KR20190024275A - Manufacturing method of conductive carbon papers/epoxy composites using electroless nickel-plating - Google Patents

Manufacturing method of conductive carbon papers/epoxy composites using electroless nickel-plating Download PDF

Info

Publication number
KR20190024275A
KR20190024275A KR1020170111099A KR20170111099A KR20190024275A KR 20190024275 A KR20190024275 A KR 20190024275A KR 1020170111099 A KR1020170111099 A KR 1020170111099A KR 20170111099 A KR20170111099 A KR 20170111099A KR 20190024275 A KR20190024275 A KR 20190024275A
Authority
KR
South Korea
Prior art keywords
carbon fiber
resin
pitch
plating
fiber web
Prior art date
Application number
KR1020170111099A
Other languages
Korean (ko)
Inventor
박수진
강우석
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020170111099A priority Critical patent/KR20190024275A/en
Publication of KR20190024275A publication Critical patent/KR20190024275A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked

Abstract

The present invention relates to a method to manufacture a carbon paper/epoxy electromagnetic shielding material, which comprises: (a) a step of immersing pitch-based carbon fiber in a metal plating solution to plate the carbon fiber; (b) a step of mixing an organic polymer compound with the plated carbon fiber via a wet method to make a carbon fiber web; (c) a step of immersing the made carbon fiber web in a thermosetting resin; and (d) a step of hardening the immersed carbon fiber web. According to the present invention, nickel induces reflection and absorption of electromagnetic energy on the pitch-based carbon fiber formed through electroless plating to provide an excellent electromagnetic shield ratio, thereby providing effects of realizing high economic efficiency, a lightweight shape, and a small thickness compared to an existing epoxy composite material, while being applicable to various fields, such as an electronic device, a communication device, a precise device, a smart industry, and the like.

Description

니켈 무전해 도금에 의한 탄소종이/에폭시 전자파 차폐재의 제조방법{Manufacturing method of conductive carbon papers/epoxy composites using electroless nickel-plating}Technical Field [0001] The present invention relates to a method of manufacturing a carbon paper / epoxy electromagnetic shielding material by nickel electroless plating,

본 발명은 니켈 무전해 도금에 의한 탄소종이/에폭시 전자파 차폐재의 제조방법에 관한 것으로서, 더욱 상세하게는 피치계 탄소섬유를 무전해도금하여 습식법으로 유기고분자 화합물을 혼합하여 탄소섬유 웹을 제조하고 제조된 탄소섬유 웹을 열경화성 수지에 함침하고 경화하여 전자파 차폐재를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a carbon paper / epoxy electromagnetic shielding material by nickel electroless plating, and more particularly, to a method of manufacturing a carbon fiber web by mixing pitch organic carbon fibers by electroless plating and wet- And a method of producing an electromagnetic wave shielding material by impregnating a carbon fiber web with a thermosetting resin and curing the same.

전자기기, 항공, 전기자동차, 스마트 통신기기, 정밀기기 제품 등의 사용이 급속히 증가하면서 이러한 제품들로부터 발생하는 전자파는 인체에 악영향을 미쳐 신경통, 두통, 어지러움, 생체리듬의 변화 등 다양한 질병들을 유발시키고 있다. 또한, 전자파는 인체뿐만 아니라 특정한 주파수를 통해 작동되는 기기들의 오작동을 유발하여 예기치 못한 사고 및 상황을 유발시키기 때문에 이와 같은 전자파 장애에 대한 위험성이 주목받고 있고 문제의 해결을 위해 전자파 차폐에 관한 많은 연구가 국내외적으로 활발히 진행되고 있다.As the use of electronic devices, aviation, electric vehicles, smart communication devices, and precision instrument products are rapidly increasing, electromagnetic waves generated from these products adversely affect the human body, causing various diseases such as neuralgia, headache, dizziness, I have to. In addition, since electromagnetic waves induce malfunctions not only of the human body but also of the devices operating at a specific frequency, they cause unexpected accidents and situations. Therefore, the danger of such electromagnetic disturbances is attracting attention and many studies on electromagnetic shielding Are being actively promoted both domestically and internationally.

전자파를 차단하기 위해서 제품자체의 소재를 개량하는 방법이 있는데, 전자파 차폐 소재로는 금속계 소재가 주목받아 왔으나, 최근에는 무게적인 측면 혹은 에너지 측면에서도 금속 대비 경량인 고분자계 소재를 이용한 방법들이 제시되고 있다.In order to shield electromagnetic waves, there has been a method of improving the material of the product itself. Metal materials have been attracting attention as an electromagnetic wave shielding material. Recently, however, methods using light weight, have.

하지만 고분자계 소재 자체에는 전자파 차폐의 효과가 없기 때문에, 이러한 소재에 차폐효과를 부여하기 위해 전이금속을 고분자계 소재에 코팅시킴으로써 전도성을 가지면서 전자기파를 흡수할 수 있는 수지 기반 복합재료의 개발이 이루어지고 있는 추세다.However, since polymeric materials themselves do not have electromagnetic shielding effect, the development of resin-based composite materials capable of absorbing electromagnetic waves while having conductivity by coating a transition metal to a polymer material in order to impart a shielding effect to such materials It is a trend.

본 발명의 목적은, 무전해 도금을 통해 피치계 탄소섬유를 표면처리하고 웹 형태로 제조한 탄소종이를 에폭시 수지에 함침함으로써 우수한 전자파 차폐율을 갖는 탄소종이/에폭시 차폐재를 제조하는 방법을 제공함에 있다.An object of the present invention is to provide a method for producing a carbon paper / epoxy shielding material having an excellent electromagnetic wave shielding ratio by impregnating an epoxy resin with a carbon paper prepared by surface-treating pitch-based carbon fibers through electroless plating and in the form of a web have.

상기 목적을 달성하기 위하여, 본 발명은 (a)피치계 탄소섬유를 금속 도금액에 침지하여 탄소섬유를 도금하는 단계; (b)상기 도금된 탄소섬유를 습식법으로 유기고분자 화합물을 혼합하여 탄소섬유 웹을 제조하는 단계; (c)상기 제조된 탄소섬유 웹을 열경화성 수지에 함침하는 단계; 및 (d)상기 함침한 탄소섬유 웹을 경화하는 단계를 포함하는 전자파 차폐재를 제조하는 방법을 제공한다.According to an aspect of the present invention, there is provided a method of manufacturing a carbon fiber composite material, comprising the steps of: (a) dipping a pitch-based carbon fiber into a metal plating solution; (b) preparing a carbon fiber web by mixing the plated carbon fibers with an organic polymer compound by a wet process; (c) impregnating the carbon fiber web with the thermosetting resin; And (d) curing the impregnated carbon fiber web.

본 발명의 일실시예에 따르면 상기 (a)단계에서 도금시 온도는 30 내지 90℃ 인 것을 특징으로 한다.According to an embodiment of the present invention, the plating temperature in step (a) is 30 to 90 ° C.

본 발명의 다른 일실시예에 따르면 상기 (b)단계에서 상기 유기고분자 화합물은 폴리비닐알코올인 것을 특징으로 한다.According to another embodiment of the present invention, in the step (b), the organic polymer compound is polyvinyl alcohol.

본 발명의 또다른 일실시예에 따르면 상기 (b)단계에서 상기 유기고분자 화합물의 농도는 상기 피치계 탄소섬유 대비 1 내지 20 중량비인 것을 특징으로 한다.According to another embodiment of the present invention, the concentration of the organic polymer compound in the step (b) is 1 to 20 weight ratio to the pitch-based carbon fiber.

본 발명의 또다른 일실시예에 따르면 상기 (c)단계에서 상기 열경화성 수지는 페놀수지, 요소수지, 멜라민수지, 에폭시수지 및 불포화 폴리에스테르수지를 포함하는 군에서 선택되는 어느 하나인 것을 특징으로 할 수 있다.According to another embodiment of the present invention, in the step (c), the thermosetting resin is any one selected from the group consisting of phenol resin, urea resin, melamine resin, epoxy resin and unsaturated polyester resin .

상기와 같은 본 발명에 따르면, 무전해 도금을 통해 형성된 피치계 탄소섬유 표면에 니켈금속이 전자기 에너지의 반사 및 흡수를 유도하여 우수한 전자파 차폐율을 가짐으로써 기존 에폭시 복합재료에 비해 높은 경제성과 더불어 경량화된 형태와 얇은 두께를 가지며, 전자기기, 통신기기, 정밀기기, 스마트 산업 등 다양한 분야에 응용될 수 있고 고분자 복합 수지를 응용한 전자파 차폐재는 복합수지를 사출하는 공전만으로 제품화가 가능하기 때문에 경제적 혹은 생산성 측면에서 효과적이다.As described above, according to the present invention, nickel metal on the surface of pitch-based carbon fiber formed by electroless plating induces reflection and absorption of electromagnetic energy and has an excellent shielding ratio of electromagnetic wave, so that it is more economical than conventional epoxy composite material, And can be applied to a variety of fields such as electronic devices, communication devices, precision instruments, and smart industries, and electromagnetic wave shielding materials using polymer composite resins can be produced only by injection molding of a composite resin, It is effective in terms of productivity.

도 1은 본 발명에서 제조한 피치계 탄소섬유의 SEM 결과이다.
도 2은 본 발명에서 제조한 탄소종이/에폭시 전자파 차폐재의 전자파 차폐 특성 분석 결과이다.
Fig. 1 shows SEM results of the pitch-based carbon fibers produced in the present invention.
FIG. 2 shows the results of analyzing the electromagnetic wave shielding characteristics of the carbon paper / epoxy electromagnetic wave shielding material produced in the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

상기 목적을 달성하기 위하여, 본 발명은 우수한 전자파 차폐율을 갖는 탄소종이/에폭시 차폐재를 제조하는 데 있어서, (a)피치계 탄소섬유를 금속 도금액에 침지하여 탄소섬유를 도금하는 단계; (b)상기 도금된 탄소섬유를 습식법으로 유기고분자 화합물을 혼합하여 탄소섬유 웹을 제조하는 단계; (c)상기 제조된 탄소섬유 웹을 열경화성 수지에 함침하는 단계; 및 (d)상기 함침한 탄소섬유 웹을 경화하는 단계를 포함하는 전자파 차폐재를 제조하는 방법을 제공한다.In order to achieve the above object, the present invention provides a carbon paper / epoxy shielding material having excellent electromagnetic shielding ratio, comprising: (a) a step of dipping a pitch-based carbon fiber into a metal plating solution to coat carbon fiber; (b) preparing a carbon fiber web by mixing the plated carbon fibers with an organic polymer compound by a wet process; (c) impregnating the carbon fiber web with the thermosetting resin; And (d) curing the impregnated carbon fiber web.

상기 (a)단계에서 도금시 온도는 30 내지 90℃인 것이 바람직하다. 30℃ 미만에서는 화학적 환원반응이 일어나기 어렵고 90℃ 초과시 높은 온도로 인해 섬유표면이 손상되어 섬유자체가 타버려 물성을 저하시키기 때문이다.In the step (a), the plating temperature is preferably 30 to 90 ° C. If the temperature is lower than 30 ° C, the chemical reduction reaction is difficult to occur. If the temperature is higher than 90 ° C, the fiber surface is damaged due to the high temperature, and the fiber itself is burned to deteriorate the physical properties.

상기 피치계 탄소섬유는 피치의 전구체로 석유계, 석탄계, 메조페이스 피치 또는 이들의 혼합물을 사용하여 제조된 것일 수 있다. 상기 온도범위 내에서 피치계 탄소섬유를 금속 도금액에 침지하여 활성화 처리하고 표면을 니켈로 무전해 도금한다. The pitch-based carbon fiber may be one prepared by using a petroleum-based, coal-based, mesophase pitch or a mixture thereof as a pitch precursor. The pitch-based carbon fiber is immersed in the metal plating solution to activate the surface within the above temperature range, and the surface is electroless-plated with nickel.

금속 도금액에 탄소섬유의 침지 시간은 1분 내지 30분인 것이 바람직하다. 침지시간이 1분 미만인 경우에는 자가촉매 반응시간이 너무 짧아 섬유 표면에 생성되는 니켈 피막의 양이 너무 적고 30분을 초과할 경우 피막의 양이 급격히 상승하여 가공성이 떨어지기 때문이다.The immersion time of the carbon fiber in the metal plating solution is preferably from 1 minute to 30 minutes. If the immersion time is less than 1 minute, the autocatalytic reaction time is too short, so that the amount of the nickel coating formed on the surface of the fiber is too small, and if it exceeds 30 minutes, the amount of the coating rapidly increases and the workability becomes poor.

상기 금속 도금액의 주성분인 니켈 염으로는 NiCl26H2O와 NiSO46H2O 인 것이 바람직하다. 낮은 온도에서 도금속도가 빠른 효과가 있기 때문이다. 착화제와 안정제로는 Na3C6H5O71.5H2O와 PdNO3 인 것이 바람직하다. 이를 사용할 경우 염의 빠른 환원속도를 억제할 수 있으며, 핵의 분해방지와 뭉침현상을 방지하기 때문이다.As a main component of the nickel salt of the metal plating solution is preferably in a NiCl 2 6H 2 O and NiSO 4 6H 2 O. This is because the plating rate is fast at low temperatures. The complexing agent and stabilizer are preferably Na 3 C 6 H 5 O 7 1.5H 2 O and PdNO 3 . This can be used to inhibit the rapid rate of salt reduction and to prevent the decomposition of the nucleus and the aggregation phenomenon.

상기 (b)상기 도금된 탄소섬유를 습식법으로 유기고분자 화합물을 혼합하여 탄소섬유 웹을 제조하는 단계에서 유기고분자 화합물은 아크릴 및 비닐계 수지가 바람직하고 더욱 바람직하게는 폴리비닐알코올을 사용한다. 유기 고분자 화합물은 수용성 고분자로써 니켈 도금된 탄소섬유들을 결착시키는 바인더 역할을 수행하기 때문에 도금된 탄소섬유와 유기고분자 화합물을 혼합하고 초음파 분산과 고온압착으로 탄소종이 웹을 제조한다.In the step (b) of preparing the carbon fiber web by mixing the organic polymer compound with the plated carbon fiber by a wet process, the organic polymer compound is preferably an acrylic or vinyl resin, more preferably polyvinyl alcohol. Since the organic polymeric compound acts as a binder for binding nickel-plated carbon fibers as a water-soluble polymer, the carbon paper web is prepared by mixing the plated carbon fiber and the organic polymer compound, and ultrasonic dispersion and hot pressing.

상기 유기고분자 화합물의 농도는 피치계 탄소섬유 대비 1 내지 20 wt.%인 것이 바람직하고 더욱 바람직하게는 10 내지 20 wt.%이다. 유기고분자 화합물의 농도가 피치계 탄소섬유 대비 1 wt.%미만인 경우는 유기고분자의 농도가 낮아 탄소섬유 웹 제조 시 섬유간의 결속력을 저하시키고, 20 wt.%를 초과하면 과량의 바인더로 인해 섬유 내에 응집현상이 유도되어 결속력을 저하시키기 때문이다. 유기 고분자 화합물을 수용액과 혼합하고 습식법으로 초지하여 탄소섬유 웹을 제조하는데 탄소섬유가 길게 가로로 놓여 있어야 탄소 단섬유의 파손 등의 문제를 미연에 방지할 수 있기 때문이다. 습식법은 액체매체 중에 탄소 단섬유를 분산시켜 초조하기 때문에 탄소 섬유를 이차원 평면 내에 배향시켜 탄소섬유 웹의 강도를 높이는 효과를 가진다. The concentration of the organic polymer compound is preferably 1 to 20 wt.%, More preferably 10 to 20 wt.%, Relative to the pitch-based carbon fiber. When the concentration of the organic polymer compound is less than 1 wt.% With respect to the pitch-based carbon fiber, the concentration of the organic polymer is low, which lowers the bonding force between the fibers during the production of the carbon fiber web. If the concentration exceeds 20 wt.%, The cohesion phenomenon is induced and the binding force is lowered. This is because the organic polymer compound is mixed with an aqueous solution and ground by a wet method to prepare a carbon fiber web so that the carbon fiber is placed long side-by-side so that the problems such as breakage of carbon short fibers can be prevented in advance. The wet method has the effect of increasing the strength of the carbon fiber web by orienting the carbon fibers in a two-dimensional plane because the carbon fibers are dispersed and dispersed in the liquid medium and are nervous.

상기 도금된 피치계 탄소섬유를 수용액, 아크릴 및 비닐계 수지와 분산제를 혼합한 유기 고분자 화합물 용액에 함침하고 1분 내지 60분 동안 초음파 분산하는 것이 바람직하다. 1분 미만인 경우 분산이 효과적으로 이루어지지 않아 뭉침현상을 유도하여 웹의 물성을 저하시키고 60분 이상에서는 그 효과가 미미하기 때문에 바람직하지 못하다. 분산제는 triton X-100, Sodium dodecyl sulfate(SDS), Span 80, Tween 85 및 Tween 60을 포함하는 군에서 선택되는 어느 하나일 수 있다.It is preferable to impregnate the plated pitch-based carbon fibers with an organic polymer compound solution in which an aqueous solution, an acrylic resin, a vinyl resin, and a dispersant are mixed and ultrasonically disperse for 1 to 60 minutes. In case of less than 1 minute, the dispersion is not effectively performed and the aggregation phenomenon is induced to lower the physical properties of the web, and the effect is insignificant at 60 minutes or longer, which is not preferable. The dispersing agent may be any one selected from the group including triton X-100, sodium dodecyl sulfate (SDS), Span 80, Tween 85 and Tween 60.

초음파 분산 후 핫프레스를 이용한 고온압착 과정에서 80 내지 200℃에서 3 내지 10MPa 압력으로 고온압착하여 탄소종이 웹을 제조한다. 80℃, 3MPa 미만인 경우 낮은 온도 및 압력 때문에 고분자 물질이 섬유 내부에 과량 잔존하여 뭉침 현상을 유도하고, 200℃, 10MPa 이상인 경우에는 높은 온도 및 압력 때문에 탄소섬유를 잡아주는 고분자 물질이 빠져나가 섬유간의 결착이 이루어지지 않기 때문에 바람직하지 못하다.After dispersing ultrasonic waves, the carbon paper web is manufactured by high-temperature bonding at a temperature of 80 to 200 ° C at a pressure of 3 to 10 MPa in a hot pressing process using a hot press. In the case of less than 3 MPa at 80 ° C, the polymer material is excessively retained in the fiber due to the low temperature and pressure, causing the aggregation phenomenon. When the temperature is higher than 200 MPa and 10 MPa or more, Which is undesirable because no binding occurs.

상기 제조된 탄소섬유 웹을 (c)단계에서 열경화성 수지에 함침하고 열풍으로 건조한다. 열경화성 수지는 페놀수지, 요소수지, 멜라민수지, 에폭시수지 및 불포화 폴리에스테르수지를 포함하는 군에서 선택되는 어느 하나 이상인 것이 바람직하다.The carbon fiber web is impregnated with a thermosetting resin in step (c) and dried with hot air. The thermosetting resin is preferably at least one selected from the group consisting of phenol resin, urea resin, melamine resin, epoxy resin and unsaturated polyester resin.

상기 열경화성 수지에 함침된 탄소섬유 웹은 12 내지 24시간 동안 열풍 건조하는 것이 바람직하다. 건조시간이 12시간 미만인 경우 용매가 완전히 증발하지 않아 경화과정에서 크렉을 유도하고 건조시간이 24시간 이상인 경우 장시간 높은 온도에 노출되어 섬유 물성저하를 초래하기 때문이다.The carbon fiber web impregnated with the thermosetting resin is preferably subjected to hot air drying for 12 to 24 hours. When the drying time is less than 12 hours, the solvent is not completely evaporated, and when the drying time is longer than 24 hours, the cured product is exposed to a high temperature for a long period of time to cause deterioration of the fiber properties.

상기 단계(d)에서 함침한 탄소섬유 웹을 열과 압력을 가하여 경화하는데 온도는 130 내지 210℃, 압력은 3MPa에 조건에서 고온 압착하여 경화하는 것이 바람직하다. 경화온도가 130℃ 이하인 경우에는 낮은 온도 때문에 완전한 경화를 유도하지 못하고, 210℃ 이상이면 높은 온도에 섬유 표면을 노출시켜 물성 저하를 초래하기 때문이다. 또한, 압력이 3MPa 이하일 경우 수지가 섬유내부에 과량 잔존하여 고르게 경화되지 못하여 물성 저하를 유도하고, 3MPa 이상일 경우 수지가 빠져나가 탄소섬유의 결속력을 저하시켜 바람직하지 못하다.The carbon fiber web impregnated in the step (d) is cured by applying heat and pressure. It is preferable that the carbon fiber web is cured by hot pressing at a temperature of 130 to 210 ° C and a pressure of 3 MPa. When the curing temperature is 130 ° C or lower, complete curing is not induced due to a low temperature. If the curing temperature is 210 ° C or higher, the fiber surface is exposed at a high temperature to cause deterioration of physical properties. When the pressure is 3 MPa or less, the resin remains excessively in the fiber and can not be uniformly cured, thereby causing deterioration of physical properties. When the pressure is 3 MPa or more, the resin escapes and the bonding strength of the carbon fiber is lowered.

상기의 방법으로 제조된 전자파 차폐재의 SEM 분석결과는 도 1에서 볼 수 있는데 니켈 도금을 통해 피치계 탄소섬유 표면에 니켈이 도입된 것을 확인할 수 있다.The SEM analysis results of the electromagnetic wave shielding material produced by the above method can be seen in FIG. 1, which shows that nickel is introduced on the surface of pitch-based carbon fiber through nickel plating.

도 2는 본 발명에서 제조한 탄소종이/에폭시 전자파 차폐재의 전자파 차폐 특성 분석 결과를 볼 수 있다. 니켈도금된 탄소섬유를 고분자 수지와 복합화하여 전기전도성을 증대시키고 표면 반사를 증대시키고 동시에 고투자율 충전제로 전자파 흡수를 증가시켜 고효율의 전자파 차폐재를 제조하였다. 아무처리도 하지 않은 에폭시수지인 비교예 1과 상기 실시 예 7과 동일하게 과정을 실시하되, 도금하지 않은 피치계 탄소섬유를 사용하여 제조한 탄소종이/에폭시 전자파 차폐재인 비교예 2, 실시예 7 각각의 전자파 차폐 특성을 분석한 결과 실시예 7이 차폐 효과가 비교예들에 비해 두 배 이상 우수함을 알 수 있다. 이는 니켈 도금을 통해 피치계 탄소섬유 상호 간의 결합력을 늘리고 금속성을 부여함으로써 전도성을 높이고 임피던스를 낮춰 전자파의 표면 반사를 유도하여 전자파 차폐 효율을 증가시킨 결과이다. FIG. 2 shows the results of analyzing the electromagnetic wave shielding characteristics of the carbon paper / epoxy electromagnetic wave shielding material produced in the present invention. The nickel - plated carbon fiber was combined with the polymer resin to increase the electrical conductivity, increase the surface reflection, and increase the electromagnetic wave absorption with the high permeability filler to produce the electromagnetic shielding material with high efficiency. Comparative Example 2, which was an epoxy resin which was not subjected to any treatment, and Comparative Example 2 which was a carbon paper / epoxy electromagnetic wave shielding material produced by using the unpatched pitch-based carbon fiber, As a result of analyzing each electromagnetic wave shielding characteristic, it can be seen that the shielding effect of Example 7 is more than twice as compared with the comparative examples. This is a result of increasing the bonding force between the pitch carbon fibers through nickel plating and increasing the conductivity by providing metallic property and inducing surface reflection of electromagnetic waves by lowering the impedance, thereby increasing the electromagnetic wave shielding efficiency.

표 1은 본 발명에 따른 전도성 카본종이의 제조조건을 보여준다.Table 1 shows the production conditions of the conductive carbon paper according to the present invention.

표 2는 본 발명에 따른 전도성 탄소종이의 전기전도도를 보여준다.Table 2 shows the electrical conductivity of the conductive carbon paper according to the present invention.

이하, 실시 예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 예시하기 위한 것으로써, 본 발명의 범위가 이들 실시 예에 의해 제한되는 것으로 해석되지는 않는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

측정예Measurement example 1. 주사전자현미경( 1. Scanning electron microscope ( SEMSEM ))

FE-Scannig Electron Microscopy (S-4300SE, Hitach Co.)을 통해 본 발명에서 제조한 피치계 탄소섬유의 형태를 관찰하였다.The shape of the pitch-based carbon fibers prepared in the present invention was observed through FE-Scannig Electron Microscopy (S-4300SE, Hitach Co.).

측정예Measurement example 2. 전자파 차폐 특성 측정 2. Measurement of Electromagnetic Shielding Characteristics

ASTM D4935-59에 준하여 전자파차폐 측정기 (AGILENT, USA)를 통해 본 발명에서 제조한 탄소종이/에폭시 전자파 차폐재의 차폐 특성을 관찰하였다. The shielding properties of the carbon paper / epoxy electromagnetic shielding material prepared in the present invention were observed through an electromagnetic wave shielding meter (AGILENT, USA) according to ASTM D4935-59.

측정예Measurement example 3. 전기전도도 측정 3. Electrical Conductivity Measurement

Four-probe point method with resistivity tester (MCP-T610, Mitsubishi Chemical Analytech Co., Ltd.)을 통해 본 발명에서 제조한 탄소종이/에폭시 전자파 차폐재의 전기전도도를 측정하였다.The electrical conductivity of the carbon paper / epoxy electromagnetic shielding material prepared according to the present invention was measured through a four-probe point method with resistivity tester (MCP-T610, Mitsubishi Chemical Analytech Co., Ltd.).

실시예Example 1. One.

피치계 탄소섬유를 0.1 M SnCl2용액과 0.0014 M PdCl2 용액에 담지하여 활성화시킨 후 30℃의 니켈 도금액에 1 분 동안 침지하여 탄소섬유를 도금한다. 증류수 100 중량부에 대하여 분산제와 PVA 1 wt.%를 첨가하여 혼합수용액을 제조하고 도금된 탄소섬유를 넣어 1 분 동안 균일하게 초음파 분산한다. 분산된 탄소섬유를 각형 틀에 초지하고, 핫프레스를 이용하여 80 ℃의 온도에서 3 MPa의 압력으로 2시간 동안 고온압착하여 탄소종이 웹을 제조한다. 유기 용매에 탄소섬유 100 중량부에 대하여 에폭시 수지 50 wt.%를 넣어 혼합용액을 만든다. 위에서 제조된 수지용액에 탄소섬유 웹을 함침하고 12 시간동안 건조오븐에서 용매를 제거한다. 최종적으로 핫프레스를 이용하여 3 MPa의 압력에서 130 ℃에서 2시간 동안 경화하여 탄소종이/에폭시 전자파 차폐재를 제조하였다.The pitch-based carbon fiber is activated by supporting it in a 0.1 M SnCl 2 solution and a 0.0014 M PdCl 2 solution, and then immersed in a nickel plating solution at 30 ° C for 1 minute to plasto carbon fibers. A mixed aqueous solution was prepared by adding a dispersant and 1 wt.% Of PVA to 100 parts by weight of distilled water, and the plated carbon fibers were added thereto and uniformly ultrasonically dispersed for 1 minute. The dispersed carbon fibers were ground in a square mold and hot-pressed at 80 DEG C and 3 MPa for 2 hours to produce a carbon paper web. 50 wt.% Of an epoxy resin is added to 100 parts by weight of carbon fiber in an organic solvent to prepare a mixed solution. The resin solution prepared above is impregnated with a carbon fiber web and the solvent is removed in a drying oven for 12 hours. Finally, a carbon paper / epoxy electromagnetic wave shielding material was prepared by curing at 130 ° C for 2 hours under a pressure of 3 MPa using a hot press.

실시예Example 2. 2.

상기 실시 예 1과 동일하게 과정을 실시하되, 도금과정에서 탄소섬유를 도금액에 3 분 동안 침지하고, PVA 5 wt.%를 첨가하여 혼합수용액을 제조하고, 탄소섬유를 5 분 동안 초음파 분산하여 탄소종이/에폭시 전자파 차폐재를 제조하였다. The procedure of Example 1 was repeated except that the carbon fibers were immersed in the plating solution for 3 minutes in the plating process, and 5 wt.% Of PVA was added thereto to prepare a mixed aqueous solution. Paper / epoxy electromagnetic shielding materials.

실시예Example 3. 3.

상기 실시 예 2와 동일하게 과정을 실시하되, 도금과정에서 탄소섬유를 도금액에 5 분 동안 침지하고, 수지함침 후 150 ℃에서 경화하여 탄소종이/에폭시 전자파 차폐재를 제조하였다. The same procedure as in Example 2 was performed, except that the carbon fiber was immersed in the plating solution for 5 minutes in the plating process, and the carbon paper / epoxy electromagnetic wave shielding material was prepared by curing the resin at 150 ° C. after impregnation.

실시예Example 4. 4.

상기 실시 예 3과 동일하게 과정을 실시하되, 도금과정에서 60 ℃의 도금액에 탄소섬유를 도금액에 8 분동안 침지한다. PVA 10 wt.%를 첨가하여 혼합수용액을 제조하고, 탄소섬유를 10 분 동안 초음파 분산하고, 130 ℃의 온도와 6 MPa 압력 조건에서 웹을 제조하고, 수지 함침 후 18 시간동안 열풍건조하여 탄소종이/에폭시 전자파 차폐재를 제조하였다. In the same manner as in Example 3, carbon fibers were immersed in a plating solution at 60 ° C for 8 minutes in the plating process. 10 wt.% Of PVA was added to prepare a mixed aqueous solution, the carbon fibers were ultrasonically dispersed for 10 minutes, and a web was prepared at a temperature of 130 ° C. and a pressure of 6 MPa. After the resin impregnation, / Epoxy electromagnetic shielding materials.

실시예Example 5. 5.

상기 실시 예 4과 동일하게 과정을 실시하되, 도금과정에서 탄소섬유를 도금액에 10 분 동안 침지한다. 수지 함침 후 170 ℃에서 경화하여 탄소종이/에폭시 전자파 차폐재를 제조하였다. The same procedure as in Example 4 was performed, except that the carbon fiber was immersed in the plating solution for 10 minutes in the plating process. The resin was impregnated and cured at 170 캜 to prepare a carbon paper / epoxy electromagnetic wave shielding material.

실시예Example 6. 6.

상기 실시 예 5과 동일하게 과정을 실시하되, 도금과정에서 탄소섬유를 도금액에 15 분 동안 침지한다. 탄소섬유를 30 분 동안 초음파 분산하고, 180 ℃의 온도에서 웹을 제조하여 탄소종이/에폭시 전자파 차폐재를 제조하였다. The same procedure as in Example 5 was carried out except that the carbon fiber was immersed in the plating solution for 15 minutes in the plating process. The carbon fiber was ultrasonically dispersed for 30 minutes, and a web was produced at a temperature of 180 ° C to prepare a carbon paper / epoxy electromagnetic wave shielding material.

실시예Example 7. 7.

상기 실시 예 6과 동일하게 과정을 실시하되, 도금과정에서 90 ℃의 도금액에 탄소섬유를 도금액에 20 분 동안 침지한다. PVA 15 wt.%를 첨가하여 혼합수용액을 제조하고, 수지 함침 후 24 시간동안 열풍건조하고, 190 ℃에서 경화하여 탄소종이/에폭시 전자파 차폐재를 제조하였다. The same procedure as in Example 6 was performed, except that the carbon fiber was immersed in a plating solution at 90 캜 for 20 minutes in the plating process. The mixed aqueous solution was prepared by adding 15 wt.% Of PVA, hot air dried for 24 hours after resin impregnation, and cured at 190 ° C to prepare a carbon paper / epoxy electromagnetic shielding material.

실시예Example 8. 8.

상기 실시 예 7과 동일하게 과정을 실시하되, 도금과정에서 탄소섬유를 도금액에 25 분 동안 침지한다. 탄소섬유를 60 분 동안 초음파 분산하고, 10 MPa 압력 조건에서 웹을 제조하여 탄소종이/에폭시 전자파 차폐재를 제조하였다. The same procedure as in Example 7 was carried out except that the carbon fiber was immersed in the plating solution for 25 minutes in the plating process. The carbon fiber was ultrasonically dispersed for 60 minutes, and a web was manufactured under a pressure of 10 MPa to prepare a carbon paper / epoxy electromagnetic shielding material.

실시예Example 9. 9.

상기 실시 예 8과 동일하게 과정을 실시하되, 도금과정에서 탄소섬유를 도금액에 30 분 동안 침지한다. PVA 20 wt.%를 첨가하여 혼합수용액을 제조하고, 200 ℃의 온도 조건에서 웹을 제조하고, 수지 함침 후 210 ℃에서 경화하여 탄소종이/에폭시 전자파 차폐재를 제조하였다. The same procedure as in Example 8 was performed, except that the carbon fiber was immersed in the plating solution for 30 minutes in the plating process. A mixed aqueous solution was prepared by adding 20 wt.% Of PVA, and a web was prepared at a temperature of 200 ° C., and the resin was impregnated and cured at 210 ° C. to prepare a carbon paper / epoxy electromagnetic shielding material.

비교예Comparative Example 1. One.

실시예에 사용되는 에폭시 수지The epoxy resin used in the examples

비교예Comparative Example 2. 2.

상기 실시 예 7과 동일하게 과정을 실시하되, 도금하지 않은 피치계 탄소섬유를 사용하여 탄소종이/에폭시 전자파 차폐재를 제조하였다. A carbon paper / epoxy electromagnetic wave shielding material was prepared using the same procedure as in Example 7, except that the pitch-based carbon fiber was not plated.

도금액 온도
(℃)
Plating liquid temperature
(° C)
침지 시간
(분)
Immersion time
(minute)
유기
고분자
(wt.%)
abandonment
Polymer
(wt.%)
초음파 분산
(분)
Ultrasonic dispersion
(minute)
탄소
섬유 웹
온도
(℃)
carbon
Fiber web
Temperature
(° C)
탄소
섬유 웹
압력
(MPa)
carbon
Fiber web
pressure
(MPa)
열풍
건조
(h)
sirocco
dry
(h)
경화
온도
(℃)
Hardening
Temperature
(° C)
실시예 1Example 1 3030 1One 1One 1One 8080 33 1212 130130 실시예 2Example 2 3030 33 55 55 8080 33 1212 130130 실시예 3Example 3 3030 55 55 55 8080 33 1212 150150 실시예 4Example 4 6060 88 1010 1010 130130 66 1818 150150 실시예 5Example 5 6060 1010 1010 1010 130130 66 1818 170170 실시예 6Example 6 6060 1515 1010 3030 180180 66 1818 170170 실시예 7Example 7 9090 2020 1515 3030 180180 66 2424 190190 실시예 8Example 8 9090 2525 1515 6060 180180 1010 2424 190190 실시예 9Example 9 9090 3030 2020 6060 200200 1010 2424 210210 비교예 1Comparative Example 1 -- -- -- -- -- -- -- -- 비교예 2Comparative Example 2 -- -- 1515 3030 180180 66 2424 190190

전기전도도 (S/cm)Electrical Conductivity (S / cm) 실시예 1Example 1 1.1931.193 실시예 2Example 2 2.8742.874 실시예 3Example 3 4.5324.532 실시예 4Example 4 5.8545.854 실시예 5Example 5 6.0826.082 실시예 6Example 6 7.6617.661 실시예 7Example 7 8.0568.056 실시예 8Example 8 7.0807.080 실시예 9Example 9 6.9906.990 비교예 1Comparative Example 1 -- 비교예 2Comparative Example 2 0.9290.929

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (5)

(a)피치계 탄소섬유를 금속 도금액에 침지하여 탄소섬유를 도금하는 단계;
(b)상기 도금된 탄소섬유를 습식법으로 유기고분자 화합물을 혼합하여 탄소섬유 웹을 제조하는 단계;
(c)상기 제조된 탄소섬유 웹을 열경화성 수지에 함침하는 단계; 및
(d)상기 함침한 탄소섬유 웹을 경화하는 단계를 포함하는 전자파 차폐재를 제조하는 방법.
(a) plating the carbon fiber by immersing the pitch-based carbon fiber in a metal plating solution;
(b) preparing a carbon fiber web by mixing the plated carbon fibers with an organic polymer compound by a wet process;
(c) impregnating the carbon fiber web with the thermosetting resin; And
(d) curing the impregnated carbon fiber web.
제1항에 있어서,
상기 (a)단계에서 도금시 온도는 30 내지 90℃ 인 것을 특징으로 하는 전자파 차폐재를 제조하는 방법.
The method according to claim 1,
Wherein the plating temperature in step (a) is 30 to 90 占 폚.
제1항에 있어서,
상기 (b)단계에서 상기 유기고분자 화합물은 폴리비닐알코올인 것을 특징으로 하는 전자파 차폐재를 제조하는 방법.
The method according to claim 1,
Wherein the organic polymer compound is polyvinyl alcohol in the step (b).
제1항에 있어서,
상기 (b)단계에서 상기 유기고분자 화합물의 농도는 상기 피치계 탄소섬유 대비 1 내지 20 중량비인 것을 특징으로 하는 전자파 차폐재를 제조하는 방법.
The method according to claim 1,
Wherein the concentration of the organic polymer compound in the step (b) is 1 to 20 weight ratio to the pitch-based carbon fiber.
제1항에 있어서,
상기 (c)단계에서 상기 열경화성 수지는 페놀수지, 요소수지, 멜라민수지, 에폭시수지 및 불포화 폴리에스테르수지를 포함하는 군에서 선택되는 어느 하나인 것을 특징으로 하는 전자파 차폐재를 제조하는 방법.
The method according to claim 1,
Wherein the thermosetting resin is one selected from the group consisting of phenol resin, urea resin, melamine resin, epoxy resin, and unsaturated polyester resin in the step (c).
KR1020170111099A 2017-08-31 2017-08-31 Manufacturing method of conductive carbon papers/epoxy composites using electroless nickel-plating KR20190024275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170111099A KR20190024275A (en) 2017-08-31 2017-08-31 Manufacturing method of conductive carbon papers/epoxy composites using electroless nickel-plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170111099A KR20190024275A (en) 2017-08-31 2017-08-31 Manufacturing method of conductive carbon papers/epoxy composites using electroless nickel-plating

Publications (1)

Publication Number Publication Date
KR20190024275A true KR20190024275A (en) 2019-03-08

Family

ID=65801251

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170111099A KR20190024275A (en) 2017-08-31 2017-08-31 Manufacturing method of conductive carbon papers/epoxy composites using electroless nickel-plating

Country Status (1)

Country Link
KR (1) KR20190024275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248530A (en) * 2019-06-29 2019-09-17 华南理工大学 A kind of wearable high electromagnetic wave shield film of ventilative automatically cleaning and preparation method thereof
KR20210057473A (en) * 2019-11-12 2021-05-21 전주대학교 산학협력단 Manufacturing method of metal-plated carbon mats for EMI-shielding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248530A (en) * 2019-06-29 2019-09-17 华南理工大学 A kind of wearable high electromagnetic wave shield film of ventilative automatically cleaning and preparation method thereof
KR20210057473A (en) * 2019-11-12 2021-05-21 전주대학교 산학협력단 Manufacturing method of metal-plated carbon mats for EMI-shielding

Similar Documents

Publication Publication Date Title
KR101307378B1 (en) Thermoplastic resin composition having good EMI shielding property
CN105198471B (en) The preparation method of the stealthy wave-penetrating composite material of graphene modified ceramic base
CN107521176B (en) Radar stealth composite film with sandwich structure and preparation method thereof
CN102675848A (en) Carbon fibre-reinforced flaky moulding material for shielding electromagnetic waves as well as preparation method and application
KR101386722B1 (en) Conductive carbon paper and the manufacturing method
KR20190024275A (en) Manufacturing method of conductive carbon papers/epoxy composites using electroless nickel-plating
CN103978524B (en) There is wood-based plate and the manufacture method thereof of electro-magnetic screen function
CN102166866A (en) Method for preparing antistatic laminated material from graphene
CN103012790B (en) Bisphthalonitrile-amino phenoxy phthalonitrile copolymer and condensate, and glass fiber composite material and preparation method thereof
TW202120775A (en) Method for preparing graphite sheet
CN105623490A (en) Wave-transparent antistatic coating, and preparation method and application thereof
Li et al. Silver‐coated conductive composite fabric with flexible, anti‐flaming for electromagnetic interference shielding
KR101744623B1 (en) Electromagnetic wave absorbing structures including metal-coated fibers and methods of manufacturing the same
KR101993453B1 (en) Method of controlling dielectric constant of composite material by fine pattern printing
Feng et al. Electrical conductivity and microwave absorbing properties of nickel‐coated multiwalled carbon nanotubes/poly (phthalazinone ether sulfone ketone) s composites
CN108252114B (en) Silicon carbide fiber cloth reinforced polyimide resin-based structural wave-absorbing material and preparation method thereof
KR101863210B1 (en) Conductive carbon paper using pitch-based carbon fiber and manufacturing method thereof
KR20190053666A (en) Carbon material composites
RU2410777C1 (en) Radar absorbing material
CN111825955A (en) High-frequency prepreg, preparation method thereof, copper-clad plate and preparation method thereof
CN111041715A (en) Nano carbon fiber film and resin composite board for electromagnetic shielding and preparation method thereof
CN111218060A (en) High-strength electromagnetic shielding GMT composite board and preparation method thereof
KR102140469B1 (en) Method for manufacturing electromagnetic wave shielding material using acid-treated carbon nanotube/pitch carbon paper
CN113831724B (en) Electromagnetic gradient asymmetric conductive composite material and preparation method thereof
KR101811993B1 (en) METAL-PLATED GLASS FIBER SMC(Sheet Moldings Compound) FOR EMI SHIELDING AND MANUFACTURING METHOD THEREBY

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
WITB Written withdrawal of application