KR20190025601A - Positive active material for sodium ion rechargeable battery and method of manufacturing thereof - Google Patents

Positive active material for sodium ion rechargeable battery and method of manufacturing thereof Download PDF

Info

Publication number
KR20190025601A
KR20190025601A KR1020190024871A KR20190024871A KR20190025601A KR 20190025601 A KR20190025601 A KR 20190025601A KR 1020190024871 A KR1020190024871 A KR 1020190024871A KR 20190024871 A KR20190024871 A KR 20190024871A KR 20190025601 A KR20190025601 A KR 20190025601A
Authority
KR
South Korea
Prior art keywords
active material
metal oxide
oxide powder
sodium ion
ion battery
Prior art date
Application number
KR1020190024871A
Other languages
Korean (ko)
Inventor
조우석
김경수
정구진
박다정
오례경
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Priority to KR1020190024871A priority Critical patent/KR20190025601A/en
Publication of KR20190025601A publication Critical patent/KR20190025601A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a positive electrode active material for a sodium ion battery and a manufacturing method thereof, for inhibiting a surface sodium byproduct by adjusting the sodium content in a synthetic procedure. The manufacturing method for the positive electrode active material for the sodium ion battery according to the present invention comprises steps of: manufacturing a metal oxide powder represented by Na_1-xMO_2 (M = Mn, Fe, Co, Ti, Mg, Cr, V, or Ni, 0<x<1); and calcining the metal oxide powder to manufacture the positive electrode active material.

Description

나트륨이온전지용 양극활물질 및 그의 제조 방법{Positive active material for sodium ion rechargeable battery and method of manufacturing thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive active material for a sodium ion battery,

본 발명은 나트륨이온전지용 양극활물질에 관한 것으로, 더욱 상세하게는 합성 과정에서 나트륨 함량을 조절하여 표면 나트륨 부산물을 억제하기 위한 나트륨이온전지용 양극활물질 및 그의 제조 방법에 관한 것이다.The present invention relates to a positive electrode active material for a sodium ion battery, and more particularly, to a positive electrode active material for a sodium ion battery and a method for manufacturing the same, for controlling the sodium content by controlling the sodium content during synthesis.

전자제품의 디지털화와 고성능화 등으로 소비자의 요구가 바뀜에 따라 시장요구도 박형, 경량화와 고에너지 밀도에 의한 고용량을 지니는 전지의 개발로 흐름이 바뀌고 있는 상황이다. 또한, 미래의 에너지 및 환경 문제를 대처하기 위하여 하이브리드 전기 자동차나 전기 자동차, 및 연료전지 자동차의 개발이 활발히 진행되고 있는 바, 자동차 전원용으로 전지의 대형화가 요구되고 있다.As consumers' demands have changed due to digitization and high performance of electronic products, market demand is changing due to the development of batteries with high capacity due to thinness, light weight and high energy density. In addition, in order to cope with future energy and environmental problems, hybrid electric vehicles, electric vehicles, and fuel cell vehicles are being actively developed, and it is required to increase the size of batteries for automobile power sources.

소형 경량화 및 고용량으로 충방전 가능한 전지로서 리튬 계열 이차전지가 실용화되고 있으며, 소형 비디오 카메라, 휴대전화, 노트퍼스컴 등의 휴대용 전자 및 통신기기 등에 이용되고 있다. 리튬 이차전지는 양극, 음극, 전해질로 구성되며, 충전에 의해 양극활물질로부터 나온 리튬 이온이 음극 활물질에 삽입되고 방전시 다시 탈리되는 등의 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하다.Lithium secondary batteries have been put to practical use as batteries that can be miniaturized and lightweight and can be recharged with a high capacity, and are used for portable electronic devices and communication devices such as small-sized video cameras, cellular phones, and notebook personal computers. The lithium secondary battery is composed of an anode, a cathode, and an electrolyte. The lithium secondary battery is used to transfer energy while reciprocally moving both electrodes, such as lithium ions discharged from the cathode active material through charging, This is possible.

한편, 최근에는 리튬 대신에 나트륨을 이용한 나트륨 기반 이차전지(이하 '나트륨이온전지'라 함)의 연구가 다시 재조명 되고 있다. 나트륨은 자원 매장량이 풍부하기 때문에 리튬 대신에 나트륨을 이용한 이차전지를 제작할 수 있다면 이차전지를 낮은 비용으로 제조할 수 있게 된다.Recently, research on sodium-based secondary batteries (hereinafter referred to as "sodium ion batteries") using sodium instead of lithium has been reexamined. Since sodium is abundant in resource reserves, secondary batteries can be manufactured at low cost if sodium secondary batteries can be manufactured instead of lithium.

이러한 나트륨이온전지의 상용화를 위해 중요 소재인 양극활물질에 대한 연구가 활발하게 진행되고 있다. 특히 층상계 구조를 가지는 금속산화물인 Na1-xMO2(M = Mn, Fe, Co, Ni 등)이 상용화 가능성이 높은 양극활물질로 주목받고 있다.In order to commercialize such a sodium ion battery, studies on a cathode active material, which is an important material, are actively conducted. Particularly, Na 1-x MO 2 (M = Mn, Fe, Co, Ni, etc.), which is a metal oxide having a layered structure, is attracting attention as a cathode active material highly likely to be commercialized.

하지만 나트륨이온전지의 문제점은 초기 수명 평가시 발생되는 가스로서, 초기 충방전에도 상당량의 가스가 발생하여 셀이 부풀어 올라 양극과 음극 간의 접촉이 소실되어 셀 성능이 급격이 저하된다.However, the problem of the sodium ion battery is a gas generated in the evaluation of the initial lifetime. Since a considerable amount of gas is generated in the initial charge and discharge, the cell swells and the contact between the anode and the cathode is lost.

또한 나트륨이온전지는 양극 표면에 잔존 나트륨 부산물(Na2CO3, NaOH 등)이 다수 존재하게 되며, 이는 양극 표면에서 저항으로 작용하여 양극 소재의 용량 감소, 출력 감소 등의 전기화학 특성을 저하시킨다.In addition, the sodium ion battery has a large number of residual sodium byproducts (Na2CO3, NaOH, etc.) on the surface of the anode, which acts as a resistor on the surface of the anode to degrade electrochemical characteristics such as capacity reduction and power reduction.

이를 위하여 최근에는 수세 등을 통한 표면 나트륨 부산물의 제거 방법 등이 제시되고 있으나, 수세 처리를 위한 추가적 공정이 필요하여 양극 소재의 단가 향상 등의 문제점이 있었다.For this purpose, recently, a method of removing surface sodium by-products through washing with water has been proposed, but additional steps are required for the water treatment, thereby causing problems such as an improvement in the unit cost of the cathode material.

따라서 본 발명의 목적은 표면 나트륨 부산물을 추가적인 수세 공정 없이 합성 단계에서 나트륨 부산물의 발생을 효과적으로 억제 시키기 위한 나트륨이온전지용 양극활물질 및 그의 제조 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a cathode active material for a sodium ion battery and a method for producing the same, which effectively inhibit the generation of sodium by-products in the synthesis step without additional washing process of the surface sodium byproduct.

본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법은 Na1-xMO2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni, 0<x<1)로 표시되는 금속산화물 분말을 형성하는 단계, 상기 금속 산화물 분말을 소성하여 양극활물질을 제조하는 단계를 포함한다.A method for producing a cathode active material for a sodium ion battery according to the present invention comprises the steps of preparing a metal oxide powder represented by Na 1-x MO 2 (M = Mn, Fe, Co, Ti, Mg, Cr, V or Ni, 0 <x < And firing the metal oxide powder to produce a cathode active material.

본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법에 있어서, 상기 금속 산화물 분말을 형성하는 단계에서, 상기 금속 산화물 분말은 (M)OH2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni)로 표시되는 금속 산화물 전구체와 Na2CO3를 포함하는 나트륨 전구체를 혼합하여 형성하는 것을 특징으로 한다.In the method for manufacturing a cathode active material for a sodium ion battery according to the present invention, in the step of forming the metal oxide powder, the metal oxide powder preferably contains (M) OH 2 (M = Mn, Fe, Co, V or Ni) and a sodium precursor containing Na 2 CO 3 are mixed to form a metal oxide precursor.

본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법에 있어서, 상기 금속 산화물 분말을 형성하는 단계에서, 상기 금속 산화물 분말은 Na1-xMO2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni, 0<x<0.2)로 표시되는 것을 특징으로 한다.In the method of manufacturing a cathode active material for a sodium ion battery according to the present invention, in the step of forming the metal oxide powder, the metal oxide powder is Na 1-x MO 2 (M = Mn, Fe, Co, , V or Ni, 0 < x < 0.2).

본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법에 있어서, 상기 양극활물질을 제조하는 단계에서, 상기 양극활물질은 03형 층상 구조를 갖는 것을 특징으로 한다.In the method for producing a cathode active material for a sodium ion battery according to the present invention, the cathode active material has a 03-layered structure in the step of producing the cathode active material.

본 발명에 따른 나트륨이온전지용 양극활물질은 Na1-xMO2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni, 0<x<1)로 표시되는 금속산화물 분말을 소성하여 형성한다.The cathode active material for a sodium ion battery according to the present invention is obtained by firing a metal oxide powder represented by Na 1-x MO 2 (M = Mn, Fe, Co, Ti, Mg, Cr, V or Ni, 0 <x <1) .

본 발명에 따른 나트륨이온전지용 양극활물질에 있어서, 상기 금속 산화물 분말은 상기 금속 산화물 분말은 (M)(OH)2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni)로 표시되는 금속 산화물 전구체와 Na2CO3를 포함하는 나트륨 전구체를 혼합하여 형성하는 것을 특징으로 한다.In the cathode active material for a sodium ion battery according to the present invention, the metal oxide powder is represented by (M) (OH) 2 (M = Mn, Fe, Co, Ti, Mg, Cr, V, or Ni) And a sodium precursor containing Na 2 CO 3 are mixed to form a metal oxide precursor.

본 발명에 따른 나트륨이온전지용 양극활물질에 있어서, 상기 금속 산화물 분말은 Na1-xMO2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni, 0<x<0.2)로 표시되는 것을 특징으로 한다.In the cathode active material for a sodium ion battery according to the present invention, the metal oxide powder is represented by Na 1-x MO 2 (M = Mn, Fe, Co, Ti, Mg, Cr, V or Ni, 0 <x <0.2) .

본 발명에 따른 나트륨이온전지용 양극활물질에 있어서, 상기 나트륨이온전지용 양극활물질은 03형 층상 구조를 갖는 것을 특징으로 한다.In the cathode active material for a sodium ion battery according to the present invention, the cathode active material for a sodium ion battery has a 03-layered structure.

본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법은 금속 산화물 분말에서 Na 함량을 조절하여, 제조된 양극 활물질 표면 나트륨 부산물을 추가적인 수세 공정 없이 합성 단계에서 나트륨 부산물의 발생을 효과적으로 억제 시킬 수 있다.The method for preparing a cathode active material for a sodium ion battery according to the present invention can effectively suppress the generation of sodium byproducts in the synthesis step without further washing the cathode active material surface by regulating the Na content in the metal oxide powder.

도 1은 본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법을 나타낸 순서도이다.
도 2는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질의 표면 SEM 이미지이다.
도 3은 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질의 초기 충전상태 임피던스 측정 결과를 나타낸 그래프이다.
도 4는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질을 통해 제조된 코인셀의 충방전 특성을 나타낸 그래프이다.
도 5는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질을 통해 제조된 코인셀의 출력 특성을 나타낸 그래프이다.
1 is a flowchart showing a method of manufacturing a cathode active material for a sodium ion battery according to the present invention.
2 is a SEM image of a surface of a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.
FIG. 3 is a graph showing the results of measurement of initial charged state impedance of a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.
4 is a graph showing charge and discharge characteristics of a coin cell manufactured through a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.
5 is a graph showing output characteristics of a coin cell manufactured through a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.

하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.In the following description, only parts necessary for understanding embodiments of the present invention will be described, and descriptions of other parts will be omitted to the extent that they do not disturb the gist of the present invention.

이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary meanings and the inventor is not limited to the meaning of the terms in order to describe his invention in the best way. It should be interpreted as meaning and concept consistent with the technical idea of the present invention. Therefore, the embodiments described in the present specification and the configurations shown in the drawings are merely preferred embodiments of the present invention, and are not intended to represent all of the technical ideas of the present invention, so that various equivalents And variations are possible.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법을 나타낸 순서도이다.1 is a flowchart showing a method of manufacturing a cathode active material for a sodium ion battery according to the present invention.

도 1을 참조하면, 본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법은 금속 산화물 분말을 형성하는 단계(S10) 및 금속 산화물 분말을 소성하여 양극활물질을 제조하는 단계(S10)를 포함한다.Referring to FIG. 1, a method for manufacturing a cathode active material for a sodium ion battery according to the present invention includes forming a metal oxide powder (S10) and firing a metal oxide powder to produce a cathode active material (S10).

이와 같은 본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법의 각 단계에 대해서 구체적으로 설명하면 다음과 같다.Each step of the method for manufacturing a cathode active material for a sodium ion battery according to the present invention will be described in detail as follows.

먼저 S10 단계에서 금속 산화물 분말을 제조한다. 여기서 금속 산화물 분말은 (M)OH2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni)로 표시되는 금속 산화물 전구체와 Na2CO3를 포함하는 나트륨 전구체를 혼합하여 제조한다.First, a metal oxide powder is prepared in step S10. The metal oxide powder is prepared by mixing a metal oxide precursor represented by (M) OH 2 (M = Mn, Fe, Co, Ti, Mg, Cr, V, or Ni) and a sodium precursor including Na 2 CO 3 .

이때 제조된 양극활물질의 나트륨 함량이 1미만이 되도록 Na2CO3를 혼합양을 조절할 수 있다.At this time, the mixing amount of Na 2 CO 3 can be adjusted so that the sodium content of the prepared cathode active material is less than 1.

여기서 금속 산화물 분말은 Na1-xMO2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni, 0<x<1)로 표시될 수 있으며, 바람직하게는 Na1-xMO2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni, 0<x<0.2)로 표시될 수 있다.The metal oxide powder is Na 1-x MO 2 (M = Mn, Fe, Co, Ti, Mg, Cr, V or Ni, 0 <x <1) may be represented by, preferably Na 1-x MO 2 (M = Mn, Fe, Co, Ti, Mg, Cr, V or Ni, 0 < x < 0.2).

다음으로 S20 단계에서 금속 산화물 분말을 소성하여 양극활물질을 제조할 수 있다. 여기서 금속 산화물 분말을 760 ~ 960℃에서 14 ~ 34시간 소성하여 형성할 수 있다. 제조된 양극활물질은 03형 층상 구조를 가질 수 있다.Next, in step S20, the metal oxide powder is fired to produce a cathode active material. Here, the metal oxide powder can be formed by firing at 760 to 960 DEG C for 14 to 34 hours. The prepared cathode active material may have a 03-layered structure.

이와 같이, 본 발명에 따른 나트륨이온전지용 양극활물질의 제조 방법은 금속 산화물 분말에서 Na 함량을 조절하여, 제조된 양극 활물질 표면 나트륨 부산물을 추가적인 수세 공정 없이 합성 단계에서 나트륨 부산물의 발생을 효과적으로 억제 시킬 수 있다.As described above, the method for preparing a cathode active material for a sodium ion battery according to the present invention can control the Na content of the metal oxide powder and effectively suppress the generation of sodium by-products in the synthesis step without further washing the surface active material of the cathode active material have.

이와 같은 본 발명의 제조 방법으로 제조된 나트륨이온전지용 양극활물질의 전기화학적 및 물리적 특성을 확인하기 위해서 하기와 같은 실험을 진행하였다.The following experiment was conducted to confirm the electrochemical and physical properties of the cathode active material for a sodium ion battery manufactured by the manufacturing method of the present invention.

비교예Comparative Example

비교예는 금속 산화물 전구체로 (Ni0.25Fe0.25Mn0.5)(0H)2와 나트륨 전구체로 Na2CO3를 혼합하고, 860℃에서 24시간 소성하여 Na 함량이 1.0인 Na(Ni0.25Fe0.25Mn0.5)O2로 표시되는 양극활물질을 제조하였다.The comparative example was prepared by mixing Na 2 CO 3 as a metal oxide precursor (Ni 0.25 Fe 0.25 Mn 0.5 ) (OH) 2 with a sodium precursor and calcining at 860 ° C for 24 hours to obtain Na (Ni 0.25 Fe 0.25 Mn 0.5 ) O &lt; 2 & gt ;.

실시예Example

실시예는 비교예와 동일한 조건으로 나트륨 전구체 Na2CO3를 Na 함량이 0.9가 되도록 Na0.9(Ni0.25Fe0.25Mn0.5)O2로 표시되는 양극활물질을 제조하였다.In this example, a sodium precursor Na 2 CO 3 was prepared with Na 0.9 (Ni 0.25 Fe 0.25 Mn 0.5 ) O 2 so as to have an Na content of 0.9 under the same conditions as those of the comparative example.

그리고 전기화학특성 평가를 위하여, 음극은 N 금속, 분리막은 Glass fiber, 전해액은 1M의 NaClO4가 용해된 EC:PC(1:1)을 사용하여 비교예와 실시예를 동일한 조건에서 코인셀을 제조하였다.And to evaluate the electrochemical characteristics and the cathode N metal membrane Glass fiber, the electrolytic solution is EC with a 1M of NaClO 4 was dissolved: The coin cell of Comparative Example and Example using the same conditions: PC (1 1) .

한편 도 2는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질의 표면 SEM 이미지이다.2 is a SEM image of a surface of a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.

도 2를 참조하면, 비교예의 경우 양극 활물질 표면에 다량의 표면 부산물이 존재하는 것과 대비하여, 실시예는 표면 부산물의 형성이 억제되어 있음을 확인할 수 있다. 여기서 표면 부산물은 Na 용출에 의해 형성되는 Na2CO3, NaOH 등이다. Referring to FIG. 2, it can be seen that, in the comparative example, the formation of surface by-products is suppressed in contrast to the presence of a large amount of surface by-products on the surface of the cathode active material. Here, the surface by-product is Na 2 CO 3 , NaOH, etc. formed by dissolving Na.

도 3은 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질의 초기 충전상태(4.3V) 임피던스 측정 결과를 나타낸 그래프이다.FIG. 3 is a graph showing impedance measurement results of an initial charged state (4.3 V) of a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.

도 3을 참조하면, 표면 부산물에 의한 저항 여부를 확인하기 위하여 AC-impedance 분석을 진행하였다.Referring to FIG. 3, AC-impedance analysis was performed to confirm whether or not the surface byproducts are resistant.

4.3V 충전 상태에서 임피던스 측정 결과, 실시예를 통해 제조된 코인셀의 저항이 현저히 감소되어 있음을 확인할 수 있다. 이를 통해 표면 부산물 형성이 억제된 실시예가 복합 저항이 억제되어 있음을 확인하였다.As a result of the impedance measurement under the 4.3 V charged state, it can be confirmed that the resistance of the coin cell manufactured through the embodiment is remarkably reduced. As a result, it was confirmed that the embodiment in which the formation of surface byproducts was suppressed suppressed the composite resistance.

도 4는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질을 통해 제조된 코인셀의 충방전 특성을 나타낸 그래프이고, 하기의 표 1은 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질을 통해 제조된 코인셀의 충전용량 및 방전용량을 나타낸 표이다.4 is a graph showing the charging and discharging characteristics of a coin cell manufactured through a cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention. FIG. 5 is a table showing charging capacity and discharge capacity of a coin cell manufactured through a positive electrode active material for a battery. FIG.

충전용량(mAh/g)Charging capacity (mAh / g) 방전용량(mAh/g)Discharge capacity (mAh / g) 실시예Example 160.2160.2 160.0160.0 비교예Comparative Example 139.7139.7 138.2138.2

도 4 및 표 1을 참조하면, 비교예와 실시예의 0.1C에서의 충방전 곡선을 확인한 결과, 비교예와 대비하여 실시예의 충방전 곡선의 과전압이 현저히 개선되어 있음을 확인할 수 있으며, 이에 기인하여 방전 용량도 비교예 대비 높게 나타내는 것을 확인할 수 있었다. 이는 상술한 도 2에 나타난 바와 같이 임피던스 감소에 기인하는 효과로 판단할 수 있다.도 5는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질을 통해 제조된 코인셀의 출력 특성을 나타낸 그래프이고, 표 2는 본 발명의 실시예 및 비교예에 따른 나트륨이온전지용 양극활물질을 통해 제조된 코인셀의 출력에 따른 에너지 밀도를 나타낸 표이다.Referring to FIG. 4 and Table 1, as a result of checking charge / discharge curves at 0.1C in Comparative Examples and Examples, it can be seen that the overvoltage of charge / discharge curves of Examples is remarkably improved as compared with Comparative Examples. It was confirmed that the discharge capacity was also higher than that of the comparative example. FIG. 5 is a graph showing the output characteristics of a coin cell manufactured through a cathode active material for a sodium ion battery according to an embodiment and a comparative example of the present invention. FIG. And Table 2 is a table showing the energy density according to the output of the coin cell manufactured through the cathode active material for a sodium ion battery according to Examples and Comparative Examples of the present invention.

0.1C0.1 C 0.2C0.2C 0.5C0.5 C 1C1C 3C3C 실시예Example 437.5Wh/kg437.5 Wh / kg 408.8Wh/kg408.8 Wh / kg 373.1Wh/kg373.1 Wh / kg 335.8Wh/kg335.8 Wh / kg 246.6Wh/kg246.6 Wh / kg 비교예Comparative Example 526.3Wh/kg526.3 Wh / kg 499.1Wh/kg499.1 Wh / kg 468.5Wh/kg468.5 Wh / kg 438.5Wh/kg438.5 Wh / kg 435.1Wh/kg435.1 Wh / kg

도 5 및 표 2를 참조하면, 1C와 3C에서의 방전 곡선을 보면 비교예 대비 실시예가 높은 용량과 과전압이 현저히 개선된 것을 확인할 수 있다. 특히 에너지밀도로 환산하면 출력 특성이 크게 개선된 것을 확인할 수 있다.또한 표 2에 나타난 바와 같이, 고출력에서 에너지밀도가 크게 향상되었으며, 3C에서의 에너지 밀도가 비교예는 246Wh/kg인 것에 비해 실시예는 435Wh/kg으로 1.8배 가량 높은 에너지 밀도를 나타내는 것을 확인할 수 있다.Referring to FIG. 5 and FIG. 2, the discharge curves at 1C and 3C show that the embodiment of the comparative example significantly improved the high capacity and the overvoltage. In particular, as shown in Table 2, the energy density at the high output power was significantly improved, and the energy density at the 3C was 246 Wh / kg as compared with the comparative example The energy density is 1.8 times higher at 435Wh / kg.

한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.It should be noted that the embodiments disclosed in the present specification and drawings are only illustrative of specific examples for the purpose of understanding, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention are possible in addition to the embodiments disclosed herein.

Claims (6)

Na0.9MO2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni)로 표시되는 금속 산화물 분말을 제조하는 단계;
상기 금속 산화물 분말을 소성하여 O3형 층상 구조를 갖는 양극활물질을 제조하는 단계;
를 포함하는 것을 특징으로 하는 나트륨이온전지용 양극활물질의 제조 방법.
Preparing a metal oxide powder represented by Na 0.9 MO 2 (M = Mn, Fe, Co, Ti, Mg, Cr, V or Ni);
Firing the metal oxide powder to produce a positive electrode active material having an O3-type layer structure;
Wherein the negative electrode active material is a lithium salt.
제1항에 있어서,
상기 금속 산화물 분말을 제조하는 단계에서,
상기 금속 산화물 분말은 (M)(OH)2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni)로 표시되는 금속 산화물 전구체와 Na2CO3를 포함하는 나트륨 전구체를 혼합하여 형성하는 것을 특징으로 하는 나트륨이온전지용 양극활물질의 제조 방법.
The method according to claim 1,
In the step of producing the metal oxide powder,
The metal oxide powder is prepared by mixing a metal oxide precursor represented by (M) (OH) 2 (M = Mn, Fe, Co, Ti, Mg, Cr, V, or Ni) and a sodium precursor including Na 2 CO 3 Wherein the negative electrode active material is a lithium ion battery.
제1항에 있어서,
상기 금속 산화물 분말을 제조하는 단계에서,
상기 금속 산화물 분말은 Na0.9(Ni0.25Fe0.25Mn0.5)O2인 것을 특징으로 하는 나트륨이온전지용 양극활물질의 제조 방법.
The method according to claim 1,
In the step of producing the metal oxide powder,
Wherein the metal oxide powder is Na 0.9 (Ni 0.25 Fe 0.25 Mn 0.5 ) O 2 .
Na0.9MO2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni)로 표시되는 금속 산화물 분말을 소성하여 제조되며, O3형 층상 구조를 갖는 나트륨이온전지용 양극활물질.A cathode active material for a sodium ion battery, which is produced by firing a metal oxide powder represented by Na 0.9 MO 2 (M = Mn, Fe, Co, Ti, Mg, Cr, V or Ni) and having an O3 type layer structure. 제4항에 있어서,
상기 금속 산화물 분말은 (M)(OH)2(M=Mn, Fe, Co, Ti, Mg, Cr, V 또는 Ni)로 표시되는 금속 산화물 전구체와 Na2CO3를 포함하는 나트륨 전구체를 혼합하여 제조하는 것을 특징으로 하는 나트륨이온전지용 양극활물질.
5. The method of claim 4,
The metal oxide powder is prepared by mixing a metal oxide precursor represented by (M) (OH) 2 (M = Mn, Fe, Co, Ti, Mg, Cr, V, or Ni) and a sodium precursor including Na 2 CO 3 And a cathode active material for a sodium ion battery.
제4항에 있어서,
상기 금속 산화물 분말을 제조하는 단계에서,
상기 금속 산화물 분말은 Na0.9(Ni0.25Fe0.25Mn0.5)O2인 것을 특징으로 하는 나트륨이온전지용 양극활물질.
5. The method of claim 4,
In the step of producing the metal oxide powder,
Wherein the metal oxide powder is Na 0.9 (Ni 0.25 Fe 0.25 Mn 0.5 ) O 2 .
KR1020190024871A 2019-03-04 2019-03-04 Positive active material for sodium ion rechargeable battery and method of manufacturing thereof KR20190025601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190024871A KR20190025601A (en) 2019-03-04 2019-03-04 Positive active material for sodium ion rechargeable battery and method of manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190024871A KR20190025601A (en) 2019-03-04 2019-03-04 Positive active material for sodium ion rechargeable battery and method of manufacturing thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170106765 Division 2017-08-23 2017-08-23

Publications (1)

Publication Number Publication Date
KR20190025601A true KR20190025601A (en) 2019-03-11

Family

ID=65758863

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190024871A KR20190025601A (en) 2019-03-04 2019-03-04 Positive active material for sodium ion rechargeable battery and method of manufacturing thereof

Country Status (1)

Country Link
KR (1) KR20190025601A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200119122A (en) 2019-04-09 2020-10-19 광주과학기술원 Cathode active material for sodium ion secondary battery and secondary battery comprising the same
KR20210002078A (en) 2020-12-24 2021-01-06 광주과학기술원 Cathode active material for sodium ion secondary battery and secondary battery comprising the same
KR20210002079A (en) 2020-12-24 2021-01-06 광주과학기술원 Cathode active material for sodium ion secondary battery and secondary battery comprising the same
KR20210002080A (en) 2020-12-24 2021-01-06 광주과학기술원 Cathode active material for sodium ion secondary battery and secondary battery comprising the same
KR20210095269A (en) 2020-01-22 2021-08-02 한국과학기술연구원 Cathode electrode active material for secondary battery and secondary battery comprising the same
CN117497728A (en) * 2023-12-04 2024-02-02 湖南美特新材料科技有限公司 Sodium ion battery positive electrode material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200119122A (en) 2019-04-09 2020-10-19 광주과학기술원 Cathode active material for sodium ion secondary battery and secondary battery comprising the same
KR20210095269A (en) 2020-01-22 2021-08-02 한국과학기술연구원 Cathode electrode active material for secondary battery and secondary battery comprising the same
KR20210002078A (en) 2020-12-24 2021-01-06 광주과학기술원 Cathode active material for sodium ion secondary battery and secondary battery comprising the same
KR20210002079A (en) 2020-12-24 2021-01-06 광주과학기술원 Cathode active material for sodium ion secondary battery and secondary battery comprising the same
KR20210002080A (en) 2020-12-24 2021-01-06 광주과학기술원 Cathode active material for sodium ion secondary battery and secondary battery comprising the same
CN117497728A (en) * 2023-12-04 2024-02-02 湖南美特新材料科技有限公司 Sodium ion battery positive electrode material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR20190025601A (en) Positive active material for sodium ion rechargeable battery and method of manufacturing thereof
CN111448619B (en) Solid electrolyte material and battery
EP3041071B1 (en) Lithium transition metal composite particles, method for preparing same, and positive active materials comprising same
US9368791B2 (en) Cathode active material, method for preparing the same, and lithium secondary batteries including the same
KR101227308B1 (en) Non-aqueous electrolyte secondary battery
EP2592683B1 (en) Solid electrolyte material and lithium battery
CN111279430B (en) Solid electrolyte material and battery
KR101169805B1 (en) Nonaqueous Electrolyte Secondary Cell and Method of Charging the Same
CN111295789A (en) Solid electrolyte material and battery
EP2315298A1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
EP2642577A1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery including positive electrode active material
US9871250B2 (en) Cathode active material for lithium secondary battery, method of fabricating the same, and lithium secondary battery including the same
JP5641193B2 (en) All-solid lithium secondary battery
KR20130066285A (en) Surface treated electrode active material, surface treatment method of electrode active material, electrode and secondary lithium battery
KR20170103184A (en) Method for manufacturing positive electrode for lithium secondary battery and positive electrode for lithium secondary battery manufactured thereby
KR20200058906A (en) Formation method for secondary battery
KR102006164B1 (en) Positive active material for sodium ion rechargeable battery and method of manufacturing thereof
KR102228659B1 (en) Positive electrode material doped with metal for sodium-ion Batteries and sodium-ion battery having the same
KR102220491B1 (en) Positive active materials for rechargable lithium battery, method of preparing the same and rechargable lithium battery using the same
JP5975459B2 (en) Method for producing positive electrode for all-solid lithium secondary battery and all-solid lithium secondary battery using the same
KR102545888B1 (en) Cathode active materials containing fluoride for lithium secondary batteries and lithium secondary batteries comprising the same
KR20140066053A (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
US20190013517A1 (en) Lithium ion secondary battery
WO2019039639A1 (en) Positive electrode active material for sodium ion battery and manufacturing method therefor
KR101867834B1 (en) Bronze phase titanium oxide composite doped with copper, and method for preparing the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
X601 Decision of rejection after re-examination