KR20190015160A - Method for training artificial neural network - Google Patents

Method for training artificial neural network Download PDF

Info

Publication number
KR20190015160A
KR20190015160A KR1020180132849A KR20180132849A KR20190015160A KR 20190015160 A KR20190015160 A KR 20190015160A KR 1020180132849 A KR1020180132849 A KR 1020180132849A KR 20180132849 A KR20180132849 A KR 20180132849A KR 20190015160 A KR20190015160 A KR 20190015160A
Authority
KR
South Korea
Prior art keywords
neural network
distribution
node
feature
data
Prior art date
Application number
KR1020180132849A
Other languages
Korean (ko)
Inventor
송기영
Original Assignee
주식회사 수아랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 수아랩 filed Critical 주식회사 수아랩
Priority to KR1020180132849A priority Critical patent/KR20190015160A/en
Publication of KR20190015160A publication Critical patent/KR20190015160A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology

Abstract

Disclosed is a method for training at least one part of a neural network including a plurality of layers performed in a computing device according to one embodiment of the present disclosure. The method comprises the steps of: inputting training data including normal data and abnormal data to an input layer of a neural network; creating a histogram with feature values outputted at each of one or more hidden nodes of a hidden layer of the neural network for each training data to generate distribution of the feature value for each hidden node; calculating error of the distribution of each feature value and predetermined probability distribution; and selecting at least one hidden node of the hidden nodes of the hidden layer based on the error.

Description

인공 신경망의 훈련 방법{METHOD FOR TRAINING ARTIFICIAL NEURAL NETWORK}{METHOD FOR TRAINING ARTIFICIAL NEURAL NETWORK}

본 개시는 인공 신경망에 관한 것으로, 보다 구체적으로 인공 신경망의 훈련 방법 및 훈련된 신경망을 통한 데이터 분류에 관한 것이다.This disclosure relates to artificial neural networks, and more specifically, to artificial neural network training methods and data classification through trained neural networks.

패턴 인식(pattern recognition)은 머신 러닝(machine learning)의 일 분야로서, 패턴 및 데이터의 규칙성을 인식하는 학문을 의미한다. 패턴 인식 기술은 감독 학습(supervised learning) 및 비감독 학습(unsupervised learning) 방법을 포함한다. 감독 학습 방법은 이미 패턴 인식의 결과가 결정되어 있는 데이터(“트레이닝” 데이터 라고 한다)를 이용하여 알고리즘이 패턴 인식을 학습하는 방법을 의미한다. 여기서 각각의 트레이닝 데이터는 레이블링된(labeled)된 데이터라고 지칭될 수 있다. 비감독 학습 방법은 레이블링된 데이터 없이, 알고리즘이 이전에 알려지지 않은 패턴을 발견하는 방법을 의미한다.Pattern recognition is a field of machine learning, which means a discipline that recognizes the regularity of patterns and data. Pattern recognition techniques include supervised learning and unsupervised learning methods. The supervised learning method refers to a method in which the algorithm learns pattern recognition using data (referred to as "training" data) for which the result of pattern recognition has already been determined. Where each training data may be referred to as labeled data. An uncoordinated learning method means a method in which an algorithm finds a previously unknown pattern without labeled data.

패턴 인식 기술을 구현하기 위해 신경망(neural network)가 이용될 수 있다. 신경망은 적어도 둘 이상의 노드들과 이러한 노드들을 연결하는 링크로 구성된다. 각각의 링크들에는 가중치가 설정될 수 있으며, 링크에 부여된 가중치는 가변적일 수 있다. 링크에 부여된 가중치는 신경망이 의도하는 패턴 인식을 수행하기에 적합하도록 수정될 수 있다.A neural network may be used to implement the pattern recognition technique. The neural network consists of at least two nodes and links connecting these nodes. Each link may be weighted and the weight assigned to the link may be variable. The weight assigned to the link may be modified to be suitable for performing the pattern recognition that the neural network intends.

미국 등록 특허 7,698,239는 이러한 신경망의 일 예를 도시한다.U.S. Patent No. 7,698,239 shows an example of such a neural network.

본 개시는 전술한 배경기술에 대응하여 안출된 것으로 인공 신경망의 훈련 방법을 제공하기 위한 것이다. The present disclosure has been devised in response to the background art described above and is intended to provide a training method of an artificial neural network.

전술한 바와 같은 과제를 실현하기 위한 본 개시의 일 실시예에 따라 컴퓨팅 장치에서 수행되는 복수의 레이어를 포함하는 신경망(neural network)의 적어도 일부분의 훈련 방법이 개시된다. 상기 방법은 정상 데이터 및 비정상 데이터를 포함하는 훈련 데이터를 상기 신경망의 입력 레이어에 입력시키는 단계; 각각의 훈련 데이터에 대한 상기 신경망의 히든 레이어의 하나 이상의 히든 노드 각각에서 출력되는 피쳐값을 히스토그램화 하여 상기 하나 이상의 히든 노드 별 피쳐값의 분포를 생성하는 단계; 상기 각각의 피쳐값의 분포와 사전결정된 확률 분포의 오차를 계산하는 단계; 및 상기 오차에 기초하여 상기 히든 레이어의 상기 하나 이상의 히든 노드 중 적어도 하나의 히든 노드를 선택하는 단계를 포함한다. In accordance with one embodiment of the present disclosure for realizing the above-mentioned problem, a training method of at least a part of a neural network including a plurality of layers performed in a computing device is disclosed. The method includes inputting training data including normal data and abnormal data to an input layer of the neural network; Histogramizing feature values output from each of one or more hidden nodes of a hidden layer of the neural network for each training data to generate a distribution of feature values for the at least one hidden node; Calculating a distribution of each feature value and an error of a predetermined probability distribution; And selecting at least one hidden node of the at least one hidden node of the hidden layer based on the error.

대안적으로, 상기 복수의 레이어를 포함하는 신경망의 초기 가중치는 랜덤하게 결정될 수 있다. Alternatively, the initial weights of the neural network including the plurality of layers may be determined at random.

대안적으로, 상기 오차에 기초하여 상기 히든 레이어의 상기 하나 이상의 히든 노드 중 적어도 하나의 히든 노드를 선택하는 단계는, 상기 히든 레이어의 상기 하나 이상의 히든 노드 중 상기 오차가 사전결정된 값 이하인 히든 노드를 선택하는 단계; 및 선택된 히든 노드를 제외한 미선택 히든 노드를 비활성화 하도록 상기 미선택 히든 노드의 가중치를 업데이트 하는 단계를 포함할 수 있다.Alternatively, the step of selecting at least one hidden node of the one or more hidden nodes of the hidden layer based on the error may include detecting a hidden node of the at least one hidden node of the hidden layer, the error being less than or equal to a predetermined value Selecting; And updating the weight of the unselected node to deactivate the unselected node except for the selected hidden node.

대안적으로, 상기 신경망은 적어도 3 층의 히든 레이어를 포함할 수 있다. Alternatively, the neural network may include at least three hidden layers.

대안적으로, 상기 훈련 데이터는 라벨링을 포함하지 않고(unlabeled), 상기 훈련 방법은 비감독 훈련 방법(unsupervised)일 수 있다. Alternatively, the training data may be unlabeled and the training method may be unsupervised.

대안적으로, 상기 사전결정된 확률 분포는 매개변수가 랜덤으로 결정된 베이불 분포(Weibull distribution)일 수 있다. Alternatively, the predetermined probability distribution may be a Weibull distribution whose parameters are randomly determined.

대안적으로, 상기 히든 레이어에서 출력되는 피쳐값을 노멀라이즈(normalize)하는 단계를 더 포함할 수 있다. Alternatively, the method may further include normalizing a feature value output from the hidden layer.

대안적으로, 상기 훈련 데이터를 복수의 신경망의 입력 레이어에 각각 입력 시키는 단계를 더 포함할 수 있다. Alternatively, the method may further comprise inputting the training data to the input layers of the plurality of neural networks, respectively.

대안적으로, 상기 복수의 신경망에서 선택된 하나 이상의 노드를 앙상블(ensemble)하여 신경망을 재구성하는 단계를 더 포함할 수 있다. Alternatively, the method may further comprise reconfiguring the neural network by ensemble one or more nodes selected from the plurality of neural networks.

본 개시의 다른 일 실시예에 따라 컴퓨팅 디바이스의 하나 이상의 프로세서에 의해 실행되는 복수의 명령들을 포함하는, 컴퓨터 판독가능 저장 매체(computer readable storage medium)에 저장된 컴퓨터 프로그램이 개시된다. 상기 컴퓨터 프로그램은, 정상 데이터 및 비정상 데이터를 포함하는 훈련 데이터를 신경망의 입력 레이어에 입력시키도록 하는 명령; 각각의 훈련 데이터에 대한 상기 신경망의 히든 레이어의 하나 이상의 히든 노드 각각에서 출력되는 피쳐값을 히스토그램화 하여 상기 하나 이상의 히든 노드 별 피쳐값의 분포를 생성하도록 하는 명령; 상기 각각의 피쳐값의 분포와 사전결정된 확률 분포의 오차를 계산하도록 하는 명령; 및 상기 오차에 기초하여 상기 히든 레이어의 상기 하나 이상의 히든 노드 중 적어도 하나의 히든 노드를 선택하도록 하는 명령을 포함한다. A computer program stored on a computer readable storage medium is disclosed that includes a plurality of instructions executed by one or more processors of a computing device in accordance with another embodiment of the present disclosure. The computer program comprising instructions for causing training data including normal data and abnormal data to be entered into an input layer of a neural network; Instructions for generating histograms of feature values output at each of one or more hidden nodes of a hidden layer of the neural network for each training data to produce a distribution of feature values for the at least one hidden node; Calculate an error of a distribution of each feature value and a predetermined probability distribution; And selecting at least one hidden node of the one or more hidden nodes of the hidden layer based on the error.

본 개시의 또 다른 일 실시예에 따라 복수의 레이어를 포함하는 신경망의 적어도 일부분을 훈련시키기 위한 컴퓨팅 장치가 개시된다. 상기 컴퓨팅 장치는 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에서 실행가능한 명령들을 저장하는 메모리를 포함하며, A computing device is disclosed for training at least a portion of a neural network comprising a plurality of layers in accordance with another embodiment of the present disclosure. The computing device may include one or more processors; And a memory for storing instructions executable on the one or more processors,

상기 하나 이상의 프로세서는, 정상 데이터 및 비정상 데이터를 포함하는 훈련 데이터를 상기 신경망의 입력 레이어에 입력시키고, 각각의 훈련 데이터에 대한 상기 신경망의 히든 레이어의 하나 이상의 히든 노드 각각에서 출력되는 피쳐값을 히스토그램화 하여 상기 하나 이상의 히든 노드 별 피쳐값의 분포를 생성하고, 상기 각각의 피쳐값의 분포와 사전결정된 확률 분포의 오차를 계산하고, 그리고 상기 오차에 기초하여 상기 히든 레이어의 상기 하나 이상의 히든 노드 중 적어도 하나의 히든 노드를 선택한다. Wherein the one or more processors are configured to input training data including normal data and abnormal data to an input layer of the neural network and to output feature values output from each of one or more hidden nodes of a hidden layer of the neural network for each training data to a histogram Generating a distribution of feature values for each of the at least one hidden node, calculating an error between a distribution of each feature value and a predetermined probability distribution, and determining, based on the error, At least one hidden node is selected.

본 개시는 인공 신경망의 훈련 방법을 제공할 수 있다. The present disclosure can provide training methods for artificial neural networks.

도 1 은 본 개시의 일 실시예 따라 인공 신경망의 일부를 나타낸 개략도이다.
도 2 는 본 개시의 일 실시예에 따라 컴퓨팅 장치의 블록 구성도를 도시한다.
도 3a 은 베이불 분포(Weibull distribution)를 나타낸 도면이다.
도 3b 는 특정한 베이불 분포와 피쳐 값의 분포의 비교를 나타낸 도면이다.
도 4 는 본 개시의 일 실시예에 따라 입력 데이터에서 추출된 피쳐의 값을 히스토그램하여 베이불 분포와 비교하는 것을 나타낸 도면이다.
도 5 는 본 개시의 일 실시예에 따라 히든 레이어의 적어도 일부의 노드를 선택한 것을 나타낸 도면이다.
도 6 은 본 개시의 일 실시예에 따라 복수의 신경망에서 선택된 노드를 앙상블(ensemble)하는 것을 나타낸 도면이다.
도 7 은 본 개시의 일 실시예에 따른 컴퓨팅 장치의 블록 구성도(block diagram)이다.
1 is a schematic diagram illustrating a portion of an artificial neural network in accordance with one embodiment of the present disclosure;
Figure 2 shows a block diagram of a computing device in accordance with one embodiment of the present disclosure.
FIG. 3A is a diagram showing a Weibull distribution. FIG.
FIG. 3B is a diagram showing a comparison of the distribution of a specific bayonet distribution and a feature value.
4 is a diagram illustrating histograms of features extracted from input data according to one embodiment of the present disclosure to compare with the Bayesian distribution.
5 illustrates selecting at least some nodes of a hidden layer in accordance with one embodiment of the present disclosure.
6 is a diagram illustrating ensemble selected nodes in a plurality of neural networks in accordance with one embodiment of the present disclosure.
7 is a block diagram of a computing device according to one embodiment of the present disclosure.

다양한 실시예들이 이제 도면을 참조하여 설명되며, 전체 도면에서 걸쳐 유사한 도면번호는 유사한 구성요소를 나타내기 위해서 사용된다. 본 명세서에서, 다양한 설명들이 본 개시의 이해를 제공하기 위해서 제시된다. 그러나 이러한 실시예들은 이러한 구체적인 설명 없이도 실행될 수 있음이 명백하다. 다른 예들에서, 공지된 구조 및 장치들은 실시예들의 설명을 용이하게 하기 위해서 블록 다이어그램 형태로 제공된다.Various embodiments are now described with reference to the drawings, wherein like reference numerals are used throughout the drawings to refer to like elements. In this specification, various explanations are given in order to provide an understanding of the present disclosure. It will be apparent, however, that such embodiments may be practiced without these specific details. In other instances, well-known structures and devices are provided in block diagram form in order to facilitate describing the embodiments.

본 명세서에서 사용되는 용어 "컴포넌트", "모듈", "시스템" 등은 컴퓨터-관련 엔티티, 하드웨어, 펌웨어, 소프트웨어, 소프트웨어 및 하드웨어의 조합, 또는 소프트웨어의 실행을 지칭한다. 예를 들어, 컴포넌트는 프로세서상에서 실행되는 처리과정(procedure), 프로세서, 객체, 실행 스레드, 프로그램, 및/또는 컴퓨터일 수 있지만, 이들로 제한되는 것은 아니다. 예를 들어, 컴퓨팅 장치에서 실행되는 애플리케이션 및 컴퓨팅 장치 모두 컴포넌트일 수 있다. 하나 이상의 컴포넌트는 프로세서 및/또는 실행 스레드 내에 상주할 수 있고, 일 컴포넌트는 하나의 컴퓨터 내에 로컬화될 수 있고, 또는 2개 이상의 컴퓨터들 사이에 분배될 수 있다. 또한, 이러한 컴포넌트들은 그 내부에 저장된 다양한 데이터 구조들을 갖는 다양한 컴퓨터 판독가능한 매체로부터 실행할 수 있다. 컴포넌트들은 예를 들어 하나 이상의 데이터 패킷들을 갖는 신호(예를 들면, 로컬 시스템, 분산 시스템에서 다른 컴포넌트와 상호작용하는 하나의 컴포넌트로부터의 데이터 및/또는 신호를 통해 다른 시스템과 인터넷과 같은 네트워크를 통해 전송되는 데이터)에 따라 로컬 및/또는 원격 처리들을 통해 통신할 수 있다. The terms "component," "module," system, "and the like, as used herein, refer to a computer-related entity, hardware, firmware, software, combination of software and hardware, or execution of software. For example, a component may be, but is not limited to, a process, a processor, an object, an execution thread, a program, and / or a computer running on a processor. For example, both an application running on a computing device and a computing device may be a component. One or more components may reside within a processor and / or thread of execution, one component may be localized within one computer, or it may be distributed between two or more computers. Further, such components may execute from various computer readable media having various data structures stored therein. The components may communicate, for example, via a network (e.g., a local system, data and / or signals from one component interacting with another component in a distributed system, and / or signals with one or more data packets) And / or < / RTI > transmitted data).

제시된 실시예들에 대한 설명은 본 개시의 기술 분야에서 통상의 지식을 가진 자가 본 개시를 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 개시의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 개시의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 개시는 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.The description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the present disclosure. Thus, the present disclosure should not be construed as limited to the embodiments set forth herein, but is to be accorded the widest scope consistent with the principles and novel features presented herein.

도 1 은 본 개시의 일 실시예 따라 인공 신경망의 일부를 나타낸 개략도이다. 1 is a schematic diagram illustrating a portion of an artificial neural network in accordance with one embodiment of the present disclosure;

본 명세서에 걸쳐, 신경망, 네트워크 함수, 뉴럴 네트워크(neural network)는 동일한 의미로 사용될 수 있다. 신경망은 일반적으로 “노드”라 지칭될 수 있는 상호연결된 계산 단위들의 집합으로 구성될 수 있다. 이러한 “노드”들은 “뉴런(neuroun)”들로 지칭될 수도 있다. 신경망은 적어도 둘 이상의 노드들을 포함하여 구성된다. 신경망들을 구성하는 노드(또는 뉴런)들은 하나 이상의 “링크”에 의해 상호 연결될 수 있다.Throughout this specification, neural networks, network functions, and neural networks can be used interchangeably. A neural network may consist of a collection of interconnected computational units, which may be referred to generally as " nodes ". These " nodes " may also be referred to as " neurons ". The neural network is configured to include at least two nodes. The nodes (or neurons) that make up the neural networks may be interconnected by one or more " links ".

신경망 내에서, 링크를 통해 연결된 둘 이상의 노드들은 상대적으로 입력 노드 및 출력 노드의 관계를 형성할 수 있다. 입력 노드 및 출력 노드의 개념은 상대적인 것으로서, 하나의 노드에 대하여 출력 노드 관계에 있는 임의의 노드는 다른 노드와의 관계에서 입력 노드 관계에 있을 수 있으며, 그 역도 성립할 수 있다. 전술한 바와 같이, 입력 노드 대 출력 노드 관계는 링크를 중심으로 생성될 수 있다. 하나의 입력 노드에 하나 이상의 출력 노드가 링크를 통해 연결될 수 있으며, 그 역도 성립할 수 있다. Within a neural network, two or more nodes connected through a link may form a relationship of input and output nodes relatively. The concepts of the input node and the output node are relative, and any node in the output node relationship with respect to one node can be in the input node relationship with the other node, and vice versa. As described above, the input node-to-output node relationship can be generated around the link. One or more output nodes may be connected to one input node via a link, and vice versa.

하나의 링크를 통해 연결된 입력 노드 및 출력 노드 관계에서, 출력 노드는 입력 노드에 입력된 데이터에 기초하여 그 값이 결정될 수 있다. 여기서 입력 노드와 출력 노드를 상호연결하는 노드는 가중치(weight)를 가질 수 있다. 가중치는 가변적일 수 있으며, 신경망이 원하는 기능을 수행하기 위해, 사용자 또는 알고리즘에 의해 가변될 수 있다. 예를 들어, 하나의 출력 노드에 하나 이상의 입력 노드가 각각의 링크에 의해 상호 연결된 경우, 출력 노드는 상기 출력 노드와 연결된 입력 노드들에 입력된 값들 및 각각의 입력 노드들에 대응하는 링크에 설정된 가중치에 기초하여 출력 노드 값을 결정할 수 있다.`In an input node and an output node relationship connected through one link, the output node can be determined based on data input to the input node. Here, a node interconnecting the input node and the output node may have a weight. The weights may be variable and may be varied by the user or algorithm to perform the desired function of the neural network. For example, if one or more input nodes to one output node are interconnected by respective links, then the output node is set to the values input to the input nodes connected to the output node and to the links corresponding to the respective input nodes The output node value can be determined based on the weight.

전술한 바와 같이, 신경망은 둘 이상의 노드들이 하나 이상의 링크를 통해 상호연결 되어 신경망 내에서 입력 노드 및 출력 노드 관계를 형성한다. 신경망 내에서 노드들과 링크들의 개수 및 노드들과 링크들 사이의 연관관계, 링크들 각각에 부여된 가중치의 값에 따라, 신경망의 특성이 결정될 수 있다. 예를 들어, 동일한 개수의 노드 및 링크들이 존재하고, 링크들 사이의 가중치 값이 상이한 두 신경망이 존재하는 경우, 두 개의 신경망들은 서로 상이한 것으로 인식될 수 있다.As described above, a neural network is formed by interconnecting two or more nodes through one or more links to form an input node and an output node relationship within a neural network. The nature of the neural network can be determined according to the number of nodes and links in the neural network, the association between the nodes and links, and the value of the weight assigned to each of the links. For example, if there are the same number of nodes and links, and there are two neural networks with different weight values between the links, then the two neural networks may be perceived as being different from each other.

도 1에 도시된 바와 같이, 신경망은 둘 이상의 노드들을 포함하여, 구성될 수 있다. 신경망을 구성하는 노드들 중 일부는, 최초 입력 노드로부터의 거리들에 기초하여, 하나의 레이어(layer)를 구성할 수 있다, 예를 들어, 최초 입력 노드로부터 거리가 n인 노드들의 집합은, n 레이어를 구성할 수 있다. 최초 입력 노드로부터 거리는, 최초 입력 노드로부터 해당 노드까지 도달하기 위해 거쳐야 하는 링크들의 최소 개수에 의해 정의될 수 있다. 그러나, 이러한 레이어의 정의는 설명을 위한 임의적인 것으로서, 신경망 내에서 레이어의 차수는 전술한 것과 상이한 방법으로 정의될 수 있다. 예를 들어, 노드들의 레이어는 최종 출력 노드로부터 거리에 의해 정의될 수도 있다.As shown in FIG. 1, the neural network may be configured to include two or more nodes. Some of the nodes that make up the neural network can construct a layer based on the distances from the original input node. For example, n layers can be configured. The distance from the original input node may be defined by the minimum number of links that must go through to reach that node from the original input node. However, the definition of such a layer is arbitrary for explanation, and the degree of the layer in the neural network can be defined in a manner different from that described above. For example, the layer of nodes may be defined by distance from the final output node.

최초 입력 노드는 신경망 내의 노드들 중 다른 노드들과의 관계에서 링크를 거치지 않고 데이터가 직접 입력되는 하나 이상의 노드들을 의미할 수 있다. 또는, 신경망 네트워크 내에서, 링크를 기준으로 한 노드 간의 관계에 있어서, 링크로 연결된 다른 입력 노드들 가지지 않는 노드들을 의미할 수 있다. 이와 유사하게, 최종 출력 노드는 신경망 내의 노드들 중 다른 노드들과의 관계에서, 출력 노드를 가지지 않는 하나 이상의 노드들을 의미할 수 있다. 또한, 히든 노드는 최초 입력 노드 및 최후 출력 노드가 아닌 신경망을 구성하는 노드들을 의미할 수 있다. 도 1 의 도시에서는 출력 노드는 생략되어 있다. 본 개시의 일 실시예에 따른 신경망은 입력 레이어의 노드가 출력 레이어에 가까운 히든 레이어의 노드보다 많을 수 있으며, 입력 레이어에서 히든 레이어로 진행됨에 따라 노드의 수가 감소하는 형태의 신경망일 수 있다. The first input node may refer to one or more nodes in the neural network to which data is directly input without going through a link in relation to other nodes. Or may refer to nodes in a neural network that do not have other input nodes connected by a link in the relationship between the nodes based on the link. Similarly, the final output node may refer to one or more nodes that do not have an output node, in relation to other ones of the nodes in the neural network. Also, the hidden node may refer to nodes constituting a neural network other than the first input node and the last output node. 1, the output node is omitted. The neural network according to an embodiment of the present disclosure may be a neural network in which the node of the input layer may be larger than the node of the hidden layer closer to the output layer and the number of nodes decreases as the input layer progresses to the hidden layer.

도 2 은 본 개시의 일 실시예에 따라 컴퓨팅 장치의 블록 구성도를 도시한다. Figure 2 shows a block diagram of a computing device in accordance with one embodiment of the present disclosure.

본 개시의 일 실시예에 따른 컴퓨팅 장치(100)는 프로세서(110), GPU(120), 메모리(130)를 포함할 수 있다. 도 1 에 도시된 블록 구성도는 컴퓨팅 장치를 간소화한 구성으로 표현한 것으로서, 본 개시는 이에 제한되지 않고, 구동에 필요한 추가적인 구성 요소들을 포함할 수 있다. The computing device 100 in accordance with one embodiment of the present disclosure may include a processor 110, a GPU 120, and a memory 130. The block diagram shown in FIG. 1 is a simplified representation of a computing device, and the present disclosure is not so limited and may include additional components necessary for driving.

프로세서(110)는 하나 이상으로 구성될 수 있으며, 컴퓨팅 장치의 중앙 처리 장치(CPU)를 포함할 수 있다. 프로세서(110)는 메모리(130)에 저장된 컴퓨터 프로그램을 판독하여 본 개시의 일 실시예에 따른 인공 신경망(artificial neural network: ANN)의 훈련 방법 및 훈련된 신경망을 이용한 데이터 분류 방법을 수행할 수 있다. 본 개시의 일 실시예에 따라 프로세서(110) 또는 GPU(120)는 신경망의 훈련을 위한 계산을 수행할 수 있다. 도 2에는 프로세서와 GPU가 구분되어 도시되어 있으나, 본 개시의 일 실시예에서 프로세서는 CPU 및 GPU 모두를 포함할 수 있으며, 신경망의 처리를 위한 임의의 처리 장치들을 포함할 수 있다. 본 개시의 일 실시예에 따른 방법은 프로세서에 의해 수행될 수 있다. The processor 110 may be comprised of one or more and may include a central processing unit (CPU) of the computing device. The processor 110 may read a computer program stored in the memory 130 to perform a training method of an artificial neural network (ANN) according to an embodiment of the present disclosure and a data classification method using a trained neural network . In accordance with one embodiment of the present disclosure, the processor 110 or the GPU 120 may perform calculations for training of a neural network. Although a processor and a GPU are shown separately in Fig. 2, in one embodiment of the present disclosure, a processor may include both a CPU and a GPU, and may include any processing devices for processing a neural network. The method according to one embodiment of the present disclosure may be performed by a processor.

GPU(graphics processing unit)(120)는 딥러닝(deep learn: DN)에서 학습을 위한 입력 데이터의 처리, 입력 데이터에서의 피쳐(feature) 추출, 오차 계산, 역전파(backpropagation)를 이용한 신경망의 가중치 업데이트 등의 신경망의 학습을 위한 계산을 수행할 수 있다. 또한 본 개시의 일 실시예에 따른 컴퓨팅 장치에서 수행되는 컴퓨터 프로그램은 GPU 실행가능 프로그램(gpu-executable program)일 수 있다. 또한, 도 1 에는 도시되어 있지 않으나 본 개시의 일 실시예에 따라 컴퓨팅 장치는 TPU(tensor processing unit)를 포함할 수도 있다. A graphics processing unit (GPU) 120 is a graphics processing unit (GPU) that processes the input data for learning in deep learning (DN), extracts features from input data, computes the error and weight of the neural network using backpropagation Updating can be performed for learning of the neural network. Also, a computer program executed on a computing device according to an embodiment of the present disclosure may be a GPU-executable program. Also not shown in FIG. 1, but in accordance with one embodiment of the present disclosure, a computing device may include a tensor processing unit (TPU).

메모리(130)는 본 개시의 일 실시예에 따른 인공 신경망의 훈련 방법 및 데이터 분류 방법을 수행하기 위한 컴퓨터 프로그램을 저장할 수 있으며, 저장된 컴퓨터 프로그램은 프로세서(110), GPU(120) 등에 의하여 판독되어 구동될 수 있다. The memory 130 may store a computer program for performing the artificial neural network training method and data classification method according to one embodiment of the present disclosure and the stored computer program may be read by the processor 110, the GPU 120, Can be driven.

이하에서는 본 개시의 일 실시예에 따라 인공 신경망의 훈련 방법 및 데이터 분류 방법에 관해 설명한다. Hereinafter, a training method and a data classification method of an artificial neural network according to an embodiment of the present disclosure will be described.

이하에서는 본 명세서에서 사용하는 용어를 정의하도록 한다. Hereinafter, terms used in this specification will be defined.

피쳐(feature)는 입력 데이터의 적어도 하나의 일 특성(character)에 대응할 수 있다. 특성은 예를 들어, 입력 데이터가 이미지인 경우 특성은 이미지의 그레이 스케일 히스토그램, 색 분포, 색온도, 엣지, 엣지의 형상, 이들의 조합 등일 수 있으며 전술한 특성은 예시일 뿐이며 본 개시는 이에 제한되지 않는다. 피쳐는 네트워크 함수의 적어도 일 부분에 의해 연산되어, 수치화된 입력 데이터의 적어도 하나의 특성에 대응할 수 있다. 예를 들어, 불량 제품 검사에 있어서 제품이 불량인지를 나타내는 특성(예를 들어, 가죽의 불량 검사의 경우 가죽의 찍힌 자국, 주변과 색이 다른 오염 등)이 존재한다고 가정한다. 피처는 네트워크 함수에 의해 입력 데이터를 기초로 연산되며 상기 특성에 대응할 수 있다. 전술한 특성의 기재는 예시일 뿐이며 본 개시는 이에 제한되지 않는다. 신경망에서의 피쳐는 입력 데이터에 기초하여 신경망의 일정한 서브구조에 의하여 결정되는 노드에 대응될 수 있다. 예를 들어, 가죽의 찍힌 자국을 나타내는 특성에 대응하는 하나 이상의 노드가 존재할 수 있다. 피쳐는 입력 데이터의 특성을 나타내며 입력 데이터의 일부, 입력 데이터의 요약, 입력 데이터에서 추출되는 의미를 포함할 수 있다. 예를 들어, 입력 데이터를 처리하는 특정 레이어의 특정 노드까지의 프로세스 일 수 있다. 예를 들어, 신경망의 히든 레이어 중 하나의 노드까지 연결되는 신경망의 연결 관계, 가중치, 바이어스 등에 의하여 계산되는 하나 이상의 값들이 피쳐가 될 수 있다. A feature may correspond to at least one character of the input data. The characteristic may be, for example, a gray scale histogram of the image if the input data is an image, a color distribution, a color temperature, an edge, an edge shape, a combination of these, and the like, and the above- Do not. The feature may be computed by at least a portion of a network function to correspond to at least one characteristic of the input data quantified. For example, it is assumed that there is a characteristic indicating that the product is defective in the inspection of the defective product (for example, in the case of the defect inspection of the leather, the imprint of the leather, The feature may be computed based on the input data by a network function and may correspond to the property. The description of the characteristics described above is merely an example, and the present disclosure is not limited thereto. The feature in the neural network may correspond to a node determined by a constant sub-structure of the neural network based on the input data. For example, there may be one or more nodes corresponding to characteristics representing the impression of leather. A feature represents a characteristic of the input data and may include a part of the input data, a summary of the input data, and a meaning extracted from the input data. For example, it may be a process up to a particular node of a particular layer that processes input data. For example, the feature may be one or more values calculated by the neural network connection, weight, bias, etc. connected to one of the hidden layers of the neural network.

특성은 데이터에서 특징적인 부분으로서, 전술한 예시에서와 같이 불량 제품 검사를 위한 이미지 데이터인 경우, 이미지 데이터에서 제품이 불량임을 인식할 수 있는 부분이 특성이 될 수 있다. 즉, 제품의 이미지 데이터에서 제품이 불량임을 인식할 수 있도록 하는 찍힘, 이염 등이 특성이 될 수 있다. 이러한 특성은 하나 이상의 피쳐에 대응되어 신경망에 인식될 수 있다. 특성과 피쳐는 서로 일대일 대응, 일대다(多), 다대일 또는 다대다 대응 관계를 가질 수 있다. 즉, 제품의 이미지 데이터에서 제품이 불량임을 인식할 수 있도록 하는 찍힘, 이염 등이 특성인 경우, 피쳐는 데이터의 이러한 특성에 기초하는 값일 수 있다. 하나 이상의 피쳐는 하나 이상의 특성과 관계될 수 있다. 전술한 예시에서 피쳐는 이미지 데이터에서 해당 특성이 추출되도록 하는 신경망의 서브 구조일 수 있다. 또한 피쳐를 통해 추출되는 특성은 전술한 예시에서와 같이 사용자 등이 시각적으로 확인할 수 있는 것에 그치지 않고, 데이터를 구분할 수 있는 추상적인 특성 또한 포함될 수 있다. 전술한 특성은 예시일 뿐이며 본 개시는 이에 제한되지 않는다. The characteristic is a characteristic part of the data, and in the case of image data for inspection of a defective product as in the above-described example, the part that can recognize that the product is defective in the image data may be a characteristic. That is, the image data of the product may be characteristics such as imprinting or dyeing to recognize that the product is defective. This characteristic can be recognized in the neural network corresponding to one or more features. Characteristics and features can have a one-to-one correspondence, one-to-many (many), many-to-one or many-to-many correspondence relationship. That is, if the image data of the product is such that the product is bad, the feature may be a value based on such a characteristic of the data. The one or more features may be related to one or more characteristics. In the above example, the feature may be a sub-structure of a neural network that allows the feature to be extracted from the image data. In addition, the characteristic extracted through the feature can be not only visually confirmed by the user or the like as in the above-mentioned example, but also includes an abstract characteristic capable of discriminating the data. The above-described characteristic is merely an example, and the present disclosure is not limited thereto.

피쳐 맵은 피쳐를 이미지상에 나타내어 이미지 상의 위치별 피쳐를 나타낸 이미지일 수 있다. The feature map may be an image representing a feature on an image and representing a feature by location on the image.

피쳐값은 전술한 피쳐에 대응되며, 입력 데이터를 신경망으로 처리한 출력값을 의미할 수 있다. 피쳐값은 입력 데이터를 피쳐로 프로세싱한 결과 값일 수 있다. 예를 들어, 신경망의 히든 레이어에 포함된 특정 노드까지의 신경망의 연결관계 등이 피쳐을 의미하는 경우, 입력 데이터의 상기 특정 노드의 출력이 피쳐값일 수 있다. 피쳐값은 각각의 입력 데이터에 기초하여 신경망에 의해 연산될 수 있다. 피쳐값은 임의의 차원을 가질 수 있다. 피쳐값은 각각의 입력 데이터를 신경망으로 처리한 출력값일 수 있다. 피쳐값은 입력 데이터 각각에 대응하여 존재할 수 있다. 예를 들어, 히든 레이어 3의 노드 1 까지의 연결 경로, 가중치, 바이어스, 계산 프로세스가 피쳐에 대응하고, 입력 데이터에 대하여 해당 노드에서 출력되는 출력값이 피쳐값이 될 수 있다. The feature value corresponds to the above-described feature, and may mean an output value obtained by processing input data with a neural network. The feature value may be the result of processing the input data into a feature. For example, the output of the particular node of the input data may be a feature value if the neural network connection to the particular node included in the hidden layer of the neural network implies a feature. The feature value can be calculated by the neural network based on each input data. The feature value can have any dimension. The feature value may be an output value obtained by processing each input data with a neural network. Feature values may exist corresponding to each of the input data. For example, a connection path, a weight, a bias, and a calculation process to a node 1 of the hidden layer 3 correspond to a feature, and an output value output from the corresponding node with respect to input data may be a feature value.

히스토그램은 도수 분포의 형태를 그래프로 나타낸 것으로서, 본 개시에서는 피쳐값의 분포의 형태를 그래프로 나타낸 것을 의미할 수 있다. 예를 들어, 히스토그램은 도수 분포의 형태를 기둥 모양의 그래프로 나타낸 것일 수 있으나, 본 개시는 이에 제한되지 않는다. 피쳐값은 이산 값으로서, 각각의 피쳐값을 가지는 표본, 입력데이터 수가 히스토그램으로 나타날 수 있다. 각각의 입력 데이터에 대한 피쳐값은 히스토그램화 되어 피쳐값의 분포로 나타내 질 수 있다. The histogram is a graphical representation of the form of the frequency distribution, which in the present disclosure can mean graphically representing the shape of the distribution of feature values. For example, the histogram may represent the form of the frequency distribution as a columnar graph, but the disclosure is not limited thereto. The feature value is a discrete value. A sample having each feature value, the number of input data, may be represented by a histogram. The feature values for each input data may be histogrammed and represented as a distribution of feature values.

본 개시의 일 실시예에 따른 컴퓨팅 장치는 훈련 데이터를 신경망으로 처리하여 출력되는 피쳐값을 히스토그램화 하여 피쳐값의 분포를 생성하고, 피쳐값의 분포와 사전결정된 확률 분포와의 오차를 비교하여, 오차에 기초하여 신경망의 일부 노드를 선택하여 신경망을 사전 훈련시킬 수 있다. A computing device according to one embodiment of the present disclosure processes training data in a neural network to histogram the output of feature values to generate a distribution of feature values, compares the distribution of feature values with a predetermined probability distribution, Based on the error, some nodes of the neural network can be selected to pre-train the neural network.

본 개시의 신경망은 데이터의 분류를 위해 사용될 수 있다. 예를 들어, 본 개시의 신경망은 어노말리 디택션(Anomaly Detection)에 사용될 수 있다. 보다 구체적으로 본 개시의 신경망은 생산 공정에서 불량 제품과 정상 제품을 분류하기 위하여 사용될 수 있다. 본 개시의 훈련 데이터는 이미지 데이터를 포함할 수 있으며, 정상 데이터는 정상 제품의 이미지를 포함할 수 있고, 비정상 데이터는 불량 제품의 이미지를 포함할 수 있다. 본 개시의 범위는 이미지 데이터의 처리에 한정되지 않는다. The neural network of the present disclosure may be used for classification of data. For example, the neural network of the present disclosure can be used for anomaly detection. More specifically, the neural network of the present disclosure can be used to classify defective and normal products in the production process. The training data of the present disclosure may include image data, the normal data may include an image of a normal product, and the abnormal data may include an image of a defective product. The scope of the present disclosure is not limited to the processing of image data.

본 개시의 신경망을 이용한 데이터 분류에 따르면, 입력 데이터에서 추출된 피쳐값들의 분포가 특정한 확률 분포와 사전결정된 임계치 이하의 오차를 가지는 경우, 해당 피쳐값을 출력하는 피쳐는 입력 데이터를 분류하기에 적절한 피쳐로 해석될 수 있다. 일반적인 공장 등에서 정상품과 불량품의 분포는 자연적인 확률 분포를 따르게 된다. 그러므로 피쳐 값의 분포가 이러한 자연적인 확률 분포와 유사한 경우에 해당 피쳐는 데이터 분류를 위한 중요한 특성에 관련될 가능성이 높다. 그러므로, 해당 피쳐를 분류에 사용하도록 컴퓨팅 장치(100)는 신경망의 일부를 활성화 하거나, 비활성화 할 수 있다. 본 개시의 일 실시예에 따라 컴퓨팅 장치(100)는 피쳐 값의 분포가 특정한 확률 분포를 따르는 경우 해당 피쳐를 분류에 사용하도록 선택할 수 있다. 이하에서는 확률 분포와 피쳐 값의 분포의 비교에 관해 서술한다. According to the data classification using the neural network of the present disclosure, when the distribution of the feature values extracted from the input data has an error below a predetermined probability distribution and a predetermined threshold value, the feature that outputs the feature value is suitable for classifying the input data Can be interpreted as a feature. In general factories, the distribution of stationary and defective products follows a natural probability distribution. Thus, if the distribution of feature values is similar to this natural probability distribution, then the feature is likely to be related to an important characteristic for data classification. Thus, the computing device 100 may activate or deactivate a portion of the neural network to use the feature for classification. According to one embodiment of the present disclosure, computing device 100 may choose to use the feature for classification if the distribution of feature values follows a particular probability distribution. Hereinafter, a comparison between the distribution of the probability distribution and the feature value will be described.

도 3a 은 베이불 분포를 나타낸 도면이다. FIG. 3A is a view showing the bay fire distribution. FIG.

베이불 분포는 연속 확률 분포의 하나로서, 매개변수에 따라 다양한 확률 밀도 함수의 형태를 나타낼 수 있다. 베이불 분포는 매개변수 λ 및 k 값의 변화에 따라 다양한 형태의 확률 밀도 함수의 형태를 취할 수 있다. 베이불 분포는 매개변수의 변화에 따라 대부분의 확률 분포를 나타낼 수 있으며, 도 3a 도시된 베이불 분포는 예시일 뿐이며, 본 개시의 일 실시예에 따른 확률 분포는 다차원 확률 분포를 포함할 수 있다. 다른 실시예에서, 본 데이터의 일 실시예에 따른 확률분포는 분석데이터의 역사적인 통계값에 기초할 수도 있다.Bayfire distribution is one of the continuous probability distributions and can represent various probability density function types depending on parameters. Bayfire distributions can take the form of various types of probability density functions depending on the variation of the parameters lambda and k. The Bayfire distribution can exhibit most probability distributions as the parameters change, and the Bayfire distribution shown in FIG. 3a is only an example, and the probability distribution according to one embodiment of the present disclosure may include a multi-dimensional probability distribution . In another embodiment, the probability distribution according to one embodiment of the present data may be based on historical statistical values of the analysis data.

피쳐값의 분포가 확률 분포의 형상이 아닌 y=a의 그래프와 같은 형상을 가지는 경우를 가졍하자, 입력 데이터는 각각의 피쳐값으로 출력 되므로, 피쳐값의 분포가 전술된 형상을 가지는 경우 해당 피쳐는 각각의 입력 데이터들이 고루 가지고 있는 특성을 추출하는 피쳐이다. 그러나 입력 데이터들이 고루 가지고 있는 특성을 추출하여도 입력 데이터의 분류에는 도움이 되지 않는다. If the distribution of the feature values has a shape similar to that of the graph of y = a rather than the shape of the probability distribution, the input data is output as the respective feature values, so if the distribution of the feature values has the shape described above, Is a feature that extracts the characteristics of each input data. However, even if the characteristics of input data are extracted, it does not help classification of input data.

그러나, 입력 데이터에서 추출된 피쳐값의 분포가 사전결정된 확률 분포의 형상을 띄는 경우, 해당 피쳐는 입력 데이터에서 일부가 가진 특성 또는 다수가 가진 특성을 추출하는 것이 되며, 이러한 피쳐는 데이터의 분류를 위한 중요 피쳐가 될 수 있다. However, if the distribution of feature values extracted from the input data has a shape of a predetermined probability distribution, the feature extracts characteristics of a part or a plurality of characteristics of the input data. Can be an important feature.

피쳐 값의 분포가 도 3b와 같은 확률 분포를 따르는 경우, 해당 피쳐는 입력 데이터의 일부만이 가지고 있는 특성을 추출하는 피쳐일 수 있다. 이러한 입력 데이터들의 일부만이 가지고 있는 특성은 입력 데이터의 분류를 위한 중요 특성이 될 수 있다. 따라서, 피쳐 값의 분포가 특정한 확률 분포와 유사한 경우, 해당 피쳐는입력 데이터의 분류를 위한 중요 피쳐가 될 수 있고, 본 개시의 일 실시예에 따른 컴퓨팅 장치(100)는 해당 피쳐를 선택하도록 신경망의 노드를 활성화하거나 비활성화 할 수 있다. If the distribution of the feature values follows a probability distribution as shown in FIG. 3B, the feature may be a feature extracting a characteristic that only a part of the input data has. The characteristic that only a part of such input data has can be an important characteristic for classification of input data. Thus, if the distribution of feature values is similar to a particular probability distribution, the feature may be an important feature for classification of the input data, and the computing device 100, according to one embodiment of the present disclosure, The node can be activated or deactivated.

따라서, 본 개시의 일 실시예에 따른 신경망은 히든 레이어의 히든 노드에서 출력되는 피쳐값의 분포가 사전결정된 확률 분포 함수와 유사한 경우 해당 피쳐(즉 신경망의 해당 노드)는 분류를 위한 중요 피쳐(significant feature)일 수 있고, 해당 피쳐값을 출력하는 노드는 데이터 분류에 있어서 중요 피쳐를 출력하는 노드일 수 있다. 피쳐 값의 분포와 사전결정된 확률 분포 함수의 유사도 판단은 이하에서 서술한다. 따라서, 이러한 중요 피쳐를 출력하는 노드만을 활성화 시켜 신경망을 재구성 하거나, 복수의 신경망에서 중요 피쳐를 출력하는 노드들을 추출하여 신경망을 재구성 할 수 있다. 이러한 방식으로 재구성된 신경망은 데이터 분류에 높은 정확도를 가질 수 있으며, 훈련에 앞서 신경망을 중요 피쳐를 추출할 수 있는 노드들로 구성하여 훈련의 반복 횟수, 계산량을 줄여 훈련 효율성을 높일 수 있다. Accordingly, when the distribution of the feature values output from the hidden node of the hidden layer is similar to the predetermined probability distribution function, the neural network according to an embodiment of the present disclosure is characterized in that the feature (i.e., corresponding node of the neural network) feature, and the node outputting the feature value may be a node outputting the important feature in the data classification. The determination of the similarity between the distribution of the feature values and the predetermined probability distribution function will be described below. Therefore, it is possible to reconfigure the neural network by activating only nodes outputting such important features, or to extract nodes that output important features from a plurality of neural networks. The neural network reconstructed in this way can have high accuracy in classification of data, and it is possible to improve the training efficiency by reducing the number of iterations and calculation amount of training by configuring the neural network to extract important features before training.

사전결정된 확률 분포는 연속 함수이고, 히스토그램은 이산 분포이므로, 본 개시의 일 실시예에 따라 컴퓨팅 장치(100)는 사전결정된 확률 분포와 피쳐 값의 분포의 오차를 판단할 수 있다. 도 3b는 사전결정된 확률 분포와 피쳐 값의 분포의 유사도 판단의 예시도이다. 도 3b의 예시에서, 연속 확률 분포를 나타내는 곡선은 매개변수 λ=1, k=0.5인 베이불 분포를 나타낼 수 있다. 도 3b의 예시에서, 막대 그래프 형상 부분은 피쳐 값의 분포를 나타낼 수 있다. 도 3b의 예시에서, x축은 피쳐 값이고, y축은 피쳐 값 별 표본(즉, 입력 데이터)의 수를 나타낸다. x축과 y축은 확률 분포 곡선과의 비교를 위하여 노말라이즈(normalize)(즉, 확률 분포 곡선은 0<y<1 값을 가질 수 있으므로) 될 수 있다. 즉, 컴퓨팅 장치(100)는 피쳐 값의 분포의 각 축에 해당하는 값들을 노말라이즈 하여 사전결정된 확률 분포와 비교를 용이하게 할 수 있다. 도 3b의 예시에서, 해당 피쳐는 x1 값을 가지는 입력 데이터의 수가 가장 많으며, x2 값 에서 xn 값으로 갈 수록 해당 값을 가지는 입력 데이터의 수가 줄어드는 추세를 보인다. 본 개시의 일 실시예에 따른 컴퓨팅 장치(100)는 피쳐 값의 분포와 사전결정된 확률 분포의 오차를 판단할 수 있다. 도 3b의 도시된 예시와 같은 피쳐 값의 분포에서, 컴퓨팅 장치(100)는 피쳐 값 각각의 입력 데이터의 수(또는 입력 데이터 수의 노말라이즈 값)을 각각의 지점의 사전결정된 확률 분포 값과 비교할 수 있다. 예를 들어, 도 3b의 예시에서, 컴퓨팅 장치(100)는 (x1, y1)과 사전결정된 확률 분포 그래프의 하나 이상의 지점(즉 x1에 해당하는 그래프상의 y값)을 각각 비교하여 사전결정된 확률 분포와 피쳐 값의 분포를 비교할 수 있다. 예를 들어, 정규화된 히스토그램의 값과 대응하는 확률 분포값 사이의 분산이 비교 기준으로 사용될 수 있다. Because the predetermined probability distribution is a continuous function and the histogram is discrete, the computing device 100 may determine an error in distribution of the predetermined probability distribution and the feature value according to one embodiment of the present disclosure. FIG. 3B is an exemplary diagram for judging the similarity of the distribution of the predetermined probability distribution and the feature value. FIG. In the example of FIG. 3B, the curve representing the continuous probability distribution may represent a Bayesian distribution with parameters lambda = 1, k = 0.5. In the example of FIG. 3B, the bar graph shaped portion may represent a distribution of feature values. In the example of FIG. 3B, the x-axis is the feature value and the y-axis represents the number of specimen (i.e., input data) by feature value. The x and y axes may be normalized (i.e., the probability distribution curve may have a value of 0 < y < 1) for comparison with a probability distribution curve. That is, computing device 100 may facilitate comparison with a predetermined probability distribution by normalizing values corresponding to each axis of the distribution of feature values. In the example of FIG. 3B, the feature has the largest number of input data having the x1 value, and the number of input data having the corresponding value decreases as the value moves from the x2 value to the xn value. The computing device 100 in accordance with one embodiment of the present disclosure may determine a distribution of feature values and an error of a predetermined probability distribution. 3B, the computing device 100 compares the number of input data (or the normalized number of input data numbers) of each of the feature values with a predetermined probability distribution value at each of the points . For example, in the example of FIG. 3B, the computing device 100 compares (x1, y1) and one or more points of a predetermined probability distribution graph (i.e., y values on the graph corresponding to x1) And the distribution of feature values. For example, the variance between the value of the normalized histogram and the corresponding probability distribution value can be used as a comparison criterion.

다른 실시예에서, 컴퓨팅 장치(100)는 피쳐 값의 분포가 특정 확률 분포와 유사한 추세를 보이는지 여부에 기초하여 피쳐 값의 분포와 사전결정된 확률 분포와의 유사도를 판단할 수 있다. 예를 들어, 정규화된 히스토그램의 미분값과 대응하는 확률 분포의 미분값 사이의 차이가 비교 기준으로 사용될 수 있다. 도 3b의 예시와 같이 피쳐 값의 분포가 감소하는 추세를 보이는 경우, 즉 x1<x2<x3<x4<x5 인 경우에 y1>y2>y3>y4>y5 인 경항을 보이는 경우, 컴퓨팅 장치(100)는 해당 피쳐 값의 분포가 매개변수 λ=1, k=0.5인 베이불 분포와 유사한 것으로 판단할 수 있다. 즉, 본 개시의 일 실시예에 따라 컴퓨팅 장치(100)는 피쳐 값의 분포에서 피쳐 값과 각 피쳐 값에 속하는 입력 데이터의 수가 사전결정된 확률 분포와 유사한 경향을 보이는지 여부에 기초하여 사전결정된 확률 분포와 피쳐 값의 분포의 유사 여부와 오차를 판단할 수 있다. 오차가 사전결정된 임계값 이하인 경우, 컴퓨팅 장치(100)는 사전결정된 확률 분포와 피쳐 값의 분포가 유사한 것으로 판단할 수 있다. 전술한 기재는 예시일 뿐이며, 본 개시의 확률 분포, 피쳐 값 분포의 형상과 유사도 판단 방법은 이에 제한되지 않는다. In another embodiment, the computing device 100 may determine a degree of similarity between a distribution of feature values and a predetermined probability distribution based on whether the distribution of feature values exhibits a trend similar to a particular probability distribution. For example, the difference between the derivative of the normalized histogram and the corresponding derivative of the probability distribution can be used as a comparison criterion. Y2 &gt; y3 &gt; y4 &gt; y5 in the case where the distribution of the feature value shows a tendency to decrease, i.e., x1 < x2 &lt; x3 &lt; x4 & ) Can be judged to be similar to the Bayesian distribution where the distribution of the feature values is the parameter λ = 1, k = 0.5. That is, in accordance with one embodiment of the present disclosure, the computing device 100 may determine a probability distribution based on whether a feature value in a distribution of feature values and a number of input data pertaining to each feature value exhibit a similar tendency to a predetermined probability distribution It is possible to judge the similarity and the error of the distribution of the feature values. If the error is below a predetermined threshold, the computing device 100 may determine that the distribution of the predetermined probability distribution and the feature value are similar. The above description is only an example, and the probability distribution of the present disclosure, the shape of the feature value distribution and the similarity determination method are not limited thereto.

본 개시의 일 실시예에 따른 컴퓨팅 장치(100)는 인공 신경망의 훈련(training)을 위하여 정상 데이터 및 비정상 데이터를 포함하는 훈련 데이터를 신경망의 입력 레이어에 입력시킬 수 있다. 본 개시의 일 실시예에 따른 훈련 데이터는 라벨링 되지 않은 데이터 일 수 있다. The computing device 100 according to one embodiment of the present disclosure may input training data, including normal and abnormal data, to the input layer of the neural network for training of the neural network. Training data according to one embodiment of the present disclosure may be unlabeled data.

본 개시의 일 실시예에 따른 컴퓨팅 장치(100)는 입력 레이어(input layer)에서 입력된 훈련 데이터를 계산하여 출력 값을 출력하고, 입력 레이어의 출력 값을 히든 레이어(hidden)에 전달하여 피쳐값을 출력하도록 할 수 있다. 도 4 는 본 개시의 일 실시예에 따라 인공 신경망의 일부를 나타낸 예시도이다. 본 개시의 일 실시예에 따른 신경망은 적어도 3 층의 히든 레이어를 포함할 수 있다. 도 4 에 도시된 신경망의 레이어들의 수와 노드들의 수는 예시일 뿐이며 본 개시는 이에 제한되지 않는다. 본 개시의 일 실시예에 따른 인공 신경망은 컨볼루션 신경망(convolution neural network: CNN), 오토 인코더(auto encoder), 피드포워드 신경망(feedforward neural network), 방사 신경망(radial basis function network), 코헨 자기조직 신경망(kohonen self-organizing network), 순환 신경망(RNN: recurrent neural network) 등으로 구성될 수 있으며 본 개시는 이에 제한되지 않고 임의의 신경망을 포함할 수 있다. The computing device 100 according to an exemplary embodiment of the present invention calculates training data input from an input layer and outputs an output value. The output value of the input layer is transferred to a hidden layer, Can be output. 4 is an exemplary diagram illustrating a portion of an artificial neural network in accordance with one embodiment of the present disclosure; The neural network according to one embodiment of the present disclosure may include at least three hidden layers. The number of layers and the number of nodes of the neural network shown in FIG. 4 are merely examples, and the present disclosure is not limited thereto. An artificial neural network according to an embodiment of the present disclosure may be a convolution neural network (CNN), an auto encoder, a feedforward neural network, a radial basis function network, A kohonen self-organizing network, a recurrent neural network (RNN), etc. The present disclosure is not limited thereto and may include any neural network.

본 개시의 일 실시예에 따른 컴퓨팅 장치(100)는 각각의 훈련 데이터에 대한 신경망의 히든 레이어의 히든 노드에서 출력되는 피쳐값을 히스토그램화 하여 피쳐값의 분포를 생성할 수 있다. 상기 히든 레이어는 신경망의 출력 레이어 전의 레이어 일 수 있다. 도 4를 참조하면 히든레이어 3 의 n1 노드까지의 노드의 연결 경로, 가중치(weight)에 의하여 계산되는 일군의 값의 집합이 피쳐일 수 있다. 상기 피쳐값은 훈련 데이터를 각각의 레이어의 각각의 노드에서 처리한 결과로서, 이미지의 콘트라스트, 밝기, 색감 분포, 이미지의 엣지, 이미지 히스토그램 등의 임의의 특성를 포함할 수 있으며 본 개시는 이에 제한되지 않고 추상적인 특성 또한 포함할 수 있다. 도 4의 예시에서 히든 레이어 3 은 3개의 피쳐(n1, n2, n3노드 까지의 계산 프로세스)를 추출할 수 있고, 히든레이어 3 의 각각의 노드는 각각의 훈련 데이터에 대한 피쳐값을 출력할 수 있다. The computing device 100 according to one embodiment of the present disclosure may generate a distribution of feature values by histogramming the feature values output at the hidden node of the hidden layer of the neural network for each training data. The hidden layer may be a layer before the output layer of the neural network. Referring to Figure 4 hidden layer A set of values, calculated by the connection path, weight, of the node up to n1 node of 3 may be a feature . The feature value may include any characteristic, such as contrast, brightness, color distribution, image edge, image histogram, etc., of the image as a result of processing the training data at each node of each layer, But can also include abstract properties. In the example of FIG. 4, the hidden layer 3 can extract three features (the calculation process up to n1, n2, and n3 nodes), and each node of the hidden layer 3 can output the feature value for each training data have.

도 4의 예시에서 히든레이어3 의 n1 노드의 출력(제 1 피쳐에 대한 입력 데이터의 계산결과)인 제 1 피쳐값은 히스토그램화 되어 제 1 피쳐값 분포(310)로 출력될 수 있다. 컴퓨팅 장치(100)는 n1 노드에서 입력 데이터 각각의 출력 값들을 히스토그램화 하여 제 1 피쳐값 분포(310)를 생성할 수 있다. In the example of FIG. 4, the first feature value, which is the output of the n1 node of the hidden layer 3 (the calculation result of the input data for the first feature), may be histogrammed and output as the first feature value distribution 310. [ The computing device 100 may generate a first feature value distribution 310 by histogramming the output values of each of the input data at node n1.

여기서 제 1 피쳐값 분포(310)는 각각의 입력 데이터에 대한 피쳐값(n1의 출력)들을 히스토그램화 하여 나타낸 것이며, x축은 피쳐값, y축은 해당 피쳐값에서의 표본의 수를 나타낸다. 하나의 입력 데이터에 대하여 하나의 피쳐 값이 출력될 수 있고, 출력된 하나의 피쳐 값은 히스토그램에서 하나의 표본이 될 수 있다. 제 1 피쳐값 분포는 복수의 입력 데이터 각각에 대한 피쳐값들을 히스토그램화하여 나타낸 것이다. 이와 같이 히든레이어 3 의 n2 노드에서 입력 데이터 각각에 대한 출력은 제 2 피쳐값 분포(330)가 될 수 있고, 히든 레이어3의 n3 노드에서 입력 데이터 각각에 대한 출력은 제 3 피쳐값 분포(350)가 될 수 있다. Here, the first feature value distribution 310 represents the feature value (output of n1) for each input data by histogram, the x-axis represents the feature value, and the y-axis represents the number of samples in the feature value. One feature value may be outputted for one input data, and one output value of the output may be one sample in the histogram. The first feature value distribution is a histogram of feature values for each of a plurality of input data. Thus, the output for each of the input data at the n2 node of the hidden layer 3 may be the second feature value distribution 330 and the output for each of the input data at the n3 node of the hidden layer 3 may be the third feature value distribution 350 ).

본 개시의 일 실시예에 따른 컴퓨팅 장치(100)는 피쳐값의 분포와 사전 결정된 확률 분포의 오차를 계산할 수 있다. 사전결정된 확률 분포는 베이불 분포를 포함할 수 있다. 베이불 분포(200)는 도 3a 에 도시된 바와 같이 연속 확률 분포의 하나로서, 매개변수에 따라 다양한 확률 밀도 함수의 형태를 나타낼 수 있다. 베이불 분포는 매개변수 λ 및 k 값의 변화에 따라 다양한 형태의 확률 밀도 함수의 형태를 취할 수 있다. 도 3a 에 도시된 바와 같이 각각의 매개변수에 따라서 다양한 형태의 확률 밀도 함수의 분포 형태를 띌 수 있다. 여기서 베이불 분포의 매개변수는 랜덤으로 결정될 수 있고, 일반적으로 알려진 불량률에 따라 적절한 형상을 가지도록 결정될 수 있다. 전술한 베이불 분포는 예시일 뿐이며, 본 개시는 확률 분포는 n차원 확률 분포를 포함할 수 있다. The computing device 100 in accordance with one embodiment of the present disclosure may calculate a distribution of feature values and an error of a predetermined probability distribution. The predetermined probability distribution may comprise a Bayesian distribution. Bay fire distribution 200 is one of the continuous probability distributions as shown in FIG. 3A, and can represent various types of probability density functions according to parameters. Bayfire distributions can take the form of various types of probability density functions depending on the variation of the parameters lambda and k. As shown in FIG. 3A, various types of distribution of probability density function can be obtained according to each parameter. Where the parameters of the bay fire distribution can be determined at random and can be determined to have an appropriate shape according to generally known defect rates. The Bayfire distribution described above is only an example, and the present disclosure may include an n-dimensional probability distribution.

컴퓨팅 장치(100)는 피쳐값의 분포(310, 330, 350)와 사전결정된 확률 분포(200)의 오차를 계산할 수 있다. 컴퓨팅 장치(100)는 피쳐값의 분포(310, 330, 350)와 사전결정된 베이불 분포를 비교하여 오차를 계산할 수 있다. 도 4의 예시에서 제 1 피쳐값 분포(310)는 비교적 확률 분포의 그래프의 형태와 유사한 히스토그램을 보이며, 피쳐값들이 여러 값들에 고르게 분포되어 있지 않고, 일부 값들에 집중된 양상을 보인다. 보다 구체적으로, 제 1 피쳐값 분포(310)의 형상을 살펴보면 대부분의 피쳐값들이 일부 영역에 집중되어 있고, x축 값의 끝 부분(도면 상 310의 하단 부분)에는 거의 피쳐값들이 존재하지 않는 것으로 보인다. 따라서, 이러한 형상으로 보아 제 1 피쳐값을 추출하게 하는 제 1 피쳐는 대부분의 입력 데이터가 가진 특성과 가지지 못한 특성을 나누기에 적절한 중요 피쳐로 판단된다. 제 1 피쳐값 분포(310)의 형상에서 보아, 많은 표본이 존재하는 피쳐값(도 4 참조번호 310에서 y축 값이 가장 높은 x1 지점)이 있고, 적은 표본이 존재하는 피쳐값(도 4 참조번호 310 y축 값이 낮은 x2 지점)이 있다. n1 피쳐에 상응하는 입력 데이터의 각각에 대한 피쳐값은 x1 값을 가장 많이 가지며, x2값은 가장 적게 가질 수 있음을 알 수 있다. 이는 피쳐값이 x1이 출력되는 입력 데이터의 수가 많고, 피쳐값이 x2가 출력되는 입력 데이터의 수가 적음을 나타낸다. 따라서, n1 피쳐는 다수의 입력 데이터(일반적으로, 정상데이터가 비정상 데이터보다 많은)에 대하여 대부분의 입력 데이터에서 x1을 피쳐값으로 추출하고, 일부 입력 데이터에서 x2를 피쳐값으로 추출하는 피쳐일 수 있다. n1 피쳐를 통해 추출된 제 1 피쳐값 분포(310)는 일부 피쳐값에 대하여 표본의 수가 집중된 베이불 분포의 형상을 가질 수 있다(베이불 분포(200)에서 실선과 유사한 형상). 컴퓨팅 장치(100)는 제 1 피쳐값 분포(310)와 사전결정된 베이불 분포(200 중 실선)와의 오차를 계산할 수 있으며, 오차가 사전결정된 값 이하인 경우, 컴퓨팅 장치(100)는 제 1 피쳐값을 출력하는 노드(이경우 도 4 의 예시에서 n1 노드)를 활성화 할 수 있다. The computing device 100 may calculate the error of the feature value distribution 310,330, 350 and the predetermined probability distribution 200. [ The computing device 100 may compute the error by comparing the distribution of feature values 310, 330, 350 with a predetermined bayonet distribution. In the example of FIG. 4, the first feature value distribution 310 shows a histogram similar to the shape of the graph of the comparative probability distribution, where the feature values are not uniformly distributed over several values, but are concentrated on some values. More specifically, when looking at the shape of the first feature value distribution 310, most of the feature values are concentrated in some areas, and there are almost no feature values at the end of the x-axis value Seems to be. Therefore, the first feature for extracting the first feature value from the viewpoint of this shape is determined to be an important feature suitable for dividing the characteristics possessed by most of the input data and the features not possessed by the most input data. There is a feature value in which there are many specimens (x1 point with the highest y-axis value at reference numeral 310 in Fig. 4) and a feature value with a small specimen (see Fig. 4) in the shape of the first feature value distribution 310 Number 310 x2 point with low y-axis value). It can be seen that the feature value for each of the input data corresponding to the n1 feature has the largest value of x1 and the least value of x2. This indicates that the number of input data for which the feature value x1 is output and the number of input data for which the feature value x2 is output are small. Thus, the n1 feature can be a feature that extracts x1 as a feature value from most input data for a large number of input data (typically, more normal data than abnormal data), and extracts x2 as a feature value from some input data have. The first feature value distribution 310 extracted through the n1 feature may have a bay fill distribution shape with a concentrated number of samples for some feature values (a shape similar to a solid line in bay fill distribution 200). The computing device 100 may compute an error between the first feature value distribution 310 and a predetermined bay dominance (solid line 200), and if the error is less than or equal to the predetermined value, the computing device 100 may calculate the first feature value (In this example, node n1 in the example of FIG. 4).

동일하게, 히든 레이어3의 n2 노드에서 각각의 입력 데이터에 대한 제 2 피쳐값이 출력될 수 있고, 컴퓨팅 장치(100)는 제 2 피쳐값 분포(330)를 생성할 수 있다. 제 2 피쳐값 분포(330)는 특정 피쳐값에 표본이 집중되지 않고 표본의 수가 전체적으로 고르게 분포된 형상을 가진다. 이경우, 제 2 피쳐는 대부분의 이미지가 가진 특성을 추출하는 피쳐인 것으로 추정될 수 있다. 제 2 피쳐값 분포(330)는 다른 피쳐 값 보다 뚜렷하게 많은 표본을 가지는 피쳐 값이 없으며 이는 제 2 피쳐에서 추출하는 특성은 입력데이터가 일반적으로 가질 수 있는 특성임을 의미할 수 있다. 컴퓨팅 장치(100)는 제 2 피쳐값 분포(330)와 사전결정된 베이불 분포의 오차를 계산할 수 있다. 이경우, 제 2 피쳐값 분포(330)와 사전결정된 베이불 분포의 오차는 제 1 피쳐값 분포(330)와 사전결정된 베이불 분포와의 오차보다 클 수 있다. 따라서, 컴퓨팅 장치(100)는 제 2 피쳐값 분포(330)와 사전결정된 베이불 분포와의 오차가 사전설정된 값(즉, 임계 값) 보다 큰 경우, 제 2 피쳐를 입력 데이터 분류에 있어 불필요한 피쳐로 판단할 수 있다. 그러므로 컴퓨팅 장치(100)는 제 2 피쳐값을 출력하는 노드(이경우 도 4 의 예시에서 n2 노드)를 비활성화 할 수 있다.Similarly, a second feature value for each input data may be output at the n2 node of the hidden layer 3, and the computing device 100 may generate the second feature value distribution 330. [ The second feature value distribution 330 has a shape in which the sample is not concentrated on a specific feature value but the number of samples is uniformly distributed as a whole. In this case, the second feature can be assumed to be a feature extracting characteristic of most images. The second feature value distribution 330 has no feature value with a significantly larger sample than the other feature values, which means that the feature extracted from the second feature is a characteristic that the input data may have in general. The computing device 100 may calculate the error of the second feature value distribution 330 and the predetermined bay fade distribution. In this case, the error of the second feature value distribution 330 and the predetermined bayonet distribution may be greater than the error of the first feature value distribution 330 and the predetermined bayonet distribution. Accordingly, the computing device 100 may determine that the second feature is an unnecessary feature in input data classification if the error between the second feature value distribution 330 and the predetermined bay dominance is greater than a predetermined value (i.e., a threshold) . Thus, the computing device 100 may deactivate the node (in this example, the node n2 in this example) that outputs the second feature value.

이와 동일한 방식으로, 히든 레이어3 의 노드 n3에서 출력되는 피쳐 값의 분포 역시 특정 피쳐 값에 표본이 다소 집중되는 형상을 가진다. 컴퓨팅 장치(100)는 제 3 피쳐값 분포(350)와 사전결정된 베이불 분포(200)의 오차를 계산하여, 오차가 사전결정된 값 이하인 경우 제 3 피쳐값을 출력하는 n3노드를 활성화 할 수 있다. In the same manner, the distribution of the feature values output from the node n3 of the hidden layer 3 also has a shape in which the sample is slightly concentrated in the specific feature value. The computing device 100 may calculate the error of the third feature value distribution 350 and the predetermined bay dominance 200 to activate the n3 node outputting the third feature value if the error is below a predetermined value .

전술한 노드의 활성화와 비활성화는 해당 노드와 다음 노드를 연결하는 가중치를 조정함으로써 수행될 수 있다. 예를 들어, 컴퓨팅 장치(100)는 선택된 n1노드의 출력이 출력 레이어에 온전히 전달되도록 n1 노드와 연결된 출력 레이어의 노드와 n1 노드 사이의 연결 가중치를 1 로 조정할 수 있다. 또한, 예를 들어 컴퓨팅 장치(100)는 비활성화된 n2 노드의 출력이 출력 레이어에 전달되지 않도록 n2 노드와 연결된 출력 레이어의 노드와 n2 노드 사이의 연결 가중치를 0으로 조정할 수 있다. 전술한 연결 가중치는 예시일 뿐이며 본 개시는 이에 제한되지 않는다. 컴퓨팅 장치(100)는 비활성화된 노드의 출력이 다음 레이어에 전달되지 않도록 적절한 연결 가중치를 설정할 수 있고, 활성화된 노드의 출력이 다음 레이어에 전달되도록 하는 적절한 가중치를 설정할 수 있다. Activation and deactivation of the nodes described above can be performed by adjusting weights connecting the node and the next node. For example, the computing device 100 may adjust the connection weight between the node of the output layer connected to node n1 and node n1 to one so that the output of the selected node n1 is fully delivered to the output layer. In addition, for example, the computing device 100 may adjust the connection weight between the node of the output layer connected to the n2 node and the node n2 to zero so that the output of the deactivated n2 node is not transmitted to the output layer. The above-described connection weight is only an example, and the present disclosure is not limited thereto. The computing device 100 may set appropriate connection weights so that the output of the deactivated node is not delivered to the next layer and may set an appropriate weight to allow the output of the activated node to be delivered to the next layer.

본 개시의 일 실시예에 따른 컴퓨팅 장치(100)는 히든 레이어에서 출력되는 피쳐값을 노멀라이즈(normalize)할 수 있다. 도 4 의 예시에서 각각의 피쳐 값 분포에서 피쳐 값(310, 330, 350의 x축)의 범위는 서로 상이할 수 있다. 따라서, 컴퓨팅 장치(100)는 각각의 피쳐 값 분포와 사전결정된 확률 분포와의 비교를 용이하게 하도록, 피쳐 값을 노멀라이즈 하여, 피쳐 값 분포의 x축을 동일하게 맞춰줄 수 있다. The computing device 100 according to one embodiment of the present disclosure may normalize the feature value output from the hidden layer. In the example of FIG. 4, the range of feature values (x-axis of 310,330, 350) in each feature value distribution may be different from each other. Thus, the computing device 100 may normalize the feature value to match the x-axis of the feature value distribution to facilitate comparison of each feature value distribution with a predetermined probability distribution.

도 5 는 도 4의 예시에서 히든레이어3의 노드 n1 및 n3를 선택되고, n2가 비활성화된 신경망을 나타낸 도면이다. 컴퓨팅 장치(100)는 노드 n1, n3를 선택하여 해당 노드의 출력이 다음 레이어로 전달되도록 각 노드의 가중치를 조정할 수 있다. 컴퓨팅 장치(100)는 노드 n2를 비활성화하여 해당 노드의 출력이 다음 레이어로 전달되지 않도록 n2 노드의 가중치를 조정할 수 있다. FIG. 5 is a diagram showing a neural network in which nodes n1 and n3 of the hidden layer 3 are selected in the example of FIG. 4 and n2 is inactivated. The computing device 100 may select the nodes n1 and n3 and adjust the weight of each node so that the output of the corresponding node is transferred to the next layer. The computing device 100 may deactivate the node n2 and adjust the weight of the n2 node such that the output of the node is not delivered to the next layer.

도 6 은 컴퓨팅 장치가 복수의 신경망을 앙상블하여 신경망을 구성하는 것을 나타낸 예시이다. 6 is an illustration showing that a computing device forms a neural network by ensemble a plurality of neural networks.

전술한 본 개시의 피쳐 값의 분포와 사전결정된 확률 분포와의 비교 및 그에 따른 신경망의 일부의 비활성화는 복수의 신경망들에 대하여 각각 수행될 수 있다. Comparison of the distribution of feature values of the present disclosure described above with a predetermined probability distribution and thus deactivation of a portion of the neural network can be performed for each of a plurality of neural networks.

예를 들어, 도 6 의 예시에서 제 1 신경망(400)에서는 히든 레이어3의 노드 n1, n3 이 활성화되었으며, n2노드는 비활성화되었고, 제 2 신경망(410)에서는 히든 레이어3의 노드 n4이 활성화 되었고 이외의 노드는 비활성화 되었다. For example, in the example of FIG. 6, the nodes n1 and n3 of the hidden layer 3 are activated and the node n2 is deactivated in the first neural network 400, and the node n4 of the hidden layer 3 is activated in the second neural network 410 Other nodes were disabled.

이러한 경우, 컴퓨팅 장치(100)는 제 1 신경망(400) 및 제 2 신경망(410)을 앙상블하여 제 3 신경망(430)을 구성할 수 있다. In this case, the computing device 100 may configure the third neural network 430 by ensemble the first neural network 400 and the second neural network 410.

예를 들어, 제 2 신경망(410)의 노드 n4는 히든레이어 2의 노드 4,5,6,7로부터 입력을 받으며, 히든레이어2 의 노드 4,5,6,7은 히든레이어1의 노드 6,7,8,9,10으로부터 입력을 받을 수 있다. 이러한 연결관계가 제 3 신경망(430)에서도 유지된다. For example, node n4 of the second neural network 410 receives input from nodes 4, 5, 6, and 7 of hidden layer 2, nodes 4, 5, 6, and 7 of hidden layer 2 receive node 6 , 7, 8, 9, and 10, respectively. This connection relationship is also maintained in the third neural network 430.

복수의 신경망에 병렬적으로 본 개시의 일 실시예에 따른 사전 훈련 방법을 적용하는 경우, 사전훈련 단계에서 망 구조를 단순화 할 수 있어 계산량을 감소시킬 수 있으며, 민감도 테스트가 용이하여 연구자가 망 내부 구조를 보다 잘 이해할 수 있는 장점이 있다(예를 들어, 통합된 두 망을 통해 본 개시의 사전 훈련 방법을 수행하는 경우, 도 6을 예로 들면 히든레이어1은 5개의 노드에서 10개의 노드로 늘어나고, 히든레이어 2 는 4개의 노드에서 8개의 노드로 늘어나 전체 적인 계산량이 늘어나며 민감도 테스트가 비용이해진다).In the case of applying the pre-training method according to an embodiment of the present disclosure in parallel to a plurality of neural networks, the network structure can be simplified in the pre-training step, the amount of calculation can be reduced, sensitivity testing is easy, (For example, in the case of performing the preliminary training method of the present disclosure through two integrated networks, for example, in the case of FIG. 6, hidden layer 1 is extended from 5 nodes to 10 nodes , Hidden layer 2 increases from four nodes to eight nodes, increasing the overall amount of computation, and sensitivity testing costs).

도 6 에 기재된 앙상블 방식은 예시일 뿐이며 본 개시의 범위는 다양한 앙상블 기법들을 포함할 수 있다. The ensemble scheme described in FIG. 6 is merely an example, and the scope of the present disclosure may include various ensemble techniques.

정상 제품을 촬영한 정상 데이터와 비정상 제품을 촬영한 비정상 데이터에서는 일반적으로 정상 데이터가 비정상 데이터보다 다수 획득되며, 충분한 수의 비정상 데이터의 획득이 어려운 문제가 있다. 비정상 데이터는 학습을 위한 충분한 수가 획득되기 어려우며 학습을 위한 충분한 수의 비정상 데이터를 획득하기 위하여 데이터를 증가시키기 위하여 다양한 data augmentation 테크닉들이 사용되고 있다. 그러나, 본 개시의 일 실시예에 따라 신경망에서 출력되는 피쳐 값의 분포가 사전결정된 확률 분포와 유사한 피쳐만(중요 피쳐(significant feature))을 사용하도록 신경망을 사전 조정하는 경우, 훈련에 앞서 신경망을 중요 피쳐들(즉, 중요 노드들)로 구성하여 훈련의 반복 횟수, 계산량을 줄여 훈련 효율성을 높일 수 있다. 이경우 라벨되지 않은 훈련 데이터로도 훈련이 가능하여 비감독 훈련 방식으로 보다 많은 데이터를 처리할 수 있어 정확도가 향상될 수 있다. Normal data obtained by photographing a normal product and abnormal data obtained by photographing an abnormal product generally have a problem that a large number of normal data is acquired than abnormal data and it is difficult to acquire a sufficient number of abnormal data. Abnormal data is difficult to obtain sufficient numbers for learning and various data augmentation techniques are used to increase the data to obtain a sufficient number of abnormal data for learning. However, in accordance with one embodiment of the present disclosure, if the distribution of feature values output from the neural network precondition the neural network to use only features (significant features) similar to the predetermined probability distribution, Important features (ie, important nodes) can be configured to improve the training efficiency by reducing the number of iterations and calculation amount of training. In this case, unlabeled training data can be trained, so that more data can be processed by non-supervised training method, which can improve accuracy.

본 개시의 일 실시예에 따른 신경망 훈련 방법은 역전파(back propagation) 등 신경망의 반복 학습 이전에 수행 될 수 있다. 본 개시의 일 실시예에 따른 신경망 훈련 방법은 신경망의 각 노드에서 추출되는 피쳐 값의 분포와 사전결정된 확률 분포를 비교하여, 피쳐 값의 분포가 확률 분포 상으로 유의미한 피쳐 값 만을 추출하는 노드(피쳐)만을 활성화하여, 중요 피쳐만을 추출하는 노드만이 신경망에 포함되도록 할 수 있다. 본 개시의 일 실시예에 따른 신경망 훈련 방법을 이용하면, 반복 학습 이전에 중요 피쳐만을 추출하는 노드만으로 구성된 신경망을 결정하여, 추후 반복 학습에서의 효율성을 향상시킬 수 있고, 분류 정확도를 높일 수 있다. The neural network training method according to an embodiment of the present disclosure can be performed before repeated learning of a neural network such as back propagation. A neural network training method according to an embodiment of the present disclosure compares a distribution of feature values extracted at each node of a neural network with a predetermined probability distribution to determine whether or not the distribution of feature values is a node that extracts only feature values on a probability distribution Only the node extracting only the important features can be included in the neural network. Using the neural network training method according to an embodiment of the present disclosure, it is possible to determine a neural network composed of only nodes extracting only important features before iterative learning, thereby improving the efficiency in the later iterative learning and improving the classification accuracy .

도 7 은 본 개시의 일 실시예에 따른 컴퓨팅 장치의 블록 구성도(block diagram)이다. 7 is a block diagram of a computing device according to one embodiment of the present disclosure.

도 7 은 본 개시의 실시예들이 구현될 수 있는 예시적인 컴퓨팅 환경에 대한 간략하고 일반적인 개략도를 도시한다.Figure 7 illustrates a simplified, general schematic diagram of an exemplary computing environment in which embodiments of the present disclosure may be implemented.

본 개시가 일반적으로 하나 이상의 컴퓨터 상에서 실행될 수 있는 컴퓨터 실행가능 명령어와 관련하여 전술되었지만, 당업자라면 본 개시가 기타 프로그램 모듈들과 결합되어 및/또는 하드웨어와 소프트웨어의 조합으로서 구현될 수 있다는 것을 잘 알 것이다.Although the present disclosure has been described above generally in terms of computer-executable instructions that may be executed on one or more computers, those skilled in the art will appreciate that the disclosure may be combined with other program modules and / will be.

일반적으로, 프로그램 모듈은 특정의 태스크를 수행하거나 특정의 추상 데이터 유형을 구현하는 루틴, 프로그램, 컴포넌트, 데이터 구조, 기타 등등을 포함한다. 또한, 당업자라면 본 개시의 방법이 단일-프로세서 또는 멀티프로세서 컴퓨터 시스템, 미니컴퓨터, 메인프레임 컴퓨터는 물론 퍼스널 컴퓨터, 핸드헬드 컴퓨팅 장치, 마이크로프로세서-기반 또는 프로그램가능 가전 제품, 기타 등등(이들 각각은 하나 이상의 연관된 장치와 연결되어 동작할 수 있음)을 비롯한 다른 컴퓨터 시스템 구성으로 실시될 수 있다는 것을 잘 알 것이다.Generally, program modules include routines, programs, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Those skilled in the art will also appreciate that the methods of the present disclosure may be practiced with other computer systems, including single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, handheld computing devices, microprocessor-based or programmable consumer electronics, And may operate in conjunction with one or more associated devices).

본 개시의 설명된 실시예들은 또한 어떤 태스크들이 통신 네트워크를 통해 연결되어 있는 원격 처리 장치들에 의해 수행되는 분산 컴퓨팅 환경에서 실시될 수 있다. 분산 컴퓨팅 환경에서, 프로그램 모듈은 로컬 및 원격 메모리 저장 장치 둘다에 위치할 수 있다.The described embodiments of the present disclosure may also be practiced in distributed computing environments where certain tasks are performed by remote processing devices connected through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.

컴퓨터는 통상적으로 다양한 컴퓨터 판독가능 매체를 포함한다. 컴퓨터에 의해 액세스 가능한 매체는 그 어떤 것이든지 컴퓨터 판독가능 매체가 될 수 있고, 이러한 컴퓨터 판독가능 매체는 휘발성 및 비휘발성 매체, 일시적(transitory) 및 비일시적(non-transitory) 매체, 이동식 및 비-이동식 매체를 포함한다. 제한이 아닌 예로서, 컴퓨터 판독가능 매체는 컴퓨터 판독가능 저장 매체 및 컴퓨터 판독가능 전송 매체를 포함할 수 있다. 컴퓨터 판독가능 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보를 저장하는 임의의 방법 또는 기술로 구현되는 휘발성 및 비휘발성 매체, 일시적 및 비-일시적 매체, 이동식 및 비이동식 매체를 포함한다. 컴퓨터 저장 매체는 RAM, ROM, EEPROM, 플래시 메모리 또는 기타 메모리 기술, CD-ROM, DVD(digital video disk) 또는 기타 광 디스크 저장 장치, 자기 카세트, 자기 테이프, 자기 디스크 저장 장치 또는 기타 자기 저장 장치, 또는 컴퓨터에 의해 액세스될 수 있고 원하는 정보를 저장하는 데 사용될 수 있는 임의의 기타 매체를 포함하지만, 이에 한정되지 않는다.Computers typically include a variety of computer readable media. Any medium accessible by a computer may be a computer-readable medium, which may include volatile and non-volatile media, transitory and non-transitory media, removable and non-removable media, Removable media. By way of example, and not limitation, computer readable media can comprise computer readable storage media and computer readable transmission media. Computer-readable storage media includes both volatile and non-volatile media, both temporary and non-volatile media, both removable and non-removable, implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data Media. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital video disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, Or any other medium which can be accessed by a computer and used to store the desired information.

컴퓨터 판독가능 전송 매체는 통상적으로 반송파(carrier wave) 또는 기타 전송 메커니즘(transport mechanism)과 같은 피변조 데이터 신호(modulated data signal)에 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터등을 구현하고 모든 정보 전달 매체를 포함한다. 피변조 데이터 신호라는 용어는 신호 내에 정보를 인코딩하도록 그 신호의 특성들 중 하나 이상을 설정 또는 변경시킨 신호를 의미한다. 제한이 아닌 예로서, 컴퓨터 판독가능 전송 매체는 유선 네트워크 또는 직접 배선 접속(direct-wired connection)과 같은 유선 매체, 그리고 음향, RF, 적외선, 기타 무선 매체와 같은 무선 매체를 포함한다. 상술된 매체들 중 임의의 것의 조합도 역시 컴퓨터 판독가능 전송 매체의 범위 안에 포함되는 것으로 한다.Computer readable transmission media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, It includes all information delivery media. The term modulated data signal refers to a signal that has one or more of its characteristics set or changed to encode information in the signal. By way of example, and not limitation, computer readable transmission media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, or other wireless media. Combinations of any of the above described media are also intended to be included within the scope of computer readable transmission media.

컴퓨터(1102)를 포함하는 본 개시의 여러가지 측면들을 구현하는 예시적인 환경(1100)이 나타내어져 있으며, 컴퓨터(1102)는 처리 장치(1104), 시스템 메모리(1106) 및 시스템 버스(1108)를 포함한다. 시스템 버스(1108)는 시스템 메모리(1106)(이에 한정되지 않음)를 비롯한 시스템 컴포넌트들을 처리 장치(1104)에 연결시킨다. 처리 장치(1104)는 다양한 상용 프로세서들 중 임의의 프로세서일 수 있다. 듀얼 프로세서 및 기타 멀티프로세서 아키텍처도 역시 처리 장치(1104)로서 이용될 수 있다.There is shown an exemplary environment 1100 that implements various aspects of the present disclosure including a computer 1102 and a computer 1102 that includes a processing unit 1104, a system memory 1106, and a system bus 1108 do. The system bus 1108 couples system components, including but not limited to, system memory 1106 to the processing unit 1104. The processing unit 1104 may be any of a variety of commercially available processors. Dual processors and other multiprocessor architectures may also be used as the processing unit 1104.

시스템 버스(1108)는 메모리 버스, 주변장치 버스, 및 다양한 상용 버스 아키텍처 중 임의의 것을 사용하는 로컬 버스에 추가적으로 상호 연결될 수 있는 몇가지 유형의 버스 구조 중 임의의 것일 수 있다. 시스템 메모리(1106)는 판독 전용 메모리(ROM)(1110) 및 랜덤 액세스 메모리(RAM)(1112)를 포함한다. 기본 입/출력 시스템(BIOS)은 ROM, EPROM, EEPROM 등의 비휘발성 메모리(1110)에 저장되며, 이 BIOS는 시동 중과 같은 때에 컴퓨터(1102) 내의 구성요소들 간에 정보를 전송하는 일을 돕는 기본적인 루틴을 포함한다. RAM(1112)은 또한 데이터를 캐싱하기 위한 정적 RAM 등의 고속 RAM을 포함할 수 있다.The system bus 1108 may be any of several types of bus structures that may additionally be interconnected to a local bus using any of the memory bus, peripheral bus, and various commercial bus architectures. The system memory 1106 includes read only memory (ROM) 1110 and random access memory (RAM) The basic input / output system (BIOS) is stored in a non-volatile memory 1110, such as a ROM, EPROM, EEPROM or the like, which is a basic (non-volatile) memory device that aids in transferring information between components within the computer 1102 Routine. The RAM 1112 may also include a high speed RAM such as static RAM for caching data.

컴퓨터(1102)는 또한 내장형 하드 디스크 드라이브(HDD)(1114)(예를 들어, EIDE, SATA)―이 내장형 하드 디스크 드라이브(1114)는 또한 적당한 섀시(도시 생략) 내에서 외장형 용도로 구성될 수 있음―, 자기 플로피 디스크 드라이브(FDD)(1116)(예를 들어, 이동식 디스켓(1118)으로부터 판독을 하거나 그에 기록을 하기 위한 것임), 및 광 디스크 드라이브(1120)(예를 들어, CD-ROM 디스크(1122)를 판독하거나 DVD 등의 기타 고용량 광 매체로부터 판독을 하거나 그에 기록을 하기 위한 것임)를 포함한다. 하드 디스크 드라이브(1114), 자기 디스크 드라이브(1116) 및 광 디스크 드라이브(1120)는 각각 하드 디스크 드라이브 인터페이스(1124), 자기 디스크 드라이브 인터페이스(1126) 및 광 드라이브 인터페이스(1128)에 의해 시스템 버스(1108)에 연결될 수 있다. 외장형 드라이브 구현을 위한 인터페이스(1124)는 USB(Universal Serial Bus) 및 IEEE 1394 인터페이스 기술 중 적어도 하나 또는 그 둘다를 포함한다.The computer 1102 may also be an internal hard disk drive (HDD) 1114 (e.g., EIDE, SATA) - this internal hard disk drive 1114 may also be configured for external use within a suitable chassis , A magnetic floppy disk drive (FDD) 1116 (e.g., for reading from or writing to a removable diskette 1118), and an optical disk drive 1120 (e.g., a CD-ROM For reading disc 1122 or reading from or writing to other high capacity optical media such as DVD). The hard disk drive 1114, magnetic disk drive 1116 and optical disk drive 1120 are connected to the system bus 1108 by a hard disk drive interface 1124, a magnetic disk drive interface 1126 and an optical drive interface 1128, respectively. . The interface 1124 for external drive implementation includes at least one or both of USB (Universal Serial Bus) and IEEE 1394 interface technologies.

이들 드라이브 및 그와 연관된 컴퓨터 판독가능 매체는 데이터, 데이터 구조, 컴퓨터 실행가능 명령어, 기타 등등의 비휘발성 저장을 제공한다. 컴퓨터(1102)의 경우, 드라이브 및 매체는 임의의 데이터를 적당한 디지털 형식으로 저장하는 것에 대응한다. 상기에서의 컴퓨터 판독가능 매체에 대한 설명이 HDD, 이동식 자기 디스크, 및 CD 또는 DVD 등의 이동식 광 매체를 언급하고 있지만, 당업자라면 집 드라이브(zip drive), 자기 카세트, 플래쉬 메모리 카드, 카트리지, 기타 등등의 컴퓨터에 의해 판독가능한 다른 유형의 매체도 역시 예시적인 운영 환경에서 사용될 수 있으며 또 임의의 이러한 매체가 본 개시의 방법들을 수행하기 위한 컴퓨터 실행가능 명령어를 포함할 수 있다는 것을 잘 알 것이다.These drives and their associated computer-readable media provide non-volatile storage of data, data structures, computer-executable instructions, and the like. In the case of computer 1102, the drives and media correspond to storing any data in a suitable digital format. While the above description of computer readable media refers to HDDs, removable magnetic disks, and removable optical media such as CDs or DVDs, those skilled in the art will appreciate that other types of storage devices, such as zip drives, magnetic cassettes, flash memory cards, Or the like may also be used in the exemplary operating environment and any such medium may include computer-executable instructions for carrying out the methods of the present disclosure.

운영 체제(1130), 하나 이상의 애플리케이션 프로그램(1132), 기타 프로그램 모듈(1134) 및 프로그램 데이터(1136)를 비롯한 다수의 프로그램 모듈이 드라이브 및 RAM(1112)에 저장될 수 있다. 운영 체제, 애플리케이션, 모듈 및/또는 데이터의 전부 또는 그 일부분이 또한 RAM(1112)에 캐싱될 수 있다. 본 개시가 여러가지 상업적으로 이용가능한 운영 체제 또는 운영 체제들의 조합에서 구현될 수 있다는 것을 잘 알 것이다.A number of program modules may be stored in the drive and RAM 1112, including an operating system 1130, one or more application programs 1132, other program modules 1134, and program data 1136. All or a portion of the operating system, applications, modules, and / or data may also be cached in the RAM 1112. It will be appreciated that the disclosure may be implemented in a variety of commercially available operating systems or combinations of operating systems.

사용자는 하나 이상의 유선/무선 입력 장치, 예를 들어, 키보드(1138) 및 마우스(1140) 등의 포인팅 장치를 통해 컴퓨터(1102)에 명령 및 정보를 입력할 수 있다. 기타 입력 장치(도시 생략)로는 마이크, IR 리모콘, 조이스틱, 게임 패드, 스타일러스 펜, 터치 스크린, 기타 등등이 있을 수 있다. 이들 및 기타 입력 장치가 종종 시스템 버스(1108)에 연결되어 있는 입력 장치 인터페이스(1142)를 통해 처리 장치(1104)에 연결되지만, 병렬 포트, IEEE 1394 직렬 포트, 게임 포트, USB 포트, IR 인터페이스, 기타 등등의 기타 인터페이스에 의해 연결될 수 있다.A user may enter commands and information into the computer 1102 via one or more wired / wireless input devices, such as a keyboard 1138 and a pointing device such as a mouse 1140. [ Other input devices (not shown) may include a microphone, IR remote control, joystick, game pad, stylus pen, touch screen, and so on. These and other input devices are often connected to the processing unit 1104 via an input device interface 1142 that is coupled to the system bus 1108, but may be a parallel port, an IEEE 1394 serial port, a game port, a USB port, an IR interface, &Lt; / RTI &gt; and so forth.

모니터(1144) 또는 다른 유형의 디스플레이 장치도 역시 비디오 어댑터(1146) 등의 인터페이스를 통해 시스템 버스(1108)에 연결된다. 모니터(1144)에 부가하여, 컴퓨터는 일반적으로 스피커, 프린터, 기타 등등의 기타 주변 출력 장치(도시 생략)를 포함한다.A monitor 1144 or other type of display device is also connected to the system bus 1108 via an interface, such as a video adapter 1146, In addition to the monitor 1144, the computer typically includes other peripheral output devices (not shown) such as speakers, printers,

컴퓨터(1102)는 유선 및/또는 무선 통신을 통한 원격 컴퓨터(들)(1148) 등의 하나 이상의 원격 컴퓨터로의 논리적 연결을 사용하여 네트워크화된 환경에서 동작할 수 있다. 원격 컴퓨터(들)(1148)는 워크스테이션, 컴퓨팅 디바이스 컴퓨터, 라우터, 퍼스널 컴퓨터, 휴대용 컴퓨터, 마이크로프로세서-기반 오락 기기, 피어 장치 또는 기타 통상의 네트워크 노드일 수 있으며, 일반적으로 컴퓨터(1102)에 대해 기술된 구성요소들 중 다수 또는 그 전부를 포함하지만, 간략함을 위해, 메모리 저장 장치(1150)만이 도시되어 있다. 도시되어 있는 논리적 연결은 근거리 통신망(LAN)(1152) 및/또는 더 큰 네트워크, 예를 들어, 원거리 통신망(WAN)(1154)에의 유선/무선 연결을 포함한다. 이러한 LAN 및 WAN 네트워킹 환경은 사무실 및 회사에서 일반적인 것이며, 인트라넷 등의 전사적 컴퓨터 네트워크(enterprise-wide computer network)를 용이하게 해주며, 이들 모두는 전세계 컴퓨터 네트워크, 예를 들어, 인터넷에 연결될 수 있다.Computer 1102 may operate in a networked environment using logical connections to one or more remote computers, such as remote computer (s) 1148, via wired and / or wireless communication. The remote computer (s) 1148 may be a workstation, a computing device computer, a router, a personal computer, a portable computer, a microprocessor-based entertainment device, a peer device or other conventional network node, But for the sake of simplicity, only memory storage device 1150 is shown. The logical connections depicted include a wired / wireless connection to a local area network (LAN) 1152 and / or a larger network, e.g., a wide area network (WAN) These LAN and WAN networking environments are commonplace in offices and corporations and facilitate enterprise-wide computer networks such as intranets, all of which can be connected to computer networks worldwide, for example the Internet.

LAN 네트워킹 환경에서 사용될 때, 컴퓨터(1102)는 유선 및/또는 무선 통신 네트워크 인터페이스 또는 어댑터(1156)를 통해 로컬 네트워크(1152)에 연결된다. 어댑터(1156)는 LAN(1152)에의 유선 또는 무선 통신을 용이하게 해줄 수 있으며, 이 LAN(1152)은 또한 무선 어댑터(1156)와 통신하기 위해 그에 설치되어 있는 무선 액세스 포인트를 포함하고 있다. WAN 네트워킹 환경에서 사용될 때, 컴퓨터(1102)는 모뎀(1158)을 포함할 수 있거나, WAN(1154) 상의 통신 컴퓨팅 디바이스에 연결되거나, 또는 인터넷을 통하는 등, WAN(1154)을 통해 통신을 설정하는 기타 수단을 갖는다. 내장형 또는 외장형 및 유선 또는 무선 장치일 수 있는 모뎀(1158)은 직렬 포트 인터페이스(1142)를 통해 시스템 버스(1108)에 연결된다. 네트워크화된 환경에서, 컴퓨터(1102)에 대해 설명된 프로그램 모듈들 또는 그의 일부분이 원격 메모리/저장 장치(1150)에 저장될 수 있다. 도시된 네트워크 연결이 예시적인 것이며 컴퓨터들 사이에 통신 링크를 설정하는 기타 수단이 사용될 수 있다는 것을 잘 알 것이다.When used in a LAN networking environment, the computer 1102 is connected to the local network 1152 via a wired and / or wireless communication network interface or adapter 1156. [ The adapter 1156 may facilitate wired or wireless communication to the LAN 1152 and the LAN 1152 also includes a wireless access point installed therein to communicate with the wireless adapter 1156. [ When used in a WAN networking environment, the computer 1102 may include a modem 1158, or may be connected to a communications computing device on the WAN 1154, or to establish communications over the WAN 1154 And other means. A modem 1158, which may be an internal or external and a wired or wireless device, is coupled to the system bus 1108 via a serial port interface 1142. In a networked environment, program modules described for the computer 1102, or portions thereof, may be stored in the remote memory / storage device 1150. It will be appreciated that the network connections shown are exemplary and other means of establishing a communication link between the computers may be used.

컴퓨터(1102)는 무선 통신으로 배치되어 동작하는 임의의 무선 장치 또는 개체, 예를 들어, 프린터, 스캐너, 데스크톱 및/또는 휴대용 컴퓨터, PDA(portable data assistant), 통신 위성, 무선 검출가능 태그와 연관된 임의의 장비 또는 장소, 및 전화와 통신을 하는 동작을 한다. 이것은 적어도 Wi-Fi 및 블루투스 무선 기술을 포함한다. 따라서, 통신은 종래의 네트워크에서와 같이 미리 정의된 구조이거나 단순하게 적어도 2개의 장치 사이의 애드혹 통신(ad hoc communication)일 수 있다.The computer 1102 may be any wireless device or entity that is deployed and operable in wireless communication, such as a printer, a scanner, a desktop and / or portable computer, a portable data assistant (PDA) Any equipment or place, and communication with the telephone. This includes at least Wi-Fi and Bluetooth wireless technology. Thus, the communication may be a predefined structure, such as in a conventional network, or simply an ad hoc communication between at least two devices.

Wi-Fi(Wireless Fidelity)는 유선 없이도 인터넷 등으로의 연결을 가능하게 해준다. Wi-Fi는 이러한 장치, 예를 들어, 컴퓨터가 실내에서 및 실외에서, 즉 기지국의 통화권 내의 아무 곳에서나 데이터를 전송 및 수신할 수 있게 해주는 셀 전화와 같은 무선 기술이다. Wi-Fi 네트워크는 안전하고 신뢰성있으며 고속인 무선 연결을 제공하기 위해 IEEE 802.11(a,b,g, 기타)이라고 하는 무선 기술을 사용한다. 컴퓨터를 서로에, 인터넷에 및 유선 네트워크(IEEE 802.3 또는 이더넷을 사용함)에 연결시키기 위해 Wi-Fi가 사용될 수 있다. Wi-Fi 네트워크는 비인가 2.4 및 5 GHz 무선 대역에서, 예를 들어, 11Mbps(802.11a) 또는 54 Mbps(802.11b) 데이터 레이트로 동작하거나, 양 대역(듀얼 대역)을 포함하는 제품에서 동작할 수 있다.Wi-Fi (Wireless Fidelity) allows you to connect to the Internet without wires. Wi-Fi is a wireless technology such as a cell phone that allows such devices, e.g., computers, to transmit and receive data indoors and outdoors, i. E. Anywhere within the coverage area of a base station. Wi-Fi networks use a wireless technology called IEEE 802.11 (a, b, g, etc.) to provide a secure, reliable, and high-speed wireless connection. Wi-Fi can be used to connect computers to each other, the Internet, and a wired network (using IEEE 802.3 or Ethernet). The Wi-Fi network may operate in unlicensed 2.4 and 5 GHz wireless bands, for example, at 11 Mbps (802.11a) or 54 Mbps (802.11b) data rates, or in products containing both bands have.

본 개시의 기술 분야에서 통상의 지식을 가진 자는 정보 및 신호들이 임의의 다양한 상이한 기술들 및 기법들을 이용하여 표현될 수 있다는 것을 이해할 것이다. 예를 들어, 위의 설명에서 참조될 수 있는 데이터, 지시들, 명령들, 정보, 신호들, 비트들, 심볼들 및 칩들은 전압들, 전류들, 전자기파들, 자기장들 또는 입자들, 광학장들 또는 입자들, 또는 이들의 임의의 결합에 의해 표현될 수 있다.Those of ordinary skill in the art will understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced in the above description may include voltages, currents, electromagnetic waves, magnetic fields or particles, Particles or particles, or any combination thereof.

본 개시의 기술 분야에서 통상의 지식을 가진 자는 여기에 개시된 실시예들과 관련하여 설명된 다양한 예시적인 논리 블록들, 모듈들, 프로세서들, 수단들, 회로들 및 알고리즘 단계들이 전자 하드웨어, (편의를 위해, 여기에서 "소프트웨어"로 지칭되는) 다양한 형태들의 프로그램 또는 설계 코드 또는 이들 모두의 결합에 의해 구현될 수 있다는 것을 이해할 것이다. 하드웨어 및 소프트웨어의 이러한 상호 호환성을 명확하게 설명하기 위해, 다양한 예시적인 컴포넌트들, 블록들, 모듈들, 회로들 및 단계들이 이들의 기능과 관련하여 위에서 일반적으로 설명되었다. 이러한 기능이 하드웨어 또는 소프트웨어로서 구현되는지 여부는 특정한 애플리케이션 및 전체 시스템에 대하여 부과되는 설계 제약들에 따라 좌우된다. 본 개시의 기술 분야에서 통상의 지식을 가진 자는 각각의 특정한 애플리케이션에 대하여 다양한 방식들로 설명된 기능을 구현할 수 있으나, 이러한 구현 결정들은 본 개시의 범위를 벗어나는 것으로 해석되어서는 안 될 것이다.Those skilled in the art will appreciate that the various illustrative logical blocks, modules, processors, means, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented or performed with a specific purpose, (Which may be referred to herein as "software") or a combination of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends on the design constraints imposed on the particular application and the overall system. Those skilled in the art may implement the described functions in various ways for each particular application, but such implementation decisions should not be interpreted as being outside the scope of the present disclosure.

여기서 제시된 다양한 실시예들은 방법, 장치, 또는 표준 프로그래밍 및/또는 엔지니어링 기술을 사용한 제조 물품(article)으로 구현될 수 있다. 용어 "제조 물품"은 임의의 컴퓨터-판독가능 장치로부터 액세스 가능한 컴퓨터 프로그램, 캐리어, 또는 매체(media)를 포함한다. 예를 들어, 컴퓨터-판독가능 매체는 자기 저장 장치(예를 들면, 하드 디스크, 플로피 디스크, 자기 스트립, 등), 광학 디스크(예를 들면, CD, DVD, 등), 스마트 카드, 및 플래쉬 메모리 장치(예를 들면, EEPROM, 카드, 스틱, 키 드라이브, 등)를 포함하지만, 이들로 제한되는 것은 아니다. 또한, 여기서 제시되는 다양한 저장 매체는 정보를 저장하기 위한 하나 이상의 장치 및/또는 다른 기계-판독가능한 매체를 포함한다. The various embodiments presented herein may be implemented as a method, apparatus, or article of manufacture using standard programming and / or engineering techniques. The term "article of manufacture" includes a computer program, carrier, or media accessible from any computer-readable device. For example, the computer-readable medium can be a magnetic storage device (e.g., a hard disk, a floppy disk, a magnetic strip, etc.), an optical disk (e.g., CD, DVD, etc.), a smart card, But are not limited to, devices (e. G., EEPROM, cards, sticks, key drives, etc.). The various storage media presented herein also include one or more devices and / or other machine-readable media for storing information.

제시된 프로세스들에 있는 단계들의 특정한 순서 또는 계층 구조는 예시적인 접근들의 일례임을 이해하도록 한다. 설계 우선순위들에 기반하여, 본 개시의 범위 내에서 프로세스들에 있는 단계들의 특정한 순서 또는 계층 구조가 재배열될 수 있다는 것을 이해하도록 한다. 첨부된 방법 청구항들은 샘플 순서로 다양한 단계들의 엘리먼트들을 제공하지만 제시된 특정한 순서 또는 계층 구조에 한정되는 것을 의미하지는 않는다.It will be appreciated that the particular order or hierarchy of steps in the presented processes is an example of exemplary approaches. It will be appreciated that, based on design priorities, a particular order or hierarchy of steps in the processes may be rearranged within the scope of this disclosure. The appended method claims provide elements of the various steps in a sample order, but are not meant to be limited to the specific order or hierarchy presented.

제시된 실시예들에 대한 설명은 임의의 본 개시의 기술 분야에서 통상의 지식을 가진 자가 본 개시를 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 개시의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 개시의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 개시는 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.The description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the present disclosure. Thus, the present disclosure should not be construed as limited to the embodiments set forth herein, but is to be accorded the widest scope consistent with the principles and novel features presented herein.

Claims (1)

컴퓨터 판독가능 매체에 저장된 컴퓨터 프로그램.A computer program stored on a computer readable medium.
KR1020180132849A 2018-11-01 2018-11-01 Method for training artificial neural network KR20190015160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180132849A KR20190015160A (en) 2018-11-01 2018-11-01 Method for training artificial neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180132849A KR20190015160A (en) 2018-11-01 2018-11-01 Method for training artificial neural network

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170099139A Division KR101916348B1 (en) 2017-08-04 2017-08-04 Method for training artificial neural network

Publications (1)

Publication Number Publication Date
KR20190015160A true KR20190015160A (en) 2019-02-13

Family

ID=65366612

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180132849A KR20190015160A (en) 2018-11-01 2018-11-01 Method for training artificial neural network

Country Status (1)

Country Link
KR (1) KR20190015160A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210125635A (en) * 2020-04-08 2021-10-19 이지스로직 주식회사 System for inspecting photoresist coating quality of spin coater
KR20210125637A (en) * 2020-04-08 2021-10-19 주식회사 이지스로직 System for inspecting photoresist coating quality of spin coater
KR20210125634A (en) * 2020-04-08 2021-10-19 이지스로직 주식회사 Spin coater with funcion of inspecting photoresist coating quality
KR20230053746A (en) * 2021-10-14 2023-04-24 주식회사 램스 System for inspecting photoresist dispensing condition of spin coater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210125635A (en) * 2020-04-08 2021-10-19 이지스로직 주식회사 System for inspecting photoresist coating quality of spin coater
KR20210125637A (en) * 2020-04-08 2021-10-19 주식회사 이지스로직 System for inspecting photoresist coating quality of spin coater
KR20210125634A (en) * 2020-04-08 2021-10-19 이지스로직 주식회사 Spin coater with funcion of inspecting photoresist coating quality
KR20230053746A (en) * 2021-10-14 2023-04-24 주식회사 램스 System for inspecting photoresist dispensing condition of spin coater

Similar Documents

Publication Publication Date Title
KR101916348B1 (en) Method for training artificial neural network
KR101940029B1 (en) Anomaly detection
KR101916347B1 (en) Deep learning based image comparison device, method and computer program stored in computer readable medium
KR20190015160A (en) Method for training artificial neural network
US11537900B2 (en) Anomaly detection
US11662718B2 (en) Method for setting model threshold of facility monitoring system
US20210264209A1 (en) Method for generating anomalous data
KR102531645B1 (en) Computer program for performance testing of models
KR20200000541A (en) Method for training artificial neurel network
KR102372487B1 (en) Method for determinating optimal anomaly detection model for processing input data
KR20210020976A (en) Anomaly detection
KR102506805B1 (en) Self-supervised learning based in-vehicle network anomaly detection system using pseudo normal data
KR20190041961A (en) Deep learning based image comparison device, method and computer program stored in computer readable medium
KR20220167782A (en) Method and apparatus for detecting anomaly data
KR20200010984A (en) Anomaly detection
US11625574B2 (en) Method for generating abnormal data
KR20210074269A (en) Method for determinating optimal anomaly detection model for processing input data
US20210192322A1 (en) Method For Determining A Confidence Level Of Inference Data Produced By Artificial Neural Network
KR102320707B1 (en) Method for classifiying facility fault of facility monitoring system
KR102070730B1 (en) Method for image segmentation
KR20230069613A (en) Method for abnormal detection
KR102287673B1 (en) Method for generating abnormal data
KR102574605B1 (en) Method, apparatus and computer program for classifying audio data and measuring noise level using video data and audio data
KR102588998B1 (en) Method and device for performing a task with a deep learning model for an abnormal behavior detection
KR20200145646A (en) Method for image segmentation

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
WITB Written withdrawal of application