KR20190037224A - Acetohydroxy acid synthase variant, microorganism comprising thereof, and method of producing L-branced-chained amino acid using the same - Google Patents

Acetohydroxy acid synthase variant, microorganism comprising thereof, and method of producing L-branced-chained amino acid using the same Download PDF

Info

Publication number
KR20190037224A
KR20190037224A KR1020190037330A KR20190037330A KR20190037224A KR 20190037224 A KR20190037224 A KR 20190037224A KR 1020190037330 A KR1020190037330 A KR 1020190037330A KR 20190037330 A KR20190037330 A KR 20190037330A KR 20190037224 A KR20190037224 A KR 20190037224A
Authority
KR
South Korea
Prior art keywords
ala
gly
val
leu
pro
Prior art date
Application number
KR1020190037330A
Other languages
Korean (ko)
Other versions
KR102063909B1 (en
Inventor
전애지
송병철
이지혜
김종현
김혜원
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to KR1020190037330A priority Critical patent/KR102063909B1/en
Publication of KR20190037224A publication Critical patent/KR20190037224A/en
Application granted granted Critical
Publication of KR102063909B1 publication Critical patent/KR102063909B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a novel acetohydroxy acid synthase variant; microorganisms comprising the same; or a method of producing L-branched-chain amino acids using the same. According to the present invention, by using the microorganisms comprising the acetohydroxy acid synthase variant, L-branched-chain amino acids can be produced with high yield.

Description

아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 L-분지쇄 아미노산 생산 방법 {Acetohydroxy acid synthase variant, microorganism comprising thereof, and method of producing L-branced-chained amino acid using the same}[Acetohydroxy acid synthase variant, microorganism comprising thereof, and method of producing L-branced-chained amino acid using the same}

본 출원은 신규한 아세토하이드록시산 신타아제 변이체 및 이의 용도에 관한 것으로, 구체적으로 아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 L-분지쇄 아미노산의 생산 방법에 관한 것이다.The present application relates to a novel acetohydroxy acid synthase variant and its use, and specifically, to an acetohydroxy acid synthase variant, a microorganism comprising the same, or a method of producing an L-branched amino acid using the same.

분지쇄 아미노산, 즉 L-발린, L-류신, L-이소류신은 개체에서 단백질을 증가시키는 작용을 하며, 운동시 에너지원으로 중요한 역할을 하는 것이 알려져, 의약품, 식품 등에 사용되고 있다. 분지쇄 아미노산들은 유사한 생합성 과정에 동일한 효소를 사용하기 때문에 한 가지의 분지쇄 아미노산을 공업적 규모로 발효를 통해 제조하는 데는 어려움이 있다. 분지쇄 아미노산의 제조에 있어서, 분지쇄 아미노산 생합성의 첫 번째 효소인 아세토하이드록시산 신타아제(acetohydroxy acid synthase)의 역할이 가장 중요하나, 이에 관한 선행연구는 주로 작은 소단위체(acetohydroxy acid synthase small subunit; IlvN 단백질)의 변이로 인한 피드백 해제에 관련된 연구가 대부분으로(Protein Expr Purif. 2015 May;109:106-12., US2014-0335574, US2009-496475, US2006-303888, US2008-245610), 관련 연구가 매우 부족한 실정이다.Branched-chain amino acids, that is, L-valine, L-leucine, and L-isoleucine, act to increase protein in individuals, and are known to play an important role as an energy source during exercise, and are used in medicines and foods. Since branched chain amino acids use the same enzyme for similar biosynthetic processes, it is difficult to manufacture one branched chain amino acid through fermentation on an industrial scale. In the manufacture of branched chain amino acids, the role of acetohydroxy acid synthase, the first enzyme in branched chain amino acid biosynthesis, is the most important, but previous studies on this have mainly been conducted on acetohydroxy acid synthase small subunit. ; IlvN protein), most of the studies related to feedback release due to mutations (Protein Expr Purif. 2015 May;109:106-12., US2014-0335574, US2009-496475, US2006-303888, US2008-245610), related studies Is very scarce.

아세토하이드록시산 신타아제는 피루브산 두 분자로부터 아세토젖산(acetolactic acid)을 생성하는 역할과, 케토부티르산(ketobutyric acid) 및 피루브산으로부터 아세토하이드록시부티르산(2-aceto-2-hydroxy-butyrate)을 생성하는 역할을 수행하는 효소이다. 상기 아세토하이드록시산 신타아제는 피루브산(pyruvate)의 디카르복실화(decarboyxlation)와 다른 피루브산 분자와의 축합 반응을 촉매하여 발린 및 류신의 전구체인 아세토젖산을 생산하거나 피루브산의 디카르복실화와 2-케토부티레이트(2-ketobutyrate)와의 축합 반응을 촉매하여 이소류신의 전구체인 아세토히드록시부티레이트를 생산할 수 있다. 따라서, 아세토하이드록시산 신타아제는 L-분지쇄 아미노산 생합성의 초기 과정에 관여하는 매우 중요한 효소이다. Acetohydroxy acid synthase plays a role in producing acetolactic acid from two molecules of pyruvate, and producing aceto-2-hydroxy-butyrate from ketobutyric acid and pyruvate. It is an enzyme that plays a role. The acetohydroxy acid synthase catalyzes decarboyxlation of pyruvate and condensation reaction with other pyruvate molecules to produce acetolactic acid, a precursor of valine and leucine, or decarboxylation of pyruvate and 2-keto. Acetohydroxybutyrate, a precursor of isoleucine, can be produced by catalyzing the condensation reaction with 2-ketobutyrate. Thus, acetohydroxy acid synthase is a very important enzyme involved in the initial process of L-branched amino acid biosynthesis.

이러한 배경 하에 본 출원자들은 L-분지쇄 아미노산을 효과적으로 생산하기 위하여 노력한 결과, 아세토하이드록시산 신타아제의 변이체, 구체적으로 아세토하이드록시산 신타아제 큰 소단위체 변이체를 개발하였다. 이에, 상기 변이체를 포함하는 미생물로부터 고수율로 L-분지쇄 아미노산을 생산할 수 있음을 확인하고, 본 출원을 완성하였다.Under this background, the present applicants have endeavored to effectively produce L-branched chain amino acids, and as a result, have developed a variant of acetohydroxy acid synthase, specifically a large subunit variant of acetohydroxy acid synthase. Accordingly, it was confirmed that L-branched chain amino acids can be produced in high yield from microorganisms containing the mutant, and the present application was completed.

본 출원의 하나의 목적은 아세토하이드록시산 신타아제(acetohydroxy acid synthase) 변이체를 제공하는 것이다.One object of the present application is to provide an acetohydroxy acid synthase variant.

본 출원의 다른 목적은 상기 아세토하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터 및 상기 벡터가 도입된 형질전환체를 제공하는 것이다.Another object of the present application is to provide a polynucleotide encoding the acetohydroxy acid synthase variant, a vector including the polynucleotide, and a transformant into which the vector is introduced.

본 출원의 또 다른 목적은 상기 아세토하이드록시산 신타아제 변이체를 포함하거나, 상기 벡터가 도입된, L-분지쇄 아미노산을 생산하는 미생물을 제공하는 것이다.Another object of the present application is to provide a microorganism comprising the acetohydroxy acid synthase variant, or into which the vector is introduced, to produce an L-branched amino acid.

본 출원의 또 다른 목적은 상기 L-분지쇄 아미노산을 생산하는 미생물을 배지에서 배양하는 단계; 및 상기 미생물 또는 이의 배지로부터 L-분지쇄 아미노산을 회수하는 단계를 포함하는 L-분지쇄 아미노산 생산 방법을 제공하는 것이다.Another object of the present application is the step of culturing a microorganism that produces the L-branched amino acid in a medium; And recovering the L-branched chain amino acid from the microorganism or a medium thereof.

상기 목적을 달성하기 위한 본 출원의 하나의 양태는, 아세토하이드록시산 신타아제의 큰 소단위체(acetolactate synthase large subunit; IlvB 단백질)의 아미노산 서열 위치 96 번의 쓰레오닌이 쓰레오닌 이외의 다른 아미노산으로 치환되거나, 아미노산 서열 위치 503 번의 트립토판이 트립토판 이외의 다른 아미노산으로 치환되거나, 또는 아미노산 서열위치 96 번의 쓰레오닌 및 503 번의 트립토판 모두가 다른 아미노산으로 치환된, 아세토하이드록시산 신타아제 변이체이다.One aspect of the present application for achieving the above object is that the threonine at amino acid sequence position 96 of the acetohydroxy acid synthase large subunit (IlvB protein) is an amino acid other than threonine. Or, tryptophan at amino acid sequence position 503 is substituted with an amino acid other than tryptophan, or threonine at amino acid sequence position 96 and tryptophan at position 503 are both substituted with other amino acids.

구체적으로, 상기 아세토하이드록시산 신타아제의 큰 소단위체는 서열번호 1로 기재되는 아미노산 서열을 가질 수 있다. 보다 구체적으로, 상기 아세토하이드록시산 신타아제 변이체는 서열번호 1로 기재된 아미노산 서열에서, 이의 N-말단으로부터 96 번째 쓰레오닌(threonine) 또는 503 번째 트립토판(tryptophan)이 다른 아미노산으로 치환된 것인, 또는 96 번째 쓰레오닌과 503 번째 트립토판이 모두 다른 아미노산으로 치환된, 아세토하이드록시산 신타아제 변이체일 수 있다.Specifically, the large subunit of the acetohydroxy acid synthase may have an amino acid sequence represented by SEQ ID NO: 1. More specifically, the acetohydroxy acid synthase variant is that in the amino acid sequence shown in SEQ ID NO: 1, 96 th threonine or 503 th tryptophan from its N-terminus is substituted with another amino acid. Or, the 96 th threonine and the 503 th tryptophan may be all substituted with different amino acids, and may be an acetohydroxy acid synthase variant.

본 출원에서 용어, "아세토하이드록시산 신타아제(acetohydroxy acid synthase)"는 L-분지쇄 아미노산의 생합성에 관여하는 효소로, L-분지쇄 아미노산의 생합성의 첫 번째 단계에 관여할 수 있다. 구체적으로, 아세토하이드록시산 신타아제는 피루브산(pyruvate)의 디카르복실화(decarboyxlation)와 다른 피루브산 분자와의 축합 반응을 촉매하여 발린의 전구체인 아세토젖산을 생산하거나 피루브산의 디카르복실화와 2-케토부티레이트(2-ketobutyrate)와의 축합 반응을 촉매하여 이소류신의 전구체인 아세토히드록시부티레이트를 생산할 수 있다. 구체적으로는 아세토젖산으로부터 출발하여 아세토하이드록시산 이소메로리덕타아제(acetohydroxy acid isomeroreductase), 디하이드록시산 디하이드레타제(dihydroxy acid dehydratase), 트랜스아미나제 B(transaminase B)에 의하여 촉매된 반응을 순차적으로 거치면 L-발린이 생합성된다. 또한, 아세토젖산으로부터 아세토하이드록시산 이소메로리덕타아제(acetohydroxy acid isomeroreductase), 디하이드록시산 디하이드레타제(dihydroxy acid dehydratase), 2-이소프로필말산 신타아제(2-isopropylmalate synthase), 이소프로필말산 이소메라제(isopropylmalate isomerase), 3-이소프로필말산 디하이드로게나제(3-isopropylmalate dehydrogenase), 트랜스아미나제 B (transaminase B)에 의하여 촉매된 반응을 순차적으로 거치면 L-류신이 생합성된다. 한편, 아세토히드록시부티레이트으로부터 출발하여 아세토하이드록시산 이소메로리덕타아제(acetohydroxy acid isomeroreductase), 디하이드록시산 디하이드레타제(dihydroxy acid dehydratase), 트랜스아미나제 B(transaminase B)에 의하여 촉매된 반응을 순차적으로 거치면 L- 이소류신이 생합성된다. 따라서, L-분지쇄 아미노산의 생합성 경로에 있어서 중요한 효소이다.In the present application, the term "acetohydroxy acid synthase" is an enzyme involved in the biosynthesis of L-branched chain amino acids, and may be involved in the first step of biosynthesis of L-branched chain amino acids. Specifically, acetohydroxy acid synthase catalyzes decarboyxlation of pyruvate and condensation reaction with other pyruvate molecules to produce acetolactic acid, a precursor of valine, or decarboxylation of pyruvate and 2-keto. Acetohydroxybutyrate, a precursor of isoleucine, can be produced by catalyzing the condensation reaction with 2-ketobutyrate. Specifically, starting from acetolactic acid, a reaction catalyzed by acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and transaminase B is performed. L-valine is biosynthesized when passed sequentially. In addition, from acetolactic acid, acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, 2-isopropylmalate synthase, and isopropylmalic acid L-leucine is biosynthesized through sequential reactions catalyzed by isomerase (isopropylmalate isomerase), 3-isopropylmalate dehydrogenase (3-isopropylmalate dehydrogenase), and transaminase B (transaminase B). On the other hand, starting from acetohydroxybutyrate, a reaction catalyzed by acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and transaminase B. L- isoleucine is biosynthesized through sequentially. Therefore, it is an important enzyme in the biosynthetic pathway of L-branched chain amino acids.

아세토하이드록시산 신타아제는 ilvB 및 ilvN, 두 유전자에 의하여 코딩되며, ilvB 유전자는 아세토하이드록시산 신타아제의 큰 소단위체(large subunit; IlvB)를, ilvN 유전자는 아세토하이드록시산 신타아제의 작은 소단위체(small subunit; IlvN)를 각각 코딩한다. Acetohydroxy acid synthase is encoded by two genes, ilvB and ilvN, ilvB gene is a large subunit of acetohydroxy acid synthase (IlvB), and ilvN gene is a small acetohydroxy acid synthase. Each small subunit (IlvN) is coded.

본 출원에서 아세토하이드록시산 신타아제는 코리네박테리움 속 미생물 유래일 수 있고, 구체적으로 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 유래일 수 있다. 더욱 구체적으로는 상기 아세토하이드록시산 신타아제 큰 소단위체는 서열번호 1로 기재된 아미노산 서열뿐만 아니라 상기 서열과 70 % 이상, 구체적으로는 80 % 이상, 더욱 구체적으로는 90 % 이상, 더욱더 구체적으로는 95 % 이상의 상동성을 가지며 IlvB 단백질 활성을 갖는 단백질이라면 제한없이 포함될 수 있다. 또한, IlvB 단백질 활성을 가지는 단백질을 코딩하는 폴리뉴클레오타이드는 코돈의 축퇴성(degeneracy)으로 인하여 상기 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있어 상기 서열번호 1의 아미노산 서열은 코딩하는 염기서열이면 제한없이 포함될 수 있으나, 구체적으로 서열번호 2의 염기서열에 의해 코딩된 것일 수 있다. In the present application, the acetohydroxy acid synthase may be derived from a microorganism of the genus Corynebacterium, and specifically, may be derived from Corynebacterium glutamicum. More specifically, the acetohydroxy acid synthase large subunit is 70% or more, specifically 80% or more, more specifically 90% or more, even more specifically with the amino acid sequence described in SEQ ID NO: 1 as well as the sequence. Any protein with 95% or more homology and IlvB protein activity may be included without limitation. In addition, the polynucleotide encoding the protein having the IlvB protein activity changes the amino acid sequence of the protein expressed from the coding region in consideration of the preferred codon in the organism to express the protein due to the degeneracy of the codon. Since various modifications can be made to the coding region within the range not specified, the amino acid sequence of SEQ ID NO: 1 may be included without limitation as long as it is a coding nucleotide sequence, but may be specifically encoded by the nucleotide sequence of SEQ ID NO: 2.

본 출원에서 "아세토하이드록시산 신타아제 변이체"란 상기 아세토하이드록시산 신타아제 단백질의 아미노산 서열상 하나 또는 그 이상의 아미노산이 변이 (예, 추가, 제거 또는 치환)된 단백질을 의미한다. 구체적으로 상기 아세토하이드록시산 신타아제 변이체는 아세토하이드록시산 신타아제 단백질이 본 출원의 변이에 의해서 그 활성이 야생형 또는 변형 전과 비교하여 효율적으로 증가된 단백질이다. 본 출원에서 변이는 일반적으로 효소를 개량하기 위한 방법으로 당업계의 알려진 공지된 방법들이 제한없이 사용될 수 있으며, 이에는 합리적 설계(rational design)와 유도 진화(directed evolution) 등의 전략이 있다. 예를 들어, 합리적 설계 전략에는 특정 위치의 아미노산을 위치-지정 돌연변이도입(site-directed mutagenesis 또는 site-specific mutagensis)하는 방법 등이 있고, 유도 진화 전략에는 무작위적 변이(random mutagenesis)를 일으키는 방법 등이 있다. 또한, 자연적인 돌연변이에 의해 외부의 조작 없이 돌연변이된 것일 수 있다. 구체적으로, 상기 아세토하이드록시산 신타아제 변이체는 분리된 것이거나, 재조합 단백질일 수 있으며, 비자연적으로 발생된 것일 수 있다. 그러나, 이에 제한되는 것은 아니다.In the present application, "acetohydroxy acid synthase variant" refers to a protein in which one or more amino acids in the amino acid sequence of the acetohydroxy acid synthase protein have been mutated (eg, added, removed or substituted). Specifically, the acetohydroxy acid synthase variant is a protein in which the activity of the acetohydroxy acid synthase protein is efficiently increased compared to wild type or before modification by the mutation of the present application. In the present application, mutations are generally methods for improving enzymes, and known methods known in the art may be used without limitation, and there are strategies such as rational design and directed evolution. For example, rational design strategies include site-directed mutagenesis or site-specific mutagensis of amino acids at specific positions, and induced evolution strategies include methods of causing random mutagenesis. There is this. In addition, it may be mutated without external manipulation by natural mutation. Specifically, the acetohydroxy acid synthase variant may be isolated, recombinant protein, or non-naturally occurring. However, it is not limited thereto.

본 출원의 아세토하이드록시산 신타아제 변이체는 이에 제한되는 것은 아니나, 구체적으로 서열번호 1로 기재된 아미노산 서열을 갖는 IlvB 단백질의 N-말단으로부터 96 번째 쓰레오닌(threonine) 또는 503 번째 트립토판(tryptophan)이 돌연변이된 IlvB 단백질일 수 있으며, 또는, 이에 제한되는 것은 아니나, 96 번째 쓰레오닌 및 503 번째 트립토판이 동시에 다른 아미노산으로 치환된 IlvB 단백질일 수 있다. 그 예로 상기 96 번째 쓰레오닌이 세린(serine), 시스테인(cystein) 또는 알라닌(alanine)으로 치환된 것이거나, 상기 503 번째 트립토판이 글루타민(glutamine), 아스파라긴(asparagine) 또는 류신(leucine)으로 치환된 IlvB 단백질일 수 있다. 또한, 상기 96번째 또는 503번째 아미노산이 다른 아미노산으로 치환됨과 동시에 아미노산 서열 중 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 경우도 본 출원의 아세토하이드록시산 신타아제 변이체와 동일하거나 상응하는 활성을 나타낸다면 본 출원의 범주에 포함되는 것은 자명하다. The acetohydroxy acid synthase variant of the present application is not limited thereto, but specifically, 96 th threonine or 503 th tryptophan from the N-terminus of the IlvB protein having the amino acid sequence shown in SEQ ID NO: 1 This mutated IlvB protein may be, or, although not limited thereto, may be an IlvB protein in which 96 th threonine and 503 th tryptophan are simultaneously substituted with other amino acids. For example, the 96th threonine is substituted with serine, cysteine, or alanine, or the 503th tryptophan is substituted with glutamine, asparagine, or leucine. It may be an IlvB protein. In addition, when the 96th or 503th amino acid is substituted with another amino acid and at the same time, some of the amino acid sequences have an amino acid sequence that is deleted, modified, substituted or added, it is the same as or corresponding to the acetohydroxy acid synthase variant of the present application. It is obvious that it is included in the scope of the present application if it exhibits the activity to be performed.

아울러, 본 출원의 아세토하이드록시산 신타아제 변이체의 범주에는 상기 기술된 변이를 가지는 아세토하이드록시산 신타아제 큰 소단위체 변이체 자체, 상기 아세토하이드록시산 신타아제 큰 소단위체 변이체를 포함하는 아세토하이드록시산 신타아제, 또는 아세토하이드록시산 신타아제 큰 소단위체 변이체와 작은 소단위체를 모두 가지는 아세토하이드록시산 신타아제가 포함되나, 특별히 이에 제한되는 것은 아니다.In addition, in the category of the acetohydroxy acid synthase variant of the present application, the acetohydroxy acid synthase large subunit variant itself, the acetohydroxy acid synthase large subunit variant having the above-described mutation, is included in the acetohydroxy acid synthase variant. Acid synthase, or acetohydroxy acid synthase An acetohydroxy acid synthase having both a large subunit variant and a small subunit is included, but is not particularly limited thereto.

본 출원에서는 아세토하이드록시산 신타아제 단백질의 96 번째 및 503 번째 아미노산을 다양한 다른 아미노산으로 치환하여 L-분지쇄 아미노산 생산량이 증가하는 것을 확인함으로써, L-분지쇄 아미노산 생산 증가와 관련한 아세토하이드록시산 신타아제 단백질의 변이에 있어서 상기 96 번째 및 503 번째 위치가 중요한 위치임을 확인하였다. 다만, 본 출원의 실시예에서 치환된 아미노산은 본 출원의 효과를 보여주는 대표적인 일 예시에 불과한 것으로 본 출원의 범위가 실시예에 한정되는 것은 아니며, 96 번째 쓰레오닌을 쓰레오닌 이외의 다른 아미노산으로, 503 번째 트립토판을 트립토판 이외의 다른 아미노산으로, 또는 96 번째 쓰레오닌과 503 번째 트립토판을 모두 다른 아미노산으로 치환할 경우 실시예에 기재된 효과와 대응되는 효과를 기대할 수 있음이 자명하다.In the present application, it was confirmed that the production of L-branched chain amino acids increased by substituting the 96th and 503th amino acids of the acetohydroxy acid synthase protein with various other amino acids, thereby increasing the production of L-branched chain amino acids. In the mutation of the synthase protein, it was confirmed that the 96th and 503th positions are important positions. However, the amino acid substituted in the examples of the present application is only a representative example showing the effect of the present application, and the scope of the present application is not limited to the examples, and the 96 th threonine is an amino acid other than threonine. As a result, it is apparent that when the 503 th tryptophan is substituted with an amino acid other than tryptophan, or the 96 th threonine and the 503 th tryptophan are all substituted with other amino acids, an effect corresponding to the effect described in the Examples can be expected.

또한, 본 출원의 아세토하이드록시산 신타아제 변이체는 서열번호 28 내지 33 중 어느 하나로 기재되는 아미노산 서열을 가질 수 있으나, 이에 제한되지 않는다. 또한, 본 출원의 변이를 포함하여 실질적으로 아세토하이드록시산 신타아제 변이체와 동일하거나 상응하는 활성을 가지는 한, 상기 서열들과 70 %, 80 %, 90 %, 95 % 또는 99 % 이상의 상동성을 가지는 폴리펩티드를 제한없이 포함할 수 있다. 본 출원에서 용어, "상동성"은 두 개의 폴리뉴클레오티드 또는 폴리펩티드 모이티 사이의 동일성의 퍼센트를 말한다. 하나의 모이티로부터 다른 하나의 모이티까지의 서열간 상동성은 알려진 당해 기술에 의해 결정될 수 있다. 주어진 아미노산 서열 또는 염기 서열과 동일하거나 유사한 활성을 가지는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수(score), 동일성(identity) 및 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0을 이용하거나, 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있다. 상기에서 용어 "엄격한 조건"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다. In addition, the acetohydroxy acid synthase variant of the present application may have an amino acid sequence described in any one of SEQ ID NOs: 28 to 33, but is not limited thereto. In addition, as long as it has substantially the same or corresponding activity as the acetohydroxy acid synthase variant, including the variant of the present application, 70%, 80%, 90%, 95%, or 99% or more homology with the above sequences. Branches can include, without limitation, polypeptides. In the present application, the term "homology" refers to the percent of identity between two polynucleotide or polypeptide moieties. Homology between sequences from one moiety to another can be determined by known art techniques. Its homologous sequence having the same or similar activity as a given amino acid sequence or base sequence is indicated as "% homology". For example, using standard software that calculates parameters such as score, identity and similarity, specifically BLAST 2.0, or by using hybridization experiments under defined stringent conditions. It can be confirmed by comparing. As used herein, the term "strict conditions" means conditions that allow specific hybridization between polynucleotides. Appropriate hybridization conditions to be defined are within the scope of the technology, and methods well known to those skilled in the art (e.g., J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; FM Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York).

본 출원의 또 하나의 양태는, 본 출원의 아세토하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오티드이다.Another aspect of the present application is a polynucleotide encoding the acetohydroxy acid synthase variant of the present application.

본 출원에서 용어, "폴리뉴클레오티드"는 DNA 그리고 RNA 분자를 포함하는 의미를 가지며, 이의 기본 구성 단위인 뉴클레오타이드는 천연 뉴클레오타이드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다. 본 출원에서 상기 폴리뉴클레오티드는 세포로부터 분리된 폴리뉴클레오티드 또는 인위적으로 합성된 폴리뉴클레오티드일 수 있으나, 이에 제한되는 것은 아니다.In the present application, the term "polynucleotide" has the meaning of including DNA and RNA molecules, and the nucleotide, which is a basic structural unit thereof, includes not only natural nucleotides but also analogs with modified sugar or base moieties. In the present application, the polynucleotide may be a polynucleotide isolated from a cell or an artificially synthesized polynucleotide, but is not limited thereto.

본 출원의 아세토하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오티드는, 본 출원의 아세토하이드록시산 신타아제 변이체 활성을 가지는 단백질을 코딩하는 염기서열이라면 제한없이 포함될 수 있다. 구체적으로 상기 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 상기 서열번호 28 내지 33의 아미노산 서열을 코딩하는 염기서열이면 제한없이 포함될 수 있으나, 구체적인 예를 들어, 서열번호 34 내지 39 중 어느 하나로 기재되는 염기서열을 가지는 것일 수 있다. 또한, 본 출원의 변이를 포함하여 실질적으로 아세토하이드록시산 신타아제의 활성을 가지는 한, 코돈의 축퇴성으로 인하여, 상기 서열들과 70 %, 75 %, 80 %, 85 %. 90 %, 95 %, 97 %, 또는 99 % 이상의 상동성을 가지는 폴리뉴클레오티드를 제한없이 포함할 수 있다. The polynucleotide encoding the acetohydroxy acid synthase variant of the present application may be included without limitation as long as it is a nucleotide sequence encoding the protein having the acetohydroxy acid synthase variant activity of the present application. Specifically, the polynucleotide is subjected to various modifications in the coding region within a range that does not change the amino acid sequence of the protein due to the codon degeneracy or in consideration of the preferred codon in the organism to express the protein. I can. Any nucleotide sequence encoding the amino acid sequence of SEQ ID NOs: 28 to 33 may be included without limitation, but for a specific example, it may have a nucleotide sequence described in any one of SEQ ID NOs: 34 to 39. In addition, as long as it has substantially the activity of acetohydroxy acid synthase, including the mutation of the present application, due to the degeneracy of the codon, 70%, 75%, 80%, 85% of the above sequences. Polynucleotides having a homology of 90%, 95%, 97%, or 99% or more may be included without limitation.

또는 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 서열번호 28 내지 33의 아미노산 서열로 이루어진 단백질의 활성을 가지는 단백질을 암호화하는 서열이라면 제한없이 포함될 수 있다. 상기 "엄격한 조건"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌(예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성이 높은 유전자끼리, 80 % 이상, 구체적으로는 90 % 이상, 보다 구체적으로는 95 % 이상, 더욱 구체적으로는 97 % 이상, 특히 구체적으로는 99 % 이상의 상동성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화의 세척 조건인 60 ℃, 1×SSC, 0.1% SDS, 구체적으로는 60 ℃, 0.1×SSC, 0.1% SDS, 보다 구체적으로는 68 ℃, 0.1×SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다. 혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치(mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 상기 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다. 구체적으로, 상동성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다. 폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(Sambrook et al., supra, 9.50-9.51, 11.7-11.8 참조).Or a probe that can be prepared from a known gene sequence, for example, a complementary sequence for all or a part of the nucleotide sequence and hydride under stringent conditions, and the activity of the protein consisting of the amino acid sequence of SEQ ID NOs: 28 to 33 Branches may be included without limitation as long as they are sequences encoding proteins. The "stringent conditions" refers to conditions that allow specific hybridization between polynucleotides. These conditions are specifically described in the literature (eg, J. Sambrook et al., homolog). For example, among genes with high homology, genes with homology of 80% or more, specifically 90% or more, more specifically 95% or more, more specifically 97% or more, and particularly 99% or more Under conditions that hybridize to each other and do not hybridize to genes with lower homology, or to wash conditions for general Southern hybridization, 60°C, 1×SSC, 0.1% SDS, specifically 60°C, 0.1×SSC, 0.1 % SDS, more specifically 68° C., 0.1×SSC, and the conditions for washing once, specifically two to three times at a salt concentration and temperature corresponding to 0.1% SDS can be listed. Hybridization requires that two nucleic acids have complementary sequences, although mismatches between bases are possible depending on the stringency of hybridization. The term "complementary" is used to describe the relationship between nucleotide bases capable of hybridizing to each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine. Accordingly, the present application may also include substantially similar nucleic acid sequences as well as isolated nucleic acid fragments that are complementary to the entire sequence. Specifically, polynucleotides having homology can be detected using hybridization conditions including a hybridization step at a Tm value of 55° C. and using the above-described conditions. In addition, the Tm value may be 60°C, 63°C, or 65°C, but is not limited thereto and may be appropriately adjusted by a person skilled in the art according to the purpose. The appropriate stringency to hybridize a polynucleotide depends on the length and degree of complementarity of the polynucleotide, and the parameters are well known in the art (see Sambrook et al., supra, 9.50-9.51, 11.7-11.8).

본 출원의 또 하나의 양태는, 본 출원의 변이된 아세토 하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터이다.Another aspect of the present application is a vector comprising a polynucleotide encoding the modified aceto hydroxy acid synthase variant of the present application.

본 출원에서 용어, "벡터"는 숙주 세포로 염기의 클로닝 및/또는 전이를 위한 임의의 매개물을 말한다. 벡터는 다른 DNA 단편이 결합하여 결합된 단편의 복제를 가져올 수 있는 복제단위(replicon)일 수 있다. "복제단위"란 생체 내에서 DNA 복제의 자가 유닛으로서 기능하는, 즉, 스스로의 조절에 의해 복제가능한, 임의의 유전적 단위를 말한다. 구체적으로는, 천연상태이거나 재조합된 상태의 플라스미드, 파지, 코스미드, 염색체, 바이러스일 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, λMBL3, λMBL4, λIXII, λASHII, λAPII, λt10, λt11, Charon4A 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 본 출원에서 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. 또한 상기 벡터에 트랜스포존, 또는 인공 염색체를 포함할 수 있다.In the present application, the term "vector" refers to any medium for cloning and/or transfer of a base into a host cell. The vector may be a replicon capable of binding other DNA fragments to bring about replication of the bound fragment. "Replication unit" refers to any genetic unit that functions as an autologous unit of DNA replication in vivo, ie, capable of replicating by its own regulation. Specifically, it may be a natural or recombinant plasmid, phage, cosmid, chromosome, or virus. For example, pWE15, M13, λMBL3, λMBL4, λIXII, λASHII, λAPII, λt10, λt11, Charon4A, Charon21A, etc. can be used as a phage vector or a cosmid vector, and as a plasmid vector, pBR system, pUC system, pBluescript II system, pGEM system, pTZ system, pCL system, pET system, etc. can be used. The vector usable in the present application is not particularly limited, and a known expression vector may be used. In addition, the vector may contain a transposon or an artificial chromosome.

본 출원에서 벡터는 본 출원의 아세토하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 한 특별히 제한되지 않으나, 포유류 세포(예를 들어, 사람, 원숭이, 토끼, 래트, 햄스터, 마우스 세포 등), 식물 세포, 효모 세포, 곤충 세포 또는 박테리아 세포(예를 들어, 대장균 등)를 포함하는 진핵 또는 원핵세포에서 상기 핵산 분자를 복제 및/또는 발현할 수 있는 벡터가 될 수 있고, 구체적으로는 숙주세포에서 상기 폴리뉴클레오티드가 발현될 수 있도록 적절한 프로모터에 작동가능하도록 연결되며, 적어도 하나의 선별마커를 포함하는 벡터가 될 수 있다. In the present application, the vector is not particularly limited as long as it contains the polynucleotide encoding the acetohydroxy acid synthase variant of the present application, but mammalian cells (eg, human, monkey, rabbit, rat, hamster, mouse cells, etc.) , Plant cells, yeast cells, insect cells or bacterial cells (eg, E. coli, etc.) in eukaryotic or prokaryotic cells, including a vector capable of replicating and / or expressing the nucleic acid molecule, specifically a host It is operably linked to an appropriate promoter so that the polynucleotide can be expressed in cells, and may be a vector including at least one selection marker.

또한, 상기에서 용어, "작동 가능하게 연결"된 것이란 본 출원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.In addition, the term "operably linked" in the above means that a promoter sequence that initiates and mediates transcription of a polynucleotide encoding a protein of interest of the present application and the gene sequence are functionally linked.

본 출원의 또 하나의 양태는, 본 출원의 벡터가 도입된 형질전환체이다.Another aspect of the present application is a transformant into which the vector of the present application has been introduced.

본 출원에서 형질전환체는 특별히 이에 제한되지 않으나, 상기 벡터가 도입되어 본 출원의 아세토하이드록시산 신타아제 변이체를 발현할 수 있으면 모든 형질전환 가능한 세포가 포함될 수 있다. 구체적으로 형질전환된 에스케리키아속, 코리네박테리움 속, 스트렙토미세스, 브레비박테리움속, 세라티아속, 프로비덴시아속, 살모넬라 티피뮤리움 등의 박테리아 세포; 효모 세포; 피치아 파스토리스 등의 균류세포; 드로조필라, 스포도프테라 Sf9 세포 등의 곤충 세포; CHO(중국 햄스터 난소 세포, chinese hamster ovary cells), SP2/0(마우스 골수종), 인간 림프아구(human lymphoblastoid), COS, NSO(마우스 골수종), 293T, 보우 멜라노마 세포, HT-1080, BHK(베이비 햄스터 신장세포, baby hamster kidney cells), HEK(인간 배아신장 세포(human embryonic kidney cells), PERC.6(인간망막세포) 등의 동물 세포; 또는 식물 세포가 될 수 있다. In the present application, the transformant is not particularly limited thereto, but all transformable cells may be included as long as the vector is introduced to express the acetohydroxy acid synthase variant of the present application. Bacterial cells, such as specifically transformed Escherichia genus, Corynebacterium genus, Streptomyces, Brevibacterium genus, Serratia genus, Providencia genus, Salmonella typhimurium, etc.; Yeast cells; Fungal cells such as Pichia pastoris; Insect cells such as Drozophila and Spodoptera Sf9 cells; CHO (Chinese hamster ovary cells), SP2/0 (mouse myeloma), human lymphoblastoid, COS, NSO (mouse myeloma), 293T, Bow melanoma cells, HT-1080, BHK ( Animal cells, such as baby hamster kidney cells, baby hamster kidney cells, HEK (human embryonic kidney cells, PERC.6 (human retinal cells), etc.; or plant cells.

본 출원의 또 하나의 양태는, 상기 아세토하이드록시산 신타아제 변이체를 포함하거나, 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터가 도입된, L-분지쇄 아미노산을 생산하는 미생물이다.Another aspect of the present application is a microorganism comprising the acetohydroxy acid synthase variant or into which a vector including a polynucleotide encoding the variant has been introduced, producing an L-branched amino acid.

본 출원에서 용어, "L-분지쇄 아미노산"이란 곁사슬에 분지알킬기가 있는 아미노산을 말하며, 발린, 류신 및 이소류신을 포함한다. 구체적으로, 본 출원에서 상기 L-분지쇄 아미노산은 L-발린 또는 L-류신일 수 있으나, 이에 제한되는 것은 아니다.In the present application, the term "L-branched amino acid" refers to an amino acid having a branched alkyl group in the side chain, and includes valine, leucine, and isoleucine. Specifically, in the present application, the L-branched amino acid may be L-valine or L-leucine, but is not limited thereto.

본 출원에서 상기 "미생물"은 야생형 미생물이나, 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 약화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물을 모두 포함하는 개념이다. 본 출원의 아세토하이드록시산 신타아제 변이체를 발현할 수 있는 모든 미생물을 지칭하며, 구체적으로는 코리네박테리움속 미생물일 수 있으며, 더욱 구체적으로는 코리네박테리움 글루타미쿰, 코리네박테리움 암모니아게네스, 브레비박테리움 락토퍼멘텀(Brevibacterium lactofermentum), 브레비박테리움 플라범(Brevibacterium flavum), 코리네박테리움 써모아미노게네스(Corynebacterium thermoaminogenes), 코리네박테리움 에피션스(Corynebacterium efficiens) 등일 수 있다. 보다 더욱 구체적으로는 코리네박테리움 글루타미쿰이나, 이에 한정되는 것은 아니다. In the present application, the "microorganism" includes all wild-type microorganisms or microorganisms that have undergone natural or artificial genetic modification, and a specific mechanism is weakened due to reasons such as insertion of an external gene or enhancement or attenuation of the activity of an intrinsic gene. It is a concept that includes all microorganisms that have become or fortified. Refers to all microorganisms capable of expressing the acetohydroxy acid synthase variant of the present application, specifically, may be a microorganism of the genus Corynebacterium, and more specifically, Corynebacterium glutamicum, Corynebacterium ammonia to Ness, Brevibacterium Lactobacillus buffer momentum (Brevibacterium lactofermentum), Brevibacterium Plastic pan (Brevibacterium flavum), Corynebacterium thermo amino to Ness (Corynebacterium thermoaminogenes), Corynebacterium epi syeonseu (Corynebacterium efficiens) Etc. More specifically, it is Corynebacterium glutamicum, but is not limited thereto.

본 출원에서 용어, "L-분지쇄 아미노산을 생산하는 미생물"이란 천연형 또는 변이를 통하여 L-분지쇄 아미노산 생산능을 가지고 있는 미생물을 의미하며, 구체적으로 비자연적으로 발생한(non-natural occuring) 재조합 미생물일 수 있으나, 이에 제한되지 않는다. 상기 L-분지쇄 아미노산을 생산하는 미생물은 본 출원의 아세토하이드록시산 신타아제 변이체를 포함하거나, 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터가 도입된 것으로, 야생형 미생물, 천연형 아세토하이드록시산 신타아제 단백질을 포함하는 미생물, 아세토하이드록시산 신타아제 단백질을 포함하는 비변형 미생물 또는 아세토하이드록시산 신타아제 단백질을 포함하지 않는 미생물에 비하여 L-분지쇄 아미노산 생산능이 현저히 증가될 수 있다. In the present application, the term "a microorganism producing L-branched chain amino acids" refers to a microorganism having the ability to produce L-branched chain amino acids through a natural type or mutation, and specifically non-natural occuring It may be a recombinant microorganism, but is not limited thereto. The microorganism producing the L-branched amino acid is a vector comprising the acetohydroxy acid synthase variant of the present application or a vector containing a polynucleotide encoding the variant has been introduced, and a wild-type microorganism, a natural acetohydroxy acid Compared to a microorganism comprising a synthase protein, an unmodified microorganism including an acetohydroxy acid synthase protein, or a microorganism not containing acetohydroxy acid synthase protein, the ability to produce L-branched amino acids may be significantly increased.

본 출원의 또 하나의 양태는, 본 출원의 L-분지쇄 아미노산을 생산하는 미생물을 배양하는 단계; 및 상기 단계에서 수득되는 미생물 또는 배지로부터 L-분지쇄 아미노산을 회수하는 단계를 포함하는, L-분지쇄 아미노산 생산 방법이다.Another aspect of the present application, the step of culturing a microorganism that produces the L-branched chain amino acid of the present application; And recovering the L-branched chain amino acid from the microorganism or medium obtained in the above step.

본 출원에서 용어, "배양"은 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 것을 의미한다. 본 출원에서 L-분지쇄 아미노산 생산능을 가지는 미생물을 이용한 L-분지쇄 아미노산 생산 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로, 상기 배양은 배치 공정, 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있으나, 이에 제한되는 것은 아니다.In the present application, the term "culture" means to grow microorganisms under appropriately artificially controlled environmental conditions. In the present application, the L-branched amino acid production method using a microorganism having L-branched chain amino acid production capability may be performed using a method widely known in the art. Specifically, the culture may be continuously cultured in a batch process, an injection batch or a repeated fed batch process, but is not limited thereto.

배양에 사용되는 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 예를 들어, 코리네박테리움 속 균주에 대한 배양 배지는 공지되어 있다(예를 들면, Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981). 사용될 수 있는 당원으로는 글루코즈, 사카로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함될 수 있다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있으며, 이에 제한되는 것은 아니다. 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산암모늄, 염화암모늄, 인산암모늄, 탄산 암모늄 및 질산암모늄이 포함될 수 있다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있으며, 이에 제한되는 것은 아니다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있다. 추가적으로, 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다. 또한, 배양배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있다. 그러나, 이에 제한되는 것은 아니다.The medium used for cultivation must meet the requirements of the specific strain in an appropriate manner. For example, culture media for strains of the genus Corynebacterium are known (eg, Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981). Sugar sources that can be used include sugars and carbohydrates such as glucose, saccharose, lactose, fructose, maltose, starch, cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, coconut oil, palmitic acid, stearic acid. , Fatty acids such as linoleic acid, alcohols such as glycerol, ethanol, and organic acids such as acetic acid. These materials may be used individually or as a mixture, but are not limited thereto. Nitrogen sources that may be used may include peptone, yeast extract, broth, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate. The nitrogen source may also be used individually or as a mixture, but is not limited thereto. Personnel that may be used may include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salt. In addition, the culture medium may contain a metal salt such as magnesium sulfate or iron sulfate required for growth. Additionally, essential growth substances such as amino acids and vitamins can be used. In addition, precursors suitable for the culture medium may be used. The above-described raw materials may be added batchwise or continuously in a manner appropriate to the culture during the cultivation process. However, it is not limited thereto.

수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다. 또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체(예, 공기)를 주입할 수 있다. 배양물의 온도는 20 내지 45 ℃, 구체적으로는 25 내지 40 ℃일 수 있다. 배양은 원하는 L-분지쇄 아미노산의 생성량이 최대로 얻어질 때까지 계속될 수 있다. 이러한 목적으로 배양시간은 10 내지 160 시간일 수 있다. L-분지쇄 아미노산은 배양 배지 중으로 배출되거나, 세포 중에 포함되어 있을 수 있다. 그러나, 이에 제한되는 것은 아니다.Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia, or acid compounds such as phosphoric acid or sulfuric acid can be used in an appropriate manner to adjust the pH of the culture. In addition, foaming can be suppressed by using an antifoaming agent such as fatty acid polyglycol ester. Oxygen or an oxygen-containing gas (eg, air) may be injected into the culture to maintain an aerobic condition. The temperature of the culture may be 20 to 45 °C, specifically 25 to 40 °C. The cultivation can be continued until the maximum amount of production of the desired L-branched amino acid is obtained. For this purpose, the incubation time may be 10 to 160 hours. The L-branched amino acid may be excreted into the culture medium or contained in the cell. However, it is not limited thereto.

미생물 또는 배지로부터 L-분지쇄 아미노산을 회수하는 방법은 당업계에 알려진 적합한 방법을 이용하여 수행될 수 있다. 예컨대 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 및 이들의 방법을 조합하여 사용될 수 있으나, 이들 예에 한정되는 것은 아니다. 또한 상기 L-분지쇄 아미노산을 회수하는 단계는 추가적인 정제단계를 포함할 수 있으며, 당해분야에 공지된 적합한 방법을 이용하여 수행될 수 있다.The method of recovering the L-branched amino acid from the microorganism or medium can be carried out using a suitable method known in the art. For example, centrifugation, filtration, treatment with a crystallized protein precipitant (salt-in method), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity chromatography Various chromatography such as, HPLC, and methods thereof may be used in combination, but are not limited to these examples. In addition, the step of recovering the L-branched amino acid may include an additional purification step, and may be performed using a suitable method known in the art.

본 출원에 따른 아세토하이드록시산 신타아제 변이체는 미생물에 그 활성이 도입되는 경우, 상기 미생물의 L-분지쇄 아미노산 생산능을 현저히 증가시키므로, L-분지쇄 아미노산의 대량 생산에 널리 활용될 수 있다.The acetohydroxy acid synthase variant according to the present application significantly increases the ability of the microorganism to produce L-branched chain amino acids when its activity is introduced into a microorganism, and thus can be widely used for mass production of L-branched chain amino acids. .

이하 본 출원을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present application will be described in more detail through examples. However, these examples are for illustrative purposes only, and the scope of the present application is not limited to these examples.

실시예 1: 인공 돌연변이법을 이용한 변이된 아세토하이드록시산 신타아제 (acetohydroxy acid synthase)를 코딩하는 DNA 라이브러리 제작Example 1: Preparation of DNA library encoding mutated acetohydroxy acid synthase using artificial mutation method

본 실시예에서는 아세토하이드록시산 신타아제 변이체를 획득하기 위하여 하기의 방법으로 염색체 내 1 차 교차 삽입용 벡터 라이브러리를 제작하였다. 코리네박테리움 글루타미쿰 ATCC14067 유래의 아세토하이드록시산 신타아제(서열번호 1)를 암호화하는 ilvB 유전자(서열번호 2)를 대상으로 Error-prone PCR 법을 수행하여 염기 치환 변이가 무작위적으로 도입된 ilvB 유전자 변이체(2395bp)들을 획득하였다. Error-prone PCR은 GenemorphII Random Mutagenesis Kit(Stratagene)를 사용하여 수행하였으며, 코리네박테리움 글루타미쿰 ATCC14067 게놈 DNA를 주형으로 하여 프라이머 1(서열번호 3) 및 프라이머 2(서열번호 4)를 사용하였다. In this example, in order to obtain an acetohydroxy acid synthase variant, a vector library for primary cross-insertion in a chromosome was constructed by the following method. Error-prone PCR was performed on the ilvB gene (SEQ ID No. 2) encoding acetohydroxy acid synthase (SEQ ID No. 1) derived from Corynebacterium glutamicum ATCC14067, and base substitution mutations were randomly introduced. The ilvB gene variants (2395bp) were obtained. Error-prone PCR was performed using GenemorphII Random Mutagenesis Kit (Stratagene), and primer 1 (SEQ ID NO: 3) and primer 2 (SEQ ID NO: 4) were used using Corynebacterium glutamicum ATCC14067 genomic DNA as a template. .

프라이머 1(서열번호 3): 5'- AACCG GTATC GACAA TCCAA T -3'Primer 1 (SEQ ID NO: 3): 5'- AACCG GTATC GACAA TCCAA T -3'

프라이머 2(서열번호 4): 5'- GGGTC TCTCC TTATG CCTC -3'Primer 2 (SEQ ID NO: 4): 5'- GGGTC TCTCC TTATG CCTC -3'

증폭된 유전자 단편 내에 변이가 1 kb당 0 내지 3.5 개가 도입되도록 하였으며, PCR 조건은 변성 96 ℃, 30 초; 어닐링 53 ℃, 30 초; 및 중합반응 72 ℃, 2 분을 30 회 반복하였다. 0 to 3.5 mutations per 1 kb were introduced into the amplified gene fragment, and PCR conditions were denaturation 96° C., 30 seconds; Annealing 53° C., 30 seconds; And polymerization reaction at 72° C. for 2 minutes were repeated 30 times.

증폭된 유전자 단편을 pCR2.1-TOPO TA 클로닝 키트(Invitrogen 社)를 이용하여 pCR2.1-TOPO 벡터(이하 'pCR2.1')에 연결하였고, 대장균 DH5α에 형질전환하여 카나마이신(25 mg/ℓ)이 포함된 LB 고체배지에 도말하였다. 형질전환된 콜로니 20 종을 선별한 후 플라스미드를 획득하여 염기서열을 분석한 결과 2.1 mutations/kb 빈도로 서로 다른 위치에 변이가 도입된 것을 확인하였다. 약 20,000 개의 형질전환된 대장균 콜로니를 취하여 플라스미드를 추출하였고, 이를 pCR2.1-ilvB(mt) 라이브러리로 명명하였다.The amplified gene fragment was ligated to a pCR2.1-TOPO vector (hereinafter'pCR2.1') using a pCR2.1-TOPO TA cloning kit (Invitrogen), transformed into E. coli DH5α, and kanamycin (25 mg/ℓ). ) Was spread on LB solid medium containing. After selecting 20 transformed colonies, plasmids were obtained, and as a result of nucleotide sequence analysis, it was confirmed that mutations were introduced at different locations with a frequency of 2.1 mutations/kb. About 20,000 transformed E. coli colonies were taken to extract a plasmid, which was named pCR2.1-ilvB(mt) library.

또한, 대조군으로 사용하기 위한 야생형의 ilvB 유전자를 갖는 플라스미드를 제작하였다. 프라이머 1(서열번호 3) 및 프라이머 2(서열번호 4)를 이용하여 코리네박테리움 글루타미쿰 ATCC14067 게놈 DNA를 주형으로 상기와 같은 조건으로 PCR하였다. 중합효소는 PfuUltra High-Fidelity DNA 중합효소(Stratagene)를 사용하였다. 제작된 플라스미드를 pCR2.1-ilvB(WT)으로 명명하였다.In addition, a plasmid having a wild-type ilvB gene was prepared for use as a control. Using primer 1 (SEQ ID NO: 3) and primer 2 (SEQ ID NO: 4), Corynebacterium glutamicum ATCC14067 genomic DNA as a template was subjected to PCR under the same conditions as described above. As the polymerase, PfuUltra High-Fidelity DNA polymerase (Stratagene) was used. The produced plasmid was named pCR2.1-ilvB (WT).

실시예 2: Example 2: ilvBilvB 결손 균주 제작 Production of defective strains

KCCM11201P(대한민국 등록특허 제10-1117022호) 균주를 모균주로 하여 pCR2.1-ilvB(mt) 라이브러리를 도입하기 위한 ilvB 결손 균주를 제작하였다.Using the KCCM11201P (Korean Patent No. 10-1117022) strain as a parent strain, an ilvB- deficient strain for introducing the pCR2.1-ilvB(mt) library was prepared.

ilvB 결손 벡터를 제작하기 위하여 야생형 코리네박테리움 글루타미쿰 ATCC14067의 염색체를 주형으로 하여 프라이머 3(서열번호 5) 및 프라이머 4(서열번호 6), 프라이머 5(서열번호 7) 및 프라이머 6(서열번호 8)을 이용하여 PCR을 수행하였다. To construct the ilvB deletion vector, primer 3 (SEQ ID NO: 5) and primer 4 (SEQ ID NO: 6), primer 5 (SEQ ID NO: 7) and primer 6 (SEQ ID NO: 6) using the chromosome of wild-type Corynebacterium glutamicum ATCC14067 as a template PCR was performed using number 8).

프라이머 3(서열번호 5): 5'- GCGTC TAGAG ACTTG CACGA GGAAA CG -3'Primer 3 (SEQ ID NO: 5): 5'- GCGTC TAGAG ACTTG CACGA GGAAA CG -3'

프라이머 4(서열번호 6): 5'- CAGCC AAGTC CCTCA GAATT GATGT AGCAA TTATC C -3'Primer 4 (SEQ ID NO: 6): 5'- CAGCC AAGTC CCTCA GAATT GATGT AGCAA TTATC C -3'

프라이머 5(서열번호 7): 5'- GGATA ATTGC TACAT CAATT CTGAG GGACT TGGCT G -3'Primer 5 (SEQ ID NO: 7): 5'- GGATA ATTGC TACAT CAATT CTGAG GGACT TGGCT G -3'

프라이머 6(서열번호 8): 5'- GCGTC TAGAA CCACA GAGTC TGGAG CC -3'Primer 6 (SEQ ID NO: 8): 5'- GCGTC TAGAA CCACA GAGTC TGGAG CC -3'

PCR 조건은 95 ℃에서 5 분간 변성 후, 95 ℃ 30 초 변성, 55 ℃ 30 초 어닐링, 72 ℃ 30 초 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다. PCR conditions were denatured at 95°C for 5 minutes, denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C for 30 seconds were repeated 30 times, followed by polymerization at 72°C for 7 minutes.

그 결과 ilvB 유전자 프로모터 앞 부분과 ilvB 유전자 3'말단을 각각 포함하는 731bp의 서열번호 9의 DNA 단편과 712bp의 서열번호 10의 DNA 단편을 수득하였다.As a result, a DNA fragment of 731 bp of SEQ ID NO: 9 and a DNA fragment of SEQ ID NO: 10 of 712 bp were obtained each including a portion in front of the ilvB gene promoter and the 3'end of the ilvB gene.

증폭된 서열번호 9과 서열번호 10을 주형으로 하여, 프라이머 3(서열번호 5) 및 프라이머 6(서열번호 8)으로 PCR을 수행하였다. PCR 조건은 95 ℃에서 5 분간 변성 후, 95 ℃ 30 초 변성, 55 ℃ 30 초 어닐링, 72 ℃ 60 초 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다. Using the amplified SEQ ID NO: 9 and SEQ ID NO: 10 as templates, PCR was performed with primer 3 (SEQ ID NO: 5) and primer 6 (SEQ ID NO: 8). PCR conditions were denatured at 95° C. for 5 minutes, then denaturing at 95° C. for 30 seconds, annealing at 55° C. for 30 seconds, and polymerization at 72° C. for 60 seconds were repeated 30 times, followed by polymerization at 72° C. for 7 minutes.

그 결과, ilvB 유전자의 프로모터 앞 부분을 포함하는 DNA 단편과 3'말단을 포함하는 DNA 단편이 연결된 1407bp의 서열번호 11의 DNA 단편(이하 ilvB 단편)이 증폭되었다.As a result, the DNA fragment of SEQ ID NO: 11 (hereinafter, ilvB fragment) of 1407 bp to which the DNA fragment including the promoter front portion of the ilvB gene and the DNA fragment including the 3'end were linked was amplified.

코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ 벡터(대한민국 등록특허 제10-0924065호)와 상기 증폭된 ilvB 단편을 제한효소 Xba로 처리한 뒤, DNA 접합 효소를 이용하여 연결한 후, 클로닝함으로써 플라스미드를 획득하였고 이를 pDZ-ilvB라 명명하였다.In Corynebacterium glutamicum, the pDZ vector (Korean Patent Registration No. 10-0924065) and the amplified ilvB fragment were treated with restriction enzyme Xba, ligated using a DNA conjugation enzyme, and then cloned. By doing so, a plasmid was obtained, which was named pDZ-ilvB.

pDZ-ilvB를 코리네박테리움 글루타미쿰 KCCM11201P에 전기펄스법(Appl. Microbiol. Biothcenol.(1999) 52:541-545)으로 각각 형질전환한 후 카나마이신(kanamycin) 25 mg/ℓ 및 L-발린, L-류신, L-이소류신을 각각 2 mM씩 함유한 선별배지에서 형질전환균주를 획득하였다. 2 차 재조합과정(cross-over)으로 게놈상에 삽입된 ilvB 단편에 의하여 ilvB 유전자가 불활성화된 균주를 획득하였고, 이를 KCCM11201PilvB로 명명하였다.pDZ-ilvB was transformed into Corynebacterium glutamicum KCCM11201P by electric pulse method (Appl. Microbiol. Biothcenol. (1999) 52:541-545), respectively, and then kanamycin 25 mg/l and L-valine , L-leucine and L-isoleucine were obtained in a selection medium containing 2 mM each. A strain in which the ilvB gene was inactivated was obtained by the ilvB fragment inserted into the genome through the second recombination process (cross-over), and this was designated as KCCM11201P ilvB.

실시예 3: 아세토하이드록시산 신타아제 변이 균주 라이브러리 제작 및 L-아미노산 생산능 증가 균주 선별Example 3: Acetohydroxy acid synthase mutant strain library preparation and L-amino acid production ability increase strain selection

상기 제작된 KCCM11201PilvB 균주를 모균주로 하여 상기 제작된 pCR2.1-ilvB(mt) 라이브러리를 상동염색체 재조합에 의해 형질전환하고 카나마이신(25 mg/L)이 포함된 복합평판배지에 도말하여 약 10,000 개의 콜로니를 확보하였으며, 각 콜로니를 KCCM11201PilvB/pCR2.1-ilvB(mt)-1부터 KCCM11201PilvB/pCR2.1-ilvB(mt)-10000까지로 명명하였다. Using the prepared KCCM11201P ilvB strain as a parent strain, the prepared pCR2.1-ilvB(mt) library was transformed by homologous chromosome recombination, and then spread on a complex plate medium containing kanamycin (25 mg/L) to about 10,000. It has secured the colonies, and named each of the colonies from a KCCM11201P ilvB /pCR2.1-ilvB(mt)-1 to KCCM11201P ilvB /pCR2.1-ilvB(mt)-10000.

또한, 상기 제작된 pCR2.1-ilvB(WT) 벡터를 KCCM11201PilvB 균주에 형질전환하여 대조군 균주를 제작하였으며, KCCM11201PilvB/pCR2.1-ilvB(WT)으로 명명하였다. In addition, the prepared pCR2.1-ilvB (WT) vector was transformed into the KCCM11201P ilvB strain to prepare a control strain, and was named KCCM11201P ilvB /pCR2.1-ilvB (WT).

<복합평판배지(pH 7.0)><Composite flat plate (pH 7.0)>

포도당 10 g, 펩톤 10 g, 소고기 추출물 5 g, 효모 추출물 5 g, 뇌심장침출액(brain heart infusion) 18.5 g, NaCl 2.5 g, 요소 2 g, 소르비톨(sorbitol) 91 g, 한천 20 g (증류수 1 리터 기준)Glucose 10 g, peptone 10 g, beef extract 5 g, yeast extract 5 g, brain heart infusion 18.5 g, NaCl 2.5 g, urea 2 g, sorbitol 91 g, agar 20 g (distilled water 1 Liters)

확보된 약 10,000개의 콜로니를 각각 300 ㎕의 선별배지에 접종하여 96-딥 웰 플레이트에서 32 ℃, 1000 rpm으로 약 24 시간 동안 배양하였다. 배양액에 생산된 L-아미노산의 생산량을 분석하기 위하여 닌하이드린 방법을 이용하였다(J. Biol. Chem. 1948. 176:367-388). 배양이 완료된 후 배양 상층액 10 ㎕와 닌하드린 반응용액 190 ㎕를 65 ℃에서 30 분간 반응시킨 후 파장 570 nm에서 분광광도계(spectrophotometer)로 흡광도를 측정하고 대조군 KCCM11201PilvB/pCR2.1-ilvB(WT) 균주의 흡광도와 비교해 10 % 이상 증가된 흡광도를 보이는 변이 균주 약 213개의 콜로니를 선별하였다. 그 외 콜로니들은 대조구 대비 유사 또는 감소한 흡광도를 나타내었다.About 10,000 colonies obtained were inoculated into 300 µl of each selection medium and incubated in a 96-deep well plate at 32° C. and 1000 rpm for about 24 hours. In order to analyze the production amount of L-amino acid produced in the culture medium, the ninhydrin method was used (J. Biol. Chem. 1948. 176:367-388). After the incubation was completed, 10 µl of the culture supernatant and 190 µl of the ninhadrin reaction solution were reacted at 65°C for 30 minutes, and the absorbance was measured with a spectrophotometer at a wavelength of 570 nm, and the control KCCM11201P ilvB /pCR2.1-ilvB ( WT) about 213 colonies of mutant strains showing an absorbance increased by 10% or more compared to the absorbance of the strain were selected. Other colonies showed similar or decreased absorbance compared to the control.

<선별배지(pH 8.0)><Selection medium (pH 8.0)>

포도당 10 g, 황산암모늄 5.5 g, 황산마그네슘7수염 1.2 g, 제1인산칼륨 0.8 g, 제2인산칼륨 16.4 g, 비오틴 100 ㎍, 티아민-HCl 1000 ㎍, 판토텐산칼슘 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)Glucose 10 g, ammonium sulfate 5.5 g, magnesium sulfate 7 hydrate 1.2 g, monobasic potassium 0.8 g, dibasic potassium 16.4 g, biotin 100 μg, thiamine-HCl 1000 μg, pantothenate calcium 2000 μg, nicotinamide 2000 μg ( 1 liter of distilled water)

선별된 213 개의 균주는 상기와 같은 방법으로 닌하이드린 반응을 반복 수행하였으며, KCCM11201PilvB/pCR2.1-ilvB(WT) 균주 대비 L-아미노산 생산능이 향상된 균주 상위 60종을 선별하였다. The selected 213 strains were repeatedly subjected to ninhydrin reaction in the same manner as described above, and the top 60 strains having improved L-amino acid production ability compared to the KCCM11201P ilvB / pCR2.1-ilvB (WT) strain were selected.

실시예 4: 아세토하이드록시산 신타아제 변이 균주 라이브러리 선별주의 L-발린 생산능 확인Example 4: Confirmation of L-valine production ability of acetohydroxy acid synthase mutant strain library selection line

상기 실시예 3에서 선별한 60종 균주들의 L-발린 생산능을 비교하고자 아래와 같은 방법으로 배양하여 배양액 성분을 분석하였다.In order to compare the L-valine production ability of the 60 strains selected in Example 3, the culture medium components were analyzed by culturing in the following manner.

생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 1백금이 접종하고, 30 ℃에서 72 시간 동안, 200 rpm에서 진탕 배양하였다. HPLC를 이용하여 L-발린의 농도를 분석하였다.Each strain was inoculated with platinum in a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours and 200 rpm. The concentration of L-valine was analyzed using HPLC.

<생산배지(pH 7.0)><Production medium (pH 7.0)>

포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분 Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1000 ㎍, 판토텐산칼슘 2000 ㎍, 니코틴아마이드 3000 ㎍, 탄산칼슘 30 g (증류수 1리터 기준)Glucose 100 g, ammonium sulfate 40 g, soy protein 2.5 g, corn steep solids) 5 g, urea 3 g, dibasic potassium 1 g, magnesium sulfate 7 hydrated 0.5 g, biotin 100 ㎍, thiamine-HCl 1000 ㎍, calcium pantothenate 2000 ㎍, nicotinamide 3000 ㎍, calcium carbonate 30 g (based on 1 liter of distilled water)

60종의 균주 중 L-발린 농도가 향상된 균주 2종을 선별하여 상기 배양 및 분석을 반복수행 하였으며, 분석된 L-발린의 농도는 하기 표 1과 같다. 나머지 58종의 균주는 L-발린 농도가 오히려 하락하는 결과를 보였다.Among the 60 strains, two strains with improved L-valine concentration were selected and the above culture and analysis were repeated, and the analyzed concentration of L-valine is shown in Table 1 below. The remaining 58 strains showed a result that the concentration of L-valine decreased.

선별된 2종의 KCCM11201PilvB/pCR2.1-ilvB(mt) L-발린 생산 농도Selected two kinds of KCCM11201P ilvB /pCR2.1-ilvB(mt) L-valine production concentration 균주Strain L-발린 (g/ℓ)L-valine (g/ℓ) 배치 1Batch 1 배치 2Batch 2 배치 3Batch 3 평균Average 대조군Control KCCM11201PilvB/pCR2.1-ilvB(WT)KCCM11201P ilvB /pCR2.1-ilvB(WT) 2.72.7 2.92.9 2.92.9 2.82.8 1One KCCM11201PilvB/pCR2.1-ilvB(mt)-5602KCCM11201P ilvB /pCR2.1-ilvB(mt)-5602 3.13.1 3.53.5 3.43.4 3.33.3 22 KCCM11201PilvB/pCR2.1-ilvB(mt)-7131KCCM11201P ilvB /pCR2.1-ilvB(mt)-7131 2.92.9 3.33.3 3.13.1 3.13.1

L-발린 농도 분석 결과, 상기 2종 선별주의 L-발린 수율이 대조군 KCCM11201PilvB/pCR2.1-ilvB(WT) 균주 대비 최대 20.7 % 증가함을 확인하였다. As a result of L-valine concentration analysis, it was confirmed that the L-valine yield of the two kinds of strains increased by up to 20.7% compared to the control KCCM11201P ilvB /pCR2.1-ilvB (WT) strain.

실시예 5: 아세토하이드록시산 신타아제 변이 균주 라이브러리 선별주의 Example 5: Acetohydroxy acid synthase mutant strain library selection strain ilvBilvB 유전자 변이 확인 Genetic Variation Identification

상기 실시예 4에서 선별된 2종 균주들의 아세토하이드록시산 신타아제에 도입된 무작위 변이를 확인하기 위하여 ilvB 유전자의 염기서열을 분석하였다. 염기서열을 결정하기 위해 프라이머 7(서열번호 12) 및 프라이머 8(서열번호 13)을 사용하여 PCR을 수행하였다. In order to confirm the random mutation introduced into the acetohydroxy acid synthase of the two strains selected in Example 4, the nucleotide sequence of the ilvB gene was analyzed. PCR was performed using primers 7 (SEQ ID NO: 12) and primer 8 (SEQ ID NO: 13) to determine the nucleotide sequence.

프라이머 7(서열번호 12): 5'- CGCTT GATAA TACGC ATG -3'Primer 7 (SEQ ID NO: 12): 5'- CGCTT GATAA TACGC ATG -3'

프라이머 8(서열번호 13): 5'- GAACA TACCT GATAC GCG -3'Primer 8 (SEQ ID NO: 13): 5'-GAACA TACCT GATAC GCG -3'

확보된 각각의 변이형 ilvB 유전자 단편들의 염기서열 분석을 통하여, 서열번호 2의 야생형 ilvB 유전자 염기서열과 비교하여 변이형 ilvB 유전자의 염기서열을 확인하였으며, 이를 통해 변이된 아세토하이드록시산 신타아제 단백질의 아미노산 서열을 확인하였다. 선별된 균주 2종의 변이된 아세토하이드록시산 신타아제 단백질의 정보는 하기 표 2와 같다. Through the nucleotide sequence analysis of each of the obtained mutant ilvB gene fragments, the nucleotide sequence of the mutant ilvB gene was confirmed by comparing it with the wild type ilvB gene nucleotide sequence of SEQ ID NO: 2, through which the mutated acetohydroxy acid synthase protein The amino acid sequence of was confirmed. Information on the mutated acetohydroxy acid synthase proteins of the two selected strains is shown in Table 2 below.

선별 2종 KCCM11201P/pCR2.1-ilvB(mt) 변이된
아세토하이드록시산 신타아제 단백질 정보
Selection 2 KCCM11201P/pCR2.1-ilvB(mt) mutated
Acetohydroxy acid synthase protein information
균주Strain 아세토하이드록시산 신타아제 아미노산 변이Acetohydroxy acid synthase amino acid mutation KCCM11201PilvB /pCR2.1-ilvB(mt)-5602KCCM11201P ilvB /pCR2.1-ilvB(mt)-5602 W503QW503Q KCCM11201PilvB /pCR2.1-ilvB(mt)-7131KCCM11201P ilvB /pCR2.1-ilvB(mt)-7131 T96ST96S

실시예 6: 아세토하이드록시산 신타아제 변이 도입용 벡터 제작Example 6: Construction of a vector for introducing mutant acetohydroxy acid synthase

상기 실시예 5에서 확인된 변이된 아세토하이드록시산 신타아제 단백질의 효과를 확인하기 위하여 이를 염색체상에 도입할 수 있는 벡터를 제작하였다. In order to confirm the effect of the mutated acetohydroxy acid synthase protein identified in Example 5, a vector capable of introducing it onto the chromosome was constructed.

확인된 염기서열에 근거하여 5' 말단에 Xba 제한효소 부위를 삽입한 프라이머 9(서열번호 14)와 프라이머 10(서열번호 15), 및 프라이머 11(서열번호 16)과 프라이머 12(서열번호 17)를 합성하였다. 이 프라이머 쌍을 이용하여, 상기 선별된 2종의 염색체를 각각 주형으로 PCR을 수행하여 2종의 변이형 ilvB 유전자 단편을 증폭하였다. PCR 조건은 94 ℃에서 5 분간 변성 후, 94 ℃ 30 초 변성, 56 ℃ 30 초 어닐링, 72 ℃ 2 분 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다. Primer 9 (SEQ ID NO: 14) and primer 10 (SEQ ID NO: 15), and primers 11 (SEQ ID NO: 16) and primer 12 (SEQ ID NO: 17) with Xba restriction enzyme sites inserted at the 5'end based on the identified nucleotide sequence Was synthesized. Using this primer pair, PCR was performed on each of the two selected chromosomes as a template to amplify two mutant ilvB gene fragments. PCR conditions were denatured at 94° C. for 5 minutes, then denatured at 94° C. for 30 seconds, annealing at 56° C. for 30 seconds, and polymerization at 72° C. for 2 minutes were repeated 30 times, followed by polymerization at 72° C. for 7 minutes.

프라이머 9(서열번호 14): 5'- CGCTC TAGAC AAGCA GGTTG AGGTT CC -3'Primer 9 (SEQ ID NO: 14): 5'- CGCTC TAGAC AAGCA GGTTG AGGTT CC -3'

프라이머 10(서열번호 15): 5'- CGCTC TAGAC ACGAG GTTGA ATGCG CG -3'Primer 10 (SEQ ID NO: 15): 5'- CGCTC TAGAC ACGAG GTTGA ATGCG CG -3'

프라이머 11(서열번호 16): 5'- CGCTC TAGAC CCTCG ACAAC ACTCA CC -3'Primer 11 (SEQ ID NO: 16): 5'- CGCTC TAGAC CCTCG ACAAC ACTCA CC -3'

프라이머 12(서열번호 17): 5'- CGCTC TAGAT GCCAT CAAGG TGGTG AC -3'Primer 12 (SEQ ID NO: 17): 5'- CGCTC TAGAT GCCAT CAAGG TGGTG AC -3'

PCR로 증폭된 2종의 유전자 단편을 제한효소 Xba로 처리하여 각각의 DNA 절편을 획득한 후, 이를 제한효소 Xba 말단을 가지는 염색체 도입용 pDZ 벡터에 연결한 후 대장균 DH5α에 형질전환하고 카나마이신(25 mg/ℓ)이 포함된 LB 고체배지에 도말하였다. Two gene fragments amplified by PCR were treated with restriction enzyme Xba to obtain respective DNA fragments, ligated to pDZ vector for chromosome introduction with restriction enzyme Xba end, and transformed into E. coli DH5α, followed by kanamycin (25 mg/ℓ) was spread on LB solid medium.

PCR을 통해 목적한 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 이 플라스미드의 ilvB 유전자에 삽입된 변이에 따라 각각 pDZ-ilvB(W503Q), pDZ- ilvB(T96S)로 명명하였다.After selecting a colony transformed with a vector into which the target gene was inserted through PCR, a plasmid was obtained using a commonly known plasmid extraction method, and according to the mutations inserted into the ilvB gene of this plasmid, pDZ-ilvB (W503Q), respectively, It was named pDZ-ilvB (T96S).

실시예 7: KCCM11201P 유래 아세토하이드록시산 신타아제 변이 도입 균주 제작 및 L-발린 생산능 비교Example 7: KCCM11201P-derived acetohydroxy acid synthase mutant introduction strain construction and L-valine production ability comparison

상기 실시예 6에서 제조한 신규 변이 도입 벡터 2종을 각각 2 단계 상동염색체 재조합에 의해 L-발린 생산 균주인 코리네박테리움 글루타미쿰 KCCM11201P에 형질전환시켰다. 그 후 염색체 상의 ilvB 변이가 도입된 균주를 염기서열 분석에 의하여 선별하였으며, 상기 ilvB 변이가 도입된 균주를 각각 KCCM11201P::ilvB(W503Q) 및 KCCM11201P::ilvB(T96S)로 명명하였다. 그리고 상기 변이 도입 벡터 중 pDZ- ilvB(T96S)를 상기 제작한 균주 KCCM11201P::ilvB(W503Q)에 형질전환시켰다. 그 후 염색체 상의 ilvB 변이 2종이 모두 도입된 균주를 각각 KCCM11201P::ilvB(W503Q/T96S)로 명명하였다.The two new mutant introduction vectors prepared in Example 6 were transformed into L-valine-producing strain, Corynebacterium glutamicum KCCM11201P, by two-step homologous chromosome recombination, respectively. Thereafter, the strain into which the ilvB mutation was introduced on the chromosome was selected by sequencing analysis, and the strain into which the ilvB mutation was introduced was designated as KCCM11201P:: ilvB (W503Q) and KCCM11201P:: ilvB (T96S), respectively. And pDZ-ilvB (T96S) of the mutant introduction vectors was transformed into the prepared strain KCCM11201P:: ilvB (W503Q). Thereafter, the strain into which both kinds of ilvB mutations on the chromosome were introduced was named as KCCM11201P:: ilvB (W503Q/T96S), respectively.

실시예 4과 동일한 방법으로 배양하여, 이로부터 L-발린의 농도를 분석하였다 (표 3).Culture was carried out in the same manner as in Example 4, and the concentration of L-valine was analyzed therefrom (Table 3).

KCCM11201P 균주 유래 변이된 아세토하이드록시산 신타아제 도입 균주 L-발린 생산 농도 (g/ℓ)KCCM11201P strain-derived mutant acetohydroxy acid synthase-introduced strain L-valine production concentration (g/ℓ) 균주Strain 배치 1Batch 1 배치 2Batch 2 배치 3Batch 3 평균Average 대조군Control KCCM11201PKCCM11201P 2.92.9 2.82.8 2.82.8 2.82.8 1One KCCM11201P::ilvB(W503Q)KCCM11201P:: ilvB (W503Q) 3.33.3 3.23.2 3.33.3 3.33.3 22 KCCM11201P::ilvB(T96S)KCCM11201P:: ilvB (T96S) 3.23.2 3.03.0 3.13.1 3.13.1 33 KCCM11201P::ilvB(W503Q/T96S)KCCM11201P:: ilvB (W503Q/T96S) 3.33.3 3.43.4 3.43.4 3.43.4

2종의 신규 변이 도입 균주(KCCM11201P::ilvB(W503Q), KCCM11201P::ilvB(T96S))는 모균주 대비 L-발린 생산능이 최대 17.8 % 증가하였으며, 2종 변이가 모두 도입된 균주 (KCCM11201P::ilvB(W503Q/T96S))는 모균주 대비 L-발린 생산능이 21.4 % 증가하였다.The two new mutant introduced strains (KCCM11201P:: ilvB (W503Q), KCCM11201P:: ilvB (T96S)) increased the L-valine production capacity by up to 17.8% compared to the parent strain, and both strains were introduced (KCCM11201P: : ilvB (W503Q/T96S)) increased L-valine production capacity by 21.4% compared to the parent strain.

이에, 본 발명의 아세토하이드록시산 신타아제 큰 소단위체의 변이체는 L-분지쇄 아미노산의 생합성 경로중 첫번째 효소이므로, L-발린뿐만 아니라, L-이소류신 및 L-류신의 생산능 증가에도 영향을 미칠 것으로 예상된다.Accordingly, since the variant of the large subunit of acetohydroxy acid synthase of the present invention is the first enzyme in the biosynthetic pathway of L-branched amino acids, it affects not only L-valine, but also the increase in the production capacity of L-isoleucine and L-leucine. It is expected to go crazy.

본 발명자들은 상기 L-발린이 향상된 균주인 KCCM11201P::ilvB(W503Q) 및 KCCM11201P::ilvB(T96S)를 코리네박테리움 글루타미쿰 KCJ-0793 및 KCJ-0796라 명명하였고, 한국미생물보존센터(KCCM)에 2016년 1월 25일자로 기탁하여 수탁번호 KCCM11809P 및 KCCM11810P를 부여받았다.The present inventors named the strains having improved L-valine, KCCM11201P:: ilvB (W503Q) and KCCM11201P:: ilvB (T96S), as Corynebacterium glutamicum KCJ-0793 and KCJ-0796, and the Korea Microbial Conservation Center ( KCCM) on January 25, 2016, and were given accession numbers KCCM11809P and KCCM11810P.

실시예 8: 변이된 아세토하이드록시산 신타아제를 코딩하는 DNA가 포함된 L-발린 생합성 과발현 벡터의 제작Example 8: Construction of L-valine biosynthetic overexpression vector containing DNA encoding mutated acetohydroxy acid synthase

대조군으로서 L-발린 생산 균주인 코리네박테리움 글루타미쿰 KCCM11201P으로부터 L-발린 생합성 과발현 벡터를 제작하였다. 또한 상기 실시예 7에서 제조한 각각의 KCCM11201P::ilvB(W503Q), KCCM11201P::ilvB(T96S)로부터 변이된 아세토하이드록시산 신타아제를 코딩하는 DNA가 포함된 L-발린 생합성 과발현 벡터를 제작하였다. As a control, an L-valine biosynthetic overexpression vector was constructed from the L-valine producing strain, Corynebacterium glutamicum KCCM11201P. In addition, each of the KCCM11201P:: ilvB (W503Q), KCCM11201P:: ilvB (T96S) prepared in Example 7 containing the DNA encoding the mutated acetohydroxy acid synthase was prepared L-valine biosynthetic overexpression vector. .

상기 벡터의 제작을 위해 5' 말단에 BamH 제한효소 부위를 삽입한 프라이머 13(서열번호 18)과 3' 말단에 Xba 제한효소 부위를 삽입한 프라이머 14(서열번호 19)를 합성하였다. 이 프라이머 쌍을 이용하여, L-발린 생산 균주인 코리네박테리움 글루타미쿰 KCCM11201P 및 상기 실시예 7에서 제조한 KCCM11201P::ilvB(W503Q), KCCM11201P::ilvB(T96S)의 염색체를 각각 주형으로 PCR을 수행하여 2종의 변이형 ilvBN 유전자 단편을 증폭하였다. PCR 조건은 94 ℃에서 5 분간 변성 후, 94 ℃ 30 초 변성, 56 ℃ 30 초 어닐링, 72 ℃ 4 분 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다. For the construction of the vector, primer 13 (SEQ ID NO: 18) with a BamH restriction enzyme site inserted at the 5'end and primer 14 (SEQ ID NO: 19) with an Xba restriction enzyme site inserted at the 3'end were synthesized. Using this primer pair, the chromosomes of L-valine-producing strain Corynebacterium glutamicum KCCM11201P and KCCM11201P prepared in Example 7 above:: ilvB (W503Q), KCCM11201P:: ilvB (T96S) were used as templates, respectively. PCR was performed to amplify two mutant ilvBN gene fragments. PCR conditions were denatured at 94° C. for 5 minutes, then denatured at 94° C. for 30 seconds, annealing at 56° C. for 30 seconds, and polymerization at 72° C. for 4 minutes were repeated 30 times, followed by polymerization at 72° C. for 7 minutes.

프라이머 13(서열번호 18): 5'- CGAGG ATCCA ACCGG TATCG ACAAT CCAAT -3'Primer 13 (SEQ ID NO: 18): 5'- CGAGG ATCCA ACCGG TATCG ACAAT CCAAT -3'

프라이머 14(서열번호 19): 5'- CTGTC TAGAA ATCGT GGGAG TTAAA CTCGC -3'Primer 14 (SEQ ID NO: 19): 5'- CTGTC TAGAA ATCGT GGGAG TTAAA CTCGC -3'

상기 PCR로 증폭된 2종의 유전자 단편을 제한효소 BamH와 Xba로 처리하여 각각의 DNA 절편을 획득한 후, 이를 제한효소 BamH와 Xba 말단을 가지는 과발현 벡터 pECCG117에 연결한 후 대장균 DH5α에 형질전환하고 카나마이신(25 mg/ℓ)이 포함된 LB 고체배지에 도말하였다. The two gene fragments amplified by the PCR were treated with restriction enzymes BamH and Xba to obtain respective DNA fragments, and then ligated to the overexpression vector pECCG117 having restriction enzymes BamH and Xba ends, and transformed into E. coli DH5α. It was spread on LB solid medium containing kanamycin (25 mg/ℓ).

PCR을 통해 목적한 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 이 플라스미드의 ilvB 유전자에 삽입된 변이에 따라 각각 pECCG117-ilvBN, pECCG117-ilvB(W503Q)N, pECCG117-ilvB(T96S)N으로 명명하였다.After selecting the colonies transformed with the vector into which the target gene was inserted through PCR, a plasmid was obtained using a commonly known plasmid extraction method, and pECCG117-ilvBN, pECCG117-ilvB, respectively, depending on the mutations inserted into the ilvB gene of this plasmid. It was named (W503Q)N, pECCG117-ilvB(T96S)N.

실시예 9: 동일 변이 위치에서 다른 아미노산으로 치환된 아세토하이드록시산 신타아제를 코딩하는 DNA가 포함된 L-발린 생합성 과발현 벡터의 제작Example 9: Construction of L-valine biosynthetic overexpression vector containing DNA encoding acetohydroxy acid synthase substituted with another amino acid at the same mutant position

실시예 5에서 확인된 변이된 아세토하이드록시산 신타아제 단백질에 있어서, 변이 위치의 효과를 확인하고자, 96 번째 아미노산이 쓰레오닌 또는 세린 이외의 아미노산으로, 503 번째 아미노산이 트립토판 또는 글루타민 이외의 아미노산으로 치환된 변이를 포함하는 벡터를 제작하였다. In the mutated acetohydroxy acid synthase protein identified in Example 5, in order to confirm the effect of the mutation position, the 96th amino acid is an amino acid other than threonine or serine, and the 503th amino acid is an amino acid other than tryptophan or glutamine. A vector containing the mutation substituted with was constructed.

구체적으로, L-발린 생산 균주인 코리네박테리움 글루타미쿰 KCCM11201P으로부터 아세토하이드록시산 신타아제의 503 번째 아미노산이 아스파라긴 또는 류신으로 치환된 형태의 변이 또는 96 번째 아미노산이 알라닌 또는 시스테인으로 치환된 형태의 변이가 포함된 L-발린 생합성 과발현 벡터를 제작하였다. 상기 치환된 아미노산은 치환할 수 있는 아미노산의 대표적인 예시일 뿐, 이에 제한 되는 것은 아니다.Specifically, from Corynebacterium glutamicum KCCM11201P, an L-valine-producing strain, a variant in which the 503th amino acid of acetohydroxy acid synthase is substituted with asparagine or leucine, or the 96th amino acid is substituted with alanine or cysteine. An L-valine biosynthetic overexpression vector containing the mutation of was constructed. The substituted amino acids are only representative examples of amino acids that can be substituted, but are not limited thereto.

상기 벡터의 제작을 위해 먼저, 코리네박테리움 글루타미쿰 KCCM11201P 균주의 염색체를 주형으로 프라이머 13(서열번호 18) 및 프라이머 15(서열번호 20), 프라이머 16(서열번호 21) 및 프라이머 14(서열번호 19)를 이용해 PCR을 수행하여, 5' 말단에 BamH 제한효소 부위를 가지는 약 2041bp의 DNA 단편과 3' 말단에 Xba 제한효소 부위를 가지는 1055bp의 DNA 단편을 증폭하였다. PCR 조건은 94 ℃에서 5 분간 변성 후, 94 ℃ 30 초 변성, 56 ℃ 30 초 어닐링, 72 ℃ 2 분 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다. For the construction of the vector, first, primer 13 (SEQ ID NO: 18) and primer 15 (SEQ ID NO: 20), primer 16 (SEQ ID NO: 21) and primer 14 (SEQ ID NO: 21) using the chromosome of the Corynebacterium glutamicum KCCM11201P strain as a template PCR was performed using No. 19) to amplify a DNA fragment of about 2041 bp having a BamH restriction enzyme site at the 5'end and a DNA fragment of 1055 bp having an Xba restriction enzyme site at the 3'end. PCR conditions were denatured at 94° C. for 5 minutes, then denatured at 94° C. for 30 seconds, annealing at 56° C. for 30 seconds, and polymerization at 72° C. for 2 minutes were repeated 30 times, followed by polymerization at 72° C. for 7 minutes.

프라이머 15(서열번호 20): 5'- CTTCA TAGAA TAGGG TCTGG TTTTG GCGAA CCATG CCCAG -3'Primer 15 (SEQ ID NO: 20): 5'- CTTCA TAGAA TAGGG TCTGG TTTTG GCGAA CCATG CCCAG -3'

프라이머 16(서열번호 21): 5'- CTGGG CATGG TTCGC CAAAA CCAGA CCCTA TTCTA TGAAG -3'Primer 16 (SEQ ID NO: 21): 5'- CTGGG CATGG TTCGC CAAAA CCAGA CCCTA TTCTA TGAAG -3'

그 후, 증폭된 두 DNA 단편을 주형으로 하여, 프라이머 13(서열번호 18) 및 프라이머 14(서열번호 19)로 PCR을 수행하였다. PCR 조건은 94 ℃에서 5 분간 변성 후, 94 ℃ 30 초 변성, 56 ℃ 30 초 어닐링, 72 ℃ 4 분 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다.Then, using the two amplified DNA fragments as a template, PCR was performed with primers 13 (SEQ ID NO: 18) and primer 14 (SEQ ID NO: 19). PCR conditions were denatured at 94° C. for 5 minutes, then denatured at 94° C. for 30 seconds, annealing at 56° C. for 30 seconds, and polymerization at 72° C. for 4 minutes were repeated 30 times, followed by polymerization at 72° C. for 7 minutes.

그 결과, 아세토하이드록시산 신타아제의 503 번째 아미노산이 아스파라긴으로 치환된 형태의 변이가 포함된 ilvBN 유전자 단편을 수득하였다. As a result, an ilvBN gene fragment containing a mutation in the form in which the 503th amino acid of acetohydroxy acid synthase was substituted with asparagine was obtained.

동일한 방법으로, 코리네박테리움 글루타미쿰 KCCM11201P 균주의 염색체를 주형으로 프라이머 13(서열번호 18) 및 프라이머 17(서열번호 22), 프라이머 18(서열번호 23) 및 프라이머 14(서열번호 19)를 이용해 PCR을 수행하여, 5' 말단에 BamH 제한효소 부위를 가지는 약 2041bp의 DNA 단편과 3' 말단에 Xba 제한효소 부위를 가지는 1055bp의 DNA 단편을 증폭하였다.In the same way, primer 13 (SEQ ID NO: 18) and primer 17 (SEQ ID NO: 22), primer 18 (SEQ ID NO: 23) and primer 14 (SEQ ID NO: 19) were used as templates using the chromosome of the Corynebacterium glutamicum KCCM11201P strain. PCR was performed using a DNA fragment of about 2041 bp having a BamH restriction enzyme site at the 5'end and a 1055 bp DNA fragment having an Xba restriction enzyme site at the 3'end.

프라이머 17(서열번호 22): 5'- CTTCA TAGAA TAGGG TCTGC AGTTG GCGAA CCATG CCCAG -3'Primer 17 (SEQ ID NO: 22): 5'- CTTCA TAGAA TAGGG TCTGC AGTTG GCGAA CCATG CCCAG -3'

프라이머 18(서열번호 23): 5'- CTGGG CATGG TTCGC CAACT GCAGA CCCTA TTCTA TGAAG -3'Primer 18 (SEQ ID NO: 23): 5'- CTGGG CATGG TTCGC CAACT GCAGA CCCTA TTCTA TGAAG -3'

그 후, 증폭된 두 DNA 단편을 주형으로 하여, 프라이머 13(서열번호 18) 및 프라이머 14(서열번호 19)로 PCR을 수행하였다. Then, using the two amplified DNA fragments as a template, PCR was performed with primers 13 (SEQ ID NO: 18) and primer 14 (SEQ ID NO: 19).

그 결과, 아세토하이드록시산 신타아제의 503 번째 아미노산이 류신으로 치환된 형태의 변이가 포함된 ilvBN 유전자 단편을 수득하였다. As a result, an ilvBN gene fragment containing a mutation in which the 503th amino acid of acetohydroxy acid synthase was substituted with leucine was obtained.

동일한 방법으로, 코리네박테리움 글루타미쿰 KCCM11201P 균주의 염색체를 주형으로 프라이머 13(서열번호 18) 및 프라이머 19(서열번호 24), 프라이머 20(서열번호 25) 및 프라이머 14(서열번호 19)를 이용해 PCR을 수행하여, 5' 말단에 BamH 제한효소 부위를 가지는 약 819bp의 DNA 단편과 3' 말단에 Xba 제한효소 부위를 가지는 2276bp의 DNA 단편을 증폭하였다.In the same way, primer 13 (SEQ ID NO: 18) and primer 19 (SEQ ID NO: 24), primer 20 (SEQ ID NO: 25) and primer 14 (SEQ ID NO: 19) were used as templates using the chromosome of the Corynebacterium glutamicum KCCM11201P strain. PCR was performed using a DNA fragment of about 819 bp having a BamH restriction enzyme site at the 5'end and a 2276 bp DNA fragment having an Xba restriction enzyme site at the 3'end.

프라이머 19(서열번호 24): 5'- GGTTG CGCCT GGGCC AGATG CTGCA ATGCA GACGC CAAC -3'Primer 19 (SEQ ID NO: 24): 5'- GGTTG CGCCT GGGCC AGATG CTGCA ATGCA GACGC CAAC -3'

프라이머 20(서열번호 25): 5'- GTTGG CGTCT GCATT GCAGC ATCTG GCCCA GGCGC AACC -3'Primer 20 (SEQ ID NO: 25): 5'- GTTGG CGTCT GCATT GCAGC ATCTG GCCCA GGCGC AACC -3'

그 후, 증폭된 두 DNA 단편을 주형으로 하여, 프라이머 13(서열번호 18) 및 프라이머 14(서열번호 19)로 PCR을 수행하였다. Then, using the two amplified DNA fragments as a template, PCR was performed with primers 13 (SEQ ID NO: 18) and primer 14 (SEQ ID NO: 19).

그 결과, 아세토하이드록시산 신타아제의 96 번째 아미노산이 알라닌으로 치환된 형태의 변이가 포함된 ilvBN 유전자 단편을 수득하였다. As a result, an ilvBN gene fragment containing a mutation in which the 96th amino acid of acetohydroxy acid synthase was substituted with alanine was obtained.

동일한 방법으로, 코리네박테리움 글루타미쿰 KCCM11201P 균주의 염색체를 주형으로 프라이머 13(서열번호 18) 및 프라이머 21(서열번호 26), 프라이머 22(서열번호 27) 및 프라이머 14(서열번호 19)를 이용해 PCR을 수행하여, 5' 말단에 BamH 제한효소 부위를 가지는 약 819bp의 DNA 단편과 3' 말단에 Xba 제한효소 부위를 가지는 2276bp의 DNA 단편을 증폭하였다.In the same way, primer 13 (SEQ ID NO: 18) and primer 21 (SEQ ID NO: 26), primer 22 (SEQ ID NO: 27) and primer 14 (SEQ ID NO: 19) were used as templates using the chromosome of the Corynebacterium glutamicum KCCM11201P strain. PCR was performed using a DNA fragment of about 819 bp having a BamH restriction enzyme site at the 5'end and a 2276 bp DNA fragment having an Xba restriction enzyme site at the 3'end.

프라이머 21(서열번호 26): 5'- GGTTG CGCCT GGGCC AGAGC ATGCA ATGCA GACGC CAAC -3'Primer 21 (SEQ ID NO: 26): 5'- GGTTG CGCCT GGGCC AGAGC ATGCA ATGCA GACGC CAAC -3'

프라이머 22(서열번호 27): 5'- GTTGG CGTCT GCATT GCATG CTCTG GCCCA GGCGC AACC -3'Primer 22 (SEQ ID NO: 27): 5'- GTTGG CGTCT GCATT GCATG CTCTG GCCCA GGCGC AACC -3'

그 후, 증폭된 두 DNA 단편을 주형으로 하여, 프라이머 13(서열번호 18) 및 프라이머 14(서열번호 19)로 PCR을 수행하였다. Then, using the two amplified DNA fragments as a template, PCR was performed with primers 13 (SEQ ID NO: 18) and primer 14 (SEQ ID NO: 19).

그 결과, 아세토하이드록시산 신타아제의 96 번째 아미노산이 시스테인으로 치환된 형태의 변이가 포함된 ilvBN 유전자 단편을 수득하였다. As a result, an ilvBN gene fragment containing a mutation in which the 96th amino acid of acetohydroxy acid synthase was substituted with cysteine was obtained.

실시예 8과 같은 방법으로, PCR로 증폭된 상기 4 종의 변이형 유전자 단편을 제한효소 BamH와 Xba으로 처리하여 각각의 DNA 절편을 획득한 후, 이를 제한효소 BamH와 Xba 말단을 가지는 과발현 벡터 pECCG117에 연결한 후 대장균 DH5α에 형질전환하고 카나마이신(25 mg/ℓ)이 포함된 LB 고체배지에 도말하였다. In the same manner as in Example 8, the four mutant gene fragments amplified by PCR were treated with restriction enzymes BamH and Xba to obtain respective DNA fragments, and then the overexpression vector pECCG117 having restriction enzymes BamH and Xba ends. After linking to E. coli DH5α was transformed and plated on LB solid medium containing kanamycin (25 mg/ℓ).

PCR을 통해 목적한 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 이 플라스미드의 ilvB 유전자에 삽입된 변이에 따라 각각 순서대로 pECCG117-ilvB(W503N)N, pECCG117-ilvB(W503L)N, pECCG117-ilvB(T96A)N, pECCG117-ilvB(T96C)N으로 명명하였다.After selecting the colonies transformed with the vector into which the target gene was inserted through PCR, a plasmid was obtained using a conventionally known plasmid extraction method, and pECCG117-ilvB (W503N) in order according to the mutations inserted into the ilvB gene of this plasmid. )N, pECCG117-ilvB(W503L)N, pECCG117-ilvB(T96A)N, and pECCG117-ilvB(T96C)N.

실시예 10: 야생형 유래 변이된 아세토하이드록시산 신타아제 도입 균주 제작 및 L-발린 생산능 비교Example 10: Preparation of wild-type-derived mutated acetohydroxy acid synthase-introducing strain and comparison of L-valine production ability

상기 실시예 8 및 실시예 9에서 제조한 L-발린 생합성 과발현 벡터 pECCG117-ilvBN, pECCG117-ilvB(W503Q)N, pECCG117-ilvB(T96S)N 및 pECCG117-ilvB(W503N)N, pECCG117-ilvB(W503L)N, pECCG117-ilvB(T96A)N, pECCG117-ilvB(T96C)N를 코리네박테리움 글루타미쿰 야생형 균주 ATCC13032에 전기천공법으로 각각 삽입하였다. 제작된 균주는 각각 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvBN, 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvB(W503Q)N, 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvB(T96S)N, 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvB(W503N)N, 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvB(W503L)N, 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvB(T96A)N 및 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvB(T96C)N으로 명명하였다. 벡터가 형질전환 될 경우 카나마이신 내성을 가지게 되므로 카나마이신이 25 mg/ℓ의 농도로 포함된 배지에서의 생장여부를 통해 형질 전환을 확인하였다. L-valine biosynthetic overexpression vectors pECCG117-ilvBN, pECCG117-ilvB(W503Q)N, pECCG117-ilvB(T96S)N and pECCG117-ilvB(W503N)N, pECCG117-ilvB(W503L) prepared in Examples 8 and 9 )N, pECCG117-ilvB(T96A)N, and pECCG117-ilvB(T96C)N were inserted into Corynebacterium glutamicum wild type strain ATCC13032 by electroporation, respectively. The produced strains are Corynebacterium glutamicum ATCC13032::pECCG117-ilvBN, Corynebacterium glutamicum ATCC13032::pECCG117-ilvB(W503Q)N, Corynebacterium glutamicum ATCC13032::pECCG117-ilvB, respectively. (T96S)N, Corynebacterium glutamicum ATCC13032::pECCG117-ilvB(W503N)N, Corynebacterium glutamicum ATCC13032::pECCG117-ilvB(W503L)N, Corynebacterium glutamicum ATCC13032: Named as :pECCG117-ilvB(T96A)N and Corynebacterium glutamicum ATCC13032::pECCG117-ilvB(T96C)N. When the vector was transformed, it became resistant to kanamycin, so the transformation was confirmed through growth in a medium containing kanamycin at a concentration of 25 mg/L.

제작된 균주를 평가하기 위해 실시에 4에서 사용한 배지와 동일한 방법으로, 생산배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30 ℃에서 72 시간 동안, 200 rpm으로 진탕 배양하였다. HPLC를 이용하여 L-발린의 농도를 분석하였다(표 4).To evaluate the produced strain, in the same manner as the medium used in Example 4, each strain was inoculated into a 250 mL corner-baffle flask containing 25 mL of the production medium, and cultured with shaking at 30° C. for 72 hours and 200 rpm. I did. The concentration of L-valine was analyzed using HPLC (Table 4).

야생형 유래 변이된 아세토하이드록시산 신타아제 도입 균주의 L-발린 생산 농도Wild type origin Mutated L-valine production concentration of acetohydroxy acid synthase-introduced strain 균주Strain L-발린 (g/ℓ)L-valine (g/ℓ) 배치 1Batch 1 배치 2Batch 2 배치 3Batch 3 평균Average 대조군Control ATCC13032::pECCG117-ilvBNATCC13032::pECCG117-ilvBN 0.10.1 0.10.1 00 0.10.1 1One ATCC13032::pECCG117-ilvB(W503Q)NATCC13032::pECCG117-ilvB(W503Q)N 0.80.8 0.80.8 0.70.7 0.80.8 22 ATCC13032::pECCG117-ilvB(T96S)NATCC13032::pECCG117-ilvB(T96S)N 0.40.4 0.50.5 0.50.5 0.50.5 33 ATCC13032::pECCG117-ilvB(W503N)NATCC13032::pECCG117-ilvB(W503N)N 0.70.7 0.60.6 0.50.5 0.60.6 44 ATCC13032::pECCG117-ilvB(W503L)NATCC13032::pECCG117-ilvB(W503L)N 0.70.7 0.70.7 0.50.5 0.50.5 55 ATCC13032::pECCG117-ilvB(T96A)NATCC13032::pECCG117-ilvB(T96A)N 0.20.2 0.30.3 0.20.2 0.20.2 66 ATCC13032::pECCG117-ilvB(T96C)NATCC13032::pECCG117-ilvB(T96C)N 0.40.4 0.30.3 0.50.5 0.40.4

그 결과, 아세토하이드록시산 신타아제의 96 번째 또는 503 번째 아미노산이 다른 아미노산으로 치환된 신규 변이는 대조군 대비 L-발린 생산능이 최대 700 % 증가된 것을 확인하였다. 이로부터 상기 96번째 503번째 위치의 중요성을 확인하였으며, 또한, L-발린 뿐만 아니라 다른 분지쇄 아미노산의 생산능에도 영향을 미칠 것으로 예상된다.As a result, it was confirmed that the new mutation in which the 96th or 503th amino acid of acetohydroxy acid synthase was substituted with another amino acid increased L-valine production capacity by up to 700% compared to the control group. From this, the importance of the 96 th 503 th position was confirmed, and it is expected to affect the production capacity of not only L-valine but also other branched chain amino acids.

실시예 11: 변이된 아세토하이드록시산 신타아제 도입 균주 제작 및 L-류신 생산능 비교Example 11: Preparation of mutated acetohydroxy acid synthase-introducing strain and comparison of L-leucine production ability

본 출원의 아세토하이드록시산 신타아제 큰 소단위체의 변이체가 다른 L-분지쇄 아미노산의 생산능 증가에도 영향을 미치는지 확인하기 위하여, L-분지쇄 아미노산의 또 다른 예로서 L-류신의 생산능을 확인하였다.In order to confirm whether the variant of the large subunit of acetohydroxy acid synthase of the present application has an effect on the increase in the production capacity of other L-branched amino acids, as another example of the L-branched chain amino acid, the production capacity of L-leucine Confirmed.

구체적으로 상기 실시예 6에서 제조한 신규변이 도입 벡터 2종을 각각 2단계 상동염색체 재조합에 의해 L-류신 생산균주인 코리네박테리움 글루타미쿰 KCCM11661P(대한민국 특허 출원번호 제10-2015-0119785호, 대한민국 공개특허 제10-2017-0024653호)에 형질전환시켰다. 그 후 염색체 상의 ilvB 변이가 도입된 균주를 염기서열 분석에 의하여 선별하였으며, 상기 ilvB 변이가 도입된 균주를 각각 KCCM11661P::ilvB(W503Q) 및 KCCM11661P::ilvB(T96S)로 명명하였다. Specifically, Corynebacterium glutamicum KCCM11661P (Korean Patent Application No. 10-2015-0119785), which is an L-leucine-producing strain, was carried out by recombining the two new mutant introduction vectors prepared in Example 6 each by two-step homologous chromosome recombination. , Korean Patent Application Publication No. 10-2017-0024653). Thereafter, the strain into which the ilvB mutation was introduced on the chromosome was selected by sequencing analysis, and the strain into which the ilvB mutation was introduced was named as KCCM11661P:: ilvB (W503Q) and KCCM11661P:: ilvB (T96S), respectively.

상기 코리네박테리움 글루타미쿰 KCCM11661P은 노르류신(Norleucine, NL)에 대한 내성을 갖는 코리네박테리움 글루타미쿰 ATCC 14067 유래 돌연변이주로서 다음과 같은 방법에 의해 수득되었다.The Corynebacterium glutamicum KCCM11661P is a mutant derived from Corynebacterium glutamicum ATCC 14067 having resistance to norleucine (NL), and was obtained by the following method.

구체적으로, 코리네박테리움 글루타미쿰 ATCC 14067을 활성화 배지에서 16시간 동안 배양하여 활성화된 균주를 121 ℃에서 5분간 멸균한 종배지에 접종하여 14시간 동안 배양한 후, 배양액 5 ㎖를 회수하였다. 회수한 배양액을 100 mM 시트르산 완충용액(citric buffer)으로 세척한 후, NTG(N-Methyl-N'-nitro-N-nitrosoguanidine)를 최종농도 200 mg/L가 되게 첨가한 후, 20분 동안 처리하고, 100 mM 인산 완충용액(phosphate buffer)으로 세척하였다. NTG로 처리된 균주를 최소배지에 도말하여 사멸율을 계산해본 결과 사멸율은 85 %였다. L-류신의 유도체에 해당하는 노르류신(Norleucine, NL)에 대한 내성 변이주를 구하기 위해서, NTG가 처리된 균주를 NL의 최종농도가 각각 20 mM, 30mL, 40 mM 및 50 mM이 되게 첨가된 최소배지에 도말하고, 30 ℃에서 5일간 배양하여 NL 내성 변이주를 획득하였다. Specifically, Corynebacterium glutamicum ATCC 14067 was cultured in an activation medium for 16 hours, and the activated strain was inoculated into a seed medium sterilized at 121° C. for 5 minutes and cultured for 14 hours, and then 5 ml of the culture solution was recovered. . After washing the recovered culture medium with 100 mM citric buffer, NTG (N-Methyl-N'-nitro-N-nitrosoguanidine) was added to a final concentration of 200 mg/L, and then treated for 20 minutes. And washed with 100 mM phosphate buffer. The mortality rate was 85% as a result of calculating the mortality rate by spreading the strain treated with NTG on a minimal medium. In order to obtain a mutant strain resistant to norleucine (NL), which is a derivative of L-leucine, the NTG-treated strain was added so that the final concentrations of NL were 20 mM, 30 mL, 40 mM, and 50 mM, respectively. Plated on a medium and cultured at 30° C. for 5 days to obtain NL-resistant mutant strains.

<활성화배지><Activation badge>

육즙 1 %, 폴리펩톤 1 %, 소듐클로라이드 0.5 %, 효모엑기스 1 %, 한천 2 %, pH 7.2Juicy 1%, Polypeptone 1%, Sodium Chloride 0.5%, Yeast Extract 1%, Agar 2%, pH 7.2

<종배지><Seed medium>

포도당 5 %, 박토펩톤 1 %, 소듐클로라이드 0.25 %, 효모엑기스 1 %, 요소 0.4 %, pH 7.2Glucose 5%, Bactopeptone 1%, Sodium Chloride 0.25%, Yeast Extract 1%, Urea 0.4%, pH 7.2

<최소배지><minimum badge>

포도당 1.0 %, 황산암모늄 0.4 %, 황산마그네슘 0.04 %, 인산제1칼륨 0.1 %, 요소 0.1 %, 티아민 0.00 1%, 비오틴 200 ㎍/L, 한천 2 %, pH 7.0Glucose 1.0%, ammonium sulfate 0.4%, magnesium sulfate 0.04%, potassium phosphate 0.1%, urea 0.1%, thiamine 0.00 1%, biotin 200 ㎍/L, agar 2%, pH 7.0

상기의 방법으로 얻어진 변이주는 코리네박테리움 글루타미쿰 KCJ-24(Corynebacterium glutamicum KCJ-24)라 명명하였고, 2015년 1월 22일자로 부다페스트 조약하의 국제 기탁기관인 한국미생물보존센터에 기탁하여 각각 수탁번호 KCCM11661P를 부여받았다.The mutant strain obtained by the above method was named Corynebacterium glutamicum KCJ-24, and as of January 22, 2015, it was deposited with the Korea Microbial Conservation Center, an international depository under the Budapest Treaty, and entrusted with each. It has been assigned the number KCCM11661P.

상기 KCCM11661P::ilvB(W503Q) 및 KCCM11661P::ilvB(T96S)를 실시예 4와 동일한 방법으로 배양하여, 이로부터 L-류신의 농도를 분석하였다 (표 5).The KCCM11661P:: ilvB (W503Q) and KCCM11661P:: ilvB (T96S) were cultured in the same manner as in Example 4, and the concentration of L-leucine was analyzed therefrom (Table 5).

KCCM11661P 균주 유래 변이된 아세토하이드록시산 신타아제 도입 균주의 L-류신 생산 농도 (g/ℓ)Concentration of L-leucine production of strains introduced with mutant acetohydroxy acid synthase derived from KCCM11661P strain (g/ℓ) 균주Strain 배치 1Batch 1 배치 2Batch 2 배치 3Batch 3 평균Average 대조군Control KCCM11661PKCCM11661P 2.72.7 2.62.6 2.92.9 2.72.7 1One KCCM11661P::ilvB(W503Q)KCCM11661P:: ilvB (W503Q) 3.13.1 3.33.3 3.33.3 3.23.2 22 KCCM11661P P::ilvB(T96S)KCCM11661P P:: ilvB (T96S) 3.03.0 3.23.2 3.13.1 3.13.1

2종의 신규 변이 도입 균주(KCCM11661P::ilvB(W503Q), KCCM11661P::ilvB(T96S))는 모균주 대비 L-류신 생산능이 최대 26.9 % 증가하였다.Two new mutant introduced strains (KCCM11661P:: ilvB (W503Q), KCCM11661P:: ilvB (T96S)) increased L-leucine production capacity by up to 26.9% compared to the parent strain.

실시예 12: KCCM11662P 유래 변이된 아세토하이드록시산 신타아제 도입 균주 제작 및 L-류신 생산능 비교Example 12: KCCM11662P-derived mutated acetohydroxy acid synthase-introduced strain construction and L-leucine production ability comparison

상기 실시예 6에서 제조한 신규변이 도입 벡터 2종을 각각 2단계 상동염색체 재조합에 의해 다른 L-류신 생산균주인 코리네박테리움 글루타미쿰 KCCM11662P(대한민국 특허 출원번호 제10-2015-0119785호, 대한민국 공개특허 제10-2017-0024653호)에 형질전환시켰다. 그 후 염색체 상의 ilvB 변이가 도입된 균주를 염기서열 분석에 의하여 선별하였으며, 상기 ilvB 변이가 도입된 균주를 각각 KCCM11662P::ilvB(W503Q) 및 KCCM11662P::ilvB(T96S)로 명명하였다. Corynebacterium glutamicum KCCM11662P (Korean Patent Application No. 10-2015-0119785, which is another L-leucine-producing strain, each of the two new mutant introduction vectors prepared in Example 6 by two-step homologous chromosome recombination, Korean Patent Application Publication No. 10-2017-0024653). Thereafter, the strain into which the ilvB mutation was introduced on the chromosome was selected by sequencing analysis, and the strain into which the ilvB mutation was introduced was designated as KCCM11662P:: ilvB (W503Q) and KCCM11662P:: ilvB (T96S), respectively.

상기 코리네박테리움 글루타미쿰 KCCM11662P은 노르류신(Norleucine, NL)에 대한 내성을 갖는 코리네박테리움 글루타미쿰 ATCC 13869 유래 돌연변이주로서 다음과 같은 방법에 의해 수득되었다.The Corynebacterium glutamicum KCCM11662P was obtained by the following method as a mutant derived from Corynebacterium glutamicum ATCC 13869 having resistance to norleucine (NL).

구체적으로, 코리네박테리움 글루타미쿰 ATCC 13869를 모균주로 하여, 실시예 11의 KCCM11662P를 수득하는 방법과 동일한 방법으로 배양하였으며, 최종적으로 NL 내성 변이주를 획득하였다. Specifically, using Corynebacterium glutamicum ATCC 13869 as a parent strain, it was cultured in the same manner as in the method of obtaining KCCM11662P of Example 11, and finally an NL-resistant mutant strain was obtained.

상기의 방법으로 얻어진 변이주는 코리네박테리움 글루타미쿰 KCJ-28(Corynebacterium glutamicum KCJ-28)라 명명하였고, 2015년 1월 22일자로 부다페스트 조약하의 국제 기탁기관인 한국미생물보존센터에 기탁하여 각각 수탁번호 KCCM11662P를 부여받았다.The mutant strain obtained by the above method was named Corynebacterium glutamicum KCJ-28, and as of January 22, 2015, it was deposited with the Korea Microbial Conservation Center, an international depository under the Budapest Treaty, and entrusted with each. Has been assigned the number KCCM11662P

상기 KCCM11662P::ilvB(W503Q) 및 KCCM11662P::ilvB(T96S)를 실시예 4과 동일한 방법으로 배양하여, 이로부터 L-류신의 농도를 분석하였다 (표 6).The KCCM11662P:: ilvB (W503Q) and KCCM11662P:: ilvB (T96S) were cultured in the same manner as in Example 4, and the concentration of L-leucine was analyzed therefrom (Table 6).

KCCM11662P 균주 유래 변이된 아세토하이드록시산 신타아제 도입 균주의 L-류신 생산 농도 (g/ℓ)L-leucine production concentration of strains introduced with mutated acetohydroxy acid synthase derived from KCCM11662P strain (g/ℓ) 균주Strain 배치 1Batch 1 배치 2Batch 2 배치 3Batch 3 평균Average 대조군Control KCCM11662PKCCM11662P 3.13.1 3.03.0 3.13.1 3.13.1 1One KCCM11662P::ilvB(W503Q)KCCM11662P:: ilvB (W503Q) 3.53.5 3.43.4 3.33.3 3.43.4 22 KCCM11662P P::ilvB(T96S)KCCM11662P P:: ilvB (T96S) 3.33.3 3.33.3 3.23.2 3.33.3

상기 2종의 신규 변이 도입주(KCCM11662P::ilvB(W503Q), KCCM11662P::ilvB(T96S))는 모균주 대비 L-류신 생산능이 최대 13.3 % 증가하였다.The two new mutant introduced strains (KCCM11662P:: ilvB (W503Q), KCCM11662P:: ilvB (T96S)) showed a maximum 13.3% increase in L-leucine production capacity compared to the parent strain.

이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present application pertains will understand that the present application may be implemented in other specific forms without changing the technical spirit or essential features thereof. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not limiting. The scope of the present application should be construed as including all changes or modified forms derived from the meaning and scope of the claims to be described later rather than the above detailed description, and equivalent concepts thereof.

한국미생물보존센터(국외)Korea Microorganism Conservation Center (overseas) KCCM11809PKCCM11809P 2016012520160125 한국미생물보존센터(국외)Korea Microorganism Conservation Center (overseas) KCCM11810PKCCM11810P 2016012520160125

<110> CJ CheilJedang Corporation <120> Acetohydroxy acid synthase variant, microorganism comprising thereof, and method of producing L-branced-chained amino acid using the same <130> KPA151321-KR-D1 <160> 39 <170> KopatentIn 2.0 <210> 1 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> acetohydroxy acid synthase <400> 1 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Thr 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Trp Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 2 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> acetohydroxy acid synthase <400> 2 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcaacctc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaatggc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer 1 <400> 3 aaccggtatc gacaatccaa t 21 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer 2 <400> 4 gggtctctcc ttatgcctc 19 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 3 <400> 5 gcgtctagag acttgcacga ggaaacg 27 <210> 6 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer 4 <400> 6 cagccaagtc cctcagaatt gatgtagcaa ttatcc 36 <210> 7 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer 5 <400> 7 ggataattgc tacatcaatt ctgagggact tggctg 36 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 6 <400> 8 gcgtctagaa ccacagagtc tggagcc 27 <210> 9 <211> 731 <212> DNA <213> Artificial Sequence <220> <223> ilvB 5' fragment <400> 9 gcgtctagag acttgcacga ggaaacgcat ggtgaccatc cacggcatgc cgaccaccgt 60 tggcggtgtg acttccgtgg ctgggtgcac atcgagttca ccgaggattt ccggtgcgat 120 tttctcctgg ccaagtgcgc gacgagtcgc agcttcagag cgcgcgatga catctgtgat 180 gttttcagaa cccaacatgg ggatcggaat aacgacaacc gcacgcgacc agttattaga 240 attgttgatg cacactttcg ccgtggagtt ggggatgatc acggtctctt gtgcaatcgt 300 gcgaattttg gtcgcgcgca tggtgatctc aatgacggtg ccttcgacaa cgatgccgtt 360 gccctcaaaa cgcacccagt cacccacgcc gaattgcttt tccgtcagga tgaaaaatcc 420 ggccaagaag tccgcaacaa tcgactgcgc accaaggcca atggcagctg acgcaatggt 480 tgccggaatc gcagcgcccg cgagagagaa accaaaagcc tgcatcgcgg agacggcaag 540 catgaaaaac gccacaattt gcgcgatata aacgccaacg ccagcgaacg cgagctggtt 600 cttagtggtg tccgcatcgg ctgcagactc cactcgccgc ttgataatac gcatggccag 660 tcggccgata cgtggaatca aaaacgccaa gaccaggata attgctacat caattctgag 720 ggacttggct g 731 <210> 10 <211> 712 <212> DNA <213> Artificial Sequence <220> <223> ilvB 3' fragment <400> 10 ggataattgc tacatcaatt ctgagggact tggctgtgtt gccatccgcg tcaccaaagc 60 ggaggaagta ctgccagcca tccaaaaggc tcgagagatc aacgaccgcc cagtagtcat 120 cgacttcatc gtcggtgaag acgcacaggt atggccaatg gtgtctgctg gatcatccaa 180 ctccgatatc cagtacgcac tcggattgcg cccattcttt gatggtgatg aatctgcagc 240 agaagatcct gccgacattc acgaagccgt cagcgacatt gatgccgccg ttgaatcgac 300 cgaggcataa ggagagaccc aagatggcta attctgacgt cacccgccac atcctgtccg 360 tactcgttca ggacgtagac ggaatcattt cccgcgtatc aggtatgttc acccgacgcg 420 cattcaacct cgtgtccctc gtgtctgtaa agaccgaaac actcggcatc aaccgcatca 480 cggttgttgt cgacgccgac gagctcaaca ttgagcagat caccaagcag ctcaacaagc 540 tgatccccgt gctcaaagtc gtgcgacttg atgaagagac caccatcgcc cgcgcaatca 600 tgctggttaa ggtctctgcg gatagcacca accgtccgca gatcgtcgac gccgcgaaca 660 tcttccgcgc ccgagtcgtc gacgtggctc cagactctgt ggttctagac gc 712 <210> 11 <211> 1407 <212> DNA <213> Artificial Sequence <220> <223> ilvB 5' + 3' fragment <400> 11 gcgtctagag acttgcacga ggaaacgcat ggtgaccatc cacggcatgc cgaccaccgt 60 tggcggtgtg acttccgtgg ctgggtgcac atcgagttca ccgaggattt ccggtgcgat 120 tttctcctgg ccaagtgcgc gacgagtcgc agcttcagag cgcgcgatga catctgtgat 180 gttttcagaa cccaacatgg ggatcggaat aacgacaacc gcacgcgacc agttattaga 240 attgttgatg cacactttcg ccgtggagtt ggggatgatc acggtctctt gtgcaatcgt 300 gcgaattttg gtcgcgcgca tggtgatctc aatgacggtg ccttcgacaa cgatgccgtt 360 gccctcaaaa cgcacccagt cacccacgcc gaattgcttt tccgtcagga tgaaaaatcc 420 ggccaagaag tccgcaacaa tcgactgcgc accaaggcca atggcagctg acgcaatggt 480 tgccggaatc gcagcgcccg cgagagagaa accaaaagcc tgcatcgcgg agacggcaag 540 catgaaaaac gccacaattt gcgcgatata aacgccaacg ccagcgaacg cgagctggtt 600 cttagtggtg tccgcatcgg ctgcagactc cactcgccgc ttgataatac gcatggccag 660 tcggccgata cgtggaatca aaaacgccaa gaccaggata attgctacat caattctgag 720 ggacttggct gtgttgccat ccgcgtcacc aaagcggagg aagtactgcc agccatccaa 780 aaggctcgag agatcaacga ccgcccagta gtcatcgact tcatcgtcgg tgaagacgca 840 caggtatggc caatggtgtc tgctggatca tccaactccg atatccagta cgcactcgga 900 ttgcgcccat tctttgatgg tgatgaatct gcagcagaag atcctgccga cattcacgaa 960 gccgtcagcg acattgatgc cgccgttgaa tcgaccgagg cataaggaga gacccaagat 1020 ggctaattct gacgtcaccc gccacatcct gtccgtactc gttcaggacg tagacggaat 1080 catttcccgc gtatcaggta tgttcacccg acgcgcattc aacctcgtgt ccctcgtgtc 1140 tgtaaagacc gaaacactcg gcatcaaccg catcacggtt gttgtcgacg ccgacgagct 1200 caacattgag cagatcacca agcagctcaa caagctgatc cccgtgctca aagtcgtgcg 1260 acttgatgaa gagaccacca tcgcccgcgc aatcatgctg gttaaggtct ctgcggatag 1320 caccaaccgt ccgcagatcg tcgacgccgc gaacatcttc cgcgcccgag tcgtcgacgt 1380 ggctccagac tctgtggttc tagacgc 1407 <210> 12 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer 7 <400> 12 cgcttgataa tacgcatg 18 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer 8 <400> 13 gaacatacct gatacgcg 18 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 9 <400> 14 cgctctagac aagcaggttg aggttcc 27 <210> 15 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 10 <400> 15 cgctctagac acgaggttga atgcgcg 27 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 11 <400> 16 cgctctagac cctcgacaac actcacc 27 <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 12 <400> 17 cgctctagat gccatcaagg tggtgac 27 <210> 18 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 13 <400> 18 cgaggatcca accggtatcg acaatccaat 30 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 14 <400> 19 ctgtctagaa atcgtgggag ttaaactcgc 30 <210> 20 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer 15 <400> 20 cttcatagaa tagggtctgg ttttggcgaa ccatgcccag 40 <210> 21 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer 16 <400> 21 ctgggcatgg ttcgccaaaa ccagacccta ttctatgaag 40 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer 17 <400> 22 cttcatagaa tagggtctgc agttggcgaa ccatgcccag 40 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer 18 <400> 23 ctgggcatgg ttcgccaact gcagacccta ttctatgaag 40 <210> 24 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer 19 <400> 24 ggttgcgcct gggccagatg ctgcaatgca gacgccaac 39 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer 20 <400> 25 gttggcgtct gcattgcagc atctggccca ggcgcaacc 39 <210> 26 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer 21 <400> 26 ggttgcgcct gggccagagc atgcaatgca gacgccaac 39 <210> 27 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer 22 <400> 27 gttggcgtct gcattgcatg ctctggccca ggcgcaacc 39 <210> 28 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> T96S <400> 28 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Ser 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Trp Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 29 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> T96A <400> 29 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Ala 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Trp Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 30 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> T96C <400> 30 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Cys 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Trp Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 31 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> W503Q <400> 31 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Thr 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Gln Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 32 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> W503N <400> 32 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Thr 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Asn Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 33 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> W503L <400> 33 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Thr 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Leu Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 34 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> T96S <400> 34 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcatcctc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaatggc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <210> 35 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> T96A <400> 35 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcagcatc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaatggc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <210> 36 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> T96C <400> 36 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcatgctc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaatggc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <210> 37 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> W503Q <400> 37 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcaacctc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaacagc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <210> 38 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> W503N <400> 38 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcaacctc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaaaacc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <210> 39 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> W503L <400> 39 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcaacctc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaactgc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <110> CJ CheilJedang Corporation <120> Acetohydroxy acid synthase variant, microorganism comprising thereof, and method of producing L-branced-chained amino acid using the same <130> KPA151321-KR-D1 <160> 39 <170> KopatentIn 2.0 <210> 1 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> acetohydroxy acid synthase <400> 1 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Thr 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Trp Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 2 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> acetohydroxy acid synthase <400> 2 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcaacctc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaatggc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer 1 <400> 3 aaccggtatc gacaatccaa t 21 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer 2 <400> 4 gggtctctcc ttatgcctc 19 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 3 <400> 5 gcgtctagag acttgcacga ggaaacg 27 <210> 6 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer 4 <400> 6 cagccaagtc cctcagaatt gatgtagcaa ttatcc 36 <210> 7 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer 5 <400> 7 ggataattgc tacatcaatt ctgagggact tggctg 36 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 6 <400> 8 gcgtctagaa ccacagagtc tggagcc 27 <210> 9 <211> 731 <212> DNA <213> Artificial Sequence <220> <223> ilvB 5'fragment <400> 9 gcgtctagag acttgcacga ggaaacgcat ggtgaccatc cacggcatgc cgaccaccgt 60 tggcggtgtg acttccgtgg ctgggtgcac atcgagttca ccgaggattt ccggtgcgat 120 tttctcctgg ccaagtgcgc gacgagtcgc agcttcagag cgcgcgatga catctgtgat 180 gttttcagaa cccaacatgg ggatcggaat aacgacaacc gcacgcgacc agttattaga 240 attgttgatg cacactttcg ccgtggagtt ggggatgatc acggtctctt gtgcaatcgt 300 gcgaattttg gtcgcgcgca tggtgatctc aatgacggtg ccttcgacaa cgatgccgtt 360 gccctcaaaa cgcacccagt cacccacgcc gaattgcttt tccgtcagga tgaaaaatcc 420 ggccaagaag tccgcaacaa tcgactgcgc accaaggcca atggcagctg acgcaatggt 480 tgccggaatc gcagcgcccg cgagagagaa accaaaagcc tgcatcgcgg agacggcaag 540 catgaaaaac gccacaattt gcgcgatata aacgccaacg ccagcgaacg cgagctggtt 600 cttagtggtg tccgcatcgg ctgcagactc cactcgccgc ttgataatac gcatggccag 660 tcggccgata cgtggaatca aaaacgccaa gaccaggata attgctacat caattctgag 720 ggacttggct g 731 <210> 10 <211> 712 <212> DNA <213> Artificial Sequence <220> <223> ilvB 3'fragment <400> 10 ggataattgc tacatcaatt ctgagggact tggctgtgtt gccatccgcg tcaccaaagc 60 ggaggaagta ctgccagcca tccaaaaggc tcgagagatc aacgaccgcc cagtagtcat 120 cgacttcatc gtcggtgaag acgcacaggt atggccaatg gtgtctgctg gatcatccaa 180 ctccgatatc cagtacgcac tcggattgcg cccattcttt gatggtgatg aatctgcagc 240 agaagatcct gccgacattc acgaagccgt cagcgacatt gatgccgccg ttgaatcgac 300 cgaggcataa ggagagaccc aagatggcta attctgacgt cacccgccac atcctgtccg 360 tactcgttca ggacgtagac ggaatcattt cccgcgtatc aggtatgttc acccgacgcg 420 cattcaacct cgtgtccctc gtgtctgtaa agaccgaaac actcggcatc aaccgcatca 480 cggttgttgt cgacgccgac gagctcaaca ttgagcagat caccaagcag ctcaacaagc 540 tgatccccgt gctcaaagtc gtgcgacttg atgaagagac caccatcgcc cgcgcaatca 600 tgctggttaa ggtctctgcg gatagcacca accgtccgca gatcgtcgac gccgcgaaca 660 tcttccgcgc ccgagtcgtc gacgtggctc cagactctgt ggttctagac gc 712 <210> 11 <211> 1407 <212> DNA <213> Artificial Sequence <220> <223> ilvB 5'+ 3'fragment <400> 11 gcgtctagag acttgcacga ggaaacgcat ggtgaccatc cacggcatgc cgaccaccgt 60 tggcggtgtg acttccgtgg ctgggtgcac atcgagttca ccgaggattt ccggtgcgat 120 tttctcctgg ccaagtgcgc gacgagtcgc agcttcagag cgcgcgatga catctgtgat 180 gttttcagaa cccaacatgg ggatcggaat aacgacaacc gcacgcgacc agttattaga 240 attgttgatg cacactttcg ccgtggagtt ggggatgatc acggtctctt gtgcaatcgt 300 gcgaattttg gtcgcgcgca tggtgatctc aatgacggtg ccttcgacaa cgatgccgtt 360 gccctcaaaa cgcacccagt cacccacgcc gaattgcttt tccgtcagga tgaaaaatcc 420 ggccaagaag tccgcaacaa tcgactgcgc accaaggcca atggcagctg acgcaatggt 480 tgccggaatc gcagcgcccg cgagagagaa accaaaagcc tgcatcgcgg agacggcaag 540 catgaaaaac gccacaattt gcgcgatata aacgccaacg ccagcgaacg cgagctggtt 600 cttagtggtg tccgcatcgg ctgcagactc cactcgccgc ttgataatac gcatggccag 660 tcggccgata cgtggaatca aaaacgccaa gaccaggata attgctacat caattctgag 720 ggacttggct gtgttgccat ccgcgtcacc aaagcggagg aagtactgcc agccatccaa 780 aaggctcgag agatcaacga ccgcccagta gtcatcgact tcatcgtcgg tgaagacgca 840 caggtatggc caatggtgtc tgctggatca tccaactccg atatccagta cgcactcgga 900 ttgcgcccat tctttgatgg tgatgaatct gcagcagaag atcctgccga cattcacgaa 960 gccgtcagcg acattgatgc cgccgttgaa tcgaccgagg cataaggaga gacccaagat 1020 ggctaattct gacgtcaccc gccacatcct gtccgtactc gttcaggacg tagacggaat 1080 catttcccgc gtatcaggta tgttcacccg acgcgcattc aacctcgtgt ccctcgtgtc 1140 tgtaaagacc gaaacactcg gcatcaaccg catcacggtt gttgtcgacg ccgacgagct 1200 caacattgag cagatcacca agcagctcaa caagctgatc cccgtgctca aagtcgtgcg 1260 acttgatgaa gagaccacca tcgcccgcgc aatcatgctg gttaaggtct ctgcggatag 1320 caccaaccgt ccgcagatcg tcgacgccgc gaacatcttc cgcgcccgag tcgtcgacgt 1380 ggctccagac tctgtggttc tagacgc 1407 <210> 12 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer 7 <400> 12 cgcttgataa tacgcatg 18 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer 8 <400> 13 gaacatacct gatacgcg 18 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 9 <400> 14 cgctctagac aagcaggttg aggttcc 27 <210> 15 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 10 <400> 15 cgctctagac acgaggttga atgcgcg 27 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 11 <400> 16 cgctctagac cctcgacaac actcacc 27 <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer 12 <400> 17 cgctctagat gccatcaagg tggtgac 27 <210> 18 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 13 <400> 18 cgaggatcca accggtatcg acaatccaat 30 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer 14 <400> 19 ctgtctagaa atcgtgggag ttaaactcgc 30 <210> 20 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer 15 <400> 20 cttcatagaa tagggtctgg ttttggcgaa ccatgcccag 40 <210> 21 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer 16 <400> 21 ctgggcatgg ttcgccaaaa ccagacccta ttctatgaag 40 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer 17 <400> 22 cttcatagaa tagggtctgc agttggcgaa ccatgcccag 40 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer 18 <400> 23 ctgggcatgg ttcgccaact gcagacccta ttctatgaag 40 <210> 24 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer 19 <400> 24 ggttgcgcct gggccagatg ctgcaatgca gacgccaac 39 <210> 25 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer 20 <400> 25 gttggcgtct gcattgcagc atctggccca ggcgcaacc 39 <210> 26 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer 21 <400> 26 ggttgcgcct gggccagagc atgcaatgca gacgccaac 39 <210> 27 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer 22 <400> 27 gttggcgtct gcattgcatg ctctggccca ggcgcaacc 39 <210> 28 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> T96S <400> 28 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Ser 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Trp Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 29 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> T96A <400> 29 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Ala 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Trp Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 30 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> T96C <400> 30 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Cys 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Trp Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 31 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> W503Q <400> 31 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Thr 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Gln Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 32 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> W503N <400> 32 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Thr 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Asn Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 33 <211> 626 <212> PRT <213> Artificial Sequence <220> <223> W503L <400> 33 Met Asn Val Ala Ala Ser Gln Gln Pro Thr Pro Ala Thr Val Ala Ser 1 5 10 15 Arg Gly Arg Ser Ala Ala Pro Glu Arg Met Thr Gly Ala Gln Ala Ile 20 25 30 Val Arg Ser Leu Glu Glu Leu Asn Ala Asp Ile Val Phe Gly Ile Pro 35 40 45 Gly Gly Ala Val Leu Pro Val Tyr Asp Pro Leu Tyr Ser Ser Thr Lys 50 55 60 Val Arg His Val Leu Val Arg His Glu Gln Gly Ala Gly His Ala Ala 65 70 75 80 Thr Gly Tyr Ala Gln Val Thr Gly Arg Val Gly Val Cys Ile Ala Thr 85 90 95 Ser Gly Pro Gly Ala Thr Asn Leu Val Thr Pro Ile Ala Asp Ala Asn 100 105 110 Leu Asp Ser Val Pro Met Val Ala Ile Thr Gly Gln Val Gly Ser Gly 115 120 125 Leu Leu Gly Thr Asp Ala Phe Gln Glu Ala Asp Ile Arg Gly Ile Thr 130 135 140 Met Pro Val Thr Lys His Asn Phe Met Val Thr Asp Pro Asn Asp Ile 145 150 155 160 Pro Gln Ala Leu Ala Glu Ala Phe His Leu Ala Ile Thr Gly Arg Pro 165 170 175 Gly Pro Val Leu Val Asp Ile Pro Lys Asp Val Gln Asn Ala Glu Leu 180 185 190 Asp Phe Val Trp Pro Pro Lys Ile Asp Leu Pro Gly Tyr Arg Pro Val 195 200 205 Ser Thr Pro His Ala Arg Gln Ile Glu Gln Ala Val Lys Leu Ile Gly 210 215 220 Glu Ala Lys Lys Pro Val Leu Tyr Ile Gly Gly Gly Val Ile Lys Ala 225 230 235 240 Asp Ala His Glu Glu Leu Arg Ala Phe Ala Glu Tyr Thr Gly Ile Pro 245 250 255 Val Val Thr Thr Leu Met Ala Leu Gly Thr Phe Pro Glu Ser His Glu 260 265 270 Leu His Met Gly Met Pro Gly Met His Gly Thr Val Ser Ala Val Gly 275 280 285 Ala Leu Gln Arg Ser Asp Leu Leu Ile Ala Ile Gly Ser Arg Phe Asp 290 295 300 Asp Arg Val Thr Gly Asp Val Asp Thr Phe Ala Pro Asp Ala Lys Ile 305 310 315 320 Ile His Ala Asp Ile Asp Pro Ala Glu Ile Gly Lys Ile Lys Gln Val 325 330 335 Glu Val Pro Ile Val Gly Asp Ala Arg Glu Val Leu Ala Arg Leu Leu 340 345 350 Glu Thr Thr Lys Ala Ser Lys Ala Glu Thr Glu Asp Ile Ser Glu Trp 355 360 365 Val Asp Tyr Leu Lys Gly Leu Lys Ala Arg Phe Pro Arg Gly Tyr Asp 370 375 380 Glu Gln Pro Gly Asp Leu Leu Ala Pro Gln Phe Val Ile Glu Thr Leu 385 390 395 400 Ser Lys Glu Val Gly Pro Asp Ala Ile Tyr Cys Ala Gly Val Gly Gln 405 410 415 His Gln Met Trp Ala Ala Gln Phe Val Asp Phe Glu Lys Pro Arg Thr 420 425 430 Trp Leu Asn Ser Gly Gly Leu Gly Thr Met Gly Tyr Ala Val Pro Ala 435 440 445 Ala Leu Gly Ala Lys Ala Gly Ala Pro Asp Lys Glu Val Trp Ala Ile 450 455 460 Asp Gly Asp Gly Cys Phe Gln Met Thr Asn Gln Glu Leu Thr Thr Ala 465 470 475 480 Ala Val Glu Gly Phe Pro Ile Lys Ile Ala Leu Ile Asn Asn Gly Asn 485 490 495 Leu Gly Met Val Arg Gln Leu Gln Thr Leu Phe Tyr Glu Gly Arg Tyr 500 505 510 Ser Asn Thr Lys Leu Arg Asn Gln Gly Glu Tyr Met Pro Asp Phe Val 515 520 525 Thr Leu Ser Glu Gly Leu Gly Cys Val Ala Ile Arg Val Thr Lys Ala 530 535 540 Glu Glu Val Leu Pro Ala Ile Gln Lys Ala Arg Glu Ile Asn Asp Arg 545 550 555 560 Pro Val Val Ile Asp Phe Ile Val Gly Glu Asp Ala Gln Val Trp Pro 565 570 575 Met Val Ser Ala Gly Ser Ser Asn Ser Asp Ile Gln Tyr Ala Leu Gly 580 585 590 Leu Arg Pro Phe Phe Asp Gly Asp Glu Ser Ala Ala Glu Asp Pro Ala 595 600 605 Asp Ile His Glu Ala Val Ser Asp Ile Asp Ala Ala Val Glu Ser Thr 610 615 620 Glu Ala 625 <210> 34 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> T96S <400> 34 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcatcctc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaatggc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <210> 35 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> T96A <400> 35 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcagcatc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaatggc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <210> 36 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> T96C <400> 36 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcatgctc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaatggc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <210> 37 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> W503Q <400> 37 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcaacctc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaacagc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <210> 38 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> W503N <400> 38 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcaacctc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaaaacc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881 <210> 39 <211> 1881 <212> DNA <213> Artificial Sequence <220> <223> W503L <400> 39 gtgaatgtgg cagcttctca acagcccact cccgccacgg ttgcaagccg tggtcgatcc 60 gccgcccctg agcggatgac aggtgcacag gcaattgttc gatcgctcga ggagcttaac 120 gccgacatcg tgttcggtat tcctggtggt gcggtgctac cggtgtatga cccgctctat 180 tcctccacaa aggtgcgcca cgtcctggtg cgccacgagc agggcgcagg ccacgcagca 240 accggctacg cgcaggttac tggacgcgtt ggcgtctgca ttgcaacctc tggcccaggc 300 gcaaccaact tggttacccc aatcgctgat gcaaacttgg actccgttcc catggttgcc 360 atcaccggcc aggtcggaag tggcctgctg ggtaccgatg ctttccagga agccgatatc 420 cgcggcatca ccatgccagt gaccaagcac aacttcatgg tcaccgaccc caacgacatt 480 ccacaggcat tggctgaggc attccacctc gcgattactg gtcgccctgg ccctgttctg 540 gtggatattc ctaaggatgt ccaaaacgct gaattggatt tcgtctggcc accaaagatc 600 gacctgccag gctaccgccc agtttctact ccgcatgctc gacagattga gcaggctgtc 660 aaactgatcg gtgaagccaa aaagccagtc ctttacattg gcggcggcgt tatcaaggct 720 gatgcacacg aagaactgcg tgcatttgct gagtacaccg gcatcccagt tgtcaccacc 780 ttgatggcat tgggtacctt cccagagtcc cacgagctgc acatgggtat gccaggcatg 840 cacggcaccg tgtccgctgt tggcgcactg cagcgcagtg acctgctgat tgctatcggt 900 tcccgcttcg acgaccgcgt caccggtgac gttgacacct tcgcacctga tgccaagatc 960 attcacgctg acattgatcc tgccgaaatc ggcaagatca agcaggttga ggttccaatc 1020 gtgggcgatg cccgcgaggt tcttgctcgt ctgctggaaa ccaccaaggc aagcaaggca 1080 gagaccgagg acatctccga gtgggttgat tacctcaagg gcctcaaggc acgtttccca 1140 cgtggctacg acgagcagcc aggcgatctg ctggcaccac agtttgtcat tgaaaccctg 1200 tccaaggaag ttggccccga cgcaatttac tgcgccggcg ttggccagca ccagatgtgg 1260 gcagctcagt tcgttgactt tgaaaagcca cgcacctggc tcaactctgg cggcctgggc 1320 accatgggct acgcagttcc tgcggctctt ggagcaaagg ctggcgcacc tgacaaggaa 1380 gtctgggcta tcgacggcga cggctgtttc cagatgacca accaggaact caccaccgcc 1440 gcagttgaag gtttccccat taagatcgca ctaatcaaca acggaaacct gggcatggtt 1500 cgccaactgc agaccctatt ctatgaagga cggtactcaa atactaaact tcgtaaccag 1560 ggcgagtaca tgcccgactt tgttaccctt tctgagggac ttggctgtgt tgccatccgc 1620 gtcaccaaag cggaggaagt actgccagcc atccaaaagg ctcgagagat caacgaccgc 1680 ccagtagtca tcgacttcat cgtcggtgaa gacgcacagg tatggccaat ggtgtctgct 1740 ggatcatcca actccgatat ccagtacgca ctcggattgc gcccattctt tgatggtgat 1800 gaatctgcag cagaagatcc tgccgacatt cacgaagccg tcagcgacat tgatgccgcc 1860 gttgaatcga ccgaggcata a 1881

Claims (12)

서열번호 1의 아세토하이드록시산 신타아제의 큰 소단위체(acetolactate synthase large subunit; IlvB 단백질)의 아미노산 서열에서 N-말단으로부터 503 번째 트립토판이 트립토판 이외의 다른 아미노산으로 치환된, 아세토하이드록시산 신타아제 변이체.
The amino acid sequence of the acetolactate synthase large subunit (IlvB protein) of the acetohydroxy acid synthase of SEQ ID NO: 1 was substituted with an amino acid other than tryptophan, and the acetohydroxy acid synthase Mutant.
제1항에 있어서, 상기 다른 아미노산은 글루타민(glutamine), 아스파라긴(asparagine), 또는 류신(leucine)인, 아세토하이드록시산 신타아제 변이체.
The acetohydroxy acid synthase variant according to claim 1, wherein the other amino acid is glutamine, asparagine, or leucine.
제1항에 있어서, 상기 아세토하이드록시산 신타아제 변이체는 서열번호 31 내지 서열번호 33 중 어느 하나의 아미노산 서열로 구성되는, 아세토하이드록시산 신타아제 변이체.
The acetohydroxy acid synthetase variant of claim 1, wherein the acetohydroxy acid synthetase variant is composed of the amino acid sequence of any one of SEQ ID NO: 31 to SEQ ID NO: 33.
제1항 내지 제3항 중 어느 한 항의 아세토하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오티드.
A polynucleotide encoding an acetohydroxy acid synthetase variant of any one of claims 1 to 3.
제1항 내지 제3항 중 어느 한 항의 아세토하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오타이드를 포함하는 벡터.
A vector comprising a polynucleotide encoding an acetohydroxy acid synthase variant of any of claims 1 to 3.
제5항의 벡터가 도입된 형질전환체.
A transformant into which the vector of claim 5 has been introduced.
제1항 내지 제3항 중 한 항의 아세토하이드록시산 신타아제 변이체; 상기 변이체를 코딩하는 폴리뉴클레오티드; 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 선택된 어느 하나 이상을 포함하여, L-분지쇄 아미노산을 생산하는 미생물.
An acetohydroxy acid synthetase variant of any one of claims 1 to 3; A polynucleotide encoding said variant; And a vector comprising the polynucleotide, wherein the microorganism produces an L-branched chain amino acid.
제7항에 있어서, 상기 미생물은 코리네박테리움 속(Corynebacterium sp.)인, L-분지쇄 아미노산을 생산하는 미생물.
The microorganism according to claim 7, wherein the microorganism is Corynebacterium sp., A microorganism producing L-branched chain amino acid.
제8항에 있어서, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인, L-분지쇄 아미노산을 생산하는 미생물.
9. The microorganism according to claim 8, wherein the microorganism belonging to the genus Corynebacterium is Corynebacterium glutamicum, which produces an L-branched chain amino acid.
제7항에 있어서, 상기 L-분지쇄 아미노산은 L-발린, 또는 L-류신인, L-분지쇄 아미노산을 생산하는 미생물.
8. The microorganism according to claim 7, wherein the L-branched chain amino acid is L-valine or L-leucine.
(a) 제7항의 L- 분지쇄 아미노산을 생산하는 미생물을 배지에서 배양하는 단계; 및
(b) 상기 (a) 단계의 미생물 또는 배지로부터 L-분지쇄 아미노산을 회수하는 단계를 포함하는, L-분지쇄 아미노산 생산 방법.
(a) culturing a microorganism producing the L-branched chain amino acid of claim 7 in a medium; And
(b) recovering the L-branched chain amino acid from the microorganism or medium of step (a).
제12항에 있어서, 상기 L-분지쇄 아미노산은 L-발린, 또는 L-류신인, L-분지쇄 아미노산 생산 방법.13. The method of claim 12, wherein the L-branched chain amino acid is L-valine, or L-leucine.
KR1020190037330A 2019-03-29 2019-03-29 Acetohydroxy acid synthase variant, microorganism comprising thereof, and method of producing L-branced-chained amino acid using the same KR102063909B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190037330A KR102063909B1 (en) 2019-03-29 2019-03-29 Acetohydroxy acid synthase variant, microorganism comprising thereof, and method of producing L-branced-chained amino acid using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190037330A KR102063909B1 (en) 2019-03-29 2019-03-29 Acetohydroxy acid synthase variant, microorganism comprising thereof, and method of producing L-branced-chained amino acid using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170087978A Division KR101996129B1 (en) 2017-07-11 2017-07-11 Acetohydroxy acid synthase variant, microorganism comprising thereof, and method of producing L-branced-chained amino acid using the same

Publications (2)

Publication Number Publication Date
KR20190037224A true KR20190037224A (en) 2019-04-05
KR102063909B1 KR102063909B1 (en) 2020-01-08

Family

ID=66104058

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190037330A KR102063909B1 (en) 2019-03-29 2019-03-29 Acetohydroxy acid synthase variant, microorganism comprising thereof, and method of producing L-branced-chained amino acid using the same

Country Status (1)

Country Link
KR (1) KR102063909B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220046329A (en) * 2020-10-07 2022-04-14 전남대학교산학협력단 Bacillus amyloliquefaciens NY-PSH 124-1 strain and method for producing branched chain amino acid using the same
EP4023751A4 (en) * 2019-11-22 2022-11-09 CJ Cheiljedang Corporation Novel acetohydroxyacid synthase variant and microgranisms comprising same
JP2022547466A (en) * 2019-09-02 2022-11-14 シージェイ チェイルジェダング コーポレイション Novel promoter and target substance production method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102619598B1 (en) * 2021-08-23 2023-12-29 씨제이제일제당 주식회사 Novel acetohydroxy acid synthase small subunit variant and a method for producing L-valine acid using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720836B1 (en) * 2014-08-05 2017-04-03 씨제이제일제당 (주) Feedback-resistant acetohydroxy acid synthase variants and a method of producing L-valine using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720836B1 (en) * 2014-08-05 2017-04-03 씨제이제일제당 (주) Feedback-resistant acetohydroxy acid synthase variants and a method of producing L-valine using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chipman, D. 등, Biochimica et Biophysica Acta, Vol.1385, pp.401-419 (1998)* *
Ibdah, M. 등, Biochemistry, Vol.35, pp.16282-16291 (1996)* *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022547466A (en) * 2019-09-02 2022-11-14 シージェイ チェイルジェダング コーポレイション Novel promoter and target substance production method using the same
EP4023756A4 (en) * 2019-09-02 2023-01-11 CJ Cheiljedang Corporation Novel promoter and method for producing desired substance using same
EP4023751A4 (en) * 2019-11-22 2022-11-09 CJ Cheiljedang Corporation Novel acetohydroxyacid synthase variant and microgranisms comprising same
JP2023503218A (en) * 2019-11-22 2023-01-27 シージェイ チェイルジェダン コーポレーション Acetohydroxyacid synthase novel mutant and microorganism containing the same
KR20220046329A (en) * 2020-10-07 2022-04-14 전남대학교산학협력단 Bacillus amyloliquefaciens NY-PSH 124-1 strain and method for producing branched chain amino acid using the same

Also Published As

Publication number Publication date
KR102063909B1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
KR102063909B1 (en) Acetohydroxy acid synthase variant, microorganism comprising thereof, and method of producing L-branced-chained amino acid using the same
KR101592140B1 (en) Corynebacterium sp. having xylose availability and process for preparing L-lysine employing the same
AU2019212400B8 (en) Microorganism Of Genus Corynebacterium For Producing L-Amino Acid And Method For Producing L-Amino Acid By Using Same
KR102028554B1 (en) A novel promoter and preparation method of L-amino acid using thereof
KR102035844B1 (en) Recombinant coryneform microorganism to produce L-tryptophan and method for producing L-tryptophan using the same
KR102204917B1 (en) Microorganisms with enhanced ability to produce L-histidine and methods for producing L-histidine using the same
US11345901B2 (en) Acetohydroxy acid synthase variant and a microorganism comprising the same
KR102126951B1 (en) A modified polypeptide of dihydrodipicolinate reductase and a method for L- threonine using the same
CN114072492A (en) Microorganism producing L-tyrosine and method for producing L-tyrosine using the same
AU2018353929B2 (en) Microorganism of genus Corynebacterium producing L-arginine and method for producing L-arginine using the same
US11248220B2 (en) Acetohydroxy acid synthase variant, microorganism comprising the same, and method of producing l-branched-chain amino acid using the same
KR102147381B1 (en) Novel acetohydroxy acid synthase variant and microorganism comprising thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant