KR20180128294A - Foam compounds having high resilience and adhesion strength in primerless state and method producing thereof - Google Patents

Foam compounds having high resilience and adhesion strength in primerless state and method producing thereof Download PDF

Info

Publication number
KR20180128294A
KR20180128294A KR1020170063678A KR20170063678A KR20180128294A KR 20180128294 A KR20180128294 A KR 20180128294A KR 1020170063678 A KR1020170063678 A KR 1020170063678A KR 20170063678 A KR20170063678 A KR 20170063678A KR 20180128294 A KR20180128294 A KR 20180128294A
Authority
KR
South Korea
Prior art keywords
weight
parts
vinyl acetate
acetate resin
carboxylic acid
Prior art date
Application number
KR1020170063678A
Other languages
Korean (ko)
Other versions
KR101963414B1 (en
Inventor
이호상
서성규
김정수
김동호
Original Assignee
삼호산업(주)
한국신발피혁연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼호산업(주), 한국신발피혁연구원 filed Critical 삼호산업(주)
Priority to KR1020170063678A priority Critical patent/KR101963414B1/en
Publication of KR20180128294A publication Critical patent/KR20180128294A/en
Application granted granted Critical
Publication of KR101963414B1 publication Critical patent/KR101963414B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • B29C47/0042
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a foam composition with excellent rebound resilience and adhesive strength in a primer-less state and a preparing method thereof. More specifically, by using the peroxides and antioxidants as well as carboxylic acids having higher reaction stability than unsaturated acid anhydrides with synthetic rubber materials to prepare a grafted ethylene vinyl acetate resin with a high graft ratio. The ethylene-vinyl acetate resin is mixed with the rubber material to prepare a substrate. The substrate is mixed with a diamine before adding additives such as metal oxides, a cross-linking agent, and a blowing agent, thereby preparing a foamed material. The foam composition has excellent rebound resilience and higher adhesive strength than a conventional ethylene-vinyl acetate foam material even without a primer and UV treatment processes.

Description

반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물 및 이의 제조 방법{FOAM COMPOUNDS HAVING HIGH RESILIENCE AND ADHESION STRENGTH IN PRIMERLESS STATE AND METHOD PRODUCING THEREOF}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foam composition having excellent adhesion strength in a repulsive elasticity and primerless state and a method for producing the foam composition.

본 발명은 합성고무에 불포화 산 무수물에 비해 반응 안정성이 높은 불포화 카르복실산 및 과산화물, 산화방지제를 사용하여 그라프트율이 높은 그라프팅 에틸렌 비닐아세테이트 수지를 제조하고, 상기 고무에 에틸렌-비닐아세테이트 수지를 혼합하여 기재를 제조한 후, 이 기재에 디아민을 혼합하고, 금속 산화물 등의 첨가제와 가교제 및 발포제를 첨가하여 발포체를 제조함으로써, 반발탄성이 우수할 뿐만 아니라 기존 에틸렌-비닐아세테이트 발포체에 비해 프라이머 및 UV 처리를 하지 않은 상태에서 접착 강도가 우수하도록 하는, 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물 및 이의 제조 방법에 관한 것이다.The present invention relates to a process for producing a grafted ethylene vinyl acetate resin having a high graft ratio by using an unsaturated carboxylic acid, peroxide and an antioxidant having high reaction stability as compared with an unsaturated acid anhydride in a synthetic rubber, and mixing the ethylene- And then adding additives such as metal oxides, a cross-linking agent and a foaming agent to produce a foamed product. In addition to the excellent rebound resilience, it is also possible to provide a polyurethane foam with a primer and a UV And excellent adhesion strength in a rebound resilience and a primerless state, and to a method for producing the same.

일반적으로 고무는 외력에 의해 모양과 부피가 변형된 후 힘을 제거하였을 때 본래의 상태로 되돌아가려는 탄성을 가지는데, 고무의 탄성은 힘을 점차 크게 가하면 어느 단계 이상에서는 외력을 제거하더라도 변형이 그대로 남는 영구변형을 일으킨다.Generally, rubber has the elasticity to return to the original state when the shape and volume are deformed by the external force and then the force is removed. The elasticity of the rubber gradually increases the force, The remaining causes permanent deformation.

따라서, 상기와 같은 영구변형의 한계 및 기계적 물성을 향상시키기 위하여 고무 조성물에 황이나 유기과산화물 등의 가교제를 사용하여 망상 구조의 가교를 형성시킨다. Therefore, in order to improve the limit of permanent deformation and the mechanical properties as described above, crosslinking of the network structure is formed by using a crosslinking agent such as sulfur or organic peroxide in the rubber composition.

한편, 최근에는 열가소성 탄성체(Thermoplastic elastomer; TPE)가 개발되어 고무 적용 분야에 사용되고 있지만, 화학적인 가교구조를 갖는 기존의 가교 고무에 비해 상대적으로 내열성, 내구성, 영구압축변형률, 탄성복원력, 내스크래치성 등이 떨어지며 잔류변형이 커서 응력 완화나 크리이프(Creep)현상이 나타나는 단점도 가진다. Recently, thermoplastic elastomer (TPE) has been developed and used in rubber application field. However, compared with conventional crosslinked rubber having a chemical crosslinking structure, it has relatively high heat resistance, durability, permanent compression strain, elastic restoring force, And the residual strain is large, which causes stress relaxation and creep phenomenon.

이러한 단점을 보완하기 위해 개발된 열가소성 가황고무(Thermoplastic vulcanizates; TPV)는 연질의 고무와 경질의 플라스틱의 블렌드이지만 연질 고무 부분이 가교되어 있어 기존의 열경화성 고무와 유사한 탄성을 나타내는 소재이나, 경질 플라스틱부에 주로 사용되는 폴리프로필렌(PP)나 폴리에틸렌(PE)에 의하여 가소성이 부여되기 때문에 충진제의 충진율이 일반 플라스틱과 유사하게 낮아 30중량%이상 고충진하기가 어려우며, 특히 가교된 고무 조성물에 비해 영구압축변형률이 나쁜 단점을 가지고 있다.Thermoplastic vulcanizates (TPV), developed to overcome these shortcomings, are blends of soft rubber and hard plastic, but they are materials that exhibit resilience similar to conventional thermosetting rubber due to the cross-linking of soft rubber parts, (PP) or polyethylene (PE), which is mainly used for the rubber composition of the present invention, the packing ratio of the filler is low similarly to general plastics, It has a disadvantage of bad strain.

따라서 상기와 같은 문제점을 해결하기 위한 방안으로 특허문헌 1에서는 EPDM 또는 컨쥬게이팅된 디엔 고무 및 이소부틸렌 고무로부터 얻어지는 열가소성 가황고무에 대한 기술을 제안하고 있지만, 상기 열가소성 가황고무는 부분적으로 가교 결합된 고무배합물을 약 10~90 중량부 함유하며 이를 통해 열가소성을 가지면서 가황 고무와 유사한 모듈러스를 발현하고자 하였으나 뛰어난 성능에도 불구하고 부분 가교 결합상의 고무 조성으로 인해 탄성 회복력이 떨어지는 문제점이 있다. In order to solve the above problems, Patent Document 1 proposes a technique for thermoplastic vulcanizing rubber obtained from EPDM or conjugated diene rubber and isobutylene rubber, but the thermoplastic vulcanization rubber is partially crosslinked The rubber composition contains about 10 to 90 parts by weight of the rubber compound. The rubber composition is thermoplastic and develops a modulus similar to that of a vulcanized rubber. However, it has a problem in that the elastic recovery force is deteriorated due to the rubber composition of the partially crosslinked rubber.

또한, 특허문헌 2에서는 최적 탄성 회복을 위해 정해진 모폴로지를 가지는 열가소성 가황고무에 대한 기술을 제안하고 있으며, 상기 기술은 인접하게 놓여진 가교된 고무 입자 사이의 연속 가소성 물질의 조절 기술을 통해 두 인접 인자간의 거리를 조절하여 탄성 회복력을 가지도록 하였으나 탄성회복력을 높이기 위해 가소성의 경질 플라스틱 재료를 줄일 경우 기계적 물성이 상대적으로 떨어지며 이를 증량할 경우 탄성이 감소하여 플라스틱과 같은 감성을 나타내는 문제점이 있었다. Patent Document 2 proposes a technique for a thermoplastic vulcanized rubber having a predetermined morphology for restoring optimum elasticity. This technique is a technique of controlling the continuous plastic material between crosslinked rubber particles placed adjacent to each other, However, when the plastic hard plastic material is reduced in order to increase the elastic recovery force, the mechanical properties are relatively decreased. When the plastic elastic material is increased, the elasticity is decreased.

한편, 특허문헌 3에서는 합성고무 또는 올레핀계 수지에 말레익 안하이드라이드(Maleic anhydride; MA)를 사용하여 그라프팅화시킨 화합물을 단독 기재로 사용하거나 또는 상기 그라프팅화시킨 화합물에 기타 수지를 혼합한 혼합 조성물을 기재로 사용하고, 이 기재에 첨가한 반응성 아민 화합물, 금속 산화물들이 고무 또는 올레핀계 분자 사이에서 수소 결합(Hydrogen bonding) 및 이온 결합(Ionic interaction)을 형성하는 것을 특징으로 하는 열가역성 가교형 탄성체 조성물 및 이를 이용한 탄성체의 제조 방법에 대한 기술을 제안하였으나, 상기 특허의 가교 결합 구조는 수소결합과 이온클러스터에 의한 이온간력(ionic interaction)으로 나누어지며, 아민화합물에 의한 수소결합이 가교 고무가 나타내는 공유결합보다는 결합력이 약하지만 이온간력은 수소결합보다 상대적으로 강력한 물리결합을 나타내므로 가교 고무와 유사한 기계적 물성을 구현할 수 있으나 말레익 안하이드라이드와 같이 반응성이 높은 불포화 산 무수물을 채용한 그라프트 화합물은 그라프트율이 2.0% 미만이므로 이를 기재로 하여 상기 가교 구조를 갖도록 형성된 열가역성 가교 조성물로는 가교 고무 수준의 영구압축변형률을 획득하기 어렵다. On the other hand, in Patent Document 3, a compound obtained by grafting a synthetic rubber or an olefin-based resin using maleic anhydride (MA) as a single substrate, or by mixing a mixture obtained by mixing the above-mentioned grafted compound with other resin Characterized in that the composition is used as a substrate and the reactive amine compound and metal oxides added to the substrate form hydrogen bonding and ionic interaction between rubber or olefinic molecules The crosslinked structure of the patent is divided into hydrogen bonds and ionic interactions by ion clusters, and hydrogen bonds due to amine compounds are bonded to the crosslinked rubber Although the bond strength is weaker than the covalent bond, The graft ratio of the unsaturated acid anhydride having a high reactivity, such as maleic anhydride, is less than 2.0%. Therefore, the cross-linking of the crosslinking agent It is difficult to obtain the permanent compression strain at the level of the crosslinked rubber as the heat-reversible crosslinked composition.

따라서, 상기와 같은 종래기술의 문제점을 해결하기 위하여, 본 발명의 출원인은 특허문헌 4와 같은 기계적 강도와 영구압축변형률이 우수한 초분자 열가역성 가교형 탄성체 조성물 및 이를 이용한 탄성체의 제조 방법을 선출원하여 등록받은바 있다. 구체적으로 상기 특허문헌 4는 합성고무에 불포화 산 무수물에 비해 반응 안정성이 높은 불포화 카르복실산 및 과산화물, 산화방지제를 사용하여 그라프트율이 높은 그라프팅 에틸렌-프로필렌 고무 화합물을 제조하고, 이 기재에 이온화가 가능한 금속염들을 단독 혹은 복합으로 사용하여 분자간 이온 결합을 형성함으로써, 높은 기계적 강도와 낮은 영구압축변형률을 갖는 것을 특징으로 한다.Therefore, in order to solve the problems of the prior art as described above, the applicant of the present invention has proposed a supramolecular thermally reversible crosslinkable elastomer composition having excellent mechanical strength and permanent compression strain as in Patent Document 4 and a method for producing an elastic body using the same. I have received. Specifically, in Patent Document 4, a grafted ethylene-propylene rubber compound having a high graft ratio is prepared by using an unsaturated carboxylic acid, peroxide and an antioxidant having high reaction stability as compared with an unsaturated acid anhydride in a synthetic rubber, Which is characterized by having high mechanical strength and low permanent compression strain by forming intermolecular ionic bonds by using the possible metal salts alone or in combination.

이에 대해 본 발명의 출원인은 상기와 같은 특허문헌 4를 개량하여 기계적 강도와 영구압축변형률 뿐만 아니라, 반발탄성과 프라이머 리스 상태에서의 접착 강도가 우수하도록 하는 발포체 조성물 및 이의 제조방법을 도출함으로써, 본 발명을 완성하였다.On the other hand, the applicant of the present invention has found that by improving the above-described Patent Document 4 to improve the mechanical strength and the permanent compression strain as well as the adhesive strength in rebound resilience and primerless state and a method for producing the same, Thereby completing the invention.

특허문헌 1 : 대한민국 공개특허공보 제10-1997-0027193호 "EPDM 또는 컨쥬게이팅된 디엔 고무 및 이소부틸렌 고무로부터 얻어지는 열가소성 가황고무"Patent Document 1: Korean Patent Laid-Open Publication No. 10-1997-0027193 "Thermoplastic vulcanizing rubber obtained from EPDM or conjugated diene rubber and isobutylene rubber" 특허문헌 2 : 대한민국 공개특허 제10-2002-0033732호 "최적 탄성 회복을 위해 정해진 모폴로지를 가지는 열가소성 가황고무"Patent Document 2: Korean Patent Laid-Open No. 10-2002-0033732 entitled "Thermoplastic vulcanized rubber having a morphology set for optimum elastic recovery" 특허문헌 3 : 대한민국 등록특허공보 제10-1155869호 "열가역성 가교형 탄성체 조성물 및 이를 이용한 탄성체의 제조 방법"Patent Document 3: Korean Patent Registration No. 10-1155869 entitled "Thermoreversible Crosslinkable Elastomer Composition and Method for Producing Elastomer Using the Same" 특허문헌 4 : 대한민국 등록특허공보 제10-1270545호 "기계적 강도와 영구압축변형률이 우수한 초분자 열가역성 가교형 탄성체 조성물 및 이를 이용한 탄성체의 제조 방법"Patent Document 4: Korean Patent Registration No. 10-1270545 entitled " Supramolecular thermally reversible crosslinkable elastomer composition having excellent mechanical strength and permanent compression strain, and method of producing elastomer using the same "

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 합성고무에 불포화 산 무수물에 비해 반응 안정성이 높은 불포화 카르복실산 및 과산화물, 산화방지제를 사용하여 그라프트율이 높은 그라프팅 에틸렌 비닐아세테이트 수지를 제조하고, 상기 고무에 에틸렌-비닐아세테이트 수지를 혼합하여 기재를 제조한 후, 이 기재에 디아민을 혼합하고, 금속 산화물 등의 첨가제와 가교제 및 발포제를 첨가하여 발포체를 제조함으로써, 반발탄성이 우수할 뿐만 아니라 기존 에틸렌-비닐아세테이트 발포체에 비해 프라이머 및 UV 처리를 하지 않은 상태에서 접착 강도가 우수하도록 함을 과제로 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a process for producing a grafted ethylene vinyl acetate resin having a high graft ratio by using an unsaturated carboxylic acid, peroxide and an antioxidant having high reaction stability as compared with unsaturated acid anhydride, A base material is prepared by mixing the rubber with an ethylene-vinyl acetate resin, a diamine is mixed with the base material, an additive such as a metal oxide, a crosslinking agent and a foaming agent are added to prepare a foam, The adhesive strength is improved in a state in which the primer and the UV treatment are not performed as compared with the ethylene-vinyl acetate foam.

본 발명은 발포체 조성물에 있어서, 카르복실산 그라프트 에틸렌 비닐아세테이트 수지 및 에틸렌-비닐아세테이트 수지를 포함하여 이루어지는 것을 특징으로 하는, 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물을 과제의 해결 수단으로 한다.The present invention relates to a foam composition having excellent adhesion strength in repulsive elastic and primerless states, which comprises a carboxylic acid graft ethylene vinyl acetate resin and an ethylene-vinyl acetate resin in a foam composition. .

구체적으로 상기 발포체 조성물은, 카르복실산 그라프트 에틸렌 비닐아세테이트 수지 5 ~ 30 중량% 및 에틸렌-비닐아세테이트 수지 70 ~ 95 중량%로 이루어진 기재 100 중량부에 대하여, 디아민 0.05 ~ 15.0 중량부, 산화아연 2 ~ 4 중량부, 스테아린산 0.5 ~ 1.5 중량부, 가교제 0.5 ~ 1.5 중량부 및 발포제 2 ~ 4 중량부를 혼합하여 이루어지는 것이 바람직하다.Specifically, the foam composition may contain 0.05 to 15.0 parts by weight of a diamine, 100 parts by weight of a zinc oxide, 2 to 4 parts by weight of stearic acid, 0.5 to 1.5 parts by weight of stearic acid, 0.5 to 1.5 parts by weight of a crosslinking agent and 2 to 4 parts by weight of a foaming agent.

여기서 상기 카르복실산 그라프트 에틸렌 비닐아세테이트 수지는, 에틸렌 비닐아세테이트 수지 100 중량부에 대하여, 불포화 카르복실산 0.15 ~ 25 중량부, 과산화물 0.01 ~ 0.3 중량부, 산화방지제 0.01 ~ 1.0 중량부를 첨가하여 카르복실산이 0.1 ~ 15.0% 그라프트된 것이 바람직하다.The carboxylic acid grafted ethylene vinyl acetate resin is obtained by adding 0.15 to 25 parts by weight of unsaturated carboxylic acid, 0.01 to 0.3 part by weight of peroxide, and 0.01 to 1.0 part by weight of an antioxidant to 100 parts by weight of ethylene vinyl acetate resin, It is preferable that 0.1 to 15.0% of the carboxylic acid is grafted.

그리고 상기 디아민은, 양 말단에 아미드기를 가지는 디아민으로써, 에틸렌디아민(ethylendiamine), 카다버림(cadaverine), 헥사메틸렌디아민(hexamethylenediamine) 중에서 단독 또는 병용하여 사용하는 것이 바람직하다.The diamine is preferably a diamine having an amide group at both ends, either alone or in combination with ethylenediamine, cadaverine, hexamethylenediamine, or the like.

한편, 본 발명은 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물의 제조 방법에 있어서, 에틸렌 비닐아세테이트 수지 100 중량부에 대하여, 불포화 카르복실산 0.15 ~ 25 중량부, 과산화물 0.01 ~ 0.3 중량부, 산화방지제 0.01 ~ 1.0 중량부를 첨가하여 카르복실산이 0.1 ~ 15.0% 그라프트된 에틸렌 비닐아세테이트 수지를 제조하는 단계(S100); 및 상기 S100 단계를 거쳐 제조된 카르복실산 그라프트 에틸렌 비닐아세테이트 수지 5 ~ 30 중량%와 에틸렌-비닐아세테이트 수지 70 ~ 95 중량%를 혼합하여 기재를 제조하고, 상기 기재 100 중량부에 대하여, 디아민 0.05 ~ 15.0 중량부, 산화아연 2 ~ 4 중량부 및 스테아린산 0.5 ~ 1.5 중량부를 첨가하여 120 ~ 150℃의 온도로 15 ~ 20분 동안 니더(kneader)를 이용하여 혼련하고, 이후에 가교제 0.5 ~ 1.5 중량부 및 발포제 2 ~ 4 중량부를 첨가하여 오픈롤(open roll)에서 분산시키는 단계(S200);를 포함하여 구성되는 것을 특징으로 하는, 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물의 제조 방법을 과제의 다른 해결 수단으로 한다.On the other hand, the present invention relates to a method for producing a foamed composition having excellent adhesion strength in a rebound resilience and primerless state, comprising the steps of: 0.15 to 25 parts by weight of an unsaturated carboxylic acid, 0.01 to 0.3 parts by weight And 0.01 to 1.0 part by weight of an antioxidant to prepare an ethylene vinyl acetate resin grafted with 0.1 to 15.0% of carboxylic acid (S100); And 5 to 30% by weight of a carboxylic acid grafted ethylene vinyl acetate resin prepared through the step S100 and 70 to 95% by weight of an ethylene-vinyl acetate resin are mixed to prepare a base material. With respect to 100 parts by weight of the base material, 0.05 to 15.0 parts by weight of zinc oxide, 2 to 4 parts by weight of zinc oxide and 0.5 to 1.5 parts by weight of stearic acid are added and kneaded at a temperature of 120 to 150 ° C for 15 to 20 minutes using a kneader, And 2 to 4 parts by weight of a foaming agent are added to the mixture to disperse the mixture in an open roll (S200). The foam composition according to any one of claims 1 to 3, The manufacturing method is another solution to the problem.

본 발명은 반발탄성이 우수할 뿐만 아니라 프라이머 및 UV(ultra violet) 처리를 하지 않은 상태에서 접착 강도가 우수한 효과가 있다.The present invention is not only excellent in rebound resilience but also has an excellent adhesive strength in a state of not carrying out primer and UV (ultra violet) treatment.

도 1은 본 발명에 따른 발포체 조성물의 제조공정을 나타낸 흐름도BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart illustrating a process for producing a foam composition according to the present invention;

상기의 효과를 달성하기 위한 본 발명은 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물 및 이의 제조 방법에 관한 것으로서, 본 발명의 기술적 구성을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.The present invention for achieving the above-mentioned effects relates to a foam composition having excellent rebound resilience and adhesive strength in a primerless state and a method for producing the same, and only a part necessary for understanding the technical structure of the present invention will be described, It should be noted that the description is omitted so as not to obscure the gist of the present invention.

먼저, 본 발명에 따른 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물을 상세히 설명하면 다음과 같다.First, a foam composition having excellent adhesive strength in a rebound resilience and primerless state according to the present invention will be described in detail.

본 발명은 카르복실산 그라프트 에틸렌 비닐아세테이트 수지 및 에틸렌-비닐아세테이트 수지를 포함하여 이루어지는 것을 특징으로 하며, 보다 구체적으로는 카르복실산 그라프트 에틸렌 비닐아세테이트 수지 5 ~ 30 중량% 및 에틸렌-비닐아세테이트 수지 70 ~ 95 중량%로 이루어진 기재 100 중량부에 대하여, 디아민 0.05 ~ 15.0 중량부, 산화아연 2 ~ 4 중량부, 스테아린산 0.5 ~ 1.5 중량부, 가교제 0.5 ~ 1.5 중량부 및 발포제 2 ~ 4 중량부를 혼합하여 이루어지는 것을 특징으로 한다.The present invention is characterized in that it comprises a carboxylic acid graft ethylene vinyl acetate resin and an ethylene-vinyl acetate resin, more specifically, it comprises 5 to 30% by weight of a carboxylic acid graft ethylene vinyl acetate resin and ethylene-vinyl acetate 0.05 to 15.0 parts by weight of a diamine, 2 to 4 parts by weight of zinc oxide, 0.5 to 1.5 parts by weight of stearic acid, 0.5 to 1.5 parts by weight of a crosslinking agent and 2 to 4 parts by weight of a foaming agent are mixed with 100 parts by weight of a base material composed of 70 to 95% Are mixed with each other.

상기 본 발명에서 사용되는 카르복실산 그라프트 에틸렌 비닐아세테이트 수지는, 에틸렌 비닐아세테이트 수지 100 중량부에 대하여, 불포화 카르복실산 0.15 ~ 25 중량부, 과산화물 0.01 ~ 0.3 중량부, 산화방지제 0.01 ~ 1.0 중량부를 첨가하여 카르복실산이 0.1 ~ 15.0% 그라프트된 것을 사용한다.The carboxylic acid grafted ethylene vinyl acetate resin used in the present invention is a resin composition comprising 0.15 to 25 parts by weight of an unsaturated carboxylic acid, 0.01 to 0.3 part by weight of peroxide, 0.01 to 1.0 part by weight of an antioxidant And 0.1 to 15.0% of a carboxylic acid is grafted.

한편, 상기 불포화 카르복실 산의 함량이 0.15 중량부 미만에서는 그라프트율이 낮아 분자 간의 초분자 결합 구조를 형성하기 어려우며, 25 중량부를 초과할 경우에는 그라프트 반응이 지나치게 일어나 그라프트 합성고무의 가공성이 저하되는 현상이 나타난다. On the other hand, when the content of the unsaturated carboxylic acid is less than 0.15 parts by weight, the graft ratio is low and it is difficult to form a supramolecular bonding structure between molecules. When the amount of the unsaturated carboxylic acid is more than 25 parts by weight, the grafting reaction occurs excessively, A phenomenon appears.

또한, 상기 과산화물의 함량이 0.01 중량부 미만에서는 그라프트 반응의 개시가 잘 일어나지 않아 그라프트율이 낮아지는 결과를 나타내며, 0.3 중량부를 초과할 경우, 과산화물이 고무 분자와 라디칼 반응하여 겔화(Gelation)되는 현상을 나타낸다. When the content of the peroxide is less than 0.01 part by weight, the grafting reaction does not start well and the grafting rate is lowered. When the content of the peroxide is more than 0.3 part by weight, peroxide reacts with rubber molecules to cause gelation .

아울러, 산화방지제를 투입하지 않을 경우, 과산화물에 의한 개시 반응 빠르게 유도하여 그라프트 반응을 진행할 수 있으나 과산화물 함량이 증가될 경우 겔화를 일으킬 수 있으므로 과산화물이 0.15 중량부 이상 사용될 경우에는 산화방지제를 투입하는 것이 바람직하며, 상기 산화방지제의 함량이 0.01 중량부 미만일 경우, 상기 기능을 구현하지 못할 우려가 있으며, 1.0 중량부를 초과할 경우에는 산화방지제가 과산화물의 개시반응을 저하시킬 우려가 있다. In addition, when the antioxidant is not added, the initiation reaction by the peroxide can be rapidly induced to proceed the graft reaction. However, if the peroxide content is increased, the gelation may be caused. Therefore, if the peroxide is used in an amount of 0.15 parts by weight or more, If the content of the antioxidant is less than 0.01 part by weight, the function may not be realized. If the amount is more than 1.0 part by weight, the antioxidant may lower the initiation reaction of the peroxide.

한편, 상기와 같이 이루어지는 카르복실산 그라프트 에틸렌 비닐아세테이트 수지는 기재를 이루기 위하여 5 ~ 30 중량%가 사용되며, 구체적으로는 에틸렌-비닐아세테이트 수지 70 ~ 95 중량%와 혼합되어 기재를 이룬다.On the other hand, the carboxylic acid grafted ethylene vinyl acetate resin is used in an amount of 5 to 30% by weight, specifically 70 to 95% by weight of an ethylene-vinyl acetate resin, to form a substrate.

여기서, 상기 카르복실산 그라프트 에틸렌 비닐아세테이트 수지의 사용량이 5 중량% 미만일 경우 상대적으로 에틸렌-비닐아세테이트 수지의 사용량이 95 중량%를 초과하게 되므로 반발탄성이 저하될 우려가 있으며 특히 프라이머 및 UV 처리를 하지 않은 상태에서의 접착 강도 향상 효과가 미비해질 우려가 있고, 카르복실산 그라프트 에틸렌 비닐아세테이트 수지의 사용량이 30 중량%를 초과할 경우 상대적으로 에틸렌-비닐아세테이트 수지의 사용량이 70 중량% 미만이 되므로 발포체가 제대로 제조되지 못할 우려가 있다.If the amount of the carboxylic acid grafted ethylene vinyl acetate resin is less than 5% by weight, the amount of the ethylene-vinyl acetate resin used will exceed 95% by weight, and the rebound resilience may deteriorate. In particular, The use of the carboxylic acid grafted ethylene vinyl acetate resin is more than 30% by weight, the use amount of the ethylene-vinyl acetate resin is less than 70% by weight There is a fear that the foam can not be manufactured properly.

한편, 상기 디아민은 카르복실산 그라프트 에틸렌 비닐아세테이트 수지에 초분자 결합 구조를 용이하게 형성시키기 위한 것으로, 이를 위해 양 말단에 아미드기를 가지는 디아민을 사용하며 에틸렌디아민(ethylendiamine), 카다버림(cadaverine), 헥사메틸렌디아민(hexamethylenediamine) 등 중에서 단독 또는 병용하여 사용하며, 그 사용량이 0.05 중량부 미만일 경우에는 아미드 결합을 형성하기 어려우며, 15 중량부를 초과할 경우에는 이미드 결합을 형성하여 가공시 급격히 기계적 물성이 저하되는 현상을 나타낸다.On the other hand, the diamine is used to easily form a supramolecular bond structure in a carboxylic acid graft ethylene vinyl acetate resin. To this end, a diamine having an amide group at both ends is used, and ethylenediamine, cadaverine, Hexamethylenediamine or the like. When the amount is less than 0.05 part by weight, it is difficult to form an amide bond. When the amount is more than 15 parts by weight, an imide bond is formed and the mechanical properties Indicating a phenomenon of deterioration.

그리고, 본 발명에서 사용되는 산화아연, 스테아린산, 가교제 및 발포제는 발포체 제조 분야에서 이미 널리 사용되는 공지된 첨가제로써 그 상세한 설명은 생략하며, 그 함량 역시 상기 범위에 한정되는 것은 아니고, 발포체의 사용용도나 환경 등에 따라 이미 공지된 범위 내에서 가변적일 수 있다.The zinc oxide, the stearic acid, the cross-linking agent and the blowing agent used in the present invention are known additives which are already widely used in the field of foam production, and their detailed description is omitted. The content thereof is also not limited to the above- And may be variable within a range already known depending on the environment or the like.

다음으로, 도 1를 참조하여 본 발명에 따른 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물 및 이의 제조 방법을 상세히 설명하면 다음과 같다.Next, referring to FIG. 1, a foam composition having excellent adhesive strength in a rebound resilience and primerless state according to the present invention and a method for producing the same will be described in detail.

본 발명에 따른 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물 및 이의 제조 방법은 도 1에 도시된 바와 같이, 에틸렌 비닐아세테이트 수지 100 중량부에 대하여, 불포화 카르복실산 0.15 ~ 25 중량부, 과산화물 0.01 ~ 0.3 중량부, 산화방지제 0.01 ~ 1.0 중량부를 첨가하여 카르복실산이 0.1 ~ 15.0% 그라프트된 에틸렌 비닐아세테이트 수지를 제조하는 단계(S100)를 거친 후, 상기 S100 단계를 거쳐 제조된 카르복실산 그라프트 에틸렌 비닐아세테이트 수지 5 ~ 30 중량%와 에틸렌-비닐아세테이트 수지 70 ~ 95 중량%를 혼합하여 기재를 제조하고, 상기 기재 100 중량부에 대하여, 디아민 0.05 ~ 15.0 중량부, 산화아연 2 ~ 4 중량부 및 스테아린산 0.5 ~ 1.5 중량부를 첨가하여 120 ~ 150℃의 온도로 15 ~ 20분 동안 니더(kneader)를 이용하여 혼련하고, 이후에 가교제 0.5 ~ 1.5 중량부 및 발포제 2 ~ 4 중량부를 첨가하여 오픈롤(open roll)에서 분산시키는 단계(S200)를 거쳐 제조된다.As shown in Fig. 1, a foam composition having excellent rebound resilience and primerless bonding strength according to the present invention and a method for its production are characterized in that 0.15 to 25 parts by weight of an unsaturated carboxylic acid is added to 100 parts by weight of an ethylene vinyl acetate resin , 0.01 to 0.3 part by weight of peroxide and 0.01 to 1.0 part by weight of an antioxidant are added to prepare an ethylene vinyl acetate resin grafted with 0.1 to 15.0% of carboxylic acid (S100) 5 to 30% by weight of a vinyl acetate-vinyl acetate copolymer resin and 70 to 95% by weight of an ethylene-vinyl acetate resin are mixed to prepare a substrate, 0.05 to 15.0 parts by weight of a diamine, To 4 parts by weight of stearic acid and 0.5 to 1.5 parts by weight of stearic acid were added and kneaded at a temperature of 120 to 150 ° C for 15 to 20 minutes using a kneader, The 0.5 to 1.5 parts by weight of blowing agent by adding 2-4 parts by weight are prepared through step (S200) of dispersing in an open roll (roll open).

본 발명에서 사용되는 상기 기재 및 각종 첨가제에 관한 구체적인 조성비 등은 상기에서 이미 설명하였으므로 여기서는 생략한다.The specific compositional ratios and the like of the base material and various additives used in the present invention have already been described above, so they are omitted here.

한편, 상기 S100 단계에서 압출 조건이 상기 범위 미만일 경우, 과산화물의 개시반응이 활성화 되지 않아 그라프트 반응률이 저하되어 그라프트율이 0.1% 이하로 낮아지는 경향이 나타나며, 상기 범위를 초과할 경우, 기재 합성고무 및 불포화 카르복실 산(Unsaturated carboxylic acid)이 열화 및 겔화되는 현상이 나타나는 문제점이 있다.On the other hand, if the extrusion condition is less than the above range, the initiation reaction of the peroxide is not activated and the graft reaction rate is lowered and the graft rate tends to be lowered to 0.1% or less. If the extrusion condition is out of the above range, And unsaturated carboxylic acid are deteriorated and gelled.

아울러, 상기 S200 단계에서 상기 혼합 조건이 상기 범위 미만일 경우, 각 기재 및 첨가제가 제대로 혼합되지 못할 우려가 있다.If the mixing condition is less than the above range in step S200, the substrate and the additive may not be mixed properly.

이하 본 발명을 아래의 구성으로 제조한 실시예에 의거하여 더욱 상세히 설명하겠는바 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the examples.

1. 발포체의 제조1. Preparation of foams

(실시예 1)(Example 1)

에틸렌 비닐아세테이트 수지 100 중량부에 대하여, 불포화 카르복실산(이타콘산) 0.15 중량부, 과산화물(과산화 칼슘) 0.01 중량부, 산화방지제(Songnox-1076, 송원화학) 0.01 중량부를 첨가하여 카르복실산이 0.1% 그라프트된 이타콘산 그라프트 에틸렌 비닐아세테이트 수지를 제조하였다.0.15 part by weight of an unsaturated carboxylic acid (itaconic acid), 0.01 part by weight of peroxide (calcium peroxide), and 0.01 part by weight of an antioxidant (Songnox-1076, Songwon Chemical) were added to 100 parts by weight of ethylene vinyl acetate resin, % Grafted itaconic acid grafted ethylene vinyl acetate resin.

그리고, 에틸렌-비닐아세테이트 수지(EVA 1317, 한화케미칼) 95 중량%와 상기 제조된 이타콘산 그라프트 에틸렌 비닐아세테이트 수지 5 중량%로 이루어진 기재 100중량부에 대하여 디아민(에틸렌디아민) 0.05 중량부, 산화아연 3 중량부, 스테아린산 1 중량부 첨가하여 120 ~ 150℃의 온도로 약 15 ~ 20분 동안 니더를 이용하여 혼련하고, 이후에 가교제(디큐밀퍼옥사이드) 1.0 중량부, 발포제(아조디카본아미드) 3.0 중량부 첨가하여 오픈 롤에서 분산시킨 과정을 거쳐 컴파운드를 제조한다. 이를 155℃에서 20분간 프레스로 성형하여 발포체를 제조하였다.Then, 0.05 part by weight of diamine (ethylenediamine), 0.05 part by weight of ethylene oxide-vinyl acetate resin (EVA 1317, available from Hanwha Chemical Co., Ltd.) and 100 parts by weight of a substrate composed of the prepared itaconic acid graft ethylene vinyl acetate resin- 3 parts by weight of zinc and 1 part by weight of stearic acid were added and kneaded at a temperature of 120 to 150 DEG C for about 15 to 20 minutes using a kneader. Then, 1.0 part by weight of a cross-linking agent (dicumyl peroxide) 3.0 parts by weight, and dispersed in an open roll to prepare a compound. This was molded in a press at 155 DEG C for 20 minutes to prepare a foam.

(실시예 2)(Example 2)

에틸렌 비닐아세테이트 수지 100 중량부에 대하여, 불포화 카르복실산(이타콘산) 25 중량부, 과산화물(과산화 칼슘) 0.3 중량부, 산화방지제(Songnox-1076, 송원화학) 1.0 중량부를 첨가하여 카르복실산이 15.0% 그라프트된 이타콘산 그라프트 에틸렌 비닐아세테이트 수지를 제조하였다.25 parts by weight of an unsaturated carboxylic acid (itaconic acid), 0.3 part by weight of peroxide (calcium peroxide), and 1.0 part by weight of an antioxidant (Songnox-1076, Songwon Chemical) were added to 100 parts by weight of ethylene vinyl acetate resin, % Grafted itaconic acid grafted ethylene vinyl acetate resin.

그리고, 에틸렌-비닐아세테이트 수지(EVA 1317, 한화케미칼) 70 중량%와 상기 제조된 이타콘산 그라프트 에틸렌 비닐아세테이트 수지 30 중량%로 이루어진 기재 100중량부에 대하여 디아민(헥사메틸렌디아민) 15.0 중량부, 산화아연 3 중량부, 스테아린산 1 중량부 첨가하여 120 ~ 150℃의 온도로 약 15 ~ 20분 동안 니더를 이용하여 혼련하고, 이후에 가교제(디큐밀퍼옥사이드) 1.0 중량부, 발포제(아조디카본아미드) 3.0 중량부 첨가하여 오픈 롤에서 분산시킨 과정을 거쳐 컴파운드를 제조한다. 이를 155℃에서 20분간 프레스로 성형하여 발포체를 제조하였다.Then, 15 parts by weight of diamine (hexamethylenediamine) was added to 100 parts by weight of a substrate made of 70% by weight of an ethylene-vinyl acetate resin (EVA 1317, Hanwha Chemical) and 30% by weight of the prepared itaconic acid graft ethylene vinyl acetate resin, 3 parts by weight of zinc oxide and 1 part by weight of stearic acid were added and kneaded at a temperature of 120 to 150 DEG C for about 15 to 20 minutes using a kneader. Then, 1.0 part by weight of a cross-linking agent (dicumyl peroxide) ) Was added and dispersed in an open roll to prepare a compound. This was molded in a press at 155 DEG C for 20 minutes to prepare a foam.

(비교예 1)(Comparative Example 1)

에틸렌-비닐아세테이트 수지(EVA 1317, 한화케미칼) 100 중량부에 대하여 산화아연 3 중량부, 스테아린산 1 중량부 첨가하여 120 ~ 150℃의 온도로 약 15 ~ 20분 동안 니더를 이용하여 혼련하고, 이후에 가교제(디큐밀퍼옥사이드) 1.0 중량부, 발포제(아조디카본아미드) 3.0 중량부 첨가하여 오픈 롤에서 분산시킨 과정을 거쳐 컴파운드를 제조한다. 이를 155℃에서 20분간 프레스로 성형하여 발포체를 제조하였다.3 parts by weight of zinc oxide and 1 part by weight of stearic acid were added to 100 parts by weight of an ethylene-vinyl acetate resin (EVA 1317, Hanwha Chemical) and kneaded using a kneader at a temperature of 120 to 150 DEG C for about 15 to 20 minutes, , 1.0 part by weight of a crosslinking agent (dicumyl peroxide) and 3.0 parts by weight of a foaming agent (azodicarbonamide) were added and dispersed in an open roll to prepare a compound. This was molded in a press at 155 DEG C for 20 minutes to prepare a foam.

(비교예 2)(Comparative Example 2)

에틸렌-비닐아세테이트 수지(EVA 1317, 한화케미칼) 95 중량%, 말레인산 무수물 그라프트 에틸렌-비닐아세테이트(Fusabond MO525D, 듀폰) 5 중량%로 이루어진 기재 100중량부에 대하여 산화아연 3 중량부, 스테아린산 1 중량부 첨가하여 120 ~ 150℃의 온도로 약 15 ~ 20분 동안 니더를 이용하여 혼련하고, 이후에 가교제(디큐밀퍼옥사이드) 1.0 중량부, 발포제(아조디카본아미드) 3.0 중량부 첨가하여 오픈 롤에서 분산시킨 과정을 거쳐 컴파운드를 제조한다. 이를 155℃에서 20분간 프레스로 성형하여 발포체를 제조하였다.3 parts by weight of zinc oxide, 3 parts by weight of stearic acid, 1 part by weight of stearic acid, and 1 part by weight of stearic acid were added to 100 parts by weight of a substrate composed of 95% by weight of an ethylene-vinyl acetate resin (EVA 1317, Hanwha Chemical) and 5% by weight of a maleic anhydride graft ethylene-vinylacetate (Fusabond MO525D, DuPont) (Dicumyl peroxide) and 3.0 parts by weight of a foaming agent (azodicarbonamide) were added thereto, and the mixture was kneaded in an open roll at a temperature of 120 to 150 ° C for about 15 to 20 minutes using a kneader. The compound is prepared through a dispersing process. This was molded in a press at 155 DEG C for 20 minutes to prepare a foam.

(비교예 3)(Comparative Example 3)

에틸렌-비닐아세테이트 수지(EVA 1317, 한화케미칼) 70 중량%, 말레인산 무수물 그라프트 에틸렌-비닐아세테이트(Fusabond MO525D, 듀폰) 30 중량%로 이루어진 기재 100 중량부에 대하여 산화아연 3 중량부, 스테아린산 1 중량부 첨가하여 120 ~ 150℃의 온도로 약 15 ~ 20분 동안 니더를 이용하여 혼련하고, 이후에 가교제 1.0 중량부, 발포제 3.0 중량부 첨가하여 오픈 롤에서 분산시킨 과정을 거쳐 컴파운드를 제조한다. 이를 155℃에서 20분간 프레스로 성형하여 발포체를 제조하였다.3 parts by weight of zinc oxide, 3 parts by weight of stearic acid, 1 part by weight of stearic acid, and 1 part by weight of stearic acid were added to 100 parts by weight of a base material composed of 70% by weight of an ethylene-vinyl acetate resin (EVA 1317, Hanwha Chemical) and 30% by weight of maleic anhydride graft ethylene-vinylacetate (Fusabond MO525D, DuPont) And the mixture is kneaded at a temperature of 120 to 150 ° C for about 15 to 20 minutes using a kneader. Then, 1.0 part by weight of a cross-linking agent and 3.0 parts by weight of a blowing agent are added and dispersed in an open roll to prepare a compound. This was molded in a press at 155 DEG C for 20 minutes to prepare a foam.

2. 발포체의 평가2. Evaluation of foams

상기 실시예 1 ~ 2 및 비교예 1~3에 의해 제조된 발포체 조성물은 다음과 같은 방법으로 특성 시험하여 조성물의 기계적 물성을 평가하였으며 그 결과를 [표 2]에 나타내었다.The foam compositions prepared according to Examples 1 to 2 and Comparative Examples 1 to 3 were subjected to a characteristic test in the following manner to evaluate the mechanical properties of the composition and the results are shown in Table 2.

1) 비중 : 자동 비중 측정 장치를 이용하여 5회 측정하여 그 평균치를 취하였다. 1) Specific gravity: The gravity was measured five times using an automatic gravity measuring device and the average was taken.

2) 경도 : 경도는 시험편 표면에 에스커 에이(Asker A) 타입의 경도계로 ASTM D-2240에 준하여 측정하였다. 2) Hardness: The hardness was measured on the surface of a test piece with an Asker A type hardness meter according to ASTM D-2240.

3) 인장강도 : 제조된 시험편을 약 3mm 두께로 만든 후 KS M6518에 따른 2호형을 커터(cutter)로 시험편을 제작하여 KS M6518에 준하여 인장강도와 연신율을 측정하였다. 이때 동일 시험에 사용한 시험편은 3개로 하였다. 3) Tensile strength: The test specimens were cut to a thickness of about 3 mm, cut into two pieces according to KS M6518, and tensile strength and elongation were measured according to KS M6518. At this time, three test pieces were used in the same test.

4) 인열강도 : KS M6518에 따라 측정을 하였으며, 측정속도는 100m/분으로 5회 측정하였다. 4) Tear strength: Measured according to KS M6518, and the measurement speed was measured five times at 100 m / min.

5) 영구압축변형률 : KS M6518에 따라 측정을 하였으며, 측정조건은 70℃에서 22시간, 160℃에서 24시간동안 25% 압축하였으며 이러한 조건에서의 영구압축변형률을 측정하였다. 5) Permanent compression strain: Measured according to KS M6518. The measurement conditions were 25% compression at 70 ℃ for 24 hours and 160 ℃ for 24 hours, and the permanent compressive strain was measured under these conditions.

6) 스플릿 인열 : 파열인열강도 시험은 만능시험기(UTM, Zwick 모델 1435)를 사용하여 측정하였으며, 동일시험에 사용한 시험편(10×25×100mm)은 5개로 하였으며, 측정시의 중간값에서 20%이상 벗어나는 것은 제외하고 측정하였다.6) Split tear: The tear strength was measured using a universal testing machine (UTM, Zwick Model 1435). The test specimens (10 × 25 × 100 mm) %.

7) 반발탄성 : 내열성 시험은 KS M ISO 188에 따라 측정을 하였으며, 측정조건은 120℃에서 72시간동안 열처리 후에 인장강도 및 신장률의 변화를 측정하였다. 7) Rebound Elasticity: The heat resistance test was carried out according to KS M ISO 188, and the change in tensile strength and elongation was measured after heat treatment at 120 ° C for 72 hours.

8) 접촉각 : 발포체에 물을 떨어뜨린 후 접촉각 측정기(DSA100R, KRUSS사)를 이용하여 측정하였다.8) Contact angle: Water was dropped on the foamed product and measured using a contact angle meter (DSA100R, KRUSS).

9) 접착 강도 : 고무 소재로 제조된 피착제를 100×10mm의 크기로 잘라 톨루엔으로 세척하여 건조하였다. 고무의 접착면에 수성형 프라이머(PR-505, 헨켈) 1회 도포하고 55℃에서 5분간 열처리하여 건조시켰다. 그리고 실시예 및 비교예에 따른 발포체를 피착제에 접촉시킨 후, 3 ~ 4 kgf의 하중을 가하여 접착하여 접착시편을 제조하였다. 그리고 상기 제조된 접착시편을 상온에서 30분간 방치한 후 만능시험기(UTM, Zwick 모델 1435)를 사용하여 100±20㎜/min의 속도로 박리하여 접착강도를 평가하였다. 접착시편은 5개를 측정하여 평균값을 측정하였다.9) Adhesive strength: Adhesive made of rubber material was cut into a size of 100 × 10 mm, washed with toluene and dried. A water-forming primer (PR-505, Henkel) was applied once to the adhesive surface of the rubber, followed by heat treatment at 55 占 폚 for 5 minutes and drying. Then, the foams according to Examples and Comparative Examples were brought into contact with the adherend, and then adhered by applying a load of 3 to 4 kgf to prepare adhesive specimens. The adhesive specimens were allowed to stand at room temperature for 30 minutes and peeled off at a rate of 100 ± 20 mm / min using a universal testing machine (UTM, Zwick Model 1435) to evaluate the adhesive strength. Five adhesive specimens were measured and their average values were measured.

구 분division 실시예Example 비교예Comparative Example 1One 22 1One 22 33 발포배율(%)Foaming magnification (%) 161161 153153 164164 157157 ** 경도(A-type)1) Hardness (A-type) 1) 5757 5555 5757 6565 ** 경도(A-type)2) Hardness (A-type) 2) 5151 5151 5050 5757 ** 비중importance 0.210.21 0.200.20 0.190.19 0.230.23 ** 인장강도
(kgf/cm2)
The tensile strength
(kgf / cm2)
25.225.2 26.9326.93 2121 2525 **
100%모듈러스
(kgf/cm2)
100% modulus
(kgf / cm 2 )
16.316.3 17.317.3 1313 1818 **
신장률
(%)
Elongation
(%)
230230 185185 285285 161161 **
인열강도
(kgf/cm)
Phosphorus strength
(kgf / cm)
12.312.3 13.713.7 99 1414 **
영구압축
변형률(%)3)
Permanent compression
Strain (%) 3)
4747 3737 5555 4747 **
스플릿 인열(kgf/cm)Split tear (kgf / cm) 1.91.9 2.42.4 1.61.6 1.91.9 ** 반발탄성(%)Resilience (%) 53-5653-56 53-5653-56 43-4543-45 4949 ** 접촉각(°)Contact angle (°) 8989 8484 9393 8787 ** 접착 강도(kgf/cm)Adhesive strength (kgf / cm) 1.11.1 1.81.8 0.90.9 1.01.0 ** * 성형 불가능(가공 안됨)
1) 스킨 있음
2) 스킨 없음
3) 50℃에서 5시간 동안 50% 압축
* Unformatable (not processed)
1) With skin
2) No skins
3) 50% compression at 50 < 0 > C for 5 hours

상기 [표 1]에서와 같이, 본 발명에 따른 발포체 조성물로 제조된 발포체는 비교예에 비하여 기계적 강도와 영구압축변형률이 우수할 뿐만 아니라 반발탄성이 매우 우수하며, 또한 기존 에틸렌-비닐아세테이트 발포체에 비해 프라이머 및 UV 처리를 하지 않은 상태에서 접착 강도가 우수함을 알 수 있다.As shown in Table 1, the foam prepared by the foam composition according to the present invention has excellent mechanical strength and permanent compression strain as well as excellent rebound resilience as compared with the comparative example, It can be seen that the adhesive strength is excellent in a state in which primer and UV treatment are not performed.

상술한 바와 같은, 본 발명의 바람직한 실시예에 따른 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물 및 이의 제조 방법을 상기한 설명 및 도면에 따라 설명하였지만 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.Although the foam composition excellent in the rebound resilience and primerless state according to the preferred embodiment of the present invention as described above and the method for producing the foam composition have been described with reference to the above description and drawings, It will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit of the invention.

S100 : 카르복실산 그라프트 에틸렌 비닐아세테이트 수지를 제조하는 단계
S200 : 카르복실산 그라프트 에틸렌 비닐아세테이트 수지와 에틸렌-비닐아세테이트 수지를 혼합하여 기재를 제조하고, 여기에 첨가제, 가교제 및 발포제를 첨가하는 단계
S100: Step of producing carboxylic acid grafted ethylene vinyl acetate resin
S200: a step of mixing a carboxylic acid grafted ethylene vinyl acetate resin and an ethylene-vinyl acetate resin to prepare a substrate, adding additives, a crosslinking agent and a foaming agent thereto

Claims (5)

발포체 조성물에 있어서,
카르복실산 그라프트 에틸렌 비닐아세테이트 수지 및 에틸렌-비닐아세테이트 수지를 포함하여 이루어지는 것을 특징으로 하는, 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물.
In the foam composition,
Wherein the resin composition comprises a carboxylic acid grafted ethylene vinyl acetate resin and an ethylene-vinyl acetate resin, wherein the foam composition has excellent adhesive strength in repulsive elastic and primerless states.
제 1항에 있어서,
상기 발포체 조성물은,
카르복실산 그라프트 에틸렌 비닐아세테이트 수지 5 ~ 30 중량% 및 에틸렌-비닐아세테이트 수지 70 ~ 95 중량%로 이루어진 기재 100 중량부에 대하여, 디아민 0.05 ~ 15.0 중량부, 산화아연 2 ~ 4 중량부, 스테아린산 0.5 ~ 1.5 중량부, 가교제 0.5 ~ 1.5 중량부 및 발포제 2 ~ 4 중량부를 혼합하여 이루어지는 것을 특징으로 하는, 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물.
The method according to claim 1,
The foam composition may comprise,
0.05 to 15.0 parts by weight of a diamine, 2 to 4 parts by weight of zinc oxide, 0.1 to 5 parts by weight of a stearic acid, and 5 to 30 parts by weight of a polyvinyl alcohol resin, based on 100 parts by weight of a base composed of 5 to 30% by weight of a carboxylic acid graft ethylene vinyl acetate resin and 70 to 95% 0.5 to 1.5 parts by weight of a crosslinking agent, 0.5 to 1.5 parts by weight of a crosslinking agent and 2 to 4 parts by weight of a foaming agent.
제 2항에 있어서,
상기 카르복실산 그라프트 에틸렌 비닐아세테이트 수지는,
에틸렌 비닐아세테이트 수지 100 중량부에 대하여, 불포화 카르복실산 0.15 ~ 25 중량부, 과산화물 0.01 ~ 0.3 중량부, 산화방지제 0.01 ~ 1.0 중량부를 첨가하여 카르복실산이 0.1 ~ 15.0% 그라프트된 것을 특징으로 하는, 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물.
3. The method of claim 2,
The carboxylic acid grafted ethylene vinyl acetate resin is preferably a graft-
Wherein 0.1 to 25 parts by weight of an unsaturated carboxylic acid, 0.01 to 0.3 parts by weight of a peroxide, and 0.01 to 1.0 part by weight of an antioxidant are added to 100 parts by weight of an ethylene vinyl acetate resin to form a carboxylic acid in an amount of 0.1 to 15.0% , Rebound resilience and adhesive strength in a primerless state.
제 2항에 있어서,
상기 디아민은,
양 말단에 아미드기를 가지는 디아민으로써, 에틸렌디아민(ethylendiamine), 카다버림(cadaverine), 헥사메틸렌디아민(hexamethylenediamine) 중에서 단독 또는 병용하여 사용하는 것을 특징으로 하는, 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물.
3. The method of claim 2,
The diamine,
Which has an amide group at both ends and is used alone or in combination with ethylenediamine, cadaverine or hexamethylenediamine as the diamine having an amide group, the adhesive strength in the repulsive elasticity and the primerless state A good foam composition.
반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물의 제조 방법에 있어서,
에틸렌 비닐아세테이트 수지 100 중량부에 대하여, 불포화 카르복실산 0.15 ~ 25 중량부, 과산화물 0.01 ~ 0.3 중량부, 산화방지제 0.01 ~ 1.0 중량부를 첨가하여 카르복실산이 0.1 ~ 15.0% 그라프트된 에틸렌 비닐아세테이트 수지를 제조하는 단계(S100); 및
상기 S100 단계를 거쳐 제조된 카르복실산 그라프트 에틸렌 비닐아세테이트 수지 5 ~ 30 중량%와 에틸렌-비닐아세테이트 수지 70 ~ 95 중량%를 혼합하여 기재를 제조하고, 상기 기재 100 중량부에 대하여, 디아민 0.05 ~ 15.0 중량부, 산화아연 2 ~ 4 중량부 및 스테아린산 0.5 ~ 1.5 중량부를 첨가하여 120 ~ 150℃의 온도로 15 ~ 20분 동안 니더(kneader)를 이용하여 혼련하고, 이후에 가교제 0.5 ~ 1.5 중량부 및 발포제 2 ~ 4 중량부를 첨가하여 오픈롤(open roll)에서 분산시키는 단계(S200);를 포함하여 구성되는 것을 특징으로 하는, 반발탄성 및 프라이머 리스 상태에서의 접착 강도가 우수한 발포체 조성물의 제조 방법.
In a method for producing a foam composition excellent in rebound resilience and adhesive strength in a primerless state,
0.1 to 25 parts by weight of an unsaturated carboxylic acid, 0.01 to 0.3 part by weight of peroxide and 0.01 to 1.0 part by weight of an antioxidant are added to 100 parts by weight of an ethylene vinyl acetate resin to obtain an ethylene vinyl acetate resin (S100); And
5 to 30% by weight of a carboxylic acid grafted ethylene vinyl acetate resin prepared through the step S100 and 70 to 95% by weight of an ethylene-vinyl acetate resin are mixed to prepare a base material. To 100 parts by weight of the base material, 0.05 15.0 parts by weight of zinc oxide, 2 to 4 parts by weight of zinc oxide and 0.5 to 1.5 parts by weight of stearic acid were added and kneaded at a temperature of 120 to 150 ° C for 15 to 20 minutes using a kneader, And 2 to 4 parts by weight of a blowing agent and dispersing the mixture in an open roll (S200). The foamed composition according to claim 1, Way.
KR1020170063678A 2017-05-23 2017-05-23 Foam compounds having high resilience and adhesion strength in primerless state and method producing thereof KR101963414B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170063678A KR101963414B1 (en) 2017-05-23 2017-05-23 Foam compounds having high resilience and adhesion strength in primerless state and method producing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170063678A KR101963414B1 (en) 2017-05-23 2017-05-23 Foam compounds having high resilience and adhesion strength in primerless state and method producing thereof

Publications (2)

Publication Number Publication Date
KR20180128294A true KR20180128294A (en) 2018-12-03
KR101963414B1 KR101963414B1 (en) 2019-03-28

Family

ID=64743389

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170063678A KR101963414B1 (en) 2017-05-23 2017-05-23 Foam compounds having high resilience and adhesion strength in primerless state and method producing thereof

Country Status (1)

Country Link
KR (1) KR101963414B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839422A (en) * 1987-12-23 1989-06-13 Exxon Chemical Patents Inc. Ternary adhesive compositions
KR970027193A (en) 1995-11-13 1997-06-24 칼루자 마이클 이. Thermoplastic Vulcanized Rubber Obtained from EPDM or Conjugated Diene Rubber and Isobutylene Rubber
JPH11335427A (en) * 1998-05-25 1999-12-07 Toyo Ink Mfg Co Ltd Modified ethylene/vinyl acetate copolymer
KR20020033732A (en) 1999-07-16 2002-05-07 마이클 이. 카루짜 Thermoplastic vulcanizate with defined morphology for optimum elastic recovery
KR101155869B1 (en) 2009-12-14 2012-06-20 이창성 Thermo-reversible Crosslinked elastomer and Method producing thereof
KR101270545B1 (en) 2011-04-08 2013-06-03 한국신발피혁연구원 Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Method producing thereof
JP2014218587A (en) * 2013-05-09 2014-11-20 神島化学工業株式会社 Resin composition
KR20170046897A (en) * 2015-10-22 2017-05-04 한국신발피혁연구원 Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Method producing thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839422A (en) * 1987-12-23 1989-06-13 Exxon Chemical Patents Inc. Ternary adhesive compositions
KR970027193A (en) 1995-11-13 1997-06-24 칼루자 마이클 이. Thermoplastic Vulcanized Rubber Obtained from EPDM or Conjugated Diene Rubber and Isobutylene Rubber
JPH11335427A (en) * 1998-05-25 1999-12-07 Toyo Ink Mfg Co Ltd Modified ethylene/vinyl acetate copolymer
KR20020033732A (en) 1999-07-16 2002-05-07 마이클 이. 카루짜 Thermoplastic vulcanizate with defined morphology for optimum elastic recovery
KR101155869B1 (en) 2009-12-14 2012-06-20 이창성 Thermo-reversible Crosslinked elastomer and Method producing thereof
KR101270545B1 (en) 2011-04-08 2013-06-03 한국신발피혁연구원 Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Method producing thereof
JP2014218587A (en) * 2013-05-09 2014-11-20 神島化学工業株式会社 Resin composition
KR20170046897A (en) * 2015-10-22 2017-05-04 한국신발피혁연구원 Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Method producing thereof

Also Published As

Publication number Publication date
KR101963414B1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
KR101232846B1 (en) Sponge composition for shoe sole
US20070276092A1 (en) Thermoplastic Elastomer Composition, Method for Producing Same and Formed Article
WO2008082442A1 (en) Composition comprising copolyetherester elastomer
US20070129454A1 (en) Thermoplastic elastomer foaming material and the manufacturing method thereof
CN109251464B (en) SEBS composite foam material
EP0336780B1 (en) Thermoplastic resin or elastomer composition having excellent paint adhesion and laminate comprising layer of said thermoplastic elastomer and polyurethane layer
EP0718347A1 (en) Method to adhere thermoplastic elastomer blends to polyester substrates
KR101709691B1 (en) Method producing of foam compounds having high mechanical properties and low compression set and adhesion strength in primerless state
EP1050548B1 (en) A thermoplastic composition and a process for making the same
KR101922525B1 (en) Foam compounds having excellent processibility, high mechanical properties, low compression set and adhesion strength in primerless state and method producing thereof
JP6564548B2 (en) Resin foam and member for shoe sole using the same
CN109135039B (en) Plant micropowder polymer foaming material and preparation method and application thereof
KR101819674B1 (en) Foam compounds having high mechanical properties and low compression set and adhesion strength in primerless state
EP1795552A1 (en) A thermoplastic elastomer foaming material and its processing
JPWO2019176796A1 (en) A laminate containing an ethylene / α-olefin / non-conjugated polyene copolymer composition, and an ethylene / α-olefin / non-conjugated polyene copolymer composition.
KR101963414B1 (en) Foam compounds having high resilience and adhesion strength in primerless state and method producing thereof
JP2023184718A (en) Resin molding
KR102133592B1 (en) Foam compounds having low hardness and high elastic
KR101945713B1 (en) Foam compounds having excellent elasticity and adhesion strength in primerless state and method producing thereof
KR20090080962A (en) Reactively-coupled articles and related methods
JP2007112921A (en) Method for processing into organic peroxide crosslinked rubber continuous molding and crosslinked rubber molding prepared thereby
JP7386258B2 (en) Rubber-metal composites, tires, and rubber articles
EP3822313A1 (en) Highly insulated rubber composition, processing method therefor, and uses thereof
KR102116133B1 (en) Method producing of foam compounds having high resilience and anti slip property
JP5361779B2 (en) Thermoplastic elastomer composition and foam obtained from the composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right