KR20180123558A - 제1 랜드마크의 글로벌 위치를 결정하는 방법 및 시스템 - Google Patents

제1 랜드마크의 글로벌 위치를 결정하는 방법 및 시스템 Download PDF

Info

Publication number
KR20180123558A
KR20180123558A KR1020187030296A KR20187030296A KR20180123558A KR 20180123558 A KR20180123558 A KR 20180123558A KR 1020187030296 A KR1020187030296 A KR 1020187030296A KR 20187030296 A KR20187030296 A KR 20187030296A KR 20180123558 A KR20180123558 A KR 20180123558A
Authority
KR
South Korea
Prior art keywords
landmark
determined
measurement data
data set
detected
Prior art date
Application number
KR1020187030296A
Other languages
English (en)
Other versions
KR102128851B1 (ko
Inventor
크리스티안 머펠스
위구르 케켁
Original Assignee
폭스바겐 악티엔 게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 폭스바겐 악티엔 게젤샤프트 filed Critical 폭스바겐 악티엔 게젤샤프트
Publication of KR20180123558A publication Critical patent/KR20180123558A/ko
Application granted granted Critical
Publication of KR102128851B1 publication Critical patent/KR102128851B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3811Point data, e.g. Point of Interest [POI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3837Data obtained from a single source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3859Differential updating map data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/485Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

본 발명은 제1 랜드마크(21c)의 글로벌 위치를 결정하는 방법에 관한 것으로서, 적어도 제1 및 제2 측정 데이터 세트가 검출된다. 상기 제1 측정 데이터 세트에는 제1 기준점 및 제1 검출 공간(20a)이 할당되고, 상기 제2 측정 데이터 세트에는 제2 기준점 및 제2 검출 공간(20b)이 할당된다. 또한, 상기 제1 랜드마크(21c)는 상기 제1 검출 공간(20a) 및 상기 제2 검출 공간(20b)에서 감지되고, 제2 랜드마크(21a, 21b)는 상기 제1 검출 공간(20a)에서 감지된다. 상기 제1 측정 데이터 세트에 기초하여 상기 제1 검출 공간(20a)의 상기 기준점에 대한 상기 제1 랜드마크(21c) 및 상기 제2 랜드마크(21a, 21b)의 제1 상대 위치(22a, 22b, 22c)가 결정된다. 상기 제2 측정 데이터 세트에 기초하여 상기 제2 검출 공간(20b)의 상기 기준점에 대한 상기 제1 랜드마크(21c)의 제2 상대 위치(23c)가 결정된다. 이어서, 상기 제1 측정 데이터 세트에 기초하여 상기 제1 랜드마크(21c) 및 상기 제2 랜드마크(21a, 21b) 간의 서로에 대한 공간적 상관관계가 결정된다. 마지막으로, 상기 제1 랜드마크(21c)의 상기 결정된 제1 상대 위치(22c) 및 상기 결정된 제2 상대 위치(23c)에 기초하여, 상기 제2 랜드마크(21a, 21b)의 상기 결정된 제1 상대 위치(22a, 22b)에 기초하여 그리고 상기 결정된 공간적 상관관계에 기초하여 글로벌 기준점에 대한 상기 제1 랜드마크(21c)의 상기 글로벌 위치가 결정된다. 또한, 본 발명은 제1 랜드마크의 글로벌 위치를 결정하는 시스템에 관한 것이다.

Description

제1 랜드마크의 글로벌 위치를 결정하는 방법 및 시스템
본 발명은 제1 랜드마크의 글로벌 위치를 결정하는 방법 및 시스템에 관한 것이다.
차량의 자동 주행은 차량의 위치가 모든 상황에서 정확하게 알려지는 것을 전제로 하고, 특히 데시미터 또는 센티미터 범위의 정확도가 요구된다. 일반적으로 이러한 정확도는 일련의 설치된 위성 지원 위치 결정 방법(예를 들어, GPS)을 통해서는 달성되지 않으며, 이러한 방법에 의한 위치 결정은 종종 시스템의 불규칙한 동작을 초래한다. 따라서, 차량의 위치 확인을 위해 차량의 현재 센서 데이터가 알려진 지도 데이터와 비교되는 지도 지원 방법이 사용될 수 있다. 지도 데이터는 예를 들어 랜드마크의 정확한 위치를 포함하기 때문에, 차량은 그 주변에서 랜드마크를 검출할 수 있고, 센서 데이터와 지도 데이터의 비교를 통해 차량의 현재 위치가 매우 정확하게 결정될 수 있다.
예를 들어 기준 차량에 의해 랜드마크가 있는 지도 데이터의 검출 시, 랜드마크는 기준 차량의 센서에 기초하여 인식될 수 있고, 결정된 정확도로 위치 확인될 수 있다. 복수의 관측 및 측정 오류의 조정을 통해, 지도의 좌표 시스템에서의 위치가 결정된다. 랜드마크가 있는 지도가 존재하는 위치에서 매핑 후에 차량이 지나갈 때, 랜드마크에 대한 차량의 위치가 결정될 수 있다. 따라서, 랜드마크 지도의 정확도는 그에 기초한 차량의 위치 확인의 정확도를 위해 실질적으로 중요하다.
예를 들어 위성 시스템의 데이터의 추후 프로세싱에 의해 충분한 정확도로 매핑 동작의 결정된 시점에서 기준 차량의 실제 위치를 결정할 수 있는 충분히 정확한 기준 위치 확인 시스템이 제공되는 경우, 랜드마크의 매핑 시 특히 기준 차량의 위치가 알려진 것으로 전제될 수 있다("알려진 포즈로 매핑"). 랜드마크의 각각의 검출된 위치는 이제 이전에 결정된 위치와 관련지어진다. 랜드마크의 위치의 결정 시 불확실성을 보상하기 위해, 최소 자승법에 의한 조정 계산이 사용된다. 이러한 방식으로, 지도의 좌표 시스템 내에서 랜드마크의 위치가 결정된다.
DE 10 2004 003 850 A1호에 제안된 도로 상의 표지를 인식하는 방법에서는 레이저 스캐너를 통해 검출 공간 내의 복수의 거리 이미지가 시간적 시퀀스로 검출되고, 여기서 검출 공간은 도로 표면과 교차한다. 인식된 표지에 대해 위치 및 형상이 추정된다. 특히, 도로 표지가 인식된다.
DE 10 2007 020 791 A1호는 데이터가 라이더 장치에 의해 검출되는 차선 표지를 위한 인식 장치를 기술한다. 중심선 위치, 중심선 형상 및 차선 너비를 기초로 하여 차선에 대한 데이터가 주기적으로 추출된다. 또한, 곡선 경로에서 인식된 차선의 추적이 설명된다.
따라서, 본 발명의 과제는 랜드마크 지도의 정확도의 증가를 가능하게 하는 방법 및 시스템을 제공하는 것이고, 이 경우 랜드마크 지도는 특히 기준 차량의 데이터에 기초하여 생성된다.
본 발명에 따르면, 상기 과제는 청구항 제1항의 특징을 갖는 방법 및 청구항 제13항의 특징을 갖는 시스템에 의해 달성된다. 유리한 실시예 및 개발예는 종속항으로부터 명백해질 것이다.
제1 랜드마크의 글로벌 위치를 결정하는 본 발명에 따른 방법에서, 적어도 제1 및 제2 측정 데이터 세트가 검출된다. 여기서, 제1 측정 데이터 세트에는 제1 기준점 및 제1 검출 공간이 할당되고, 제2 측정 데이터 세트에는 제2 기준점 및 제2 검출 공간이 할당된다. 제1 랜드마크는 제1 검출 공간 및 제2 검출 공간에서 감지된다. 또한, 제2 랜드마크는 제1 검출 공간에서 감지된다. 제1 측정 데이터 세트에 기초하여 제1 검출 공간의 기준점에 대한 제1 랜드마크 및 제2 랜드마크의 제1 상대 위치가 결정되고, 제2 측정 데이터 세트에 기초하여 제2 검출 공간의 기준점에 대한 제1 랜드마크의 제2 상대 위치가 결정된다. 이어서, 제1 측정 데이터 세트에 기초하여 제1 랜드마크 및 제2 랜드마크의 서로에 대한 공간적 상관관계가 결정된다.
제1 랜드마크의 결정된 제1 상대 위치 및 제2 상대 위치에 기초하여, 제2 랜드마크의 결정된 제1 상대 위치에 기초하여 그리고 결정된 공간적 상관관계에 기초하여 글로벌 기준점에 대한 제1 랜드마크의 글로벌 위치가 결정된다.
이를 통해, 유리하게는 제1 랜드마크의 글로벌 위치가 특히 높은 정확도로 결정될 수 있고, 측정 오류가 정정될 수 있다.
본 발명은 예를 들어 평균값에 기초하여 또는 최소 자승법에 따라 감소된 측정 오류로 이러한 랜드마크의 최적화된 위치를 결정하기 위해, 단순히 결정된 랜드마크의 위치가 여러 번 결정되는 것은 아니라는 것에 기초한다. 그 대신에 복수의 랜드마크의 서로에 대한 상대 위치가 최적화 시 경계 조건("제약")으로 또한 고려된다. 이러한 경계 조건을 통해 특히 복수의 랜드마크의 서로에 대한 상대 위치와 구조가 발생된 랜드마크 지도에서 획득되어 유지되도록 요구된다.
알려진 시스템에서, 일반적으로 랜드마크는 여러 번 검출되고, 위치 확인되며, 이러한 개별 랜드마크의 복수의 측정이 사용되어, 다른 랜드마크와는 독립적으로 정확한 위치가 결정된다. 예를 들어, 복수의 이미지가 검출되고 이미지에 기초하여 결정된 랜드마크의 상대 위치가 각각 결정되는데, 즉 각각의 이미지에 대해 결정된 불확실성으로 결정된 기준점에 대한 위치가 결정된다. 이어서, 랜드마크의 글로벌 위치는 랜드마크 지도에서 복수의 상대 위치에 기초하여 결정된다.
본 발명에 따른 방법은 마찬가지로 감지된 다른 랜드마크에 대한 일 랜드마크의 상대 위치가 고려됨으로써 이러한 절차를 개선한다. 즉, 지도의 좌표 시스템에서의 랜드마크의 글로벌 위치는 일반적으로 보다 큰 부정확성로 검출될 수 있지만, 감지된 랜드마크의 서로에 대한 상대 위치는 보다 정밀하게 결정될 수 있다. 이러한 데이터의 결합을 통해 전체적으로 글로벌 위치의 결정을 위한 조건의 개수가 더 많아지고, 따라서 정확도가 크게 향상된다.
본 발명에 따르면, "측정 데이터 세트"는 오브젝트, 특히 랜드마크를 검출하고 위치 확인하는 것을 가능하게 하는 데이터의 전체로 지칭된다.
"제1 측정 데이터 세트"와 "제2 측정 데이터 세트의"의 개념은 적어도 2개의 상이한 측정 데이터 세트를 의미한다. 이들은 시간 시퀀스 또는 결정된 공간적 관계에서 검출되었을 수 있지만, 반드시 그럴 필요는 없다. 특히 제2 측정 데이터 세트 전에 제1 측정 데이터 세트 또는 제1 측정 데이터 세트 전에 제2 측정 데이터 세트가 검출될 수 있다. 측정 데이터 세트가 검출되는 검출 공간은 오버랩되는 것으로만 전제된다. 또한, 제1 랜드마크가 오버랩된 영역에서 검출되어, 이러한 랜드마크에 대한 중복된(redundant) 데이터가 존재한다. 특히 언급된 2개의 랜드마크보다 많이 검출될 수 있고, 복수의 랜드마크는 오버랩 영역에서 여러 번 검출될 수 있다.
본 발명의 의미에서 "랜드마크"는 특히 장기간 일 지리적 위치에 존재하고 결정된 고정된 특성을 포함하는 오브젝트를 지칭한다. 랜드마크는 특히 배향점으로 사용될 수 있다.
본 발명에 따른 방법의 일 실시예에서, 랜드마크는 도로 표지, 포스트 및/또는 에지를 포함한다. 이를 통해 유리하게는 길거리 및 길과 같은 일반적으로 주행되는 차도에 존재하는 도로의 관련된 영구적인 특징이 고려된다.
예를 들어 주행 길의 주변의 건물 옆에서 에지가 감지될 수 있다. 가장 넓은 의미에서 포스트는 지표면에 수직인 방향으로 긴 연장부를 갖는 오브젝트로 이해된다. 포스트로서, 예를 들어 길거리를 따른 안내 포스트, 가로등, 다리 포스트, 신호등 포스트 또는 교통 표지판의 포스트가 인식될 수 있다. 포스트는 예를 들어, 장애물의 큰 높이로 인해 돌출되는 경우, 먼 거리로부터 검출될 수 있는 경우 또는 명확하게 정의된 윤곽으로 인해 쉽게 인식할 수 있고 정확하게 위치 확인될 수 있는 경우에 배향점으로서 일반적으로 유리한 특성을 갖는다. 도로 표지는 눈 또는 먼지 층과 같은 오브젝트에 의해 현재 커버되어 있지 않은 경우, 도로 상에서, 바로 차량의 주변의 적어도 일 영역에서, 일반적인 방식으로 쉽게 검출될 수 있다는 이점이 존재한다.
언급된 예들은 또한 결정된 규모로 정규화되어 인식이 용이해진다는 랜드마크로서의 유리한 특성을 포함한다. 예를 들어, 대부분의 국가에는 주행 경로의 영역에서 도로 표지, 포스트 및 다른 오브젝트의 형상 및 배치에 대한 교통 규제가 존재한다. 예를 들어 차선의 경계로서의 도로 상의 선은 일반적으로 도로의 길이 방향으로 긴 연장 방향과 같이 그 형상을 통해 명확한 배향을 포함한다.
본 발명에 따르면, 기준 위치의 결정은 공간적 상관관계의 결정과 동일한 측정 데이터 세트에 기초하여 이루어진다. 따라서 랜드마크의 서로에 대한 공간적 상관관계를 검출하기 위해 개별적인 단계가 필요하지 않다. 이것은 공지된 방법에 비해 본 발명의 중요한 이점이다.
일 실시예에서 각각의 측정 데이터 세트에는 각각 시간이 할당된다. 이를 통해, 측정 데이터 세트의 데이터가 실질적으로 동시에 검출되었을 수 있거나 또는 동시에 검출된 것으로 간주될 수 있는 것이 유리한 방식으로 보장된다. 특히, 이를 통해 동시에 공간적 상관관계에 대한 그리고 기준 위치의 결정을 위한 데이터가 검출된다.
이것은 랜드마크의 공간적 상관관계가 측정 데이터 세트에 기초하여 결정되는 경우에 특히 유리하다. 예를 들어, 복수의 랜드마크가 어떻게 서로에 대해 상대적으로 배치되어 있는지가 카메라 이미지에 기초하여 결정될 수 있다. 데이터가 결정된 시간에 할당되는 경우, 예를 들어 검출 카메라의 이동으로부터 발생되는, 검출된 데이터의 좌표 시스템의 변화가 공간적 상관관계를 왜곡시키지 않고, 공간적 상관관계가 현실과 일치하는 것으로 가정될 수 있다. 경우에 따라서는 검출된 측정 데이터 세트의 사전 처리가 이루어져, 센서의 동시 이동 중에 예를 들어 검출의 아티팩트를 방지할 수 있다.
또 다른 실시예에서, 복수의 측정 데이터 세트는 시간 시퀀스로 검출되며, 측정 데이터 세트에 할당되어 있는 검출 공간은 궤도를 따라 서로 변위된다. 이는 유리하게는 측정 주행 중에 랜드마크가 있는 지도의 작성을 위한 단계별 데이터의 검출을 위한 기준 차량을 사용할 수 있게 한다.
이 경우, 측정 데이터 세트의 검출의 주파수는 결정된 속도로 궤도를 따라 기준 차량이 이동하는 중에 선택될 수 있거나 또는 적응될 수 있어, 검출 공간은 충분히 큰 오버랩을 포함하고, 높은 확률로 랜드마크가 오버랩된 영역에서 검출될 수 있다. 이러한 방식으로, 랜드마크들의 글로벌 위치의 정확한 결정을 위한 다수의 조건들이 검출될 수 있다.
일 개선예에서, 측정 데이터 세트는 거리 정보 및/또는 이미지 데이터를 포함한다. 이를 통해, 유리한 방식으로 랜드마크가 쉽게 인식될 수 있고, 위치 확인될 수 있다.
예를 들어, 측정 데이터 세트는 모노 카메라, TOF(Time-of-Flight) 카메라, 스테레오 카메라, 라이더(light detection and ranging) 장치 및/또는 레이더(radio detection and ranging) 장치에 의해 검출될 수 있다. 특히, 복수의 방법의 조합은 특히 양호한 검출을 가능하게 할 수 있다.
다른 실시예에서, 측정 데이터 세트의 기준점은 위성 지원 위치 결정 방법을 통해 검출된다. 이를 통해, 유리하게는 알려진 방법이 본 발명과 관련지어진다.
특히 위성 지원 위치 결정 방법에 의해 측정 데이터 세트를 검출한 지점에서 기준 차량의 위치가 검출될 수 있다. 이러한 지리적 위치는 기준점으로서 역할을 할 수 있고, 이 기준점에 대한 측정 데이터 세트에서 감지된 랜드마크의 상대 위치가 결정된다. 따라서, 랜드마크의 글로벌 위치를 결정하기 위해 본 발명에 따라 데이터를 병합할 때, 예를 들어 기준점의 검출 시의 부정확성이 조정될 수 있다.
상기 방법의 일 실시예에서, 글로벌 기준점은 지표면의 장소의 위치이다. 이를 통해 랜드마크의 결정된 글로벌 위치는 유리하게는 추후 사용을 위해 예를 들어 데이터 베이스에 제공될 수 있고, 이 데이터 베이스에 기초하여 차량은 랜드마크의 추후 검출 시 지표면 상의 지리적 좌표 시스템 내에서 자신의 위치를 결정할 수 있다.
일 개선예에서 결정된 글로벌 위치에 기초하여 지도 데이터가 생성되거나 또는 업데이트된다. 이는 유리하게는 랜드마크의 글로벌 위치를 갖는 지도의 생성을 허용한다.
다른 실시예에서, 결정된 공간적 상관관계는 거리 및/또는 각도를 포함한다. 이를 통해, 유리하게는 랜드마크의 서로에 대한 공간적 배치가 명백하게 특징화된다. 특히 공간적 상관관계는 랜드마크의 결정된 상대 위치들 사이의 벡터로서 결정될 수 있다. 따라서 본 발명에 따른 방법에서 이 경우 글로벌 위치는 공간적 상관관계의 이러한 벡터가 획득되어 유지되거나 또는 정의된 조건 및 정의된 방식으로만 변경되도록 결정된다.
일 개선예에서, 제1 랜드마크의 글로벌 위치가 조정 계산을 통해 결정된다. 이는 유리하게는 랜드마크의 정확한 글로벌 위치를 결정하기 위한 알려진 계산 방법의 사용을 허용한다.
예를 들어 측지학에서 알려진 바와 같은 조정 계산 시, 예를 들어 결정된 위치에서 복수의 랜드마크를 갖는 네트워크의 데이터는 결정된 경계 조건의 함수로서 최적화된다. 일 실시예에서, 결정된 공간적 상관관계를 조정 계산을 위한 경계 조건으로서 사용된다.
또한 다른 실시예에서, 조정 계산을 통해 제2 랜드마크에 대한 제2 글로벌 위치가 결정된다. 본 발명에 따른 방법에 따라 추가적인 경계 조건의 도입을 통해 조정 계산의 결과가 개선된다. 동시에, 경계 조건의 검출은 동시에 검출된 랜드마크에 기초하여 용이하게 되고 개선된다.
서두에 언급된 시스템은 본 발명에 따르면 적어도 제1 및 제2 측정 데이터 세트를 검출할 수 있는 검출 유닛을 포함한다. 여기서, 제1 측정 데이터 세트에는 제1 기준점 및 제1 검출 공간이 할당되고 제2 측정 데이터 세트에는 제2 기준점 및 제2 검출 공간이 할당된다. 또한, 상기 시스템은 감지 유닛을 포함하고, 이 감지 유닛을 통해 제1 랜드마크는 제1 검출 공간 및 제2 검출 공간에서 그리고 제2 랜드마크는 제1 검출 공간에서 감지될 수 있다. 또한, 상기 시스템은 계산 유닛을 포함하고, 이 계산 유닛을 통해 제1 측정 데이터 세트에 기초하여 제1 검출 공간의 기준점에 대한 제1 랜드마크 및 제2 랜드마크의 제1 상대 위치가 결정될 수 있고, 제2 측정 데이터 세트에 기초하여 제2 검출 공간의 기준점에 대한 제1 랜드마크의 제2 상대 위치가 결정될 수 있다.
또한, 상기 시스템은 상관관계 유닛을 포함하고, 이 상관관계 유닛을 통해 제1 측정 데이터 세트에 기초하여 제1 랜드마크 및 제2 랜드마크의 서로에 대한 공간적 상관관계가 결정될 수 있다. 마지막으로, 상기 시스템은 조정 유닛을 또한 포함하고, 이 조정 유닛을 통해 제1 랜드마크의 결정된 제1 상대 위치 및 제2 상대 위치에 기초하여, 제2 랜드마크의 결정된 제1 상대 위치에 기초하여 그리고 결정된 공간적 상관관계에 기초하여 글로벌 기준점에 대한 제1 랜드마크의 글로벌 위치가 결정될 수 있다.
본 발명에 따른 시스템은 특히 상기 설명된 본 발명에 따른 방법을 구현할 수 있도록 형성된다. 따라서, 상기 시스템은 본 발명에 따른 방법과 동일한 이점을 포함한다.
본 발명에 따른 방법의 실시예에서, 검출 유닛은 모노 카메라, TOF(Time-of-Flight) 카메라, 스테레오 카메라, 라이더 장치 및/또는 레이더 장치를 포함한다. 따라서, 유리하게는 상이한 방법에 의해 구조들이 검출될 수 있다. 특히 상이한 센서 및 센서 유형의 조합이 사용될 수 있다. 특히 모노 카메라는 이미 매우 넓게 확장되어 비용 효율적으로 제공될 수 있다.
다른 실시예에서, 상기 시스템은 차량에 포함되고, 각각의 측정 데이터 세트에 대해 또한 차량의 위치가 각각 검출될 수 있고, 차량의 각각의 검출된 위치는 기준점으로서 각각의 측정 데이터 세트에 할당된다. 이를 통해, 유리하게는 기준점은 차량 자체에 의해 예를 들어, 위성 지원 위치 결정 시스템에 의해 검출된다.
본 발명은 이제 예시적인 실시예에 기초하여 첨부된 도면을 참조하여 설명된다.
도 1은 본 발명에 따른 시스템의 예시적인 실시예를 포함하는 차량을 갖는 도로를 도시한다.
도 2a 내지 도 2e는 도로 상의 랜드마크 사이의 예시적인 공간적 상관관계를 도시한다.
도 3a 내지 도 3d는 본 발명에 따른 방법의 실시예에서 결정된 랜드마크의 검출된 상대 위치를 갖는 예시적인 실시예를 도시한다.
도 1을 참조하여, 본 발명에 따른 시스템의 예시적인 실시예를 포함하는 차량이 설명된다.
차량(1)은 도로(10)를 주행한다. 차량(1)은 검출 유닛(2) 및 이에 결합된 계산 유닛(4)을 포함한다. 계산 유닛(4) 자체는 감지 유닛(3), 상관관계 유닛(5) 및 조정 유닛(6)을 포함한다.
또한, 검출 유닛(2) 및 차량(1)에 대해 실질적으로 일정하고, 차량(1)에 의해 도로(10)를 통해 이동하는 검출 유닛(2)의 검출 공간(20a)이 표시되어 있다. 특히 중요한 것은 차량(1)의 주변의 랜드마크이다. 도시된 예시에서, 도로(10)의 가장자리에 안내 포스트(8)가 배치되고, 대략 도로(10)의 중간에 도로 표지(7)가 제공되어 있다. 이러한 랜드마크 중 일부는 도시된 경우에 실제로 검출 공간(20a) 내에 위치한다.
도 2a 내지 도 2e를 참조하여, 본 발명에 따른 방법의 예시적인 실시예가 도로 상의 랜드마크 사이의 예시적으로 도시된 공간적 상관관계에 기초하여 설명된다. 여기서 도 1을 참조하여 위에서 설명된 본 발명에 따른 시스템의 예시적인 실시예가 가정된다.
도 2a는 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)가 배치되어 있는 도로(10)를 도시한다. 이는 이러한 예에서 예를 들어 도로 표지(7)일 수 있다. 차량(1)은 도로(10)를 따라 이동하고, 도로(10)를 통해 주행하는 중에 3개의 연속하는 시간에 특히 TOF(Time-of-Flight) 카메라에 의해 측정 데이터 세트를 검출한다. 이 경우, 측정 데이터 세트는 특히 이미지 데이터 및 예를 들어 이미지 데이터의 각 픽셀에 대한 거리 데이터를 포함한다. 즉, 검출 공간(20a, 20b, 20c)에서 거리 및 공간 분해된 이미지가 검출된다. 이러한 유형으로 검출된 측정 데이터 세트에는 각각 검출 시간이 할당된다. 이 경우, 측정 데이터 세트의 검출 시간 및 차량(1)의 이동 속도는 검출 공간(20a, 20b, 20c)이 결정된 오버랩을 포함하도록 서로 조정되어, 도로 표면의 결정된 영역은 적어도 2개의 서로 연속적인 측정 데이터 세트의 검출 공간(20a, 20b, 20c)에 포함된다.
각각의 측정 데이터 세트에 대해, 즉 예를 들어, ToF 카메라의 각각의 검출된 이미지에 대해, 각각의 시간에 대한 기준 위치가 결정된다. 이러한 기준 위치는 특히 예를 들어, 검출 유닛(2)의 GPS 모듈(도시되지 않음)의 데이터에 기초하여 결정된 차량(1)의 현재의 글로벌 지리적 위치에 대응할 수 있다. 따라서, 예를 들어 차량(1) 및 이에 따른 검출 공간(20a, 20b, 20c)은 2개의 측정 데이터 세트의 검출 사이에서 이동한 것으로 고려된다.
검출 공간(20a, 20b, 20c)에 대해 검출된 측정 데이터 세트에 기초하여, 감지 유닛(3)을 통해 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)가 인식되고, 계산 유닛(4)을 통해 측정 데이터 세트의 각각의 기준점에 대한 그들의 상대 위치가 결정된다. 예를 들어, 카메라의 캘리브레이션을 통해 검출된 이미지의 결정된 위치에는 차량에 대한 위치가 할당될 수 있다. 따라서, 이러한 시간에 차량(1)에 대해 결정된 기준 위치에 기초하여, 인식된 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)의 상대 위치가 결정될 수 있다.
도로 표면 상의 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)의 실제 지리적 위치에 비해 이러한 결정된 상대 위치의 정확도는 특히 기준점의 결정의 정확도, 이러한 경우에는 차량(1)의 위치 그리고 차량(1)에 대한 위치 결정의 정확도에 의존한다. 도 2b 내지 도 2d에 도시된 경우에, 이상적으로는 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)가 도로 표면 상의 실제 글로벌 위치에 정확하게 위치되어 있는 것으로 가정된다. 이러한 이상적인 경우로부터의 편차 및 이와 같이 발생된 오류의 정정을 위한 본 발명에 따른 방법의 적용이 이하에서 더 설명된다.
도 2b 내지 도 2d에는 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)가 어떤 검출 공간(20a 20b, 20c)에 위치하는지가 도시되어 있다. 예를 들어, 검출 공간(20a)에서 랜드마크 "A", "B" 및 "C"(21a, 21b, 21c)가 검출된다. 랜드마크 "C"(21c)는 도 2c에 도시된 검출 공간(20b)에서 추가적으로 검출된다. 따라서, 이러한 예에서 랜드마크 "C"(21c)의 위치의 2개의 측정이 수행될 수 있다.
또한, 상관관계 유닛(5)을 통해 랜드마크(21a, 21b, 21c)의 공간적 상관관계가 결정되고, 이는 랜드마크(21a, 21b, 21c) 사이의 연결 라인을 통해 표시된다. 이 경우 특히, 랜드마크(21a, 21b, 21c)가 서로에 대해 어떤 거리를 갖고 가상 연결 라인이 서로에 대해 어떤 각도로 연장되는지가 결정된다. 이것은 실질적으로 2차원으로 가정될 수 있는 도로 표면 상에서, 특히 간단한 방식으로 결정될 수 있지만, 본 발명에 따른 방법은 예를 들어, 도로 표지와 도로(10) 위의 결정된 높이에 있는 신호등 사이의 공간적 상관관계의 결정을 위해 3차원 공간으로의 확장을 또한 허용한다.
검출 공간(20a, 20b, 20c)의 오버랩과 함께 공간적 상관관계를 통해, 도 2b, 도 2c 및 도 2d에 개략적으로 도시된 바와 같이, 복수의 측정 데이터 세트를 조합하는 것이 가능하다. 이러한 조합은 도 2e에 도시된다. 이것은 특히 후술하는 바와 같이, 조정 유닛(6)에 기초하여 이루어질 수 있으며, 여기서 조합은 도시된 이상적인 경우에 특히 간단하다.
이 경우, 이제 유사 관측도 또한 결정될 수 있는데, 즉 측정 데이터 세트에서 함께 검출되지 않은 랜드마크(21a, 21b, 21c, 21d, 21e, 21f) 사이의 공간적 상관관계가 결정될 수 있다. 예를 들어, 도 2e에 도시된 데이터는 제1 검출 공간(20a)(도 2b 참조) 및 제3 검출 공간(20c)(도 2d 참조)에서 공통적으로 검출되지 않았음에도 불구하고, 랜드마크 "A", "D" 및 "F" 사이의 공간적 상관관계에 대한 정보를 가능하게 한다.
이것은 많은 개수의 추가 조건을 정의하고, 여기서 측정 데이터 세트에 기초하여 생성된 랜드마크 지도의 결정된 공간적 상관관계가 표현되어야 한다는 것이 가정된다. 이 경우, 특히 측정 데이터 세트에 기초하여, 예를 들어 카메라의 이미지에 기초하여, 공간적 상관관계가 매우 높은 정확도로 결정될 수 있는 것으로 가정될 수 있다. 특히, 이러한 정확도는 차량(1)의 기준 위치 또는 위치의 결정의 정확도보다 훨씬 양호할 수 있다.
도 3a 내지 도 3d를 참조하여, 본 발명에 따른 방법의 예시적인 실시예에서 결정된 랜드마크의 검출된 상대 위치를 갖는 예시적인 실시예가 설명된다. 이 경우, 도 1을 참조하여 위에서 설명된 본 발명에 따른 시스템의 예시적인 실시예 및 도 2a 내지 도 2e를 참조하여 위에서 설명된 본 발명에 따른 방법의 예시적인 실시예가 가정된다.
상기 도 2b 내지 도 2d에 도시된 바와 유사하게, 도 3a 내지 도 3c에 도시된 경우에도 또한, 차량(1)이 도로(10) 위를 이동하는 동안, 서로 연속되는 3개의 시간에 측정 데이터 세트가 검출된다. 검출 공간(20a 내지 20c)은 이에 대응하여 서로에 대해 변위된다.
그러나, 이러한 예에서 개별 측정 데이터 세트에 대한 기준 위치의 결정은 통계적 오류의 영향을 받는다. 이러한 이유로 인해, 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)는 실제의 글로벌 위치에서는 검출되지 않는다. 도 3a 내지 도 3d에 도시된 변위는 명료함을 이유로 특히 명확하게 도시되어 있다. 그러나 동시에, 검출된 측정 데이터 세트에 기초하여 랜드마크(21a, 21b, 21c, 21d, 21e, 21f) 사이의 공간적 상관관계가 매우 높은 정확도로 결정될 수 있으므로, 이러한 불확실성은 도 3a 내지 도 3d에서 무시된다.
예를 들어, 도 3a에 도시된 경우에 랜드마크 "A", "B" 및 "C"(21a, 21b, 21c)는 검출 공간(20a)에서 검출된다. 측정 오류를 갖는 상대 지점에 대한 결정된 상대 위치(22a, 22b, 22c)는 랜드마크 "A", "B" 및 "C"(21a, 21b, 21c)의 실제 위치에 대해 변위되어 있다. 그러나, 이 경우 점선으로 표시된 공간적 상관관계는 높은 정확도로 검출된다.
이와 유사하게, 도 3b 및 도 3c는 추가의 검출 공간(20b 및 20c)에서의 데이터의 검출 및 상대 위치(23c, 23d, 23e, 24d, 24e, 24f)의 결정을 도시한다.
조정 유닛(6)을 통해, 검출된 상대 위치(22a, 22b, 22c, 23c, 23d, 23e, 24d, 24e, 24f)는 도 3d에 개략적으로 도시된 바와 같이 조합된다. 또한, 여기서 보다 양호한 명확성을 위해 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)가 도시되어 있다. 이제 조정 유닛(6)의 과제는 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)의 실제 지리적 위치에 가능한 한 정확하게 대응하도록 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)의 글로벌 위치를 결정하는 것이다. 이를 위해 조정 계산이 수행되며, 여기서 공간적 상관관계가 추가 조건으로서 도입된다. 특히, 공간적 상관관계는 조정 계산 시 획득된 변수(제약)이다.
예시적인 실시예를 이해하기 위해, 우선 알려진 방식에 따른 조정 계산의 모델이 설명되고, 이어서 본 발명에 따른 방법에 의한 확장이 설명된다.
랜드마크(21a, 21b, 21c, 21d, 21e, 21f)의 결정된 상대 위치(22a, 22b, 22c, 23c, 23d, 23e, 24d, 24e, 24f)는 결정된 기준 위치, 이 예에서는 차량 위치의 결정 시의 부정확성의 영향을 받고, 예를 들어 이미지 처리 및 캘리브레이션 시 검출 유닛(2), 감지 유닛(3) 및 계산 유닛(4)과 같은 감지의 부정확성의 영향을 받는다. 이 경우, 감지의 부정확성는 예를 들어 GPS 모듈을 통해, 결정된 기준 위치의 결정의 추가적인 부정확성보다 실질적으로 작다. 따라서 감지된 개수에 대응하는 각각의 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)를 포함하는 상대 위치(22a, 22b, 22c, 23c, 23d, 23e, 24d, 24e, 24f)가 결정된다.
각각의 개별적으로 결정된 상대 위치(22a, 22b, 22c, 23c, 23d, 23e, 24d, 24e, 24f)의 분산은 분산 전파에 의해 확인될 수 있다. 복수 회 감지되었던 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)의 글로벌 위치를 확인하기 위해, 측지학은 종종 "최소 자승법"에 의지한다. 예를 들어, 선형 함수 관계를 갖는 모델이 사용될 수 있다. 이를 위해 감지는 우선 서로 관련지어지고, 여기서 결정된 상대 위치(22a, 22b, 22c, 23c, 23d, 23e, 24d, 24e, 24f) 중 어떤 것이 어떤 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)에 할당되는지가 결정된다. 이를 위해 알려진 방법이 사용될 수 있다. 이하에서는 관측과 추정되는 매개 변수 사이의 함수 관계가 선형인 간단한 모델에서, 도시된 예시적인 실시예의 조정 계산이 구성된다. 이를 위해 최소 자승법에 따른 조정 계산의 범위에서 우선, 결정된 상대 위치(22a, 22b, 22c, 23c, 23d, 23e, 24d, 24e, 24f)의 X 및 Y 좌표로 이루어진 관측 벡터(Ⅰ)가 설정된다. 또한,
Figure pct00001
는 알려지지 않은 매개 변수 벡터(최적 위치)를 나타내고, A는 설계 행렬을 나타내고, 그리고 P는 가중 행렬(공분산 행렬 Σll의 역수)을 나타낸다.
Figure pct00002
이러한 예에서 선형 함수 관계에 대한 글로벌 위치의 계산을 위한 조정 모델은 다음과 같다:
Figure pct00003
이러한 방식으로, 각각의 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)에 대해, 복수의 결정된 상대 위치(22a, 22b, 22c, 23c, 23d, 23e, 24d, 24e, 24f)가 각각의 개별 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)에 대해 정정되도록 조정이 수행된다.
본 발명에 따르면, 상기 방법은 이제 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)의 서로에 대한 구조를 획득하기 위해, 사전에 결정된 공간적 상관관계가 추가적인 경계 조건으로서 도입되도록 수정된다. 조정 계산은 조건을 계산에 포함시킬 수 있기 위해 다양한 방법을 제공한다. 조정 계산에서 공간적 상관관계를 획득할 수 있는 절차는 예를 들어, 가우스-마르코프(Gauss-Markov) 모델 또는 가우스-헬머트(Gauss-helmert) 모델에 기초하여 복수의 상이한 방식으로 수행할 수 있다. 예시적인 실시예에 대해 이하에서 보다 간단하고 적합한 방법 중 하나가 예시적으로 설명되고(니마이어, 볼프강 (2008): 조정 계산. 2판. 베를린: 드 그루이터(de Gruyter)), 여기서 랜드마크 사이의 관측된 거리가 가상의 관측으로서 측정 시기에 포함된다. 추가의 예시적인 실시예에서, 공간적 경계 조건을 최적화하여 고려하기 위해 알려진 다른 방법이 사용될 수 있다.
상기 예시적인 실시예에서, 상기 설명된 선형 모델은 다음과 같이 확장되고:
Figure pct00004
여기서
Figure pct00005
글로벌 위치의 상기 설명된 계산은 공식에 따라 이루어진다:
Figure pct00006
분명히 본 발명에 따른 방법에 의해, 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)에 속한 복수의 상대 위치(22a, 22b, 22c, 23c, 23d, 23e, 24d, 24e, 24f)에 기초하여 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)에 대한 최적의 글로벌 위치가 결정됨으로써, 결정된 상대 위치(22a, 22b, 22c, 23c, 23d, 23e, 24d, 24e, 24f)의 불확실성이 정정된다. 그러나 이 경우, 결정된 상대 위치(22a, 22b, 22c, 23c, 23d, 23e, 24d, 24e, 24f) 사이의 공간적 상관관계가 경계 조건으로서 획득되어 유지되어야 하거나 또는 가능한 최소한의 편차만이 허용되는 것으로 고려된다.
도 3d에 도시된 예에서, 이로써 예를 들어 결정된 상대 위치(22a, 22b, 22c, 23c, 23d, 23e, 24d, 24e, 24f)가 변위되도록 수행될 것이고, 공간적 상관관계에 의해 "관련된" 상대 위치(22a, 22b, 22c, 23c, 23d, 23e, 24d, 24e, 24f)는 실질적으로 공통으로 변위된다.
다른 예시적인 실시예에서, 특히 차량(1)의 검출된 위치 또는 검출 유닛(2)의 GPS 모듈의 데이터와 함께, 차량(1)에 의해 검출된 측정 데이터 세트는 외부 장치로 전송되어 거기에서 처리된다. 이 경우, 계산 유닛(4), 감지 유닛(3), 상관관계 유닛(5) 및/또는 조정 유닛(6)은 외부 장치에 또한 포함될 수 있다. 외부 장치는 예를 들어 서버 또는 컴퓨팅 장치일 수 있다.
결정된 글로벌 위치에 기초하여 지도 데이터가 생성될 수 있거나 또는 업데이트될 수 있다. 이것은 차량(1)의 장치에 기초하여 또는 서버와 같은 외부 장치를 통해 이루어질 수 있다. 이러한 지도 데이터는 다른 차량에 전송될 수 있고, 이 다른 차량은 이 경우 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)의 글로벌 위치를 갖는 지도 데이터에 기초하여 도로(10) 상의 자신의 위치를 결정할 수 있다. 이 경우, 지도 데이터는 차량(1) 자체에 저장될 수 있거나 또는 필요에 따라 예를 들어 차량(1)의 문의에 의해 외부 서버로부터 차량(1)에 전송될 수 있다.
1: 차량 2: 검출 유닛
3: 감지 유닛 4: 계산 유닛
5: 상관관계 유닛 6: 조정 유닛
7: 도로 표지 8: 포스트; 안내 포스트
10: 도로 20a, 20b, 20c: 검출 공간
21a, 21b, 21c, 21d, 21e, 21f: 랜드마크(A, B, C, D, E, F) (실제의 글로벌 위치)
22a, 22b, 22c: 제1 상대 위치 23c, 23d, 23e: 제2 상대 위치
24d, 24e, 24f: 제3 상대 위치

Claims (15)

  1. 제1 랜드마크(21c)의 글로벌 위치를 결정하는 방법에 있어서,
    적어도 제1 측정 데이터 세트 및 제2 측정 데이터 세트가 검출되는 단계 - 상기 제1 측정 데이터 세트에는 제1 기준점 및 제1 검출 공간(20a)이 할당되고, 상기 제2 측정 데이터 세트에는 제2 기준점 및 제2 검출 공간(20b)이 할당됨 - ,
    상기 제1 랜드마크(21c)가 상기 제1 검출 공간(20a) 및 상기 제2 검출 공간(20b)에서 감지되고, 제2 랜드마크(21a, 21b)가 상기 제1 검출 공간(20a)에서 감지되는 단계,
    상기 제1 측정 데이터 세트에 기초하여 상기 제1 검출 공간(20a)의 기준점에 대한 상기 제1 랜드마크(21c) 및 상기 제2 랜드마크(21a, 21b)의 제1 상대 위치(22a, 22b, 22c)가 결정되는 단계,
    상기 제2 측정 데이터 세트에 기초하여 상기 제2 검출 공간(20b)의 기준점에 대한 상기 제1 랜드마크(21c)의 제2 상대 위치(23c)가 결정되는 단계,
    상기 제1 측정 데이터 세트에 기초하여 상기 제1 랜드마크(21c) 및 상기 제2 랜드마크(21a, 21b)의 서로에 대한 공간적 상관관계가 결정되는 단계, 및
    상기 제1 랜드마크(21c)의 상기 결정된 제1 상대 위치(22c) 및 상기 결정된 제2 상대 위치(23c)에 기초하여, 상기 제2 랜드마크(21a, 21b)의 상기 결정된 제1 상대 위치(22a, 22b)에 기초하여 그리고 상기 결정된 공간적 상관관계에 기초하여 글로벌 기준점에 대한 상기 제1 랜드마크(21c)의 상기 글로벌 위치가 결정되는 단계
    를 포함하는, 제1 랜드마크(21c)의 글로벌 위치를 결정하는 방법.
  2. 제1항에 있어서,
    상기 랜드마크(21a, 21b, 21c, 21d, 21e, 21f)는 도로 표지(7), 포스트(8) 및/또는 에지를 포함하는 것을 특징으로 하는 방법.
  3. 제1항 또는 제2항에 있어서,
    각각의 측정 데이터 세트에는 각각 시간이 할당되어 있는 것을 특징으로 하는 방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    복수의 측정 데이터 세트가 시간 시퀀스로 검출되며, 상기 측정 데이터 세트에 할당되어 있는 상기 검출 공간(20a, 20b, 20c)은 궤도를 따라 서로 변위되는 것을 특징으로 하는 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 측정 데이터 세트는 거리 정보 및/또는 이미지 데이터를 포함하는 것을 특징으로 하는 방법.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 측정 데이터 세트의 상기 기준점은 위성 지원 위치 결정 방법을 통해 검출되는 것을 특징으로 하는 방법.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 글로벌 기준점은 지표면의 장소의 위치인 것을 특징으로 하는 방법.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 결정된 글로벌 위치에 기초하여 지도 데이터가 생성되거나 또는 업데이트되는 것을 특징으로 하는 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 결정된 공간적 상관관계는 거리 및/또는 각도를 포함하는 것을 특징으로 하는 방법.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 제1 랜드마크(21c)의 상기 글로벌 위치는 조정 계산을 통해 결정되는 것을 특징으로 하는 방법.
  11. 제10항에 있어서,
    상기 결정된 공간적 상관관계는 조정 계산을 위한 경계 조건으로 사용되는 것을 특징으로 하는 방법.
  12. 제10항 또는 제11항에 있어서,
    상기 조정 계산에 의해 상기 제2 랜드마크(21a, 21b)에 대한 제2 글로벌 위치가 또한 결정되는 것을 특징으로 하는 방법.
  13. 제1 랜드마크(21c)의 글로벌 위치를 결정하는 시스템에 있어서,
    검출 유닛(2) - 상기 검출 유닛을 통해 적어도 제1 측정 데이터 세트 및 제2 측정 데이터 세트가 검출될 수 있고, 상기 제1 측정 데이터 세트에는 제1 기준점 및 제1 검출 공간(20a)이 할당되고, 상기 제2 측정 데이터 세트에는 제2 기준점 및 제2 검출 공간(20b)이 할당됨 - ,
    감지 유닛(3) - 상기 감지 유닛을 통해 상기 제1 랜드마크(21c)가 상기 제1 검출 공간(20a) 및 상기 제2 검출 공간(20b)에서 감지될 수 있고, 제2 랜드마크(21a, 21b)가 상기 제1 검출 공간(20a)에서 감지될 수 있음 -,
    계산 유닛(4) - 상기 계산 유닛을 통해 상기 제1 측정 데이터 세트에 기초하여 상기 제1 검출 공간(20a)의 기준점에 대한 상기 제1 랜드마크(21c) 및 상기 제2 랜드마크(21a, 21b)의 제1 상대 위치(22a, 22b, 22c)가 결정될 수 있고, 상기 제2 측정 데이터 세트에 기초하여 상기 제2 검출 공간(20b)의 기준점에 대한 상기 제1 랜드마크(21c)의 제2 상대 위치(23c)가 결정될 수 있음 -,
    상관관계 유닛(5) - 상기 상관관계 유닛을 통해 상기 제1 측정 데이터 세트에 기초하여 상기 제1 랜드마크(21c) 및 상기 제2 랜드마크(21a, 21b)의 서로에 대한 공간적 상관관계가 결정될 수 있음 -, 및
    조정 유닛(6) - 상기 조정 유닛을 통해 상기 제1 랜드마크(21c)의 상기 결정된 제1 상대 위치(22c) 및 상기 결정된 제2 상대 위치(23c)에 기초하여, 상기 제2 랜드마크(21a, 21b)의 상기 결정된 제1 상대 위치(22a, 22b)에 기초하여 그리고 상기 결정된 공간적 상관관계에 기초하여 글로벌 기준점에 대한 상기 제1 랜드마크(21c)의 상기 글로벌 위치가 결정될 수 있음 -
    을 포함하는, 제1 랜드마크(21c)의 글로벌 위치를 결정하는 시스템.
  14. 제13항에 있어서,
    상기 검출 유닛(3)은 TOF(Time-of-Flight) 카메라, 모노 카메라, 스테레오 카메라, 라이더 장치 및/또는 레이더 장치를 포함하는 것을 특징으로 하는 시스템.
  15. 제13항 또는 제14항에 있어서,
    상기 시스템은 차량(1)에 포함되고,
    각각의 측정 데이터 세트에 대해 또한 상기 차량(1)의 위치가 각각 검출될 수 있고,
    상기 차량(1)의 상기 각각의 검출된 위치는 기준점으로서 상기 각각의 측정 데이터 세트에 할당되는 것을 특징으로 하는 시스템.
KR1020187030296A 2016-04-11 2017-03-17 제1 랜드마크의 글로벌 위치를 결정하는 방법 및 시스템 KR102128851B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016205964.5A DE102016205964A1 (de) 2016-04-11 2016-04-11 Verfahren und System zum Bestimmen einer globalen Position einer ersten Landmarke
DE102016205964.5 2016-04-11
PCT/EP2017/056380 WO2017178190A1 (de) 2016-04-11 2017-03-17 Verfahren und system zum bestimmen einer globalen position einer ersten landmarke

Publications (2)

Publication Number Publication Date
KR20180123558A true KR20180123558A (ko) 2018-11-16
KR102128851B1 KR102128851B1 (ko) 2020-07-08

Family

ID=58398155

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187030296A KR102128851B1 (ko) 2016-04-11 2017-03-17 제1 랜드마크의 글로벌 위치를 결정하는 방법 및 시스템

Country Status (6)

Country Link
US (1) US11041729B2 (ko)
EP (1) EP3443301B1 (ko)
KR (1) KR102128851B1 (ko)
CN (1) CN109154506B (ko)
DE (1) DE102016205964A1 (ko)
WO (1) WO2017178190A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020159076A1 (ko) * 2019-01-28 2020-08-06 에스케이텔레콤 주식회사 랜드마크 위치 추정 장치와 방법 및 이러한 방법을 수행하도록 프로그램된 컴퓨터 프로그램을 저장하는 컴퓨터 판독 가능한 기록매체
KR20200118677A (ko) * 2019-04-08 2020-10-16 네이버랩스 주식회사 이미지를 기반으로 포즈 계산을 위한 지도의 최신성을 유지하는 방법 및 시스템
WO2021125578A1 (ko) * 2019-12-16 2021-06-24 네이버랩스 주식회사 시각 정보 처리 기반의 위치 인식 방법 및 시스템

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016205964A1 (de) 2016-04-11 2017-10-12 Volkswagen Aktiengesellschaft Verfahren und System zum Bestimmen einer globalen Position einer ersten Landmarke
US10521913B2 (en) 2018-03-29 2019-12-31 Aurora Innovation, Inc. Relative atlas for autonomous vehicle and generation thereof
US11256729B2 (en) 2018-03-29 2022-02-22 Aurora Operations, Inc. Autonomous vehicle relative atlas incorporating hypergraph data structure
DE102018206067A1 (de) * 2018-04-20 2019-10-24 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen einer hochgenauen Position eines Fahrzeugs
US11096026B2 (en) 2019-03-13 2021-08-17 Here Global B.V. Road network change detection and local propagation of detected change
US11287267B2 (en) 2019-03-13 2022-03-29 Here Global B.V. Maplets for maintaining and updating a self-healing high definition map
US11280622B2 (en) 2019-03-13 2022-03-22 Here Global B.V. Maplets for maintaining and updating a self-healing high definition map
US11255680B2 (en) * 2019-03-13 2022-02-22 Here Global B.V. Maplets for maintaining and updating a self-healing high definition map
US11402220B2 (en) 2019-03-13 2022-08-02 Here Global B.V. Maplets for maintaining and updating a self-healing high definition map
US11287266B2 (en) 2019-03-13 2022-03-29 Here Global B.V. Maplets for maintaining and updating a self-healing high definition map
US10854012B1 (en) * 2019-05-29 2020-12-01 Dell Products, L.P. Concealing loss of distributed simultaneous localization and mapping (SLAM) data in edge cloud architectures
US11340082B2 (en) * 2019-07-02 2022-05-24 Nvidia Corporation Determining localization confidence of vehicles based on convergence ranges
CN110909711B (zh) * 2019-12-03 2022-08-02 阿波罗智能技术(北京)有限公司 检测车道线位置变化的方法、装置、电子设备和存储介质
CN113624244A (zh) * 2020-05-07 2021-11-09 中移物联网有限公司 基于双目视觉绘制地标地图的装置、系统及方法
DE102021126288A1 (de) 2021-10-11 2023-04-13 Cariad Se Verfahren und Vorrichtung zum Bestimmen einer Eigenposition eines Fahrzeugs
EP4202837A1 (en) * 2021-12-22 2023-06-28 Aptiv Technologies Limited A feature describing the shape of spatially distributed data set
CN115292968A (zh) * 2022-09-29 2022-11-04 武汉大学 一种基于球冠谐模型的多源大气可降水量数据融合方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506291A (ja) * 2006-10-09 2010-02-25 テレ アトラス ベスローテン フエンノートシャップ オルソ補正タイルを生成する方法及び装置
US20120310516A1 (en) * 2011-06-01 2012-12-06 GM Global Technology Operations LLC System and method for sensor based environmental model construction

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003850A1 (de) 2004-01-26 2005-08-18 Ibeo Automobile Sensor Gmbh Verfahren zur Erkennung von Markierungen auf einer Fahrbahn
GB0516403D0 (en) * 2005-08-10 2005-09-14 Trw Ltd Method and apparatus for determining motion of a vehicle
JP4687563B2 (ja) 2006-05-23 2011-05-25 株式会社デンソー 車両用レーンマーク認識装置
US8983763B2 (en) * 2010-09-22 2015-03-17 Nokia Corporation Method and apparatus for determining a relative position of a sensing location with respect to a landmark
CN103067856A (zh) * 2011-10-24 2013-04-24 康佳集团股份有限公司 基于图像识别的地理位置定位方法及系统
EP2793041A1 (en) * 2013-04-15 2014-10-22 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Assured vehicle absolute localisation
CN104035115B (zh) * 2014-06-06 2017-01-25 中国科学院光电研究院 一种视觉辅助的卫星导航定位方法及定位机
DE102016205964A1 (de) 2016-04-11 2017-10-12 Volkswagen Aktiengesellschaft Verfahren und System zum Bestimmen einer globalen Position einer ersten Landmarke

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506291A (ja) * 2006-10-09 2010-02-25 テレ アトラス ベスローテン フエンノートシャップ オルソ補正タイルを生成する方法及び装置
US20120310516A1 (en) * 2011-06-01 2012-12-06 GM Global Technology Operations LLC System and method for sensor based environmental model construction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020159076A1 (ko) * 2019-01-28 2020-08-06 에스케이텔레콤 주식회사 랜드마크 위치 추정 장치와 방법 및 이러한 방법을 수행하도록 프로그램된 컴퓨터 프로그램을 저장하는 컴퓨터 판독 가능한 기록매체
US11703344B2 (en) 2019-01-28 2023-07-18 Sk Telecom Co., Ltd. Landmark location estimation apparatus and method, and computer-readable recording medium storing computer program programmed to perform method
KR20200118677A (ko) * 2019-04-08 2020-10-16 네이버랩스 주식회사 이미지를 기반으로 포즈 계산을 위한 지도의 최신성을 유지하는 방법 및 시스템
US11625855B2 (en) 2019-04-08 2023-04-11 Naver Labs Corporation Method and system for updating map for pose estimation based on images
WO2021125578A1 (ko) * 2019-12-16 2021-06-24 네이버랩스 주식회사 시각 정보 처리 기반의 위치 인식 방법 및 시스템
KR20210076668A (ko) * 2019-12-16 2021-06-24 네이버랩스 주식회사 시각 정보 처리 기반의 위치 인식 방법 및 시스템

Also Published As

Publication number Publication date
CN109154506A (zh) 2019-01-04
CN109154506B (zh) 2022-04-15
EP3443301B1 (de) 2021-02-17
WO2017178190A1 (de) 2017-10-19
DE102016205964A1 (de) 2017-10-12
KR102128851B1 (ko) 2020-07-08
EP3443301A1 (de) 2019-02-20
US20190128678A1 (en) 2019-05-02
US11041729B2 (en) 2021-06-22

Similar Documents

Publication Publication Date Title
KR102128851B1 (ko) 제1 랜드마크의 글로벌 위치를 결정하는 방법 및 시스템
KR102425272B1 (ko) 디지털 지도에 대한 위치를 판별하기 위한 방법 및 시스템
US20220214174A1 (en) Methods and Systems for Generating and Using Localization Reference Data
EP3343172B1 (en) Creation and use of enhanced maps
CN109900298B (zh) 一种车辆定位校准方法及系统
Brenner Extraction of features from mobile laser scanning data for future driver assistance systems
JP2020500290A (ja) 位置特定基準データを生成及び使用する方法及びシステム
CN108627175A (zh) 用于识别车辆位置的系统和方法
CN110608746B (zh) 用于确定机动车的位置的方法和装置
WO2017120595A2 (en) Vehicular component control using maps
JP2001331787A (ja) 道路形状推定装置
CN111856491A (zh) 用于确定车辆的地理位置和朝向的方法和设备
EP3617749A1 (en) Method and arrangement for sourcing of location information, generating and updating maps representing the location
US20200200870A1 (en) Radar Sensor Misalignment Detection for a Vehicle
KR102475042B1 (ko) 정밀 지도 구축 장치 및 방법
KR20240040489A (ko) 차량 위치 데이터 보정 장치, 방법 및 시스템
KR20240050806A (ko) 정밀지도를 이용한 gps 좌표의 오류 보정 시스템
JP2022072913A (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
KR20240052099A (ko) 정밀지도를 이용한 gps 좌표의 오류 탐지 시스템
CN116892921A (zh) 用于创建具有精确到车道的分辨率的地图数据的方法、中央计算单元

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right