KR20190022202A - Direct conversion method from somatic cells to induced cholangiocyte stem cells - Google Patents

Direct conversion method from somatic cells to induced cholangiocyte stem cells Download PDF

Info

Publication number
KR20190022202A
KR20190022202A KR1020170108198A KR20170108198A KR20190022202A KR 20190022202 A KR20190022202 A KR 20190022202A KR 1020170108198 A KR1020170108198 A KR 1020170108198A KR 20170108198 A KR20170108198 A KR 20170108198A KR 20190022202 A KR20190022202 A KR 20190022202A
Authority
KR
South Korea
Prior art keywords
cells
gene
induced
differentiation
cell
Prior art date
Application number
KR1020170108198A
Other languages
Korean (ko)
Other versions
KR101993045B1 (en
Inventor
한동욱
임경태
Original Assignee
건국대학교 글로컬산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 글로컬산학협력단 filed Critical 건국대학교 글로컬산학협력단
Priority to KR1020170108198A priority Critical patent/KR101993045B1/en
Publication of KR20190022202A publication Critical patent/KR20190022202A/en
Application granted granted Critical
Publication of KR101993045B1 publication Critical patent/KR101993045B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • C12N5/0672Stem cells; Progenitor cells; Precursor cells; Oval cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1323Adult fibroblasts

Abstract

The present invention relates to a transdifferentiation method from somatic cells to induced cholangiocyte stem cells. The method of transdifferentiation into the induced cholangiocyte stem cells of the present invention will be useful for the development of a cell therapeutic agent using cholangiocyte stem cells, modeling of diseases related to cholangiocytes, and studies on a mechanism of development and differentiation of cholangiocytes.

Description

체세포에서 유도담관줄기세포로의 교차분화방법 {Direct conversion method from somatic cells to induced cholangiocyte stem cells}{Direct conversion method from somatic cells to induced cholangiocyte stem cells}

본 발명은 체세포에서 유도담관줄기세포로의 교차분화방법 및 이에 의해 제조된 유도담관줄기세포에 관한 것이다.The present invention relates to a method of crossing differentiation from somatic cells into inducible biliary stromal cells and induction biliary stromal cells produced thereby.

오랜 기간 동안 만성 간 질환 등의 치료 분야에 있어서 간 이식(liver transplantation)만이 유일한 치료법으로 사용이 되어 왔으나, 이러한 간 장기 이식을 통한 치료방식은 현실적으로 많은 수요에 비해 극심한 간 공여자의 부족 현상, 고비용 및 이식후 면역거부반응 등의 한계점으로 인해 큰 제약이 따랐다. Liver transplantation has been the only treatment for long-term treatment of chronic liver disease. However, the treatment method through liver transplantation is not as effective as many demands, but as a result of severe shortage of liver donors, And immune rejection after transplantation.

그러나 최근 간 장기 이식방법이 아닌, 성체에서 분리한 간세포(adult hepatocyte)를 활용한 세포치료적 접근방식을 통해 만성 간 질환을 근본적으로 치료하고자 하는 방식이 각광받기 시작하였다. 그럼에도 불구하고 성체 간세포를 직접적으로 이식하는 세포치료방식은 간세포 특성상 체외 생존률 및 증식성의 한계로 인해 활용에 있어 큰 어려움이 있는 것이 사실이었다(Hay et al. (2008) Stem Cells 26, 894-902; He, J. et al. (2014) Gastroenterology 146, 789-800 e788; Si-Tayeb et al., (2010) Hepatology 51, 297-305).However, recently, a method to fundamentally treat chronic liver disease through the cellular therapeutic approach using adult hepatocyte isolated from the adult has begun to be popularized. Nevertheless, it has been recognized that cell therapy methods that directly transplant adult stem cells have great difficulties in utilization due to the limit of in vitro survival rate and proliferative capacity due to hepatocyte characteristics (Hay et al. (2008) Stem Cells 26, 894-902; He, J. et al. (2014) Gastroenterology 146, 789-800 e 788; Si-Tayeb et al., (2010) Hepatology 51, 297-305).

이에 대한 대안으로 전능성줄기세포(배아줄기세포 및 유도만능줄기세포 등) 유래의 간세포(hepatocyte-like cells)를 활용한 세포치료법이 대두된 바 있으나, 이 접근방법 또한 이식후 체내 종양세포 유전자의 활성화에 따른 종양 형성 가능성을 원천적으로 배제할 수 없어 임상적 활용에 있어서 치명적인 한계를 보여왔다(Tang, C. et al., Nat. Biotechnol. 29, 829-834). As an alternative to this, cell therapy using hepatocyte-like cells derived from pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) has been developed. However, (Tang, C. et al., Nat. Biotechnol., 29, 829-834), because the possibility of tumor formation due to tumor growth is not fundamentally excluded.

이러한 한계를 극복하기 위해 2012년 이후 원천적으로 종양형성 가능성을 배재할 수 있는 교차분화기술(direct conversion technology)을 이용해 제한적으로 유도간세포(induced hepatocytes, iHeps)를 생산 및 이식하는 방법들이 연구되어 왔다. To overcome these limitations, methods for producing and transplanting induced hepatocytes (iHeps) have been studied using limited direct conversion technology, which can displace the possibility of tumor formation from 2012 onwards.

최근 간 전체에서 상대적으로 작은 부분에 속하는 비(非)간세포, 즉 담관세포(cholangiocytes)와 같은 세포가 간 재생에 매우 중요하다는 사실이 밝혀짐에 따라, 체세포로부터 간세포와 담관세포를 모두 생산할 수 있는 분화능력을 가진 유도간줄기세포(induced hepatic stem-like cells, iHepSCs)를 생산하기 위한 연구가 진행 중이다. Recently, it has been shown that cells such as non-hepatocytes, ie cholangiocytes, belonging to a relatively small part of the liver are very important for hepatic regeneration, so that they can produce both hepatocytes and bile duct cells from somatic cells Studies are underway to produce induced hepatic stem-like cells (iHepSCs) with differentiation potential.

한편, 체세포로부터 간세포와 담관세포로 분화가 가능한 유도간줄기세포로의 교차분화 연구(Yu B et al., Cell Stem Cell 2013; 13:328-340)가 발표된 바 있었으나, 뛰어난 안전성을 가지고 있음에도 불구하고 제한적인 담관세포로의 분화 효율이 걸림돌로 작용하였다. Meanwhile, a cross-differentiation study (Yu B et al., Cell Stem Cell 2013; 13: 328-340) has been published from somatic cells to inducible stem cells capable of differentiating into hepatocytes and biliary duct cells, However, the efficiency of differentiation into restrictive bile duct cells acted as a stumbling block.

최근 인간 전능성줄기세포를 이용하여 담관줄기세포 및 담관세포를 생산하는 방법이 개발되었으나(Ogawa M et al., Nat Biotechnol 2015; 33:853-861; Sampaziotis F et al., Nat Biotechnol 2015; 33:845-852), 기술상 종양세포 유전자의 활성화에 따른 종양 형성 가능성을 원천적으로 배제할 수 없어 임상적 활용에 있어서 한계점을 보였다. Recently, a method for producing biliary stromal cells and biliary duct cells using human pluripotent stem cells has been developed (Ogawa M et al., Nat Biotechnol 2015; 33: 853-861; Sampaziotis F et al., Nat Biotechnol 2015; 33: 845-852), the possibility of tumor formation due to the activation of tumor cell genes was not able to be excluded from the technical point of view, thus showing a limit in clinical application.

이에 본 발명자들은 체세포로부터 담관줄기세포로의 낮은 교차분화효율을 개선하기 위한 방법을 제안하고자 한다.Therefore, the present inventors propose a method for improving the low cross-over differentiation efficiency from somatic cells to biliary stromal cells.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

참고특허문헌Reference Patent Document

대한민국 등록특허 10-1587231 체세포에서 간세포로의 직접교차분화 촉진용 조성물 및 방법Korean Patent No. 10-1587231 Compositions and methods for promoting direct crossing differentiation from somatic cells to hepatocytes

대한민국 등록특허 10-1743284 소분자화합물을 이용한 인간 체세포에서 간세포로의 직접교차분화 효율 향상 방법Method for enhancing direct crossing differentiation efficiency from human somatic cell to hepatocyte using small molecule compound

대한민국 등록특허 10-1639595 체세포에서 간세포로의 직접 교차분화 촉진용 조성물 및 방법 Korea Patent No. 10-1639595 Compositions and methods for promoting direct crossing differentiation from somatic cells to hepatocytes

본 발명자들은 체세포에서 담관줄기세포 (induced cholangiocyte stem cells)로의 교차분화효율을 향상시키기 위한 방법을 개발하고자 예의 연구 노력하였다. 그 결과 본 발명자들은 (i) 간발달 및 간재생에 필수적인 전사인자를 엄격히 선별하여 최종적으로 1a3 (Hnf1α, Foxa3) 조합을 개발하였고, 상기 조합의 유전자를 체세포에 도입하여 유도간줄기세포를 유도하였으며(step1), (ii) 이어 지속적인 체외 배양을 통해 유도간줄기세포를 담관세포 전단계인 담관줄기세포(cholangiocyte stem cell, CPC)로 분화(step2)시킴으로써 본 발명을 완성하게 되었다.The present inventors have tried to develop a method for improving the cross-differentiation efficiency of induced cholangiocyte stem cells in somatic cells. As a result, the inventors of the present invention developed a combination of (i) strictly selecting transcription factors necessary for hepatic development and liver regeneration and eventually developed a combination of 1a3 (Hnf1α, Foxa3), and introduced the gene of the combination into somatic cells to induce inducible stem cell (step 1), and (ii) followed by continuous in vitro culture to induce stem cell differentiation into cholangiocyte stem cells (CPC), which is a pre-cholangiocyte stem cell (step 2).

따라서, 본 발명의 목적은 유도담관줄기세포 (induced cholangiocyte stem cells)로의 교차분화방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide a method of crossing differentiation into induced cholangiocyte stem cells.

본 발명의 다른 목적은 유도담관줄기세포 (induced cholangiocyte stem cells)로의 교차분화용 조성물을 제공하는데 있다.Another object of the present invention is to provide a composition for cross-differentiation into induced cholangiocyte stem cells.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 체외로 분리된 포유동물의 체세포에 Hnf1α 및 Foxa3 유전자를 도입하는 단계를 포함하는 체세포에서 유도간줄기세포(induced hepatic stem-like cells)로의 교차분화방법을 제공한다.According to one aspect of the present invention, there is provided a method of crossing differentiation into induced hepatic stem-like cells in somatic cells comprising the step of introducing Hnf1? And Foxa3 genes into somatic cells of mammals isolated in vitro to provide.

본 발명에 따르면, 상기 Hnf1α (HNF1 homeobox A)유전자는 서열목록 제 1 서열로 표시되는 뉴클레오타이드 서열을 포함하고, 상기 Foxa3 (forkhead box A3) 유전자는 서열목록 제 2 서열로 표시되는 뉴클레오타이드 서열을 포함한다. 본 발명의 일 구현예에 따르면, 상기 Hnf1α 유전자는 서열목록 제 1 서열로 표시되는 뉴클레오타이드 서열로 구성되고, 상기 Foxa3 유전자는 서열목록 제 2 서열로 표시되는 뉴클레오타이드 서열로 구성된다.According to the present invention, the Hnf1α (HNF1 homeobox A) gene comprises a nucleotide sequence represented by SEQ ID No. 1, and the Foxa3 (forkhead box A3) gene comprises a nucleotide sequence represented by SEQ ID No. 2 . According to an embodiment of the present invention, the Hnf1? Gene is composed of a nucleotide sequence represented by SEQ ID No. 1 and the Foxa3 gene is composed of a nucleotide sequence represented by SEQ ID No. 2.

본 발명에서 상기 서열목록 제 1 서열 및 2 서열은 첨부한 서열목록에 기재된 뉴클레오타이드 서열에 한정되지 않는다는 것은 당업자에게 명확하다.It will be apparent to those skilled in the art that the first and second sequences of the Sequence Listing in the present invention are not limited to the nucleotide sequences described in the attached Sequence Listing.

뉴클레오타이드에서의 변이는 단백질에서 변화를 가져오지 않는 것도 있다. 이러한 핵산은 기능적으로 균등한 코돈 또는 동일한 아미노산을 코딩하는 코돈 (예를 들어, 코돈의 축퇴성에 의해, 아르기닌 또는 세린에 대한 코돈은 여섯 개이다), 또는 생물학적으로 균등한 아미노산을 코딩하는 코돈을 포함하는 핵산분자를 포함한다.Variations in nucleotides do not cause changes in the protein. Such nucleic acids include functionally equivalent codons or codons that encode the same amino acid (e.g., by codon degeneration, six codons for arginine or serine), or codons that encode biologically equivalent amino acids ≪ / RTI >

상술한 생물학적 균등 활성을 갖는 변이를 고려한다면, 본 발명에서 이용되는 핵산 분자는 서열목록에 기재된 서열과 실질적인 동일성(substantial identity)을 나타내는 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 60%의 상동성, 보다 바람직하게는 70%의 상동성, 보다 더 바람직하게는 80%의 상동성, 가장 바람직하게는 90%의 상동성을 나타내는 서열을 의미한다.Considering the mutation having the above-mentioned biological equivalent activity, the nucleic acid molecule used in the present invention is interpreted to include a sequence showing substantial identity with the sequence described in the sequence listing. The above-mentioned substantial identity is determined by aligning the sequence of the present invention with any other sequence as much as possible and analyzing the aligned sequence using an algorithm commonly used in the art. Homology, more preferably 70% homology, even more preferably 80% homology, and most preferably 90% homology.

서열비교를 위한 얼라인먼트 방법은 당업계에 공지되어 있다. 얼라인먼트에 대한 다양한 방법 및 알고리즘은 Smith and Waterman, Adv. Appl. Math. 2:482(1981); Needleman and Wunsch, J. Mol. Bio. 48:443(1970); Pearson and Lipman, Methods in Mol. Biol. 24: 307-31(1988); Higgins and Sharp, Gene 73:237-44(1988); Higgins and Sharp, CABIOS 5:151-3(1989); Corpet et al., Nuc. Acids Res. 16:10881-90(1988); Huang et al., Comp. Appl. BioSci. 8:155-65(1992) and Pearson et al., Meth. Mol. Biol. 24:307-31(1994)에 개시되어 있다. NCBI Basic Local Alignment Search Tool(BLAST)(Altschul et al., J. Mol. Biol. 215:403-10(1990))은 NBCI(National Center for Biological Information) 등에서 접근 가능하며, 인터넷 상에서 blastp, blasm, blastx, tblastn and tblastx와 같은 서열 분석 프로그램과 연동되어 이용할 수 있다. BLSAT는 http://www.ncbi.nlm.nih.gov/BLAST/에서 접속 가능하다. 이 프로그램을 이용한 서열 상동성 비교 방법은 http://www.ncbi.nlm.nih.gov/BLAST/blast_help.html에서 확인할 수 있다.Alignment methods for sequence comparison are well known in the art. Various methods and algorithms for alignment are described by Smith and Waterman, Adv. Appl. Math. 2: 482 (1981); Needleman and Wunsch, J. Mol. Bio. 48: 443 (1970); Pearson and Lipman, Methods in Mol. Biol. 24: 307-31 (1988); Higgins and Sharp, Gene 73: 237-44 (1988); Higgins and Sharp, CABIOS 5: 151-3 (1989); Corpet et al., Nuc. Acids Res. 16: 10881-90 (1988); Huang et al., Comp. Appl. BioSci. 8: 155-65 (1992) and Pearson et al., Meth. Mol. Biol. 24: 307-31 (1994). The NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol. 215: 403-10 (1990)) is accessible from National Center for Biological Information (NBCI) It can be used in conjunction with sequence analysis programs such as blastx, tblastn and tblastx. BLSAT is available at http://www.ncbi.nlm.nih.gov/BLAST/. A method for comparing sequence homology using this program can be found at http://www.ncbi.nlm.nih.gov/BLAST/blast_help.html.

한편, Hnf1α 유전자 또는 Foxa3 유전자 서열은 각각 서열목록 제 1서열 및 제2서열 중 CDS 부분을 포함할 수 있다.On the other hand, the Hnf1? Gene or Foxa3 gene sequence may comprise the CDS portion of Sequence Listing first and second sequences, respectively.

본 발명에 따르면, 본 발명의 유전자 서열(또는 유전자의 발현을 위한 뉴클레오타이드 서열)은 적절한 유전자 전달체(gene delivery system)에 포함되어 있다. 본 발명의 일 구현예에 따르면, 상기 유전자 도입에서 유전자 운반체는 바이러스, 플라스미드, 리포좀 또는 니오좀을 사용할 수 있으며, 이에 한정되는 것은 아니다.According to the present invention, the gene sequence of the present invention (or the nucleotide sequence for expression of the gene) is contained in a suitable gene delivery system. According to one embodiment of the present invention, the gene carrier may be a virus, a plasmid, a liposome, or a niozyme in the gene introduction, but is not limited thereto.

본 명세서에서 용어 “유전자 전달체”는 원하는 타겟 유전자를 대상 세포에 도입하여 발현시키기 위한 매개체를 의미한다. 이상적인 유전자 전달체는 인체에 무해하고 대량생산이 용이하며 효율적으로 유전자를 전달할 수 있어야 한다.As used herein, the term " gene transporter " means an agent for introducing and expressing a desired target gene into a target cell. The ideal gene transporter is harmless to the human body, is easy to mass-produce, and must be able to efficiently transfer the gene.

본 명세서에서, 용어 “유전자 전달”은 유전자가 세포 내로 운반되는 것을 의미하며, 유전자의 세포내 침투(transduction)와 동일한 의미를 가진다. 조직 수준에서, 상기 용어 유전자 전달은 유전자의 확산(spread)과 동일한 의미를 가진다. 따라서, 본 발명의 유전자 전달체는 유전자 침투 시스템 및 유전자 확산 시스템으로 기재될 수 있다.As used herein, the term " gene transfer " means that a gene is carried into a cell and has the same meaning as transduction of a gene into a cell. At the tissue level, the term gene transfer has the same meaning as the spread of a gene. Accordingly, the gene carrier of the present invention can be described as a gene penetration system and a gene diffusion system.

본 발명의 유전자 전달체를 제조하기 위해, 본 발명의 뉴클레오타이드 서열은 적합한 발현 컨스트럭트(expression construct) 내에 존재하는 것이 바람직하다. 상기 발현 컨스트럭트에서, 본 발명의 뉴클레오타이드 서열은 프로모터에 작동적으로 연결되는 것이 바람직하다. 본 명세서에서, 용어 “작동적으로 결합된”은 핵산 발현 조절 서열 (예: 프로모터, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 핵산 서열의 전사 및/또는 해독을 조절하게 된다. 본 발명에 있어서, 본 발명의 뉴클레오타이드 서열에 결합된 프로모터는, 바람직하게는 동물세포, 보다 바람직하게는 포유동물 세포에서 작동하여 LAMTOR3 유전자의 전사를 조절할 수 있는 것으로서, 포유동물 바이러스로부터 유래된 프로모터 및 포유동물 세포의 지놈으로부터 유래된 프로모터를 포함하며, 예컨대 CMV(포유동물 사이토 메갈로 바이러스) 프로모터, 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, HSV의 tk 프로모터, RSV 프로모터, EF1 알파 프로모터, 메탈로티오닌 프로모터, 베타-액틴 프로모터, 인간 IL-2 유전자의 프로모터, 인간 IFN 유전자의 프로모터, 인간 IL-4 유전자의 프로모터, 인간 림포톡신 유전자의 프로모터 및 인간 GM-CSF 유전자의 프로모터, U6 프로모터를 포함하나, 이에 한정되는 것은 아니다. To prepare the gene delivery vehicle of the present invention, the nucleotide sequence of the present invention is preferably present in a suitable expression construct. In such expression constructs, the nucleotide sequence of the invention is preferably operatively linked to a promoter. As used herein, the term " operably linked " means a functional linkage between a nucleic acid expression control sequence (e.g., an array of promoter, signal sequence, or transcription factor binding site) and another nucleic acid sequence, The regulatory sequence will regulate transcription and / or translation of the other nucleic acid sequences. In the present invention, the promoter bound to the nucleotide sequence of the present invention is preferably capable of regulating the transcription of the LAMTOR3 gene by working in an animal cell, more preferably a mammalian cell, and comprises a promoter derived from a mammalian virus and A promoter derived from the genome of a mammalian cell, such as CMV (mammalian cytomegalovirus) promoter, adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, HSV tk promoter, RSV promoter, EF1 alpha promoter Promoter of the human IL-2 gene, the promoter of the human IFN gene, the promoter of the human IL-4 gene, the promoter of the human lymphotoxin gene and the promoter of the human GM-CSF gene, U6 Promoters, but are not limited thereto.

본 발명의 유전자 전달체는 다양한 형태로 제작할 수 있는데, 이는 (ⅰ) 내이키드(naked) 재조합 DNA 분자, (ⅱ) 플라스미드, (ⅲ) 바이러스 벡터, 그리고, (ⅳ) 상기 내이키드 재조합 DNA 분자 또는 플라스미드를 내포하는 리포좀 또는 니오좀의 형태로 제작할 수 있다.The gene carrier of the present invention can be produced in various forms including (i) naked recombinant DNA molecules, (ii) plasmids, (iii) viral vectors, and (iv) the naked recombinant DNA molecules or plasmids In the form of a liposome or a niozyme.

Hnf1α 및 Foxa3 유전자 뉴클레오타이드 서열은 통상적인 유전자 치료에 이용되는 모든 유전자 전달 시스템에 적용될 수 있으며, 바람직하게는 플라스미드, 아데노바이러스(Lockett LJ, et al., Clin. Cancer Res. 3:2075-2080(1997)), 아데노-관련 바이러스(Adeno-associated viruses: AAV, Lashford LS., et al., Gene Therapy Technologies, Applications and Regulations Ed. A. Meager, 1999), 레트로바이러스(Gunzburg WH, et al., Retroviral vectors. Gene Therapy Technologies, Applications and Regulations Ed. A. Meager, 1999), 렌티바이러스 (Wang G. et al., J. Clin. Invest. 104(11):R55-62(1999)), 헤르페스 심플렉스 바이러스(Chamber R., et al., Proc. Natl. Act . Sci USA 92:1411-1415(1995)), 배시니아 바이러스(Puhlmann M. et al., Human Gene Therapy 10:649-657(1999)), 리포좀(Metho s in Molecular Biology, Vol 199, S.C. Basu and M. Basu (Eds.), Human Press 2002) 또는 니오좀에 적용될 수 있다. 본 발명의 일 구현예에 따르면, 상기 유전자 전달체는 본 발명의 유전자 서열 또는 뉴클레오타이드 분자를 레트로바이러스에 적용하여 제조할 수 있다.Hnf1? And Foxa3 gene nucleotide sequences can be applied to all gene delivery systems used in conventional gene therapy and are preferably plasmids, adenoviruses (Lockett LJ, et al., Clin. Cancer Res. 3: 2075-2080 ), Adeno-associated viruses (AAV, Lashford LS., Et al., Gene Therapy Technologies, Applications and Regulations Ed. A. Meager, 1999), retrovirus (Gunzburg WH, et al., Retroviral (Gene Therapy Technologies, Applications and Regulations Ed. A. Meager, 1999), lentivirus (Wang G. et al., J. Clin. Invest. 104 (11): R55-62 Viruses (Puhlmann M. et al., Human Gene Therapy 10: 649-657 (1999)), viruses (Chamber R., et al., Proc. Natl. Act. Sci. USA 92: 1411-1415 ), Liposomes (Methosin in Molecular Biology, Vol. 199, SC Basu and M. Basu (Eds.), Human Press 2002) or niosomes. According to one embodiment of the present invention, the gene transporter can be produced by applying the gene sequence or the nucleotide molecule of the present invention to a retrovirus.

본 발명에서, 유전자 전달체가 바이러스 벡터에 기초하여 제작된 경우에는, 상기 접촉시키는 단계는 당업계에 공지된 바이러스 감염 방법에 따라 실시된다. 바이러스 벡터를 이용한 숙주 세포의 감염은 상술한 인용문헌에 기재되어 있다.In the present invention, when the gene carrier is prepared based on a viral vector, the contacting step is carried out according to a virus infection method known in the art. Infection of host cells with viral vectors is described in the above cited documents.

본 발명에서 유전자 전달체가 내이키드(naked) 재조합 DNA 분자 또는 플라스미드인 경우에는, 미세 주입법(Capecchi, M.R., Cell, 22:479(1980); 및 Harland와 Weintraub, J. Cell Biol. 101:1094-1099(1985)), 칼슘포스페이트 침전법 (Graham, F.L. et al., Virology, 52:456(1973); 및 Chen과 Okayama, Mol. Cell. Biol.7:2745-2752(1987)), 전기 천공법(Neumann, E. et al., EMBO J., 1:841(1982); 및 Tur-Kaspa et al., Mol. Cell Biol., 6:716-718(1986)), 리포좀-매개 형질감염법(Wong, T.K. et al., Gene, 10:87(1980); Nicolau. etene, Biochim. Biophys. Acta, 721:185-190(1982); 및 Nicolau.et al., Methods Enzymol., 149:157-176(1987)), DEAE-덱스트란 처리법(Gopal, Mol. Cell Biol., 5:1188-1190(1985)), 및 유전자 밤바드먼트(Yang et al., Proc. Natl. Acad. Sci., 87:9568-9572(1990)) 방법에 의해 유전자를 세포내로 이입시킬 수 있다.22: 479 (1980); and Harland and Weintraub, J. Cell Biol. 101: 1094-919), in the case where the gene carrier is a naked recombinant DNA molecule or plasmid in the present invention. 1099 (1985)), calcium phosphate precipitation method (Graham, FL et al., Virology, 52: 456 (1973), and Chen and Okayama, Mol. Cell. Biol.7: 2745-2752 6: 716-718 (1986)), liposome-mediated transfection (Eugene et al., EMBO J., 1: 841 (1982), and Tur-Kaspa et al., Mol. Cell Biol. Et al., Methods Enzymol., ≪ RTI ID = 0.0 > 149: < / RTI > (1987)), DEAE-dextran treatment (Gopal, MoI. Cell Biol., 5: 1188-1190 (1985)), and gene bend buddhite (Yang et al., Proc. Natl. , ≪ / RTI > 87: 9568-9572 (1990)).

본 발명에 따르면, 본 발명의 방법은 포유동물의 체세포에 적용될 수 있으며, 예컨대, 인간, 마우스, 래트, 기니아 피그, 개, 고양이, 말, 소, 돼지, 원숭이 및 침팬지를 포함하며 이에 한정되는 것은 아니다.According to the present invention, the method of the present invention can be applied to somatic cells of mammals including, but not limited to, humans, mice, rats, guinea pigs, dogs, cats, horses, cows, pigs, monkeys and chimpanzees no.

본 발명에 따르면, 본 발명의 방법에 의해 제조된 유도간줄기세포는 간세포 또는 담관세포로의 분화가 모두 가능하다.According to the present invention, the induction stem cell prepared by the method of the present invention is capable of differentiating into hepatocyte or bile duct cell.

본 발명의 다른 양태에 따르면, 본 발명은 체외로 분리된 포유동물의 체세포에 Hnf1α 및 Foxa3 유전자를 도입하는 단계를 포함하는 체세포에서 간세포(hepatic cells)로의 교차분화방법을 제공한다.According to another aspect of the present invention, the present invention provides a method of crossing differentiation from somatic cells into hepatic cells, comprising introducing Hnf1 [alpha] and Foxa3 genes into somatic cells of an ex vivo separated mammal.

본 발명의 또 다른 양태에 따르면, 본 발명은 Hnf1α 유전자 및 Foxa3 유전자 발현을 위한 유전자 전달체를 포함하는, 체세포에서 간세포(hepatic cells)로의 교차분화용 조성물을 제공한다.According to another aspect of the present invention, there is provided a composition for crossing differentiation from somatic cells to hepatic cells, comprising a gene carrier for Hnf1? Gene and Foxa3 gene expression.

상기 간세포로의 교차분화방법 및 조성물은 상술한 유도간줄기세포로의 교차분화방법에서와 동일한 유전자를 이용하므로, 상기 방법과의 관계에서 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.Since the method and composition for crossing differentiation into hepatocytes utilize the same gene as the above-mentioned cross-differentiation method for inducing stem cell, the common content in relation to the above method is that, in order to avoid the excessive complexity of the present invention, It is omitted.

본 발명의 다른 양태에 따르면, 본 발명은 Hnf1α 및 Foxa3 유전자 발현을 위한 유전자 전달체를 포함하는, 체세포에서 유도간줄기세포(induced hepatic stem-like cells)로의 교차분화용 조성물을 제공한다.According to another aspect of the present invention, there is provided a composition for cross-differentiation into induced hepatic stem-like cells in somatic cells, comprising a gene carrier for Hnf1? And Foxa3 gene expression.

본 발명의 조성물은 상술한 교차분화방법에서와 동일한 유전자를 이용하므로, 상기 방법과의 관계에서 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.Since the composition of the present invention uses the same gene as in the above-mentioned cross-differentiation method, common description in relation to the method is omitted in order to avoid the excessive complexity of the present specification.

본 발명의 일 구현예에 따르면, 상기 체세포는 섬유아세포이다. According to one embodiment of the present invention, the somatic cell is a fibroblast.

본 발명의 다른 양태에 따르면, 본 발명은 상술한 본 발명의 교차분화용 조성물을 체세포를 포함하는 생시료에 접촉시키는 단계를 포함하는 체세포에서 유도간줄기세포(induced hepatic stem-like cells)로의 교차분화방법을 제공한다.According to another aspect of the present invention, there is provided a method for producing a cross-differentiating composition comprising contacting a cross-differentiating composition of the present invention described above with a live sample containing somatic cells, And provides a method of differentiation.

본 발명에서 용어 “생시료(biosample)”는 유기체-유래 시료를 의미한다. 상기 생시료는 생물원(예컨대 포유동물)의 세포, 조직, 또는 생체액, 또는 본 발명에 따라 수득될 수 있는 체세포를 포함하는 미디엄(medium)을 의미하고, 이는 인간으로부터 채취한 시료 및 동물로부터 채취한 시료를 포함한다. 본 발명에 따르면, 상기 생시료는 세포, 세포를 포함하는 조직 추출물을 포함하는 체내 유체 시료이다.The term " biosample " in the present invention means an organism-derived sample. The raw sample refers to a medium comprising cells, tissues, or biological fluids of a biological source (e.g., a mammal), or somatic cells obtainable according to the present invention, Includes collected samples. According to the present invention, the biological sample is an in-vivo fluid sample including a tissue extract containing cells and cells.

본 발명의 또 다른 양태에 따르면, 본 발명은 다음 단계를 포함하는 체세포에서 유도담관줄기세포 (induced cholangiocyte stem cells)로의 교차분화방법을 제공한다: According to another aspect of the present invention, the present invention provides a method of crossing differentiation into induced cholangiocyte stem cells in somatic cells comprising the steps of:

(a) 체외로 분리된 포유동물의 체세포에 Hnf1α 및 Foxa3 유전자를 도입하여 유도간줄기세포를 제조하는 단계; 및(a) introducing Hnf1 &agr; and Foxa3 genes into somatic cells of mammals isolated from in vitro, to produce inducible stem cells; And

(b) 상기 단계 (a)의 유도간줄기세포를 성장인자 포함 배지에서 계대배양하여 유도담관줄기세포를 제조하는 단계.(b) culturing the inducible stem cell of step (a) in a growth factor-containing medium to produce induced biliary stromal cells;

이하, 본 발명의 방법에 대하여 상세하게 설명한다.Hereinafter, the method of the present invention will be described in detail.

단계 (a): 유도간줄기세포의 제조 Step (a): Preparation of inducible stem cell

우선, 체외로 분리된 포유동물의 체세포에 Hnf1α 및 Foxa3 유전자를 도입하여 유도간줄기세포를 제조한다. 체세포에 유전자를 도입하는 방법은 상술한 바와 같다. 본 발명의 일 구현예에 따르면, pMX 레트로바이러스를 매개로 하여, 간 발달 및 간재생에 필수적인 전사인자로 알려진 Foxa1, Foxa2, Foxa3, Hnf1a 및 Hnf1b 유전자를 체세포(MEFs, mouse embryonic fibroblasts)에 도입하고, 이를 간줄기세포 특이적인 배양액(hepatic stem cell culture medium; HepCM)에서 배양함으로써 유도간줄기세포 세포주를 확립하였다. First, inducing liver stem cells are prepared by introducing Hnf1 alpha and Foxa3 genes into somatic cells of mammals isolated in vitro. The method of introducing the gene into somatic cells is as described above. According to one embodiment of the present invention, Foxa1, Foxa2, Foxa3, Hnf1a and Hnf1b genes known as transcription factors essential for liver development and liver regeneration are introduced into somatic cells (MEFs, mouse embryonic fibroblasts) via pMX retrovirus , And cultured in hepatic stem cell culture medium (HepCM) to establish a stem cell line.

본 발명의 일 구현예에 따르면, 간줄기세포 특이적 배양액(HepCM)의 조성은 다음과 같다: According to one embodiment of the present invention, the composition of liver stem cell specific culture medium (HepCM) is as follows:

DMEM/F-12 supplemented with 10% FBS, 0.1 μM dexamethasone, 10 mM nicotinamide, 1% ITS (insulin-transferrin-selenium) premix, and penicillin/streptomycin/glutamine, and both hepatocyte growth factor and epidermal growth factor.DMEM / F-12 supplemented with 10% FBS, 0.1 μM dexamethasone, 10 mM nicotinamide, 1% ITS (insulin-transferrin-selenium) premix and penicillin / streptomycin / glutamine and both hepatocyte growth factor and epidermal growth factor.

단계(b): 유도담관줄기세포의 제조 Step (b): Preparation of induced biliary stromal cells

이어, 유도간줄기세포를 성장인자(예컨대, EGF및/또는 HGF)가 포함된 배지(HepSCM)에서 배양하여 유도담관줄기세포로 분화시킨다.Next, the induced stem cell is cultured in a medium (HepSCM) containing growth factors (for example, EGF and / or HGF) to differentiate into induced biliary stromal cells.

본 발명의 일 구현예에 따르면 상기 HepSCM 배지의 조성은 다음과 같다: DMEM/F-12, 10% FBS (Hyclone), 0.1 μM dexamethasone (Sigma), 10 mM nicotinamide (Sigma), 1% ITS (insulin-transferrin-selenium) premix (Gibco), penicillin/streptomycin/glutamine (Invitrogen), 10 ng/ml hepatocyte growth factor (HGF; Peprotech), 10 ng/ml epidermal growth factor (EGF; Peprotech), gelatin-coated dish. According to one embodiment of the present invention, the composition of the HepSCM medium is as follows: DMEM / F-12, 10% FBS (Hyclone), 0.1 μM dexamethasone (Sigma), 10 mM nicotinamide (Gibco), penicillin / streptomycin / glutamine (Invitrogen), 10 ng / ml hepatocyte growth factor (HGF), 10 ng / ml epidermal growth factor (EGF) and gelatin-coated dish.

상기 배지 조성에서 유도간줄기세포를 약 14~16번의 지속적인 계대배양과정을 거쳐 유도담관줄기세포로 분화시켰다.In the medium composition, the inducible stem cells were subjected to continuous passage of about 14 to 16 times to differentiate into induced biliary stromal cells.

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 체세포에서 유도담관줄기세포 (induced cholangiocyte stem cells)로의 교차분화방법에 관한 것이다.(a) The present invention relates to a method of crossing differentiation into induced cholangiocyte stem cells in somatic cells.

(b) 본 발명의 유도담관줄기세포로의 교차분화방법는 향후 담관줄기세포를 이용한 세포치료제 개발 및 담관세포와 관련된 질환 모델링, 담관세포 분화 및 발달 메커니즘 연구 등에 유용하게 사용할 것으로 사료된다.(b) The cross-differentiation method of the present invention to induce biliary stromal cells will be useful for the development of a cell therapeutic agent using biliary stromal cells, disease modeling related to cholangiocellular cells, and development of biliary cell differentiation and development.

도 1. 유도간줄기세포 형성을 위한 실험적 과정에 대한 모식도이다.
도 2. 간 발달 및 간재생에 필수적인 전사인자로 알려진 Foxa1, Foxa2, Foxa3, Hnf1a, Hnf1b를 일반 체세포에 도입후 약 2주경, 간세포 (AFP), 담낭세포 (CK7, CK19), 그리고 간줄기세포 (TROP2) 특이적인 마커들이 발현하는 콜로니가 생성되는 것을 확인하였다.
도 3a-3f. 최적 유도간줄기세포 교차분화 조합 선별. 5개 인자 도입 조건에서, 한가지의 도입인자들을 각각 제거하였을 경우에 AFP/CK19 양성 콜로니의 갯수를 측정하였으며, Foxa1, Foxa2, Foxa3, Hnf1a, Hnf1b가 제거되었을 경우 유도간줄기세포 특이적인 상피세포 콜로니의 수가 크게 감소하는 것을 확인하였다(도 3a). 또한, 각각의 제거조건 하에서의 간세포 및 간줄기세포 특이적 마커 유전자 발현양상을 확인한 결과, Hnf1a, Foxa2를 제거하였을 경우에 전체적 마커 발현이 감소하는 것을 확인하였다(도 3b). 이를 근거로 Hnf1a, Foxa2 (이하 1a2), 그리고 Hnf1a, Foxa3 (이하 1a3)를 각각 조합하여 유도간줄기세포를 유도한 결과, AFP/CK19 유전자 발현 양상 및 양성 콜로니의 수, EPCAM 양성 세포의 수가 1a3에서 1a2보다 유의적으로 높게 나타나는 것을 확인하였고(도 3c 내지 3e), 1a3를 이용하여 생산한 유도간줄기세포에서 간줄기세포 특성을 보이는 단백질이 현저하게 발현하고 있음을 확인하였다(도 3f). 대조군으로써, 성체 쥐에서 분리한 간세포 및 담낭세포를 각각 사용하였다.
도 4a-4c. 유도간줄기세포 기본 특성 분석. 1a3조합에 의해 생산한 유도간줄기세포 세포주 1-4가 간줄기세포 특이적인 성질을 나타내는지 RT-PCR (도 4a), qPCR (도 4b), 면역형광염색법(도 4c)을 통해 확인하였다. 다양한 간세포 및 담낭세포, 간줄기세포 특이적인 마커를 뚜렷하게 발현하고 있음을 확인하였다.
도 5a-5e. 유도간줄기세포의 간세포 분화능 검증. 1a3 조합을 이용하여 생산한 유도간줄기세포로부터 간세포로 분화시킨 후 모양 변화를 관찰하였으며(도 5a), 1a3조합에 의해 생산한 유도간줄기세포가 간세포 및 담낭줄기세포의 분화 특성을 보이는 지 확인하기 위해, 간세포로의 분화 유도후 7일경, RT-PCR (도 5b), 면역형광염색법(도 5c), PAS 및 ICG 염색법(도 5d), 혈청 알부민 분비량(도 5e)을 검증한 결과, 담낭세포 마커(Ggt, CK7) 및 간줄기세포 마커(Dlk1)의 발현양이 현저히 감소함과 동시에 간세포 특이적인 기능성을 뚜렷하게 보이는 등 유도간줄기세포가 간세포 분화 조건에서 성숙한 간세포로 분화가 가능함을 확인하였다.
도 6a-6d. 유도간줄기세포의 담낭세포 분화능 검증. 3차원 배지에서 담낭세포로의 분화를 유도한 후 7일경, CK19 양성의 담낭구조 및 가지형태의 모양변화를 관찰하였으며(도 6a), 분화된 세포의 특성을 qPCR (도 6b), 면역형광염색법(도 6c), 담관세포의 물 및 이온 배출 기능성을 검증하기위해 MDR1(multidrug resistance protein 1) 및 CFTR(Cystic fibrosis transmembrane regulator) 수용체 활성 분석(도 6d)을 통해 검증한 결과이다. MDR1의 기능성을 확인하기위해 rodamine 123(Rho123) 흡수 및 배출을 통해 확인하였으며, 담관의 swelling 정도의 파악을 위하여 forskolin(FSK) 및 IBMX를 처리하였으며 CFTR 저해제가 있을 때와 없을 때를 비교하여 실제 저해제가 있을시에 FSK 와 IBMX에 의한 swelling이 저해됨을 확인하였다(도 6d).
도 7. 유도간줄기세포 교차분화 효율 비교 분석. 전사인자 조합(1b3) 및 조합(1a3)을 통한 유도간줄기세포 교차분화효율과 비교하기 위해, 전사인자 도입후 14일경 유세포분석기를 이용하여 E-cadherin 또는 EPCAM 양성 반응을 보이는 세포의 수로 산출한 결과이다.
도 8a-8b. 기존 유도간줄기세포주와의 기본 특성 비교 분석.
도 9a-9c. 1b3 조합과 1a3 조합에 대하여 Rho123 전달능을 비교 관찰한 결과, 1a3 조합이 월등히 높은 수의 Rho123 흡수율을 보였다(9a). 또한 MDR1 수용체 활성 분석법(9b), qPCR기법(9c)을 이용하여 기존 유도간줄기세포주와의 담낭세포 분화능을 비교하였다.
도 10. 유도간줄기세포 및 담관줄기세포 형성을 위한 실험적 과정에 대한 모식도. (i) 간발달 및 간재생에 필수적인 1a3 (Hnf1α, Foxa3) 전사인자 조합을 이용하여 체세포를 유도간줄기세포로 유도(step1)하였고, (ii) 이어 지속적인 체외 배양을 통해 유도간줄기세포를 담관세포 전단계인 담관줄기세포(cholangiocyte stem cell, CPC)로 분화시켰다(step2).
도 11. 유도간줄기세포에서 유도담관줄기세포로의 분화.
도 12a-12d. 1a3이용한 유도간줄기세포 유도 및 확립, 특성분석. Foxa3 및 Hnf1a를 체세포에 도입후, 간세포 (AFP), 담관세포 (CK7, CK19), 그리고 간줄기세포 (TROP2) 특이적인 마커들이 발현하는 콜로니가 생성되는 것을 확인하였다 (도 12a). 생산한 유도간줄기세포가 간줄기세포 특이적인 성질을 나타내는지 RT-PCR, qPCR, 면역형광염색법을 통해 확인한 결과, 다양한 간세포 및 담관세포, 간줄기세포 특이적인 마커를 뚜렷하게 발현하고 있음을 확인하였다(도 12b-12d).
도 13a-13c. 유도간줄기세포의 유도담관줄기세포로의 분화 과정. 유도간줄기세포의 계대배양 결과 간세포 마커인 Afp, Alb, Hnf4a의 발현량은 감소하고, 반면 CK19, SOX9과 같은 담관세포 마커는 유지되는 것을 확인할 수 있었다(도 13a-13b). 특히 qPCR을 이용해 다양한 담관세포 특이적인 마커를 확인해본 결과 성숙 담관세포 특이적인 마커의 발현과 더불어 Notch2, Hes1, Jag1과 같은 Notch신호전달과 관련된 마커들의 발현양이 유의적으로 증가하였다(도 13c).
도 14a-14d. Notch신호전달 활성화에 의한 유도담관줄기세포 분화기전 검증. Notch신호전달을 억제하는 약물인 DAPT (N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a γ-secretase inhibitor; Sigma)를 10ng/ml처리한 결과 담관줄기세포 및 담관세포로의 분화가 완벽하게 억제(Afp, Alb, Ttr, Hnf4a 발현양 유지, 도 14a)되고 유도간줄기세포 상태가 오히려 지속적으로 유지되는 것을 qPCR(도 14b), 면역형광염색법(도 14c), MDR1 수용체 활성 분석법(도 14d)을 통해 확인하였다.
도 15a-15f. 유도담관줄기세포의 체내 분화능 검증. 유도담관줄기세포를 C57Bl6/J 마우스에 이식하여 체내 담관세포로의 분화를 유도한 후, 간을 적출하여 이식된 유도담관줄기세포의 분화정도를 면역염색법을 통해 분석하였다. 그 결과, 유도간줄기세포에 비해 유도담관줄기세포의 경우 유의적으로 많은 수의 담관구조가 형성되었고(도 15a-15b) 이를 CK19, OPN과 같은 담관세포 특이적인 마커로 면역염색해본 결과 압도적인 양상으로 유도담관줄기세포가 기능성을 갖춘 담관세포로 분화되는 것을 확인하였다(도 15c-15f).
Fig. 1 is a schematic diagram of an experimental process for inducing stem cell formation.
(AFP), gallbladder cells (CK7, CK19), and hepatic stem cells (HCCs), which are essential transcription factors for liver development and liver regeneration. (TROP2) specific markers were generated.
3A-3F. Optimal induction stem cell crossing differentiation combination screening. The number of AFP / CK19 positive colonies was measured when one of the transduction factors was removed, and when Foxa1, Foxa2, Foxa3, Hnf1a, and Hnf1b were removed, the induction of stem cell-specific epithelial cell colonies (Fig. 3A). Further, as a result of examining the expression pattern of hepatocyte and liver stem cell specific marker gene under the respective removal conditions, it was confirmed that when the Hnf1a and Foxa2 were removed, the overall marker expression was decreased (FIG. 3b). Based on these results, induction of stem cell induction by combination of Hnf1a, Foxa2 (hereinafter referred to as 1a2) and Hnf1a and Foxa3 (hereinafter referred to as 1a3) resulted in the expression pattern of AFP / CK19 gene and the number of positive colonies and the number of EPCAM- (FIG. 3C to FIG. 3E), and it was confirmed that a protein showing liver stem cell characteristics was remarkably expressed in the inducible stem cell produced using 1a3 (FIG. 3F). As control, hepatocytes and gallbladder cells isolated from adult rats were used, respectively.
Figures 4a-4c. Analysis of Fundamental Characteristics of Inducible Stem Cells. (Fig. 4A), qPCR (Fig. 4B), and immunofluorescence staining (Fig. 4C), which indicate the stem cell specificity of the inducible stem cell line 1-4 produced by the combination of the? It was confirmed that various hepatocytes, gallbladder cells and liver stem cell specific markers were clearly expressed.
5A-5E. Verification of hepatocyte differentiation ability of inducible stem cell. (FIG. 5A), and it was confirmed whether the induction stem cell produced by the combination of 1a3 showed differentiation characteristics of hepatocytes and gallbladder stem cells (Fig. 5B), immunofluorescence staining (Fig. 5C), PAS and ICG staining (Fig. 5D) and serum albumin secretion amount (Fig. 5E) after 7 days of induction of differentiation into hepatocytes. The expression levels of cell markers (Ggt, CK7) and liver stem cell markers (Dlk1) were markedly decreased, and at the same time, it was confirmed that the inducible liver stem cells showing distinctive functions of hepatocytes were able to differentiate into mature hepatocytes under hepatocyte differentiation conditions .
6a-6d. Verification of the ability of stem cells to induce gallbladder cell differentiation. After 7 days of induction of differentiation from the 3-dimensional medium into gallbladder cells, changes in the shape of the gallbladder structure and branch shape were observed (Fig. 6A). The characteristics of the differentiated cells were analyzed by qPCR (Fig. 6B), immunofluorescence staining (Fig. 6c), and the results were verified through MDR1 (multidrug resistance protein 1) and CFTR (cystic fibrosis transmembrane regulator) receptor activity assay (Fig. 6d) to verify the water and ion release function of the bile duct cells. To confirm the functionality of MDR1, it was confirmed through the absorption and excretion of rodamine 123 (Rho123). Forskolin (FSK) and IBMX were treated to determine the degree of swelling of the bile ducts. Compared with when there was CFTR inhibitor, And swelling by FSK and IBMX was inhibited (Fig. 6d).
Figure 7. Comparative analysis of stem cell crossing differentiation efficiency of induction liver. Cadherin or EPCAM positive cells using a flow cytometry analyzer for about 14 days after the transduction factor introduction in order to compare induction stem cell crossing differentiation efficiency through transcription factor combination (1b3) and combination (1a3) Results.
8A-8B. Comparison of basic characteristics with existing inducible stem cell lines.
Figures 9a-9c. 1b3 combination and 1a3 combination, the 1a3 combination showed a significantly higher Rho123 absorption rate (9a). In addition, the ability to differentiate gallbladder cells from existing inducible stem cell lines was compared using MDR1 receptor activity assay (9b) and qPCR technique (9c).
FIG. 10. A schematic diagram of an experimental procedure for inducing stem cell and biliary stromal cell in induction. (i) induction of somatic cells into induced stem cells using a combination of 1a3 (Hnf1α, Foxa3) transcription factors essential for liver development and liver regeneration (step 1); and (ii) And then differentiated into cholangiocyte stem cells (CPC), which is a pre-cell stage (step 2).
Figure 11. Differentiation of inducible stem cells into inducible biliary stromal cells.
12A-12D. Induction and Establishment of Stem Cells Induced by. After introduction of Foxa3 and Hnf1a into somatic cells, colonies expressing hepatocyte (AFP), biliary cell (CK7, CK19), and liver stem cell (TROP2) specific markers were generated (Fig. 12A). It was confirmed by RT-PCR, qPCR, and immunofluorescence staining that the produced stem cells of the present invention express liver stem cell specificity, and that they express various hepatocyte, biliary cell and liver stem cell-specific markers (Figs. 12B-12D).
Figures 13a-13c. Induced differentiation of stem cells into induced biliary stromal cells. As a result, the expression level of the hepatocyte markers Afp, Alb, and Hnf4a was decreased, whereas the bile duct cell markers such as CK19 and SOX9 were maintained (Figs. 13a-13b). In particular, when qPCR was used to identify various biliary cell-specific markers, the expressions of markers related to Notch signaling such as Notch2, Hes1, and Jag1 were significantly increased along with the expression of matured biliary cell-specific markers (Fig. 13c) .
14A-14D. Verification of induction of stem cell differentiation induced by Notch signaling activation. Treatment with 10 ng / ml of DAPT (N- [3,5- Difluorophenacetyl) -L-alanyl] -S-phenylglycine t-butyl ester, a γ-secretase inhibitor; Sigma) (Fig. 14 (b)). It was found that the induction of the stem cell state of the induced liver was maintained rather constantly in the case of qPCR (Fig. 14 (b)), immunofluorescence (Fig. 14C), and the MDR1 receptor activity assay (Fig. 14D).
15A-15F. Inducibility of inducible biliary stromal cells in the body. Inducible biliary stromal cells were transplanted into C57B16 / J mice to induce differentiation into the biliary duct cells, and the degree of differentiation of the transplanted induced biliary stromal cells was analyzed by immunohistochemistry. As a result, a large number of biliary structures were formed in the induction bile duct stromal cells as compared with the induction stem cell (Figs. 15A-15B). Immunostaining with bile duct cell-specific markers such as CK19 and OPN resulted in overwhelming And the induced biliary stromal cells were differentiated into functional biliary duct cells (Figs. 15C-15F).

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example

[유도간줄기세포의 제작 및 특성분석][Production and Characterization of Inducible Stem Cells]

실험방법Experimental Method

1. 유도간줄기세포 세포주의 제작1. Production of inducible stem cell line

유도간줄기세포 교차분화 유도, 배양, 확립과정: pMX 레트로바이러스를 매개로, 간 발달 및 간재생에 필수적인 전사인자로 알려진 Foxa1 (NM_008259), Foxa2 (NM_010446), Foxa3 (NM_008260), Hnf1a (NM_009327), Hnf1b(NM_008261)를 최초 5만개의 일반 체세포(MEFs, mouse embryonic fibroblasts)에 도입한 후 48시간 뒤 간줄기세포 특이적인 배양액(hepatic stem cell culture medium; HepCM)에서 배양을 하였다 (도 1). 약 2주 후 상피세포 형태를 가진 유도간줄기세포 콜로니가 생성되는 것을 확인하였고, 이를 분리하여 유도간줄기세포 세포주를 확립하였다(Du, Y. et al, (2014). Cell Stem Cell 14, 394-403; Huang, P. et al, Nature 475, 386-389; Huang, P. et al, (2014) Cell Stem Cell 14, 370-384; Sekiya, S. et al., (2011) Nature 475, 390-393). (NM_008259), Foxa2 (NM_010446), Foxa3 (NM_008260), and Hnf1a (NM_009327), which are essential transcription factors for liver development and liver regeneration via pMX retrovirus, induce stem cell crossing differentiation induction, , And Hnf1b (NM_008261) were introduced into the first 50,000 MEFs (mouse embryonic fibroblasts) and cultured in hepatic stem cell culture medium (HepCM) for 48 hours (FIG. 1). After about two weeks, it was confirmed that inducible stem cell colony with epithelial cell morphology was formed, and it was isolated to establish a stem cell line of induction liver stem cell (Du, Y. et al, (2014) Cell Stem Cell 14, 394 Nature 475, 386-389; Huang, P. et al, (2014) Cell Stem Cell 14, 370-384; Sekiya, S. et al., (2011) Nature 475, 390-393).

*간줄기세포배양액 조성: DMEM/F-12 supplemented with 10% FBS (Biowest), 0.1 μM dexamethasone (Sigma), 10 mM nicotinamide (Sigma), 1% ITS (insulin-transferrin-selenium) premix (Gibco), and penicillin/streptomycin/glutamine (Invitrogen), and both hepatocyte growth factor (Peprotech) and epidermal growth factor (Peprotech).* Liver stem cell culture composition: DMEM / F-12 supplemented with 10% FBS (Biowest), 0.1 μM dexamethasone (Sigma), 10 mM nicotinamide (Sigma), 1% insulin-transferrin- selenium premix (Gibco) and penicillin / streptomycin / glutamine (Invitrogen), and both hepatocyte growth factor (Peprotech) and epidermal growth factor (Peprotech).

2. 최적 유도간줄기세포 교차분화 조합 선별2. Optimal induction stem cell crossing differentiation combination screening

유도간줄기세포로의 최적 교차분화 조합을 선별하기 위해 1) RT-PCR기법을 이용해 간세포(Afp, Alb), 담관세포(CK7, CK19), 간줄기세포(Epcam, Trop2) 특이적인 마커의 발현여부를 분석하였고, 2) 면역형광염색법을 이용하여AFP와 CK19 양성반응을 보이는 콜로니 수를 측정하였으며, 3) 간줄기세포 특이적인 표면단백질인 EPCAM양성의 세포수를 유세포분석기(flow cytometry)를 이용하여 측정하였다. In order to select optimal cross-differentiation combinations to induce stem cell differentiation, we used 1) RT-PCR technique to express markers specific for hepatocytes (Afp, Alb), bile duct cells (CK7, CK19), liver stem cells (Epcam, Trop2) 2) Immunofluorescence staining was used to measure the number of colonies positive for AFP and CK19. 3) The number of EPCAM positive cells, a surface protein specific for liver stem cells, was measured by flow cytometry Respectively.

1) RT-PCR 1) RT-PCR

유도된 간줄기세포의 유전자 발현 양상 분석을 위해 RNA를 Hybrid-RTM (GeneAll)을 이용하여 추출한 후, 총 1 μg 의 RNA로부터 역전사효소 키트(Applied Biosystems)를 이용하여 cDNA를 합성하였다(각각 해당 제품의 표준방법대로 시행). 그 후 각각의 마커에 대한 프라이머를 이용하여 RT-PCR을 진행하였다.RNA was extracted using Hybrid-RTM (GeneAll) for the analysis of gene expression patterns of induced stem cells, and cDNA was synthesized from total 1 μg of RNA using a reverse transcriptase kit (Applied Biosystems) In accordance with the standard method. RT-PCR was then performed using primers for each marker.

마커 유전자 발현 확인을 위한 프라이머 서열정보Primer sequence information for marker gene expression confirmation 유전자명Gene name Genebank NumberGenebank Number 프라이머 서열 (F/R)The primer sequence (F / R) AatAat NM_009243NM_009243 5'-CCTGCTAAACA6pCGCAGAA-3'5'-CCTGCTAAACA6pCGCAGAA-3 ' 5'-TCGATGGTCAGCACAGCCTTA-3'5'-TCGATGGTCAGCACAGCCTTA-3 ' AfpAfp NM_007423NM_007423 5'-CGTGATGCTTTGGGCGTTTA-3'5'-CGTGATGCTTTGGGCGTTTA-3 ' 5'-GCCAAAAGGCTCACACCAAAG-3'5'-GCCAAAAGGCTCACACCAAAG-3 ' AlbAlb NM_009654NM_009654 5'-AAACCTTGTCACTAGATGCAAAGACG-3'5'-AAACCTTGTCACTAGATGCAAAGACG-3 ' 5'-GGGTAGCCTGAGAAGGTTGTGG-3'5'-GGGTAGCCTGAGAAGGTTGTGG-3 ' Hnf1aHnf1a NM_009327NM_009327 5'-CCTGCTGCCATCCAACCATA-3'5'-CCTGCTGCCATCCAACCATA-3 ' 5'-CCACGGTTACTGGGAAGAGGA-3'5'-CCACGGTTACTGGGAAGAGGA-3 ' Hnf4aHnf4a NM_008261NM_008261 5'-GCCAACGATCACCAAGCAAG-3'5'-GCCAACGATCACCAAGCAAG-3 ' 5'-TGAGGGTATGAGCCAGCAGAA-3'5'-TGAGGGTATGAGCCAGCAGAA-3 ' E-cadherinE-cadherin NM_009864NM_009864 5'-TTCAAGAAGCTGGCGGACAT-3'5'-TTCAAGAAGCTGGCGGACAT-3 ' 5'-CATCTCCCATGGTGCCACAC-3'5'-CATCTCCCATGGTGCCACAC-3 ' TtrTtr NM_013697NM_013697 5'-CCCTGCTCAGCCCATACTCCTA-3'5'-CCCTGCTCAGCCCATACTCCTA-3 ' 5'-TGCTTTGGCAAGATCCTGGT-3'5'-TGCTTTGGCAAGATCCTGGT-3 ' CK8CK8 NM_031170NM_031170 5'-AAGCTGGTGTCCGAGTCTTCTGA-3'5'-AAGCTGGTGTCCGAGTCTTCTGA-3 ' 5'-AGCTCAGGCTGGCAAGGACT-3'5'-AGCTCAGGCTGGCAAGGACT-3 ' CK18CK18 NM_010664NM_010664 5'-GATCGTGGATGGCAGAGTGG-3'5'-GATCGTGGATGGCAGAGTGG-3 ' 5'-TTCCCTCCTTCTCTGCCTCAGT-3'5'-TTCCCTCCTTCTCTGCCTCAGT-3 ' TatTaste NM_146214NM_146214 5'-AAGGCAGCCAGGAGGAGTGT-3'5'-AAGGCAGCCAGGAGGAGTGT-3 ' 5'-TGAGGAGGAGCAGCCCAACT-3'5'-TGAGGAGGAGCAGCCCAACT-3 ' G6pG6p NM_008061NM_008061 5'-CGGATCCTGGGACAGACACA-3'5'-CGGATCCTGGGACAGACACA-3 ' 5'-CTTTGCATGGCGGTTGACTT-3'5'-CTTTGCATGGCGGTTGACTT-3 ' OclnOcln NM_008756NM_008756 5'-TCGCACATCAAGAGGATGGTG -3'5'-TCGCACATCAAGAGGATGGTG -3 ' 5'-GCCTCTGGAGAGAATTGCAGAGA-3'5'-GCCTCTGGAGAGAATTGCAGAGA-3 ' DspDsp NM_023842NM_023842 5'-GGCTGACGGAAGAGGAAACTG -3'5'-GGCTGACGGAAGAGGAAACTG -3 ' 5'-ATGGTGGCCAACAGCGACT-3'5'-ATGGTGGCCAACAGCGACT-3 ' Col1a1Col1a1 NM_007742NM_007742 5'-CCCTGCCTGCTTCGTGTAAA-3'5'-CCCTGCCTGCTTCGTGTAAA-3 ' 5'-TCGTCTGTTTCCAGGGTTGG-3'5'-TCGTCTGTTTCCAGGGTTGG-3 ' Thy1Thy1 NM_009382NM_009382 5'-CTTTCCCTCTCCCTCCTCCAAG-3'5'-CTTTCCCTCTCCCTCCTCCAAG-3 ' 5'-CGAGGGCTCCTGTTTCTCCTT-3'5'-CGAGGGCTCCTGTTTCTCCTT-3 ' CK19CK19 NM_008471NM_008471 5'-CCCCAAGGCCATCTGAGCTA-3'5'-CCCCAAGGCCATCTGAGCTA-3 ' 5'-GAGTAAACTTTTATCACCCCAGTCAGG-3'5'-GAGTAAACTTTTATCACCCCAGTCAGG-3 ' CK7CK7 NM_033073NM_033073 5'-CCTCAGGGCCTATTCCATCAA-3'5'-CCTCAGGGCCTATTCCATCAA-3 ' 5'-GTCTCTCCAAGCCCACAGCTT-3'5'-GTCTCTCCAAGCCCACAGCTT-3 ' GgtGgt NM_008116NM_008116 5'-CAGCTGCCTCAGACTCCAGAA-3'5'-CAGCTGCCTCAGACTCCAGAA-3 ' 5'-TTCCCATTCTCGTCCCTTGG-3'5'-TTCCCATTCTCGTCCCTTGG-3 ' Trop2Trop2 NM_020047NM_020047 5'-GAGATGAGAAGCGAACCTAGCTTGTAG-3'5'-GAGATGAGAAGCGAACCTAGCTTGTAG-3 ' 5'-AACTTGTTTGTGGAGAGAGAAGGAAGA-3'5'-AACTTGTTTGTGGAGAGAGAAGGAAGA-3 ' EpcamEpcam NM_008532NM_008532 5'-GGTGGTGTCATTAGCAGTCATCG-3'5'-GGTGGTGTCATTAGCAGTCATCG-3 ' 5'-TGTGGATCTCACCCATCTCCTT-3'5'-TGTGGATCTCACCCATCTCCTT-3 ' Dlk1Dlk1 NM_010052NM_010052 5'-GGATTCTGCGAGGCTGACAA-3'5'-GGATTCTGCGAGGCTGACAA-3 ' 5'-GCAGATGCACTGCCATGGTT-3'5'-GCAGATGCACTGCCATGGTT-3 ' Notch2Notch2 NM_010928NM_010928 5'-TTTGTGTCCCGCCCTTGTC-3'5'-TTTGTGTCCCGCCCTTGTC-3 ' 5'-AGGGCATTTGCAGGAGAACTG-3'5'-AGGGCATTTGCAGGAGAACTG-3 ' CftrCftr NM_021050NM_021050 5'-CTGCTTGATGAGCCCAGTGC-3'5'-CTGCTTGATGAGCCCAGTGC-3 ' 5'-TGAAGGGAGTCGTACTGCCAGA-3'5'-TGAAGGGAGTCGTACTGCCAGA-3 ' Aqp1Aqp1 NM_00747NM_00747 5'-CGGTCATTTGGCTCTGCTGT-3'5'-CGGTCATTTGGCTCTGCTGT-3 ' 5'-CACTGGTCCACACCTTCATGC-3'5'-CACTGGTCCACACCTTCATGC-3 ' Hnf1bHnf1b NM_009330NM_009330 5'-GTGTCCACTGCAAGCCTGG-3'5'-GTGTCCACTGCAAGCCTGG-3 ' 5'-CCCAGAGACTGATGGTGTGGA-3'5'-CCCAGAGACTGATGGTGTGGA-3 ' Jag1Jag1 NM_013822NM_013822 5'-ACCTGCGTGGTCAATGGAGA-3'5'-ACCTGCGTGGTCAATGGAGA-3 ' 5'-CACATTCGCACCGATACCAGTT-3'5'-CACATTCGCACCGATACCAGTT-3 ' Sstr2Sstr2 NM_009217NM_009217 5'-TGCTAGAGAACACAGGGAAGCGA-3'5'-TGCTAGAGAACACAGGGAAGCGA-3 ' 5'-TGTCGTAGTATGGCTCGGTCTGG-3'5'-TGTCGTAGTATGGCTCGGTCTGG-3 ' Hes1Hes1 NM_008235NM_008235 5'-GTGAAGCACCTCCGGAACCT-3'5'-GTGAAGCACCTCCGGAACCT-3 ' 5'-CTCGTTCATGCACTCGCTGA-3'5'-CTCGTTCATGCACTCGCTGA-3 ' Mdr1Mdr1 NM_011075NM_011075 5'-CGAAGCAACATCAGCTCTGGA-3'5'-CGAAGCAACATCAGCTCTGGA-3 ' 5'-CTTTGCTCCAGCCTGCACAC-3'5'-CTTTGCTCCAGCCTGCACAC-3 ' Gpbar1Gpbar1 NM_174985NM_174985 5'-GTGGCCACATTGCTCCTGTC-3'Gt; 5'-TGGCTCTTCCTCGAAGCACTC-3'5'-TGGCTCTTCCTCGAAGCACTC-3 ' SctrSctr NM_001012322NM_001012322 5'-CCATGGAGGTCCAGCTGTTCT-3'5'-CCATGGAGGTCCAGCTGTTCT-3 ' 5'-CGTTGCTGAAGGAGTTGCTGA-3'5'-CGTTGCTGAAGGAGTTGCTGA-3 ' Slc4a2Slc4a2 NM_009207NM_009207 5'-GCCTTTGCGCATGGTGGTACT-3'5'-GCCTTTGCGCATGGTGGTACT-3 ' 5'-TGCCTCTGGACAGCAGCTACA-3'5'-TGCCTCTGGACAGCAGCTACA-3 ' Mrp2Mrp2 NM_013806NM_013806 5'-ACTTTCAATGCCGGCTTCCT-3'5'-ACTTTCAATGCCGGCTTCCT-3 ' 5'-TGGTCCTAGACAGCGGCAAG-3'5'-TGGTCCTAGACAGCGGCAAG-3 ' Mrp3Mrp3 NM_029600NM_029600 5'-CCGGCTCAACACAATCATGG-3'5'-CCGGCTCAACACAATCATGG-3 ' 5'-TAGGCAAGTCCCGCATCCTT-3'5'-TAGGCAAGTCCCGCATCCTT-3 ' NtcpNtcp NM_001177561NM_001177561 5'-CAAGGCTGCTGCAACAGAAGA-3'5'-CAAGGCTGCTGCAACAGAAGA-3 ' 5'-ACCAGAGTTCSAGGCCATTAGGG-3'5'-ACCAGAGTTCSAGGCCATTAGGG-3 ' MaoAMaoA NM_173740NM_173740 5'-GGGTTCAAGAGCCTGAGTCCA-3'5'-GGGTTCAAGAGCCTGAGTCCA-3 ' 5'-TGATCAGCAGGAGGCCTGT-3'5'-TGATCAGCAGGAGGCCTGT-3 ' Nat2Nat2 NM_010874NM_010874 5'-GGAGAATGGAACCTGGTAGGA-3'5'-GGAGAATGGAACCTGGTAGGA-3 ' 5'-GACGCTGGTGATGTCTGAAGG3'5'-GACGCTGGTGATGTCTGAAGG3 ' GSGS NM_008131NM_008131 5'-GGAGGTTATGCCTGCCCAGT-3'5'-GGAGGTTATGCCTGCCCAGT-3 ' 5'-CAATGGCCTCCTCAATGCAC-3'5'-CAATGGCCTCCTCAATGCAC-3 ' Gsta4Gsta4 NM_010357NM_010357 5'-CAGATGGCCCCTATGTTGAG-3'5'-CAGATGGCCCCTATGTTGAG-3 ' 5'-GGGCAGAGTGGTTTTGTTGT-3'5'-GGGCAGAGTGGTTTTGTTGT-3 ' Sult1a1Sult1a1 NM_133670NM_133670 5'-CCATGGCTAACTACACAACCATCC-3'5'-CCATGGCTAACTACACAACCATCC-3 ' 5'-CACAGCTAAGGAGAGGACCCTTG-3'5'-CACAGCTAAGGAGAGGACCCTTG-3 ' Ugt1a1Ugt1a1 NM_201645NM_201645 5'-CTGGAGCTCGCGTTTGCTT-3'5'-CTGGAGCTCGCGTTTGCTT-3 ' 5'-CCTTCTGCTGGAGCTGCTGA-3'5'-CCTTCTGCTGGAGCTGCTGA-3 ' MaoBMaoB NM_172778NM_172778 5'-GTGGGCCAGGAAACCAAGAG-3'5'-GTGGGCCAGGAAACCAAGAG-3 ' 5'-TTTGGCAGCCAGAACCAGAA-3'5'-TTTGGCAGCCAGAACCAGAA-3 ' Mgst1Mgst1 NM_019946NM_019946 5'-GACCTCAGGCAGCTCATGGA-3'5'-GACCTCAGGCAGCTCATGGA-3 ' 5'-GCGTTCCACCTTCTCGTCAGT-3'5'-GCGTTCCACCTTCTCGTCAGT-3 ' Cyp1a1Cyp1a1 NM_009992NM_009992 5'-CCTTCCGGCATTCATCCTTC-3'5'-CCTTCCGGCATTCATCCTTC-3 ' 5'-TTTCAGGCCGGAACTCGTTT-3'5'-TTTCAGGCCGGAACTCGTTT-3 ' Cyp2a5Cyp2a5 NM_007812NM_007812 5'-GCACTTCCTAGATGACAAGGGACA-3'5'-GCACTTCCTAGATGACAAGGGACA-3 ' 5'-CAGGCTCAACGGGACAAGAA-3'5'-CAGGCTCAACGGGACAAGAA-3 ' Cyp2d22Cyp2d22 NM_001163472NM_001163472 5'-CCTCTCCTCGGCTGAGTTTCA-3'5'-CCTCTCCTCGGCTGAGTTTCA-3 ' 5'-CGCCAGTGCATCAGGTTCA-3'5'-CGCCAGTGCATCAGGTTCA-3 ' Cyp3a11Cyp3a11 NM_007818NM_007818 5'-TTCCAGCCTTGTAAGGAAACACA-3'5'-TTCCAGCCTTGTAAGGAAACACA-3 ' 5'-TGTACTGAATCTTTAACCAGGCATCA-3'5'-TGTACTGAATCTTTAACCAGGCATCA-3 ' Cyp3a13Cyp3a13 NM_007819NM_007819 5'-TCCTGCAGAACTTCACTGTCCA-3'5'-TCCTGCAGAACTTCACTGTCCA-3 ' 5'-TGGTTTCTGGTCCACAGGATACA-3'5'-TGGTTTCTGGTCCACAGGATACA-3 ' Cyp3a44Cyp3a44 NM_177380NM_177380 5'-TGGACCCAGGAACTGCATTG-3'5'-TGGACCCAGGAACTGCATTG-3 ' 5'-GCATCCCGTGGCACAACTT-3'5'-GCATCCCGTGGCACAACTT-3 ' GapdhGapdh NM_008084NM_008084 5'-CCAATGTGTCCGTCGTGGAT-3'5'-CCAATGTGTCCGTCGTGGAT-3 ' 5'-TGCCTGCTTCACCACCTTCT-3'5'-TGCCTGCTTCACCACCTTCT-3 '

외래 유전자 발현 분석을 위한 프라이머 서열 정보Primer sequence information for foreign gene expression analysis 유전자명Gene name 프라이머 서열Primer sequence exo-Foxa3exo-Foxa3 5'-GTGGTACCTCACCCTTACCG-3'Gt; 5'-TGGTGGGCACAGGATTCACT-3'5'-TGGTGGGCACAGGATTCACT-3 ' exo-Hnf1aexo-Hnf1a 5'-GTGGTACCTCACCCTTACCG-3'Gt; 5'-AGGCCTGGATCAGCACTTCC-3'5'-AGGCCTGGATCAGCACTTCC-3 ' exo-Hnf1bexo-Hnf1b 5'-GTGGTACCTCACCCTTACCG-3'Gt; 5'-AGGCCTGGATCAGCACTTCC-3'5'-AGGCCTGGATCAGCACTTCC-3 '

2) 면역형광염색법2) Immunofluorescence staining

면역형광염색을 위해, 세포를 4% 파라포름알데히드(Sigma)에 20분간 상온에서 처리하여 고정시킨후, 0.3% Triton X-100 (Sigma)와 5 % FBS (Biowest)가 포함된DPBS (Biowest)를 이용하여 2시간동안 blocking 과정을 진행하였다. 이후 세포를 1차 항체로 4ºC 의 상태에서 하룻밤동안 어두운 상태에서 항원-항체 반응을 시킨다. DPBS로 3번 세척한 이후, 알맞게 결합된 2차 항체를 2시간 동안 상온의 어두운 조건하에 반응시킨다. 세포 핵은 Hoechst33342 (Fluka)로 염색하였으며, 형광현미경 혹은 콘포칼레이저 현미경으로 관찰하였다(Fluoview FV1000-ASWv1.5; Tokyo, Japan). 실험에 사용된 1차 항체의 정보는 다음과 같다: rabbit anti-E-cadherin (Cell Signaling, 1:200), mouse anti-Albumin (R&D Systems, 1:100), mouse anti-CK7 (Abcam, 1:200), rabbit anti-CK19 (Abcam, 1:250), rabbit anti-EPCAM (Santa Cruz, 1:100), rabbit anti-LGR5 (Abcam, 1:200), rabbit anti-SOX9 (Novus Biologicals, 1:200), anti-TROP2 (Santa Cruz, 1:200), goat anti-F-actin (Thermo, 1:200), and rabbit anti-ZO-1 (Invitrogen, 1:200).For immunofluorescence staining, the cells were fixed in 4% paraformaldehyde (Sigma) at room temperature for 20 minutes and then fixed with DPBS (Biowest) containing 0.3% Triton X-100 (Sigma) and 5% FBS (Biowest) For 2 hours. The cells are then subjected to an antigen-antibody reaction in the dark at 4 ° C overnight with primary antibody. After 3 washes with DPBS, the suitably bound secondary antibody is allowed to react for 2 hours under dark conditions at room temperature. Cell nuclei were stained with Hoechst 33342 (Fluka) and observed with a fluorescence microscope or a confocal laser microscope (Fluoview FV1000-ASWv1.5; Tokyo, Japan). The primary antibodies used in the experiments were as follows: rabbit anti-E-cadherin (1: 200), mouse anti-Albumin (R & D Systems, 1: 100), mouse anti-CK7 Rabbit anti-SOX9 (Novus Biologicals, 1: 200), rabbit anti-CK19 (Abcam, 1: 250), rabbit anti-EPCAM (Santa Cruz, 1: 200), anti-TROP2 (Santa Cruz, 1: 200), goat anti-F-actin (Thermo, 1: 200), and rabbit anti-ZO-1 (Invitrogen, 1: 200).

3) 유세포분석3) Flow cytometry

유세포분석을 위해 세포를 4 % 파라포름알데히드(paraformaldehyde, Sigma)에 20분간 고정시킨후, 상온에서 0.3% Triton X-100 (Sigma) 용액에 10분간 처리하여 항체가 침투할 수 있도록 한다. Blocking과정을 위해 0.3 % bovine serum albumin (Sigma) 용액으로 15분간 처리하도록 하며, 이후 Epcam 혹은 E-cadherin 항체를 4°C 에서 30분간 반응시킨다. DPBS용액으로 몇차례 세척을 한 이후, 2차 항체를 20분동안 암막상태의 4°C 에서 부착시킨다. 세포를 0.1% Tween20 (Sigma)를 함유한 DPBS 용액에서 2차례 세척한 후, Calibur Flow Cytometer (Becton Dickinson)를 이용하여 분석한다. 유세포분석에 사용된 1차 항체의 정보는 다음과 같다. rabbit anti-E-cadherin (Cell Signaling, 1:200), goat anti-EPCAM (e-bioscience, 1:50). 실험결과는 FlowJo (Tree Star) 소프트웨어를 이용하여 분석하였다.For flow cytometry, the cells are fixed in 4% paraformaldehyde (Sigma) for 20 minutes and then treated with 0.3% Triton X-100 (Sigma) at room temperature for 10 minutes to allow the antibody to penetrate. Blocking is carried out with 0.3% bovine serum albumin (Sigma) for 15 minutes. Epcam or E-cadherin antibody is then reacted at 4 ° C for 30 minutes. After several washes with DPBS solution, the secondary antibody is allowed to attach for 20 minutes at 4 ° C in a dark state. Cells are washed twice in DPBS containing 0.1% Tween 20 (Sigma) and analyzed using a Calibur Flow Cytometer (Becton Dickinson). The primary antibody used for flow cytometry is as follows. rabbit anti-E-cadherin (Cell Signaling, 1: 200), goat anti-EPCAM (e-bioscience, 1:50). Experimental results were analyzed using FlowJo (Tree Star) software.

3. 유도간줄기세포 특성분석3. Characterization of inducible stem cell

유도간줄기세포로의 최적 교차분화 조합 (1a3: Hnf1a, Foxa3) 확정후 생산된 유도간줄기세포의 특성 분석을 다양한 방법으로 수행하였다. 이를 위해 RT-PCR, quantitative PCR(qPCR) 기법, 면역형광염색법, 콜라겐 및 magrigel을 활용한3차원 분화 배양법, periodic-acid staining (PAS) 염색법, indocyanine green (ICG) 염색법, 혈청 알부민 측정을 위한 ELISA기법, Rho123 처리에 따른 MDR1 수용체 활성 분석법, forskolin처리에 따른 CFTR 수용체 활성 분석법 등을 활용하였다. Induced stem cell differentiation (1a3: Hnf1a, Foxa3) was determined by various methods. To do this, we used RT-PCR, quantitative PCR (qPCR), immunofluorescence staining, 3-D differentiation using collagen and magrigel, periodic acid staining (PAS) staining, indocyanine green (ICG) staining, ELISA , MDR1 receptor activity assay by Rho123 treatment, and CFTR receptor activity assay by forskolin treatment.

1) RT-PCR 및 면역형광염색법은 상술한 바와 같다. 한편, 정량적 PCR 분석을 수행하기 위해, SYBR green PCR Master Mix (Applied Biosystems) 제품을 이용하여 유도간줄기세포 특정 마커들의 프라이머와 함께 qPCR을 진행하였다. 발현 정도는 Gapdh 유전자 발현을 기준으로 하였으며, MEF(Mouse embryonic fibroblast)을 음성대조군으로 설정하여 계산하였다. 모든 qPCR 실험은 ABI 7500 real-time PCR system (Applied Biosystems) 기기를 이용하여 진행하였다. 1) RT-PCR and immunofluorescence staining are as described above. In order to perform quantitative PCR analysis, qPCR was performed with primers of inducible stem cell markers using SYBR green PCR Master Mix (Applied Biosystems). Expression level was based on Gapdh gene expression and MEF (mouse embryonic fibroblast) was set as negative control. All qPCR experiments were performed using an ABI 7500 real-time PCR system (Applied Biosystems).

2) 콜라겐 및 magrigel을 활용한3차원 분화 배양법2) Three-dimensional differentiation culture using collagen and magrigel

유도간줄기세포를 담관세포로 분화시키기위해, 이전 논문에서 발표된 3차원 분화 배양법을 이용하였다(Tanimizu et al. 2004 Journal of cell science 117, 6425-6434; Li et al. 2010 Gastroenterology 139, 2158-2169 e2158; Yu et al. 2013 Cell Stem Cell 13, 328-340). 담관세포의 가지형태를 유도하기 위해 800 μl 의 1.2 mg/ml 타입 1 콜라겐 (Corning)과 100 μl 의 10× DPBS, 20 μl 의 1N NaOH, 그리고 80 μl 의 물을 얼음위에서 균일하게 섞어서 배양환경을 조성하였다. 또한 담관조직의 cyst 형태를 구성시키기 위해, 1.2 mg/ml 의타입 1 콜라겐과 40% 의 메트리젤을 1:1 비율 (v/v)로 섞어서 사용하였다. 이러한 혼합체를 같은 부피의 담관세포분화배양액 (Cholangiocyte Differentiation Medium, CDM: DMEM/F12 에 10% fetal bovine serum (HyClone) 과 20 ng/ml HGF (Peprotech)를 섞은 용액)에 1 × 105 의 유도간줄기세포를 섞은 용액을 혼합하였다. 이후, 세포가 혼합된 용액을 4-well plate에 37°C 에서 30분간 고체화 시켰다. 그후 마지막으로 메디아를 만들어진 젤 위에 조심스럽게 첨가하였다. In order to differentiate inducible stem cells into bile duct cells, the three-dimensional differentiation culture method described in the previous paper was used (Tanimizu et al., 2004, Journal of cell science 117, 6425-6434; Li et al. 2010 Gastroenterology 139, 2158- 2169 e2158; Yu et al. 2013 Cell Stem Cell 13, 328-340). To induce the bifurcation of the bile duct cells, 800 μl of 1.2 mg / ml Type 1 collagen (Corning), 100 μl of 10 × DPBS, 20 μl of 1N NaOH, and 80 μl of water were mixed uniformly on ice Respectively. In addition, 1.2 mg / ml type 1 collagen and 40% metrizol were mixed in a 1: 1 ratio (v / v) to form the cyst form of bile duct tissue. This mixture was mixed with 1 × 10 5 induction liver (1 × 10 5 cells / well) in the same volume of cholangiocyte differentiation medium (CDM: DMEM / F12 mixed with 10% fetal bovine serum (HyClone) and 20 ng / ml HGF Stem cells were mixed with the solution. Subsequently, the cell mixed solution was solidified in a 4-well plate at 37 ° C for 30 minutes. Finally, the media was carefully added onto the prepared gel.

3) periodic-acid staining (PAS) 염색법3) periodic-acid staining (PAS) staining

PAS (periodic acid-Schiff) 염색을 위하여 제품(Periodic Acid-Schiff Kit, sigma)의 표준사용법에 따라 진행하였다. 세포를 10% 포르말린이 첨가된95% 의 차가운 에탄올 용액에서 고정시킨 후, 1분 동안 흐르는 수돗물에서 세척한다. 이후 periodic acid 용액에 5분간 상온에서 처리한 후, 증류수로 3번 이상 세척하였다. 마지막으로 Schiff's reagent 용액으로 15분간 상온에서 반응시킨 후에 수돗물로 5분간 세척하였다. For periodic acid-Schiff (PAS) staining, standard products were used (Periodic Acid-Schiff Kit, Sigma). Cells are fixed in 95% cold ethanol solution supplemented with 10% formalin and washed in running tap water for 1 minute. After the periodic acid solution was treated at room temperature for 5 minutes, it was washed three times with distilled water. Finally, the reaction was carried out with Schiff's reagent solution for 15 minutes at room temperature, followed by washing with tap water for 5 minutes.

4) indocyanine green (ICG) 염색법4) Indocyanine green (ICG) staining

인도시아닌그린(Indocyanine green, ICG, Sigma) 흡수 분석을 위해, ICG용액을 배양중인 세포의 배양액에 최종농도가 1 mg/ml 이 되도록 첨가하였다. 이후 세포를 37°C 에서 1시간동안 배양한후, PBS용액으로 3번 세척한다. 광학현미경을 통해 ICG가 세포내에 잘 흡수되었는지 관찰한다. 흡수를 확인한 이후, 세포의 ICG 배출을 확인하기위해 세포를 ICG가 없는 일반 배양액에서 37°C 조건하에 6시간동안 배양한 후 관찰하였다. Indocyanine green (ICG, Sigma) For absorption analysis, ICG solution was added to the culture medium in culture to a final concentration of 1 mg / ml. The cells are then incubated at 37 ° C for 1 hour and then washed three times with PBS solution. Observe whether the ICG is well absorbed into the cells through an optical microscope. After confirming the uptake, the cells were incubated for 6 hours at 37 ° C in normal culture without ICG to confirm the ICG release of the cells.

5) 혈청 알부민 측정을 위한 ELISA기법5) ELISA technique for serum albumin measurement

세포배양액에서의 알부민 측정을 위해, 세포를48시간 동안 배양한 후 배양액을 수거, Mouse Albumin ELISA Kit (Shibayagi)을 이용하여 혈청 알부민의 양을 측정하였다(제품 표준 사용방법 이용).For the measurement of albumin in the cell culture medium, the cells were cultured for 48 hours. Then, the culture solution was collected and the amount of serum albumin was measured using the Mouse Albumin ELISA Kit (Shibayagi).

6) Rho123 처리에 따른 MDR1 수용체 활성 분석법6) Analysis of MDR1 receptor activity by Rho123 treatment

담관세포의 가장 중요한 주요 기능중 하나인 물 및 이온배출과 관련된 수용체 중 하나인 Mdr1(Multidrug resistance protein 1)을 유도간줄기세포로부터 유도된 담관세포에서 확인하기 위해, rhodamine123의 배출로 활성을 측정하였다. 담관세포는 Rho123를 세포 내부공간으로 이동시킬 수 있으며, 이를 통해 담관세포의 기능성을 확인하였다. Mdr1의 저해제인 verapamil을 처리하여 그에 따른 MDR1수용체의 저해 효과를 분석하기 위해, Rho123를 처리하기 30분 전에 미리 10 μM 의 verapamil(sigma)을 배양액에 섞어서 배양하였다. 젤상태의 세포 혼합물을 배양액으로 3번 세척한 후, Rho123를 함유하고 있는 담관세포(cyst)을 형광 현미경으로 관찰, 갯수를 측정하였다. Mdr1 (Multidrug resistance protein 1), one of the most important key functions of bile duct cells, one of the receptors related to water and ion release, was measured by the excretion of rhodamine123 in the bile duct cells derived from induced liver stem cells . The bile duct cells were able to transfer Rho123 into the intracellular space, thereby confirming the function of the bile duct cells. Verapamil, an inhibitor of Mdr1, was treated with 10 μM of verapamil (Sigma) 30 minutes before the treatment of Rho123 in order to analyze the inhibitory effect of MDR1 receptor. After washing the cell mixture in the gel state three times with the culture solution, the number of the biliary cell containing Rho123 was observed with a fluorescence microscope.

7) forskolin처리에 따른 CFTR 수용체 활성 분석법7) Analysis of CFTR receptor activity by forskolin treatment

담관세포를 10 μM calcein-AM (Thermo Fisher Scientific)을 함유하는 배양액에서 30분동안 배양한다. 세포배양액으로 3번 세척한 후, 형광현미경에서 관찰한다(0시간째). Cftr에 의한 액체 수송 및 담관세포 팽창 현상을 관찰하기 위해, 10 μM 의 forskolin (FSK, a cAMP agonist; Enzo Life Sciences) 와 100 μM IBMX (3-isobutyl-1-methylxanthine, nonselective PDE inhibitor; Sigma) 를 24시간 동안 처리하였다. Cftr 활성억제를 위해서는 FSK/IBMX 처리 3시간 전에 미리 30 μM CFTRinh-172 (a CFTR inhibitor; Sigma)를 처리하도록 하였다. FSK/IBMX를 처리한 후 24시간째에 10 μM calcein-AM으로 다시 염색하여 형광현미경을 이용하여 관찰하였다. 담관세포의 총 면적은 ImageJ (NIH ver. 1.50) 를 이용하여 측정하였으며, 팽창 정도의 측정은 비자극 상태의 담관세포 크기로 비교하도록 하였다.The bile duct cells are cultured in a culture medium containing 10 μM calcein-AM (Thermo Fisher Scientific) for 30 minutes. After washing three times with the cell culture medium, the cells are observed under a fluorescence microscope (at 0 hour). In order to observe liquid transport and bile duct cell expansion by Cftr, 10 μM forskolin (FSK, a cAMP agonist; Enzo Life Sciences) and 100 μM IBMX (3-isobutyl-1-methylxanthine, nonselective PDE inhibitor; Sigma) And treated for 24 hours. For inhibition of CFTr activity, 30 μM CFTRinh-172 (a CFTR inhibitor; Sigma) was previously treated 3 hours before FSK / IBMX treatment. After FSK / IBMX treatment, the cells were stained with 10 μM calcein-AM 24 hours later and observed with fluorescence microscope. The total area of the bile duct cells was measured using ImageJ (NIH ver. 1.50), and the degree of dilatation was compared with the size of the non-stimulated bile duct cells.

4. 기존 유도간줄기세포와의 비교분석4. Comparative analysis with existing induction stem cell

기존에 전사인자 조합(1b3: Hnf1b, Foxa3)을 이용한 유도간줄기세포 교차분화효율(Yu B et al., Cell Stem Cell 2013; 13:328-340)과 본 연구진이 개발한 조합(1a3)에 따른 유도간줄기세포 교차분화효율을 비교하기 위해, 전사인자 도입후 14일경 유세포분석기를 이용하여 E-cadherin 또는 EPCAM 양성 반응을 보이는 세포의 수로 산출하였다. 또한, 각 조합에 의해 생산한 유도간줄기세포 세포주의 특성과 담관세포로의 분화능을 비교하기 위해, RNA sequencing 분석법, MDR1 수용체 활성 분석법, qPCR기법을 이용하여 분석하였다. MDR1 수용체 활성 분석법 및 정량적 PCR방법은 상술한 바와 같다. In this study, we investigated the effect of differentiation of stem cells on the differentiation of stem cells (Yu B et al., Cell Stem Cell 2013; 13: 328-340) using the transcription factor combination (1b3: Hnf1b, Foxa3) To investigate the effect of E-cadherin or EPCAM positive cells, we used a flow cytometry analyzer for 14 days after transduction. In addition, RNA sequencing analysis, MDR1 receptor activity assay, and qPCR technique were used to compare the characteristics of the inducible stem cell line produced by each combination and the ability to differentiate into bile duct cells. MDR1 receptor activity assay and quantitative PCR method are as described above.

실험결과 Experiment result

1. 간 발달 및 간재생에 필수적인 전사인자로 알려진 Foxa1, Foxa2, Foxa3, Hnf1a, Hnf1b를 최초 5만개의 일반 체세포에 도입후 약 2주경, 간세포 (AFP), 담관세포 (CK7, CK19), 그리고 간줄기세포 (TROP2) 특이적인 마커들이 발현하는 콜로니가 생성되는 것을 확인하였다 (도 2). 1. Foxa1, Foxa2, Foxa3, Hnf1a and Hnf1b, known as transcription factors essential for hepatic development and liver regeneration, were introduced into the first 50,000 common somatic cells for about 2 weeks, hepatocytes (AFP), bile duct cells (CK7, CK19) It was confirmed that colonies expressing TROP2-specific markers were produced (FIG. 2).

2. 유도간줄기세포로의 최적 교차분화 조합을 선별하기 위해 RT-PCR 을 진행한 결과, Hnf1b첨가시 발현양이 5개 인자 모두를 넣었을 때보다 크게 떨어지는 것을 확인하였고, Foxa2, Foxa3, Hnf1a가 제거되었을 경우 유도간줄기세포 특이적인 상피세포 콜로니의 수가 크게 감소하는 것을 확인하였다. 이를 근거로 Hnf1a, Foxa2 (이하 1a2), 그리고 Hnf1a, Foxa3 (이하 1a3)를 각각 조합하여 유도간줄기세포를 유도한 결과, AFP/CK19 양성 콜로니의 수 및 EPCAM 양성 세포의 수가 1a3에서 1a2보다 유의적으로 높게 나타나는 것을 확인하였고, 1a3를 이용하여 생산한 유도간줄기세포에서 간줄기세포 특성을 보이는 단백질이 현저하게 발현하고 있음을 확인하였다(도 3a-3f). 2. Expression of Hnf1b by RT-PCR in order to select the optimal cross-differentiation combination into inducible stem cells. The expression levels of Foxa2, Foxa3 and Hnf1a were significantly lower than those of all five factors. The number of stem cell-specific epithelial cell colonies was significantly reduced when the cells were removed. Based on these results, induction of stem cell induction by induction of Hf1a, Foxa2 (1a2) and Hnf1a and Foxa3 (1a3), respectively, revealed that the number of AFP / CK19 positive colonies and the number of EPCAM- , And it was confirmed that a protein showing liver stem cell characteristics was remarkably expressed in the inducible stem cell produced using 1a3 (Fig. 3a-3f).

3. 1a3조합에 의해 생산한 유도간줄기세포 세포주가 간줄기세포 특이적인 성질을 나타내는지 RT-PCR, qPCR, 면역형광염색법을 통해 확인한 결과, 다양한 간세포 및 담관세포, 간줄기세포 특이적인 마커를 뚜렷하게 발현하고 있음을 확인하였다(도 4a-4c).3. Induction of stem cell-specific cell lines derived from the combination of 1a3 by RT-PCR, qPCR, and immunofluorescent staining revealed various hepatocyte and bile duct cell and liver stem cell-specific markers (Fig. 4A-4C).

4. 1a3조합에 의해 생산한 유도간줄기세포가 간세포 및 담관줄기세포의 분화 특성을 보이는 지 확인하기 위해, Matrigel이 포함된 배지에서 간세포로의 분화 유도후 7일경, RT-PCR, 면역형광염색법, PAS 및 ICG 염색법, 혈청 알부민 분비량을 검증한 결과, 담관세포 마커(Ggt, CK7) 및 간줄기세포 마커(Dlk1)의 발현양이 현저히 감소함과 동시에 간세포 특이적인 기능성을 뚜렷하게 보이는 등 유도간줄기세포가 간세포 분화 조건에서 성숙한 간세포로 분화가 가능함을 확인할 수 있었다(도 5a-5e).4. In order to confirm the differentiation characteristics of stem cells derived from hepatocyte and biliary stromal stem cells produced by the combination of 1a3, RT-PCR and immunofluorescence staining for 7 days after induction of hepatocyte differentiation in medium containing Matrigel (Ggt, CK7) and liver stem cell marker (Dlk1) were markedly decreased, and hepatocyte-specific functionalities were clearly visible. Cells were able to differentiate into mature hepatocytes under hepatocyte differentiation conditions (Fig. 5A-5E).

5. 콜라겐과 매트리겔(Matrigel)이 포함된 3차원 배지에서 담관세포로의 분화를 유도한 후 7일경, 분화된 세포의 특성을 qPCR, 면역형광염색법, MDR1 및 CFTR 수용체 활성 분석을 통해 검증한 결과, 3차원 배지 상에서 CK19을 발현하는 담관세포 특이적인 형태로의 분화가 진행되었고, 이외에도 Cftr, CK7와 같은 담관세포 특이적인 마커가 체내 유래 담관조직 수준으로 강하게 발현되었다. 또한 MDR1 수용체를 매개로 Rho123를 흡수함과 동시에 CFTR 수용체를 통해 포스콜린(forskolin) 처리시 cAMP 신호전달이 활성화되는 것을 확인함으로써 담관세포로의 분화 조건 상에서 성숙한 담관세포로 분화능을 가지고 있음을 알 수 있었다(도 6a-6d). 5. The differentiation of the cells into collagen and Matrigel-induced differentiation into biliary cells was induced by qPCR, immunofluorescence staining, MDR1 and CFTR receptor activity analysis at 7 days As a result, differentiation into CK19 - expressing bile duct - specific cells on the 3 - dimensional medium was evident. In addition, CBF - specific markers such as CFTr and CK7 were strongly expressed in the body - derived bile duct tissues. In addition, it was shown that cAMP signal transduction was activated during forskolin treatment through the CFTR receptor while absorbing Rho123 via the MDR1 receptor, and thus it was shown to have the ability to differentiate into mature biliary cells under differentiation conditions (Figs. 6A to 6D).

6. 기존 연구진에 의해 발표된 전사인자 조합(1b3)을 통한 유도간줄기세포 교차분화효율을 본 발명자가 개발한 조합(1a3)을 통한 유도간줄기세포 교차분화효율과 비교하기 위해, 전사인자 도입후 14일경 유세포분석기를 이용하여 E-cadherin 또는 EPCAM 양성 반응을 보이는 세포의 수로 산출한 결과, 각각 5.6% 대비 37.9%, 11.8% 대비38.0%로 현저하게 1a3에 의해 많은 양의 세포가 유도간줄기세포로 교차분화되는 것을 확인하였다(도 7). 6. In order to compare the induction stem cell crossing differentiation efficiency through the transcription factor combination (1b3) announced by the present inventors to the induction stem cell crossing differentiation efficiency through the combination (1a3) developed by the present inventor, transcription factor introduction As a result of counting E-cadherin or EPCAM positive cells using a flow cytometer, 37.9% versus 11.8% compared to 5.6% and 38.0% versus 11.8%, respectively. Cells were cross-differentiated (Fig. 7).

7. 1b3 또는 1a3 조합을 통해 생산한 유도간줄기세포 세포주의 경우, 1a3에 의해 생산된 유도간줄기세포가 1b3에 의해 생산된 유도간줄기세포에 비하여 체내 유래 간줄기세포(LEPCs)와 더욱 유사한 전체 유전자 발현 양상을 보이는 것을 RNA sequencing 분석(heatmap 및 PCA)을 통해 확인하였다(도 8a-8b). 7. In the case of the inducible stem cell line produced by the combination of 1b3 or 1a3, the inducible stem cell produced by 1a3 is more similar to the derived hepatic stem cell (LEPCs) than the inducible stem cell produced by 1b3 All gene expression patterns were confirmed by RNA sequencing analysis (heatmap and PCA) (Figs. 8a-8b).

8. MDR1 수용체 활성 분석법, qPCR기법을 이용하여 담관세포로의 분화능을 체외에서 확인한 결과 1a3에 의해 생산된 유도간줄기세포가 1b3에 의해 생산된 유도간줄기세포에 비하여 더 많은 수의 Rho123를 흡수한 성숙한 담관세포로 분화가 되는 것을 관찰할 수 있었고, 담관세포로 유도 분화후 유의적으로 높은 수준의 담관세포 특이적 마커를 발현하고 있는 것을 알 수 있었다(도 9a-9c). 8. In vitro demonstration of the ability to differentiate into bile duct cells using the MDR1 receptor activity assay and qPCR technique revealed that the induced stem cell produced by 1a3 absorbed a greater number of Rho123 than the inducible stem cell produced by 1b3 (Fig. 9A-9C). As shown in Fig. 9A-9C, the chimeric cells were differentiated into mature biliary cells, and the biliary cell-specific markers were expressed at a significantly higher level after induction differentiation into biliary cells.

이상의 결과는 최초 5개의 전사인자를 도입후, AFP/CK19양성 콜로니 수 측정 및 mRNA유전자 발현 양상, EPCAM양성 세포수 측정 방법을 적절히 사용하여 비록 Foxa3라는 공통의 전사인자를 사용했음에도 불구하고 기존의 Foxa3와 Hnf1b간의 조합(1b3)과 비해 Hnf1a와의 조합(1a3)에서 유의적으로 높은 효율의 유도간줄기세포로의 교차분화가 가능하며 특히 생산된 유도간줄기세포의 특성이 기존에 비해 체내 간줄기세포 수준으로 향상됨과 동시에 그에 따라 담관세포로의 분화능이 월등히 개선될 수 있음을 말해준다. These results suggest that the expression of AFP / CK19 positive colonies, mRNA gene expression pattern, and EPCAM positive cell number were appropriately used after the introduction of the first 5 transcription factors and that Foxa3, a common transcription factor, (1b3) compared with the combination of Hnf1b (1b3) and Hnf1a (1a3), it is possible to cross-differentiate into a highly efficient inducible stem cell. Especially, And the ability to differentiate into bile duct cells can be improved remarkably.

결론 conclusion

본 발명에서는 기존의 체세포에서 유도간줄기세포로의 낮은 교차분화효율 및 담관세포로의 분화 효율을 제고하기 위하여, 1) 간발달 및 간재생에 필수적인 전사인자를 엄격히 선별하여 최종적으로 1a3 (Hnf1α, Foxa3) 라는 조합을 개발하였고, 2) 고수준의 유도간줄기세포로의 교차분화효율을 달성하였으며 3) 유도간줄기세포로의 기본 특성과 체외에서의 담관세포 분화능 면에서도 비약적인 향상을 보여주었다.In the present invention, in order to improve the low cross-over efficiency and the differentiation efficiency into the bile duct cell of the existing somatic cells, 1) a transcription factor essential for liver development and liver regeneration is strictly selected and finally 1a3 (Hnf1α, Foxa3), 2) cross-differentiation efficiency to high-level inducible stem cells was achieved, and 3) the fundamental characteristics as inducible stem cells and the ability to differentiate into biliary cells in vitro showed a remarkable improvement.

이러한 유도간줄기세포로의 교차분화연구는 향후 유도간줄기세포를 이용한 세포치료제 개발의 가속화 및 유도간줄기세포 유래 간세포 및 담관세포를 이용한 신약물질의 독성 검증, 환자 특이적인 분화세포의 효율적인 대량생산 등에 유용하게 사용할 것으로 사료된다.This cross-differentiation study of inducible stem cells is expected to accelerate the development of cell therapeutic agents using inducible stem cells and to validate the toxicity of new drug substances using stem cells derived from stem cells derived from stem cells and to efficiently mass-produce patient-specific differentiated cells And so on.

[유도담관줄기세포의 제작 및 특성분석][Production and Characterization of Induction Bile Duct Stem Cells]

실험방법Experimental Method

1. 유도담관줄기세포 분화 유도, 배양, 확립1. induction of stem cell differentiation, cultivation, establishment of induction bile duct

본 발명의 유도간줄기세포를 EGF와 HGF가 포함된 배지(*HepSCM과 동일한 조성)에서 약 14~16번의 지속적인 계대배양과정을 거쳐 유도담관줄기세포로 분화시켰다(도 11). HepSCM 조성/배양조건은 다음과 같다: DMEM/F-12, 10% FBS (Hyclone), 0.1 μM dexamethasone (Sigma), 10 mM nicotinamide (Sigma), 1% ITS (insulin-transferrin-selenium) premix (Gibco), penicillin/streptomycin/ glutamine (Invitrogen), 10 ng/ml hepatocyte growth factor (HGF; Peprotech), 10 ng/ml epidermal growth factor (EGF; Peprotech), gelatin-coated dish Induced stem cell lines of the present invention were induced to induce bile duct stromal cells through continuous passaging of about 14 to 16 times in medium containing EGF and HGF (the same composition as HepSCM) (FIG. 11). HepSCM composition / culture conditions were as follows: DMEM / F-12, 10% FBS (Hyclone), 0.1 μM dexamethasone (Sigma), 10 mM nicotinamide (Sigma), 1% ITS (insulin-transferrin-selenium) premix ), penicillin / streptomycin / glutamine (Invitrogen), 10 ng / ml hepatocyte growth factor (HGF; Peprotech), 10 ng / ml epidermal growth factor

2. 유도담관줄기세포 특성분석2. Characterization of Induction Bile Duct Stem Cells

유도간줄기세포에서 유도담관줄기세포로의 분화과정을 추적하고 관련 신호전달체계를 quantitative PCR (qPCR) 분석법 및 면역형광염색법을 이용하여 검증하였다. 실험방법은 상술한 바와 같다. 이후 유도담관줄기세포의 체내 기능성을 검증하기 위해 1 x 106의 유도담관줄기세포를 0.1% DDC(3,5-diethoxycarbonyl-1,4-dihydrocollidine)를 처리하여 생산한 C57Bl6/J 마우스에 이식하여 체내 담관세포로의 분화를 유도하였고 4주후 마우스에서 간을 적출하여 이식된 유도담관줄기세포의 분화정도를 면역염색법을 통해 분석하였다. The induction of stem cells into induced biliary stromal cells was followed up and the relevant signaling system was verified by quantitative PCR (qPCR) and immunofluorescence staining. The experimental method is as described above. Then, 1 x 10 6 induction bile duct embryonic stem cells were transplanted into C57Bl6 / J mouse produced by treating with 0.1% DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) After 4 weeks, differentiation of inducible bile duct embryonic stem cells was performed by immunohistochemistry.

실험결과 Experiment result

1. 간 발달 및 간재생에 필수적인 전사인자로 알려진Foxa3, Hnf1a를 최초 5만개의 일반 체세포에 도입후 약 2주경, 간세포 (AFP), 담관세포 (CK19), 그리고 간줄기세포 (CK7, TROP2) 특이적인 마커들이 발현하는 콜로니가 생성되는 것을 확인하였다 (도 12a). 1a3조합에 의해 생산한 유도간줄기세포 세포주가 간줄기세포 특이적인 성질을 나타내는지 RT-PCR, qPCR, 면역형광염색법을 통해 확인한 결과, 다양한 간세포 및 담관세포 (CK19), 간줄기세포 (CK7, TROP2)특이적인 마커를 뚜렷하게 발현하고 있음을 확인하였다(도 12b-12d).1. Hepatocyte (AFP), biliary cell (CK19), and hepatic stem cell (CK7, TROP2) cells, FoxA3 and Hnf1a, which are essential transcription factors for liver development and liver regeneration, And colonies expressing specific markers were generated (FIG. 12A). (CK19), hepatic stem cells (CK7), and hepatocyte-derived stem cells (CK7) were identified by RT-PCR, qPCR and immunofluorescence staining. TROP2) -specific markers were clearly expressed (Figures 12b-12d).

2. 1a3 를 이용하여 생산한 유도간줄기세포를 EGF와 HGF가 포함된 배지(*HepSCM과 동일한 조성)에서 약 14~16번의 지속적인 계대배양과정을 거친 결과 간세포 마커인 Afp, Alb, Hnf4a의 발현량은 감소하고, 반면 CK19, SOX9과 같은 담관세포 마커는 유지되는 것을 확인할 수 있었다(도 13a-13b). 특히 qPCR을 이용해 다양한 담관세포 특이적인 마커를 확인해본 결과 성숙 담관세포 특이적인 마커의 발현과 더불어 Notch2, Hes1, Jag1과 같은 Notch신호전달과 관련된 마커들의 발현양이 유의적으로 증가하는 것을 확인하였다(도 13c). 2. Expression of hepatocyte markers Afp, Alb, and Hnf4a as a result of continuous passage of about 14-16 times in medium containing EGF and HGF (* same composition as HepSCM) (Fig. 13A-13B), while the biliary cell markers such as CK19 and SOX9 were retained. In particular, we confirmed the expression of various markers specific for biliary cells using qPCR, and the expression of markers related to Notch signaling such as Notch2, Hes1, and Jag1 was significantly increased along with the expression of matured biliary cell-specific markers 13c).

상기 이러한 결과는 본 연구에서 사용한 HepSCM이라는 배양조건 상에서 14~16번의 계대배양을 거쳐 유도간줄기세포가 유도담관줄기세포(1a3-iCPC)로 분화되는 과정상, Notch 신호전달체계가 깊이 관여하고 있음을 의미한다. 이를 검증하기 위해 Notch신호전달을 억제하는 약물인 DAPT를 10ng/ml처리한 결과 담관줄기세포 및 담관세포로의 분화가 완벽하게 억제(Afp, Alb, Ttr, Hnf4a 발현양 유지, 도 14a-14c)되고 유도간줄기세포 상태가 오히려 지속적으로 유지되는 것을 qPCR, 면역형광염색법, MDR1 수용체 활성 분석법을 통해 확인하였다. These results indicate that the Notch signaling system is deeply involved in the process of inducing stem cell differentiation into inducible biliary stromal cells (1a3-iCPC) through 14 to 16 subculture cultures under the culture conditions of HepSCM used in this study . In order to verify this, 10ng / ml treatment of DAPT, a drug that inhibits Notch signaling, completely suppressed the differentiation into biliary stromal cells and biliary duct cells (maintenance of expression level of Afp, Alb, Ttr, Hnf4a, Fig. 14a-14c) And the state of the stem cells in the induction was maintained rather constantly by qPCR, immunofluorescent staining, and MDR1 receptor activity assay.

3. 유도담관줄기세포의 체내 분화능을 검증하기 위해 1 x 106의 유도담관줄기세포를 0.1% DDC를 처리하여 생산한 C57Bl6/J 마우스에 이식하여 체내 담관세포로의 분화를 유도하였고 4주후 마우스의 간을 적출하여 이식된 유도담관줄기세포의 분화정도를 면역염색법을 통해 분석하였다. 그 결과, 유도간줄기세포에 비해 유도담관줄기세포의 경우 유의적으로 많은 수의 담관구조가 형성되었고(도 15a-15b) 이를 CK19, OPN과 같은 담관세포 특이적인 마커로 면역염색해본 결과 압도적인 양상으로 유도담관줄기세포가 기능성을 갖춘 담관세포로 분화되는 것을 확인하였다(도 15c-15f).3. Inducible biliary stromal cells To verify the ability of the stem cells to differentiate, 1 x 10 6 induction bile duct embryonic stem cells were transplanted into C57B16 / J mice produced by treatment with 0.1% DDC to induce differentiation into biliary ducts, And the degree of differentiation of the transplanted induced biliary stromal cells was analyzed by immunohistochemistry. As a result, a large number of biliary structures were formed in the induction bile duct stromal cells as compared with the induction stem cell (Figs. 15A-15B). Immunostaining with bile duct cell-specific markers such as CK19 and OPN resulted in overwhelming And the induced biliary stromal cells were differentiated into functional biliary duct cells (Figs. 15C-15F).

이상의 결과는 1) 간발달 및 간재생에 필수적인 1a3라는 전사인자 조합을 통해 체세포를 유도간줄기세포로 교차분화시킨 후, 2) 이 세포를 지속적으로 14~16회에 달하는 계대배양 과정을 통해 담관세포 전단계인 담관줄기세포로 분화시킬 수 있음을 의미한다(도 1 참조). The results are as follows: 1) the somatic cells are cross-differentiated into the inducible stem cells through the combination of transcription factor 1a3, which is essential for hepatic development and liver regeneration; 2) the cells are continuously passed through the subculture, It is possible to differentiate into biliary stromal cells which are pre-cell stage (see Fig. 1).

결론 conclusion

상기 결과는 향후 담관줄기세포를 이용한 세포치료제 개발 및 담관세포와 관련된 질환 모델링, 담관세포 분화 및 발달 메커니즘 연구 등에 유용하게 사용할 것으로 사료된다.These results may be useful for the development of cell therapy using biliary stromal cells, modeling of diseases related to cholangiocarcinoma, study of cholangiocellular differentiation and developmental mechanism.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> Konkuk University Glocal Industry-Academic Collaboration Foundation <120> Direct conversion method from somatic cells to induced cholangiocyte stem cells <130> PN170182 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 3203 <212> DNA <213> Mus musculus <400> 1 aaacagagca ggcaggggcc ctgattcact ggccgctggg gccagggttg ggggctgggg 60 gtgcccacag agcttgacta gtgggatttg ggggggcagt gggtgcagcg agcccggtcc 120 gttgactgcc agcctgccgg caggtagaca ccggccgtgg gtgggggagg cggctagctc 180 agtggccttg ggccgcgtgg cctggtggca gcggagccat ggtttctaag ctgagccagc 240 tgcagacgga gctcctggct gccctgctcg agtctggcct gagcaaagag gccctgatcc 300 aggccttggg ggagccaggg ccctacctga tggttggaga gggtcccctg gacaaggggg 360 agtcctgcgg tgggagtcga ggggacctga ccgagttgcc taatggcctt ggagaaacgc 420 gtggctctga agatgacacg gatgacgatg gggaagactt cgcgccaccc attctgaaag 480 agctggagaa cctcagccca gaggaggcag cccaccagaa agccgtggtg gagtcacttc 540 ttcaggagga cccatggcgc gtggcgaaga tggtcaagtc gtacttgcag cagcacaaca 600 tcccccagcg ggaggtggtg gacaccacgg gtctcaacca gtcccacctg tcacagcacc 660 tcaacaaggg cacacccatg aagacacaga agcgggccgc tctgtacacc tggtacgtcc 720 gcaagcagcg agaggtggct cagcaattca cccacgcagg gcagggcgga ctgattgaag 780 agcccacagg cgatgagctg ccaactaaga aggggcgtag gaaccggttc aagtggggcc 840 ccgcatccca gcagatcctg ttccaggcct acgagaggca aaaaaacccc agcaaggaag 900 agcgagagac cttggtggag gagtgtaata gggcggagtg catccagagg ggggtgtcac 960 catcgcaggc ccaggggcta ggctccaacc ttgtcacgga ggtgcgtgtc tacaactggt 1020 ttgccaaccg gcgcaaggag gaagccttcc ggcacaagtt ggccatggac acctataacg 1080 gacctccacc ggggccaggc ccgggccctg cgctgcctgc tcacagttcc cccggcctgc 1140 ccacaaccac cctctctccc agtaaggtcc acggtgtacg gtacggacag tctgcaacca 1200 gtgaggcagc cgaggtgccc tccagcagcg gaggtccctt agtcacagtg tctgcggcct 1260 tacaccaagt atcccccaca ggcctggagc ccagcagcct gctgagcaca gaggccaagc 1320 tggtctcagc cacggggggt cccctgcctc ccgtcagcac cctgacagca ctgcacagct 1380 tggagcagac atctccgggt ctcaaccagc agccgcagaa ccttatcatg gcctcgctac 1440 ctggggtcat gaccatcggg cccggggagc ctgcctccct gggacccacg ttcacgaaca 1500 cgggcgcctc caccctggtt atcggtctgg cctccactca ggcacagagc gtgcctgtca 1560 tcaacagcat ggggagtagc ctgaccacgc tgcagccggt ccagttttcc caaccactgc 1620 atccctccta tcagcagcct ctcatgcccc ccgtacagag ccacgtggcc cagagcccct 1680 tcatggcaac catggcccag ctgcagagcc cccacgcctt atacagccac aagcctgagg 1740 tggcccagta cacgcacacc agcctgctcc cgcagaccat gttgatcaca gacaccaacc 1800 tcagcaccct tgccagcctc acacccacca agcaggtctt cacctcagac acagaggcct 1860 ccagtgagcc cgggcttcac gagccaccct ctccagccac caccatccac atccccagcc 1920 aggacccgtc gaacatccag cacctgcagc ctgctcaccg gctcagcacc agtcccacag 1980 tgtcctccag cagcctggtg ttgtatcaga gttccgactc caacgggcac agccacctgc 2040 tgccatccaa ccatagtgtc atcgagactt ttatctccac ccagatggcc tcctcttccc 2100 agtaaccgtg gtgactgcct cccaggagct gggtccccag ggcctgcact gcctgcatag 2160 ggggtgagga gggccgcagc cacactgcct ggaggatatc tgagcctgcc atgccacctg 2220 acacaggctg ctggccttcc cagaagtcta cgcattcatt gacactgctg ctcctccatc 2280 atcaggaagg gatggctctg aggtgtctca gcctgacaag cgagcctcga ggagctggag 2340 gacggcccaa tctgggcagt attgtggacc accatccctg ctgtttagaa taggaaattt 2400 aatgcttggg acaggagtgg ggaagctcgt ggtgcccgca cccccccagt cagagcctgc 2460 aggccttcaa ggatctgtgc tgagctctga ggccctagat caacacagct gcctgctgcc 2520 tcctgcacct ccccaggcca ttccaccctg caccagagac ccacgtgcct gtttgaggat 2580 taccctcccc accacgggga tttcctaccc agctgttctg ctaggctcgg gagctgaggg 2640 gaagccactc ggggctctcc taggctttcc cctaccaagc catcccttct cccagcccca 2700 ggactgcact tgcaggccat ctgttccctt ggatgtgtct tctgatgcca gcctggcaac 2760 ttgcatccac tagaaaggcc atttcagggc tcgggttgtc atccctgttc cttaggacct 2820 gcaactcatg ccaagaccac accatggaca atccactcct ctgcctgtag gcccctgaca 2880 acttccttcc tgctatgagg gagacctgca gaactcagaa gtcaaggcct gggcagtgtc 2940 tagtggagag ggtaccaaga ccagcagaga gaagccacct aagtggcctg ggggctagca 3000 gccattctga gaaatcctgg gtcccgagca gcccagggaa acacagcaca catgactgtc 3060 tcctcgggcc tactgcaggg aacctggcct tcagccagct cctttgtcat cctggactgt 3120 agcctacggc caaccataag tgagcctgta tgtttattta acttttagta aagtcagtaa 3180 aaagcaaaaa aaaaaaaaaa aaa 3203 <210> 2 <211> 2039 <212> DNA <213> Mus musculus <400> 2 gcgggactcc cgggctgtgt gcctcaggtc ggaactcggg gctagtgcct gtagagagac 60 cgaagcactc ggttccccca ggggggcctc agcctgggtg tgtgggggcg caggccccgg 120 ggatgctggg ctcagtgaag atggaggctc atgacctggc cgagtggagc tactacccgg 180 aggcgggcga ggtgtattct ccagtgaatc ctgtgcccac catggcccct ctcaactcct 240 acatgacctt gaacccactc agctctccct accctcccgg agggcttcag gcctccccac 300 tgcctacagg acccctggca cccccagccc ccactgcgcc cttggggccc accttcccaa 360 gcttgggcac tggtggcagc accggaggca gtgcttccgg gtatgtagcc ccagggcccg 420 ggcttgtaca tggaaaagag atggcaaagg ggtaccggcg gccactggcc cacgccaaac 480 caccatattc ctacatctct ctcataacca tggctattca gcaggctcca ggcaagatgc 540 tgaccctgag tgaaatctac caatggatca tggacctctt cccgtactac cgggagaacc 600 agcaacgttg gcagaactcc atccggcatt cgctgtcctt caatgactgc ttcgtcaagg 660 tggcacgctc cccagacaag ccaggcaaag gctcctactg ggccttgcat cccagctctg 720 ggaacatgtt tgagaacggc tgctatctcc gccggcagaa gcgcttcaag ctggaggaga 780 aggcaaagaa aggaaacagc gccacatcgg ccagcaggaa tggtactgcg gggtcagcca 840 cctctgccac cactacagct gccactgcag tcacctcccc ggctcagccc cagcctacgc 900 catctgagcc cgaggcccag agtggggatg atgtgggggg tctggactgc gcctcacctc 960 cttcgtccac accttatttc agcggcctgg agctcccggg ggaactaaag ttggatgcgc 1020 cctataactt caaccaccct ttctctatca acaacctgat gtcagaacag acatcgacac 1080 cttccaaact ggatgtgggg tttgggggct acggggctga gagtggggag cctggagtct 1140 actaccagag cctctattcc cgctctctgc ttaatgcatc ctagcagcgc aattgggaac 1200 gccatgatgg gcgtgggctg caacgttctt gggctctgat ctttctggtt acactttgct 1260 tgtcccatta attaacatct tatttggtct attactgtga tatgacccat tggctactgt 1320 ggtaactgcc atggactctt tggtaggcct agggttgggg tattaggaag gcagatgcgt 1380 ttggaagtgc tgcgaaggtg gtcatgttgg acatattgtg aaggcagtta gactggtgta 1440 ctatgaaagc tgccatatta agtgaagcca ttgggtgatt gatccactgg gtgcctgatg 1500 gtcgtgatgt tggatgacac atgtctggtc ctttggatga tgtgttggac atcttgattg 1560 accttttgag tatgtgacag aacacatctt ctttggctca ttttatcctg ggatcgcctc 1620 ttttttttcc tcttcttttt ctttttcttt ttcttttttt cttttccttt tttctttttt 1680 ttttcttttt tggcagactt cttggttcag cagatgccaa attggccacc atatcacatg 1740 gtgtcttttt tgacattctg gatgcatgga aggtcactgt attggcaagg tgacatctca 1800 gcatgctgct atgcaccaag atagatggtt accacaggcc tgccatcacc atctccttgg 1860 tggaggttgg gtgaggggaa gaggtgagca gaccctatga gttttctctg aagcccatcc 1920 ccaccctgtc tgtgagaaag ggctagtgtg ggtgtcggga gttcctactg aggtcaagtt 1980 cttgtctggg gcttgggaat actgcctgtg tttggccatt aaaaaggcac catctccat 2039 <110> Konkuk University Glocal Industry-Academic Collaboration Foundation <120> Direct conversion method from somatic cells to induced          cholangiocyte stem cells <130> PN170182 <160> 2 <170> KoPatentin 3.0 <210> 1 <211> 3203 <212> DNA <213> Mus musculus <400> 1 aaacagagca ggcaggggcc ctgattcact ggccgctggg gccagggttg ggggctgggg 60 gtgcccacag agcttgacta gtgggatttg ggggggcagt gggtgcagcg agcccggtcc 120 gttgactgcc agcctgccgg caggtagaca ccggccgtgg gtgggggagg cggctagctc 180 agtggccttg ggccgcgtgg cctggtggca gcggagccat ggtttctaag ctgagccagc 240 tgcagacgga gctcctggct gccctgctcg agtctggcct gagcaaagag gccctgatcc 300 aggccttggg ggagccaggg ccctacctga tggttggaga gggtcccctg gacaaggggg 360 agtcctgcgg tgggagtcga ggggacctga ccgagttgcc taatggcctt ggagaaacgc 420 gtggctctga agatgacacg gatgacgatg gggaagactt cgcgccaccc attctgaaag 480 agctggagaa cctcagccca gaggaggcag cccaccagaa agccgtggtg gagtcacttc 540 ttcaggagga cccatggcgc gtggcgaaga tggtcaagtc gtacttgcag cagcacaaca 600 tcccccagcg ggaggtggtg gacaccacgg gtctcaacca gtcccacctg tcacagcacc 660 tcaacaaggg cacacccatg aagacacaga agcgggccgc tctgtacacc tggtacgtcc 720 gcaagcagcg agaggtggct cagcaattca cccacgcagg gcagggcgga ctgattgaag 780 agcccacagg cgatgagctg ccaactaaga aggggcgtag gaaccggttc aagtggggcc 840 ccgcatccca gcagatcctg ttccaggcct acgagaggca aaaaaacccc agcaaggaag 900 agcgagagac cttggtggag gagtgtaata gggcggagtg catccagagg ggggtgtcac 960 catcgcaggc ccaggggcta ggctccaacc ttgtcacgga ggtgcgtgtc tacaactggt 1020 ttgccaaccg gcgcaaggag gaagccttcc ggcacaagtt ggccatggac acctataacg 1080 gacctccacc ggggccaggc ccgggccctg cgctgcctgc tcacagttcc cccggcctgc 1140 ccacaaccac cctctctccc agtaaggtcc acggtgtacg gtacggacag tctgcaacca 1200 gtgaggcagc cgaggtgccc tccagcagcg gaggtccctt agtcacagtg tctgcggcct 1260 tacaccaagt atcccccaca ggcctggagc ccagcagcct gctgagcaca gaggccaagc 1320 tggtctcagc cacggggggt cccctgcctc ccgtcagcac cctgacagca ctgcacagct 1380 tggagcagac atctccgggt ctcaaccagc agccgcagaa ccttatcatg gcctcgctac 1440 ctggggtcat gaccatcggg cccggggagc ctgcctccct gggacccacg ttcacgaaca 1500 cgggcgcctc caccctggtt atcggtctgg cctccactca ggcacagagc gtgcctgtca 1560 tcaacagcat ggggagtagc ctgaccacgc tgcagccggt ccagttttcc caaccactgc 1620 atccctccta tcagcagcct ctcatgcccc ccgtacagag ccacgtggcc cagagcccct 1680 tcatggcaac catggcccag ctgcagagcc cccacgcctt atacagccac aagcctgagg 1740 tggcccagta cacgcacacc agcctgctcc cgcagaccat gttgatcaca gacaccaacc 1800 tcagcaccct tgccagcctc acacccacca agcaggtctt cacctcagac acagaggcct 1860 ccagtgagcc cgggcttcac gagccaccct ctccagccac caccatccac atccccagcc 1920 aggacccgtc gaacatccag cacctgcagc ctgctcaccg gctcagcacc agtcccacag 1980 tgtcctccag cagcctggtg ttgtatcaga gttccgactc caacgggcac agccacctgc 2040 tgccatccaa ccatagtgtc atcgagactt ttatctccac ccagatggcc tcctcttccc 2100 agtaaccgtg gtgactgcct cccaggagct gggtccccag ggcctgcact gcctgcatag 2160 ggggtgagga gggccgcagc cacactgcct ggaggatatc tgagcctgcc atgccacctg 2220 acacaggctg ctggccttcc cagaagtcta cgcattcatt gacactgctg ctcctccatc 2280 atcaggaagg gatggctctg aggtgtctca gcctgacaag cgagcctcga ggagctggag 2340 gacggcccaa tctgggcagt attgtggacc accatccctg ctgtttagaa taggaaattt 2400 aatgcttggg acaggagtgg ggaagctcgt ggtgcccgca cccccccagt cagagcctgc 2460 aggccttcaa ggatctgtgc tgagctctga ggccctagat caacacagct gcctgctgcc 2520 tcctgcacct ccccaggcca ttccaccctg caccagagac ccacgtgcct gtttgaggat 2580 taccctcccc accacgggga tttcctaccc agctgttctg ctaggctcgg gagctgaggg 2640 gaagccactc ggggctctcc taggctttcc cctaccaagc catcccttct cccagcccca 2700 ggactgcact tgcaggccat ctgttccctt ggatgtgtct tctgatgcca gcctggcaac 2760 ttgcatccac tagaaaggcc atttcagggc tcgggttgtc atccctgttc cttaggacct 2820 gcaactcatg ccaagaccac accatggaca atccactcct ctgcctgtag gcccctgaca 2880 acttccttcc tgctatgagg gagacctgca gaactcagaa gtcaaggcct gggcagtgtc 2940 tagtggagag ggtaccaaga ccagcagaga gaagccacct aagtggcctg ggggctagca 3000 gccattctga gaaatcctgg gtcccgagca gcccagggaa acacagcaca catgactgtc 3060 tcctcgggcc tactgcaggg aacctggcct tcagccagct cctttgtcat cctggactgt 3120 agcctacggc caaccataag tgagcctgta tgtttattta acttttagta aagtcagtaa 3180 aaagcaaaaa aaaaaaaaaa aaa 3203 <210> 2 <211> 2039 <212> DNA <213> Mus musculus <400> 2 gcgggactcc cgggctgtgt gcctcaggtc ggaactcggg gctagtgcct gtagagagac 60 cgaagcactc ggttccccca ggggggcctc agcctgggtg tgtgggggcg caggccccgg 120 ggatgctggg ctcagtgaag atggaggctc atgacctggc cgagtggagc tactacccgg 180 aggcgggcga ggtgtattct ccagtgaatc ctgtgcccac catggcccct ctcaactcct 240 acatgacctt gaacccactc agctctccct accctcccgg agggcttcag gcctccccac 300 tgcctacagg acccctggca cccccagccc ccactgcgcc cttggggccc accttcccaa 360 gcttgggcac tggtggcagc accggaggca gtgcttccgg gtatgtagcc ccagggcccg 420 ggcttgtaca tggaaaagag atggcaaagg ggtaccggcg gccactggcc cacgccaaac 480 caccatattc ctacatctct ctcataacca tggctattca gcaggctcca ggcaagatgc 540 tgaccctgag tgaaatctac caatggatca tggacctctt cccgtactac cgggagaacc 600 agcaacgttg gcagaactcc atccggcatt cgctgtcctt caatgactgc ttcgtcaagg 660 tggcacgctc cccagacaag ccaggcaaag gctcctactg ggccttgcat cccagctctg 720 ggaacatgtt tgagaacggc tgctatctcc gccggcagaa gcgcttcaag ctggaggaga 780 gggtcagcca 840 cctctgccac cactacagct gccactgcag tcacctcccc ggctcagccc cagcctacgc 900 catctgagcc cgaggcccag agtggggatg atgtgggggg tctggactgc gcctcacctc 960 cttcgtccac accttatttc agcggcctgg agctcccggg ggaactaaag ttggatgcgc 1020 cctataactt caaccaccct ttctctatca acaacctgat gtcagaacag acatcgacac 1080 cttccaaact ggatgtgggg tttgggggct acggggctga gagtggggag cctggagtct 1140 actaccagag cctctattcc cgctctctgc ttaatgcatc ctagcagcgc aattgggaac 1200 gccatgatgg gcgtgggctg caacgttctt gggctctgat ctttctggtt acactttgct 1260 tgtcccatta attaacatct tatttggtct attactgtga tatgacccat tggctactgt 1320 ggtaactgcc atggactctt tggtaggcct agggttgggg tattaggaag gcagatgcgt 1380 ttggaagtgc tgcgaaggtg gtcatgttgg acatattgtg aaggcagtta gactggtgta 1440 ctatgaaagc tgccatatta agtgaagcca ttgggtgatt gatccactgg gtgcctgatg 1500 gtcgtgatgt tggatgacac atgtctggtc ctttggatga tgtgttggac atcttgattg 1560 accttttgag tatgtgacag aacacatctt ctttggctca ttttatcctg ggatcgcctc 1620 ttttttttcc tcttcttttt ctttttcttt ttcttttttt cttttccttt tttctttttt 1680 ttttcttttt tggcagactt cttggttcag cagatgccaa attggccacc atatcacatg 1740 gtgtcttttt tgacattctg gatgcatgga aggtcactgt attggcaagg tgacatctca 1800 gcatgctgct atgcaccaag atagatggtt accacaggcc tgccatcacc atctccttgg 1860 tggaggttgg gtgaggggaa gaggtgagca gaccctatga gttttctctg aagcccatcc 1920 ccaccctgtc tgtgagaaag ggctagtgtg ggtgtcggga gttcctactg aggtcaagtt 1980 cttgtctggg gcttgggaat actgcctgtg tttggccatt aaaaaggcac catctccat 2039

Claims (8)

체외로 분리된 포유동물의 체세포에 Hnf1α 및 Foxa3 유전자를 도입하는 단계를 포함하는, 체세포에서 유도담관줄기세포 (induced cholangiocyte stem cells)로의 교차분화방법.
A method of crossing differentiation into induced cholangiocyte stem cells in somatic cells, comprising introducing Hnf1 alpha and Foxa3 genes into somatic cells of an in vitro isolated mammal.
제 1 항에 있어서, 상기 Hnf1α 유전자는 서열목록 제 1 서열로 표시되는 뉴클레오타이드 서열을 포함하는 것을 특징으로 하는 교차분화방법.
2. The method of claim 1, wherein the Hnf1 &amp;alpha; gene comprises a nucleotide sequence represented by SEQ ID NO: 1.
제 1 항에 있어서, 상기 Foxa3 유전자는 서열목록 제 2 서열로 표시되는 뉴클레오타이드 서열을 포함하는 것을 특징으로 하는 교차분화방법.
2. The method of claim 1, wherein the Foxa3 gene comprises a nucleotide sequence represented by SEQ ID NO: 2.
제 1 항에 있어서, 상기 유전자 도입에서 유전자 운반체는 바이러스, 플라스미드, 리포좀 또는 니오좀인 것을 특징으로 하는 교차분화방법.
The method of claim 1, wherein the gene carrier in the gene introduction is a virus, a plasmid, a liposome, or a niozyme.
제 1 항에 있어서, 상기 포유동물은 인간, 마우스, 래트, 기니아 피그, 개, 고양이, 말, 소, 돼지, 원숭이 또는 침팬지인 것을 특징으로 하는 교차분화방법.
2. The method according to claim 1, wherein the mammal is a human, a mouse, a rat, a guinea pig, a dog, a cat, a horse, a cow, a pig, a monkey or a chimpanzee.
Hnf1α 유전자 및 Foxa3 유전자 발현을 위한 유전자 전달체를 포함하는, 체세포에서 유도담관줄기세포 (induced cholangiocyte stem cells)로의 교차분화용 조성물.
A composition for crossing differentiation from induced somatic cells into induced cholangiocyte stem cells, comprising a gene carrier for Hnf1? Gene and Foxa3 gene expression.
제 6 항에 있어서, 상기 체세포는 섬유아세포인 것을 특징으로 하는 조성물.
7. The composition of claim 6, wherein the somatic cell is a fibroblast.
다음 단계를 포함하는 체세포에서 유도담관줄기세포 (induced cholangiocyte stem cells)로의 교차분화방법:
(a) 체외로 분리된 포유동물의 체세포에 Hnf1α 및 Foxa3 유전자를 도입하여 유도간줄기세포를 제조하는 단계; 및
(b) 상기 단계 (a)의 유도간줄기세포를 성장인자 포함 배지에서 계대배양하여 유도담관줄기세포를 제조하는 단계.
Cross-differentiation into induced cholangiocyte stem cells in somatic cells, including the following steps:
(a) introducing Hnf1 &agr; and Foxa3 genes into somatic cells of mammals isolated from in vitro, to produce inducible stem cells; And
(b) culturing the inducible stem cell of step (a) in a growth factor-containing medium to produce induced biliary stromal cells;
KR1020170108198A 2017-08-25 2017-08-25 Direct conversion method from somatic cells to induced cholangiocyte stem cells KR101993045B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170108198A KR101993045B1 (en) 2017-08-25 2017-08-25 Direct conversion method from somatic cells to induced cholangiocyte stem cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170108198A KR101993045B1 (en) 2017-08-25 2017-08-25 Direct conversion method from somatic cells to induced cholangiocyte stem cells

Publications (2)

Publication Number Publication Date
KR20190022202A true KR20190022202A (en) 2019-03-06
KR101993045B1 KR101993045B1 (en) 2019-06-26

Family

ID=65761568

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170108198A KR101993045B1 (en) 2017-08-25 2017-08-25 Direct conversion method from somatic cells to induced cholangiocyte stem cells

Country Status (1)

Country Link
KR (1) KR101993045B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975913A (en) * 2023-02-03 2023-04-18 北京中医药大学深圳医院(龙岗) Method for inducing and differentiating gallbladder progenitor cells by using pluripotent stem cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9623048B2 (en) * 2013-02-08 2017-04-18 Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences Human hepatocyte-like cells and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9623048B2 (en) * 2013-02-08 2017-04-18 Shanghai Institutes For Biological Sciences, Chinese Academy Of Sciences Human hepatocyte-like cells and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cell Stem Cell. 13(3):328-40 (2013.09.05.)* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975913A (en) * 2023-02-03 2023-04-18 北京中医药大学深圳医院(龙岗) Method for inducing and differentiating gallbladder progenitor cells by using pluripotent stem cells

Also Published As

Publication number Publication date
KR101993045B1 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP5968871B2 (en) Production of hepatocytes by forward programming
EP2673358B1 (en) Hematopoietic precursor cell production by programming
US8178349B2 (en) Homogeneous neural precursor cells
JP2016010406A (en) Induction hepatic stem cell and production method thereof, and application of cell concerned
JP2016508726A (en) Production of hepatocytes via forward programming with combined genetic and chemical manipulation
KR20150052228A (en) Methods and compositions for producing induced hepatocytes
WO2011102532A1 (en) Induced hepatocytes
CN102459576B (en) Compositions and methods for modulating stem cells and uses thereof
JP2017511150A (en) Kits and methods for reprogramming non-hepatocytes to hepatocytes
JP4838710B2 (en) Use of cardiotrophin to regulate stem cell proliferation
KR101993045B1 (en) Direct conversion method from somatic cells to induced cholangiocyte stem cells
US20180305426A1 (en) Cancer-specific suicide gene for cell-based and gene therapy
US20190352601A1 (en) Engineering blood vessel cells for transplantation
JP2016027813A (en) Nuclear receptor and mutant of the same, and use of the same in cell reprogramming
KR101698984B1 (en) Composition for inducing dedifferentiation for induced pluripotent stem cells with Reptin and method for inducing induced pluripotent stem cells using the same
JP7203427B2 (en) Method for manipulating human induced pluripotent stem cells to generate liver tissue
KR101993044B1 (en) Direct conversion method from somatic cells to induced hepatic stem-like cells
KR100985191B1 (en) Reversibly immortalised olfactory ensheathing glia and their use to promote neuronal regeneration
KR101967435B1 (en) Composition for inducing direct conversion of somatic cell into hepatic stem cell, hepatic cell, or cholangiocyte
JP2013540424A (en) Regulation of glypican 4 activity and its use to regulate stem cell fate
WO2023199951A1 (en) Multipotent stem cell having anti-vegf function and differentiated cell thereof
Welchko et al. Trans-differentiation of rat mesenchymal stem cells into dopaminergic neurons for cell transplantation
WO2011145615A1 (en) Nucleic acid for production of pluripotent stem cell
SG173226A1 (en) A nuclear receptor and mutant thereof and the use of the same in the reprogramming of cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant