KR20190002820A - Composition for self healing thermoplastic elastomers comprising disulfide bonds and methods of preparing the same - Google Patents

Composition for self healing thermoplastic elastomers comprising disulfide bonds and methods of preparing the same Download PDF

Info

Publication number
KR20190002820A
KR20190002820A KR1020170083012A KR20170083012A KR20190002820A KR 20190002820 A KR20190002820 A KR 20190002820A KR 1020170083012 A KR1020170083012 A KR 1020170083012A KR 20170083012 A KR20170083012 A KR 20170083012A KR 20190002820 A KR20190002820 A KR 20190002820A
Authority
KR
South Korea
Prior art keywords
self
healing
disulfide
compound
elastomer
Prior art date
Application number
KR1020170083012A
Other languages
Korean (ko)
Other versions
KR102144311B1 (en
Inventor
정용채
안석훈
하유미
정재우
Original Assignee
한국과학기술연구원
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 숭실대학교산학협력단 filed Critical 한국과학기술연구원
Priority to KR1020170083012A priority Critical patent/KR102144311B1/en
Publication of KR20190002820A publication Critical patent/KR20190002820A/en
Application granted granted Critical
Publication of KR102144311B1 publication Critical patent/KR102144311B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3863Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms
    • C08G18/3865Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms containing groups having one sulfur atom between two carbon atoms
    • C08G18/3868Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms containing groups having one sulfur atom between two carbon atoms the sulfur atom belonging to a sulfide group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'

Abstract

Provided is a self-healing elastomer comprising: a repeating unit derived from a polyol compound; a repeating unit derived from an isocyanate compound; and a repeating unit derived from a disulfide compound, and comprises a disulfide bond in a main chain or a branching chain. Embodiments of the present invention provide the self-healing elastomer exhibiting thermoreversible self-healing properties.

Description

디설파이드 결합을 포함하는 자가치유 탄성체 및 이의 제조 방법{COMPOSITION FOR SELF HEALING THERMOPLASTIC ELASTOMERS COMPRISING DISULFIDE BONDS AND METHODS OF PREPARING THE SAME}Technical Field [0001] The present invention relates to a self-healing elastomer containing a disulfide bond and a process for producing the same. BACKGROUND ART [0002]

본 발명은 디설파이드 결합(disulfide bond)을 포함하는 새로운 자가치유 탄성체 및 이의 제조 방법에 관한 것이다. 보다 상세하게는, 열가역적 자가치유 특성을 보이는 자가치유 탄성체 및 이의 제조 방법에 관한 것이다.The present invention relates to a new self-healing elastomer comprising a disulfide bond and a process for its preparation. More particularly, the present invention relates to a self-healing elastomer exhibiting thermoreversible self-healing properties and a method for producing the same.

자가치유 시스템이란 외부의 환경적 요인으로 소재의 구조가 파괴되거나 물성 등이 저하되었을 때 수동적인 수리가 아닌 분자 내 스스로 구조를 복원하여 수명연장 및 물성회복 등을 할 수 있는 지능형 시스템이다. The self-healing system is an intelligent system that can extend the life span and recover the physical properties by restoring the self-structure in the molecule instead of passive repair when the structure of the material is destroyed or the physical properties are degraded due to external environmental factors.

최근 반복적 치료가 어려운 캡슐 시스템에 비하여 분자단위의 결합에 의하여 치료가 가능한 가역적 화학 메카니즘 시스템을 이용하여 자가치유 소재를 제조하고자 하는 연구가 진행되고 있다. 이에 따라 개별 화합물에 대한 연구가 진행되고 있으나, 자가치유 성능을 갖더라도 높은 온도에서만 반응하거나, 반복적인 복원이 되지 않거나, 복원속도가 느리거나, 연성 혹은 기계적 물성적인 측면에서 우수한 성능을 보이지 못하는 등의 화합물이 많아 연성 디바이스 등과 같은 소자, 항공 우주용 소재, 건축소재, 의료 소재 등에서 적용하기 어려운 문제점이 존재하였다.In recent years, studies have been made to manufacture self-healing materials using a reversible chemical mechanism system that can be treated by binding in a molecular unit as compared with a capsule system which is difficult to be repeatedly treated. Although studies on individual compounds have been carried out, it has been found that even if the self-healing ability is achieved, the reaction is only performed at a high temperature, is not repeatedly restored, is slow in restoration, does not show excellent performance in terms of ductility or mechanical properties There is a problem that it is difficult to apply it to devices such as flexible devices, aerospace materials, building materials, and medical materials.

이에 따라, 우수한 자가치유 성능을 보이면서도 연성 혹은 기계적 물성적인 측면에서 우수한 성능을 보이는 물질에 대한 개발이 절실히 요구되고 있다.Accordingly, there is a desperate need to develop a material exhibiting excellent self-healing performance while exhibiting excellent performance in terms of ductility or mechanical properties.

KR 10-2016-0081052 A1KR 10-2016-0081052 A1

본 발명의 구현예들에서는 열가역적 자가치유 특성을 보이는 자가치유 탄성체를 제공하고자 한다. Embodiments of the present invention provide a self-healing elastomer exhibiting thermoreversible self-healing properties.

본 발명의 다른 구현예들에서는 상기 자가치유 탄성체의 제조 방법을 제공하고자 한다.In another embodiment of the present invention, there is provided a process for producing the self-healing elastomer.

본 발명의 일 구현예에서, 폴리올 화합물로부터 유도된 반복단위; 이소시아네이트계 화합물로부터 유도된 반복단위; 및 디설파이드 화합물로부터 유도된 반복단위를 포함하며, 주쇄 혹은 분지쇄에 디설파이드 결합을 포함하는 자가치유 탄성체가 제공된다.In one embodiment of the present invention, the repeating unit derived from the polyol compound; A repeating unit derived from an isocyanate compound; And self-healing elastomers comprising a repeating unit derived from a disulfide compound, wherein the self-healing elastomer comprises a disulfide bond in the main chain or the branch chain.

예시적인 구현예에서, 상기 자가치유 탄성체는, 1내지 40 몰%의 폴리올 화합물로부터 유도된 반복단위; 30 내지 70 몰%의 이소시아네이트 화합물로부터 유도된 반복단위; 및 5 내지 30 몰%의 디설파이드 화합물로부터 유도된 반복단위; 를 포함할 수 있다.In an exemplary embodiment, the self-healing elastomer comprises repeating units derived from 1 to 40 mole% polyol compound; A repeating unit derived from 30 to 70 mol% of an isocyanate compound; And a repeating unit derived from 5 to 30 mol% of a disulfide compound; . ≪ / RTI >

예시적인 구현예에서, 상기 디설파이드 결합은 5 내지 20몰%로 포함될 수 있다.In an exemplary embodiment, the disulfide bond may be comprised between 5 and 20 mole percent.

예시적인 구현예에서, 상기 폴리올 화합물은 폴리알킬렌에테르글리콜, 폴리에스테르폴리올, e-카프로락톤폴리올, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리에스테르폴리올, 폴리카프로락톤디올, 폴리카보네이트디올 및 폴리테트라메틸렌에테르글리콜로 이루어진 그룹에서 선택된 하나 이상을 포함할 수 있다.In an exemplary embodiment, the polyol compound is selected from the group consisting of polyalkylene ether glycols, polyester polyols, e-caprolactone polyols, polyethylene glycols, polypropylene glycols, polyester polyols, polycaprolactone diols, polycarbonate diols and polytetramethylene ethers Glycol, < / RTI >

예시적인 구현예에서, 상기 이소시아네이트 화합물은 톨루엔 디이소시아네이트, 메틸렌 디페닐 디이소시아네이트, 헥사메틸렌 디이소시아네이트 및 이소포론 디이소시아네이트로 이루어진 그룹에서 선택된 하나 이상을 포함할 수 있다.In an exemplary embodiment, the isocyanate compound may include one or more selected from the group consisting of toluene diisocyanate, methylenediphenyl diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.

예시적인 구현예에서, 상기 디설파이드 화합물은 2-하이드록실 디설파이드(2-hydroxyl disulfide), 3,3'-디티오디프로피온산(3,3‘-dithiodipropionic acid), 2,2'-(디티오디메틸렌)디퓨란(2,2’-(Dithodimethylene)difuran), 4-아미노페닐 디설파이드(4-aminophenyl disulfide), 2,2'-디아미노디에틸 디설파이드 디하이드로클로라이드(2,2'-Diaminodiethyl disulfide dihydrochloride) 및 3,3'-디하이드록시디페닐 디설파이드(3,3’-Dihydroxydiphenyl disulfide)로 이루어진 그룹에서 선택된 하나 이상을 포함할 수 있다.In an exemplary embodiment, the disulfide compound is selected from the group consisting of 2-hydroxyl disulfide, 3,3'-dithiodipropionic acid, 2,2 '- (dithiodiethylene) Diazomethane dihydrochloride, 2,2'- (Dithodimethylene) difuran, 4-aminophenyl disulfide, 2,2'-Diaminodiethyl disulfide dihydrochloride and And 3,3'-Dihydroxydiphenyl disulfide. The term " 3,3'-dihydroxydiphenyl disulfide "

본 발명의 다른 구현예에서, 상기 자가치유 탄성체를 포함하는 자가치유 조성물의 건조물을 포함하는 자가치유 필름이 제공된다.In another embodiment of the present invention, there is provided a self-healing film comprising the dried self-healing composition comprising the self-healing elastomer.

예시적인 구현예예서, 상기 자가치유 필름은 20 내지 60℃의 온도에서 80%이상의 자가치유효율(%)을 보일 수 있다.Exemplary Implementation Example In one embodiment, the self-healing film may exhibit a self-healing efficiency of 80% or more at a temperature of 20 to 60 ° C.

예시적인 구현예예서, 상기 자가치유 필름은 15 내지 23 MPa 인장 응력을 보일 수 있다.EXEMPLARY IMPLEMENTATION EXAMPLE By way of example, the self-healing film may exhibit a tensile stress of 15 to 23 MPa.

본 발명의 다른 구현예에서, 자가치유 탄성체의 제조 방법으로서, 폴리올 화합물 및 이소시아네이트 화합물을 혼합한 후 중합시켜 중합체를 형성하는 단계; 및 상기 중합체와 디설파이드 화합물을 반응시켜 자가치유 탄성체를 제조하는 단계; 를 포함하고, 상기 자기치유 탄성체는 주쇄 혹은 분지쇄에 디설파이드 결합을 포함하는 것을 특징으로 하는 자가치유 탄성체의 제조 방법이 제공된다.In another embodiment of the present invention, there is provided a process for preparing a self-healing elastomer comprising mixing a polyol compound and an isocyanate compound and then polymerizing to form a polymer; And reacting the polymer with a disulfide compound to produce a self-healing elastomer; Wherein the self-healing elastomer comprises a disulfide bond in the main chain or the branch chain.

예시적인 구현예예서, 상기 폴리올 화합물 100몰에 대하여 상기 이소시아네이트 화합물 70 내지 700몰이 혼합될 수 있다.EXEMPLARY EMBODIMENT In this example, 70 to 700 moles of the isocyanate compound may be mixed with 100 moles of the polyol compound.

예시적인 구현예예서, 상기 중합체 100몰에 대하여 상기 디설파이드 화합물 5 내지 100몰을 반응시킬 수 있다.EXEMPLARY EMBODIMENT In this example, 5 to 100 moles of the disulfide compound may be reacted with 100 moles of the polymer.

본 발명의 일 구현예에 따른 자가치유 탄성체는 반복적으로 자가회복특성 및 점착 특성을 보일 수 있고, 특히 특정온도 조건 하에서 열가역적 자가치유 특성을 보일 수 있다. 특히, 해당 자가치유 탄성체는 디설파이드 결합을 포함하는데, 이와 같은 디설파이드 결합(S-S)은 손상시 이웃한 황 원자와의 체인 교환을 통해 분자 단위의 자가치유능을 보이므로, 본 발명과 같이 디설파이드 결합을 포함하는 자가치유 탄성체는 우수한 자가회복특성(형상 회복율)을 보일 수 있다.The self-healing elastomer according to an embodiment of the present invention can exhibit self-recovery property and adhesion property repeatedly, and can exhibit thermo-reversible self-healing property under specific temperature conditions. In particular, the self-healing elastomer includes a disulfide bond. Since the disulfide bond (SS) exhibits a self-worth ability of a molecule unit through chain exchange with a neighboring sulfur atom at the time of damage, the disulfide bond Self-healing elastomers included can exhibit excellent self-healing properties (shape recovery rate).

이에 따라, 항공 우주용 소재, 건축소재, 의료 소재, 코팅제 및 접착제등 다양한 분야에서 널리 사용될 수 있다. Accordingly, it can be widely used in various fields such as aerospace material, building material, medical material, coating agent and adhesive.

아울러, 상기 자가치유 탄성체는 매우 간단한 방법으로 제조될 수 있으므로, 상업화에 유용하다.In addition, the self-healing elastomer can be manufactured by a very simple method, and thus is useful for commercialization.

도 1은 본 발명의 일 구현예에 따라 제조된 자가치유 탄성체 및 이의 자기치유특성을 나타내는 개념도이다.
도 2는 본 발명의 구현예들에 따라 제조된 자가치유 탄성체의 FT-IR(Fourier transform infrared spectroscopy) 스펙트럼이다.
도 3은 본 발명의 구현예들에 따라 제조된 자가치유 탄성체의 라만 스펙트럼이다.
도 4a 및 4b는 본 발명의 구현예들에 따라 제조된 자가치유 탄성체의 시차주사 열량측정법(differential scanning calorimetry, DSC) 및 열중량분석(thermogravimetric analysis, TGA) 분석 결과를 보여주는 그래프이다.
도 5는 본 발명의 구현예들에 따라 제조된 자가치유 탄성체의 자가치유 전·후의 기계적 특성(인장 응력 및 인장 변형률) 변화를 나타내는 그래프이다.
도 6은 본 발명의 구현예들에 따라 제조된 자가치유 탄성체의 자가치유효율(self-healing efficiency)을 나타내는 그래프이다.
도 7은 본 발명의 구현예들에 따라 제조된 자가치유 탄성체를 포함하는 자가치유 필름의 자가치유성능을 나타내는 사진들이다.
도 8a 및 8b는 본 발명의 다른 구현예에 따라 제조된 자가치유 조성물 및 이의 자기치유특성을 나타내는 개념도이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram showing a self-healing elastic body manufactured according to an embodiment of the present invention and its self-healing properties. FIG.
Figure 2 is a Fourier transform infrared spectroscopy (FT-IR) spectrum of a self-healing elastomer prepared in accordance with embodiments of the present invention.
Figure 3 is a Raman spectrum of self-healing elastomers prepared in accordance with embodiments of the present invention.
Figures 4a and 4b are graphs illustrating the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) analysis of self-healing elastomers prepared in accordance with embodiments of the present invention.
5 is a graph showing mechanical properties (tensile stress and tensile strain) of self-healing elastomers prepared according to embodiments of the present invention before and after self-healing.
Figure 6 is a graph illustrating the self-healing efficiency of self-healing elastomers prepared in accordance with embodiments of the present invention.
Figure 7 is a photograph showing self-healing performance of a self-healing film comprising self-healing elastomers prepared in accordance with embodiments of the present invention.
8A and 8B are conceptual diagrams showing self-healing compositions and their self-healing properties according to another embodiment of the present invention.

이하, 본 발명의 구현예들을 상세히 설명한다. 이는 예시를 위하여 설명되는 것이며, 이것에 의해 본 발명의 기술적 사상과 그 구성 및 적용이 제한되지 않는다.Hereinafter, embodiments of the present invention will be described in detail. This is illustrated for illustrative purposes, and the technical idea of the present invention and its constitution and application are not limited thereby.

자가치유 탄성체Self-healing elastomer

본 발명의 일 구현예에서, 폴리올 화합물로부터 유도된 반복단위; 이소시아네이트 화합물로부터 유도된 반복단위; 및 디설파이드 화합물로부터 유도된 반복단위; 를 포함하며, 주쇄 혹은 분지쇄에 디설파이드 결합을 포함하는 자가치유 탄성체가 제공된다.In one embodiment of the present invention, the repeating unit derived from the polyol compound; A repeating unit derived from an isocyanate compound; And a repeating unit derived from a disulfide compound; And a self-healing elastomer comprising a disulfide bond in the main chain or branching chain is provided.

상기 자가치유 탄성체의 디설파이드 결합은 손상시 이웃한 황 원자와의 체인 교환을 통해 분자 단위의 자가치유능을 보이므로, 본 발명과 같이 디설파이드 결합을 포함하는 자가치유탄성체는 낮은 온도에서 빠르게 우수한 자가회복특성을 보일 수 있다. Since the disulfide bond of the self-healing elastomer exhibits the self-value capability of the molecular unit through chain exchange with neighboring sulfur atom at the time of damage, the self-healing elastomer containing disulfide bond as described in the present invention exhibits excellent self- Characteristics can be shown.

예시적인 구현예에서, 상기 폴리올 화합물은 폴리알킬렌에테르글리콜, 폴리에스테르폴리올, e-카프로락톤폴리올, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리에스테르폴리올, 폴리카프로락톤디올, 폴리카보네이트디올 및 폴리테트라메틸렌에테르글리콜로 이루어진 그룹에서 선택된 하나 이상을 포함할 수 있다.In an exemplary embodiment, the polyol compound is selected from the group consisting of polyalkylene ether glycols, polyester polyols, e-caprolactone polyols, polyethylene glycols, polypropylene glycols, polyester polyols, polycaprolactone diols, polycarbonate diols and polytetramethylene ethers Glycol, < / RTI >

예시적인 구현예에서, 상기 폴리올 화합물로부터 유도된 반복단위는 상기 자가치유 탄성체에서 연질 세그먼트(soft-segment)에 해당될 수 있으며, 상기 자가치유 중합체는 1 내지 40 몰%의 폴리올 화합물로부터 유도된 반복단위, 구체적으로는 1 내지 30 몰%의 폴리올 화합물로부터 유도된 반복단위를 포함할 수 있다.In an exemplary embodiment, the repeating unit derived from the polyol compound may correspond to a soft-segment in the self-healing elastomer, wherein the self-healing polymer comprises repeating units derived from 1 to 40 mole% Units, specifically 1 to 30 mol% of repeating units derived from polyol compounds.

상기 자가치유 중합체(100몰%)가 1 몰%미만으로 폴리올 화합물로부터 유도된 반복단위를 포함하는 경우 연성이 저하될 수 있으며, 40 몰%을 초과하여 폴리올 화합물로부터 유도된 반복단위를 포함하는 경우 자가치유성능이 저하될 수 있다. If the self-healing polymer (100 mol%) contains less than 1 mol% of repeating units derived from the polyol compound, the ductility may be lowered, and if it contains more than 40 mol% of repeating units derived from the polyol compound Self-healing performance may be degraded.

예시적인 구현예에서, 상기 이소시아네이트 화합물은 톨루엔 디이소시아네이트, 메틸렌 디페닐 디이소시아네이트, 헥사메틸렌 디이소시아네이트 및 이소포론 디이소시아네이트로 이루어진 그룹에서 선택된 하나 이상을 포함할 수 있다. In an exemplary embodiment, the isocyanate compound may include one or more selected from the group consisting of toluene diisocyanate, methylenediphenyl diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.

예시적인 구현예에서, 상기 이소시아네이트 화합물로부터 유도된 반복단위는 상기 자가치유 탄성체에서 경질 세그먼트(hard-segment)에 해당될 수 있으며, 상기 자가치유 중합체는 30 내지 70 몰%의 이소시아네이트 화합물로부터 유도된 반복단위를 포함할 수 있다.In an exemplary embodiment, the repeating unit derived from the isocyanate compound may correspond to a hard-segment in the self-healing elastomer, wherein the self-healing polymer comprises repeating units derived from 30 to 70 mole percent of the isocyanate compound Unit.

상기 자가치유 중합체가 30 몰%미만으로 이소시아네이트 화합물로부터 유도된 반복단위를 포함하는 경우 인장 강도 등과 같은 기계적 성능이 저하될 수 있으며, 70 몰%을 초과하여 이소시아네이트 화합물로부터 유도된 반복단위를 포함하는 경우 자가치유성능, 연성 등이 저하될 수 있다.If the self-healing polymer contains repeating units derived from an isocyanate compound in an amount less than 30 mol%, the mechanical performance such as tensile strength may be deteriorated. If the self-healing polymer contains more than 70 mol% of repeating units derived from an isocyanate compound Self-healing performance, ductility, etc. may be lowered.

한편, 상기 디설파이드 화합물은 2-하이드록실 디설파이드(2-hydroxyl disulfide), 3,3'-디티오디프로피온산(3,3‘-dithiodipropionic acid), 2,2'-(디티오디메틸렌)디퓨란(2,2’-(Dithodimethylene)difuran), 4-아미노페닐 디설파이드(4-aminophenyl disulfide), 2,2'-디아미노디에틸 디설파이드 디하이드로클로라이드(2,2'-Diaminodiethyl disulfide dihydrochloride) 및 3,3'-디하이드록시디페닐 디설파이드(3,3’-Dihydroxydiphenyl disulfide)로 이루어진 그룹에서 선택된 하나 이상일 수 있다.On the other hand, the disulfide compound may be selected from the group consisting of 2-hydroxyl disulfide, 3,3'-dithiodipropionic acid, 2,2 '- (dithiodiethylene) , 2 '- (Dithodimethylene) difuran, 4-aminophenyl disulfide, 2,2'-Diaminodiethyl disulfide dihydrochloride, and 3,3' -Dihydroxydiphenyl disulfide, and the like.

예시적인 구현예에서, 상기 디설파이드 화합물로부터 유도된 반복단위는 상기 자가치유 탄성체의 자가치유효율을 향상시키는데 기여하고, 상기 자가치유 중합체는 5 내지 30 몰%의 디설파이드 화합물로부터 유도된 반복단위, 구체적으로는 5 내지 20 몰%의 디설파이드 화합물로부터 유도된 반복단위를 포함할 수 있다.In an exemplary embodiment, the repeating unit derived from the disulfide compound contributes to improving the self-healing efficiency of the self-healing elastomer, and the self-healing polymer comprises a repeating unit derived from 5 to 30 mol% of the disulfide compound, May comprise repeating units derived from 5 to 20 mole percent of disulfide compounds.

상기 자가치유 중합체가 5 몰%미만으로 디설파이드 화합물로부터 유도된 반복단위를 포함하는 경우 자가치유 성능이 저하될 수 있으며, 30 몰%을 초과하여 디설파이드 화합물로부터 유도된 반복단위를 포함하는 경우 연성, 기계적 성능이 저하될 수 있다.When the self-healing polymer contains repeating units derived from the disulfide compound at less than 5 mol%, the self-healing performance may be degraded. If the self-healing polymer contains more than 30 mol% repeating units derived from the disulfide compound, Performance may be degraded.

일 구현예에서, 상기 자가치유 탄성체는 하기 화학식 1로 표시될 수 있다.In one embodiment, the self-healing elastomer may be represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure pat00001
Figure pat00001

(상기 화학식 1에서 n은 5 내지 20사이의 정수이고, x는 10 내지 40 사이의 정수이다)(Wherein n is an integer of 5 to 20 and x is an integer of 10 to 40)

예시적인 구현예예서, 상기 자가치유 탄성체는 10,000 내지 100,000 범위의 중량평균분자량(Mw)을 가질 수 있다. 100,000 초과의 중량평균 분자량을 갖는 경우 연성 등이 저하되어 자가치유성능이 미흡할 수 있으며 10,000 미만의 중량평균분자량을 갖는 경우 기계적 물성 등이 저하될 수 있다.EXEMPLARY EMBODIMENTS By way of example, the self-healing elastomer may have a weight average molecular weight (Mw) in the range of 10,000 to 100,000. If it has a weight average molecular weight of more than 100,000, the self-healing performance may be insufficient due to a decrease in ductility and the like, and if the weight average molecular weight is less than 10,000, mechanical properties and the like may be lowered.

예시적인 구현예에서, 상기 자가치유 탄성체는 선형 혹은 비선형 구조를 가질 수 있으며 구체적으로 선형 구조를 가질 수 있다.In an exemplary embodiment, the self-healing elastomer may have a linear or non-linear structure and may have a linear structure in particular.

한편, 본 발명의 자가치유 탄성체는 5 내지 20몰%의 디설파이드 결합을 포함할 수 있다. 5몰% 미만인 경우 자가치유 특성이 발현되지 않을 수 있으며, 20몰%를 초과하는 경우 자가치유 탄성체의 기계적 물성이 저하될 수 있다.On the other hand, the self-healing elastomer of the present invention may contain 5 to 20 mol% of disulfide bonds. If it is less than 5 mol%, the self-healing property may not be developed, and if it exceeds 20 mol%, the mechanical properties of the self-healing elastomer may be deteriorated.

한편, 상기 자가치유 탄성체는 상온에서도 자가치유 성능을 보일 수 있으며, 구체적으로 20 내지 60℃의 온도에서 80%이상의 자가치유효율(%)을 보이고, 40 내지 60℃의 온도에서 90%이상의 자가치유효율 보일 수 있다. On the other hand, the self-healing elastic body can exhibit self-healing performance even at room temperature. Specifically, the self-healing elastic body exhibits self-healing efficiency (%) of 80% or more at a temperature of 20 to 60 ° C, Efficiency can be seen.

본 발명의 자가치유 탄성체는 열을 가하면 자가치유특성을 보이는 이른바 '열가역적 자가치유특성'을 보인다. 이에 따라, 상기 자가치유 탄성체가 손상되어도 이에 열을 가하면 치유될 수 있다. 이에 따라, 상기 자가치유 탄성체에 가해지는 열을 조절하여 반복적 치유를 할 수 있다. The self-healing elastomer of the present invention exhibits the so-called " thermoreversible self-healing property " Thus, even if the self-healing elastic body is damaged, it can be cured by applying heat thereto. Thus, it is possible to perform repeated healing by controlling the heat applied to the self-healing elastic body.

뿐만 아니라, 상기 자가치유 탄성체는 우수한 기계적 특성을 보일 수 있으며, 예컨대 15 내지 23 MPa 인장 응력을 보일 수 있다.In addition, the self-healing elastomer can exhibit excellent mechanical properties and exhibit, for example, a tensile stress of 15 to 23 MPa.

아울러 상기 자가치유 탄성체는 특정 온도 조건 하에서 자가치유 특성을 보이면서 접착성, 코팅성 등과 같은 특성이 발현될 수 있다.In addition, the self-healing elastomer exhibits self-healing properties under specific temperature conditions and can exhibit properties such as adhesiveness and coating properties.

이에 따라, 상기 자가치유 탄성체를 항공 우주용 소재, 건축소재, 의료 소재, 코팅제 및 접착제등 다양한 분야에서 널리 사용할 수 있다.Accordingly, the self-healing elastic body can be widely used in a variety of fields such as aerospace materials, building materials, medical materials, coating agents and adhesives.

자가치유 탄성체의 제조 방법Manufacturing method of self-healing elastomer

본 발명의 다른 구현예에서, 상술한 자가치유 탄성체의 제조 방법이 제공된다. 해당 제조 방법은 그 공정이 매우 단순하여 상업화에 유용하다. 상기 제조 방법은 폴리올 화합물 및 이소시아네이트 화합물을 혼합한 후 중합시켜 중합체를 형성하는 단계; 및 상기 중합체와 디설파이드 화합물을 반응시켜 자가치유 탄성체를 제조하는 단계; 를 포함한다.In another embodiment of the present invention, there is provided a process for the production of the self-healing elastomer described above. The process is very simple and useful for commercialization. The manufacturing method includes mixing a polyol compound and an isocyanate compound, and then polymerizing to form a polymer; And reacting the polymer with a disulfide compound to produce a self-healing elastomer; .

먼저, 폴리올 화합물 및 이소시아네이트 화합물을 혼합한 후 중합시켜 중합체를 형성한다.First, a polyol compound and an isocyanate compound are mixed and then polymerized to form a polymer.

이때, 상기 폴리올 화합물 100 몰에 대하여 상기 이소시아네이트 화합물 70 몰 내지 700 몰이 혼합될 수 있다. 70 몰 미만으로 혼합되는 경우 인장 강도 등과 같은 기계적 성능이 저하될 수 있으며, 700몰을 초과하여 혼합되는 경우 자가치유성능, 연성 등이 저하될 수 있다.At this time, 70 to 700 moles of the isocyanate compound may be mixed with 100 moles of the polyol compound. If they are mixed at less than 70 moles, mechanical performance such as tensile strength may be deteriorated. If they are mixed in excess of 700 moles, self-healing performance and ductility may be lowered.

일 구현예에서, 상기 중합은 50 내지 80 에서 2-4 시간동안 진행될 수 있다In one embodiment, the polymerization can be run at 50 to 80 for 2-4 hours

이후, 상기 중합체와 디설파이드 화합물을 반응시켜 자가치유 탄성체를 제조한다.Then, the polymer and the disulfide compound are reacted to prepare a self-healing elastic body.

예시적인 구현예에서, 상기 중합체 100 몰에 대하여 상기 디설파이드 화합물 5 내지 100 몰을 반응시킬 수 있다. 5 몰 미만으로 반응시키는 경우 자가치유 성능이 저하될 수 있으며, 100 몰을 초과하여 반응시키는 경우 연성, 기계적 성능이 저하될 수 있다.In an exemplary embodiment, 5 to 100 moles of the disulfide compound may be reacted with 100 moles of the polymer. When the reaction is carried out at less than 5 moles, the self-healing performance may be deteriorated, and when it exceeds 100 moles, the ductility and mechanical performance may be lowered.

자가치유 조성물 및 자가치유 필름Self-healing composition and self-healing film

본 발명의 다른 구현예에서는 상술한 자가치유 탄성체를 포함하는 자가치유 조성물이 제공된다. 해당 자가치유 조성물은 디설파이드 결합을 포함하는 자가치유탄성체를 포함하는 바 우수한 자가회복특성을 보일 수 있다.In another embodiment of the present invention there is provided a self-healing composition comprising the self-healing elastomer described above. The self-healing composition can exhibit excellent self-healing properties, including self-healing elastomers containing disulfide bonds.

예시적인 구현예에서, 상기 자가치유 조성물은 비공유결합을 포함하는 자가치유 탄성체를 더 포함할 수 있다.In an exemplary embodiment, the self-healing composition may further comprise a self-healing elastomer comprising non-covalent bonds.

예를 들어, 상기 자가치유 조성물은 주쇄에 상술한 디설파이드 결합을 포함하는 자가치유 탄성체를 제1 자가치유 탄성체로서 포함하고, 하이드록실기(-OH)를 갖는 단량체를 포함하며, 이웃한 단량체는 수소 결합을 형성하는 화합물을 제2 자가치유 탄성체로서 포함할 수 있다. 이 경우, 상기 자가치유 조성물에서는 공유결합을 포함하는 제1 자가치유 탄성체와 비공유결합인 수소 결합을 포함하는 제2 자가치유 탄성체가 혼재되어 있을 수 있다(도 8a 및 도 8b 참조). 이와 같은 경우, 자가치유 성능이 보다 증대될 수 있다. For example, the self-healing composition comprises a self-healing elastomer comprising a disulfide bond as set forth above in the main chain as a first self-healing elastomer and comprises a monomer having a hydroxyl group (-OH), wherein neighboring monomers are hydrogen The compound that forms the bond may be included as the second self-healing elastomer. In this case, the self-healing composition may include a first self-healing elastic material including a covalent bond and a second self-healing elastic material including a hydrogen bond (non-covalent bond) (see FIGS. 8A and 8B). In such a case, the self-healing performance can be further increased.

예시적인 구현예에서, 상기 제2 자가치유 탄성체는 도파민계 물질(3,4-다이하이드록시페닐라민)을 단량체로서 포함할 수 있다.In an exemplary embodiment, the second self-healing elastomer may comprise a dopamine-based material (3,4-dihydroxyphenylamine) as a monomer.

한편, 본 발명의 또 다른 구현예에서, 상기 자가치유 조성물을 건조시켜 자가치유 필름을 제조할 수 있다.Meanwhile, in another embodiment of the present invention, the self-healing composition can be dried to produce a self-healing film.

구체적으로, 상기 자가치유 조성물을 10 내지 30시간 동안 건조시켜 자가치유 필름을 제조할 수 있다. 상기 자가치유 필름은 상술한 자가치유 탄성체를 포함하는 바, 매우 우수한 자가치유효율을 보일 수 있으며 기계적 성능 역시 우수할 수 있다.Specifically, the self-healing composition can be dried for 10 to 30 hours to produce a self-healing film. Since the self-healing film includes the above-mentioned self-healing elastic body, the self-healing film can exhibit excellent self-healing efficiency and excellent mechanical performance.

예시적인 구현예에서, 상기 자가치유 필름은 20 내지 60℃의 온도에서 80%이상의 자기회복효율을 보일 수 있다.In an exemplary embodiment, the self-healing film may exhibit a self-healing efficiency of 80% or more at a temperature of 20 to 60 ° C.

예시적인 구현예에서, 상기 자가치유 필름은 15 내지 23 MPa 인장 응력을 보일 수 있다.In an exemplary embodiment, the self-healing film may exhibit a tensile stress of 15 to 23 MPa.

상술한 바와 같이 본 발명의 자가치유 탄성체는 반복적으로 자가회복특성 및 점착 특성을 보일 수 있고, 특히 특정온도 조건 하에서 열가역적 자가치유 특성을 보일 수 있다. 특히, 해당 자가치유 탄성체는 디설파이드 결합을 포함하는데, 이와 같은 디설파이드 결합은 손상시 이웃한 황 원자와의 체인 교환을 통해 분자 단위의 자가치유능을 보이므로, 본 발명과 같이 디설파이드 결합을 포함하는 자가치유탄성체는 우수한 자가회복특성(형상 회복율)을 보일 수 있다.As described above, the self-healing elastic body of the present invention can exhibit self-recovery property and adhesive property repeatedly, and can exhibit thermo-reversible self-healing property under specific temperature conditions. In particular, the self-healing elastomer includes a disulfide bond. Since such a disulfide bond shows a self-value capability of a molecular unit through chain exchange with a neighboring sulfur atom at the time of damage, the self- The healing elastomer can exhibit excellent self-recovery properties (shape recovery rate).

아울러, 이를 건조하기만 하면 자가치유 필름을 제조할 수 있는데, 이러한 자가치유 필름은 우수한 자가회복효율, 연성 및 기계적 성능을 보일 수 있다. 이에 따라, 항공 우주용 소재, 건축소재, 의료 소재, 코팅제 및 접착제등 다양한 분야에서 널리 사용될 수 있다. In addition, it is possible to produce self-healing films by drying them. Such self-healing films can exhibit excellent self-healing efficiency, ductility and mechanical performance. Accordingly, it can be widely used in various fields such as aerospace material, building material, medical material, coating agent and adhesive.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예들에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for illustrating the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

[실험예][Experimental Example]

[실시예 1 내지 3(PMS1, PMS3 및 PMS5)][Examples 1 to 3 (PMS1, PMS3 and PMS5)]

DMF(N,N-Dimethylmethanamide)를 용매로 사용하여 용액중합법을 행하였다. 먼저 500mL 비이커형 플라스크에 폴리카보네이트디올(PC-diol)(UBE Industries 사 ETERNACOLL® UH제품 UH-300)와 4,4'-디페닐메탄디이소시아네이트(MDI)(시그마알드리치)를 70에서 3시간동안 반응하여 중합하여 중합물을 제조하였다. 이후, 2-하이드록시에틸 디설파이드(2HEDS)(시그마알드리치)와 상기 중합물을 반응시켜 자가치유 탄성체를 제조하였다. 이때, PC, MDI 및 2HEDS의 투입비율을 하기 [표 1]과 같이 달리하여 비교예 1, 실시예 1 내지 3에 따른 조성물을 제조하였다. 이후, 미반응 물질을 제조하기 위해 메탄올에 침전시킨 후, 진공 오븐에서 24시간동안 완전 건조후, DMF 용매에 다시 녹여 약 400 내지 450mm의 두께를 갖는 필름인 실시예 1 내지 3에 따른 샘플을 제조하였다. DMF (N, N-Dimethylmethanamide) as a solvent. First, a polycarbonate diol (PC-diol) (UH-300 manufactured by UBE Industries, Ltd. ETERNACOLL UH) and 4,4'-diphenylmethane diisocyanate (MDI) (Sigma Aldrich) were added to a 500 mL beaker type flask at 70 for 3 hours And polymerized to prepare a polymer. Then, 2-hydroxyethyl disulfide (2HEDS) (Sigma Aldrich) was reacted with the polymer to prepare a self-healing elastomer. At this time, the compositions according to Comparative Example 1 and Examples 1 to 3 were prepared by varying the input ratio of PC, MDI, and 2HEDS as shown in Table 1 below. Thereafter, the product was precipitated in methanol to prepare unreacted materials, completely dried in a vacuum oven for 24 hours, and then re-dissolved in DMF solvent to prepare a sample according to Examples 1 to 3, which is a film having a thickness of about 400 to 450 mm Respectively.

[비교예 1(PM)][Comparative Example 1 (PM)]

실시예 1에서, 2-하이드록시에틸 디설파이드(2HEDS)와 중합물을 반응시키지 않았다는 점을 제외하고는 동일한 공정을 수행하여 자가치유 탄성체를 제조하였다In Example 1, a self-healing elastomer was prepared by carrying out the same process except that the polymer was not reacted with 2-hydroxyethyl disulfide (2HEDS)

실시예 1 내지 3 및 비교예 1에서의 몰비율은 하기 표 1과 같다.The molar ratios in Examples 1 to 3 and Comparative Example 1 are shown in Table 1 below.

비고Remarks PC(mol%)PC (mol%) MDI(mol%)MDI (mol%) 2HEDS(mol%)2HEDS (mol%) 실시예 1
(PMS1)
Example 1
(PMS1)
25 25 5050 2525
실시예 2
(PMS3)
Example 2
(PMS3)
12.512.5 5050 37.537.5
실시예 3
(PMS5)
Example 3
(PMS5)
8.58.5 5050 41.541.5
비교예 1
(PM)
Comparative Example 1
(PM)
3333 6767 00

(표 1에서, PM에서 PC:MDI:2HEDS의 몰비율(molar ratio)은 1:2:0이고, PMS1의 PC:MDI:2HEDS의 몰비율은 1:2:1이고, PMS3의 PC:MDI:2HEDS의 몰비율은 1:4:3이고, PMS5의 PC:MDI:2HEDS의 몰비율은 1:6:5이다. PMS1 내지 PMS3에서, 하드 세그먼트인 MDI와 소프트세그먼트인 PC와 2HEDS 혼합물의 몰비는 모두 1:1이다.)(In Table 1, the molar ratio of PC to MDI: 2HEDS in PM is 1: 2: 0, the molar ratio of PC: MDI: 2HEDS of PMS1 is 1: 2: 1, : The molar ratio of 2HEDS is 1: 4: 3 and the molar ratio of PC: MDI: 2HEDS of PMS5 is 1: 6: 5. In PMS1 to PMS3, the molar ratio of the hard segment MDI and the soft segments PC and 2HEDS Are all 1: 1).

[비교예 2 (PC)][Comparative Example 2 (PC)]

UBE Industries 사 ETERNACOLL® UH제품 (UH-300; MW:3000) 폴리카보네이트를 사용하였다. ETERNACOLL UH manufactured by UBE Industries (UH-300; MW: 3000) polycarbonate was used.

[실험예 1: 탄성체의 합성 검토][Experimental Example 1: Synthesis of elastomer]

실시예 1 내지 3 및 비교예 1에 따라 제조된 샘플의 화학 구조를 확인하고자 FT-IR과 Raman 분광분석을 이용하여 실험을 진행하였고 이를 도 1 및 도 2에 나타내었다.Experiments were carried out using FT-IR and Raman spectroscopy to confirm the chemical structure of the samples prepared according to Examples 1 to 3 and Comparative Example 1, which are shown in FIG. 1 and FIG.

도 2을 살펴보면, 실시예 1 내지 3 에 따른 샘플은 경질세그먼트(hard-segment)의 MD로부터 유도된 반복단위, 2-하이드록시에틸 디설파이드로부터 유도된 반복단위 그리고 연질세그먼트(soft-segment)의 폴리카보네이트디올로 구성됨을 확인할 수 있었으며, 이와 같이 물리적 화학적 열역학적 성질이 매우 다른 두 세그먼트로 합성된 탄성체는 열역학적 불 친화성으로 인해 상분리 구조를 갖는 것을 확인할 수 있었다. 또한, 2270cm-1에서의 NCO 그룹의 특성 피크가 사라지면서 동시에 -NH 신축 진동 (3500-3200 cm-1),δNH 신축 진동 (1539-1531 cm-1),-C=O신축 진동 (1760-1690 cm-1),C-O신축 진동 (1245 cm-1)및 C-O-C 신축 진동 (1162-1159 및 1046-1044 cm-1)밴드가 형성됨을 확인함으로써 선형 폴리우레탄의 탄성체가 합성된 것을 확인하였다. 다만, 비교예 1에 따른 샘플은 2-하이드록시에틸 디설파이드로부터 유도된 반복단위를 포함하지 않는 것을 확인할 수 있었다.Referring to FIG. 2, the samples according to Examples 1 to 3 are composed of repeating units derived from MD of a hard segment, repeating units derived from 2-hydroxyethyl disulfide, and repeating units derived from soft-segment poly Carbonate diol. As a result, it was confirmed that the elastomer synthesized in two segments having very different physical and chemical thermodynamic properties has a phase separation structure due to thermophilic incompatibility. In addition, the characteristic peaks of the NCO group at 2270 cm -1 disappear and at the same time, -NH stretching vibration (3500-3200 cm -1), δNH stretching vibration (1539-1531 cm -1), -C = O stretching vibration (1760- And that the linear elastic polyurethane elastomer was synthesized by confirming that a band of 1690 cm -1, CO stretching vibration of 1245 cm -1 and COC stretching vibration of 1162-1159 and 1046-1044 cm -1 were formed. However, it was confirmed that the sample according to Comparative Example 1 did not contain a repeating unit derived from 2-hydroxyethyl disulfide.

아울러, 도 2의 우레탄기의 C=O 신축진동 피크는 수소결합의 여부에 따라 서로 다른 위치에서 흡수 밴드를 보이는데, 연질 매트릭스의 카보닐기에 해당하는 1730 cm-1 피크와 경질 매트릭스에서 수소결합 우레탄기의 카보닐기에 해당하는 1690 cm-1 부근에서 흡수피크를 통해 상분리도를 계산할 수 있었다. 결과적으로 디설파이드가 포함된 쇄연장제(Chain extender)인 2HED를 넣음으로써 상분리정도가 증가하였음을 예측할 수 있었다. 이는 상분리에 참여하는 디설파이드가 포함된 쇄연장제의 양이 증가함에 따라, 분자들이 고립된 구조에서 서로 연결된 구조로 변화함에 따라 두 상간의 계면적이 감소하기 때문인 것으로 판단된다. In addition, the C = O stretching vibration peaks of the urethane groups of FIG. 2 exhibit absorption bands at different positions depending on whether hydrogen bonding is present or not. In the rigid matrix having a peak of 1730 cm -1 corresponding to the carbonyl groups of the soft matrix, The phase separation can be calculated through the absorption peak at about 1690 cm -1 corresponding to the carbonyl group of the group. As a result, it was predicted that the degree of phase separation increased by inserting 2HED, a chain extender containing disulfide. This is probably because the interfacial area between the two phases decreases as the amount of the chain extender containing the disulfide participating in the phase separation increases and the molecules change from the isolated structure to the interconnected structure.

뿐만 아니라, 도 3에서, 디설파이드 결합 밴드((S-S) band)에 해당하는 510 cm-1 피크를 통해, 합성된 탄성체에서 디설파이드 결합이 존재함을 확인할 수 있었다.In addition, in FIG. 3, it was confirmed that a disulfide bond exists in the synthesized elastomer through 510 cm -1 peak corresponding to the disulfide bonding band ((SS) band).

[실험예 2: DSC 및 TGA 분석][Experimental Example 2: DSC and TGA analysis]

실시예 1 내지 3 및 비교예 1에 따라 제조된 샘플의 Tg 값은 DSC분석, 열분해 온도는 TGA분석을 통해 확인하였다(도 4a 및 도 4b). 이소시아네이트 화합물과 디설파이드 화합물의 함량이 증가할수록 Tg값은 증가하였다. 또한, 디설파이드 결합은 열에 쉽게 체인이 절단되는데 이는 함량이 증가 할수록 이는 탄성체의 분해 온도를 앞당겨 열안정성을 저해하기 때문인 것으로 판단된다. 따라서 37.5 mol% 이상의 디설파이드화합물이 자가치유 폴리우레탄에 포함되면 약 200 ℃ 이상의 고온에서 분해될 수 있음을 확인할 수 있었다.Examples 1 to 3 and a T g value of the sample prepared according to Comparative Example 1, DSC analysis, the pyrolysis temperature was confirmed by TGA analysis (Fig. 4a and 4b). As the content of isocyanate compound and disulfide compound increased, T g value increased. Also, the disulfide bonds are easily cleaved from the chain due to the increase of the content, which is considered to be due to the fact that the decomposition temperature of the elastomer is advanced to inhibit the thermal stability. Therefore, it was confirmed that when disulfide compound of 37.5 mol% or more is contained in the self-healing polyurethane, it can be decomposed at a high temperature of about 200 ° C or more.

[실험예 3: 기계적 특성 분석][Experimental Example 3: Mechanical Properties Analysis]

실시예 1 내지 3 및 비교예 1 에 따라 제조된 샘플의 고유의 기계적 특성(인장 응력 및 인장 변형률)은 도 5a에 나타내었으며, 이들을 손상시킨 후 고유의 기계적 특성을 다시 측정하여 도 5b에 나타내었다. 도 5a 에 기재된 값은 하기 표 2와 같다.The intrinsic mechanical properties (tensile stress and tensile strain) of the samples prepared according to Examples 1 to 3 and Comparative Example 1 are shown in Fig. 5A, and their inherent mechanical properties are measured again after damage, . The values shown in Fig. 5A are shown in Table 2 below.

샘플명Sample name 인장 변형률(%)Tensile strain (%) 인장 응력(MPa)Tensile Stress (MPa) 인장 모듈러스(MPa)Tensile modulus (MPa) 비교예 1Comparative Example 1 372.59 ± 21.1372.59 ± 21.1 12.5± 0.7612.5 ± 0.76 6.78 ± 0.396.78 + - 0.39 실시예 1Example 1 553.3 ± 73.8553.3 ± 73.8 21.5 ± 1.7321.5 ± 1.73 6.97 ± 0.756.97 + - 0.75 실시예 2Example 2 385.1 ± 12.64385.1 + - 12.64 22.56 ± 0.1922.56 ± 0.19 9.35 ± 0.189.35 + 0.18 실시예 3Example 3 252.62 ± 9.53252.62 + - 9.53 18.03 ± 0.3518.03 + - 0.35 11.96 ± 0.2811.96 ± 0.28

이를 살펴보면, 디설파이드 결합의 함량이 증가 할수록 인장모듈러스가 증가하고, 인장 변형률(tensile strain)은 감소한 반면에 인장 응력(tensile stress)는 증가하는 경향을 보임을 확인할 수 있었다.As a result, tensile modulus increased and tensile strain decreased, while tensile stress tended to increase with increasing disulfide bond content.

[실험예 4: 자가회복 특성 검토] [Experimental Example 4: Examination of self-recovery property]

(1) 먼저 대표적으로 실시예 1 내지 3 및 비교예 1에 따른 샘플의 자가치유효율(self-healing efficiency)을 측정하였는데, 자가치유효율은 다음과 같은 식으로 계산하였으며, 그 결과는 도6에서 확인하였다.(1) First, self-healing efficiency of samples according to Examples 1 to 3 and Comparative Example 1 was measured. The self-healing efficiency was calculated by the following equation. The results are shown in FIG. 6 Respectively.

[수학식 1][Equation 1]

자가치유효율(%) = [(자가복원된 탄성체의 인장 변형률 또는 인장 응력)/(원래 탄성체의 인장 변형률 또는 인장 응력)] X100Self-healing efficiency (%) = [(tensile strain or tensile stress of self-restored elastomer) / (tensile strain or tensile stress of original elastomer)] X100

실시예 1-3의 경우 각각 30-70 %의 인장 변형률과 40-70 %의 인장 응력을 보여, 높은 자가치유 효율을 보임을 확인할 수 있었다. In Examples 1-3, tensile strain of 30-70% and tensile stress of 40-70% were shown, respectively, indicating high self-healing efficiency.

(2) 뿐만 아니라, 실시예 1 내지 3 및 비교예 1에 따른 샘플에 대하여 날카로운 칼로 깊이 150 mm정도의 물리적인 손상(notch)을 가한 후, 절단된 두 면을 다시 맞닿게 한 후 60℃에서 5분간 열처리를 한 후 그 표면을 촬영하여 도 7에 나타내었다.(2) as well as the samples according to Examples 1 to 3 and Comparative Example 1 were subjected to physical damage of not less than 150 mm with a sharp knife, and then the two cut surfaces were brought into contact again, The surface was photographed after heat treatment for 5 minutes and is shown in Fig.

도 7를 살펴보면, 실시예 1 내지 3에 따른 샘플은 비교예 1에 따른 샘플 대비 자기치유특성이 우수함을 확인할 수 있었다. 그 중에서도 실시예 2에 따른 샘플은 자가치유특성이 우수하여 일부가 다시 봉합됨을 확인할 수 있었다.Referring to FIG. 7, it can be seen that the samples according to Examples 1 to 3 have excellent self-healing properties as compared with the sample according to Comparative Example 1. In particular, it was confirmed that the sample according to Example 2 was excellent in self-healing property and partly stuck again.

이와 같이 도 6 및 7을 살펴보면, 실시예 1 내지 3에 따란 샘플은 우수한 자가회복특성을 보이는 것을 확인할 수 있었으며, 특히 40 내지 60℃의 온도에서 우수한 자가회복 특성을 보이는 것을 확인할 수 있었다.6 and 7, it can be seen that the samples according to Examples 1 to 3 exhibit excellent self-recovery characteristics, and particularly excellent self-recovery characteristics at temperatures of 40 to 60 ° C.

앞에서 설명된 본 발명의 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서, 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.The embodiments of the present invention described above should not be construed as limiting the technical idea of the present invention. The scope of protection of the present invention is limited only by the matters described in the claims, and those skilled in the art will be able to modify the technical idea of the present invention in various forms. Accordingly, such improvements and modifications will fall within the scope of protection of the present invention as long as it is obvious to those skilled in the art.

Claims (12)

폴리올 화합물로부터 유도된 반복단위; 이소시아네이트계 화합물로부터 유도된 반복단위; 및 디설파이드 화합물로부터 유도된 반복단위를 포함하며,
주쇄 혹은 분지쇄에 디설파이드 결합을 포함하는 자가치유 탄성체.
A repeating unit derived from a polyol compound; A repeating unit derived from an isocyanate compound; And a repeating unit derived from a disulfide compound,
Self-healing elastomers containing disulfide bonds in the main chain or branching chain.
제1항에 있어서,
상기 자가치유 탄성체는,
1내지 40 몰%의 폴리올 화합물로부터 유도된 반복단위;
30 내지 70 몰%의 이소시아네이트 화합물로부터 유도된 반복단위; 및
5 내지 30 몰%의 디설파이드 화합물로부터 유도된 반복단위;를 포함하는, 자가치유 탄성체.
The method according to claim 1,
The self-
A repeating unit derived from 1 to 40 mol% of a polyol compound;
A repeating unit derived from 30 to 70 mol% of an isocyanate compound; And
And a repeating unit derived from 5 to 30 mol% of a disulfide compound.
제1항에 있어서,
상기 디설파이드 결합은 5 내지 20몰%로 포함되는, 자가치유 탄성체.
The method according to claim 1,
Wherein the disulfide bond is comprised between 5 and 20 mole%.
제1항에 있어서,
상기 폴리올 화합물은 폴리알킬렌에테르글리콜, 폴리에스테르폴리올, e-카프로락톤폴리올, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리에스테르폴리올, 폴리카프로락톤디올, 폴리카보네이트디올 및 폴리테트라메틸렌에테르글리콜로 이루어진 그룹에서 선택된 하나 이상을 포함하는, 자가치유 탄성체.
The method according to claim 1,
Wherein the polyol compound is selected from the group consisting of polyalkylene ether glycols, polyester polyols, e-caprolactone polyols, polyethylene glycols, polypropylene glycols, polyester polyols, polycaprolactone diols, polycarbonate diols and polytetramethylene ether glycols Self-healing elastomer comprising at least one.
제1항에 있어서,
상기 이소시아네이트 화합물은 톨루엔 디이소시아네이트, 메틸렌 디페닐 디이소시아네이트, 헥사메틸렌 디이소시아네이트 및 이소포론 디이소시아네이트로 이루어진 그룹에서 선택된 하나 이상을 포함하는, 자가치유 탄성체.
The method according to claim 1,
Wherein the isocyanate compound comprises at least one member selected from the group consisting of toluene diisocyanate, methylenediphenyl diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.
제1항에 있어서,
상기 디설파이드 화합물은 2-하이드록실 디설파이드(2-hydroxyl disulfide), 3,3'-디티오디프로피온산(3,3‘-dithiodipropionic acid), 2,2'-(디티오디메틸렌)디퓨란(2,2’-(Dithodimethylene)difuran), 4-아미노페닐 디설파이드(4-aminophenyl disulfide), 2,2'-디아미노디에틸 디설파이드 디하이드로클로라이드(2,2'-Diaminodiethyl disulfide dihydrochloride) 및 3,3'-디하이드록시디페닐 디설파이드(3,3’-Dihydroxydiphenyl disulfide)로 이루어진 그룹에서 선택된 하나 이상을 포함하는, 자가치유 탄성체.
The method according to claim 1,
The disulfide compound may be selected from the group consisting of 2-hydroxyl disulfide, 3,3'-dithiodipropionic acid, 2,2 '- (dithiodiethylene) '- (Dithodimethylene) difuran, 4-aminophenyl disulfide, 2,2'-Diaminodiethyl disulfide dihydrochloride and 3,3'-di Wherein the self-healing elastomer comprises at least one selected from the group consisting of 3,3'-Dihydroxydiphenyl disulfide.
제1항 내지 제6항 중 어느 한 항에 따른 자가치유 탄성체를 포함하는 자가치유 조성물의 건조물을 포함하는 자가치유 필름.
A self-healing film comprising a dried self-healing composition comprising a self-healing elastomer according to any one of claims 1 to 6.
제7항에 있어서,
상기 자가치유 필름은 20 내지 60℃의 온도에서 80%이상의 자가치유효율(%)을 보이는 자가치유 필름.
8. The method of claim 7,
The self-healing film has a self-healing efficiency (%) of 80% or more at a temperature of 20 to 60 ° C.
제7항에 있어서,
상기 자가치유 필름은 15 내지 23 MPa 인장 응력을 보이는 자가치유필름.
8. The method of claim 7,
The self-healing film has a tensile stress of 15 to 23 MPa.
자가치유 탄성체의 제조 방법으로서,
폴리올 화합물 및 이소시아네이트 화합물을 혼합한 후 중합시켜 중합체를 형성하는 단계; 및
상기 중합체와 디설파이드 화합물을 반응시켜 자가치유 탄성체를 제조하는 단계; 를 포함하고,
상기 자기치유 탄성체는 주쇄 혹은 분지쇄에 디설파이드 결합을 포함하는, 자가치유 탄성체의 제조 방법.
A self-healing elastic body,
Mixing a polyol compound and an isocyanate compound and then polymerizing to form a polymer; And
Preparing a self-healing elastomer by reacting the polymer with a disulfide compound; Lt; / RTI >
Wherein the self-healing elastomer comprises a disulfide bond in the main chain or the branch chain.
제10항에 있어서,
상기 폴리올 화합물 100몰에 대하여
상기 이소시아네이트 화합물 70내지 700몰이 혼합되는, 자가치유 탄성체의 제조 방법.
11. The method of claim 10,
With respect to 100 moles of the polyol compound
Wherein 70 to 700 moles of the isocyanate compound are mixed.
제10항에 있어서,
상기 중합체 100몰에 대하여 상기 디설파이드 화합물 5 내지 100몰을 반응시키는, 자가치유 탄성체의 제조 방법.
11. The method of claim 10,
Reacting the disulfide compound with 5 to 100 moles of the disulfide compound per 100 moles of the polymer.
KR1020170083012A 2017-06-30 2017-06-30 Composition for self healing thermoplastic elastomers comprising disulfide bonds and methods of preparing the same KR102144311B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170083012A KR102144311B1 (en) 2017-06-30 2017-06-30 Composition for self healing thermoplastic elastomers comprising disulfide bonds and methods of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170083012A KR102144311B1 (en) 2017-06-30 2017-06-30 Composition for self healing thermoplastic elastomers comprising disulfide bonds and methods of preparing the same

Publications (2)

Publication Number Publication Date
KR20190002820A true KR20190002820A (en) 2019-01-09
KR102144311B1 KR102144311B1 (en) 2020-08-14

Family

ID=65017535

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170083012A KR102144311B1 (en) 2017-06-30 2017-06-30 Composition for self healing thermoplastic elastomers comprising disulfide bonds and methods of preparing the same

Country Status (1)

Country Link
KR (1) KR102144311B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109776753A (en) * 2019-02-11 2019-05-21 苏州大学 A kind of colorless and transparent high dielectric constant flexible polyurethane and its self-repair method
CN109912765A (en) * 2019-03-05 2019-06-21 中国科学院兰州化学物理研究所 A kind of room temperature rapidly self-healing closes the preparation method and applications of polymer elastomer
CN110790888A (en) * 2019-11-07 2020-02-14 华南理工大学 High-strength room-temperature self-repairing polyurethane elastomer based on multiple dynamic reversible effects and preparation and application thereof
CN110951023A (en) * 2019-12-16 2020-04-03 吉林大学 High-molecular damping material capable of being repaired at room temperature and preparation method and application thereof
CN111303377A (en) * 2020-02-18 2020-06-19 中国科学院化学研究所 High-strength self-repairing polyurethane urea elastomer and preparation method thereof
CN111607064A (en) * 2020-04-14 2020-09-01 南阳师范学院 Light/heat synergistic repair type waterborne polyurethane coating material and preparation method thereof
CN114181360A (en) * 2021-12-08 2022-03-15 南京工业大学 Ultrasonic wave stimulus response polyurethane and preparation method thereof
KR20230024030A (en) * 2021-08-11 2023-02-20 한국생산기술연구원 Self-healing epoxy adhesive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611792B1 (en) * 2021-06-23 2023-12-08 한국신발피혁연구원 Water dispersion composition for self healing coating

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105482065A (en) * 2015-12-10 2016-04-13 东华大学 Self-healing polyurethane resin containing disulfide bond and preparation method thereof
CN105669932A (en) * 2016-01-13 2016-06-15 中山大学 Photic self-repairing cross-linked polymer and preparation method and application thereof
KR20160081052A (en) 2014-12-30 2016-07-08 울산과학기술원 Hyperbranched polyglycerol having disulfide bonds
CN105885002A (en) * 2016-06-15 2016-08-24 东华大学 Preparation method of waterborne polyurethane capable of selfreparing
CN106279619A (en) * 2016-08-25 2017-01-04 华南理工大学 A kind of based on hydrogen bond action thermal drivers selfreparing method for producing elastomers
US20170008999A1 (en) * 2014-02-28 2017-01-12 Fundación Cidetec Self-healing elastomer and process for its preparation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170008999A1 (en) * 2014-02-28 2017-01-12 Fundación Cidetec Self-healing elastomer and process for its preparation
KR20160081052A (en) 2014-12-30 2016-07-08 울산과학기술원 Hyperbranched polyglycerol having disulfide bonds
CN105482065A (en) * 2015-12-10 2016-04-13 东华大学 Self-healing polyurethane resin containing disulfide bond and preparation method thereof
CN105669932A (en) * 2016-01-13 2016-06-15 中山大学 Photic self-repairing cross-linked polymer and preparation method and application thereof
CN105885002A (en) * 2016-06-15 2016-08-24 东华大学 Preparation method of waterborne polyurethane capable of selfreparing
CN106279619A (en) * 2016-08-25 2017-01-04 华南理工大学 A kind of based on hydrogen bond action thermal drivers selfreparing method for producing elastomers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109776753A (en) * 2019-02-11 2019-05-21 苏州大学 A kind of colorless and transparent high dielectric constant flexible polyurethane and its self-repair method
CN109776753B (en) * 2019-02-11 2020-12-04 苏州大学 Colorless and transparent high-dielectric-constant flexible polyurethane and self-repairing method thereof
CN109912765A (en) * 2019-03-05 2019-06-21 中国科学院兰州化学物理研究所 A kind of room temperature rapidly self-healing closes the preparation method and applications of polymer elastomer
CN109912765B (en) * 2019-03-05 2021-04-27 中国科学院兰州化学物理研究所 Preparation method and application of polymer elastomer capable of rapidly self-healing at room temperature
CN110790888A (en) * 2019-11-07 2020-02-14 华南理工大学 High-strength room-temperature self-repairing polyurethane elastomer based on multiple dynamic reversible effects and preparation and application thereof
CN110951023A (en) * 2019-12-16 2020-04-03 吉林大学 High-molecular damping material capable of being repaired at room temperature and preparation method and application thereof
CN110951023B (en) * 2019-12-16 2021-01-22 吉林大学 High-molecular damping material capable of being repaired at room temperature and preparation method and application thereof
CN111303377A (en) * 2020-02-18 2020-06-19 中国科学院化学研究所 High-strength self-repairing polyurethane urea elastomer and preparation method thereof
CN111607064A (en) * 2020-04-14 2020-09-01 南阳师范学院 Light/heat synergistic repair type waterborne polyurethane coating material and preparation method thereof
KR20230024030A (en) * 2021-08-11 2023-02-20 한국생산기술연구원 Self-healing epoxy adhesive
CN114181360A (en) * 2021-12-08 2022-03-15 南京工业大学 Ultrasonic wave stimulus response polyurethane and preparation method thereof

Also Published As

Publication number Publication date
KR102144311B1 (en) 2020-08-14

Similar Documents

Publication Publication Date Title
KR102012761B1 (en) Self healing elastomer, self healing complex and self healing film
KR102144311B1 (en) Composition for self healing thermoplastic elastomers comprising disulfide bonds and methods of preparing the same
EP3233954B1 (en) Polyurethanes
Ha et al. Robust and stretchable self-healing polyurethane based on polycarbonate diol with different soft-segment molecular weight for flexible devices
WO2012165402A1 (en) Material comprising crosslinked polyrotaxane, and process for producing same
US4782130A (en) Fluorinated polyurethanes containing polyoxyperfluoro-alkylene blocks, endowed with improved mechanical characteristics
JP6921225B2 (en) Polyurethane prepolymers, including non-linear short chain diols and / or soft diisocyanate compositions, and their use.
KR20130132336A (en) Poly-rotaxane compound, photocurable coating composition, and coating film
Qu et al. High toughness polyurethane toward artificial muscles, tuned by mixing dynamic hard domains
Gaina et al. Thermally reversible cross-linked poly (ether-urethane) s.
CN106661188B (en) Urethane adhesive
EP3318588A1 (en) Liquid-crystal urethane compound, thermally responsive liquid-crystal polyurethane elastomer, and production method therefor
CN115010896B (en) Thermoplastic elastomer with excellent rebound performance and high strength and preparation method thereof
Cai et al. Self-healable and reprocessable cross-linked poly (urea-urethane) elastomers with high mechanical performance based on dynamic oxime–carbamate bonds
Cai et al. A strategy of thiolactone chemistry to construct strong and tough self-healing supramolecular polyurethane elastomers via hierarchical hydrogen bonds and coordination bonds
KR20150057173A (en) Composition using polymerization of polyurethane and polyurethane polymerized thereof
CN113423746B (en) Curable composition
WO2020045325A1 (en) Polyrotaxane, thermally curable composition including said polyrotaxane, thermally cured crosslinked object, production method for polyrotaxane, and production method for thermally cured crosslinked object
Mustapha et al. Enhancing mechanical properties of polyurethane with cellulose acetate as chain extender
KR102207612B1 (en) Biopolyurethane resin having high-temperature durability, Bio polyurethane film and Manufacturing method thereof
CN115725038A (en) Transparent stretchable polyurethane material and preparation method and application thereof
JP3301447B2 (en) Urethane / unsaturated organo oligomers and method for producing the same
CN113840883B (en) Method for preparing at least partially exfoliated clay using an exfoliating agent comprising poly (alkylene oxide) (meth) acrylate, cyclic carbonate and water
CN115551899B (en) Polyrotaxane having group containing chain formed by repeating unit of propylene oxide in cyclic molecule
MX2014012283A (en) Transparent polyurethanes.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right