KR20190015845A - Shuttle vector for regulation of target gene expression in escherichia coli and corynebacterium glutamicum - Google Patents

Shuttle vector for regulation of target gene expression in escherichia coli and corynebacterium glutamicum Download PDF

Info

Publication number
KR20190015845A
KR20190015845A KR1020170099545A KR20170099545A KR20190015845A KR 20190015845 A KR20190015845 A KR 20190015845A KR 1020170099545 A KR1020170099545 A KR 1020170099545A KR 20170099545 A KR20170099545 A KR 20170099545A KR 20190015845 A KR20190015845 A KR 20190015845A
Authority
KR
South Korea
Prior art keywords
shuttle vector
corynebacterium glutamicum
gene
coli
sgrna
Prior art date
Application number
KR1020170099545A
Other languages
Korean (ko)
Other versions
KR102026067B1 (en
Inventor
우한민
윤진경
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020170099545A priority Critical patent/KR102026067B1/en
Priority to PCT/KR2018/008944 priority patent/WO2019031804A2/en
Publication of KR20190015845A publication Critical patent/KR20190015845A/en
Application granted granted Critical
Publication of KR102026067B1 publication Critical patent/KR102026067B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to an E. coli and Corynebacterium glutamicum shuttle vector for controlling expression of a target gene, which comprises: a DNA sequence encoding a guide RNA (sgRNA) of the target gene, and a promoter operably linked thereto; a DNA sequence encoding inactivated Cas9 (dCas9) and a promoter operably linked thereto; a Corynebacterium glutamicum-derived replication origin; and an E. coli-derived replication origin.

Description

목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터 {SHUTTLE VECTOR FOR REGULATION OF TARGET GENE EXPRESSION IN ESCHERICHIA COLI AND CORYNEBACTERIUM GLUTAMICUM}[0001] The present invention relates to an Escherichia coli and a Corynebacterium glutamicum shuttle vector for regulating expression of a gene of interest,

본원은, 목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 셔틀 벡터, 및 상기 셔틀 벡터가 도입된 대장균 및 코리네박테리움에 관한 것이다.The present invention relates to an Escherichia coli and a Corynebacterium shuttle vector for controlling expression of a target gene, and Escherichia coli and Corynebacterium into which the shuttle vector is introduced.

코리네박테리움 글루타미쿰(Corynebacterium glutamicum)은 그람 양성 균주로서, 글루타메이트, 라이신, 트레오닌과 같은 아미노산 및 이노신산과 같은 퓨린 계열의 핵산을 생산하는 등의 용도로 널리 이용되고 있다. 코리네박테리움 글루타미쿰은 생장 조건이 용이하며, 대장균에 비해 4 배 가량 고농도 배양이 가능하고, 유전체 구조가 안정적이어서 돌연변이 발생 확률이 낮다. 또한, 비병원성 균주이고 포자를 만들지 않아 환경에 유해한 영향을 미치지 않는 등 산업용 균주로서의 장점을 갖추고 있다. Corynebacterium glutamicum is a gram-positive strain and is widely used for producing purine-based nucleic acids such as glutamate, lysine, amino acids such as threonine, and inosine acid. Corynebacterium glutamicum is easy to grow, can grow at a concentration as high as four times that of E. coli, and has a low dielectric constant and low probability of mutation. In addition, it is a non-pathogenic strain and has advantages as industrial strains such as not producing spores and not harmful to the environment.

클로닝 벡터는 세균 내에서 주염색체와 독립적으로 복제될 수 있는 고리 형태의 DNA이다. 이러한 클로닝 벡터는 균주 내에서 플라스미드 형태로 유지되기 위한 복제원점 (origin of replication), 벡터를 보유한 균주를 선별하기 위한 선발 표지 유전자 (selectable marker gene), 및 외래 유전자의 클로닝을 위한 다중클로닝부위 (multi-cloning site, MCS) 등을 포함한다.The cloning vector is a loop-like DNA that can be replicated independently of the main chromosome in bacteria. Such a cloning vector includes an origin of replication for maintaining the plasmid in the strain, a selectable marker gene for selecting a strain having the vector, and a multi-cloning site for cloning of the foreign gene -cloning site, MCS).

셔틀 벡터는 일반적으로 복수의 균주에서 유지 가능한 벡터를 포함한다. 대장균-코리네박테리움 글루타미쿰 셔틀 벡터 는 대장균의 복제원점 및 코리네박테리움 글루타미쿰의 복제원점을 모두 포함하고 있다. 이러한 셔틀 벡터를 사용함으로써 대상 균주에 원하는 형질을 용이하게 도입할 수 있는데, 예를 들어 대장균에서 외래유전자 또는 돌연변이를 유발시킨 유전자를 셔틀 벡터에 클로닝 한 후, 이 셔틀 벡터를 코리네박테리움 글루타미쿰에 도입함으로써 원하는 형질을 유도할 수도 있다. The shuttle vector generally contains a vector that is sustainable in a plurality of strains. The E. coli-Corynebacterium glutamicum shuttle vector contains both the origin of replication of Escherichia coli and the origin of replication of Corynebacterium glutamicum. By using such a shuttle vector, a desired trait can be easily introduced into a target strain. For example, a gene encoding a foreign gene or a mutation in E. coli can be cloned into a shuttle vector, and the shuttle vector can be introduced into Corynebacterium glutamicum Can also be introduced into humans to induce desired traits.

한편, 세균의 유전자 발현을 조절하기 위한 다양한 유전자 조작 기술들이 알려져 있다. 이 중, 불활성화된 Cas9(dCas9) 기반으로 목적 유전자의 발현을 저해하는 CRISPRi(CRISPR interference, 크리스퍼 간섭) 시스템을 이용하기 위해서 기존 연구에서는 dCas9와 목적 유전자의 가이드 RNA (sgRNA) 두 종류의 플라스미드를 이용하였다. 따라서 CRISPRi 재조합 균주를 만들기 위해서 dCas9의 플라스미드와 sgRNA의 플라스미드 2 개를 공-형질전환(co-transformation)해야 하는 어려움이 있었고, 특정 유전자의 과발현을 유도하거나 외래 유전자를 발현시킬 수 있는 플라스미드를 추가적으로 형질전환하지 못해 다양한 재조합 균주를 만들지 못한다는 한계를 지니고 있었다.On the other hand, various gene manipulation techniques for controlling the gene expression of bacteria are known. In order to utilize the CRISPRi (CRISPR interference) system which inhibits the expression of the target gene based on the inactivated Cas9 (dCas9), in the prior art, two kinds of plasmids of dCas9 and the guide RNA of the target gene (sgRNA) Respectively. Therefore, it has been difficult to co-transform the plasmid of dCas9 and two plasmids of sgRNA in order to produce a CRISPRi recombinant strain, and a plasmid capable of inducing overexpression of a specific gene or expressing a foreign gene is additionally added And they could not make various recombinant strains because they could not switch.

대한민국 공개특허 제 10-2016-0049311 호Korean Patent Publication No. 10-2016-0049311

본원은, 기존의 두 플라스미드로 이루어진 CRISPRi 기술의 한계를 극복하고, 대장균과 코리네박테리움 글루타미쿰에서 모두 작동하는 하나의 플라스미드로 이루어진 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터를 개발하고자 하였다.The present invention aims to overcome the limitations of the CRISPRi technology consisting of two existing plasmids and to develop an E. coli and Corynebacterium glutamicum shuttle vector consisting of one plasmid that operates in both E. coli and Corynebacterium glutamicum .

그러나 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present invention are not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

본원의 제 1 측면은, 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 DNA 서열 및 이에 작동가능하게 연결된 프로모터; 불활성화된 Cas9 (dCas9)를 인코딩하는 DNA 서열 및 이에 작동가능하게 연결된 프로모터; 코리네박테리움 글루타미쿰 유래의 복제 개시점; 및 대장균 유래의 복제 개시점을 포함하는, 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터를 제공할 수 있다.A first aspect of the invention provides a DNA sequence encoding a guide RNA (sgRNA) of a target gene and a promoter operably linked thereto; A DNA sequence encoding inactivated Cas9 (dCas9) and a promoter operably linked thereto; Replication origin from Corynebacterium glutamicum; And E. coli and a Corynebacterium glutamicum shuttle vector, including a cloning start point derived from Escherichia coli.

본원의 제 2 측면은, 본원의 제 1 측면에 따른 셔틀 벡터가 도입된 대장균을 제공할 수 있다.The second aspect of the present invention can provide Escherichia coli into which a shuttle vector according to the first aspect of the present application is introduced.

본원의 제 3 측면은, 본원의 제 1 측면에 따른 셔틀 벡터가 도입된 코리네박테리움 글루타미쿰을 제공할 수 있다.A third aspect of the invention provides a Corynebacterium glutamicum with introduced shuttle vector according to the first aspect of the present disclosure.

상술한 과제 해결 수단은 단지 예시적인 것으로서, 본 발명을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 구현예 외에도, 도면 및 발명의 상세한 설명에 기재된 추가적인 구현예 및 실시예가 존재할 수 있다.The above-described task solution is merely exemplary and should not be construed as limiting the present invention. In addition to the exemplary implementations described above, there may be additional implementations and embodiments described in the drawings and detailed description of the invention.

본원발명에 따르면, 하나의 CRIPSRi 플라스미드를 이용하여 유전자 변형을 일으키지 않고도 목적 유전자를 다양한 발현 정도로 억제 할 수 있다. 특히 세포 성장에 중요한 역할을 하는 유전자의 유전자 변형을 만드는 일은 거의 불가능한데, 본원발명의 셔틀 벡터를 이용하면 유전자의 종류에 관계없이 그 유전자의 발현량을 간단하게 억제 할 수 있으며, 따라서 목적 물질의 생산을 위한 최적의 목적 유전자 발현 억제 정도를 효율적으로 탐색할 수 있다.According to the present invention, a target gene can be suppressed to various expression levels without causing genetic transformation using one CRIPSRi plasmid. In particular, it is almost impossible to make genetic modification of a gene that plays an important role in cell growth. Using the shuttle vector of the present invention can easily suppress the expression amount of the gene regardless of the kind of the gene, It is possible to efficiently search the optimal gene expression inhibition degree for production.

도 1은 본원의 일 실시예에 따른 xylA 유전자를 목적으로 하는 셔틀 벡터 (도 1a) 및 pyc 유전자를 목적으로 하는 셔틀 벡터 (도 1b)의 개략도이다.
도 2a 내지 도 2e는 본원의 일 실시예에 따른 셔틀 벡터 의 제작 과정에서 만들어지는 벡터들의 개략도이다.
도 3은 본원의 일 실시예에 따라 제조된 셔틀 벡터 pCoryne-sgRNA-xylA-r-dCas9가 도입된 대장균의 생장을 관찰하여 나타낸 그래프 (도 3a) 및 RT-PCT 결과 (도 3b)이다.
도 4는 본원의 일 실시예에 따라 제조된 셔틀 벡터pCoryne-sgRNA-pyc-r-dCas9가 도입된 코리네박테리움 글루타미쿰의 표현형을 관찰하여 나타낸 그래프이다.
1 is a schematic diagram of a shuttle vector (FIG. 1A) for the xylA gene and a shuttle vector (FIG. 1B) for the pyc gene according to one embodiment of the present application.
FIGS. 2A through 2E are schematic diagrams of vectors generated in the process of manufacturing a shuttle vector according to an embodiment of the present invention. FIG.
FIG. 3 is a graph (FIG. 3A) and RT-PCT result (FIG. 3B) showing the growth of E. coli with the shuttle vector pCoryne-sgRNA-xylA-r-dCas9 prepared according to one embodiment of the present invention.
FIG. 4 is a graph showing the phenotype of Corynebacterium glutamicum to which the shuttle vector pCoryne-sgRNA-pyc-r-dCas9 prepared according to one embodiment of the present invention is introduced.

아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention. It should be understood, however, that the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In order to clearly explain the present invention in the drawings, portions not related to the description are omitted.

본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, when an element is referred to as " including " an element, it is understood that the element may include other elements as well, without departing from the other elements unless specifically stated otherwise.

본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다. The terms " about ", " substantially ", etc. used to the extent that they are used throughout the specification are intended to be taken to mean the approximation of the manufacturing and material tolerances inherent in the stated sense, Accurate or absolute numbers are used to help prevent unauthorized exploitation by unauthorized intruders of the referenced disclosure. The word " step (or step) " or " step " used to the extent that it is used throughout the specification does not mean " step for.

본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term " combination thereof " included in the expression of the machine form means one or more combinations or combinations selected from the group consisting of the constituents described in the expression of the machine form, And the like.

본원 명세서 전체에서, "A 및/또는 B" 의 기재는, "A, B, 또는, A 및 B" 를 의미한다. Throughout this specification, the description of "A and / or B" means "A, B, or A and B".

이하, 본원의 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터, 및 상기 셔틀 벡터가 도입된 대장균 및 코리네박테리움 글루타미쿰에 대하여 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다. Hereinafter, the Escherichia coli and the Corynebacterium glutamicum shuttle vector of the present invention and the Escherichia coli and Corynebacterium glutamicum into which the shuttle vector is introduced will be described in detail with reference to embodiments, examples and drawings. However, the present invention is not limited to these embodiments and examples and drawings.

본원의 제 1 측면은, 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 DNA 서열 및 이에 작동가능하게 연결된 프로모터; 불활성화된 Cas9 (dCas9)를 인코딩하는 DNA 서열 및 이에 작동가능하게 연결된 프로모터; 코리네박테리움 글루타미쿰 유래의 복제 개시점; 및 대장균 유래의 복제 개시점을 포함하는 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터를 제공할 수 있다.A first aspect of the invention provides a DNA sequence encoding a guide RNA (sgRNA) of a target gene and a promoter operably linked thereto; A DNA sequence encoding inactivated Cas9 (dCas9) and a promoter operably linked thereto; Replication origin from Corynebacterium glutamicum; And E. coli and a Corynebacterium glutamicum shuttle vector including a cloning start point derived from E. coli.

본원의 셔틀 벡터는 하나의 플라스미드 내에 가이드 RNA를 인코딩하는 서열 및 dCas9를 인코딩하는 서열이 모두 존재하므로, 두 개의 플라스미드를 공-형질전환해야하는 종래 기술에 비해 간편하고 경제적이며 높은 성공률로 대장균 또는 코리네박테리움 글루타미쿰 내에서 목적 유전자의 발현을 조절할 수 있다. 또한, 특정 유전자의 과발현을 유도하거나 또는 외래 유전자를 발현시킬 수 있는 플라스미드를 추가적으로 형질전환할 수 있는 장점이 있다.Since the shuttle vector of the present invention has both a sequence encoding a guide RNA and a sequence encoding dCas9 in one plasmid, it is easier and more economical to perform co-transformation of two plasmids, The expression of the gene of interest can be regulated in bacterium glutamicum. In addition, there is an advantage that a plasmid capable of inducing overexpression of a specific gene or expressing a foreign gene can be additionally transformed.

본원의 셔틀 벡터는 CRIPSRi 플라스미드인데, 이러한 크리스퍼 간섭 (CRIPSRi, dCas9기반 목적 유전자의 발현저해기술) 기술은 핵산 분해효소인 Cas9를 이용해 유전체의 서열을 편집하는 데에 사용되기도 하지만, 서열 특이적이면서 돌연변이를 유발하지 않는 유전자 조절 도구로도 사용될 수 있다. 이는 Cas9를 불활성화시킨 dCas9를 사용함으로써 달성될 수 있는데, dCas9는 DNA를 자를 수는 없지만 가이드 RNA가 인도하는 특정 DNA에 결합함으로써 전사를 방해하여 해당 유전자의 발현을 억제하거나, 또는 전사를 촉진하는 단백질들을 유도함으로써 해당 유전자의 발현을 촉진할 수도 있다.The shuttle vector of the present invention is a CRIPSRi plasmid. This technique of CRIPSRi (expression of dCas9-based gene expression inhibiting technology) is used to edit the sequence of the genome using Cas9, a nucleolytic enzyme, It can also be used as a gene regulator that does not cause mutation. This can be achieved by using dacas9 inactivating Cas9, which does not cut DNA but binds to a specific DNA guided by the guide RNA to inhibit transcription and thereby inhibit the expression of the gene, or to promote transcription By inducing proteins, expression of the gene can be promoted.

용어 “작동가능하게 연결된"은 하나의 핵산 단편이 다른 핵산 단편과 결합되어 그의 기능 또는 발현이 다른 핵산 단편에 의해 영향을 받는 것을 의미한다.The term " operably linked " means that one nucleic acid fragment is associated with another nucleic acid fragment so that its function or expression is affected by other nucleic acid fragments.

용어 "가이드 RNA"는 일반적으로 Cas 단백질 (dCas 단백질 포함)에 결합할 수 있고 Cas 단백질을 표적 폴리뉴클레오타이드 (예를 들어, DNA)내의 특정 위치에 표적화하는 것을 도울 수 있는 RNA 분자(또는 집합적으로 RNA 분자들의 그룹)를 지칭할 수 있다. 가이드 RNA는 crRNA 분절 및 tracrRNA 분절을 포함할 수 있다. 본 명세서에 사용되는 "crRNA" 또는 "crRNA 분절"이란 용어는 폴리뉴클레오타이드-표적화 가이드 서열, 줄기 서열 및 임의로 5'-오버행 서열을 포함하는 RNA 분자 또는 그의 부분을 지칭한다. 본 명세서에 사용되는 "tracrRNA" 또는 "tracrRNA 분절"이란 용어는 단백질-결합 분절(예를 들어, 상기 단백질-결합 분절은 크리스퍼-결합된 단백질, 예를 들어 Cas9와 상호작용할 수 있다)을 포함하는 RNA 분자 또는 그의 부분을 지칭한다. 상기 "가이드 RNA"란 용어는 단일 가이드 RNA(sgRNA)를 포함하며, 이때 상기 crRNA 분절 및 상기 tracrRNA 분절은 동일한 RNA 분자 중에 위치한다. "가이드 RNA"란 용어는 또한 집합적으로 2개 이상의 RNA 분자들의 그룹을 포함하며, 이때 상기 crRNA 및 상기 tracrRNA 분절은 별도의 RNA 분자 중에 위치한다.The term " guide RNA " generally refers to RNA molecules capable of binding Cas proteins (including dCas proteins) and helping to target Cas proteins to specific positions within a target polynucleotide (e.g., DNA) A group of RNA molecules). The guide RNA may comprise a crRNA segment and a tracrRNA segment. The term " crRNA " or " crRNA segment ", as used herein, refers to an RNA molecule or portion thereof comprising a polynucleotide-targeting guide sequence, a stem sequence and optionally a 5'-overhang sequence. The term " tracrRNA " or " tracrRNA segment ", as used herein, includes protein-binding segments (e.g., the protein-binding segments may interact with a cis- Lt; / RTI > molecule or portion thereof. The term " guide RNA " includes a single guide RNA (sgRNA), wherein the crRNA segment and the tracrRNA segment are located in the same RNA molecule. The term " guide RNA " also collectively includes a group of two or more RNA molecules, wherein the crRNA and the tracRNA segment are located in separate RNA molecules.

용어 "핵산", "폴리뉴클레오타이드" 또는 "올리고뉴클레오타이드"란 용어는 DNA 분자, RNA 분자 또는 이들의 유사체를 지칭한다. 본 명세서에 사용되는 "핵산", "폴리뉴클레오타이드" 및 "올리고뉴클레오타이드"란 용어는 비제한적으로 DNA 분자, 예를 들어 cDNA, 게놈 DNA 또는 합성 DNA 및 RNA 분자, 예를 들어 가이드 RNA, 전령 RNA 또는 합성 RNA를 포함한다. 더욱이, 본 명세서에 사용되는 "핵산" 및 "폴리뉴클레오타이드"란 용어는 단일-가닥 및 이중-가닥 형태를 포함한다.The term " nucleic acid ", " polynucleotide " or " oligonucleotide " refers to DNA molecules, RNA molecules or analogs thereof. The terms " nucleic acid ", " polynucleotide ", and " oligonucleotide ", as used herein, include, but are not limited to, DNA molecules such as cDNA, genomic DNA or synthetic DNA and RNA molecules such as guide RNA, It contains synthetic RNA. Furthermore, the terms " nucleic acid " and " polynucleotide ", as used herein, include single-stranded and double-stranded forms.

올리고뉴클레오타이드 또는 폴리뉴클레오타이드와 관련하여 "변형"이란 용어는 비제한적으로 (a) 단부 변형, 예를 들어 5' 단부 변형 또는 3' 단부 변형, (b) 염기의 교체 또는 제거를 포함한 핵염기(또는 "염기") 변형, (c) 2', 3' 및/또는 4' 위치의 변형을 포함한 당 변형, 및 (d) 포스포다이에스터 결합의 변형 또는 교체를 포함한 주쇄 변형을 포함한다. "변형된 뉴클레오타이드"란 용어는 일반적으로 상기 염기, 당, 및 뉴클레오타이드 포스페이트를 포함한 포스포다이에스터 결합 또는 주쇄 부분 중 하나 이상의 화학 구조에 대한 변형을 갖는 뉴클레오타이드를 지칭한다.The term " modified " in connection with oligonucleotides or polynucleotides includes, but is not limited to: (a) a nucleotide base (including, for example, a 5'terminal or 3'terminal modification, Quot; base ") modifications, (c) sugar modifications including modifications of the 2 ', 3' and / or 4 'positions, and (d) modification of the phosphodiester bond. The term " modified nucleotide " generally refers to a nucleotide having a modification to one or more chemical structures of a phosphodiester bond or backbone portion, including the base, sugar, and nucleotide phosphate.

CRISPRi을 이용한 대장균과 코리네박테리움 글루타미쿰에서 작동하는 셔틀 벡터의 구조가 도 1a 및 1b 등에 나타나 있다. 도 1a는 대장균의 xylA 유전자를 억제하기 위해 xylA의 가이드 RNA (sgRNA)를 포함하도록 제작된, 대장균과 코리네박테리움 글루타미쿰에서 작동하는 셔틀 벡터 (pCoryne-sgRNA-xylA-r-dCas9)의 구조이다.The structure of a shuttle vector that operates in E. coli and Corynebacterium glutamicum using CRISPRi is shown in Figures 1A and 1B. FIG. ≪ RTI ID = xyla Is the structure of a shuttle vector (pCoryne-sgRNA-xylA-r-dCas9) that works in E. coli and Corynebacterium glutamicum, constructed to contain the guide RNA (sgRNA) of xylA to suppress the gene.

도 1b는 코리네박테리움 글루타미쿰의 pyc 유전자를 억제하기 위해 pyc의 가이드 RNA (sgRNA)를 포함하도록 제작된, 대장균과 코리네박테리움 글루타미쿰에서 작동하는 셔틀 벡터 (pCoryne-sgRNA-xylA-r-dCas9)의 구조이다.Figure 1b is a Corynebacterium glutamicum in order to suppress the pyc gene designed to include a guide RNA (sgRNA) of pyc, Escherichia coli and Corynebacterium shuttle that operate on tatami glutamicum vector (pCoryne-sgRNA-xylA -r-dCas9).

예를 들어, 상기 셔틀 벡터는 2 종 이상의 가이드 RNA를 인코딩하는 DNA 서열을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 2 종 이상의 가이드 RNA는 동시에 또는 상이한 시기에 발현될 수 있다. For example, the shuttle vector may include, but is not limited to, a DNA sequence encoding two or more guide RNAs. The two or more kinds of guide RNAs can be expressed at the same time or at different times.

예를 들어, 상기 가이드 RNA는 특정 유전자의 발현을 억제함으로써 단백질 발현량을 줄일 수 있고, 기존 대사과정의 흐름을 변화시켜 유용물질의 생산에 관여할 수 있으나, 이에 제한되지 않을 수 있다.For example, the guide RNA may reduce the amount of protein expressed by inhibiting the expression of a specific gene, and may change the flow of a conventional metabolic process to participate in the production of a useful substance, but may not be limited thereto.

예를 들어, 코리네박테리움 글루타미쿰에서 pta-ackA 유전자(phosphotransacetylase와 acetyl kinase를 인코딩하고 있는 유전자)와 ldhA 유전자(lactate dehydrogenase를 인코딩하고 있는 유전자), cat 유전자 (acetyl-coA:coA trasnferase를 인코딩하고 있는 유전자) 및 pqo 유전자(pyruvate:menaquinone oxidoreductase를 인코딩하고 있는 유전자)를 결손할 경우, 락틱산염을 생산하지 못하게 할 수 있다. 따라서, 2 종 이상의 가이드 RNA를 제작하여 코리네박테리움 글루타미쿰에 도입함으로써 상기 유전자들의 발현을 동시에 억제할 수 있으나, 이에 제한되지 않을 수 있다.For example, in Corynebacterium glutamicum, the pta-ackA gene (a gene encoding phosphotransacetylase and acetyl kinase), the ldhA gene (a gene encoding lactate dehydrogenase), the cat gene (acetyl-coA: coA trasnferase Encoding gene) and the pqo gene (pyruvate: the gene encoding the menaquinone oxidoreductase) are deficient, it may be impossible to produce a lactate. Therefore, two or more kinds of guide RNAs may be prepared and introduced into Corynebacterium glutamicum, but the expression of the genes may be simultaneously inhibited, but the present invention is not limited thereto.

예를 들어, 상기 프로모터는 당업계에 알려진 미생물 내에서 작동하는 프로모터들로부터 제한 없이 선택하여 사용할 수 있으며, 특정 발달 단계, 특정 시기, 특정 조건 및 특정 부위 등에서 선택적으로 작동하는 프로모터를 사용할 수 있으나, 이에 제한되지 않을 수 있다.For example, the promoter may be selected from promoters that are operable in a microorganism known in the art, and a promoter that selectively operates at a specific development stage, a specific time, a specific condition, and a specific site may be used, But may not be limited thereto.

본원의 일 구현예에 따르면, 상기 셔틀 벡터는 다중클로닝부위, 전사종결자, 및 리포터 유전자로부터 선택되는 하나 이상의 요소를 더 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 리포터 유전자는 당업계에 알려진 항생제 저항성 유전자 또는 형광 단백질 발현 유전자일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 가이드 RNA를 인코딩하는 DNA 서열은 상기 다중클로닝부위에 삽입될 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the disclosure, the shuttle vector may further include, but is not limited to, one or more elements selected from a multiple cloning site, a transcription terminator, and a reporter gene. For example, the reporter gene may be, but not limited to, an antibiotic resistance gene or a fluorescent protein expression gene known in the art. For example, a DNA sequence encoding a guide RNA may be inserted into, but not limited to, the multiple cloning site.

본원의 일 구현예에 따르면, 상기 셔틀 벡터는 서열번호 1로 표시되는 DNA 서열을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 서열번호 1로 표시되는 서열은 목적 유전자의 가이드 RNA가 생략된 pCoryne-sgRNA--dCas9로서, 그 서열 중 87~92 번째 염기에 존재하는 EcoRI 제한효소 부위, 그리고 97~102 번째 염기에 존재하는 BamHI 제한효소 부위 사이에 목적하는 유전자의 가이드 RNA가 삽입될 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the present invention, the shuttle vector may include, but is not limited to, the DNA sequence shown in SEQ ID NO: 1. The sequence represented by SEQ ID NO: 1 is pCoryne-sgRNA-dCas9 in which the guide RNA of the target gene is omitted. The EcoR I restriction site present in nucleotides 87 to 92 of the sequence, and the EcoRI restriction site present in nucleotides 97 to 102 The guide RNA of the desired gene may be inserted between the BamH I restriction enzyme sites, but may not be limited thereto.

본원의 일 구현예에 따르면, 상기 코리네박테리움 글루타미쿰 유래의 복제 개시점은 pHM1519 및 pBL1로부터 선택될 수 있으나 이에 제한되지 않을 수 있으며, 당업계에 알려진 코리네박테리움 글루타미쿰 유래의 복제 개시점을 적절하게 선택하여 사용할 수 있다.According to one embodiment of the present invention, the cloning start point from the Corynebacterium glutamicum may be selected from, but not limited to, pHM1519 and pBL1, and may be selected from the group consisting of Corynebacterium glutamicum- It is possible to appropriately select and use the cloning start point.

본원의 일 구현예에 따르면, 상기 대장균 유래의 복제 개시점은 p15A, oriC, ColE1, pMB1 및 pSC101로부터 선택될 수 있으나, 이에 제한되지 않을 수 있으며, 당업계에 알려진 대장균 유래의 복제 개시점을 적절하게 선택하여 사용할 수 있다.According to one embodiment of the present invention, the E. coli-derived origin of replication may be selected from p15A, oriC, ColE1, pMB1 and pSC101, but is not limited thereto. Can be selected and used.

본원의 일 구현예에 따르면, 상기 목적 유전자는 대장균의 xylA 또는 코리네박테리움 글루타미쿰의 pyc를 포함할 수 있으나, 이에 제한되지 않을 수 있으며, 대장균 및 코리네박테리움 글루타미쿰 내에서 발현을 조절하고자 하는 임의의 유전자를 목적 유전자로 선택할 수 있다.According to one embodiment of the present invention, the target gene is xylA Or pyc of Corynebacterium glutamicum, and may be any gene which is intended to regulate expression in Escherichia coli and Corynebacterium glutamicum.

본원의 일 구현예에 따르면, 본원의 셔틀 벡터는 목적 유전자의 발현을 촉진 또는 억제하기 위한 것일 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the present disclosure, the shuttle vectors herein may be, but are not limited to, for promoting or inhibiting expression of a gene of interest.

본원의 제 2 측면은, 본원의 제 1 측면에 따른 셔틀 벡터가 도입된 대장균을 제공할 수 있으나, 이에 제한되지 않을 수 있다. 상기 셔틀 벡터의 도입은 특별한 제한 없이, 당업계에 알려진 임의의 미생물의 형질전환 방법에 의해 수행될 수 있다. The second aspect of the present application may provide, but is not limited to, E. coli into which a shuttle vector according to the first aspect of the present application is introduced. The introduction of the shuttle vector can be carried out by any microorganism transformation method known in the art, without any particular limitation.

본원의 일 구현예에 따르면, 상기 대장균은 2017년 7월 11일자로 한국미생물보존센터에 수탁번호 KCCM12077P로 기탁된 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원발명의 대장균은 상기 수탁번호 KCCM12077P로 기탁된 대장균의 변이체를 포함할 수 있다.According to one embodiment of the present invention, the E. coli may be deposited with the deposit number KCCM12077P on July 11, 2017 at the Korean Microorganism Conservation Center, but the present invention is not limited thereto. The Escherichia coli of the present invention may include a variant of Escherichia coli deposited with the above accession number KCCM12077P.

본원의 제 3 측면은, 본원의 제 1 측면에 따른 셔틀 벡터가 도입된 코리네박테리움 글루타미쿰을 제공할 수 있으나, 이에 제한되지 않을 수 있다. 상기 셔틀 벡터의 도입은 특별한 제한 없이, 당업계에 알려진 임의의 미생물의 형질전환 방법에 의해 수행될 수 있다.A third aspect of the invention provides, but is not limited to, Corynebacterium glutamicum with introduced shuttle vectors according to the first aspect of the present disclosure. The introduction of the shuttle vector can be carried out by any microorganism transformation method known in the art, without any particular limitation.

이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention.

[실시예][Example]

세포주 및 배양조건Cell lines and culture conditions

사용된 균주들은 아래의 표 1에 나타나 있다. 대장균은 LB 배지 (10 g/L 트립톤, 5 g/L 효모 추출물, 5 g/L NaCl)에서 37℃, 200 rpm에서 배양되었다. 코리네박테리움 글루타미쿰 및 이의 변이체들은 BHIS 배지 (37g/L brain heart infusion, 91g/L 소비톨) 및 50 ml CgXII 배지와 250 ml 베플 삼각 플라스크를 이용하여 30℃, 200 rpm에서 배양되었다.The strains used are shown in Table 1 below. Escherichia coli was cultured at 37 ° C and 200 rpm in LB medium (10 g / L tryptone, 5 g / L yeast extract, 5 g / L NaCl). Corynebacterium glutamicum and its mutants were cultured at 30 ° C and 200 rpm using BHIS medium (37 g / L brain heart infusion, 91 g / L sorbitol) and 50 ml CgXII medium and 250 ml Beppel Erlenmeyer flasks.

Figure pat00001
Figure pat00001

선택적 배양을 위해 사용된 항생제는 대장균의 경우 100 ㎍/ml 앰피실린, 50 ㎍/ml 카나마이신이며, 코리네박테리움 글루타미쿰의 경우 25 ㎍/ml 카나마이신이었다.The antibiotic used for selective culture was 100 / / ml ampicillin, 50 / / ml kanamycin for E. coli and 25 / / ml kanamycin for Corynebacterium glutamicum.

pCoryne-sgRNA--dCas9 및 재조합 균주 제작Production of pCoryne-sgRNA-dCas9 and recombinant strains

목적 유전자를 가지지 않는 pCoryne-sgRNA--dCas9의 제조를 위해, 먼저 pUC57 벡터에 dCas9을 두 부분으로 나누어 합성하였다. 구체적으로, pUC-dCas9-1 (도 2a)의 tetR-tetO-dCas9-1를 pCoryne-sgRNA- 플라스미드 (도 2c)에 BamHI 및 PstI 제한효소를 이용하여 삽입함으로써 pCoryne-sgRNA--dCas9-1 (도 2d)을 제작한 뒤, pUC-dCas9-2 (도 2b)의 dCas9-2를 상기 pCoryne-sgRNA--dCas9-1 (도 2d)에 ApaI 및 PstI 제한효소를 이용해 삽입함으로써 pCoryne-sgRNA--dCas9 (도 2e)를 제작하였다. 도 2e에 따른 pCoryne-sgRNA--dCas9의 DNA 서열은 서열번호 1에 나타나 있다. 대장균의 형질전환시 KCM 버퍼 (500 mM KCl, 150 mM CaCl2, 250 mM MgCl2)를 이용한 화학적 형질전환 방법을 이용하였고, 코리네박테리움 글루타미쿰의 경우 MicroPulser Electroporator (BioRad)를 이용한 전기적 형질전환 방법을 이용하였으며, 콜로니 PCR를 통해 형질전환 여부를 확인하였다.For the production of pCoryne-sgRNA-dCas9 without the desired gene, dCas9 was firstly synthesized in two portions of pUC57 vector. Specifically, by inserting tetR-tetO-dCas9-1 of pUC-dCas9-1 (Fig. 2a) into pCoryne-sgRNA-plasmid (Fig. 2c) using BamH I and Pst I restriction enzymes, pCoryne-sgRNA- 1 (Fig. 2d) for making a back, a dCas9-2 of pUC-dCas9-2 (Fig. 2b) the pCoryne-sgRNA - by inserting with the Apa I and Pst I restriction enzyme in dCas9-1 (Fig. 2d) pCoryne -sgRNA-dCas9 (Figure 2e). The DNA sequence of pCoryne-sgRNA-dCas9 according to Figure 2e is shown in SEQ ID NO: For transformation of Escherichia coli, a chemical transformation method using KCM buffer (500 mM KCl, 150 mM CaCl 2 , and 250 mM MgCl 2 ) was used, and in the case of Corynebacterium glutamicum, an electric trait using a MicroPulser Electroporator (BioRad) Transformation method was used and transfection was confirmed by colony PCR.

pCoryne-sgRNA-xylA-r-dCas9의 제조 및 특성 확인Preparation and Characterization of pCoryne-sgRNA-xylA-r-dCas9

본 실시예에서는, 대장균의 xylA 유전자를 목적으로 하는 CRISPRi을 이용한 셔틀 벡터를 제작하고, 그에 따른 xylA 유전자의 발현 조절 여부를 알아보았다. xylA는 대장균의 자일로스 이소머라제(xylose isomerase)를 인코딩하는 유전자로서, D-자일로스를 D-자일룰로스로 가수분해하여 대장균이 자일로스를 탄소원으로 이용하여 세포생장을 할 수 있도록 하는 기능을 가진다. xylA 유전자를 목적으로 하는 CRISPRi을 이용한 대장균과 코리네박테리움 글루타미쿰에서 작동하는 셔틀 벡터 (pCoryne-sgRNA-xylA-r-dCas9)의 도면은 도 1a에 나타나 있다.In this example, a shuttle vector using CRISPRi for the xylA gene of Escherichia coli was constructed, and the expression of the xylA gene was regulated according to the shuttle vector. xylA is a gene encoding xylose isomerase of Escherichia coli. It is a gene capable of hydrolyzing D-xylose with D-xylulose to enable cell growth using xylose as a carbon source . A diagram of a shuttle vector (pCoryne-sgRNA-xylA-r-dCas9) that works in E. coli and Corynebacterium glutamicum using CRISPRi for the xylA gene is shown in FIG.

이를 위해, xylA 유전자를 목적으로 하는 sgRNA 2 종류 (sgRNA-xylA-r1: xylA 유전자의 프로모터 부분, sgRNA-xylA-r2: xylA 유전자의 시작코돈 부분)를 각각 포함하는, CRISPRi을 이용한 셔틀 벡터 2 종류 (pCoryne-sgRNA-xylA-r1-dCas9, pCoryne-sgRNA-xylA-r2-dCas9)를 제조하여 대장균에 형질전환하였다.To this end, sgRNA two kinds for the purpose of the xylA gene (sgRNA-xylA-r1: xylA promoter part, sgRNA-xylA-r2 of the gene: Start of the xylA gene codon part) the shuttle vector two kinds with CRISPRi, each including (pCoryne-sgRNA-xylA-r1-dCas9, pCoryne-sgRNA-xylA-r2-dCas9) was prepared and transformed into E. coli.

재조합된 2 가지 종류의 대장균 균주를 LB 배지에 37℃, 200rpm에서 밤샘 배양 한 후, 0.1% 자일로스가 첨가된 LB 배지에 1:100의 비율로 접종하여 37℃에서 27 시간 동안 배양하였다. 이후, 100 nM aTc를 이용하여 0 시간 째 인덕션하여 5 시간째에 샘플을 얻었다. 이 샘플로부터 RNA를 추출하여 cDNA를 만들고, RT-PCR 실험을 통해 xylA의 발현량을 확인하였다. RT-PCR에서 사용한 프라이머의 서열은 아래 표 2에 나타나 있으며, 대조군은 16S rRNA의 유전자인 rrsA를 이용하였다.Two recombinant E. coli strains were cultured in LB medium at 37 ° C and 200 rpm overnight, then inoculated at a ratio of 1: 100 in LB medium supplemented with 0.1% xylose, and cultured at 37 ° C for 27 hours. Then, 100 nM aTc was used for induction at 0 hour, and a sample was obtained at 5 hours. RNA was extracted from this sample to make cDNA, and the amount of xylA expression was confirmed by RT-PCR. The sequence of the primers used in RT-PCR is shown in Table 2 below, and the control group was rssA , a gene of 16S rRNA.

Figure pat00002
Figure pat00002

도 3a는 대장균에서 xylA를 목적으로 하는 CRISPRi의 셔틀 벡터가 발현된 균주 (WT+pCoryne-sgRNA-xylA-r1-dCas9, WT+pCoryne-sgRNA-xylA-r2-dCas9)와 야생형 균주(WT) 및 대조군 균주 (WT+pZ8-0, WT+pCoryne-sgRNA--dCas9)의 생장을 관찰한 결과이고, 도 3b는 대장균에서 xylA를 목적으로 하는 CRISPRi의 셔틀 벡터가 발현된 균주 (WT+pCoryne-sgRNA-xylA-r1-dCas9, WT+pCoryne-sgRNA-xylA-r2-dCas9)와 야생형 균주(WT) 및 대조군 균주(WT+pZ8-0, WT+pCoryne-sgRNA--dCas9)의 RT-PCR 결과를 나타낸다.Figure 3a is a strain CRISPRi shuttle vector is the expression of which the xylA purposes in E. coli (WT + pCoryne-sgRNA-xylA -r1-dCas9, WT + pCoryne-sgRNA-xylA-r2-dCas9) and the wild type strain (WT), and (WT + pZ8-0, WT + pCoryne-sgRNA-dCas9), and Fig. 3b shows the results of the growth of E. coli The strains CRISPRi shuttle vector is the expression of for the purpose of xylA (WT + pCoryne-sgRNA- xylA-r1-dCas9, WT + pCoryne-sgRNA-xylA-r2-dCas9) and the wild type strain (WT) and the control strain (WT + pZ8-0, WT + pCoryne-sgRNA-dCas9).

실험 결과, 셔틀 벡터가 도입되어 dCas9과 sgRNA-xylA-r1 또는 sgRNA-xylA-r2이 모두 발현된 균주는 야생형 균주 및 대조군 균주에 비해 성장이 느렸고 (도 3a), xylA의 발현량이 야생형 균주의 acn 발현량에 비해 적음을 확인할 수 있었다. (도 3b). 즉, 본원발명에 따른 CRISPRi의 셔틀 벡터가 대장균 내에서 잘 작동하여 xylA의 mRNA 전사가 확실히 억제되었음을 확인할 수 있었다.Result, the shuttle vector is introduced in dCas9 and sgRNA-xylA-r1, or sgRNA-xylA-r2 are both expressed strain is the amount of the wild-type strain and growth is slow, was young (Fig. 3a), the expression of xylA compared to the control strain the wild-type strain acn expression level in the rat . (Fig. 3B). In other words, it was confirmed that the shuttle vector of CRISPRi according to the present invention worked well in E. coli and mRNA transcription of xylA was reliably suppressed.

pCoryne-sgRNA-pyc-r-dCas9의 제조 및 특성 확인Preparation and Characterization of pCoryne-sgRNA-pyc-r-dCas9

본 실시예에서는, 코리네박테리움 글루타미쿰의 pyc 유전자를 목적으로 하는 CRISPRi을 이용한 셔틀 벡터를 제작하고, 그 표현형을 관찰하였다. pyc는 코리네박테리움 글루타미쿰의 피루브산염 카복실라제(pyruvate carboxylase)를 인코딩하는 유전자로서, TCA 사이클의 reductive branch를 구성하며 피루브산염을 옥살로아세테이트(oxaloacetate)로 전환하는 기능을 가지므로, pyc가 억제되면 코리네박테리움 글루타미쿰이 정상적으로 자라지 못한다. pyc 유전자를 목적으로 하는 CRISPRi을 이용한 대장균과 코리네박테리움 글루타미쿰에서 작동하는 셔틀 벡터 (pCoryne-sgRNA-pyc-r-dCas9)의 도면은 도 1b에 나타나 있다.In this example, the pyc < RTI ID = 0.0 > A shuttle vector was constructed using CRISPRi for gene expression and its phenotype was observed. pyc is because of the ability to switch to Corynebacterium as a gene that encodes a pyruvate carboxyl cyclase (pyruvate carboxylase) of glutamicum, configure the reductive branch of the TCA cycle, and oxaloacetic acetate (oxaloacetate) a pyruvate, pyc Is inhibited, Corynebacterium glutamicum does not grow normally. pyc A diagram of a shuttle vector (pCoryne-sgRNA-pyc-r-dCas9) that works in E. coli and Corynebacterium glutamicum using CRISPRi for gene targeting is shown in FIG.

이를 위해, pyc 유전자를 목적으로 하는 sgRNA(sgRNA-pyc-r)가 포함된, CRISPRi을 이용한 셔틀 벡터 (pCoryne-sgRNA-pyc-r-dCas9)를 코리네박테리움 글루타미쿰에 형질전환한 뒤, 재조합된 코리네박테리움 글루타미쿰 균주를 BHIS 배지에 30℃, 200 rpm에서 밤샘 배양 한 후, 2% 소듐 락테이트가 첨가된 CgXII 배지에서 약 OD 1.0으로 시작하여 30℃에서 34 시간 동안 배양하였다. For this purpose, a shuttle vector (pCoryne-sgRNA-pyc-r-dCas9) using CRISPRi containing sgRNA (sgRNA-pyc-r) for pyc gene was transformed into Corynebacterium glutamicum , The recombinant Corynebacterium glutamicum strain was cultured in BHIS medium at 30 ° C. overnight at 200 rpm and then cultured in CgXII medium supplemented with 2% sodium lactate at about OD 1.0 for 34 hours at 30 ° C. Respectively.

도 4는 하나의 플라스미드로 이루어진 CRISPRi을 이용한 코리네박테리움 글루타미쿰의 형질전환용 키트 (pCoryne-sgRNA-dCas9)를 이용해 pyc 유전자의 발현을 억제하였을 때, 재조합된 균주의 생장이 야생형 및 대조군 균주에 비해 억제되는 표현형을 관찰한 결과이다.FIG. 4 shows that when the expression of pyc gene was inhibited by using pCoryne-sgRNA-dCas9 for transformation of Corynebacterium glutamicum using CRISPRi consisting of one plasmid, the growth of the recombinant strain was inhibited by wild type and control The results are as follows.

그 결과, 야생형 균주, 및 dCas9과 sgRNA가 둘 다 없거나 dCas9만 있는 대조군 균주에 비해 dCas9과 sgRNA-pyc-r이 발현된 균주의 생장이 억제되는 것으로 관찰되었다 (도 4). 즉, 본 실시예에 따른 CRISPRi의 셔틀 벡터가 코리네박테리움 글루타미쿰에 작동하여 pyc의 발현이 억제되는 결과를 확인할 수 있었다.As a result, it was observed that the growth of dCas9 and sgRNA-pyc-r-expressing strains was inhibited in comparison with the wild type strain and the control strain in which neither dCas9 nor sgRNA were present or only dCas9 (Fig. 4). In other words, it was confirmed that the shuttle vector of CRISPRi according to the present example works in Corynebacterium glutamicum to suppress the expression of pyc .

전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다. It will be understood by those of ordinary skill in the art that the foregoing description of the embodiments is for illustrative purposes and that those skilled in the art can easily modify the invention without departing from the spirit or essential characteristics thereof. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. For example, each component described as a single entity may be distributed and implemented, and components described as being distributed may also be implemented in a combined form.

본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is defined by the appended claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included within the scope of the present invention.

한국미생물보존센터Korea Microorganism Conservation Center KCCM12077PKCCM12077P 2017071120170711

<110> Research and Business Foundation SUNGKYUNKWAN UNIVERSITY <120> SHUTTLE VECTOR FOR REGULATION OF TARGET GENE EXPRESSION IN ESCHERICHIA COLI AND CORYNEBACTERIUM GLUTAMICUM <130> 1 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 11549 <212> DNA <213> Artificial Sequence <220> <223> pCoryne-sgRNA-dCas9 (KCCM12077P) <400> 1 aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca gcgatctgtc 60 tatttcgttc atccatagtt gcctgagaat tcccggggat ccttaagacc cactttcaca 120 tttaagttgt ttttctaatc cgcatatgat caattcaagg ccgaataaga aggctggctc 180 tgcaccttgg tgatcaaata attcgatagc ttgtcgtaat aatggcggca tactatcagt 240 agtaggtgtt tccctttctt ctttagcgac ttgatgctct tgatcttcca atacgcaacc 300 taaagtaaaa tgccccacag cgctgagtgc atataatgca ttctctagtg aaaaaccttg 360 ttggcataaa aaggctaatt gattttcgag agtttcatac tgtttttctg taggccgtgt 420 acctaaatgt acttttgctc catcgcgatg acttagtaaa gcacatctaa aacttttagc 480 gttattacgt aaaaaatctt gccagctttc cccttctaaa gggcaaaagt gagtatggtg 540 cctatctaac atctcaatgg ctaaggcgtc gagcaaagcc cgcttatttt ttacatgcca 600 atacaatgta ggctgctcta cacctagctt ctgggcgagt ttacgggttg ttaaaccttc 660 gattccgacc tcattaagca gctctaatgc gctgttaatc actttacttt tatctaatct 720 agacatcatt aattcctaat ttttgttgac actctatcgt tgatagagtt attttaccac 780 tccctatcag tgatagagat tgacatccct atcagtgata gagatactga gcacaacatc 840 tgatctaaag aggagaaagg atctatggat aagaagtact ccatcggcct ggcaatcggc 900 accaactccg tgggctgggc agtgatcacc gatgaataca aggtgccatc caagaagttc 960 aaggtgctgg gcaacaccga tcgccactcc atcaagaaga acctgatcgg cgcactgctg 1020 ttcgattccg gcgaaaccgc agaagcaacc cgcctgaagc gcaccgcacg ccgccgctac 1080 acccgccgca agaaccgcat ctgctacctc caggaaatct tctccaacga aatggcaaag 1140 gtggatgatt ccttcttcca ccgcctggaa gaatccttcc tggtggaaga agataagaag 1200 cacgaacgcc acccaatctt cggcaacatc gtggatgaag tggcatacca cgaaaagtac 1260 ccaaccatct accacctgcg caagaagctg gtggattcca ccgataaggc agacctgcgc 1320 ctgatctacc tggcactggc acacatgatc aagttccgcg gccacttcct gatcgaaggc 1380 gatctgaacc cagataactc cgatgtggat aagctgttca tccagctggt gcagacctac 1440 aaccagctgt tcgaagaaaa cccaatcaac gcatccggcg tggatgcaaa ggcaatcctg 1500 tccgcacgcc tgtccaagtc ccgccgcctg gaaaacctga tcgcacagct gccaggcgaa 1560 aagaagaacg gcctgttcgg caacctgatc gcactgtccc tgggcctgac cccaaacttc 1620 aagtccaact tcgatctggc agaagatgca aagctccagc tgtccaagga tacctacgat 1680 gatgatctgg ataacctgct ggcacagatc ggcgatcagt acgcagacct gttcctggca 1740 gcaaagaacc tgtccgatgc aatcctgctg tccgatatcc tgcgcgtgaa caccgaaatc 1800 accaaggcac cactgtccgc atccatgatc aagcgctacg atgaacacca ccaggatctg 1860 accctgctga aggcactggt gcgccagcag ctgccagaaa agtacaagga aatcttcttc 1920 gatcagtcca agaacggcta cgcaggctac atcgatggcg gcgcatccca ggaagagttc 1980 tacaagttca tcaagccaat cctggaaaag atggatggca ccgaagaact gctggtgaag 2040 ctgaaccgcg aagacctgct gcgcaagcag cgcaccttcg ataacggctc catcccacac 2100 cagatccacc tgggcgaact gcacgcaatc ctgcgccgcc aggaagattt ctacccattc 2160 ctgaaggata accgcgaaaa gatcgaaaag atcctgacct tccgcatccc atactacgtg 2220 ggcccactgg cacgcggcaa ctcccgcttc gcatggatga cccgcaagtc cgaagaaacc 2280 atcaccccat ggaacttcga agaagtggtg gataagggcg catccgcaca gtccttcatc 2340 gaacgcatga ccaacttcga taagaacctg ccaaacgaaa aggtgctgcc aaagcactcc 2400 ctgctgtacg aatacttcac cgtgtacaac gaactgacca aggtgaagta cgtgaccgaa 2460 ggcatgcgca agccagcatt cctgtccggc gaacagaaga aggcaatcgt ggatctgctg 2520 ttcaagacca accgcaaggt gaccgtgaag cagctgaagg aagattactt caagaagatc 2580 gaatgcttcg attccgtgga aatctccggc gtggaagatc gcttcaacgc atccctgggc 2640 acctaccacg atctgctgaa gatcatcaag gataaggatt tcctggataa cgaagaaaac 2700 gaagatatcc tggaagatat cgtgctgacc ctgaccctgt tcgaagatcg cgaaatgatc 2760 gaagaacgcc tgaagaccta cgcacacctg ttcgatgata aggtgatgaa gcagctgaag 2820 cgccgccgct acaccggctg gggccgcctg tcccgcaagc tgatcaacgg catccgcgat 2880 aagcagtccg gcaagaccat cctggatttc ctgaagtccg atggcttcgc aaaccgcaac 2940 ttcatgcagc tgatccacga tgattccctg accttcaagg aagatatcca gaaggcacag 3000 gtgtccggcc agggcgattc cctgcacgaa cacatcgcaa acctggcagg ctccccagca 3060 atcaagaagg gcatcctcca gaccgtgaag gtggtggatg aactggtgaa ggtgatgggc 3120 cgccacaagc cagaaaacat cgtgatcgaa atggcacgcg aaaaccagac cacccagaag 3180 ggccagaaga actcccgcga acgcatgaag cgcatcgaag aaggcatcaa ggaactgggc 3240 tcccagatcc tgaaggaaca cccagtggaa aacacccagc tccagaacga aaagctgtac 3300 ctgtactacc tccagaacgg ccgcgatatg tacgtggatc aggaactgga tatcaaccgc 3360 ctgtccgatt acgatgtgga tgcaatcgtg ccacagtcct tcctgaagga tgattccatc 3420 gataacaagg tgctgacccg ctccgataag aaccgcggca agtccgataa cgtgccatcc 3480 gaagaagtgg tgaagaagat gaagaactac tggcgccagc tgctgaacgc aaagctgatc 3540 acccagcgca agttcgataa cctgaccaag gcagaacgcg gcggcctgtc cgaactggat 3600 aaggcaggct tcatcaagcg ccagctggtg gaaacccgcc agatcaccaa gcacgtggca 3660 cagatcctgg attcccgcat gaacaccaag tacgatgaaa acgataagct gatccgcgaa 3720 gtgaaggtga tcaccctgaa gtccaagctg gtgtccgatt tccgcaagga tttccagttc 3780 tacaaggtgc gcgaaatcaa caactaccac cacgcacacg atgcatacct gaacgcagtg 3840 gtgggcaccg cactgatcaa gaagtaccca aagctggaat ccgagttcgt gtacggcgat 3900 tacaaggtgt acgatgtgcg caagatgatc gcaaagtccg aacaggaaat cggcaaggca 3960 accgcaaagt acttcttcta ctccaacatc atgaacttct tcaagaccga aatcaccctg 4020 gcaaacggcg aaatccgcaa gcgcccactg atcgaaacca acggcgaaac cggcgaaatc 4080 gtgtgggata agggccgcga tttcgcaacc gtgcgcaagg tgctgtccat gccacaggtg 4140 aacatcgtga agaagaccga agtgcagacc ggcggcttct ccaaggaatc catcctgcca 4200 aagcgcaact ccgataagct gatcgcacgc aagaaggatt gggacccaaa gaagtacggc 4260 ggcttcgatt ccccaaccgt ggcatactcc gtgctggtgg tggcaaaggt ggaaaagggc 4320 aagtccaaga agctgaagtc cgtgaaggaa ctgctgggca tcaccatcat ggaacgctcc 4380 tccttcgaaa agaacccaat cgatttcctg gaagcaaagg gctacaagga agtgaagaag 4440 gatctgatca tcaagctgcc aaagtactcc ctgttcgaac tggaaaacgg ccgcaagcgc 4500 atgctggcat ccgcaggcga actccagaag ggcaacgaac tggcactgcc atccaagtac 4560 gtgaacttcc tgtacctggc atcccactac gaaaagctga agggctcccc agaagataac 4620 gaacagaagc agctgttcgt ggaacagcac aagcactacc tggatgaaat catcgaacag 4680 atttccgagt tctccaagcg cgtgatcctg gcagatgcaa acctggataa ggtgctgtcc 4740 gcatacaaca agcaccgcga taagccaatc cgcgaacagg cagaaaacat catccacctg 4800 ttcaccctga ccaacctggg cgcaccagca gcattcaagt acttcgatac caccatcgat 4860 cgcaagcgct acacctccac caaggaagtg ctggatgcaa ccctgatcca ccagtccatc 4920 accggcctgt acgaaacccg catcgatctg tcccagctgg gcggcgatta actgcagcca 4980 agcttctgtt ttggcggatg agagaagatt ttcagcctga tacagattaa atcagaacgc 5040 agaagcggtc tgataaaaca gaatttgcct ggcggcagta gcgcggtggt cccacctgac 5100 cccatgccga actcagaagt gaaacgccgt agcgccgatg gtagtgtggg gtctccccat 5160 gcgagagtag ggaactgcca ggcatcaaat aaaacgaaag gctcagtcga aagactgggc 5220 ctttcgtttt atctgttgtt tgtcggtgaa cgctctcctg agtaggacaa atccgccggg 5280 agcggatttg aacgttgcga agcaacggcc cggagggtgg cgggcaggac gcccgccata 5340 aactgccagg catcaaatta agcagaaggc catcctgacg gatggccttt ttgcgtttct 5400 acaaactctt ttgtttattt ttctaaatac attcaaatat gtatccgctc atgagacaat 5460 aaccctgata aatgcttcaa taatattgaa aaaggaagag tatgagtatt caacatttcc 5520 gtgtcgccct tattcccttt tttgcggcat tttgccttcc tgtttttgct cacccagaaa 5580 cgctggtgaa agtaaaagat gctgaagatc agttgggtgc acgagtgggt tacatcgaac 5640 tggatctcaa cagcggtaag atccttgaga gttttcgccc cgaagaacgt tttccaatga 5700 tgagcacttt taaagttctg ctatgtggcg cggtattatc ccgtgttgac gccgggcaag 5760 agcaactcgg tcgccgcata cactattctc agaatgactt ggttgagtac tgcggcgtcg 5820 ctgatcgccc tggcgacgtt gtgcgggtgg cttgtccctg agggcgctgc gacagatagc 5880 taaaaatctg ggtcaggatc gccgtagagc gcgcgtcgtc gattggaggc ttcccctttg 5940 gttgacggtc ttcaatcgct ctacggcgat cctgacgctt ttttgttgcg taccgtcgat 6000 cgttttattt ctgtcgatcc cgaaaaagtt tttgcctttt gtaaaaaact tctcggtcgc 6060 cccgcaaatt ttcgattcca gattttttaa aaaccaagcc agaaatacga cacaccgttt 6120 gcagataatc tgtctttcgg aaaaatcaag tgcgatacaa aatttttagc acccctgagc 6180 tgcgcaaagt cccgcttcgt gaaaattttc gtgccgcgtg attttccgcc aaaaacttta 6240 acgaacgttc gttataatgg tgtcatgacc ttcacgacga agtactaaaa ttggcccgaa 6300 tcatcagcta tggatctctc tgatgtcgcg ctggagtccg acgcgctcga tgctgccgtc 6360 gatttaaaaa cggtgatcgg atttttccga gctctcgata cgacggacgc gccagcatca 6420 cgagactggg ccagtgccgc gagcgaccta gaaactctcg tggcggatct tgaggagctg 6480 gctgacgagc tgcgtgctcg gccagcgcca ggaggacgca cagtagtgga ggatgcaatc 6540 agttgcgcct actgcggtgg cctgattcct ccccggcctg acccgcgagg acggcgcgca 6600 aaatattgct cagatgcgtg tcgtgccgca gccagccgcg agcgcgccaa caaacgccac 6660 gccgaggagc tggaggcggc taggtcgcaa atggcgctgg aagtgcgtcc cccgagcgaa 6720 attttggcca tggtcgtcac agagctggaa gcggcagcga gaattatccg cgatcgtggc 6780 gcggtgcccg caggcatgac aaacatcgta aatgccgcgt ttcgtgtggc cgtggccgcc 6840 caggacgtgt cagcgccgcc accacctgca ccgaatcggc agcagcgtcg cgcgtcgaaa 6900 aagcgcacag gcggcaagaa gcgataagct gcacgaatac ctgaaaaatg ttgaacgccc 6960 cgtgagcggt aactcacagg gcgtcggcta acccccagtc caaacctggg agaaagcgct 7020 caaaaatgac tctagcggat tcacgagaca ttgacacacc ggcctggaaa ttttccgctg 7080 atctgttcga cacccatccc gagctcgcgc tgcgatcacg tggctggacg agcgaagacc 7140 gccgcaaatt cctcgctcac ctgggcagag aaaatttcca gggcagcaag acccgcgact 7200 tcgccagcgc ttggatcaaa gacccggaca cgggagaaac acagccgaag ttataccgag 7260 ttggttcaaa atcgcttgcc cggtgccagt atgttgctct gacgcacgcg cagcacgcag 7320 ccgtgcttgt cctggacatt gatgtgccga gccaccaggc cggcgggaaa atcgagcacg 7380 taaaccccga ggtctacgcg attttggagc gctgggcacg cctggaaaaa gcgccagctt 7440 ggatcggcgt gaatccactg agcgggaaat gccagctcat ctggctcatt gatccggtgt 7500 atgccgcagc aggcatgagc agcccgaata tgcgcctgct ggctgcaacg accgaggaaa 7560 tgacccgcgt tttcggcgct gaccaggctt tttcacatag gctgagccgt ggccactgca 7620 ctctccgacg atcccagccg taccgctggc atgcccagca caatcgcgtg gatcgcctag 7680 ctgatcttat ggaggttgct cgcatgatct caggcacaga aaaacctaaa aaacgctatg 7740 agcaggagtt ttctagcgga cgggcacgta tcgaagcggc aagaaaagcc actgcggaag 7800 caaaagcact tgccacgctt gaagcaagcc tgccgagcgc cgctgaagcg tctggagagc 7860 tgatcgacgg cgtccgtgtc ctctggactg ctccagggcg tgccgcccgt gatgagacgg 7920 cttttcgcca cgctttgact gtgggatacc agttaaaagc ggctggtgag cgcctaaaag 7980 acaccaaggg tcatcgagcc tacgagcgtg cctacaccgt cgctcaggcg gtcggaggag 8040 gccgtgagcc tgatctgccg ccggactgtg accgccagac ggattggccg cgacgtgtgc 8100 gcggctacgt cgctaaaggc cagccagtcg tccctgctcg tcagacagag acgcagagcc 8160 agccgaggcg aaaagctctg gccactatgg gaagacgtgg cggtaaaaag gccgcagaac 8220 gctggaaaga cccaaacagt gagtacgccc gagcacagcg agaaaaacta gctaagtcca 8280 gtcaacgaca agctaggaaa gctaaaggaa atcgcttgac cattgcaggt tggtttatga 8340 ctgttgaggg agagactggc tcgtggccga caatcaatga agctatgtct gaatttagcg 8400 tgtcacgtca gaccgtgaat agagcactta aggtctgcgg gcattgaact tccacgagga 8460 cgccgaaagc ttcccagtaa atgtgccatc tcgtaggcag aaaacggttc ccccgtaggg 8520 tctctctctt ggcctccttt ctaggtcggg ctgattgctc ttgaagctct ctaggggggc 8580 tcacaccata ggcagataac gttccccacc ggctcgcctc gtaagcgcac aaggactgct 8640 cccaaagatc ttcaaagcca ctgccgcgac tgccttcgcg aagccttgcc ccgcggaaat 8700 ttcctccacc gagttcgtgc acacccctat gccaagcttc tttcacccta aattcgagag 8760 attggattct taccgtggaa attcttcgca aaaatcgtcc cctgatcgcc cttgcgacgt 8820 tggcgtcggt gccgctggtt gcgcttggct tgaccgactt gatcctccgg cgttcagcct 8880 gtgccacagc cgacaggatg gtgaccacca tttgccccat atcaccgtcg gtactgatcc 8940 cgtcgtcaat aaaccgaacc gctacaccct gagcatcaaa ctcttttatc agttggatca 9000 tgtcggcgtg tcgcggccaa gacggtcgag cttcttcacc agaatgacat caccttcctc 9060 caccttcatc ctcagcaaat ccagcccttc ccgatctgtt gaactgccgg atgccttgtc 9120 ggtaaagatg cggttagctt ttacccctgc atctttgagc gctgaggtct gcctcgtgaa 9180 gaaggtgttg ctgactcata ccaggcctga atcgccccat catccagcca gaaagtgagg 9240 gagccacggt tgatgagagc tttgttgtag gtggaccagt tggtgatttt gaacttttgc 9300 tttgccacgg aacggtctgc gttgtcggga agatgcgtga tctgatcctt caactcagca 9360 aaagttcgat ttattcaaca aagccgccgt cccgtcaagt cagcgtaatg ctctgccagt 9420 gttacaacca attaaccaat tctgattaga aaaactcatc gagcatcaaa tgaaactgca 9480 atttattcat atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag 9540 gagaaaactc accgaggcag ttccatagga tggcaagatc ctggtatcgg tctgcgattc 9600 cgactcgtcc aacatcaata caacctatta atttcccctc gtcaaaaata aggttatcaa 9660 gtgagaaatc accatgagtg acgactgaat ccggtgagaa tggcaaaagc ttatgcattt 9720 ctttccagac ttgttcaaca ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa 9780 ccaaaccgtt attcattcgt gattgcgcct gagcgagacg aaatacgcga tcgctgttaa 9840 aaggacaatt acaaacagga atcgaatgca accggcgcag gaacactgcc agcgcatcag 9900 caatattttc acctgaatca ggatattctt ctaatacctg gaatgctgtt ttcccgggga 9960 tcgcagtggt gagtaaccat gcatcatcag gagtacggat aaaatgcttg atggtcggaa 10020 gaggcataaa ttccgtcagc cagtttagtc tgaccatctc atctgtaaca tcattggcaa 10080 cgctaccttt gccatgtttc agaaacaact ctggcgcatc gggcttccca tacaatcgat 10140 agattgtcgc acctgattgc ccgacattat cgcgagccca tttataccca tataaatcag 10200 catccatgtt ggaatttaat cgcggcctcg agcaagacgt ttcccgttga atatggctca 10260 taacacccct tgtattactg tttatgtaag cagacagttt tattgttcat gatgatatat 10320 ttttatcttg tgcaatgtaa catcagagat tttgagacac aacgtggctt tgttgaataa 10380 atcgaacttt tgctgagttg aaggatcaga tcacgcatct tcccgacaac gcagaccgtt 10440 ccgtggcaaa gcaaaagttc aaaatcacca actggtccac ctacaacaaa gctctcatca 10500 accgtggctc cctcactttc tggctggatg atggggcgat tcaggcctgg tatgagtcag 10560 caacaccttc ttcacgaggc agacctcagc gctagcggag tgtatactgg cttactatgt 10620 tggcactgat gagggtgtca gtgaagtgct tcatgtggca ggagaaaaaa ggctgcaccg 10680 gtgcgtcagc agaatatgtg atacaggata tattccgctt cctcgctcac tgactcgcta 10740 cgctcggtcg ttcgactgcg gcgagcggaa atggcttacg aacggggcgg agatttcctg 10800 gaagatgcca ggaagatact taacagggaa gtgagagggc cgcggcaaag ccgtttttcc 10860 ataggctccg cccccctgac aagcatcacg aaatctgacg ctcaaatcag tggtggcgaa 10920 acccgacagg actataaaga taccaggcgt ttccccctgg cggctccctc gtgcgctctc 10980 ctgttcctgc ctttcggttt accggtgtca ttccgctgtt atggccgcgt ttgtctcatt 11040 ccacgcctga cactcagttc cgggtaggca gttcgctcca agctggactg tatgcacgaa 11100 ccccccgttc agtccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg 11160 gaaagacatg caaaagcacc actggcagca gccactggta attgatttag aggagttagt 11220 cttgaagtca tgcgccggtt aaggctaaac tgaaaggaca agttttggtg actgcgctcc 11280 tccaagccag ttacctcggt tcaaagagtt ggtagctcag agaaccttcg aaaaaccgcc 11340 ctgcaaggcg gttttttcgt tttcagagca agagattacg cgcagaccaa aacgatctca 11400 agaagatcat cttattaagg ggtctgacgc tcagtggaac gaaaactcac gttaagggat 11460 tttggtcatg agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag 11520 ttttaaatca atctaaagta tatatgagt 11549 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> xylA-RT-PCR-F <400> 2 ccagttgttc ctggcgacca 20 <210> 3 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> xylA-RT-PCR-R <400> 3 atgcaagcct attttgacca gc 22 <210> 4 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> sA-RT-qPCR-F <400> 4 gaagagtttg atcatggctc ag 22 <210> 5 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> rrsA-RT-qPCR-R <400> 5 taaggaggtg atccaaccgc aggttc 26 <110> Research and Business Foundation SUNGKYUNKWAN UNIVERSITY <120> SHUTTLE VECTOR FOR REGULATION OF TARGET GENE EXPRESSION IN          ESCHERICHIA COLI AND CORYNEBACTERIUM GLUTAMICUM <130> 1 <160> 5 <170> KoPatentin 3.0 <210> 1 <211> 11549 <212> DNA <213> Artificial Sequence <220> PCoryne-sgRNA-dCas9 (KCCM12077P) <400> 1 aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca gcgatctgtc 60 tatttcgttc atccatagtt gcctgagaat tcccggggat ccttaagacc cactttcaca 120 tttaagttgt ttttctaatc cgcatatgat caattcaagg ccgaataaga aggctggctc 180 tgcaccttgg tgatcaaata attcgatagc ttgtcgtaat aatggcggca tactatcagt 240 agtaggtgtt tccctttctt ctttagcgac ttgatgctct tgatcttcca atacgcaacc 300 taaagtaaaa tgccccacag cgctgagtgc atataatgca ttctctagtg aaaaaccttg 360 ttggcataaa aaggctaatt gattttcgag agtttcatac tgtttttctg taggccgtgt 420 acctaaatgt acttttgctc catcgcgatg acttagtaaa gcacatctaa aacttttagc 480 gttattacgt aaaaaatctt gccagctttc cccttctaaa gggcaaaagt gagtatggtg 540 cctatctaac atctcaatgg ctaaggcgtc gagcaaagcc cgcttatttt ttacatgcca 600 atacaatgta ggctgctcta cacctagctt ctgggcgagt ttacgggttg ttaaaccttc 660 gattccgacc tcattaagca gctctaatgc gctgttaatc actttacttt tatctaatct 720 agacatcatt aattcctaat ttttgttgac actctatcgt tgatagagtt attttaccac 780 tccctatcag tgatagagat tgacatccct atcagtgata gagatactga gcacaacatc 840 tgatctaaag aggagaaagg atctatggat aagaagtact ccatcggcct ggcaatcggc 900 accaactccg tgggctgggc agtgatcacc gatgaataca aggtgccatc caagaagttc 960 aaggtgctgg gcaacaccga tcgccactcc atcaagaaga acctgatcgg cgcactgctg 1020 ttcgattccg gcgaaaccgc agaagcaacc cgcctgaagc gcaccgcacg ccgccgctac 1080 acccgccgca agaaccgcat ctgctacctc caggaaatct tctccaacga aatggcaaag 1140 gtggatgatt ccttcttcca ccgcctggaa gaatccttcc tggtggaaga agataagaag 1200 ccgaacgcc acccaatctt cggcaacatc gtggatgaag tggcatacca cgaaaagtac 1260 ccaaccatct accacctgcg caagaagctg gtggattcca ccgataaggc agacctgcgc 1320 ctgatctacc tggcactggc acacatgatc aagttccgcg gccacttcct gatcgaaggc 1380 gatctgaacc cagataactc cgatgtggat aagctgttca tccagctggt gcagacctac 1440 aaccagctgt tcgaagaaaa cccaatcaac gcatccggcg tggatgcaaa ggcaatcctg 1500 tccgcacgcc tgtccaagtc ccgccgcctg gaaaacctga tcgcacagct gccaggcgaa 1560 aagaagaacg gcctgttcgg caacctgatc gcactgtccc tgggcctgac cccaaacttc 1620 aagtccaact tcgatctggc agaagatgca aagctccagc tgtccaagga tacctacgat 1680 gatgatctgg ataacctgct ggcacagatc ggcgatcagt acgcagacct gttcctggca 1740 gcaaagaacc tgtccgatgc aatcctgctg tccgatatcc tgcgcgtgaa caccgaaatc 1800 accaaggcac cactgtccgc atccatgatc aagcgctacg atgaacacca ccaggatctg 1860 accctgctga aggcactggt gcgccagcag ctgccagaaa agtacaagga aatcttcttc 1920 gatcagtcca agaacggcta cgcaggctac atcgatggcg gcgcatccca ggaagagttc 1980 tacaagttca tcaagccaat cctggaaaag atggatggca ccgaagaact gctggtgaag 2040 ctgaaccgcg aagacctgct gcgcaagcag cgcaccttcg ataacggctc catcccacac 2100 cagatccacc tgggcgaact gcacgcaatc ctgcgccgcc aggaagattt ctacccattc 2160 ctgaaggata accgcgaaaa gatcgaaaag atcctgacct tccgcatccc atactacgtg 2220 ggcccactgg cacgcggcaa ctcccgcttc gcatggatga cccgcaagtc cgaagaaacc 2280 atcaccccat ggaacttcga agaagtggtg gataagggcg catccgcaca gtccttcatc 2340 gaacgcatga ccaacttcga taagaacctg ccaaacgaaa aggtgctgcc aaagcactcc 2400 ctgctgtacg aatacttcac cgtgtacaac gaactgacca aggtgaagta cgtgaccgaa 2460 ggcatgcgca agccagcatt cctgtccggc gaacagaaga aggcaatcgt ggatctgctg 2520 ttcaagacca accgcaaggt gaccgtgaag cagctgaagg aagattactt caagaagatc 2580 gaatgcttcg attccgtgga aatctccggc gtggaagatc gcttcaacgc atccctgggc 2640 acctaccacg atctgctgaa gatcatcaag gataaggatt tcctggataa cgaagaaaac 2700 gaagatatcc tggaagatat cgtgctgacc ctgaccctgt tcgaagatcg cgaaatgatc 2760 gaagaacgcc tgaagaccta cgcacacctg ttcgatgata aggtgatgaa gcagctgaag 2820 cgccgccgct acaccggctg gggccgcctg tcccgcaagc tgatcaacgg catccgcgat 2880 aagcagtccg gcaagaccat cctggatttc ctgaagtccg atggcttcgc aaaccgcaac 2940 ttcatgcagc tgatccacga tgattccctg accttcaagg aagatatcca gaaggcacag 3000 gtgtccggcc agggcgattc cctgcacgaa cacatcgcaa acctggcagg ctccccagca 3060 atcaagaagg gcatcctcca gaccgtgaag gtggtggatg aactggtgaa ggtgatgggc 3120 cgccacaagc cagaaaacat cgtgatcgaa atggcacgcg aaaaccagac cacccagaag 3180 ggccagaaga actcccgcga acgcatgaag cgcatcgaag aaggcatcaa ggaactgggc 3240 tcccagatcc tgaaggaaca cccagtggaa aacacccagc tccagaacga aaagctgtac 3300 ctgtactacc tccagaacgg ccgcgatatg tacgtggatc aggaactgga tatcaaccgc 3360 ctgtccgatt acgatgtgga tgcaatcgtg ccacagtcct tcctgaagga tgattccatc 3420 gataacaagg tgctgacccg ctccgataag aaccgcggca agtccgataa cgtgccatcc 3480 gaagaagtgg tgaagaagat gaagaactac tggcgccagc tgctgaacgc aaagctgatc 3540 acccagcgca agttcgataa cctgaccaag gcagaacgcg gcggcctgtc cgaactggat 3600 aaggcaggct tcatcaagcg ccagctggtg gaaacccgcc agatcaccaa gcacgtggca 3660 cagatcctgg attcccgcat gaacaccaag tacgatgaaa acgataagct gatccgcgaa 3720 gtgaaggtga tcaccctgaa gtccaagctg gtgtccgatt tccgcaagga tttccagttc 3780 tacaaggtgc gcgaaatcaa caactaccac cacgcacacg atgcatacct gaacgcagtg 3840 gtggcaccg cactgatcaa gaagtaccca aagctggaat ccgagttcgt gtacggcgat 3900 tacaaggtgt acgatgtgcg caagatgatc gcaaagtccg aacaggaaat cggcaaggca 3960 accgcaaagt acttcttcta ctccaacatc atgaacttct tcaagaccga aatcaccctg 4020 gcaaacggcg aaatccgcaa gcgcccactg atcgaaacca acggcgaaac cggcgaaatc 4080 gtgtgggata agggccgcga tttcgcaacc gtgcgcaagg tgctgtccat gccacaggtg 4140 aacatcgtga agaagaccga agtgcagacc ggcggcttct ccaaggaatc catcctgcca 4200 aagcgcaact ccgataagct gatcgcacgc aagaaggatt gggacccaaa gaagtacggc 4260 ggcttcgatt ccccaaccgt ggcatactcc gtgctggtgg tggcaaaggt ggaaaagggc 4320 aagtccaaga agctgaagtc cgtgaaggaa ctgctgggca tcaccatcat ggaacgctcc 4380 tccttcgaaa agaacccaat cgatttcctg gaagcaaagg gctacaagga agtgaagaag 4440 gatctgatca tcaagctgcc aaagtactcc ctgttcgaac tggaaaacgg ccgcaagcgc 4500 atgctggcat ccgcaggcga actccagaag ggcaacgaac tggcactgcc atccaagtac 4560 gtgaacttcc tgtacctggc atcccactac gaaaagctga agggctcccc agaagataac 4620 gaacagaagc agctgttcgt ggaacagcac aagcactacc tggatgaaat catcgaacag 4680 atttccgagt tctccaagcg cgtgatcctg gcagatgcaa acctggataa ggtgctgtcc 4740 gcatacaaca agcaccgcga taagccaatc cgcgaacagg cagaaaacat catccacctg 4800 ttcaccctga ccaacctggg cgcaccagca gcattcaagt acttcgatac caccatcgat 4860 cgcaagcgct acacctccac caaggaagtg ctggatgcaa ccctgatcca ccagtccatc 4920 accggcctgt acgaaacccg catcgatctg tcccagctgg gcggcgatta actgcagcca 4980 agcttctgtt ttggcggatg agagaagatt ttcagcctga tacagattaa atcagaacgc 5040 agaagcggtc tgataaaaca gaatttgcct ggcggcagta gcgcggtggt cccacctgac 5100 cccatgccga actcagaagt gaaacgccgt agcgccgatg gtagtgtggg gtctccccat 5160 gcgagagtag ggaactgcca ggcatcaaat aaaacgaaag gctcagtcga aagactgggc 5220 ctttcgtttt atctgttgtt tgtcggtgaa cgctctcctg agtaggacaa atccgccggg 5280 agcggatttg aacgttgcga agcaacggcc cggagggtgg cgggcaggac gcccgccata 5340 aactgccagg catcaaatta agcagaaggc catcctgacg gatggccttt ttgcgtttct 5400 acaaactctt ttgtttattt ttctaaatac attcaaatat gtatccgctc atgagacaat 5460 aaccctgata aatgcttcaa taatattgaa aaaggaagag tatgagtatt caacatttcc 5520 gtgtcgccct tattcccttt tttgcggcat tttgccttcc tgtttttgct cacccagaaa 5580 cgctggtgaa agtaaaagat gctgaagatc agttgggtgc acgagtgggt tacatcgaac 5640 tggatctcaa cagcggtaag atccttgaga gttttcgccc cgaagaacgt tttccaatga 5700 tgagcacttt taaagttctg ctatgtggcg cggtattatc ccgtgttgac gccgggcaag 5760 agcaactcgg tcgccgcata cactattctc agaatgactt ggttgagtac tgcggcgtcg 5820 ctgatcgccc tggcgacgtt gtgcgggtgg cttgtccctg agggcgctgc gacagatagc 5880 taaaaatctg ggtcaggatc gccgtagagc gcgcgtcgtc gattggaggc ttcccctttg 5940 gttgacggtc ttcaatcgct ctacggcgat cctgacgctt ttttgttgcg taccgtcgat 6000 cgttttattt ctgtcgatcc cgaaaaagtt tttgcctttt gtaaaaaact tctcggtcgc 6060 cccgcaaatt ttcgattcca gattttttaa aaaccaagcc agaaatacga cacaccgttt 6120 gcagataatc tgtctttcgg aaaaatcaag tgcgatacaa aatttttagc acccctgagc 6180 tgcgcaaagt cccgcttcgt gaaaattttc gtgccgcgtg attttccgcc aaaaacttta 6240 acgaacgttc gttataatgg tgtcatgacc ttcacgacga agtactaaaa ttggcccgaa 6300 tcatcagcta tggatctctc tgatgtcgcg ctggagtccg acgcgctcga tgctgccgtc 6360 gatttaaaaa cggtgatcgg atttttccga gctctcgata cgacggacgc gccagcatca 6420 cgagactggg ccagtgccgc gagcgaccta gaaactctcg tggcggatct tgaggagctg 6480 gctgacgagc tgcgtgctcg gccagcgcca ggaggacgca cagtagtgga ggatgcaatc 6540 agttgcgcct actgcggtgg cctgattcct ccccggcctg acccgcgagg acggcgcgca 6600 aaatattgct cagatgcgtg tcgtgccgca gccagccgcg agcgcgccaa caaacgccac 6660 gccgaggagc tggaggcggc taggtcgcaa atggcgctgg aagtgcgtcc cccgagcgaa 6720 attttggcca tggtcgtcac agagctggaa gcggcagcga gaattatccg cgatcgtggc 6780 gcggtgcccg caggcatgac aaacatcgta aatgccgcgt ttcgtgtggc cgtggccgcc 6840 caggacgtgt cagcgccgcc accacctgca ccgaatcggc agcagcgtcg cgcgtcgaaa 6900 aagcgcacag gcggcaagaa gcgataagct gcacgaatac ctgaaaaatg ttgaacgccc 6960 cgtgagcggt aactcacagg gcgtcggcta acccccagtc caaacctggg agaaagcgct 7020 caaaaatgac tctagcggat tcacgagaca ttgacacacc ggcctggaaa ttttccgctg 7080 atctgttcga cacccatccc gagctcgcgc tgcgatcacg tggctggacg agcgaagacc 7140 gccgcaaatt cctcgctcac ctgggcagag aaaatttcca gggcagcaag acccgcgact 7200 tcgccagcgc ttggatcaaa gacccggaca cgggagaaac acagccgaag ttataccgag 7260 ttggttcaaa atcgcttgcc cggtgccagt atgttgctct gacgcacgcg cagcacgcag 7320 ccgtgcttgt cctggacatt gatgtgccga gccaccaggc cggcgggaaa atcgagcacg 7380 taaaccccga ggtctacgcg attttggagc gctgggcacg cctggaaaaa gcgccagctt 7440 ggatcggcgt gaatccactg agcgggaaat gccagctcat ctggctcatt gatccggtgt 7500 atgccgcagc aggcatgagc agcccgaata tgcgcctgct ggctgcaacg accgaggaaa 7560 tgacccgcgt tttcggcgct gaccaggctt tttcacatag gctgagccgt ggccactgca 7620 ctctccgacg atcccagccg taccgctggc atgcccagca caatcgcgtg gatcgcctag 7680 ctgatcttat ggaggttgct cgcatgatct caggcacaga aaaacctaaa aaacgctatg 7740 agcaggagtt ttctagcgga cgggcacgta tcgaagcggc aagaaaagcc actgcggaag 7800 caaaagcact tgccacgctt gaagcaagcc tgccgagcgc cgctgaagcg tctggagagc 7860 tgatcgacgg cgtccgtgtc ctctggactg ctccagggcg tgccgcccgt gatgagacgg 7920 cttttcgcca cgctttgact gtgggatacc agttaaaagc ggctggtgag cgcctaaaag 7980 acaccaaggg tcatcgagcc tacgagcgtg cctacaccgt cgctcaggcg gtcggaggag 8040 gccgtgagcc tgatctgccg ccggactgtg accgccagac ggattggccg cgacgtgtgc 8100 gcggctacgt cgctaaaggc cagccagtcg tccctgctcg tcagacagag acgcagagcc 8160 agccgaggcg aaaagctctg gccactatgg gaagacgtgg cggtaaaaag gccgcagaac 8220 gctggaaaga cccaaacagt gagtacgccc gagcacagcg agaaaaacta gctaagtcca 8280 gtcaacgaca agctaggaaa gctaaaggaa atcgcttgac cattgcaggt tggtttatga 8340 ctgttgaggg agagactggc tcgtggccga caatcaatga agctatgtct gaatttagcg 8400 tgtcacgtca gccgtgaat agagcactta aggtctgcgg gcattgaact tccacgagga 8460 cgccgaaagc ttcccagtaa atgtgccatc tcgtaggcag aaaacggttc ccccgtaggg 8520 tctctctctt ggcctccttt ctaggtcggg ctgattgctc ttgaagctct ctaggggggc 8580 tcacaccata ggcagataac gttccccacc ggctcgcctc gtaagcgcac aaggactgct 8640 cccaaagatc ttcaaagcca ctgccgcgac tgccttcgcg aagccttgcc ccgcggaaat 8700 ttcctccacc gagttcgtgc acacccctat gccaagcttc tttcacccta aattcgagag 8760 attggattct taccgtggaa attcttcgca aaaatcgtcc cctgatcgcc cttgcgacgt 8820 tggcgtcggt gccgctggtt gcgcttggct tgaccgactt gatcctccgg cgttcagcct 8880 gtgccacagc cgacaggatg gtgaccacca tttgccccat atcaccgtcg gtactgatcc 8940 cgtcgtcaat aaaccgaacc gctacaccct gagcatcaaa ctcttttatc agttggatca 9000 tgtcggcgtg tcgcggccaa gacggtcgag cttcttcacc agaatgacat caccttcctc 9060 caccttcatc ctcagcaaat ccagcccttc ccgatctgtt gaactgccgg atgccttgtc 9120 ggtaaagatg cggttagctt ttacccctgc atctttgagc gctgaggtct gcctcgtgaa 9180 gaaggtgttg ctgactcata ccaggcctga atcgccccat catccagcca gaaagtgagg 9240 gagccacggt tgatgagagc tttgttgtag gtggaccagt tggtgatttt gaacttttgc 9300 tttgccacgg aacggtctgc gttgtcggga agatgcgtga tctgatcctt caactcagca 9360 aaagttcgat ttattcaaca aagccgccgt cccgtcaagt cagcgtaatg ctctgccagt 9420 gttacaacca attaaccaat tctgattaga aaaactcatc gagcatcaaa tgaaactgca 9480 atttattcat atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag 9540 gagaaaactc accgaggcag ttccatagga tggcaagatc ctggtatcgg tctgcgattc 9600 cgactcgtcc aacatcaata caacctatta atttcccctc gtcaaaaata aggttatcaa 9660 gtgagaaatc accatgagtg acgactgaat ccggtgagaa tggcaaaagc ttatgcattt 9720 ctttccagac ttgttcaaca ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa 9780 ccaaaccgtt attcattcgt gattgcgcct gagcgagacg aaatacgcga tcgctgttaa 9840 aaggacaatt acaaacagga atcgaatgca accggcgcag gaacactgcc agcgcatcag 9900 caatattttc acctgaatca ggatattctt ctaatacctg gaatgctgtt ttcccgggga 9960 tcgcagtggt gagtaaccat gcatcatcag gagtacggat aaaatgcttg atggtcggaa 10020 gaggcataaa ttccgtcagc cagtttagtc tgaccatctc atctgtaaca tcattggcaa 10080 cgctaccttt gccatgtttc agaaacaact ctggcgcatc gggcttccca tacaatcgat 10140 agattgtcgc acctgattgc ccgacattat cgcgagccca tttataccca tataaatcag 10200 catccatgtt ggaatttaat cgcggcctcg agcaagacgt ttcccgttga atatggctca 10260 taacacccct tgtattactg tttatgtaag cagacagttt tattgttcat gatgatatat 10320 ttttatcttg tgcaatgtaa catcagagat tttgagacac aacgtggctt tgttgaataa 10380 atcgaacttt tgctgagttg aaggatcaga tcacgcatct tcccgacaac gcagaccgtt 10440 ccgtggcaaa gcaaaagttc aaaatcacca actggtccac ctacaacaaa gctctcatca 10500 accgtggctc cctcactttc tggctggatg atggggcgat tcaggcctgg tatgagtcag 10560 caacaccttc ttcacgaggc agacctcagc gctagcggag tgtatactgg cttactatgt 10620 tggcactgat gagggtgtca gtgaagtgct tcatgtggca ggagaaaaaa ggctgcaccg 10680 gtgcgtcagc agaatatgtg atacaggata tattccgctt cctcgctcac tgactcgcta 10740 cgctcggtcg ttcgactgcg gcgagcggaa atggcttacg aacggggcgg agatttcctg 10800 gaagatgcca ggaagatact taacagggaa gtgagagggc cgcggcaaag ccgtttttcc 10860 ataggctccg cccccctgac aagcatcacg aaatctgacg ctcaaatcag tggtggcgaa 10920 acccgacagg actataaaga taccaggcgt ttccccctgg cggctccctc gtgcgctctc 10980 ctgttcctgc ctttcggttt accggtgtca ttccgctgtt atggccgcgt ttgtctcatt 11040 ccacgcctga cactcagttc cgggtaggca gttcgctcca agctggactg tatgcacgaa 11100 ccccccgttc agtccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg 11160 gaaagacatg caaaagcacc actggcagca gccactggta attgatttag aggagttagt 11220 cttgaagtca tgcgccggtt aaggctaaac tgaaaggaca agttttggtg actgcgctcc 11280 tccaagccag ttacctcggt tcaaagagtt ggtagctcag agaaccttcg aaaaaccgcc 11340 ctgcaaggcg gttttttcgt tttcagagca agagattacg cgcagaccaa aacgatctca 11400 agaagatcat cttattaagg ggtctgacgc tcagtggaac gaaaactcac gttaagggat 11460 tttggtcatg agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag 11520 ttttaaatca atctaaagta tatatgagt 11549 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > xylA-RT-PCR-F <400> 2 ccagttgttc ctggcgacca 20 <210> 3 <211> 22 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > xylA-RT-PCR-R <400> 3 atgcaagcct attttgacca gc 22 <210> 4 <211> 22 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > sA-RT-qPCR-F <400> 4 gaagagtttg atcatggctc ag 22 <210> 5 <211> 26 <212> DNA <213> Artificial Sequence <220> RrsA-RT-qPCR-R <400> 5 taaggaggtg atccaaccgc aggttc 26

Claims (11)

목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 DNA 서열 및 이에 작동가능하게 연결된 프로모터;
불활성화된 Cas9 (dCas9)를 인코딩하는 DNA 서열 및 이에 작동가능하게 연결된 프로모터;
코리네박테리움 글루타미쿰 유래의 복제 개시점; 및
대장균 유래의 복제 개시점을 포함하는,
대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터.
A DNA sequence encoding a guide RNA (sgRNA) of the target gene and a promoter operably linked thereto;
A DNA sequence encoding inactivated Cas9 (dCas9) and a promoter operably linked thereto;
Replication origin from Corynebacterium glutamicum; And
Including a replication origin from Escherichia coli,
Escherichia coli and Corynebacterium glutamicum shuttle vector.
제 1 항에 있어서,
다중클로닝부위, 전사종결자, 및 리포터 유전자로부터 선택되는 하나 이상의 요소를 더 포함하는, 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터.
The method according to claim 1,
An E. coli and a Corynebacterium glutamicum shuttle vector further comprising at least one element selected from a multiple cloning site, a transcription terminator, and a reporter gene.
제 1 항에 있어서,
서열번호 1로 표시되는 DNA 서열을 포함하는, 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터.
The method according to claim 1,
1. An Escherichia coli and a Corynebacterium glutamicum shuttle vector comprising the DNA sequence represented by SEQ ID NO: 1.
제 1 항에 있어서,
상기 코리네박테리움 글루타미쿰 유래의 복제 개시점은 pHM1519 및 pBL1로부터 선택되는 것인, 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터.
The method according to claim 1,
Wherein the replication origin from the Corynebacterium glutamicum is selected from pHM1519 and pBL1. &Lt; Desc / Clms Page number 36 &gt; E. coli and Corynebacterium glutamicum shuttle vector.
제 1 항에 있어서,
상기 대장균 유래의 복제 개시점은 p15A, oriC, ColE1, pMB1 및 pSC101로부터 선택되는 것인, 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터.
The method according to claim 1,
Wherein the E. coli-derived replication origin is selected from p15A, oriC, ColE1, pMB1, and pSC101, and a Corynebacterium glutamicum shuttle vector.
제 1 항에 있어서,
상기 목적 유전자는 대장균의 xylA 또는 코리노박테리움의 pyc인, 셔틀 벡터.
The method according to claim 1,
Wherein said target gene is xylA of E. coli or pyc of corinobacteria .
제 1 항에 있어서,
목적 유전자의 발현을 억제하기 위한, 셔틀 벡터.
The method according to claim 1,
A shuttle vector for inhibiting the expression of a gene of interest.
제 1 항에 있어서,
목적 유전자의 발현을 촉진하기 위한, 셔틀 벡터.
The method according to claim 1,
A shuttle vector for promoting the expression of the gene of interest.
제 1 항에 따른 셔틀 벡터가 도입된 대장균.
An Escherichia coli into which a shuttle vector according to claim 1 is introduced.
제 9 항에 있어서,
수탁번호 KCCM12077P로 기탁된, 대장균
10. The method of claim 9,
E. coli deposited with accession number KCCM12077P
제 1 항에 따른 셔틀 벡터가 도입된 코리네박테리움 글루타미쿰.A Corynebacterium glutamicum with introduced shuttle vector according to claim 1.
KR1020170099545A 2017-08-07 2017-08-07 Shuttle vector for regulation of target gene expression in escherichia coli and corynebacterium glutamicum KR102026067B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170099545A KR102026067B1 (en) 2017-08-07 2017-08-07 Shuttle vector for regulation of target gene expression in escherichia coli and corynebacterium glutamicum
PCT/KR2018/008944 WO2019031804A2 (en) 2017-08-07 2018-08-07 E. coli and corynebacterium glutamicum shuttle vector for regulating expression of target gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170099545A KR102026067B1 (en) 2017-08-07 2017-08-07 Shuttle vector for regulation of target gene expression in escherichia coli and corynebacterium glutamicum

Publications (2)

Publication Number Publication Date
KR20190015845A true KR20190015845A (en) 2019-02-15
KR102026067B1 KR102026067B1 (en) 2019-09-27

Family

ID=65271576

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170099545A KR102026067B1 (en) 2017-08-07 2017-08-07 Shuttle vector for regulation of target gene expression in escherichia coli and corynebacterium glutamicum

Country Status (2)

Country Link
KR (1) KR102026067B1 (en)
WO (1) WO2019031804A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102244489B1 (en) * 2020-07-17 2021-04-27 광주과학기술원 Genomic editing vector for Eubacterium callanderi, Method for editing genome of Eubacterium callanderi using the same, and Transgenic Eubacterium callanderi strains using the same
KR20220053097A (en) * 2020-10-21 2022-04-29 성균관대학교산학협력단 Vector expressing cytosine base editor without off-target effect without reduction of on-target efficiency in industrial strains and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140095850A (en) * 2013-01-25 2014-08-04 삼성전자주식회사 Shuttle vector for Escherichia coli and Corynebacteria
KR20160049311A (en) 2014-10-27 2016-05-09 한국과학기술연구원 Shuttle vector for Corynebacterium or E.coli

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140095850A (en) * 2013-01-25 2014-08-04 삼성전자주식회사 Shuttle vector for Escherichia coli and Corynebacteria
KR20160049311A (en) 2014-10-27 2016-05-09 한국과학기술연구원 Shuttle vector for Corynebacterium or E.coli

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102244489B1 (en) * 2020-07-17 2021-04-27 광주과학기술원 Genomic editing vector for Eubacterium callanderi, Method for editing genome of Eubacterium callanderi using the same, and Transgenic Eubacterium callanderi strains using the same
KR20220053097A (en) * 2020-10-21 2022-04-29 성균관대학교산학협력단 Vector expressing cytosine base editor without off-target effect without reduction of on-target efficiency in industrial strains and uses thereof

Also Published As

Publication number Publication date
WO2019031804A9 (en) 2019-06-13
WO2019031804A2 (en) 2019-02-14
WO2019031804A3 (en) 2019-05-09
KR102026067B1 (en) 2019-09-27

Similar Documents

Publication Publication Date Title
KR102061438B1 (en) A method for converting monocot genome sequences in which a nucleic acid base in a targeting DNA sequence is specifically converted, and a molecular complex used therein.
KR102400332B1 (en) Recombinant microorganism for improved production of fine chemicals
EP3353298A2 (en) Allele selective gene editing and uses thereof
KR101904675B1 (en) IMP-producing microorganism and method of producing IMP using the same
KR101504900B1 (en) A Mutation of Transketolase gene Promoter and Use thereof
AU2020399673A1 (en) Antisense guide RNA with added functional region for editing target RNA
KR102321146B1 (en) Recombinant microorganism for improved production of fine chemicals
TWI657142B (en) Microorganisms having putrescine productivity and process for producing putrescine using the same
KR101987586B1 (en) A composition for preparing tagatose and Methods for producing tagatose using The Same
EP3564366A2 (en) Novel isopropylmalate synthase mutant and production method of l-leucine using same
KR102143964B1 (en) Novel branched-chain amino acid aminotranferase variant and a method of producing leucine using thereof
KR20180011313A (en) Recombinant microorganism for improved production of fine chemicals
KR20180011324A (en) Recombinant microorganism for improved production of alanine
KR20170128509A (en) Recombinant microorganism for improved production of fine chemicals
US20180355353A1 (en) Transcription terminator and use thereof
CN106554926B (en) Method for preparing recombinant L-glutamic acid-producing strain, strain prepared by the method, and method of using the same
Kusian et al. Characterization of the duplicate ribulose-1, 5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus
KR102026067B1 (en) Shuttle vector for regulation of target gene expression in escherichia coli and corynebacterium glutamicum
EP4261287A1 (en) Shewanella oneidensis-derived protein expressing microorganism and l-amino acid producing method using same
MXPA04005747A (en) Intracellular generation of single-stranded dna.
KR20190003401A (en) Novel modified O-succinyl homoserine transferase and a method of producing O-succinyl homoserine using thereof
KR102112208B1 (en) Novel modified O-succinyl homoserine transferase and a method of producing O-succinyl homoserine using thereof
KR102589135B1 (en) Microorganism having inhanced activity of 3-methyl-2-oxobutanoate hydroxymethyltransferase and uses thereof
KR102233376B1 (en) A modified polypeptide of meso-diaminopimelate dehydrogenase and a method for producing L- threonine using the same
ZA200606111B (en) Reduction of spontaneous mutation rates in cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant