KR20180119955A - Powered activated carbon for removing taste and odor in water and Method for fabricating the same and Method for removal of manganese ions using the same and Coagulation method using the same - Google Patents

Powered activated carbon for removing taste and odor in water and Method for fabricating the same and Method for removal of manganese ions using the same and Coagulation method using the same Download PDF

Info

Publication number
KR20180119955A
KR20180119955A KR1020170053735A KR20170053735A KR20180119955A KR 20180119955 A KR20180119955 A KR 20180119955A KR 1020170053735 A KR1020170053735 A KR 1020170053735A KR 20170053735 A KR20170053735 A KR 20170053735A KR 20180119955 A KR20180119955 A KR 20180119955A
Authority
KR
South Korea
Prior art keywords
activated carbon
water
average particle
powdered activated
particle diameter
Prior art date
Application number
KR1020170053735A
Other languages
Korean (ko)
Other versions
KR101950193B1 (en
Inventor
송경근
조강우
이상협
소수현
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020170053735A priority Critical patent/KR101950193B1/en
Publication of KR20180119955A publication Critical patent/KR20180119955A/en
Application granted granted Critical
Publication of KR101950193B1 publication Critical patent/KR101950193B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to powered activated carbon for removing malodorous substances from water, capable of effectively adsorbing and removing the malodorous substances from water by controlling particle diameter and surface hydrophobicity of the powered activated carbon to an optimum range. The present invention further relates to a production method thereof, a method for removing residual manganese ions using powered activated carbon, and a coagulation method using powered activated carbon. According to the present invention, the method for producing powered activated carbon for removing malodorous substances from water comprises the following steps: preparing activated carbon; and producing powered activated carbon whose average particle diameter is 5-7 μm with carbon/oxygen (C/O) ratio of 20-50 by pulverizing the activated carbon via a ball mill process.

Description

수중 이취미물질 제거용 분말활성탄 및 그 제조방법 그리고 분말활성탄을 이용한 잔류 망간이온 제거방법 및 분말활성탄을 이용한 응집방법{Powered activated carbon for removing taste and odor in water and Method for fabricating the same and Method for removal of manganese ions using the same and Coagulation method using the same}[0001] The present invention relates to a powdered activated carbon for removing hobby substances from water, a method for producing the same, a method for removing residual manganese ions using powdered activated carbon, and a flocculation method using powdered activated carbon of manganese ions using the same and Coagulation method using the same}

본 발명은 수중 이취미물질 제거용 분말활성탄 및 그 제조방법 그리고 분말활성탄을 이용한 잔류 망간이온 제거방법 및 분말활성탄을 이용한 응집방법에 관한 것으로서, 보다 상세하게는 분말활성탄의 입경 및 표면소수성을 최적 범위로 제어함으로써 수중 이취미물질을 효과적으로 흡착, 제거할 수 있는 수중 이취미물질 제거용 분말활성탄 및 그 제조방법 그리고 분말활성탄을 이용한 잔류 망간이온 제거방법 및 분말활성탄을 이용한 응집방법에 관한 것이다.The present invention relates to a powdered activated carbon for removing hobby substances from water, a method for producing the same, a method for removing residual manganese ions using powdered activated carbon, and a flocculation method using powdered activated carbon. More particularly, The present invention relates to a powdered activated carbon for removing hobby substances in water, which can effectively adsorb and remove a hobby substance in water, a method for producing the same, a method for removing residual manganese ions using powdered activated carbon, and a flocculation method using powdered activated carbon.

충분한 일사량, 영양염류, 25∼30℃에 이르는 수온 등이 조류 성장의 조건이며, 정체수역의 부영양화 등 조류 성장을 가중시킬 수 있는 조건이 더해지거나 최적 조건이 갖춰지면 녹조류 또는 남조류의 이상증식에 의한 녹조현상 (algal bloom)이 발생하게 된다. 조류가 이상증식을 하는 경우 불쾌한 냄새를 발생시키는데, 이 냄새는 생물의 사체가 분해되면서 발생되는 것과 조류가 직접 방출하는 이취미가 있다. 특히 남조류와 방선균(actinomycetes)에 의해 형성된 이취미 물질로 알려진 지오스민, 2-methylisoborneol(2-MIB)는 흙, 곰팡이 냄새로 불쾌감을 준다. 특히 geosmin과 2-MIB는 인간이 불쾌감을 느낄 수 있는 역치 농도(threshold concentration)가 5∼10ng/L로 매우 낮아 처리가 중요하다. 이취미 물질은 저단위 유기화합물로 입자 크기가 너무 작아 일반적인 정수처리로 제거하기가 어려우며, 기존 수처리 기술에서는 다양한 방법을 이용하여 이러한 문제점을 해결하려고 노력해 왔다. Sufficient solar radiation, nutrient salts, and water temperature ranging from 25 to 30 ° C are conditions for algae growth, and conditions for increasing algae growth, such as eutrophication of congested waters, are added, or when the optimum condition is provided, abnormal growth of algae or cyanobacteria An algal bloom occurs. When the algae grow abnormally, they produce an unpleasant odor, which is the result of the decomposition of the dead body of the organism and the direct release of the algae. In particular, 2-methylisoborneol (2-MIB), which is known as a hibiscus formed by cyanobacteria and actinomycetes, is unpleasant due to soil and mold odor. Especially, geosmin and 2-MIB are very important because the threshold concentration is 5 to 10 ng / L, which can be discomforted by humans. This hobby material is a low-level organic compound and its particle size is too small to be removed by general water treatment. In the conventional water treatment technology, various methods have been tried to solve these problems.

정수처리장으로 유입되는 이취미 물질을 제거하기 위한 방법으로 막여과 방법(가압침지 조합형 이단 막여과 시스템, 한국등록특허 제1509109호)은 반투과성 막을 이용하여 여과에 의하여 오염물질을 제거하는 방법으로서 높은 압력이 필요하여 별도의 고가 펌프 설비가 필요하며, 막을 정기적으로 재생해야 하며 유지비용이 고가라는 문제점이 있다. A membrane filtration method (pressurized immersion combined two-end membrane filtration system, Korean Patent No. 1509109) is a method for removing contaminants by filtration using a semi-permeable membrane, A separate high-pressure pump facility is required, the membrane must be regenerated regularly, and the maintenance cost is high.

자외선, 과산화수소, 오존 등을 이용한 고도산화공정(Rosenfeldt 외. UV and UV/H2O2 treatment of methylisobornel(MIB) and geosmin in water, Journal of Water Supply, 2005, Vol. 54, 423-434쪽) 등이 보고된 바, 주입된 산화제는 원수와 반응하여 인체에 유해한 부산물을 형성하는 한계점을 가지고 있다. 또한, 녹조가 간헐적으로 발생하며 녹조에서 기인한 이취미 물질의 유입은 연중 연속적으로 일어나는 것이 아니라는 점을 고려하였을 때, 정수장에 별도의 처리 공정을 설치하는 방법은 경제적 효율성 측면에서 불리하다. Advanced oxidation processes using ultraviolet light, hydrogen peroxide, ozone, etc. (Rosenfeldt et al. UV and UV / H 2 O 2 treatment of methylisobornel (MIB) and geosmin in water, Journal of Water Supply, 2005, Vol. 54, 423-434 pages) Have been reported, and the injected oxidant has a limit in reacting with raw water to form harmful by-products to the human body. In addition, considering that the green tide is generated intermittently and the influx of the tastant due to the green tide does not occur continuously throughout the year, it is disadvantageous in terms of economic efficiency to install a separate treatment process in the water purification plant.

막여과 공법, 고도 산화 공정 등의 한계점들을 극복하기 위해 막여과공법에 활성탄을 도입한 수처리 방법이 보고되었으며, 정수공정에 이용되는 입상 활성탄 여과지를 이용하는 이취미 물질 제거방법 (활성탄 수처리 장치 및 이를 포함한 수처리 시스템 및 수처리 방법, 한국등록특허 제1426704호)이 보고된 바 있다. 하지만 막을 이용한 방법은 고가의 설비가 필요하며, 유지비용이 고가라는 문제점이 있으며 입상 활성탄 (Granular Activated Carbon, GAC)을 이용하였을 경우 이취미 물질의 흡착 속도가 느린 이유로 일반적으로 조류 경보시에는 상대적으로 이취미 물질에 대한 흡착속도가 빠른 분말 활성탄(Powdered Activated Carbon, PAC)를 사용하도록 권장되고 있다. In order to overcome limitations such as membrane filtration method and advanced oxidation process, there has been reported a water treatment method in which activated carbon is introduced into a membrane filtration method, and a method of removing this hobby material using a granular activated carbon filter paper used in a water purification process Water treatment system and water treatment method, Korea Patent No. 1426704) have been reported. However, the method using the membrane requires expensive equipment and high maintenance cost. When the granular activated carbon (GAC) is used, the adsorption rate of the hyaline material is slow, It is recommended to use Powdered Activated Carbon (PAC) with high adsorption rate for this hobby material.

한편, 수중 이취미물질의 흡착속도 및 흡착용량을 결정하는 활성탄의 특성은 BET값으로 대표되는 비표면적, 입도분포, 및 표면소수성 등을 포함하고 있다. 입도분포는 표면흡착이 가능한 활성탄의 겉보기 면적을 대변하는 반면, BET값(m2/g)은 표면흡착 및 기공흡착이 가능한 활성탄 내외의 전체 비표면적을 말해준다. 활성탄의 비표면적 및 입도분포를 조절하기 위해서는 볼밀(Ball Mill) 등을 이용한 분쇄방법이 가능한데, 일례로 탄소재를 직경이 다른 2종의 볼을 이용하여 습식 분쇄하는 방법(한국등록특허 제1553716호)은 분쇄 과정을 통해 탄소재의 BET값이 1500에서 2500m2/g까지 증가할 수 있도록 하고 있다. On the other hand, the characteristics of activated carbon for determining the adsorption rate and adsorption capacity of the hobby material in water include specific surface area, particle size distribution, surface hydrophobicity, and the like represented by BET values. The particle size distribution represents the apparent surface area of the activated carbon which can adsorb the surface, while the BET value (m 2 / g) represents the total specific surface area inside and outside the activated carbon which can be adsorbed on the surface and pore. In order to control the specific surface area and the particle size distribution of the activated carbon, a pulverization method using a ball mill or the like can be used. For example, a method of wet pulverizing a carbon material using two kinds of balls having different diameters (Korean Patent No. 1553716 ) Allows the BET value of the carbon material to increase from 1500 to 2500 m 2 / g through the grinding process.

하지만, Geosmin과 2-MIB로 대표되는 수중 이취미물질은 활성탄으로의 표면흡착이 주된 기작인 것으로 알려져 있기 때문에 활성탄의 BET값이 높을수록 이취미물질의 흡착능이 좋다고 말하기 어렵다. However, it is difficult to say that the higher the BET value of activated carbon is, the better the adsorption capacity of this hobby material is, because it is known that surface adsorption of activated carbon is the main mechanism of this hobby material represented by Geosmin and 2-MIB.

한국등록특허 제1509109호Korean Patent No. 1509109 한국등록특허 제1426704호Korean Patent No. 1426704 한국등록특허 제1553716호Korean Patent No. 1553716

Rosenfeldt 외. UV and UV/H2O2 treatment of methylisobornel(MIB) and geosmin in water, Journal of Water Supply, 2005, Vol. 54, 423-434쪽.  Rosenfeldt et al. UV and UV / H2O2 treatment of methylisobornel (MIB) and geosmin in water, Journal of Water Supply, 2005, Vol. 54, pp. 423-434.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 분말활성탄의 입경 및 표면소수성을 최적 범위로 제어함으로써 수중 이취미물질을 효과적으로 흡착, 제거할 수 있는 수중 이취미물질 제거용 분말활성탄 및 그 제조방법 그리고 분말활성탄을 이용한 잔류 망간이온 제거방법 및 분말활성탄을 이용한 응집방법을 제공하는데 그 목적이 있다. Disclosure of the Invention The present invention has been devised in order to solve the above-mentioned problems, and it is an object of the present invention to provide a powdery activated carbon for removing hobby substances, which can effectively adsorb and remove a hobby substance in water by controlling the particle diameter and surface hydrophobicity of powdered activated carbon to an optimum range, A method for removing residual manganese ions using powdered activated carbon, and an agglomeration method using activated carbon powder.

상기의 목적을 달성하기 위한 본 발명에 따른 수중 이취미물질 제거용 분말활성탄은 평균입경이 5∼7㎛이며, C/O비(carbon/oxygen ratio)가 20∼50인 것을 특징으로 한다. In order to achieve the above object, the powdered activated carbon for removing hobby substances according to the present invention has an average particle diameter of 5 to 7 μm and a carbon / oxygen ratio of 20 to 50.

본 발명에 따른 수중 이취미물질 제거용 분말활성탄의 제조방법은 활성탄을 준비하는 단계; 및 활성탄을 볼밀(ball mill) 공정을 통해 분쇄하여 평균입경 5∼7㎛, C/O비(carbon/oxygen ratio) 이상인 분말활성탄을 제조하는 단계를 포함하여 이루어지는 것을 특징으로 한다. The method for preparing activated carbon powder for removing hobby substances in water according to the present invention comprises: preparing activated carbon; And pulverizing the activated carbon through a ball mill process to produce an activated carbon powder having an average particle size of 5 to 7 mu m and a carbon / oxygen ratio of not less than C / O.

활성탄을 볼밀(ball mill) 공정을 통해 분쇄하여 평균입경 5∼7㎛, C/O비(carbon/oxygen ratio) 이상인 분말활성탄을 제조하는 단계는, 활성탄을 볼밀 공정을 통해 분쇄하여 분말활성탄을 제조하는 과정과, 분말활성탄의 평균입경 및 C/O비를 측정하는 과정과, 측정된 평균입경이 5∼7㎛에 속함과 함께 측정된 C/O비가 20∼50에 속하는 조건을 만족하는지 여부를 판단하는 과정과, 측정된 평균입경이 5∼7㎛보다 크면 재차 볼밀 공정을 실시하는 과정을 포함하여 구성된다. The step of pulverizing activated carbon through a ball mill process to produce a powdered activated carbon having an average particle diameter of 5 to 7 μm and a carbon / oxygen ratio of not less than 10 is characterized in that activated carbon is pulverized through a ball mill process to produce powder activated carbon Measuring the average particle size and the C / O ratio of the powdered activated carbon, and determining whether the measured average particle size falls within the range of 5 to 7 μm and the measured C / O ratio satisfies the condition of 20 to 50 And performing a ball milling process again if the measured average particle diameter is greater than 5 to 7 mu m.

상기 볼밀 공정은 건식 볼밀 공정이다. The ball mill process is a dry ball mill process.

본 발명에 따른 분말활성탄을 이용한 잔류 망간이온 제거방법은 원수에 과망간산염을 투입하여 수중의 독소물질을 제거하는 단계; 및 수중의 독소물질이 제거된 원수에 평균입경이 5∼7㎛이며, C/O비(carbon/oxygen ratio)가 20∼50인 분말활성탄을 투입하여 잔류 망간이온을 제거하는 단계;를 포함하여 이루어지는 것을 특징으로 한다. The method for removing residual manganese ions using powdered activated carbon according to the present invention comprises the steps of: putting permanganate into raw water to remove toxic substances in water; And removing the remaining manganese ions by adding powdered activated carbon having an average particle size of 5 to 7 mu m and a carbon / oxygen ratio of 20 to 50 to the raw water from which the toxin substances are removed from the water, .

본 발명에 따른 분말활성탄을 이용한 응집방법은 원수에 평균입경이 5∼7㎛이며, C/O비(carbon/oxygen ratio)가 20∼50인 분말활성탄을 응결핵으로 투입하는 단계; 및 분말활성탄이 포함된 원수에 응집제를 투입하는 단계;를 포함하여 이루어지며, 분말활성탄이 응결핵으로 작용하여 수중의 이물질이 응집되는 것을 특징으로 한다. According to the present invention, there is provided a flocculation method using powdered activated carbon, comprising the steps of charging powdered activated carbon having an average particle diameter of 5 to 7 μm and a carbon / oxygen ratio of 20 to 50 into the reactor core; And introducing the coagulant into the raw water containing the powdered activated carbon, wherein the powdered activated carbon functions as a condensation nucleus, and the foreign matter in the water is agglomerated.

본 발명에 따른 수중 이취미물질 제거용 분말활성탄 및 그 제조방법 그리고 분말활성탄을 이용한 잔류 망간이온 제거방법 및 분말활성탄을 이용한 응집방법은 다음과 같은 효과가 있다. The powdered activated carbon for removing hobby substances in water according to the present invention, the method for producing the same, the method for removing residual manganese ions using powdered activated carbon, and the method for agglomeration using powdered activated carbon have the following effects.

분말활성탄의 평균입경 및 C/O비를 최적범위로 제어함으로써 수중 이취미물질 흡착 성능을 향상시킬 수 있다. 또한, 본 발명에 따라 제조된 분말활성탄은 수중의 잔류 망간이온의 제거에도 효과적이며, 응집 공정시 응결핵으로 이용할 수도 있다. By controlling the average particle diameter and the C / O ratio of the powdered activated carbon to an optimal range, the adsorption performance of the hobby material in water can be improved. The powdered activated carbon produced according to the present invention is also effective in removing residual manganese ions in water and can also be used as a condensation nucleus in an aggregation process.

도 1은 본 발명의 일 실시예에 따른 수중 이취미물질 제거용 분말활성탄의 제조방법을 설명하기 위한 순서도.
도 2는 실험예 1을 통해 제조된 분말활성탄의 이취미물질 흡착 특성을 나타낸 실험결과.
도 3은 실험예 1을 통해 제조된 분말활성탄의 망간이온 제거 특성을 나타낸 실험결과.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart for explaining a method for producing activated carbon powder for removing hobby substances in water according to an embodiment of the present invention; FIG.
FIG. 2 is a graph showing the adsorption characteristics of the powdery activated carbon prepared in Experimental Example 1. FIG.
3 is an experimental result showing manganese ion removal characteristics of the powdered activated carbon prepared in Experimental Example 1. FIG.

본 발명은 분말활성탄을 이용하여 지오스민(geosmin), 2-methylisoborneol(2-MIB) 등과 같은 수중의 이취미물질을 효과적으로 제거할 수 있는 기술을 제시한다. The present invention proposes a technique for effectively removing this hobby substance in water such as geosmin and 2-methylisoborneol (2-MIB) using powdered activated carbon.

활성탄은 수중의 이물질을 흡착, 제거하는 용도로 널리 이용되고 있다. 일반적으로, 활성탄 내에는 2nm 이하의 미세기공(micropore), 2∼50nm 크기의 메조기공(mesopore), 50nm 이상의 매크로기공(macropore)이 형성된 것으로 알려져 있다. 수중의 이물질은 활성탄의 표면 뿐만 아니라 활성탄 내부에 형성되어 있는 기공에 흡착되는 형태로 제거된다. Activated carbon is widely used for adsorbing and removing foreign substances in water. In general, micropores of 2 nm or less, mesopores of 2 to 50 nm, macropores of 50 nm or more are formed in activated carbon. The foreign substances in the water are removed not only on the surface of the activated carbon but also in the form of being adsorbed on the pores formed in the activated carbon.

한편, 지오스민(geosmin), 2-MIB 등의 이취미물질은 활성탄의 기공보다는 활성탄 표면과의 정전기적 인력(electrostatic attraction) 또는 활성탄 표면과의 소수성 상호작용(hydrophobic interaction)에 의해 활성탄 표면에 흡착되는 것이 주된 기작으로 알려져 있다(Matsui 외. Isotope microscopy visualization of the adsorption profile of 2-methylisoborneol and Geosmin in powdered activated carbon, Environmental Science & Technology 2014, Vol. 48, 10897-10903쪽 참조). 즉, 활성탄을 이용하여 수중 이취미물질을 흡착, 제거함에 있어서 활성탄 내부에 형성되어 있는 기공은 이취미물질의 흡착에 큰 영향을 미치지 않는다. On the other hand, these hobby materials such as geosmin and 2-MIB are adsorbed on the surface of activated carbon by electrostatic attraction with the surface of activated carbon or hydrophobic interaction with the surface of activated carbon rather than pores of activated carbon (Matsui et al., Isotope microscopy visualization of the adsorption profile of 2-methylisoborneol and Geosmin in powdered activated carbon, Environmental Science & Technology 2014, Vol. 48, pp. 10897-10903). That is, when the hobby material is adsorbed and removed from the water using activated carbon, the pores formed in the activated carbon do not greatly affect the adsorption of the hobby material.

본 발명은 이와 같은 점에 착안하여, 분말활성탄의 평균입경 및 표면소수성을 제어함으로써 수중의 이취미물질을 효과적으로 흡착, 제거하는 기술을 제시한다. The present invention addresses this point and suggests a technique for effectively adsorbing and removing this hobby substance in water by controlling the average particle size and surface hydrophobicity of powdered activated carbon.

앞서 언급한 바와 같이, 활성탄의 기공 관련 특성은 이취미물질의 흡착에 큰 영향을 미치지 않음에 따라, 이취미물질 흡착 용도의 활성탄 제조시 활성탄의 표면 특성을 제외한 비표면적, 총 기공부피, 기공크기 등은 고려될 필요가 없다. As mentioned above, since the pore-related characteristics of the activated carbon do not greatly affect the adsorption of the hobby substance, the activated carbon having the specific surface area, the total pore volume, the pore size Etc. need not be considered.

반면, 활성탄의 입경은 수중 이취미물질의 흡착 효율을 결정하는 주요인자로서, 활성탄의 입경이 작을수록 정전기적 인력 또는 소수성 상호작용을 통한 표면 흡착을 할 수 있는 면적이 증가하여 이취미물질의 흡착 특성을 향상시킬 수 있다. On the other hand, the particle diameter of activated carbon is a major factor determining the adsorption efficiency of the hobby material in water. As the particle size of the activated carbon is smaller, the surface area capable of surface adsorption through electrostatic attraction or hydrophobic interaction increases, The characteristics can be improved.

또한, 입경과 더불어 이취미물질의 흡착에 주요한 영향을 미치는 인자인 소수성 상호작용 즉, 표면소수성을 C/O비(carbon/Oxygen ratio)의 조절을 통해 제어함으로써 이취미물질의 흡착 특성을 향상시킬 수 있다. 분말활성탄은 탄소(C) 체인이 길수록 소수성이 증가하고, COOH의 비율이 높을수록 소수성이 저하되는 특성을 갖고 있다. 따라서, C/O비가 클수록 분말활성탄의 소수성은 증가하고 C/O비가 작을수록 분말활성탄의 소수성은 감소한다. In addition, by controlling the hydrophobic interaction, that is, the surface hydrophobicity, which is a factor affecting the adsorption of the hobby substance with the particle size, by controlling the carbon / oxygen ratio, the adsorption property of the hobby substance is improved . The longer the carbon (C) chain is, the more hydrophobic the activated carbon, and the higher the ratio of COOH, the lower the hydrophobicity. Therefore, as the C / O ratio increases, the hydrophobicity of the powdered activated carbon increases and the hydrophobicity of the powdered activated carbon decreases as the C / O ratio decreases.

본 발명은 수중의 이취미물질을 효과적으로 제거하기 위한 분말활성탄으로 6㎛ 내외의 평균입경을 갖음과 함께 20 이상의 C/O비를 갖는 분말활성탄을 제시하며, 이와 같은 입경 특성 및 표면소수성 특성을 갖는 분말활성탄을 제조하는 방법을 제시함에 특징이 있다. 분말활성탄의 평균입경이 6㎛ 내외보다 크면 분말활성탄의 표면흡착특성이 저하되며, C/O비가 20보다 작으면 이취미물질과의 소수성 상호작용이 약화되어 이취미물질의 흡착이 용이하지 않다. 한편, 일반적인 상태의 활성탄은 표면 산화로 인해 C/O비가 50을 넘지 않는 것으로 알려져 있다. 따라서, 본 발명에 있어서 이취미물질 흡착을 위한 표면소수성 확보를 위한 C/O비는 20∼50으로 설정할 수 있다. The present invention relates to a powdered activated carbon for effectively removing the hobby substance in water and has an average particle size of about 6 탆 and exhibits a powdered activated carbon having a C / O ratio of 20 or more. The present invention is characterized by suggesting a method for producing activated carbon powder. If the average particle diameter of the powdered activated carbon is larger than about 6 탆, the surface adsorption characteristics of the powdered activated carbon are deteriorated. If the C / O ratio is less than 20, the hydrophobic interaction with the hyaline material is weakened and the adsorption of the hobby substance is not easy. On the other hand, it is known that the activated carbon in a normal state does not exceed a C / O ratio of 50 due to surface oxidation. Therefore, in the present invention, the C / O ratio for securing surface hydrophobicity for adsorption of the hobby substance can be set to 20 to 50. [

이하, 도면을 참조하여 본 발명의 일 실시예에 따른 수중 이취미물질 제거용 분말활성탄의 제조방법 및 그에 따라 제조되는 수중 이취미물질 제거용 분말활성탄에 대해 상세히 설명하기로 한다. Hereinafter, a method for producing activated carbon powder for removing hobby substances in water according to an embodiment of the present invention and powdered activated carbon for removing hobby substances from water will be described in detail with reference to the drawings.

도 1을 참조하면, 본 발명의 일 실시예에 따른 수중 이취미물질 제거용 분말활성탄의 제조방법은 크게 활성탄 제조과정(S101), 활성탄 분쇄과정(S102), 분말활성탄의 평균입경 및 C/O비 측정과정(S103)으로 이루어진다. Referring to FIG. 1, the method for producing powdered activated carbon for removing hobby substances in water according to an embodiment of the present invention includes a step of manufacturing activated carbon (S101), a step of pulverizing activated carbon (S102), an average particle diameter of powdered activated carbon, and C / (S103).

먼저, 활성탄 제조과정(S101)에 대해 설명하면 다음과 같다. 활성탄의 제조는 통상의 방법을 이용할 수 있다. 구체적으로, 목재, 톱밥, 목탄, 섬유, 야자, 코크스 중 어느 또는 이들의 혼합물로 이루어지는 활성탄 전구체를 준비하고, 상기 활성탄 전구체를 불활성가스 분위기 하에서 500∼1500℃의 온도에서 2∼4시간 동안 열처리하여 활성탄 전구체를 탄화물화시킨다. 이어, 열처리에 의해 형성된 탄화물을 수산화칼륨(KOH), 탄산나트륨(Na(CO3)2) 등과 같은 활성화제와 혼합하고 약 80℃의 온도에서 활성화시켜 활성탄을 제조한다. 한편, 활성탄 제조공정을 생략하고 상용화된 활성탄을 후속의 활성탄 분쇄과정에 적용할 수도 있다. First, the activated carbon manufacturing process (S101) will be described as follows. The activated carbon can be produced by a conventional method. Specifically, an activated carbon precursor comprising any one of wood, sawdust, charcoal, fiber, coconut and cokes or a mixture thereof is prepared, and the activated carbon precursor is heat-treated at 500 to 1500 ° C for 2 to 4 hours under an inert gas atmosphere Carbide the activated carbon precursor. Subsequently, the carbide formed by the heat treatment is mixed with an activating agent such as potassium hydroxide (KOH), sodium carbonate (Na (CO 3 ) 2 ), and activated at a temperature of about 80 ° C to produce activated carbon. On the other hand, commercialized activated carbon may be applied to the subsequent pulverizing process of activated carbon by omitting the activated carbon production process.

활성탄이 제조된 상태에서, 활성탄 분쇄과정을 진행한다(S102). 활성탄의 분쇄는 볼밀(ball mill) 공정을 이용하는 것이 바람직하다. 또한, 습식 볼밀 공정과 건식 볼밀 공정 모두 적용 가능하나, 습식 볼밀 공정의 경우 분쇄물 회수과정이 추가되는 점을 고려하여 공정의 간편성을 위해 건식 볼밀 공정을 우선적으로 적용할 수 있다. In a state where activated carbon is produced, an activated carbon pulverizing process is performed (S102). The pulverization of the activated carbon is preferably performed using a ball mill process. In addition, wet ball milling and dry ball milling can be applied. However, in case of wet ball milling, a dry ball milling process can be applied to simplify the process in consideration of adding a pulverized water recovery process.

볼밀 공정 진행시, 지르코니아(ZrO2), 알루미나(Al2O3), 자기 재질의 용기와 볼을 이용할 수 있으며, 지름 0.5∼5mm의 볼을 이용할 수 있다. 구체적으로, 높이 110mm, 내경 95mm의 볼밀 용기에 제조된 활성탄 40g과 지름 0.5∼2mm의 볼 200ml를 투입한 후, 볼밀 용기를 100∼200rpm의 속도로 회전시켜 볼밀 공정을 진행할 수 있다. Zirconia (ZrO 2 ), alumina (Al 2 O 3 ), magnetic materials and balls can be used for ball milling, and balls 0.5 to 5 mm in diameter can be used. Specifically, 40 g of activated carbon produced in a ball mill with a height of 110 mm and an inner diameter of 95 mm and 200 ml of a ball having a diameter of 0.5 to 2 mm are put into a ball mill and the ball mill can be rotated at a speed of 100 to 200 rpm.

이와 같은 볼밀 공정을 통해 활성탄의 분쇄가 진행되며, 활성탄 분쇄과정이 완료되면 분쇄된 활성탄 즉, 분말활성탄에 대한 평균입경 및 C/O비 측정과정(S103)을 진행한다. The pulverization of the activated carbon proceeds through the ball milling process. When the pulverization of the activated carbon is completed, the average particle diameter and the C / O ratio of the pulverized activated carbon, that is, the powdered activated carbon are measured (S103).

분말활성탄의 평균입경은 다양한 방식의 입도분포측정기를 이용하여 측정할 수 있다. 일 실시예로 light scattering 방식의 입도분포측정기를 이용할 수 있으며, 이 경우 분말활성탄을 수중에 고르게 분산시키기 위해 Triton-X 등의 계면활성제를 투입할 수 있다. 또한, 분말활성탄의 C/O비는 적외선 방식의 원소분석기를 이용하여 측정할 수 있다. The average particle size of the powdered activated carbon can be measured using a particle size analyzer of various methods. In one embodiment, a light scattering particle size analyzer may be used. In this case, a surfactant such as Triton-X may be added to disperse powdered activated carbon evenly in water. Also, the C / O ratio of the powdered activated carbon can be measured using an infrared element analyzer.

분말활성탄의 평균입경 및 C/O비 측정이 완료되면, 측정된 평균입경 및 C/O비가 미리 설정한 범위 내에 속하는지 여부를 판단한다. 구체적으로, 분말활성탄의 입경이 5∼7㎛에 속하는지 여부 및 분말활성탄의 C/O비가 20∼50에 속하는지 여부를 판단한다. When the average particle diameter and the C / O ratio of the powdered activated carbon are completed, it is determined whether the measured average particle diameter and the C / O ratio fall within a predetermined range. Specifically, it is determined whether or not the particle size of the powdered activated carbon falls within a range of 5 to 7 mu m and whether the C / O ratio of the powdered activated carbon falls within the range of 20 to 50.

분말활성탄의 평균입경 및 C/O비를 측정하고, 이를 일정 수치범위 내로 제어하는 이유는 이취미물질의 흡착에 최적화된 분말활성탄을 얻기 위함이다. 앞서 언급한 바와 같이, 활성탄을 이용하여 수중의 이취미물질을 흡착함에 있어서, 활성탄의 기공 특성, 비표면적 특성은 이취미물질 흡착에 큰 영향을 미치지 않으며, 이취미물질의 흡착 특성에 영향을 미치는 주요 인자는 분말활성탄의 정전기적 인력 및 표면 소수성 특성이다. 또한, 분말활성탄의 정전기적 입력은 분말활성탄의 입경이 작을수록 커지며, 분말활성탄의 표면 소수성은 분말활성탄의 C/O비가 클수록 증가한다. The reason why the average particle size and the C / O ratio of the powdered activated carbon are measured and is controlled within a certain numerical range is to obtain powder activated carbon optimized for adsorption of the hobby substance. As mentioned above, in adsorbing this hobby substance in water using activated carbon, the pore characteristics and specific surface properties of the activated carbon do not greatly affect the adsorption of the hobby substance, and the adsorption characteristics of the hobby substance The main factors are the electrostatic attraction and surface hydrophobicity of powdered activated carbon. In addition, the electrostatic input of the powdered activated carbon increases as the particle size of the powdered activated carbon becomes smaller, and the surface hydrophobicity of the powdered activated carbon increases as the C / O ratio of the powdered activated carbon increases.

한편, 볼밀 공정을 진행하는 과정에서 활성탄이 미립화됨으로 인해 표면 산화가 진행되며, 표면 산화가 진행될수록 C/O비는 작아질 수 밖에 없다. 볼밀 공정으로 건식을 적용하는 경우, 분말활성탄의 표면 산화는 습식 볼밀 공정보다 더욱 가속화된다. 따라서, 볼밀 공정을 통해 미립의 분말활성탄을 얻을 수 있으나, 분말활성탄의 C/O비 감소에 따른 표면소수성 저하 현상은 불가피하다. On the other hand, in the course of the ball milling process, surface oxidation proceeds due to atomization of activated carbon, and as the surface oxidation progresses, the C / O ratio becomes small. When dry milling is applied to the ball mill process, the surface oxidation of the powdered activated carbon is accelerated more than the wet milling process. Therefore, it is possible to obtain particulate powdered activated carbon through the ball milling process, but it is inevitable that the surface hydrophobicity degrades as the C / O ratio of the powdered activated carbon decreases.

본 발명은 이와 같은 분말활성탄 미립화에 따른 표면소수성 저하 특성을 고려하여, 분말활성탄의 평균입경을 6㎛ 내외 범위로 조절하고 분말활성탄의 C/O비를 20∼50으로 유지시킴을 제시한다. 분말활성탄의 평균입경이 6㎛보다 크면 상대적으로 정전기적 인력 특성이 저하되고, 6㎛보다 작으면 분말활성탄의 C/O비가 급격히 감소하여 표면소수성 특성이 악화된다. 또한, 분말활성탄의 C/O비가 20보다 작으면 분말활성탄의 표면소수성 특성이 발현되지 않으며, 일반적인 상태의 활성탄의 C/O비는 50을 넘지 않는다. 이와 같은 수치범위 한정에 이유는 후술하는 실험결과에 의해 뒷받침된다. 또한, 분말활성탄의 입경 분포를 고려하여 6㎛ 내외 범위는 수치적으로 5∼7㎛ 범위로 설정할 수 있다. The present invention suggests that the average particle diameter of the powdered activated carbon is adjusted to about 6 탆 and the C / O ratio of the powdered activated carbon is maintained at 20 to 50 in consideration of the surface hydrophobicity lowering property due to such atomization of the powdered activated carbon. If the average particle diameter of the powdered activated carbon is larger than 6 탆, the electrostatic attraction characteristics are relatively lowered. If the average particle size is smaller than 6 탆, the C / O ratio of the powdered activated carbon decreases sharply and the surface hydrophobic property deteriorates. If the C / O ratio of the powdered activated carbon is less than 20, the surface hydrophobic property of the powdered activated carbon is not expressed, and the C / O ratio of the activated carbon in the normal state does not exceed 50. [ The reason for limiting such numerical range is supported by the experimental results described later. In consideration of the particle diameter distribution of the powdery activated carbon, the range of about 6 mu m can be set to a numerical range of 5 to 7 mu m.

한편, 분말활성탄의 평균입경 및 C/O비가 상술한 수치범위를 만족하지 않는 경우, 예를 들어 분말활성탄의 평균입경이 5∼7㎛ 범위보다 큰 경우, 재차 활성탄 분쇄공정을 실시한다(S104). 또한, 최초 활성탄 분쇄공정 진행시 볼밀 공정의 시간, 볼밀 종류 등을 제어하여 분말활성탄의 평균입경 및 C/O비를 선택적으로 조절할 수 있다. On the other hand, when the average particle size and the C / O ratio of the powdered activated carbon do not satisfy the above-mentioned numerical value range, for example, when the average particle size of the powdered activated carbon is larger than the range of 5 to 7 μm, . Also, the average particle size and the C / O ratio of the powdered activated carbon can be selectively controlled by controlling the time of the ball mill process, the type of the ball mill, and the like in the course of the initial activated carbon pulverization process.

이상, 본 발명의 일 실시예에 따른 수중 이취미물질 제거용 분말활성탄 및 그 제조방법에 대해 설명하였다. 이하에서는, 실험을 통해 본 발명을 보다 구체적으로 설명하기로 한다. The powdered activated carbon for removing hobby substances in water according to one embodiment of the present invention and the method for producing the same are described above. Hereinafter, the present invention will be described in more detail through experiments.

<실험예 1 : 이취미물질 흡착 특성><Experimental Example 1: Adsorption Property of the Hobby Material>

지름 0.5mm, 1mm, 3mm, 5mm의 볼(ball) 200ml가 각각 투입되어 있는 볼밀 용기에 40g의 활성탄을 넣은 다음, 150rpm의 회전속도로 볼밀 공정을 진행하여 분말활성탄을 얻었다. 제조된 분말활성탄의 평균입경, C/O비 및 기공 특성은 아래의 표 1과 같다. 40 g of activated carbon was placed in a ball mill in which 200 ml of balls having diameters of 0.5 mm, 1 mm, 3 mm and 5 mm were put, respectively, and ball milling was carried out at a rotation speed of 150 rpm to obtain activated carbon powder. The average particle diameter, C / O ratio and pore characteristics of the powdered activated carbon prepared are shown in Table 1 below.

<분말활성탄의 평균입경, C/O비 및 기공 특성><Average Particle Size, C / O Ratio and Pore Characteristics of Powder Activated Carbon> 샘플 1Sample 1 샘플 2Sample 2 샘플 3Sample 3 샘플 4Sample 4 샘플 5Sample 5 샘플 6Sample 6 볼 크기(mm)Ball size (mm) -- 0.50.5 1One 1One 33 55 분쇄시간(hr)Grinding time (hr) 00 1One 1One 1212 1One 1One 평균입경(μm)Average particle size (μm) 12.612.6 11.911.9 9.99.9 6.56.5 11.111.1 11.811.8 C/O비C / O ratio 3333 -- 2222 1818 -- -- BET 비표면적(m2/g)BET specific surface area (m 2 / g) 919919 -- 861861 879879 -- -- 총 기공부피(cm3/g)Total pore volume (cm 3 / g) 0.2980.298 -- 0.3490.349 0.3480.348 -- -- 평균 기공크기(nm)Average pore size (nm) 4.74.7 6.426.42 6.66.6 -- --

제조된 분말활성탄(샘플 1 내지 샘플 6)의 이취미물질 흡착 특성을 살펴보았다. 정수처리공정의 원수에 지오스민(Geosmin)과 2-MIB를 각각 100ppt 농도로 주입한 다음, 샘플 1 내지 샘플 6의 분말활성탄을 20mg/L의 농도로 투입한 후 시간 경과에 따른 이취미물질(geosmin, 2-MIB)의 농도를 측정하였다. The adsorption characteristics of the thus-obtained powdered activated carbon (Samples 1 to 6) were examined. Geosmin and 2-MIB were respectively injected into the raw water of the water treatment process at a concentration of 100 ppt, and powdered activated carbon of Samples 1 to 6 was added at a concentration of 20 mg / L. geosmin, 2-MIB) were measured.

도 2를 참조하면, 볼밀링을 수행하지 않은 분말활성탄(샘플 1)과 비교할 때 0.5∼5mm의 지르코니아 볼을 사용하여 1시간 분쇄한 분말활성탄(샘플 2, 샘플 3, 샘플 5, 샘플 6)의 경우, Geosmin과 2-MIB의 흡착 속도가 다소 상승하고 볼의 직경에 따른 차이는 크지 않은 것을 알 수 있다. 이는 분쇄 후 평균 입경이 볼의 직경에 관계 없이 10∼11㎛ 내외이기 때문이다. Referring to FIG. 2, powder activated carbon (Sample 2, Sample 3, Sample 5, Sample 6) pulverized for 1 hour by using zirconia balls of 0.5 to 5 mm in comparison with powder activated carbon (Sample 1) , The adsorption rate of Geosmin and 2-MIB increased slightly and the difference according to the diameter of the balls was not large. This is because the average particle diameter after grinding is about 10 to 11 占 퐉 irrespective of the diameter of the balls.

한편, 1mm의 지르코니아 볼을 사용하여 12시간 분쇄한 분말활성탄(샘플 4)의 경우, 수중 이취미물질의 흡착속도가 가장 빠른 것을 알 수 있는데, 동일한 크기의 볼을 사용하여 1시간 분쇄한 경우와 비교했을 때, BET분석에 의한 비표면적, 총 기공부피, 기공크기에는 차이가 없는 반면 평균입경에는 30%의 차이가 있어 평균 입경이 수중 이취미물질의 흡착능력을 간단하게 비교할 수 있는 인자로 사용될 수 있음을 알 수 있다. On the other hand, in the case of the powdered activated carbon (sample 4) pulverized for 12 hours using a 1 mm zirconia ball, the adsorption rate of the hobby substance was the highest in water. When the powder was pulverized for 1 hour using balls of the same size In comparison, there is no difference in specific surface area, total pore volume and pore size by BET analysis, but difference in average particle diameter is 30%, so that the average particle diameter can be used as a factor to easily compare the adsorption capacity of the hobby material in water .

<실험예 2 : 망간이온 제거 특성> <Experimental Example 2: Manganese ion removal characteristics>

녹조의 대량번식시 이취미물질과 함께 문제가 되는 것이 It is a problem with this hobby substance when mass breeding of green alga

녹조의 대량번식시 이취미물질과 함께 문제가 되는 것이 남조류 등에서 발생하는 Microcystin 등의 독소물질인데, 이와 같은 Microcystin 등의 독소물질은 과망간산염(MnO4 -) 등의 전산화제를 주입하여 산화시키는 것이 효과적으로 알려져 있다. 하지만 과망간산염(MnO4 -) 주입시 잔류 망간이온에 의한 색도유발 문제가 발생할 수 있다. It is a toxic substance such as Microcystin which occurs in cyanobacteria, which is a problem with this hobby material at the time of mass propagation of green algae. Such a toxin substance such as Microcystin is oxidized by injecting a chemical compound such as permanganate (MnO 4 - ) It is effectively known. However, when MnO 4 - is injected, the problem of chromaticity caused by residual manganese ions may occur.

이에, 실험예 1을 통해 제조된 분말활성탄(샘플 4)의 망간이온 제거특성을 살펴보았다. 구체적으로, 정수처리공정의 유입원수에 약 100ppb의 Microcystin-LR을 주입한 후 과망간산염(MnO4 -) 전산화제를 10에서 90분의 접촉시간으로 처리한 후 실험예 1을 통해 제조된 분말활성탄(샘플 4)을 20 mg/L 주입하였다. Thus, the manganese ion removal characteristics of the powdery activated carbon prepared in Experimental Example 1 (Sample 4) were examined. Specifically, about 100 ppb of Microcystin-LR was injected into the influent water of the water treatment process, and then the permanganate (MnO 4 - ) metalizing agent was treated with the contact time of 10 to 90 minutes, (Sample 4) was injected at 20 mg / L.

도 3을 참조하면, Microcystin-LR은 과망간산염(MnO4 -)과 최소 10분의 접촉시간으로 충분히 산화가 되며, 이 때 발생하는 잔류 망간이온은 이후의 분말활성탄(샘플 4)의 주입으로 감소하는 것을 확인할 수 있다. 이와 같은 결과를 통해, 본 발명에 따라 제조된 분말활성탄이 이취미물질 이외에 수중에 잔류하는 망간이온의 제거에도 효과적임을 알 수 있다. Referring to FIG. 3, Microcystin-LR is sufficiently oxidized with a permanganate (MnO 4 - ) for a contact time of at least 10 minutes. Residual manganese ion generated at this time is reduced by the subsequent injection of powdered activated carbon (Sample 4) . From these results, it can be seen that the powdered activated carbon produced according to the present invention is effective for removing manganese ions remaining in water in addition to the hobby materials.

<실험예 3 : 응집 특성><Experimental Example 3: Coagulation characteristics>

본 발명의 일 실시예에 따라 제조된 분말활성탄의 응결핵으로의 이용 가능성에 대해 살펴보았다. The availability of powdered activated carbon prepared according to one embodiment of the present invention as a condensation nucleus was examined.

정수처리공정 유입원수에 실험예 1을 통해 제조된 분말활성탄(샘플 4)을 20 mg/L 주입하고 PAC 응집제를 20 mg/L 투입하여 15분간 혼화 후 탁도, 30분 침전 후 상등액의 탁도와 슬러지의 침강성을 측정하였다. 20 mg / L of Powder Activated Carbon (Sample 4) prepared in Experimental Example 1 was injected into the raw water of the water treatment process and 20 mg / L of PAC coagulant was added thereto. After mixing for 15 minutes, turbidity and turbidity of the supernatant and sludge Was measured.

아래의 표 2를 참조하면, 분말활성탄을 주입하지 않은 대조군과 비교해 보았을 때, 분말활성탄(샘플 4)이 응결핵으로 작용하여 슬러지의 밀도 및 침강성, 그리고 침전의 효율을 향상시키는 것을 확인할 수 있다. Referring to Table 2 below, it can be seen that the powdered activated carbon (Sample 4) acts as a condensation nucleus when compared with the control group in which powdered activated carbon is not injected, thereby improving the density and sedimentation of sludge and the efficiency of sedimentation.

<분말활성탄 주입에 따른 탁도 및 슬러지 침강 특성><Turbidity and Sludge Settling Characteristics by Powder Activated Carbon Injection> 대조군Control group 분말활성탄(샘플 4) 주입Powder activated carbon (sample 4) injection 혼화 후 탁도 (NTU)Turbidity after mixing (NTU) 3.453.45 3.383.38 30분 침전 후
상등액 탁도 (NTU)
After 30 minutes of precipitation
Supernatant turbidity (NTU)
0.770.77 0.430.43
슬러지 침강성
(SVI30, mL/g)
Sludge sedimentation
(SVI30, mL / g)
185185 150150

Claims (6)

활성탄을 준비하는 단계; 및
활성탄을 볼밀(ball mill) 공정을 통해 분쇄하여 평균입경 5∼7㎛, C/O비(carbon/oxygen ratio) 20∼50인 분말활성탄을 제조하는 단계를 포함하여 이루어지는 것을 특징으로 하는 수중 이취미물질 제거용 분말활성탄의 제조방법.
Preparing activated carbon; And
And pulverizing the activated carbon through a ball mill process to produce an activated carbon powder having an average particle diameter of 5 to 7 占 퐉 and a carbon / oxygen ratio of 20 to 50, A method for producing activated carbon powder for material removal.
제 1 항에 있어서, 활성탄을 볼밀(ball mill) 공정을 통해 분쇄하여 평균입경 5∼7㎛, C/O비(carbon/oxygen ratio) 20∼50인 분말활성탄을 제조하는 단계는,
활성탄을 볼밀 공정을 통해 분쇄하여 분말활성탄을 제조하는 과정과,
분말활성탄의 평균입경 및 C/O비를 측정하는 과정과,
측정된 평균입경이 5∼7㎛에 속함과 함께 측정된 C/O비가 20∼50에 속하는 조건을 만족하는지 여부를 판단하는 과정과,
측정된 평균입경이 5∼7㎛보다 크면 재차 볼밀 공정을 실시하는 과정을 포함하여 구성되는 것을 특징으로 하는 수중 이취미물질 제거용 분말활성탄의 제조방법.
The method of claim 1, wherein the activated carbon is ground through a ball mill process to produce an activated carbon powder having an average particle size of 5 to 7 占 퐉 and a carbon / oxygen ratio of 20 to 50,
Pulverizing activated carbon through a ball mill process to produce powdered activated carbon;
Measuring the average particle diameter and the C / O ratio of the powdered activated carbon;
Determining whether the measured average particle size falls within a range of 5 to 7 占 퐉 and whether the measured C / O ratio satisfies a condition belonging to 20 to 50;
And performing a ball milling process again if the measured average particle diameter is larger than 5 to 7 mu m.
제 1 항에 있어서, 상기 볼밀 공정은 건식 볼밀 공정인 것을 특징으로 하는 수중 이취미물질 제거용 분말활성탄의 제조방법.
The method of claim 1, wherein the ball mill process is a dry ball mill process.
평균입경이 5∼7㎛이며, C/O비(carbon/oxygen ratio)가 20∼50인 것을 특징으로 하는 수중 이취미물질 제거용 분말활성탄.
Characterized by having an average particle diameter of 5 to 7 占 퐉 and a carbon / oxygen ratio of 20 to 50.
원수에 과망간산염을 투입하여 수중의 독소물질을 제거하는 단계; 및
수중의 독소물질이 제거된 원수에 평균입경이 5∼7㎛이며, C/O비(carbon/oxygen ratio)가 20∼50인 분말활성탄을 투입하여 잔류 망간이온을 제거하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 분말활성탄을 이용한 잔류 망간이온 제거방법.
Adding permanganate to the raw water to remove toxic substances in the water; And
Removing the remaining manganese ions by adding powdered activated carbon having an average particle diameter of 5 to 7 占 퐉 and a carbon / oxygen ratio of 20 to 50 to the raw water from which the toxin substance in the water has been removed; And removing residual manganese ions by using powdered activated carbon.
원수에 평균입경이 5∼7㎛이며, C/O비(carbon/oxygen ratio)가 20∼50인 분말활성탄을 응결핵으로 투입하는 단계; 및
분말활성탄이 포함된 원수에 응집제를 투입하는 단계;를 포함하여 이루어지며,
분말활성탄이 응결핵으로 작용하여 수중의 이물질이 응집되는 것을 특징으로 하는 분말활성탄을 이용한 응집방법.
Introducing powdered activated carbon having an average particle diameter of 5 to 7 占 퐉 and a carbon / oxygen ratio of 20 to 50 into raw water; And
And injecting the flocculant into the raw water containing the powdered activated carbon,
Characterized in that the powdered activated carbon acts as a condensation nucleus so that foreign matters in the water are agglomerated.
KR1020170053735A 2017-04-26 2017-04-26 Powered activated carbon for removing taste and odor in water and Method for fabricating the same and Method for removal of manganese ions using the same and Coagulation method using the same KR101950193B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170053735A KR101950193B1 (en) 2017-04-26 2017-04-26 Powered activated carbon for removing taste and odor in water and Method for fabricating the same and Method for removal of manganese ions using the same and Coagulation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170053735A KR101950193B1 (en) 2017-04-26 2017-04-26 Powered activated carbon for removing taste and odor in water and Method for fabricating the same and Method for removal of manganese ions using the same and Coagulation method using the same

Publications (2)

Publication Number Publication Date
KR20180119955A true KR20180119955A (en) 2018-11-05
KR101950193B1 KR101950193B1 (en) 2019-02-21

Family

ID=64329006

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170053735A KR101950193B1 (en) 2017-04-26 2017-04-26 Powered activated carbon for removing taste and odor in water and Method for fabricating the same and Method for removal of manganese ions using the same and Coagulation method using the same

Country Status (1)

Country Link
KR (1) KR101950193B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111573892A (en) * 2020-05-24 2020-08-25 浙江大业新材料股份有限公司 Method for improving adsorption efficiency of powdered activated carbon in sewage treatment
CN112588424A (en) * 2020-10-19 2021-04-02 湖州师范学院 Ball milling and pulverizing system effective control method based on cloud intelligent model

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113121127B (en) * 2021-04-21 2022-01-11 昆明学院 Manganese slag solid waste recycling treatment method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282441A (en) * 2005-03-31 2006-10-19 Japan Enviro Chemicals Ltd Powdered activated carbon for removing musty odor
KR20130032137A (en) * 2011-09-22 2013-04-01 (주) 정수엔지니어링 An activated carbon watertreatment device and the watertreatment system and the method using thereof
JP2014034006A (en) * 2012-08-09 2014-02-24 Kobelco Eco-Solutions Co Ltd Waste water treatment method and waste water treatment equipment
KR101509109B1 (en) 2013-06-12 2015-04-07 한국건설기술연구원 Dual mode membrane filtration system of pressure-immersion combination type, and variable control method for the same
KR101553716B1 (en) 2008-04-21 2015-09-16 제이엑스 닛코닛세키에너지주식회사 Active carbon for an electric double layer capacitor electrode and process for manufacturing the same
KR20170017247A (en) * 2015-08-06 2017-02-15 주식회사 블루텍 Water purification method using permanganate in drinking water plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282441A (en) * 2005-03-31 2006-10-19 Japan Enviro Chemicals Ltd Powdered activated carbon for removing musty odor
KR101553716B1 (en) 2008-04-21 2015-09-16 제이엑스 닛코닛세키에너지주식회사 Active carbon for an electric double layer capacitor electrode and process for manufacturing the same
KR20130032137A (en) * 2011-09-22 2013-04-01 (주) 정수엔지니어링 An activated carbon watertreatment device and the watertreatment system and the method using thereof
KR101426704B1 (en) 2011-09-22 2014-08-07 (주) 정수엔지니어링 an activated carbon watertreatment device and the watertreatment system and the method using thereof
JP2014034006A (en) * 2012-08-09 2014-02-24 Kobelco Eco-Solutions Co Ltd Waste water treatment method and waste water treatment equipment
KR101509109B1 (en) 2013-06-12 2015-04-07 한국건설기술연구원 Dual mode membrane filtration system of pressure-immersion combination type, and variable control method for the same
KR20170017247A (en) * 2015-08-06 2017-02-15 주식회사 블루텍 Water purification method using permanganate in drinking water plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Rosenfeldt 외. UV and UV/H2O2 treatment of methylisobornel(MIB) and geosmin in water, Journal of Water Supply, 2005, Vol. 54, 423-434쪽.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111573892A (en) * 2020-05-24 2020-08-25 浙江大业新材料股份有限公司 Method for improving adsorption efficiency of powdered activated carbon in sewage treatment
CN112588424A (en) * 2020-10-19 2021-04-02 湖州师范学院 Ball milling and pulverizing system effective control method based on cloud intelligent model

Also Published As

Publication number Publication date
KR101950193B1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
Kong et al. Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and thermodynamic analyses
Kalderis et al. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse
KR101950193B1 (en) Powered activated carbon for removing taste and odor in water and Method for fabricating the same and Method for removal of manganese ions using the same and Coagulation method using the same
US9452413B2 (en) Permeable porous composite
KR101354268B1 (en) Preparation method of granular oxide absorbents and water treatment method using the same
KR101354409B1 (en) Method of preparing organic-Inorganic adsorbent by impregnating oxides inside nano pores of activated carbon and use of the adsorbent for water treatment
US20120223022A1 (en) Contaminant removal from waters using rare earths
CN108636432B (en) Zinc ferrite/silver carbonate composite visible light catalytic material and preparation method and application thereof
Gadore et al. Bio-inspired sustainable synthesis of novel SnS2/biochar nanocomposite for adsorption coupled photodegradation of amoxicillin and congo red: Effects of reaction parameters, and water matrices
JP2011045853A (en) Water-purifying treatment apparatus and method
Adeleke et al. Remediation of raw wastewater of palm oil mill using activated cow bone powder through batch adsorption
US20080099403A1 (en) Method of water purification
US20160229707A1 (en) Water purification compositions of magnesium oxide and applications thereof
JP6165598B2 (en) Regeneration method of plant-based spherical activated carbon and reuse method of the regenerated plant-based spherical activated carbon in water purification treatment
Al-Hmoud et al. Olive mill wastewater treatment: A recent review
KR101762551B1 (en) Process for producing granular water treatment agent
Abu-Dalo et al. Coupling coagulation-flocculation to volcanic tuff-magnetite nanoparticles adsorption for olive mill wastewater treatment
Syauqiah et al. Activated carbon from Nypa (Nypa fruticans) leaves applied for the Fe and Mn removal
CN110559990A (en) Preparation method of pure water carbon composite material with low nano zero-valent iron and nano silver loading
KR20050050631A (en) Graphite powder obtained by ball milling and the use thereof
KR20010076859A (en) Absorbent For Water Treatment Using Water Plant Sludges And Its Method Of Preparation
KR101803904B1 (en) Water Treatment System of Microcystin, Geosmin and 2-MIB using Activated Carbon
KR101802657B1 (en) Water Treatment System of Microcystin, Geosmin and 2-MIB using Activated Carbon
JP2007296464A (en) Humic substance adsorbent and its manufacturing method
CN106746043A (en) A kind of deep-purifying method of compound micro-polluted source water

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right