invention, and the scope of the present invention is not limited to these examples.

실시예Example 1: 코돈 최적화( 1: codon optimization ( codoncodon optimization)와  optimization) and GCGC 함량 최적화( Content optimization GCGC content optimization)된 3개의 전사 인자를 2개의 에피소말 벡터(episomal vectors)에 삽입된 고효율 벡터 시스템 구축 content optimization) of three transcription factors into two episomal vectors.

사람의 간 전사 인자 (hHNF1A, hHNF4A, hFOX3) 3개를 선택하고 각 유전자의 크기를 고려하여, 조합 1(hHNF1A) 및 조합 2(hHF4A 및 hFOX3)으로, 돼지의 섬유아세포에서 사용 시 가장 적절한 단백질 합성이 가능하도록 HNF1A(1914 bp)와 HNF4A-2A-hFOX3FH(2577bp)로 구성된 2개의 코돈 최적화(codon optimization)와 GC 함량 최적화(GC content optimization)된 백터를 구축하였다(도 1 및 도 2 참조). Three of the human liver transcription factors (hHNF1A, hHNF4A, hFOX3) were selected and considered as the combination of 1 (hHNF1A) and combination 2 (hHF4A and hFOX3) Two codon optimization and GC content optimization vectors consisting of HNF1A (1914 bp) and HNF4A-2A-hFOX3FH (2577 bp) were constructed to allow synthesis (see Figures 1 and 2) .

실시예Example 2:  2: 에피소말Episomal 벡터( vector( EpisomalEpisomal vectors)의 삽입방법 최적화 Optimization of inserting vectors

돼지 섬유아세포 5x105 cells을 콜라겐이 코팅된 35 mm dish에 담고 이때 배양액 속에 1 uM 5 azacitidine을 첨가하여 세포를 디메틸화를 1일간 유도하였다. 24시간 후 Lipofectamine 3000을 이용하여 2개의 벡터를 넣고 48시간 동안 2 ml의 혈청과 항생제가 존재하지 않는 opti-MEM 배양액속에서 배양하였다. 4일차에 배양액을 간분화 배양액으로 교체하였다. 5 × 10 5 cells of pork fibroblasts were placed in a collagen-coated 35 mm dish, and 1 μM 5 azacitidine was added to the cells to induce dimethylation for 1 day. Twenty-four hours later, two vectors were added using Lipofectamine 3000 and cultured for 48 hours in 2 ml of serum and opti-MEM without antibiotics. On day 4, the medium was replaced with liver differentiation medium.

익스팬드 유도 간세포(Expand iHep)를 제작하기 위한 배양 방법 및 배양액 조성을 하기 표 1과 같이 구축하였다.Expand Induced Hepatocytes (Expand iHep) and the composition of the culture medium were constructed as shown in Table 1 below.

Figure pat00001
Figure pat00001

실시예Example 3:  3: 익스팬드Expand 유도 간세포(Expand  Induction Hepatocyte (Expand iHepiHep )의 제작) Production

2주간 배양을 한 후 세포를 1:4로 나누어 계대배양을 실시하였다. 이때를 passage 1로 잡고 passage 2까지는 전체 세포를 계대배양하고 passage 3-4부터는 형성된 콜로니만을 따서 트립신 EDTA를 사용하여 단일 세포(single cell)로 만들어 35mm dish에 접종(seeding)하여 계속해서 배양하였다. 상기 세포주를 계대배양하여 passage 13까지 보관하였다(도 4 참조).After 2 weeks of culture, the cells were divided into 1: 4 and subcultured. At this time, the whole cell was subcultured to passage 2 until passage 2, and single cells (single cell) were formed using trypsin EDTA only after the formed colonies from passage 3-4, followed by seeding in a 35 mm dish. The cell line was subcultured and stored until passage 13 (see FIG. 4).

계대배양 0 내지 1단계까지는 전체 세포를 계대 배양하여 콜로니(colony)의 수를 증폭하고, 그 후에 계대배양 2 내지 3단계에서 콜로니(colonies)만을 채취하여 빈도와 순도를 높이고, 지속적으로 배양하면 도 4와 같이, 다각형과 다핵을 가진 전형적인 간세포 유사 세포로 유도가 가능하다.Subsequently, all the cells are subcultured to increase the number of colonies from 0 to 1, followed by collecting only colonies in the second to third stages of subculturing to increase the frequency and purity, and continuously cultivate the colonies 4, it is possible to induce a typical hepatocyte-like cell with a polygonal and polynuclear chain.

또한, 소분자 화합물이 A83-01는 TGF-β-induced epithelial-to-mesenchymal transition을 차단하여 iHep의 형성을 촉진함을 확인하였다.In addition, the small molecule compound A83-01 blocked TGF-β-induced epithelial-to-mesenchymal transitions and promoted the formation of iHep.

소분자 화합물(A83-01)의 첨가기간에 따른 piHep의 효율은 도 5에 나타내었다. 소분자 화합물인 a83-01을 사용하여 이것들이 얼마나 전사인자들의 발현을 도울 수 있는지 확인하였고 1주부터 4주까지 처리한 군(+)과 처리하지 않은 군(-)을 주수에 따라 비교하였다. 외부에서 주입한 3개의 유전자는 시간이 지남에 따라 침묵하는 것을 확인할 수 있었지만(도 5의 B), 같은 주에 처리하지 않은 군보다는 증가함을 확인할 수 있었다. The efficiency of piHep according to the period of addition of the small molecule compound (A83-01) is shown in Fig. Using the small molecule compound a83-01, we were able to determine how much they were able to induce expression of transcription factors. We compared the number of cells treated with 1 week to 4 weeks (+) and those without treatment (-) according to the number of days. The three genes injected from the outside were confirmed to be silent over time (FIG. 5B), but it was confirmed that the genes were increased in the same week compared to the untreated group.

외부 전사인자의 도입은 내부 전자인자의 활성을 유도할 수 있는지를 확인 하였고(도 5의 C), 약물의 첨가는 유의적으로 내부전자 인자의 발현을 개선할 수 있음이 확인 되었다. It was confirmed that the introduction of the external transcription factor could induce the activity of the internal electronic element (FIG. 5C), and it was confirmed that the addition of the drug significantly improved the expression of the internal electronic element.

그리고 약물은 지속적으로 처리하는 것이 유전자 발현율을 높이는데 기여함을 확인할 수 있었다. (+ → - VS. + → +). 간의 대표적인 기능인 알부민과 트란스페린 분비에서 동일한 결과를 보였다. And it was confirmed that continuous treatment of drug contributes to increase gene expression rate. (+ → - VS. + → +). And albumin and trans-perine.

실험예 1: 면역형광법Experimental Example 1: Immunofluorescence

본 발명에 의한 직접교차분화 간세포의 생리 기능 및 특성을 확인하고자 하기와 같이 조직면역염색을 실시하였다. To examine the physiological functions and characteristics of the direct crossed differentiated hepatocytes according to the present invention, tissue immunostaining was performed as follows.

4 Well culture dish속 커버글라스 위에 배양된 세포에 3.7% formaldehyde를 넣고 실온에서 20분간 고정시킨 후, 1% BSA가 함유된 PBS로 세 번 씻어내었다. 그 후 0.1% Triton X-100(Sigma)와 1% BSA가 포함된 PBS를 이용하여 상온에서 1시간 동안 인큐베이션시켰다(E-cadherin을 제외, 세포표면 인자). 1시간 후, 1차 안티바디를 넣고 4℃에서 오버나잇 동안 반응을 유도하였다. 실험을 위해 사용된 자세한 항체의 정보는 아래와 같다. Cells cultured on a 4-well culture dish covered with 3.7% formaldehyde were fixed at room temperature for 20 minutes, and washed three times with PBS containing 1% BSA. The cells were then incubated at room temperature for 1 hour with PBS containing 0.1% Triton X-100 (Sigma) and 1% BSA (except for E-cadherin, cell surface factor). After 1 hour, the primary anti-body was added and the reaction was induced at 4 ° C for over night . Details of the antibodies used for the experiments are shown below.

Figure pat00002
Figure pat00002

그 후, 1% BSA가 함유된 PBS로 세 번 씻어내고 형광이 부착된 2차 안티바디를 넣고 상온에서 1시간동안 인큐베이션 시켰다. 인큐베이션 후, 1% BSA가 함유된 PBS로 세 번 씻어내고 대조염색으로 DAPI Solution (1 mg/mL) (Thermo Scientific™)를 이용하여 세포핵을 염색후 형광현미경 아래에서 관찰하였다.Thereafter, the cells were washed three times with PBS containing 1% BSA, and a secondary anti-body with fluorescence was added thereto, followed by incubation at room temperature for 1 hour. After incubation, the cells were rinsed three times with PBS containing 1% BSA, stained with DAPI Solution (1 mg / mL) (Thermo Scientific ™) for comparison, and observed under fluorescence microscope.

도 6은 본 발명의 일 실시예에 의한, 직접교차분화된 간세포의 생리학적 특성을 조직면역염색(immunohistochemistry, IHC) 분석한 결과를 보여주는 사진이다. 도 6에 나타난 바와 같이, 대표적인 간의 약물독성 분해에 관여된 CYP 유전자들의 발현과 간세포에서 발현되는 알부민 등의 단백질 및 간세포들간에 연접에 관련 단백질의 발현을 확인하였다. FIG. 6 is a photograph showing immunohistochemistry (IHC) analysis of the physiological characteristics of direct cross-differentiated hepatocytes according to an embodiment of the present invention. As shown in FIG. 6, the expression of CYP genes involved in typical drug toxicity degradation and the expression of related proteins in the synapses between proteins such as albumin and hepatocytes expressed in hepatocytes were confirmed.

도 7은 본 발명의 일 실시예에 의한, 직접교차분화된 간세포의 생리학적 특성을 Integrated Optical Density(IOD)로 보여주는 그래프이다. 도 7에 나타난 바와 같이, 형광 발현량을 확인하였을 때, 본 발명에 의한 코돈 최적화 벡터를 사용한 그룹이 보다 효율적임이 확인되었다.FIG. 7 is a graph showing physiological characteristics of direct crossed differentiated hepatocytes according to Integrated Optical Density (IOD) according to an embodiment of the present invention. As shown in FIG. 7, when the fluorescence expression level was confirmed, it was confirmed that the group using the codon optimization vector according to the present invention was more efficient.

실험예Experimental Example 2:  2: piHep의piHep's 약물 대사 활성(Drug Metabolic activity) Drug Metabolic activity

계대배양된 passage 7-10 사이의 에피소말 벡터(episomal vectors)을 이용한 간교차 분화 세포들이 잘 증식하고 있으며, 간 특이 유전자들의 발현이 관찰되고 특히 잠자고 있던 돼지 간 전사인자들이 활성화됨이 확인되었다. 특히 코돈 최적화(codon optimization)와 GC 함량 최적화(GC content optimization)된 벡터를 사용한 세포주는 야생형 형태보다 상대적으로 높은 iHep 발생율을 보였고, CYP 발현과 면역 단백질 염색에서 우수한 결과를 보였다(도 8 참조). Cross - differentiation cells using episomal vectors between passages 7 and 10 were observed to proliferate well, and the expression of liver - specific genes was observed. Especially, sleeping pig transcription factors were activated. In particular, the cell lines using the codon optimization and GC content optimization vectors showed relatively higher iHep incidence than the wild type and showed excellent results in CYP expression and immunoprotein staining (see FIG. 8).

도 8은 본 발명의 일 실시예에 의한, 직접교차분화된 간세포에 간특이 유도자(inducer)를 처리한 후 CYP 효소의 발현 양상을 보여주는 그래프이다. 도 8에 나타난 바와 같이, 돼지에서 대표적인 CYP 효소의 발현을 확인하였고 계대배양 10에 도달한 세포주에서 약물 사용 전후 벡터에 따른 반응력을 확인하였고, 약물 처리 전후 모두 코돈 최적화(codon optimization)와 GC 함량 최적화(GC content optimization)된 그룹이 높게 발현됨을 확인하였다. FIG. 8 is a graph showing the expression pattern of CYP enzyme after direct inducible treatment of direct cross-differentiated hepatocytes according to an embodiment of the present invention. As shown in FIG. 8, the expression of typical CYP enzymes in the pigs was confirmed, and the reaction force according to the vector before and after the use of the drug was confirmed in the cell line reached to the subculture 10, and the codon optimization and the GC content optimization (GC content optimized) group was highly expressed.

생성된 iHep에서 간특이 Cyp450 발현은 유도물질(inducer)들을 처리한 후 확인하여 코돈 최적화(codon optimization)와 GC 함량 최적화(GC content optimization)된 벡터가 우수함을 확인하였다(도 8 참조).Cyp450 expression in the generated iHep was confirmed after treatment with inducers, and it was confirmed that codon optimization and GC content optimization vectors were superior (see FIG. 8).

상기 Cyp 효소의 종류와 원형 유도자(Prototypical inducer)의 종류 및 유도 시간(Induction time)을 하기 표 2에 나타내었다.The type of Cyp enzyme, the kind of prototypical inducer and the induction time are shown in Table 2 below.

Cyp1A2 효소의 경우, 유도자(inducer)는 3-Methylcholanthrene(3-MC)로, 유도시간(Induction rime)는 72시간으로 하였다.For the Cyp1A2 enzyme, the inducer was 3-methylcholanthrene (3-MC) and the induction rime was 72 hours.

Cyp1A4 효소의 경우, 유도자(inducer)는 Rifampicin(RIF)로, 유도시간(Induction rime)는 72시간으로 하였다.For the Cyp1A4 enzyme, the inducer was Rifampicin (RIF) and the induction time was 72 hours.

Figure pat00003
Figure pat00003

실험예Experimental Example 3: 생성된 유도 간세포( 3: The induced hepatic cells ( iHepiHep )의 성숙도 확인) Maturity check

교차분화 간세포의 성숙도를 확인하기 위해 지방 분화를 확인하였다. To confirm the maturation of cross-differentiated hepatocytes, lipid differentiation was confirmed.

도 9a 및 도 9b는 본 발명의 일 실시예에 의한, 직접교차분화된 간세포의 성숙도를 지방분화를 통해 보여주는 사진 및 그래프이다. 도 9a 및 도 9b에 나타난 바와 같이, 계대배양이 진행됨과 상관없이 모두 코돈 최적화(codon optimization)와 GC 함량 최적화(GC content optimization) 그룹(Opti-)이 상대적으로 높은 mRNA 발현과 Oil Red O 염색 반응을 보였다.9A and 9B are photographs and graphs showing the maturation of the directly cross-differentiated hepatocytes through lipid differentiation according to an embodiment of the present invention. As shown in FIGS. 9A and 9B, both codon optimization and GC content optimization (Opti-) group showed relatively high mRNA expression and Oil Red O staining reaction Respectively.

성숙된 간세포는 글리코겐이 축적되는 양상을 보임으로써, 이를 염색을 통하여 확인하였다. The mature hepatocytes showed the accumulation of glycogen, which was confirmed by staining.

도 10a 및 도 10b는 본 발명의 일 실시예에 의한, 직접교차분화된 간세포의 성숙도를 글라이코겐 축적을 통해 보여주는 사진 및 그래프이다. 도 9a 및 도 9b에 나타난 바와 같이, 계대배양이 진행됨과 상관없이 모두 코돈 최적화(codon optimization)와 GC 함량 최적화(GC content optimization) 그룹(Opti-)이 상대적으로 높은 mRNA 발현과 PAS 염색 반응을 보였다.FIGS. 10A and 10B are photographs and graphs showing the maturation of direct cross-differentiated hepatocytes through glycogen accumulation according to an embodiment of the present invention. FIG. As shown in FIGS. 9A and 9B, codon optimization and GC content optimization group (Opti-) showed relatively high mRNA expression and PAS staining reaction regardless of progress of subculture .

따라서, 본원발명의 교차분화 간줄기세포주는 초기 배양(early passage P1-2)된 세포와 후기 배양(Late passage P9-10)된 세포는 모두 상대적으로 높은 mRNA의 발현과 Oil red O 염색반응을 나타내었고, 이를 통하여, 초기 배양된 간줄기세포의 경우에도, 높은 성숙도를 갖는다는 것을 알 수 있다.Therefore, in the cross-differentiation stem cell line of the present invention, both early passage P1-2 and late passage P9-10 cells exhibited relatively high mRNA expression and Oil red O staining reaction , And it can be seen that even in the case of early cultured liver stem cells, it has high maturity.

이상으로, 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments, It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> RURAL DEVELOPMENT ADMINISTRATION <120> Composition for direct conversion of somatic cell into hepatocyte using non-viral vector and method of direct conversion using the same <130> NPF-31254 <160> 2 <170> PatentIn version 3.2 <210> 1 <211> 1914 <212> DNA <213> Sus scrofa <400> 1 aagcttgcca ccatggtttc caagctgagc cagctgcaga ccgaactgct ggctgctctg 60 ctggaaagcg gcctgtctaa agaggccctg attcaggccc tgggagagcc tggaccttat 120 ctgcttgctg gcgagggccc actggataag ggcgaatctt gtggcggagg aagaggcgaa 180 ctggccgagc tgcctaatgg actgggcgag acaagaggca gcgaggacga gacagatgac 240 gacggcgagg atttcacccc tcctatcctg aaagagctgg aaaatctgag ccccgaggaa 300 gccgctcacc agaaagctgt ggtggaaacc ctgctgcaag aggacccttg gagagtggcc 360 aagatggtca agagctacct gcagcagcac aacatccctc agcgcgaggt ggtggatacc 420 acaggcctga accagagcca cctgtctcag cacctgaaca agggcacccc tatgaagacc 480 cagaagcggg ctgccctgta cacttggtac gtgcggaagc agagagaggt ggcccagcag 540 tttacacacg ctggacaagg cggactgatc gaggaaccta caggcgacga gctgcccacc 600 aagaaaggca gacggaaccg gtttaagtgg ggccctgcct ctcagcagat cctgtttcag 660 gcctacgagc ggcagaagaa ccccagcaaa gaggaaagag agacactggt cgaggaatgc 720 aaccgggccg agtgtatcca gaggggcgtt agtccttctc aggcccaagg cctgggcagc 780 aatctggtta cagaagtgcg ggtctacaat tggttcgcca accggcggaa agaggaagcc 840 ttcagacaca agctggccat ggacacctac agcggacctc cacctggacc aggacctgga 900 cctgcacttc ctgctcattc tagccctgga ctgcctcctc ctgctctgtc tccatctaag 960 gtgcacggcg tcagatatgg ccagcctgcc acatctgaga cagccgaggt tccatctagc 1020 tctggcggac ctctggtcac cgtgtctaca cctctgcatc aggtgtcccc aaccggcctg 1080 gaaccttctc acagcctgct gagcacagag gccaaactgg tgtcagctgc aggcggacca 1140 ctgcctccag tctctacact gacagccctg cacagcctgg aacagacaag ccccggactg 1200 aatcagcagc cccagaacct gattatggcc tctctgcccg gcgtgatgac aatcggacct 1260 ggcgaacctg cttctctggg ccccaccttt acaaacaccg gcgccagcac actggtcatc 1320 ggactggctt ctacacaggc ccagagcgtg cccgtgatca atagcatggg cagcagcctg 1380 accacactgc agcctgtgca gtttagccag cctctgcacc cctcttacca gcagcctctg 1440 atgccaccag tgcagagcca cgtgacacag agccctttca tggccacaat ggcccagctg 1500 caaagccctc acgctctgta ctctcacaag cccgaagtgg cccagtacac ccacacagga 1560 ctgctgcctc agaccatgct gatcaccgac accaccaatc tgagcgccct ggctagcctg 1620 acacctacca aacaggtgtt caccagcgac accgaggcca gctctgaatc tggactgcac 1680 acaccagcca gccaggccac aacactgcat gtgccatctc aggatccagc cggcatccag 1740 catctgcagc cagctcatag actgagcgcc tctccaacag tgtccagctc tagcctggtg 1800 ctgtaccaga gcagcgacag cagcaatggc cagagccatc tgctgcctag caaccacagc 1860 gtgatcgaga cattcatcag cacccagatg gccagcagca gccagtaggg atcc 1914 <210> 2 <211> 2577 <212> DNA <213> Sus scrofa <400> 2 aagcttgcca ccatgcggct gagcaagacc ctggtggata tggacatggc cgactacagc 60 gccgctctgg atcctgccta caccacactg gaattcgaga acgtgcaggt cctgaccatg 120 ggcaacgaca catctccaag cgagggcacc aacctgaacg cccctaatag cctgggagtg 180 tctgccctgt gtgccatctg tggcgataga gccacaggca agcactacgg cgccagctct 240 tgtgatggct gcaagggctt ctttcggcgg agcgtgcgga agaaccacat gtacagctgc 300 cggttcagcc ggcagtgcgt ggtggacaag gacaagagaa accagtgccg gtactgcaga 360 ctgaagaagt gcttcagagc cggcatgaag aaagaggccg tccagaacga gcgggacaga 420 atcagcacca gaagaagcag ctacgaggac agcagcctgc ctagcatcaa tgccctgctg 480 caggccgagg ttctgagcag acagatcaca agccctgtgt ccggcatcaa cggcgacatc 540 agagccaaga agatcgccag cattgccgac gtgtgcgaga gcatgaagga acagctgctg 600 gtgctggtgg aatgggccaa gtacatcccc gccttttgcg agctgcccct ggatgatcaa 660 gtggccctgc tgagagcaca cgccggcgaa catttgctgc tgggagccac caagcggagc 720 atggtgttca aggatgtgct gctgctcggc aacgattaca tcgtgcccag acactgtcct 780 gagctggccg agatgagccg ggtgtccatc agaatcctgg acgaactggt gctgcccttc 840 caagagctgc agatcgacga caacgagtac gcctacctga aggccatcat ctttttcgac 900 cccgacgcca agggcctgag cgatcctgga aagatcaagc ggctgcggag ccaggtgcaa 960 gtgtccctgg aagattacat caacgaccgg cagtacgaca gccggggcag atttggagaa 1020 ctgctgctcc tgctgccaac actgcagagc atcacctggc agatgatcga gcagatccag 1080 ttcatcaagc tgttcggcat ggccaagatc gacaacctgc tgcaagagat gctgcttggc 1140 ggcagccctt ctgatgcccc tcatgctcat caccctctgc accctcacct gatgcaagaa 1200 cacatgggca ccaatgtgat cgtggccaac acaatgccca cacacctgag caacggccag 1260 atgtgcgaat ggcctagacc tagaggacag gccgccacac ctgaaacacc tcagccttct 1320 ccacctggcg gatctggcag cgagccttac aaacttctgc ctggcgctgt ggccaccatc 1380 gtgaaacctc tgtctgccat tcctcagcct accatcacca agcaagaagt gatccggaag 1440 cggagagccc ctgtgaagca gaccctgaac ttcgacctgc tgaaactggc cggcgacgtg 1500 gaaagcaacc ctggacctat gctgggcagc gtgaagatgg aagcccatga tctggccgag 1560 tggtcttact atcctgaggc cggcgaggtg tacagccctg tgacacctgt tcctacaatg 1620 gcccctctga acagctatat gaccctgaat cctctgagca gcccctatcc tcctggtgga 1680 cttcctgcta gccctctgcc ttctggacct cttgctcctc ctgctccagc tgctcctctg 1740 ggccctacat ttcctggact gggagtttct ggcggctcta gcagctctgg atatggcgct 1800 cctggaccag gactggtgca cggcaaagag atgcccaagg gctacagaag gcctctggct 1860 cacgccaagc ctccatacag ctacatcagc ctgatcacca tggccatcca gcaggcccct 1920 ggcaagatgc tgacactgag cgagatctac cagtggatca tggatctgtt cccttactac 1980 cgcgagaacc agcagcggtg gcagaacagc attagacaca gcctgagctt caacgactgc 2040 ttcgtgaagg tggccagatc tcccgacaag cctggcaagg gctcttactg ggctctgcat 2100 cctagcagcg gcaacatgtt cgagaatggc tgctacctgc ggcggcagaa gcggttcaag 2160 ctggaagaga aagtgaagaa aggcggctcc ggcgctgcca ccacaaccag aaatggaaca 2220 ggatctgccg ccagcaccac aacaccagcc gctacagtta caagccctcc tcagccacct 2280 cctccagcac ctgaacctga agctcaaggc ggagaagatg tgggcgccct ggattgtgga 2340 agccctgcca gctctacccc ttacttcacc ggacttgagc tgcccggcga gctgaaactc 2400 gacgcccctt acaacttcaa tcaccccttc agcatcaaca acctgatgtc cgagcagacc 2460 cctgctcctc caaagctgga tgttggcttt ggcggctatg gcgctgaagg cggcgaacct 2520 ggtgtctact atcagggcct gtacagcaga agcctgctga acgcctcttg aggatcc 2577 <110> RURAL DEVELOPMENT ADMINISTRATION <120> Composition for direct conversion of somatic cell into hepatocyte          using non-viral vector and method of direct conversion using the          same &Lt; 130 > NPF-31254 <160> 2 <170> PatentIn version 3.2 <210> 1 <211> 1914 <212> DNA <213> Sus scrofa <400> 1 aagcttgcca ccatggtttc caagctgagc cagctgcaga ccgaactgct ggctgctctg 60 ctggaaagcg gcctgtctaa agaggccctg attcaggccc tgggagagcc tggaccttat 120 ctgcttgctg gcgagggccc actggataag ggcgaatctt gtggcggagg aagaggcgaa 180 ctggccgagc tgcctaatgg actgggcgag acaagaggca gcgaggacga gacagatgac 240 gacggcgagg atttcacccc tcctatcctg aaagagctgg aaaatctgag ccccgaggaa 300 gccgctcacc agaaagctgt ggtggaaacc ctgctgcaag aggacccttg gagagtggcc 360 aagatggtca agagctacct gcagcagcac aacatccctc agcgcgaggt ggtggatacc 420 acaggcctga accagagcca cctgtctcag cacctgaaca agggcacccc tatgaagacc 480 cagaagcggg ctgccctgta cacttggtac gtgcggaagc agagagaggt ggcccagcag 540 tttacacacg ctggacaagg cggactgatc gaggaaccta caggcgacga gctgcccacc 600 aagaaaggca gacggaaccg gtttaagtgg ggccctgcct ctcagcagat cctgtttcag 660 gcctacgagc ggcagaagaa ccccagcaaa gaggaaagag agacactggt cgaggaatgc 720 aaccgggccg agtgtatcca gaggggcgtt agtccttctc aggcccaagg cctgggcagc 780 aatctggtta cagaagtgcg ggtctacaat tggttcgcca accggcggaa agaggaagcc 840 ttcagacaca agctggccat ggacacctac agcggacctc cacctggacc aggacctgga 900 cctgcacttc ctgctcattc tagccctgga ctgcctcctc ctgctctgtc tccatctaag 960 gtgcacggcg tcagatatgg ccagcctgcc acatctgaga cagccgaggt tccatctagc 1020 tctggcggac ctctggtcac cgtgtctaca cctctgcatc aggtgtcccc aaccggcctg 1080 gaaccttctc acagcctgct gagcacagag gccaaactgg tgtcagctgc aggcggacca 1140 ctgcctccag tctctacact gacagccctg cacagcctgg aacagacaag ccccggactg 1200 aatcagcagc cccagaacct gattatggcc tctctgcccg gcgtgatgac aatcggacct 1260 ggcgaacctg cttctctggg ccccaccttt acaaacaccg gcgccagcac actggtcatc 1320 ggactggctt ctacacaggc ccagagcgtg cccgtgatca atagcatggg cagcagcctg 1380 accacactgc agcctgtgca gtttagccag cctctgcacc cctcttacca gcagcctctg 1440 atgccaccag tgcagagcca cgtgacacag agccctttca tggccacaat ggcccagctg 1500 caaagccctc acgctctgta ctctcacaag cccgaagtgg cccagtacac ccacacagga 1560 ctgctgcctc agaccatgct gatcaccgac accaccaatc tgagcgccct ggctagcctg 1620 acacctacca aacaggtgtt caccagcgac accgaggcca gctctgaatc tggactgcac 1680 acaccagcca gccaggccac aacactgcat gtgccatctc aggatccagc cggcatccag 1740 catctgcagc cagctcatag actgagcgcc tctccaacag tgtccagctc tagcctggtg 1800 ctgtaccaga gcagcgacag cagcaatggc cagagccatc tgctgcctag caaccacagc 1860 gtgatcgaga cattcatcag cacccagatg gccagcagca gccagtaggg atcc 1914 <210> 2 <211> 2577 <212> DNA <213> Sus scrofa <400> 2 aagcttgcca ccatgcggct gagcaagacc ctggtggata tggacatggc cgactacagc 60 gccgctctgg atcctgccta caccacactg gaattcgaga acgtgcaggt cctgaccatg 120 ggcaacgaca catctccaag cgagggcacc aacctgaacg cccctaatag cctgggagtg 180 tctgccctgt gtgccatctg tggcgataga gccacaggca agcactacgg cgccagctct 240 tgtgatggct gcaagggctt ctttcggcgg agcgtgcgga agaaccacat gtacagctgc 300 cggttcagcc ggcagtgcgt ggtggacaag gacaagagaa accagtgccg gtactgcaga 360 ctgaagaagt gcttcagagc cggcatgaag aaagaggccg tccagaacga gcgggacaga 420 atcagcacca gaagaagcag ctacgaggac agcagcctgc ctagcatcaa tgccctgctg 480 caggccgagg ttctgagcag acagatcaca agccctgtgt ccggcatcaa cggcgacatc 540 agagccaaga agatcgccag cattgccgac gtgtgcgaga gcatgaagga acagctgctg 600 gtgctggtgg aatgggccaa gtacatcccc gccttttgcg agctgcccct ggatgatcaa 660 gtggccctgc tgagagcaca cgccggcgaa catttgctgc tgggagccac caagcggagc 720 atggtgttca aggatgtgct gctgctcggc aacgattaca tcgtgcccag acactgtcct 780 gagctggccg agatgagccg ggtgtccatc agaatcctgg acgaactggt gctgcccttc 840 caagagctgc agatcgacga caacgagtac gcctacctga aggccatcat ctttttcgac 900 cccgacgcca agggcctgag cgatcctgga aagatcaagc ggctgcggag ccaggtgcaa 960 gtgtccctgg aagattacat caacgaccgg cagtacgaca gccggggcag atttggagaa 1020 ctgctgctcc tgctgccaac actgcagagc atcacctggc agatgatcga gcagatccag 1080 ttcatcaagc tgttcggcat ggccaagatc gacaacctgc tgcaagagat gctgcttggc 1140 ggcagccctt ctgatgcccc tcatgctcat caccctctgc accctcacct gatgcaagaa 1200 cacatgggca ccaatgtgat cgtggccaac acaatgccca cacacctgag caacggccag 1260 atgtgcgaat ggcctagacc tagaggacag gccgccacac ctgaaacacc tcagccttct 1320 ccacctggcg gatctggcag cgagccttac aaacttctgc ctggcgctgt ggccaccatc 1380 gtgaaacctc tgtctgccat tcctcagcct accatcacca agcaagaagt gatccggaag 1440 cggagagccc ctgtgaagca gaccctgaac ttcgacctgc tgaaactggc cggcgacgtg 1500 gaaagcaacc ctggacctat gctgggcagc gtgaagatgg aagcccatga tctggccgag 1560 tggtcttact atcctgaggc cggcgaggtg tacagccctg tgacacctgt tcctacaatg 1620 gcccctctga acagctatat gccctgaat cctctgagca gcccctatcc tcctggtgga 1680 cttcctgcta gccctctgcc ttctggacct cttgctcctc ctgctccagc tgctcctctg 1740 ggccctacat ttcctggact gggagtttct ggcggctcta gcagctctgg atatggcgct 1800 cctggaccag gactggtgca cggcaaagag atgcccaagg gctacagaag gcctctggct 1860 ccgccaagc ctccatacag ctacatcagc ctgatcacca tggccatcca gcaggcccct 1920 ggcaagatgc tgacactgag cgagatctac cagtggatca tggatctgtt cccttactac 1980 cgcgagaacc agcagcggtg gcagaacagc attagacaca gcctgagctt caacgactgc 2040 ttcgtgaagg tggccagatc tcccgacaag cctggcaagg gctcttactg ggctctgcat 2100 cctagcagcg gcaacatgtt cgagaatggc tgctacctgc ggcggcagaa gcggttcaag 2160 ctggaagaga aagtgaagaa aggcggctcc ggcgctgcca ccacaaccag aaatggaaca 2220 ggatctgccg ccagcaccac aacaccagcc gctacagtta caagccctcc tcagccacct 2280 cctccagcac ctgaacctga agctcaaggc ggagaagatg tgggcgccct ggattgtgga 2340 agccctgcca gctctacccc ttacttcacc ggacttgagc tgcccggcga gctgaaactc 2400 gacgcccctt acaacttcaa tcaccccttc agcatcaaca acctgatgtc cgagcagacc 2460 cctgctcctc caaagctgga tgttggcttt ggcggctatg gcgctgaagg cggcgaacct 2520 ggtgtctact atcagggcct gtacagcaga agcctgctga acgcctcttg aggatcc 2577

Claims (10)

서열번호 1의 HNF1A 유전자 단편을 포함하는 비-바이러스성 벡터; 및
서열번호 2의 Hnf4a-F2A-Foxa3 유전자 단편을 포함하는 비-바이러스성 벡터를 포함하는, 체세포의 간세포로의 직접교차분화용 조성물.
A non-viral vector comprising the HNF1A gene fragment of SEQ ID NO: 1; And
A composition for direct cross-differentiation of somatic cells into hepatocytes, comprising a non-viral vector comprising the Hnf4a-F2A-Foxa3 gene fragment of SEQ ID NO: 2.
제1항에 있어서,
상기 비-바이러스성 벡터는 에피소말(episomal) 벡터인, 체세포의 간세포로의 직접교차분화용 조성물.
The method according to claim 1,
Wherein said non-viral vector is an episomal vector, for direct cross-differentiation of somatic cells into hepatocytes.
제1항에 있어서,
상기 비-바이러스성 벡터는 코돈 최적화(codon optimization)와 GC 함량 최적화(GC content optimization)된 전사 인자가 삽입된 벡터인, 체세포의 간세포로의 직접교차분화용 조성물.
The method according to claim 1,
Wherein the non-viral vector is a vector into which a transcription factor inserted with codon optimization and GC content optimization is inserted, wherein the non-viral vector is a vector for direct crossing differentiation of somatic cells into hepatocytes.
제1항에 있어서,
소분자 화합물 A83-01을 더 포함하는, 체세포의 간세포로의 직접교차분화용 조성물.
The method according to claim 1,
A composition for direct cross-differentiation of somatic cells into hepatocytes further comprising the small molecule compound A83-01.
제1항에 있어서,
상기 체세포는 돼지의 섬유아세포인 것을 특징으로 하는, 체세포의 간세포로의 직접교차분화용 조성물.
The method according to claim 1,
Wherein said somatic cell is a fibroblast of porcine.
제1항 내지 제5항 중 어느 한 항에 기재된 체세포의 간세포로의 직접교차분화용 조성물을 이용하여 직접교차 분화된 줄기세포주.
A stem cell line which is directly cross-differentiated using the composition for direct cross-differentiation of somatic cells according to any one of claims 1 to 5 into hepatocytes.
(a) 서열번호 1의 HNF1A 유전자 단편을 포함하는 비-바이러스성 벡터; 및 서열번호 2의 Hnf4a-F2A-Foxa3 유전자 단편을 포함하는 비-바이러스성 벡터로, 전사인자를 체세포에 도입하여 배양하는 단계; 및
(b) 상기 전사인자가 도입된 체세포를 소분자 화합물을 포함하는 배양액에서 배양하여 체세포를 간세포로 직접교차분화(direct reprogramming)시키는 단계;를 포함하는 체세포에서 간세포로의 직접교차분화 방법.
(a) a non-viral vector comprising the HNF1A gene fragment of SEQ ID NO: 1; And a non-viral vector comprising the Hnf4a-F2A-Foxa3 gene fragment of SEQ ID NO: 2, wherein the transcription factor is introduced into somatic cells and cultured; And
(b) culturing somatic cells transfected with the transcription factor in a culture medium containing a small molecule compound to directly reprogram the somatic cells to hepatocytes (direct reprogramming).
제7항에 있어서,
상기 체세포는 돼지 유래의 섬유아세포인, 체세포에서 간세포로의 직접교차분화 방법.
8. The method of claim 7,
Wherein the somatic cell is a fibroblast derived from a swine, directly crossing differentiation from somatic cells into hepatocytes.
제7항에 있어서,
상기 비-바이러스성 벡터는 에피소말(episomal) 벡터인, 체세포에서 간세포로의 직접교차분화 방법.
8. The method of claim 7,
Wherein said non-viral vector is an episomal vector, from a somatic cell to a hepatocyte.
제7항에 있어서,
상기 소분자 화합물은 A83-01인, 체세포에서 간세포로의 직접교차분화 방법.
8. The method of claim 7,
Wherein said small molecule compound is A83-01, said method comprising direct crossing differentiation from somatic cells to hepatocytes.
KR1020170132734A 2017-10-12 2017-10-12 Composition for direct conversion of somatic cell into hepatocyte using non-viral vector and method of direct conversion using the same KR102010840B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170132734A KR102010840B1 (en) 2017-10-12 2017-10-12 Composition for direct conversion of somatic cell into hepatocyte using non-viral vector and method of direct conversion using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170132734A KR102010840B1 (en) 2017-10-12 2017-10-12 Composition for direct conversion of somatic cell into hepatocyte using non-viral vector and method of direct conversion using the same

Publications (2)

Publication Number Publication Date
KR20190041304A true KR20190041304A (en) 2019-04-22
KR102010840B1 KR102010840B1 (en) 2019-08-14

Family

ID=66282959

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170132734A KR102010840B1 (en) 2017-10-12 2017-10-12 Composition for direct conversion of somatic cell into hepatocyte using non-viral vector and method of direct conversion using the same

Country Status (1)

Country Link
KR (1) KR102010840B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021137641A1 (en) * 2019-12-30 2021-07-08 울산과학기술원 Composition and method for inducing differentiation into neuroglia of immune system, and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160049601A (en) * 2014-10-27 2016-05-10 건국대학교 글로컬산학협력단 Method of direct conversion of fibroblasts into hematocytes using non-viral vectors
KR20160141223A (en) * 2015-05-29 2016-12-08 건국대학교 글로컬산학협력단 Method of direct conversion of fibroblasts into induced neural stem cells using non-viral vectors
KR20170047022A (en) * 2015-10-22 2017-05-04 건국대학교 글로컬산학협력단 Method for enhancing direct reprogramming efficiency from somatic cells to hepatocyte-like cells using small molecules
KR20170047028A (en) * 2015-10-22 2017-05-04 건국대학교 글로컬산학협력단 Method for inducing reprogramming to liver cell used for single specific transmission factor of liver cell and small molecules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160049601A (en) * 2014-10-27 2016-05-10 건국대학교 글로컬산학협력단 Method of direct conversion of fibroblasts into hematocytes using non-viral vectors
KR20160141223A (en) * 2015-05-29 2016-12-08 건국대학교 글로컬산학협력단 Method of direct conversion of fibroblasts into induced neural stem cells using non-viral vectors
KR20170047022A (en) * 2015-10-22 2017-05-04 건국대학교 글로컬산학협력단 Method for enhancing direct reprogramming efficiency from somatic cells to hepatocyte-like cells using small molecules
KR20170047028A (en) * 2015-10-22 2017-05-04 건국대학교 글로컬산학협력단 Method for inducing reprogramming to liver cell used for single specific transmission factor of liver cell and small molecules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cell Stem Cell,18(6),797-808 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021137641A1 (en) * 2019-12-30 2021-07-08 울산과학기술원 Composition and method for inducing differentiation into neuroglia of immune system, and use thereof

Also Published As

Publication number Publication date
KR102010840B1 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
CN105316278B (en) For the method and product of transfectional cell
Tucker et al. Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation
JP2008194044A (en) Endocrine pancreas differentiation of adipose tissue-derived stromal cells and uses thereof
Lee et al. Transdifferentiation of human periodontal ligament stem cells into pancreatic cell lineage
Steinle et al. Reprogramming of urine-derived renal epithelial cells into iPSCs using srRNA and consecutive differentiation into beating cardiomyocytes
WO2011102532A1 (en) Induced hepatocytes
Wang et al. Differentiation of iPSCs into insulin-producing cells via adenoviral transfection of PDX-1, NeuroD1 and MafA
JP2014501114A (en) Methods for generating induced pluripotent stem cells and differentiated cells
Xie et al. Small molecules for cell reprogramming and heart repair: progress and perspective
US20170009210A1 (en) Guided differentiation of induced pluripotent stem cells
Klose et al. Turning fibroblasts into cardiomyocytes: technological review of cardiac transdifferentiation strategies
Chen et al. Hepatocyte‐like cells generated by direct reprogramming from murine somatic cells can repopulate decellularized livers
Li et al. Neuronal restrictive silencing factor silencing induces human amniotic fluid-derived stem cells differentiation into insulin-producing cells
JP2024026878A (en) Induction of hepatocytes by stem cell differentiation with RNA
Schroeder Potential of pluripotent stem cells for diabetes therapy
Posabella et al. Derivation of thyroid follicular cells from pluripotent stem cells: insights from development and implications for regenerative medicine
Saitoh et al. Tissue-specific stem cells obtained by reprogramming of non-obese diabetic (NOD) mouse-derived pancreatic cells confer insulin production in response to glucose
JP2016516394A (en) Use of functional melanocytes easily differentiated from Muse cells, characteristic stem cells in human fibroblasts
KR102010840B1 (en) Composition for direct conversion of somatic cell into hepatocyte using non-viral vector and method of direct conversion using the same
KR20120052346A (en) DENDRITIC CELL VACCINES FOR ASPARAGINYL-&amp;beta;-HYDROXYLASE EXPRESSING TUMORS
JP2021512643A (en) Method of cell induction
CN108998417A (en) Multipotential stem cell inducer and its application
Serrano et al. Silencing of hepatic fate-conversion factors induce tumorigenesis in reprogrammed hepatic progenitor-like cells
KR101768451B1 (en) Method of direct conversion of fibroblasts into hematocytes using non-viral vectors
JP2020507327A (en) A method for producing liver tissue by manipulating human induced pluripotent stem cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right