KR20180107149A - 360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치 - Google Patents

360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치 Download PDF

Info

Publication number
KR20180107149A
KR20180107149A KR1020187023124A KR20187023124A KR20180107149A KR 20180107149 A KR20180107149 A KR 20180107149A KR 1020187023124 A KR1020187023124 A KR 1020187023124A KR 20187023124 A KR20187023124 A KR 20187023124A KR 20180107149 A KR20180107149 A KR 20180107149A
Authority
KR
South Korea
Prior art keywords
field
video
video data
information
image
Prior art date
Application number
KR1020187023124A
Other languages
English (en)
Other versions
KR102157655B1 (ko
Inventor
오세진
이장원
이준우
서종열
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20180107149A publication Critical patent/KR20180107149A/ko
Application granted granted Critical
Publication of KR102157655B1 publication Critical patent/KR102157655B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/194Transmission of image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • H04N21/234345Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements the reformatting operation being performed only on part of the stream, e.g. a region of the image or a time segment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • H04N21/234309Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by transcoding between formats or standards, e.g. from MPEG-2 to MPEG-4 or from Quicktime to Realvideo
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/8146Monomedia components thereof involving graphical data, e.g. 3D object, 2D graphics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/816Monomedia components thereof involving special video data, e.g 3D video
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/162User input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding

Abstract

본 발명은 360 비디오를 전송하는 방법을 제안한다. 본 발명에 따른 360 비디오를 전송하는 방법은, 적어도 하나 이상의 카메라에 의해 캡쳐된 360 비디오 데이터를 전달받는 단계; 상기 360 비디오 데이터를 처리하여 2D 이미지로 프로젝션(Projection)하는 단계; 상기 360 비디오 데이터에 대한 시그널링 정보를 생성하는 단계; 상기 2D 이미지를 인코딩하는 단계; 및 상기 인코딩된 2D 이미지 및 상기 시그널링 정보에 전송을 위한 처리를 수행하고, 방송망을 통하여 전송하는 단계; 를 포함할 수 있다.

Description

360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치
본 발명은 360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치에 관한 것이다.
VR (Vertial Reality) 시스템은 사용자에게 전자적으로 투영된 환경내에 있는 것 같은 감각을 제공한다. VR 을 제공하기 위한 시스템은 더 고화질의 이미지들과, 공간적인 음향을 제공하기 위하여 더 개선될 수 있다. VR 시스템은 사용자가 인터랙티브하게 VR 컨텐트들을 소비할 수 있도록 할 수 있다.
VR 시스템은 더 효율적으로 VR 환경을 사용자에게 제공하기 위하여, 개선될 필요가 있다. 이를 위하여 VR 컨텐츠와 같은 많은 양의 데이터 전송을 위한 데이터 전송 효율, 송수신 네트워크 간의 강건성, 모바일 수신 장치를 고려한 네트워크 유연성, 효율적인 재생 및 시그널링을 위한 방안등이 제안되어야 한다.
본 발명의 목적에 따라, 본 발명은 360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치를 제안한다.
본 발명의 한 관점에 따른 360 비디오를 전송하는 방법은 적어도 하나 이상의 카메라에 의해 캡쳐된 360 비디오 데이터를 전달받는 단계; 상기 360 비디오 데이터를 처리하여 2D 이미지로 프로젝션(Projection)하는 단계;상기 360 비디오 데이터에 대한 시그널링 정보를 생성하는 단계;상기 2D 이미지를 인코딩하는 단계; 및상기 인코딩된 2D 이미지 및 상기 시그널링 정보에 전송을 위한 처리를 수행하고, 방송망을 통하여 전송하는 단계; 를 포함하고, 상기 시그널링 정보는 상기 360 비디오 데이터가 상기 2D 이미지 상에 프로젝션되는데 사용된 프로젝션 스킴(scheme) 을 지시하는 프로젝션 스킴 정보를 포함하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 360 비디오 데이터를 처리하여 2D 이미지로 프로젝션하는 단계는: 상기 360 비디오 데이터를 스티칭(stitching)하는 단계, 및상기 스티칭된 360 비디오 데이터를 상기 2D 이미지 상에 프로젝션하는 단계;를 포함할 수 있다.
바람직하게는, 상기 프로젝션 스킴 정보가 특정 스킴을 지시하는 경우, 상기 360 비디오 데이터를 처리하여 2D 이미지로 프로젝션하는 단계는:스티칭없이 상기 360 비디오 데이터를 상기 2D 이미지 상에 프로젝션하는 단계;를 포함할 수 있다.
바람직하게는,상기 시그널링 정보는 상기 360 비디오 데이터 중 ROI (Region Of Interest) 영역을 지시하는 ROI 정보 또는 상기 360 비디오 데이터 중 상기 360 비디오 데이터의 재생시 처음으로 사용자에 보여지는 초기 시점 영역을 지시하는 초기 시점 정보를 포함하고, 상기 ROI 정보는 상기 ROI 영역을 상기 2D 이미지 상에서 X, Y 좌표를 통해 나타내거나, 또는 상기 360 비디오 데이터를 3D 공간에 리-프로젝션(Re-Projection) 했을 때 상기 3D 공간 상에서 나타나는 상기 ROI 영역을 피치(Pitch), 야(Yaw) 및 롤(Roll) 을 통해서 나타내고, 상기 초기 시점 정보는 상기 초기 시점 영역을 상기 2D 이미지 상에서 X, Y 좌표를 통해 나타내거나, 또는 상기 3D 공간 상에서 나타나는 상기 초기 시점 영역을 피치, 야 및 롤을 통해서 나타낼 수 있다.
바람직하게는, 상기 시그널링 정보는 상기 360 비디오 데이터가 리-프로젝션되는 3D 공간의 중점(orientation)에 대한 3D 공간 중점 정보를 더 포함하고, 상기 3D 공간 중점 정보는 상기 3D 공간의 중점이 캡쳐 스페이스 좌표계의 원점을 기준으로 회전된 정도를 피치(Pitch), 야(Yaw) 및 롤(Roll) 을 통해서 나타내는 것을 특징으로 할 수 있다.
바람직하게는, 상기 시그널링 정보는 상기 360 비디오 데이터의 스티칭이 수신기에서 수행되기 위해 필요한 스티칭 시그널링 정보를 더 포함하고,상기 스티칭 시그널링 정보는 상기 360 비디오 데이터에 스티칭이 수행되었는지 여부를 지시하는 스티칭 플래그 정보 및 상기 360 비디오 데이터를 캡쳐한 상기 적어도 하나 이상의 카메라에 대한 카메라 정보를 포함하고,상기 카메라 정보는 상기 적어도 하나 이상의 카메라의 개수 정보, 각각의 상기 카메라에 대한 내부(Intrinsic) 카메라 정보, 각각의 상기 카메라에 대한 외부(Extrinsic) 카메라 정보 및 각각의 상기 카메라가 캡쳐하는 이미지의 중심이 3D 공간 상에서 어디에 위치하는지를 피치(Pitch), 야(Yaw) 및 롤(Roll) 값으로 지시하는 카메라 중심 정보를 포함하는 것을 특징으로 할 수 있다.
바람직하게는,상기 스티칭 시그널링 정보는 상기 2D 이미지 상에서의 각 리전들이 회전되어 있는지 여부를 나타내는 회전 플래그 정보, 상기 각 리전들이 회전된 축을 나타내는 회전 축 정보 및 상기 각 리전들이 회전된 방향과 정도를 나타내는 회전량 정보를 더 포함하는 것을 특징으로 할 수 있다.
바람직하게는,상기 프로젝션 스킴 정보가 상기 특정 스킴을 지시하는 경우, 상기 스티칭없이 프로젝션되는 360 비디오 데이터는 구형(Spherical) 카메라에 의해 캡쳐된 어안(Fish-eye) 이미지인 것을 특징으로 할 수 있다.
바람직하게는, 상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 피치(Pitch)의 각도 범위가 180도 보다 작은지 여부를 지시하는 피치 각도 플래그를 더 포함하고,상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 야(Yaw)의 각도 범위가 360도 보다 작은지 여부를 지시하는 야(Yaw) 각도 플래그를 더 포함하는 것을 특징으로 할 수 있다.
바람직하게는,상기 피치(Pitch) 각도 플래그가 상기 피치의 각도 범위가 180도 보다 작다고 지시하는 경우, 상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 피치의 최소 각도 및 최대 각도를 각각 지시하는 최소 피치 정보 및 최대 피치 정보를 더 포함하고, 상기 야(Yaw) 각도 플래그가 상기 야(Yaw)의 각도 범위가 360도 보다 작다고 지시하는 경우, 상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 야(Yaw)의 최소 각도 및 최대 각도를 각각 지시하는 최소 야(Yaw) 정보 및 최대 야(Yaw) 정보를 더 포함하는 것을 특징으로 할 수 있다.
본 발명의 다른 관점에 따른 360 비디오 수신 장치는 방송망을 통하여 360 비디오 데이터를 포함하는 2D 이미지 및 상기 360 비디오 데이터에 대한 시그널링 정보를 포함하는 방송 신호를 수신하는 수신부;상기 방송 신호를 처리하여 상기 2D 이미지 및 상기 시그널링 정보를 획득하는 수신 처리부;상기 2D 이미지를 디코딩하는 데이터 디코더; 상기 시그널링 정보를 파싱하는 시그널링 파서; 및상기 2D 이미지를 처리하여 상기 360 비디오 데이터를 3D 공간으로 렌더링하는 렌더러; 를 포함하고, 상기 시그널링 정보는 상기 360 비디오 데이터가 상기 2D 이미지 상에 프로젝션되는데 사용된 프로젝션 스킴(scheme) 을 지시하는 프로젝션 스킴 정보를 포함하는 것을 특징으로 할 수 있다.
바람직하게는,상기 렌더러는:상기 2D 이미지 상에 프로젝션된 상기 360 비디오 데이터를 상기 3D 공간에 리-프로젝션하는 것을 특징으로 할 수 있다.
바람직하게는, 상기 360 비디오 수신 장치는:상기 프로젝션 스킴 정보가 특정 스킴을 지시하는 경우, 상기 2D 이미지 상에 프로젝션된 상기 360 비디오 데이터를 추출하고, 상기 시그널링 정보를 이용하여 상기 추출된 360 비디오 데이터를 스티칭(stitching)하는 스티처;를 더 포함하고,상기 렌더러는 상기 스티칭된 360 비디오 데이터를 상기 3D 공간에 리-프로젝션하는 것을 특징으로 할 수 있다.
바람직하게는,상기 시그널링 정보는 상기 360 비디오 데이터 중 ROI (Region Of Interest) 영역을 지시하는 ROI 정보 또는 상기 360 비디오 데이터 중 상기 360 비디오 데이터의 재생시 처음으로 사용자에 보여지는 초기 시점 영역을 지시하는 초기 시점 정보를 포함하고, 상기 ROI 정보는 상기 ROI 영역을 상기 2D 이미지 상에서 X, Y 좌표를 통해 나타내거나, 또는 상기 3D 공간 상에서 나타나는 상기 ROI 영역을 피치(Pitch), 야(Yaw) 및 롤(Roll) 을 통해서 나타내고, 상기 초기 시점 정보는 상기 초기 시점 영역을 상기 2D 이미지 상에서 X, Y 좌표를 통해 나타내거나, 또는 상기 3D 공간 상에서 나타나는 상기 초기 시점 영역을 피치, 야 및 롤을 통해서 나타내는 것을 특징으로 할 수 있다.
바람직하게는,상기 시그널링 정보는 상기 360 비디오 데이터가 리-프로젝션되는 3D 공간의 중점(orientation)에 대한 3D 공간 중점 정보를 더 포함하고, 상기 3D 공간 중점 정보는 상기 3D 공간의 중점이 캡쳐 스페이스 좌표계의 원점을 기준으로 회전된 정도를 피치(Pitch), 야(Yaw) 및 롤(Roll) 을 통해서 나타내는 것을 특징으로 할 수 있다.
바람직하게는,상기 시그널링 정보는 상기 360 비디오 데이터의 스티칭이 수신기에서 수행되기 위해 필요한 스티칭 시그널링 정보를 더 포함하고,상기 스티칭 시그널링 정보는 상기 360 비디오 데이터에 스티칭이 수행되었는지 여부를 지시하는 스티칭 플래그 정보 및 상기 360 비디오 데이터를 캡쳐한 적어도 하나 이상의 카메라에 대한 카메라 정보를 포함하고,상기 카메라 정보는 상기 적어도 하나 이상의 카메라의 개수 정보, 각각의 상기 카메라에 대한 내부(Intrinsic) 카메라 정보, 각각의 상기 카메라에 대한 외부(Extrinsic) 카메라 정보 및 각각의 상기 카메라가 캡쳐하는 이미지의 중심이 3D 공간 상에서 어디에 위치하는지를 피치(Pitch), 야(Yaw) 및 롤(Roll) 값으로 지시하는 카메라 중심 정보를 포함하는 것을 특징으로 할 수 있다.
바람직하게는,상기 스티칭 시그널링 정보는 상기 2D 이미지 상에서의 각 리전들이 회전되어 있는지 여부를 나타내는 회전 플래그 정보, 상기 각 리전들이 회전된 축을 나타내는 회전 축 정보 및 상기 각 리전들이 회전된 방향과 정도를 나타내는 회전량 정보를 더 포함하는 것을 특징으로 할 수 있다.
바람직하게는,상기 프로젝션 스킴 정보가 상기 특정 스킴을 지시하는 경우, 상기 추출된 360 비디오 데이터는 구형(Spherical) 카메라에 의해 캡쳐된 어안(Fish-eye) 이미지인 것을 특징으로 할 수 있다.
바람직하게는,상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 피치(Pitch)의 각도 범위가 180도 보다 작은지 여부를 지시하는 피치 각도 플래그를 더 포함하고,상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 야(Yaw)의 각도 범위가 360도 보다 작은지 여부를 지시하는 야(Yaw) 각도 플래그를 더 포함하는 것을 특징으로 할 수 있다.
바람직하게는,상기 피치(Pitch) 각도 플래그가 상기 피치의 각도 범위가 180도 보다 작다고 지시하는 경우, 상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 피치의 최소 각도 및 최대 각도를 각각 지시하는 최소 피치 정보 및 최대 피치 정보를 더 포함하고, 상기 야(Yaw) 각도 플래그가 상기 야(Yaw)의 각도 범위가 360도 보다 작다고 지시하는 경우, 상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 야(Yaw)의 최소 각도 및 최대 각도를 각각 지시하는 최소 야(Yaw) 정보 및 최대 야(Yaw) 정보를 더 포함하는 것을 특징으로 할 수 있다.
본 발명은 지상파 방송망과 인터넷 망을 사용하는 차세대 하이브리드 방송을 지원하는 환경에서 360 컨텐츠를 효율적으로 전송할 수 있다.
본 발명은 사용자의 360 컨텐츠 소비에 있어서, 인터랙티브 경험(interactive experience) 를 제공하기 위한 방안을 제안할 수 있다.
본 발명은 사용자의 360 컨텐츠 소비에 있어서, 360 컨텐츠 제작자가 의도하는 바가 정확히 반영되도록 시그널링 하는 방안을 제안할 수 있다.
본 발명은 360 컨텐츠 전달에 있어, 효율적으로 전송 캐패시티를 늘리고, 필요한 정보가 전달될 수 있도록 하는 방안을 제안할 수 있다.
도 1 은 본 발명에 따른 360 비디오 제공을 위한 전체 아키텍처를 도시한 도면이다.
도 2 은 본 발명의 한 관점(aspect)에 따른 360 비디오 전송 장치를 도시한 도면이다.
도 3 은 본 발명의 다른 관점에 따른 360 비디오 수신 장치를 도시한 도면이다.
도 4 는 본 발명의 다른 실시예에 따른 360 비디오 전송 장치/360 비디오 수신 장치를 도시한 도면이다.
도 5 는 본 발명의 3D 공간을 설명하기 위한 비행기 주축(Aircraft Principal Axes) 개념을 도시한 도면이다.
도 6 는 본 발명의 일 실시예에 따른 프로젝션 스킴들을 도시한 도면이다.
도 7 은 본 발명의 일 실시예에 따른 타일(Tile)을 도시한 도면이다.
도 8 은 본 발명의 일 실시예에 따른 360 비디오 관련 메타데이터를 도시한 도면이다.
도 9 는 본 발명의 다른 실시예에 따른 360 비디오 관련 메타데이터를 도시한 도면이다.
도 10 은 본 발명의 일 실시예에 따른, 360 비디오의 지원범위에 따른 2D 이미지 상의 프로젝션 영역 및 3D 모델들을 도시한 도면이다.
도 11 은 본 발명의 일 실시예에 따른, 프로젝션 스킴들을 도시한 도면이다.
도 12 는 본 발명의 다른 실시예에 따른, 프로젝션 스킴들을 도시한 도면이다.
도 13 은 본 발명의 일 실시예에 따른 IntrinsicCameraParametersBox 클래스 및 ExtrinsicCameraParametersBox 클래스를 도시한 도면이다.
도 14 는 본 발명의 일 실시예에 따른 HDRConfigurationBox 클래스를 도시한 도면이다.
도 15 는 본 발명의 일 실시예에 따른 CGConfigurationBox 클래스를 도시한 도면이다.
도 16 은 본 발명의 일 실시예에 따른 RegionGroupBox 클래스를 도시한 도면이다.
도 17 은 본 발명의 일 실시예에 따른 RegionGroup 클래스를 도시한 도면이다.
도 18 은 본 발명의 일 실시예에 따른 미디어 파일의 구조를 도시한 도면이다.
도 19 는 본 발명의 일 실시예에 따른 ISOBMFF 내의 박스들의 계층적 구조를 도시한 도면이다.
도 20 은 본 발명의 일 실시예에 따른, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터가 각 box 에서 전달되는 것을 도시한 도면이다.
도 21 은 본 발명의 다른 실시예에 따른, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터가 각 box 에서 전달되는 것을 도시한 도면이다.
도 22 는 본 발명의 일 실시예에 따른 DASH 기반 적응형(Adaptive) 스트리밍 모델의 전반적인 동작을 도시한 도면이다.
도 23 은 본 발명의 일 실시예에 따른, DASH 기반 디스크립터 형태로 기술한 360 비디오 관련 메타데이터를 도시한 도면이다.
도 24 는 본 발명의 일 실시예에 따른 특정 영역 혹은 ROI 지시 관련 메타데이터를 도시한 도면이다.
도 25 는 본 발명의 다른 실시예에 따른 특정 영역 지시 관련 메타데이터를 도시한 도면이다.
도 26 는 본 발명의 일 실시예에 따른 GPS 관련 메타데이터를 도시한 도면이다.
도 27 은 본 발명의 일 실시예에 따른 360 비디오를 전송하는 방법을 도시한 도면이다.
발명의 실시를 위한 최선의 형태
본 발명의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 본 발명의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 본 발명의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 본 발명에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함한다. 그러나 본 발명이 이러한 세부 사항 없이 실행될 수 있다는 것은 당업자에게 자명하다.
본 발명에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 본 발명은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.
도 1 은 본 발명에 따른 360 비디오 제공을 위한 전체 아키텍처를 도시한 도면이다.
본 발명은 사용자에게 VR (Virtual Reality, 가상현실) 을 제공하기 위하여, 360 컨텐츠를 제공하는 방안을 제안한다. VR 이란 실제 또는 가상의 환경을 복제(replicates) 하기 위한 기술 내지는 그 환경을 의미할 수 있다. VR 은 인공적으로 사용자에게 감각적 경험을 제공하며, 이를 통해 사용자는 전자적으로 프로젝션된 환경에 있는 것과 같은 경험을 할 수 있다.
360 컨텐츠는 VR 을 구현, 제공하기 위한 컨텐츠 전반을 의미하며, 360 비디오 및/또는 360 오디오를 포함할 수 있다. 360 비디오는 VR 을 제공하기 위해 필요한, 동시에 모든 방향(360도) 으로 캡쳐되거나 재생되는 비디오 내지 이미지 컨텐츠를 의미할 수 있다. 360 비디오는 3D 모델에 따라 다양한 형태의 3D 공간 상에 나타내어지는 비디오 내지 이미지를 의미할 수 있으며, 예를 들어 360 비디오는 구형(Spherical)면 상에 나타내어질 수 있다. 360 오디오 역시 VR 을 제공하기 위한 오디오 컨텐츠로서, 음향 발생지가 3차원의 특정 공간상에 위치하는 것으로 인지될 수 있는, 공간적(Spatial) 오디오 컨텐츠를 의미할 수 있다. 360 컨텐츠는 생성, 처리되어 사용자들로 전송될 수 있으며, 사용자들은 360 컨텐츠를 이용하여 VR 경험을 소비할 수 있다.
본 발명은 특히 360 비디오를 효과적으로 제공하는 방안을 제안한다. 360 비디오를 제공하기 위하여, 먼저 하나 이상의 카메라를 통해 360 비디오가 캡쳐될 수 있다. 캡쳐된 360 비디오는 일련의 과정을 거쳐 전송되고, 수신측에서는 수신된 데이터를 다시 원래의 360 비디오로 가공하여 렌더링할 수 있다. 이를 통해 360 비디오가 사용자에게 제공될 수 있다.
구체적으로 360 비디오 제공을 위한 전체의 과정은 캡처 과정(process), 준비 과정, 전송 과정, 프로세싱 과정, 렌더링 과정 및/또는 피드백 과정을 포함할 수 있다.
캡처 과정은 하나 이상의 카메라를 통하여 복수개의 시점 각각에 대한 이미지 또는 비디오를 캡쳐하는 과정을 의미할 수 있다. 캡처 과정에 의해 도시된 (t1010) 과 같은 이미지/비디오 데이터가 생성될 수 있다. 도시된 (t1010) 의 각 평면은 각 시점에 대한 이미지/비디오를 의미할 수 있다. 이 캡쳐된 복수개의 이미지/비디오를 로(raw) 데이터라 할 수도 있다. 캡쳐 과정에서 캡쳐와 관련된 메타데이터가 생성될 수 있다.
이 캡처를 위하여 VR 을 위한 특수한 카메라가 사용될 수 있다. 실시예에 따라 컴퓨터로 생성된 가상의 공간에 대한 360 비디오를 제공하고자 하는 경우, 실제 카메라를 통한 캡처가 수행되지 않을 수 있다. 이 경우 단순히 관련 데이터가 생성되는 과정으로 해당 캡처 과정이 갈음될 수 있다.
준비 과정은 캡처된 이미지/비디오 및 캡쳐 과정에서 발생한 메타데이터를 처리하는 과정일 수 있다. 캡처된 이미지/비디오는 이 준비 과정에서, 스티칭 과정, 프로젝션 과정, 리전별 패킹 과정(Region-wise Packing) 및/또는 인코딩 과정 등을 거칠 수 있다.
먼저 각각의 이미지/비디오가 스티칭(Stitching) 과정을 거칠 수 있다. 스티칭 과정은 각각의 캡처된 이미지/비디오들을 연결하여 하나의 파노라마 이미지/비디오 또는 구형의 이미지/비디오를 만드는 과정일 수 있다.
이 후, 스티칭된 이미지/비디오는 프로젝션(Projection) 과정을 거칠 수 있다. 프로젝션 과정에서, 스트칭된 이미지/비디오는 2D 이미지 상에 프로젝션될 수 있다. 이 2D 이미지는 문맥에 따라 2D 이미지 프레임으로 불릴 수도 있다. 2D 이미지로 프로젝션하는 것을 2D 이미지로 매핑한다고 표현할 수도 있다. 프로젝션된 이미지/비디오 데이터는 도시된 (t1020) 과 같은 2D 이미지의 형태가 될 수 있다.
2D 이미지 상에 프로젝션된 비디오 데이터는 비디오 코딩 효율 등을 높이기 위하여 리전별 패킹 과정(Region-wise Packing)을 거칠 수 있다. 리전별 패킹이란, 2D 이미지 상에 프로젝션된 비디오 데이터를 리전(Region) 별로 나누어 처리를 가하는 과정을 의미할 수 있다. 여기서 리전(Region)이란, 360 비디오 데이터가 프로젝션된 2D 이미지가 나누어진 영역을 의미할 수 있다. 이 리전들은, 실시예에 따라, 2D 이미지를 균등하게 나누어 구분되거나, 임의로 나누어져 구분될 수 있다. 또한 실시예에 따라 리전들은, 프로젝션 스킴에 따라 구분되어질 수도 있다. 리전별 패킹 과정은 선택적(optional) 과정으로써, 준비 과정에서 생략될 수 있다.
실시예에 따라 이 처리 과정은, 비디오 코딩 효율을 높이기 위해, 각 리전을 회전한다거나 2D 이미지 상에서 재배열하는 과정을 포함할 수 있다. 예를 들어, 리전들을 회전하여 리전들의 특정 변들이 서로 근접하여 위치되도록 함으로써, 코딩 시의 효율이 높아지게 할 수 있다.
실시예에 따라 이 처리 과정은, 360 비디오상의 영역별로 레졸루션(resolution) 을 차등화하기 위하여, 특정 리전에 대한 레졸루션을 높인다거나, 낮추는 과정을 포함할 수 있다. 예를 들어, 360 비디오 상에서 상대적으로 더 중요한 영역에 해당하는 리전들은, 다른 리전들보다 레졸루션을 높게할 수 있다.2D 이미지 상에 프로젝션된 비디오 데이터 또는 리전별 패킹된 비디오 데이터는 비디오 코덱을 통한 인코딩 과정을 거칠 수 있다.
실시예에 따라 준비 과정은 부가적으로 에디팅(editing) 과정 등을 더 포함할 수 있다. 이 에디팅 과정에서 프로젝션 전후의 이미지/비디오 데이터들에 대한 편집 등이 더 수행될 수 있다. 준비 과정에서도 마찬가지로, 스티칭/프로젝션/인코딩/에디팅 등에 대한 메타데이터가 생성될 수 있다. 또한 2D 이미지 상에 프로젝션된 비디오 데이터들의 초기 시점, 혹은 ROI (Region of Interest) 등에 관한 메타데이터가 생성될 수 있다.
전송 과정은 준비 과정을 거친 이미지/비디오 데이터 및 메타데이터들을 처리하여 전송하는 과정일 수 있다. 전송을 위해 임의의 전송 프로토콜에 따른 처리가 수행될 수 있다. 전송을 위한 처리를 마친 데이터들은 방송망 및/또는 브로드밴드를 통해 전달될 수 있다. 이 데이터들은 온 디맨드(On Demand) 방식으로 수신측으로 전달될 수도 있다. 수신측에서는 다양한 경로를 통해 해당 데이터를 수신할 수 있다.
프로세싱 과정은 수신한 데이터를 디코딩하고, 프로젝션되어 있는 이미지/비디오 데이터를 3D 모델 상에 리-프로젝션(Re-projection) 하는 과정을 의미할 수 있다. 이 과정에서 2D 이미지들 상에 프로젝션되어 있는 이미지/비디오 데이터가 3D 공간 상으로 리-프로젝션될 수 있다. 이 과정을 문맥에 따라 매핑, 프로젝션이라고 부를 수도 있다. 이 때 매핑되는 3D 공간은 3D 모델에 따라 다른 형태를 가질 수 있다. 예를 들어 3D 모델에는 구형(Sphere), 큐브(Cube), 실린더(Cylinder) 또는 피라미드(Pyramid) 가 있을 수 있다.
실시예에 따라 프로세싱 과정은 부가적으로 에디팅(editing) 과정, 업 스케일링(up scaling) 과정 등을 더 포함할 수 있다. 이 에디팅 과정에서 리-프로젝션 전후의 이미지/비디오 데이터에 대한 편집 등이 더 수행될 수 있다. 이미지/비디오 데이터가 축소되어 있는 경우 업 스케일링 과정에서 샘플들의 업 스케일링을 통해 그 크기를 확대할 수 있다. 필요한 경우 다운 스케일링을 통해 사이즈를 축소하는 작업이 수행될 수도 있다.
렌더링 과정은 3D 공간상에 리-프로젝션된 이미지/비디오 데이터를 렌더링하고 디스플레이하는 과정을 의미할 수 있다. 표현에 따라 리-프로젝션과 렌더링을 합쳐 3D 모델 상에 렌더링한다 라고 표현할 수도 있다. 3D 모델 상에 리-프로젝션된 (또는 3D 모델 상으로 렌더링된) 이미지/비디오는 도시된 (t1030) 과 같은 형태를 가질 수 있다. 도시된 (t1030) 은 구형(Sphere) 의 3D 모델에 리-프로젝션된 경우이다. 사용자는 VR 디스플레이 등을 통하여 렌더링된 이미지/비디오의 일부 영역을 볼 수 있다. 이 때 사용자가 보게되는 영역은 도시된 (t1040) 과 같은 형태일 수 있다.
피드백 과정은 디스플레이 과정에서 획득될 수 있는 다양한 피드백 정보들을 송신측으로 전달하는 과정을 의미할 수 있다. 피드백 과정을 통해 360 비디오 소비에 있어 인터랙티비티(Interactivity) 가 제공될 수 있다. 실시예에 따라, 피드백 과정에서 헤드 오리엔테이션(Head Orientation) 정보, 사용자가 현재 보고 있는 영역을 나타내는 뷰포트(Viewport) 정보 등이 송신측으로 전달될 수 있다. 실시예에 따라, 사용자는 VR 환경 상에 구현된 것들과 상호작용할 수도 있는데, 이 경우 그 상호작용과 관련된 정보가 피드백 과정에서 송신측 내지 서비스 프로바이더 측으로 전달될 수도 있다. 실시예에 따라 피드백 과정은 수행되지 않을 수도 있다.
헤드 오리엔테이션 정보는 사용자의 머리 위치, 각도, 움직임 등에 대한 정보를 의미할 수 있다. 이 정보를 기반으로 사용자가 현재 360 비디오 내에서 보고 있는 영역에 대한 정보, 즉 뷰포트 정보가 계산될 수 있다.
뷰포트 정보는 현재 사용자가 360 비디오에서 보고 있는 영역에 대한 정보일 수 있다. 이를 통해 게이즈 분석(Gaze Analysis) 이 수행되어, 사용자가 어떠한 방식으로 360 비디오를 소비하는지, 360 비디오의 어느 영역을 얼마나 응시하는지 등을 확인할 수도 있다. 게이즈 분석은 수신측에서 수행되어 송신측으로 피드백 채널을 통해 전달될 수도 있다. VR 디스플레이 등의 장치는 사용자의 머리 위치/방향, 장치가 지원하는 수직(vertical) 혹은 수평(horizontal) FOV 등에 근거하여 뷰포트 영역을 추출할 수 있다.
실시예에 따라, 전술한 피드백 정보는 송신측으로 전달되는 것 뿐아니라, 수신측에서 소비될 수도 있다. 즉, 전술한 피드백 정보를 이용하여 수신측의 디코딩, 리-프로젝션, 렌더링 과정 등이 수행될 수 있다. 예를 들어, 헤드 오리엔테이션 정보 및/또는 뷰포트 정보를 이용하여 현재 사용자가 보고 있는 영역에 대한 360 비디오만 우선적으로 디코딩 및 렌더링될 수도 있다.
여기서 뷰포트(viewport) 내지 뷰포트 영역이란, 사용자가 360 비디오에서 보고 있는 영역을 의미할 수 있다. 시점(viewpoint) 는 사용자가 360 비디오에서 보고 있는 지점으로서, 뷰포트 영역의 정중앙 지점을 의미할 수 있다. 즉, 뷰포트는 시점을 중심으로 한 영역인데, 그 영역이 차지하는 크기 형태 등은 후술할 FOV(Field Of View) 에 의해 결정될 수 있다.
전술한 360 비디오 제공을 위한 전체 아키텍처 내에서, 캡쳐/프로젝션/인코딩/전송/디코딩/리-프로젝션/렌더링의 일련의 과정을 거치게 되는 이미지/비디오 데이터들을 360 비디오 데이터라 부를 수 있다. 360 비디오 데이터라는 용어는 또한 이러한 이미지/비디오 데이터들과 관련되는 메타데이터 내지 시그널링 정보를 포함하는 개념으로 쓰일 수도 있다.
도 2 은 본 발명의 한 관점(aspect)에 따른 360 비디오 전송 장치를 도시한 도면이다.
한 관점에 따르면 본 발명은 360 비디오 전송 장치와 관련될 수 있다. 본 발명에 따른 360 비디오 전송 장치는 전술한 준비 과정 내지 전송 과정에 관련된 동작들을 수행할 수 있다. 본 발명에 따른 360 비디오 전송 장치는 데이터 입력부, 스티처(Stitcher), 프로젝션 처리부, 리전별 패킹 처리부(도시되지 않음), 메타데이터 처리부, (송신측) 피드백 처리부, 데이터 인코더, 인캡슐레이션 처리부, 전송 처리부 및/또는 전송부를 내/외부 엘레멘트로서 포함할 수 있다.
데이터 입력부는 캡쳐된 각 시점별 이미지/비디오 들을 입력받을 수 있다. 이 시점별 이미지/비디오 들은 하나 이상의 카메라들에 의해 캡쳐된 이미지/비디오들일 수 있다. 또한 데이터 입력부는 캡쳐 과정에서 발생된 메타데이터를 입력받을 수 있다. 데이터 입력부는 입력된 시점별 이미지/비디오들을 스티처로 전달하고, 캡쳐 과정의 메타데이터를 시그널링 처리부로 전달할 수 있다.
스티처는 캡쳐된 시점별 이미지/비디오들에 대한 스티칭 작업을 수행할 수 있다. 스티처는 스티칭된 360 비디오 데이터를 프로젝션 처리부로 전달할 수 있다. 스티처는 필요한 경우 메타데이터 처리부로부터 필요한 메타데이터를 전달받아 스티칭 작업에 이용할 수 있다. 스티처는 스티칭 과정에서 발생된 메타데이터를 메타데이터 처리부로 전달할 수 있다. 스티칭 과정의 메타데이터에는 스티칭이 수행되었는지 여부, 스티칭 타입 등의 정보들이 있을 수 있다.
프로젝션 처리부는 스티칭된 360 비디오 데이터를 2D 이미지 상에 프로젝션할 수 있다. 프로젝션 처리부는 다양한 스킴(scheme)에 따라 프로젝션을 수행할 수 있는데, 이에 대해서는 후술한다. 프로젝션 처리부는 각 시점별 360 비디오 데이터의 해당 뎁스(depth)를 고려하여 매핑을 수행할 수 있다. 프로젝션 처리부는 필요한 경우 메타데이터 처리부로부터 프로젝션에 필요한 메타데이터를 전달받아 프로젝션 작업에 이용할 수 있다. 프로젝션 처리부는 프로젝션 과정에서 발생된 메타데이터를 메타데이터 처리부로 전달할 수 있다. 프로젝션 처리부의 메타데이터에는 프로젝션 스킴의 종류 등이 있을 수 있다.
리전별 패킹 처리부(도시되지 않음)는 전술한 리전별 패킹 과정을 수행할 수 있다. 즉, 리전별 패킹 처리부는 프로젝션된 360 비디오 데이터를 리전별로 나누고, 각 리전들을 회전, 재배열하거나, 각 리전의 레졸루션을 변경하는 등의 처리를 수행할 수 있다. 전술한 바와 같이 리전별 패킹 과정은 선택적(optional) 과정이며, 리전별 패킹이 수행되지 않는 경우, 리전별 패킹 처리부는 생략될 수 있다. 리전별 패킹 처리부는 필요한 경우 메타데이터 처리부로부터 리전별 패킹에 필요한 메타데이터를 전달받아 리전별 패킹 작업에 이용할 수 있다. 리전별 패킹 처리부는 리전별 패킹 과정에서 발생된 메타데이터를 메타데이터 처리부로 전달할 수 있다. 리전별 패킹 처리부의 메타데이터에는 각 리전의 회전 정도, 사이즈 등이 있을 수 있다.
전술한 스티처, 프로젝션 처리부 및/또는 리전별 패킹 처리부는 실시예에 따라 하나의 하드웨어 컴포넌트에서 수행될 수도 있다.
메타데이터 처리부는 캡처 과정, 스티칭 과정, 프로젝션 과정, 리전별 패킹 과정, 인코딩 과정, 인캡슐레이션 과정 및/또는 전송을 위한 처리 과정에서 발생할 수 있는 메타데이터들을 처리할 수 있다. 메타데이터 처리부는 이러한 메타데이터들을 이용하여 360 비디오 관련 메타데이터를 생성할 수 있다. 실시예에 따라 메타데이터 처리부는 360 비디오 관련 메타데이터를 시그널링 테이블의 형태로 생성할 수도 있다. 시그널링 문맥에 따라 360 비디오 관련 메타데이터는 메타데이터 또는 360 비디오 관련 시그널링 정보라 불릴 수도 있다. 또한 메타데이터 처리부는 획득하거나 생성한 메타데이터들을 필요에 따라 360 비디오 전송 장치의 내부 엘레멘트들에 전달할 수 있다. 메타데이터 처리부는 360 비디오 관련 메타데이터가 수신측으로 전송될 수 있도록 데이터 인코더, 인캡슐레이션 처리부 및/또는 전송 처리부에 전달할 수 있다.
데이터 인코더는 2D 이미지 상에 프로젝션된 360 비디오 데이터 및/또는 리전별 패킹된 360 비디오 데이터를 인코딩할 수 있다. 360 비디오 데이터는 다양한 포맷으로 인코딩될 수 있다.
인캡슐레이션 처리부는 인코딩된 360 비디오 데이터 및/또는 360 비디오 관련 메타데이터를 파일 등의 형태로 인캡슐레이션할 수 있다. 여기서 360 비디오 관련 메타데이터는 전술한 메타데이터 처리부로부터 전달받은 것일 수 있다. 인캡슐레이션 처리부는 해당 데이터들을 ISOBMFF, CFF 등의 파일 포맷으로 인캡슐레이션하거나, 기타 DASH 세그먼트 등의 형태로 처리할 수 있다. 인캡슐레이션 처리부는 실시예에 따라 360 비디오 관련 메타데이터를 파일 포맷 상에 포함시킬 수 있다. 360 관련 메타데이터는 예를 들어 ISOBMFF 파일 포맷 상의 다양한 레벨의 박스(box)에 포함되거나 파일 내에서 별도의 트랙내의 데이터로 포함될 수 있다. 실시예에 따라, 인캡슐레이션 처리부는 360 비디오 관련 메타데이터 자체를 파일로 인캡슐레이션할 수 있다.전송 처리부는 파일 포맷에 따라 인캡슐레이션된 360 비디오 데이터에 전송을 위한 처리를 가할 수 있다. 전송 처리부는 임의의 전송 프로토콜에 따라 360 비디오 데이터를 처리할 수 있다. 전송을 위한 처리에는 방송망을 통한 전달을 위한 처리, 브로드밴드를 통한 전달을 위한 처리를 포함할 수 있다. 실시예에 따라 전송 처리부는 360 비디오 데이터 뿐 아니라, 메타데이터 처리부로부터 360 비디오 관련 메타데이터를 전달받아, 이 것에 전송을 위한 처리를 가할 수도 있다.
전송부는 전송 처리된 360 비디오 데이터 및/또는 360 비디오 관련 메타데이터를 방송망 및/또는 브로드밴드를 통해 전송할 수 있다. 전송부는 방송망을 통한 전송을 위한 엘레멘트 및/또는 브로드밴드를 통한 전송을 위한 엘레멘트를 포함할 수 있다.
본 발명에 따른 360 비디오 전송 장치의 일 실시예에 의하면, 360 비디오 전송 장치는 데이터 저장부(도시되지 않음)를 내/외부 엘레멘트로서 더 포함할 수 있다. 데이터 저장부는 인코딩된 360 비디오 데이터 및/또는 360 비디오 관련 메타데이터를 전송 처리부로 전달하기 전에 저장하고 있을 수 있다. 이 데이터들이 저장되는 형태는 ISOBMFF 등의 파일 형태일 수 있다. 실시간으로 360 비디오를 전송하는 경우에는 데이터 저장부가 필요하지 않을 수 있으나, 온 디맨드, NRT (Non Real Time), 브로드밴드 등을 통해 전달하는 경우에는 인캡슐레이션된 360 데이터가 데이터 저장부에 일정 기간 저장되었다가 전송될 수도 있다.
본 발명에 따른 360 비디오 전송 장치의 다른 실시예에 의하면, 360 비디오 전송 장치는 (송신측) 피드백 처리부 및/또는 네트워크 인터페이스(도시되지 않음)를 내/외부 엘레멘트로서 더 포함할 수 있다. 네트워크 인터페이스는 본 발명에 따른 360 비디오 수신 장치로부터 피드백 정보를 전달받고, 이를 송신측 피드백 처리부로 전달할 수 있다. 송신측 피드백 처리부는 피드백 정보를 스티처, 프로젝션 처리부, 리전별 패킹 처리부, 데이터 인코더, 인캡슐레이션 처리부, 메타데이터 처리부 및/또는 전송 처리부로 전달할 수 있다. 실시예에 따라 피드백 정보는 메타데이터 처리부에 일단 전달된 후, 다시 각 내부 엘레멘트들로 전달될 수 있다. 피드백 정보를 전달받은 내부 엘레먼트들은 이 후의 360 비디오 데이터의 처리에 피드백 정보를 반영할 수 있다.
본 발명에 따른 360 비디오 전송 장치의 또 다른 실시예에 의하면, 리전별 패킹 처리부는 각 리전을 회전하여 2D 이미지 상에 매핑할 수 있다. 이 때 각 리전들은 서로 다른 방향, 서로 다른 각도로 회전되어 2D 이미지 상에 매핑될 수 있다. 리전의 회전은 360 비디오 데이터가 구형의 면 상에서 프로젝션 전에 인접했던 부분, 스티칭된 부분 등을 고려하여 수행될 수 있다. 리전의 회전에 관한 정보들, 즉 회전 방향, 각도 등은 360 비디오 관련 메타데이터에 의해 시그널링될 수 있다.본 발명에 따른 360 비디오 전송 장치의 또 다른 실시예에 의하면, 데이터 인코더는 각 리전 별로 다르게 인코딩을 수행할 수 있다. 데이터 인코더는 특정 리전은 높은 퀄리티로, 다른 리전은 낮은 퀄리티로 인코딩을 수행할 수 있다. 송신측 피드백 처리부는 360 비디오 수신 장치로부터 전달받은 피드백 정보를 데이터 인코더로 전달하여, 데이터 인코더가 리전별 차등화된 인코딩 방법을 사용하도록 할 수 있다. 예를 들어 송신측 피드백 처리부는 수신측으로부터 전달받은 뷰포트 정보를 데이터 인코더로 전달할 수 있다. 데이터 인코더는 뷰포트 정보가 지시하는 영역을 포함하는 리전들에 대해 다른 리전들보다 더 높은 퀄리티(UHD 등) 로 인코딩을 수행할 수 있다.
본 발명에 따른 360 비디오 전송 장치의 또 다른 실시예에 의하면, 전송 처리부는 각 리전 별로 다르게 전송을 위한 처리를 수행할 수 있다. 전송 처리부는 리전 별로 다른 전송 파라미터(모듈레이션 오더, 코드 레이트 등)를 적용하여, 각 리전 별로 전달되는 데이터의 강건성(robustenss) 을 다르게 할 수 있다.
이 때, 송신측 피드백 처리부는 360 비디오 수신 장치로부터 전달받은 피드백 정보를 전송 처리부로 전달하여, 전송 처리부가 리전별 차등화된 전송 처리를 수행하도록 할 수 있다. 예를 들어 송신측 피드백 처리부는 수신측으로부터 전달받은 뷰포트 정보를 전송 처리부로 전달할 수 있다. 전송 처리부는 해당 뷰포트 정보가 지시하는 영역을 포함하는 리전들에 대해 다른 리전들보다 더 높은 강건성을 가지도록 전송 처리를 수행할 수 있다.
전술한 본 발명에 따른 360 비디오 전송 장치의 내/외부 엘레멘트들은 하드웨어로 구현되는 하드웨어 엘레멘트들일 수 있다. 실시예에 따라 내/외부 엘레멘트들은 변경, 생략되거나 다른 엘레멘트로 대체, 통합될 수 있다. 실시예에 따라 부가 엘레멘트들이 360 비디오 전송 장치에 추가될 수도 있다.
도 3 은 본 발명의 다른 관점에 따른 360 비디오 수신 장치를 도시한 도면이다.
다른 관점에 따르면 본 발명은 360 비디오 수신 장치와 관련될 수 있다. 본 발명에 따른 360 비디오 수신 장치는 전술한 프로세싱 과정 및/또는 렌더링 과정에 관련된 동작들을 수행할 수 있다. 본 발명에 따른 360 비디오 수신 장치는 수신부, 수신 처리부, 디캡슐레이션 처리부, 데이터 디코더, 메타데이터 파서, (수신측) 피드백 처리부, 리-프로젝션 처리부 및/또는 렌더러를 내/외부 엘레멘트로서 포함할 수 있다.
수신부는 본 발명에 따른 360 비디오 전송 장치가 전송한 360 비디오 데이터를 수신할 수 있다. 전송되는 채널에 따라 수신부는 방송망을 통하여 360 비디오 데이터를 수신할 수도 있고, 브로드밴드를 통하여 360 비디오 데이터를 수신할 수도 있다.
수신 처리부는 수신된 360 비디오 데이터에 대해 전송 프로토콜에 따른 처리를 수행할 수 있다. 전송측에서 전송을 위한 처리가 수행된 것에 대응되도록, 수신 처리부는 전술한 전송 처리부의 역과정을 수행할 수 있다. 수신 처리부는 획득한 360 비디오 데이터는 디캡슐레이션 처리부로 전달하고, 획득한 360 비디오 관련 메타데이터는 메타데이터 파서로 전달할 수 있다. 수신 처리부가 획득하는 360 비디오 관련 메타데이터는 시그널링 테이블의 형태일 수 있다.
디캡슐레이션 처리부는 수신 처리부로부터 전달받은 파일 형태의 360 비디오 데이터를 디캡슐레이션할 수 있다. 디캡슐레이션 처리부는 ISOBMFF 등에 따른 파일들을 디캡슐레이션하여, 360 비디오 데이터 내지 360 비디오 관련 메타데이터를 획득할 수 있다. 획득된 360 비디오 데이터는 데이터 디코더로, 획득된 360 비디오 관련 메타데이터는 메타데이터 파서로 전달할 수 있다. 디캡슐레이션 처리부가 획득하는 360 비디오 관련 메타데이터는 파일 포맷 내의 박스 혹은 트랙 형태일 수 있다. 디캡슐레이션 처리부는 필요한 경우 메타데이터 파서로부터 디캡슐레이션에 필요한 메타데이터를 전달받을 수도 있다.
데이터 디코더는 360 비디오 데이터에 대한 디코딩을 수행할 수 있다. 데이터 디코더는 메타데이터 파서로부터 디코딩에 필요한 메타데이터를 전달받을 수도 있다. 데이터 디코딩 과정에서 획득된 360 비디오 관련 메타데이터는 메타데이터 파서로 전달될 수도 있다.
메타데이터 파서는 360 비디오 관련 메타데이터에 대한 파싱/디코딩을 수행할 수 있다. 메타데이터 파서는 획득한 메타데이터를 데이터 디캡슐레이션 처리부, 데이터 디코더, 리-프로젝션 처리부 및/또는 렌더러로 전달할 수 있다.
리-프로젝션 처리부는 디코딩된 360 비디오 데이터에 대하여 리-프로젝션을 수행할 수 있다. 리-프로젝션 처리부는 360 비디오 데이터를 3D 공간으로 리-프로젝션할 수 있다. 3D 공간은 사용되는 3D 모델에 따라 다른 형태를 가질 수 있다. 리-프로젝션 처리부는 메타데이터 파서로부터 리-프로젝션에 필요한 메타데이터를 전달받을 수도 있다. 예를 들어 리-프로젝션 처리부는 사용되는 3D 모델의 타입 및 그 세부 정보에 대한 정보를 메타데이터 파서로부터 전달받을 수 있다. 실시예에 따라 리-프로젝션 처리부는 리-프로젝션에 필요한 메타데이터를 이용하여, 3D 공간 상의 특정 영역에 해당하는 360 비디오 데이터만을 3D 공간으로 리-프로젝션할 수도 있다.
렌더러는 리-프로젝션된 360 비디오 데이터를 렌더링할 수 있다. 전술한 바와 같이 360 비디오 데이터가 3D 공간상에 렌더링된다고 표현할 수도 있는데, 이처럼 두 과정이 한번에 일어나는 경우 리-프로젝션 처리부와 렌더러는 통합되어, 렌더러에서 이 과정들이 모두 진행될 수 있다. 실시예에 따라 렌더러는 사용자의 시점 정보에 따라 사용자가 보고 있는 부분만을 렌더링할 수도 있다.
사용자는 VR 디스플레이 등을 통하여 렌더링된 360 비디오의 일부 영역을 볼 수 있다. VR 디스플레이는 360 비디오를 재생하는 장치로서, 360 비디오 수신 장치에 포함될 수도 있고(tethered), 별도의 장치로서 360 비디오 수신 장치에 연결될 수도 있다(un-tethered).
본 발명에 따른 360 비디오 수신 장치의 일 실시예에 의하면, 360 비디오 수신 장치는 (수신측) 피드백 처리부 및/또는 네트워크 인터페이스(도시되지 않음)를 내/외부 엘레멘트로서 더 포함할 수 있다. 수신측 피드백 처리부는 렌더러, 리-프로젝션 처리부, 데이터 디코더, 디캡슐레이션 처리부 및/또는 VR 디스플레이로부터 피드백 정보를 획득하여 처리할 수 있다. 피드백 정보는 뷰포트 정보, 헤드 오리엔테이션 정보, 게이즈(Gaze) 정보 등을 포함할 수 있다. 네트워크 인터페이스는 피드백 정보를 수신측 피드백 처리부로부터 전달받고, 이를 360 비디오 전송 장치로 전송할 수 있다.
전술한 바와 같이, 피드백 정보는 송신측으로 전달되는 것 뿐아니라, 수신측에서 소비될 수도 있다. 수신측 피드백 처리부는 획득한 피드백 정보를 360 비디오 수신 장치의 내부 엘레멘트들로 전달하여, 렌더링 등의 과정에 반영되게 할 수 있다. 수신측 피드백 처리부는 피드백 정보를 렌더러, 리-프로젝션 처리부, 데이터 디코더 및/또는 디캡슐레이션 처리부로 전달할 수 있다. 예를 들어, 렌더러는 피드백 정보를 활용하여 사용자가 보고 있는 영역을 우선적으로 렌더링할 수 있다. 또한 디캡슐레이션 처리부, 데이터 디코더 등은 사용자가 보고 있는 영역 내지 보게될 영역을 우선적으로 디캡슐레이션, 디코딩할 수 있다.
전술한 본 발명에 따른 360 비디오 수신 장치의 내/외부 엘레멘트들은 하드웨어로 구현되는 하드웨어 엘레멘트들일 수 있다. 실시예에 따라 내/외부 엘레멘트들은 변경, 생략되거나 다른 엘레멘트로 대체, 통합될 수 있다. 실시예에 따라 부가 엘레멘트들이 360 비디오 수신 장치에 추가될 수도 있다.
본 발명의 또 다른 관점은 360 비디오를 전송하는 방법 및 360 비디오를 수신하는 방법과 관련될 수 있다. 본 발명에 따른 360 비디오를 전송/수신하는 방법은, 각각 전술한 본 발명에 따른 360 비디오 전송/수신 장치 또는 그 장치의 실시예들에 의해 수행될 수 있다.
전술한 본 발명에 따른 360 비디오 전송/수신 장치, 전송/수신 방법의 각각의 실시예 및 그 내/외부 엘리멘트 각각의 실시예들을 서로 조합될 수 있다. 예를 들어 프로젝션 처리부의 실시예들과, 데이터 인코더의 실시예들은 서로 조합되어, 그 경우의 수만큼의 360 비디오 전송 장치의 실시예들을 만들어 낼 수 있다. 이렇게 조합된 실시예들 역시 본 발명의 범위에 포함된다.
도 4 는 본 발명의 다른 실시예에 따른 360 비디오 전송 장치/360 비디오 수신 장치를 도시한 도면이다.
전술한 바와 같이, 도시된 (a) 와 같은 아키텍처에 의하여 360 컨텐츠가 제공될 수 있다. 360 컨텐츠는 파일 형태로 제공되거나, DASH 등과 같이 세그먼트(segment) 기반 다운로드 또는 스트리밍 서비스의 형태로 제공될 수 있다. 여기서 360 컨텐츠는 VR 컨텐츠로 불릴 수 있다.
전술한 바와 같이 360 비디오 데이터 및/또는 360 오디오 데이터가 획득될 수 있다(Acquisition).
360 오디오 데이터는 오디오 프리-프로세싱 과정(Audio Preprocessing), 오디오 인코딩 과정(Audio encoding)을 거칠 수 있다. 이 과정에서 오디오 관련 메타데이터가 생성될 수 있으며, 인코딩된 오디오와 오디오 관련 메타데이터는 전송을 위한 처리(file/segment encapsulation)를 거칠 수 있다.
360 비디오 데이터는 전술한 것과 같은 과정을 거칠 수 있다. 360 비디오 전송 장치의 스티처는 360 비디오 데이터에 스티칭을 수행할 수 있다(Visual stitching). 이 과정은 실시예에 따라 생략되고 수신측에서 수행될 수도 있다. 360 비디오 전송 장치의 프로젝션 처리부는 360 비디오 데이터를 2D 이미지 상에 프로젝션할 수 있다(Projection and mapping(packing)).
이 스티칭 및 프로젝션 과정은 (b) 에 구체적으로 도시되었다. 도시된 (b) 에서, 360 비디오 데이터(Input Images) 를 전달받으면, 이에 스티칭 및 프로젝션이 수행될 수 있다. 프로젝션 과정은 구체적으로 스티칭된 360 비디오 데이터를 3D 공간 상으로 프로젝션하고, 프로젝션된 360 비디오 데이터가 2D 이미지 상으로 배열되는 것으로 볼 수 있다. 본 명세서에서 이 과정을 360 비디오 데이터를 2D 이미지 상으로 프로젝션한다고 표현할 수도 있다. 여기서 3D 공간은 구(sphere) 또는 큐브(cube) 등일 수 있다. 이 3D 공간은 수신측에서 리-프로젝션에 사용되는 3D 공간과 같을 수도 있다.
2D 이미지는 프로젝티드 프레임(C, Projected frame) 이라 불릴 수도 있다. 이 2D 이미지에 리전별 패킹(Region-wise packing) 이 선택적으로 더 수행될 수도 있다. 리전별 패킹이 수행되는 경우, 각 리전(Region)의 위치, 형태, 크기를 지시함으로써, 2D 이미지 상의 리전들이 팩드 프레임(D, packed frame) 상으로 매핑될 수 있다. 리전별 패킹이 수행되지 않는 경우, 프로젝티드 프레임은 팩드 프레임과 같을 수 있다. 리전에 대해서는 후술한다. 프로젝션 과정 및 리전별 패킹 과정을, 360 비디오 데이터의 각 리전들이 2D 이미지 상에 프로젝션된다고 표현할 수도 있다. 설계에 따라, 360 비디오 데이터는 중간 과정 없이 팩드 프레임으로 바로 변환될 수도 있다.
도시된 (a) 에서, 프로젝션된 360 비디오 데이터는 이미지 인코딩 내지 비디오 인코딩될 수 있다. 같은 컨텐트라도 다른 시점(viewpoints)별로 존재할 수 있으므로, 같은 컨텐트가 서로 다른 비트 스트림으로 인코딩될 수도 있다. 인코딩된 360 비디오 데이터는 전술한 인캡슐레이션 처리부에 의해 ISOBMFF 등의 파일 포맷으로 처리될 수 있다. 또는 인캡슐레이션 처리부는 인코딩된 360 비디오 데이터를 세그먼트들로 처리할 수 있다. 세그먼트들은 DASH 에 기반한 전송을 위한 개별 트랙에 포함될 수 있다.
360 비디오 데이터의 처리와 함께, 전술한 것과 같이 360 비디오 관련 메타데이터가 생성될 수 있다. 이 메타데이터는 비디오 스트림 혹은 파일 포맷에 포함되어 전달될 수 있다. 이 메타데이터는 인코딩 과정이나 파일 포맷 인캡슐레이션, 전송을 위한 처리 등과 같은 과정에도 쓰일 수 있다.
360 오디오/비디오 데이터는 전송 프로토콜에 따라 전송을 위한 처리를 거치고, 이후 전송될 수 있다. 전술한 360 비디오 수신 장치는 이를 방송망 또는 브로드밴드를 통해 수신할 수 있다.
도시된 (a) 에서 VR 서비스 플랫폼(VR service platform) 은 전술한 360 비디오 수신 장치의 일 실시예에 해당할 수 있다. 도시된 (a) 에서 스피커/헤드폰(Loudspeakers/headphones), 디스플레이(Display), 헤드/아이 트랙킹 컴포넌트(Head/eye tracking) 는 360 비디오 수신 장치의 외부 장치 내지 VR 어플리케이션에 의해 수행되는 것으로 도시되었는데, 실시예에 따라 360 비디오 수신 장치는 이 들을 모두 포함할 수도 있다. 실시예에 따라 헤드/아이 트랙킹 컴포넌트는 전술한 수신측 피드백 처리부에 해당할 수 있다.
360 비디오 수신 장치는 360 오디오/비디오 데이터에 수신을 위한 처리(File/segment decapsulation)를 수행할 수 있다. 360 오디오 데이터는 오디오 디코딩(Audio decoding), 오디오 렌더링(Audio rendering) 과정을 거쳐 스피커/헤드폰을 통해 사용자에게 제공될 수 있다.
360 비디오 데이터는 이미지 디코딩 내지 비디오 디코딩, 렌더링(Visual rendering) 과정을 거쳐 디스플레이를 통해 사용자에게 제공될 수 있다. 여기서 디스플레이는 VR 을 지원하는 디스플레이거나 일반 디스플레이일 수 있다.
전술한 바와 같이 렌더링 과정은 구체적으로, 360 비디오 데이터가 3D 공간 상에 리-프로젝션되고, 리-프로젝션된 360 비디오 데이터가 렌더링되는 것으로 볼 수 있다. 이를 360 비디오 데이터가 3D 공간 상에 렌더링된다고 표현할 수도 있다.
헤드/아이 트랙킹 컴포넌트는 사용자의 헤드 오리엔테이션 정보, 게이즈 정보, 뷰포트(Viewport) 정보 등을 획득, 처리할 수 있다. 이에 대해서는 전술하였다.
수신측에서는 전술한 수신측 과정들과 통신하는 VR 어플리케이션이 존재할 수 있다.
도 5 는 본 발명의 3D 공간을 설명하기 위한 비행기 주축(Aircraft Principal Axes) 개념을 도시한 도면이다.
본 발명에서, 3D 공간에서의 특정 지점, 위치, 방향, 간격, 영역 등을 표현하기 위하여 비행기 주축 개념이 사용될 수 있다.
즉, 본 발명에서 프로젝션 전 또는 리-프로젝션 후의 3D 공간에 대해 기술하고, 그에 대한 시그널링을 수행하기 위하여 비행기 주축 개념이 사용될 수 있다. 실시예에 따라 X, Y, Z 축 개념 또는 구 좌표계를 이용한 방법이 사용될 수도 있다.
비행기는 3 차원으로 자유롭게 회전할 수 있다. 3차원을 이루는 축을 각각 피치(pitch) 축, 야(yaw) 축 및 롤(roll) 축이라고 한다. 본 명세서에서 이 들을 줄여서 pitch, yaw, roll 내지 pitch 방향, yaw 방향, roll 방향이라고 표현할 수도 있다.
Pitch 축은 비행기의 앞코가 위/아래로 회전하는 방향의 기준이 되는 축을 의미할 수 있다. 도시된 비행기 주축 개념에서 pitch 축은 비행기의 날개에서 날개로 이어지는 축을 의미할 수 있다.
Yaw 축은 비행기의 앞코가 좌/우로 회전하는 방향의 기준이 되는 축을 의미할 수 있다. 도시된 비행기 주축 개념에서 yaw 축은 비행기의 위에서 아래로 이어지는 축을 의미할 수 있다.
Roll 축은 도시된 비행기 주축 개념에서 비행기의 앞코에서 꼬리로 이어지는 축으로서, roll 방향의 회전이란 roll 축을 기준으로 한 회전을 의미할 수 있다.
전술한 바와 같이, pitch, yaw, roll 개념을 통해 본 발명에서의 3D 공간이 기술될 수 있다.
도 6 는 본 발명의 일 실시예에 따른 프로젝션 스킴들을 도시한 도면이다.
전술한 바와 같이 본 발명에 따른 360 비디오 전송 장치의 프로젝션 처리부는 스티칭된 360 비디오 데이터를 2D 이미지 상에 프로젝션할 수 있다. 이 과정에서 다양한 프로젝션 스킴들이 활용될 수 있다.
본 발명에 따른 360 비디오 전송 장치의 또 다른 실시예에 의하면, 프로젝션 처리부는 큐빅 프로젝션(Cubic Projection) 스킴을 이용하여 프로젝션을 수행할 수 있다. 예를 들어 스티칭된 360 비디오 데이터는 구형의 면 상에 나타내어질 수 있다. 프로젝션 처리부는 이러한 360 비디오 데이터를 큐브(Cube, 정육면체) 형태로 나누어 2D 이미지 상에 프로젝션할 수 있다. 구형의 면 상의 360 비디오 데이터는 큐브의 각 면에 대응되어, 2D 이미지 상에 (a) 좌측 또는 (a) 우측과 같이 프로젝션될 수 있다.
본 발명에 따른 360 비디오 전송 장치의 또 다른 실시예에 의하면, 프로젝션 처리부는 실린더형 프로젝션(Cylindrical Projection) 스킴을 이용하여 프로젝션을 수행할 수 있다. 마찬가지로 스티칭된 360 비디오 데이터가 구형의 면 상에 나타내어질 수 있다고 가정할 때, 프로젝션 처리부는 이러한 360 비디오 데이터를 실린더(Cylinder) 형태로 나누어 2D 이미지 상에 프로젝션할 수 있다. 구형의 면 상의 360 비디오 데이터는 실린더의 옆면(side)과 윗면(top), 바닥면(bottom) 에 각각 대응되어, 2D 이미지 상에 (b) 좌측 또는 (b) 우측과 같이 프로젝션될 수 있다.
본 발명에 따른 360 비디오 전송 장치의 또 다른 실시예에 의하면, 프로젝션 처리부는 피라미드 프로젝션(Pyramid Projection) 스킴을 이용하여 프로젝션을 수행할 수 있다. 마찬가지로 스티칭된 360 비디오 데이터가 구형의 면 상에 나타내어질 수 있다고 가정할 때, 프로젝션 처리부는 이러한 360 비디오 데이터를 피라미드 형태로 보고, 각 면을 나누어 2D 이미지 상에 프로젝션할 수 있다. 구형의 면 상의 360 비디오 데이터는 피라미드의 바닥면(front), 피라미드의 4방향의 옆면(Left top, Left bottom, Right top, Right bottom) 에 각각 대응되어, 2D 이미지 상에 (c) 좌측 또는 (c) 우측과 같이 프로젝션될 수 있다.
실시예에 따라 프로젝션 처리부는 전술한 스킴들 외에 등정방형 프로젝션(Equirectangular Projection) 스킴, 파노라믹 프로젝션(Panoramic Projection) 스킴 등을 이용하여 프로젝션을 수행할 수도 있다.
전술한 바와 같이 리전(Region) 이란, 360 비디오 데이터가 프로젝션된 2D 이미지가 나누어진 영역을 의미할 수 있다. 이 리전들은 프로젝션 스킴에 따라 프로젝션된 2D 이미지 상의 각 면들과 일치할 필요는 없다. 그러나 실시예에 따라, 프로젝션된 2D 이미지 상의 각 면들이 리전과 대응되도록 리전이 구분되어, 리전별 패킹이 수행될 수도 있다. 실시예에 따라 복수개의 면들이 하나의 리전에 대응될 수도 있고, 하나의 면이 복수개의 리전에 대응되게 리전이 구분될 수도 있다. 이 경우, 리전은 프로젝션 스킴에 따라 달라질 수 있다. 예를 들어 (a) 에서 정육면체의 각 면들(top, bottom, front, left, right, back) 은 각각 리전일 수 있다. (b) 에서 실린더의 옆면(side), 윗면(top), 바닥면(bottom) 은 각각 리전일 수 있다. (c) 에서 피라미드의 바닥면(front), 4방향 옆면(Left top, Left bottom, Right top, Right bottom) 들은 각각 리전일 수 있다.
도 7 은 본 발명의 일 실시예에 따른 타일(Tile)을 도시한 도면이다.
2D 이미지에 프로젝션된 360 비디오 데이터 또는 리전별 패킹까지 수행된 360 비디오 데이터는 하나 이상의 타일로 구분될 수 있다. 도시된 (a) 는 하나의 2D 이미지가 16 개의 타일로 나뉘어진 형태를 도시하고 있다. 여기서 2D 이미지란 전술한 프로젝티드 프레임 내지는 팩드 프레임일 수 있다. 본 발명에 따른 360 비디오 전송 장치의 또 다른 실시예에 의하면, 데이터 인코더는 각각의 타일을 독립적으로 인코딩할 수 있다.
전술한 리전별 패킹과 타일링(Tiling)은 구분될 수 있다. 전술한 리전별 패킹은 코딩 효율을 높이기 위해 또는 레졸루션을 조정하기 위하여 2D 이미지상에 프로젝션된 360 비디오 데이터를 리전으로 구분하여 처리하는 것을 의미할 수 있다. 타일링은 데이터 인코더가 프로젝티드 프레임 내지는 팩드 프레임을 타일이라는 구획별로 나누고, 해당 타일들 별로 독립적으로 인코딩을 수행하는 것을 의미할 수 있다. 360 비디오가 제공될 때, 사용자는 360 비디오의 모든 부분을 동시에 소비하지 않는다. 타일링은 제한된 밴드위스(bandwidth)상에서 사용자가 현재 보는 뷰포트 등 중요 부분 내지 일정 부분에 해당하는 타일만을 수신측으로 전송 혹은 소비하는 것을 가능케할 수 있다. 타일링을 통해 제한된 밴드위스가 더 효율적으로 활용될 수 있고, 수신측에서도 모든 360 비디오 데이터를 한번에 다 처리하는 것에 비하여 연산 부하를 줄일 수 있다.
리전과 타일은 구분되므로, 두 영역이 같을 필요는 없다. 그러나 실시예에 따라 리전과 타일은 같은 영역을 지칭할 수도 있다. 실시예에 따라 타일에 맞추어 리전별 패킹이 수행되어 리전과 타일이 같아질 수 있다. 또한 실시예에 따라, 프로젝션 스킴에 따른 각 면과 리전이 같은 경우, 프로젝션 스킴에 따른 각 면, 리전, 타일이 같은 영역을 지칭할 수도 있다. 문맥에 따라 리전은 VR 리전, 타일을 타일 리전으로 불릴 수도 있다.
ROI (Region of Interest) 는 360 컨텐츠 제공자가 제안하는, 사용자들의 관심 영역을 의미할 수 있다. 360 컨텐츠 제공자는 360 비디오를 제작할 때, 어느 특정 영역을 사용자들이 관심있어 할 것으로 보고, 이를 고려하여 360 비디오를 제작할 수 있다. 실시예에 따라 ROI 는 360 비디오의 컨텐츠 상, 중요한 내용이 재생되는 영역에 해당할 수 있다.
본 발명에 따른 360 비디오 전송/수신 장치의 또 다른 실시예에 의하면, 수신측 피드백 처리부는 뷰포트 정보를 추출, 수집하여 이를 송신측 피드백 처리부로 전달할 수 있다. 이 과정에서 뷰포트 정보는 양 측의 네트워크 인터페이스를 이용해 전달될 수 있다. 도시된 (a) 의 2D 이미지에서 뷰포트 (t6010) 가 표시되었다. 여기서 뷰포트 는 2D 이미지 상의 9 개의 타일에 걸쳐 있을 수 있다.
이 경우 360 비디오 전송 장치는 타일링 시스템을 더 포함할 수 있다. 실시예에 따라 타일링 시스템은 데이터 인코더 다음에 위치할 수도 있고(도시된 (b)), 전술한 데이터 인코더 내지 전송 처리부 내에 포함될 수도 있고, 별개의 내/외부 엘리먼트로서 360 비디오 전송 장치에 포함될 수 있다.
타일링 시스템은 송신측 피드백 처리부로부터 뷰포트 정보를 전달받을 수 있다. 타일링 시스템은 뷰포트 영역이 포함되는 타일만을 선별하여 전송할 수 있다. 도시된 (a) 의 2D 이미지에서 총 16 개의 타일 중 뷰포트 영역(t6010) 을 포함하는 9 개의 타일들만이 전송될 수 있다. 여기서 타일링 시스템은 브로드밴드를 통한 유니캐스트 방식으로 타일들을 전송할 수 있다. 사용자에 따라 뷰포트 영역이 다르기 때문이다.
또한 이 경우 송신측 피드백 처리부는 뷰포트 정보를 데이터 인코더로 전달할 수 있다. 데이터 인코더는 뷰포트 영역을 포함하는 타일들에 대해 다른 타일들보다 더 높은 퀄리티로 인코딩을 수행할 수 있다.
또한 이 경우 송신측 피드백 처리부는 뷰포트 정보를 메타데이터 처리부로 전달할 수 있다. 메타데이터 처리부는 뷰포트 영역과 관련된 메타데이터 를 360 비디오 전송 장치의 각 내부 엘레먼트로 전달해주거나, 360 비디오 관련 메타데이터에 포함시킬 수 있다.
이러한 타일링 방식을 통하여, 전송 밴드위스(bandwidth)가 절약될 수 있으며, 타일 별로 차등화된 처리를 수행하여 효율적 데이터 처리/전송이 가능해질 수 있다.
전술한 뷰포트 영역과 관련된 실시예들은 뷰포트 영역이 아닌 다른 특정 영역들에 대해서도 유사한 방식으로 적용될 수 있다. 예를 들어, 전술한 게이즈 분석을 통해 사용자들이 주로 관심있어 하는 것으로 판단된 영역, ROI 영역, 사용자가 VR 디스플레이를 통해 360 비디오를 접할 때 처음으로 재생되는 영역(초기 시점, Initial Viewpoint) 등에 대해서도, 전술한 뷰포트 영역과 같은 방식의 처리들이 수행될 수 있다.
본 발명에 따른 360 비디오 전송 장치의 또 다른 실시예에 의하면, 전송 처리부는 각 타일 별로 다르게 전송을 위한 처리를 수행할 수 있다. 전송 처리부는 타일 별로 다른 전송 파라미터(모듈레이션 오더, 코드 레이트 등)를 적용하여, 각 타일 별로 전달되는 데이터의 강건성(robustenss)을 다르게 할 수 있다.
이 때, 송신측 피드백 처리부는 360 비디오 수신 장치로부터 전달받은 피드백 정보를 전송 처리부로 전달하여, 전송 처리부가 타일별 차등화된 전송 처리를 수행하도록 할 수 있다. 예를 들어 송신측 피드백 처리부는 수신측으로부터 전달받은 뷰포트 정보를 전송 처리부로 전달할 수 있다. 전송 처리부는 해당 뷰포트 영역을 포함하는 타일들에 대해 다른 타일들보다 더 높은 강건성을 가지도록 전송 처리를 수행할 수 있다.
도 8 은 본 발명의 일 실시예에 따른 360 비디오 관련 메타데이터를 도시한 도면이다.
전술한 360 비디오 관련 메타데이터는 360 비디오에 대한 다양한 메타데이터를 포함할 수 있다. 문맥에 따라, 360 비디오 관련 메타데이터는 360 비디오 관련 시그널링 정보라고 불릴 수도 있다. 360 비디오 관련 메타데이터는 별도의 시그널링 테이블에 포함되어 전송될 수도 있고, DASH MPD 내에 포함되어 전송될 수도 있고, ISOBMFF 등의 파일 포맷에 box 형태로 포함되어 전달될 수도 있다. 360 비디오 관련 메타데이터가 box 형태로 포함되는 경우 파일, 프래그먼트, 트랙, 샘플 엔트리, 샘플 등등 다양한 레벨에 포함되어 해당되는 레벨의 데이터에 대한 메타데이터를 포함할 수 있다.
실시예에 따라, 후술하는 메타데이터의 일부는 시그널링 테이블로 구성되어 전달되고, 나머지 일부는 파일 포맷 내에 box 혹은 트랙 형태로 포함될 수도 있다.
본 발명에 따른 360 비디오 관련 메타데이터의 일 실시예에 의하면, 360 비디오 관련 메타데이터는 프로젝션 스킴 등에 관한 기본 메타데이터, 스테레오스코픽(stereoscopic) 관련 메타데이터, 초기 시점(Initial View/Initial Viewpoint) 관련 메타데이터, ROI 관련 메타데이터, FOV (Field of View) 관련 메타데이터 및/또는 크롭된 영역(cropped region) 관련 메타데이터를 포함할 수 있다. 실시예에 따라 360 비디오 관련 메타데이터는 전술한 것 외에 추가적인 메타데이터를 더 포함할 수 있다.
본 발명에 따른 360 비디오 관련 메타데이터의 실시예들은 전술한 기본 메타데이터, 스테레오스코픽 관련 메타데이터, 초기 시점 관련 메타데이터, ROI 관련 메타데이터, FOV 관련 메타데이터, 크롭된 영역 관련 메타데이터 및/또는 이후 추가될 수 있는 메타데이터들 중 적어도 하나 이상을 포함하는 형태일 수 있다. 본 발명에 따른 360 비디오 관련 메타데이터의 실시예들은, 각각 포함하는 세부 메타데이터들의 경우의 수에 따라 다양하게 구성될 수 있다. 실시예에 따라 360 비디오 관련 메타데이터는 전술한 것 외에 추가적인 정보들을 더 포함할 수도 있다.
기본 메타데이터에는 3D 모델 관련 정보, 프로젝션 스킴 관련 정보 등이 포함될 수 있다. 기본 메타데이터에는 vr_geometry 필드, projection_scheme 필드 등이 포함될 수 있다. 실시예에 따라 기본 메타데이터는 추가적인 정보들을 더 포함할 수도 있다.
vr_geometry 필드는 해당 360 비디오 데이터가 지원하는 3D 모델의 타입을 지시할 수 있다. 전술한 바와 같이 360 비디오 데이터가 3D 공간 상에 리-프로젝션되는 경우, 해당 3D 공간은 vr_geometry 필드가 지시하는 3D 모델에 따른 형태를 가질 수 있다. 실시예에 따라, 렌더링시에 사용되는 3D 모델은 vr_geometry 필드가 지시하는 리-프로젝션에 사용되는 3D 모델과 다를 수도 있다. 이 경우, 기본 메타데이터는 렌더링시에 사용되는 3D 모델을 지시하는 필드를 더 포함할 수도 있다. 해당 필드가 0, 1, 2, 3 의 값을 가지는 경우 3D 공간은 각각 구형(Sphere), 큐브(Cube), 실린더(Cylinder), 피라미드(Pyramid)의 3D 모델을 따를 수 있다. 해당 필드가 나머지 값을 가지는 경우는 향후 사용을 위해 남겨둘 수 있다(Reserved for Future Use). 실시예에 따라 360 비디오 관련 메타데이터는 해당 필드에 의해 지시되는 3D 모델에 대한 구체적인 정보를 더 포함할 수 있다. 여기서 3D 모델에 대한 구체적인 정보란 예를 들어 구형의 반지름 정보, 실린더의 높이 정보 등을 의미할 수 있다. 본 필드는 생략될 수 있다.
projection_scheme 필드는 해당 360 비디오 데이터가 2D 이미지 상에 프로젝션될 때 사용된 프로젝션 스킴을 지시할 수 있다. 해당 필드가 0, 1, 2, 3, 4, 5 의 값을 가지는 경우, 각각 등정방형 프로젝션(Equirectangular Projection) 스킴, 큐빅 프로젝션 스킴, 실린더형 프로젝션 스킴, 타일-베이스드(Tile-based) 프로젝션 스킴, 피라미드 프로젝션 스킴, 파노라믹 프로젝션 스킴이 사용되었을 수 있다. 해당 필드가 6 의 값을 가지는 경우는, 360 비디오 데이터가 스티칭 없이 바로 2D 이미지 상에 프로젝션된 경우일 수 있다. 해당 필드가 나머지 값을 가지는 경우는 향후 사용을 위해 남겨둘 수 있다(Reserved for Future Use). 실시예에 따라 360 비디오 관련 메타데이터는 해당 필드에 의해 특정되는 프로젝션 스킴에 의해 발생한 리전(Region)에 대한 구체적인 정보를 더 포함할 수 있다. 여기서 리전에 대한 구체적인 정보란 예를 들어 리전의 회전 여부, 실린더의 윗면(top) 리전의 반지름 정보 등을 의미할 수 있다.
스테레오스코픽 관련 메타데이터는 360 비디오 데이터의 3D 관련 속성들에 대한 정보들을 포함할 수 있다. 스테레오스코픽 관련 메타데이터는 is_stereoscopic 필드 및/또는 stereo_mode 필드를 포함할 수 있다. 실시예에 따라 스테레오스코픽 관련 메타데이터는 추가적인 정보들을 더 포함할 수도 있다.
is_stereoscopic 필드는 해당 360 비디오 데이터가 3D 를 지원하는지 여부를 지시할 수 있다. 해당 필드가 1 이면 3D 지원, 0 이면 3D 미지원을 의미할 수 있다. 본 필드는 생략될 수 있다.
stereo_mode 필드는 해당 360 비디오가 지원하는 3D 레이아웃을 지시할 수 있다. 본 필드만으로 해당 360 비디오가 3D 를 지원하는지 여부를 지시할 수도 있는데, 이 경우 전술한 is_stereoscopic 필드는 생략될 수 있다. 본 필드 값이 0 인 경우, 해당 360 비디오는 모노(mono) 모드일 수 있다. 즉 프로젝션된 2D 이미지는 하나의 모노 뷰(mono view) 만을 포함할 수 있다. 이 경우 해당 360 비디오는 3D 를 지원하지 않을 수 있다.
본 필드 값이 1, 2 인 경우, 해당 360 비디오는 각각 좌우(Left-Right) 레이아웃, 상하(Top-Bottom) 레이아웃에 따를 수 있다. 좌우 레이아웃, 상하 레이아웃은 각각 사이드-바이-사이드 포맷, 탑-바텀 포맷으로 불릴 수도 있다. 좌우 레이아웃의 경우, 좌영상/우영상이 프로젝션된 2D 이미지들은 이미지 프레임 상에서 각각 좌/우로 위치할 수 있다. 상하 레이아웃의 경우, 좌영상/우영상이 프로젝션된 2D 이미지들은 이미지 프레임 상에서 각각 위/아래로 위치할 수 있다. 해당 필드가 나머지 값을 가지는 경우는 향후 사용을 위해 남겨둘 수 있다(Reserved for Future Use).
초기 시점 관련 메타데이터는 사용자가 360 비디오를 처음 재생했을 때 보게되는 시점(초기 시점)에 대한 정보를 포함할 수 있다. 초기 시점 관련 메타데이터는 initial_view_yaw_degree 필드, initial_view_pitch_degree 필드 및/또는 initial_view_roll_degree 필드를 포함할 수 있다. 실시예에 따라 초기 시점 관련 메타데이터는 추가적인 정보들을 더 포함할 수도 있다.
initial_view_yaw_degree 필드, initial_view_pitch_degree 필드, initial_view_roll_degree 필드는 해당 360 비디오 재생 시의 초기 시점을 나타낼 수 있다. 즉, 재생시 처음 보여지는 뷰포트의 정중앙 지점이, 이 세 필드들에 의해 나타내어질 수 있다. 각 필드는 그 정중앙 지점이 위치를 yaw, pitch, roll 축을 기준으로 회전된 방향(부호) 및 그 정도(각도)로 나타낼 수 있다. 이 때 FOV 에 따라 처음 재생시 보여지게 되는 뷰포트가 결정될 수 있다. FOV 를 통하여, 지시된 초기 시점을 기준으로 한, 초기 뷰포트의 가로길이 및 세로길이(width, height) 가 결정될 수 있다. 즉, 이 세 필드들 및 FOV 정보를 이용하여, 360 비디오 수신 장치는 사용자에게 360 비디오의 일정 영역을 초기 뷰포트로서 제공할 수 있다.
실시예에 따라, 초기 시점 관련 메타데이터가 지시하는 초기 시점은, 장면(scene) 별로 변경될 수 있다. 즉, 360 컨텐츠의 시간적 흐름에 따라 360 비디오의 장면이 바뀌게 되는데, 해당 360 비디오의 장면마다 사용자가 처음 보게되는 초기 시점 내지 초기 뷰포트가 변경될 수 있다. 이 경우, 초기 시점 관련 메타데이터는 각 장면별로의 초기 시점을 지시할 수 있다. 이를 위해 초기 시점 관련 메타데이터는, 해당 초기 시점이 적용되는 장면을 식별하는 장면(scene) 식별자를 더 포함할 수도 있다. 또한 360 비디오의 장면별로 FOV 가 변할 수도 있으므로, 초기 시점 관련 메타데이터는 해당 장면에 해당하는 FOV 를 나타내는 장면별 FOV 정보를 더 포함할 수도 있다.
ROI 관련 메타데이터는 전술한 ROI 에 관련된 정보들을 포함할 수 있다. ROI 관련 메타데이터는, 2d_roi_range_flag 필드 및/또는 3d_roi_range_flag 필드를 포함할 수 있다. 두 필드는 각각 ROI 관련 메타데이터가 2D 이미지를 기준으로 ROI 를 표현하는 필드들을 포함하는지, 3D 공간을 기준으로 ROI 를 표현하는 필드들을 포함하는지 여부를 지시할 수 있다. 실시예에 따라 ROI 관련 메타데이터는, ROI 에 따른 차등 인코딩 정보, ROI 에 따른 차등 전송처리 정보 등 추가적인 정보들을 더 포함할 수도 있다.
ROI 관련 메타데이터가 2D 이미지를 기준으로 ROI 를 표현하는 필드들을 포함하는 경우, ROI 관련 메타데이터는 min_top_left_x 필드, max_top_left_x 필드, min_top_left_y 필드, max_top_left_y 필드, min_width 필드, max_width 필드, min_height 필드, max_height 필드, min_x 필드, max_x 필드, min_y 필드 및/또는 max_y 필드를 포함할 수 있다.
min_top_left_x 필드, max_top_left_x 필드, min_top_left_y 필드, max_top_left_y 필드는 ROI 의 좌측 상단 끝의 좌표의 최소/최대값을 나타낼 수 있다. 이 필드들은 차례로 좌상단 끝의 최소 x 좌표, 최대 x 좌표, 최소 y 좌표, 최대 y 좌표 를 나타낼 수 있다.
min_width 필드, max_width 필드, min_height 필드, max_height 필드는 ROI 의 가로 크기(width), 세로 크기(height)의 최소/최대값을 나타낼 수 있다. 이 필드들은 차례로 가로 크기의 최소값, 가로 크기의 최대값, 세로 크기의 최소값, 세로 크기의 최대값을 나타낼 수 있다.
min_x 필드, max_x 필드, min_y 필드, max_y 필드는 ROI 내의 좌표들의 최소/최대값을 나타낼 수 있다. 이 필드들은 차례로 ROI 내 좌표들의 최소 x 좌표, 최대 x 좌표, 최소 y 좌표, 최대 y 좌표 를 나타낼 수 있다. 이 필드들은 생략될 수 있다.
ROI 관련 메타데이터가 3D 랜더링 공간 상의 좌표 기준으로 ROI 를 표현하는 필드들을 포함하는 경우, ROI 관련 메타데이터는 min_yaw 필드, max_yaw 필드, min_pitch 필드, max_pitch 필드, min_roll 필드, max_roll 필드, min_field_of_view 필드 및/또는 max_field_of_view 필드를 포함할 수 있다.
min_yaw 필드, max_yaw 필드, min_pitch 필드, max_pitch 필드, min_roll 필드, max_roll 필드는 ROI 가 3D 공간상에서 차지하는 영역을 yaw, pitch, roll 의 최소/최대값으로 나타낼 수 있다. 이 필드들은 차례로 yaw 축 기준 회전량의 최소값, yaw 축 기준 회전량의 최대값, pitch 축 기준 회전량의 최소값, pitch 축 기준 회전량의 최대값, roll 축 기준 회전량의 최소값, roll 축 기준 회전량의 최대값을 나타낼 수 있다.
min_field_of_view 필드, max_field_of_view 필드는 해당 360 비디오 데이터의 FOV 의 최소/최대값을 나타낼 수 있다. FOV 는 360 비디오의 재생시 한번에 디스플레이되는 시야범위를 의미할 수 있다. min_field_of_view 필드, max_field_of_view 필드는 각각 FOV 의 최소값, 최대값을 나타낼 수 있다. 이 필드들은 생략될 수 있다. 이 필드들은 후술할 FOV 관련 메타데이터에 포함될 수도 있다.
FOV 관련 메타데이터는 전술한 FOV 에 관련한 정보들을 포함할 수 있다. FOV 관련 메타데이터는 content_fov_flag 필드 및/또는 content_fov 필드를 포함할 수 있다. 실시예에 따라 FOV 관련 메타데이터는 전술한 FOV 의 최소/최대값 관련 정보 등 추가적인 정보들을 더 포함할 수도 있다.
content_fov_flag 필드는 해당 360 비디오에 대하여 제작시 의도한 FOV 에 대한 정보가 존재하는지 여부를 지시할 수 있다. 본 필드값이 1인 경우, content_fov 필드가 존재할 수 있다.
content_fov 필드는 해당 360 비디오에 대하여 제작시 의도한 FOV 에 대한 정보를 나타낼 수 있다. 실시예에 따라 해당 360 비디오 수신 장치의 수직(vertical) 혹은 수평(horizontal) FOV 에 따라, 360 영상 중에서 사용자에게 한번에 디스플레이되는 영역이 결정될 수 있다. 혹은 실시예에 따라 본 필드의 FOV 정보를 반영하여 사용자에게 한번에 디스플레이되는 360 비디오의 영역이 결정될 수도 있다.
크롭된 영역 관련 메타데이터는 이미지 프레임 상에서 실제 360 비디오 데이터를 포함하는 영역에 대한 정보를 포함할 수 있다. 이미지 프레임은 실제 360 비디오 데이터 프로젝션된 액티브 비디오 영역(Active Video Area)과 그렇지 않은 영역을 포함할 수 있다. 이 때 액티브 비디오 영역은 크롭된 영역 또는 디폴트 디스플레이 영역이라고 칭할 수 있다. 이 액티브 비디오 영역은 실제 VR 디스플레이 상에서 360 비디오로서 보여지는 영역으로서, 360 비디오 수신 장치 또는 VR 디스플레이는 액티브 비디오 영역만을 처리/디스플레이할 수 있다. 예를 들어 이미지 프레임의 종횡비(aspect ratio) 가 4:3 인 경우 이미지 프레임의 윗 부분 일부와 아랫부분 일부를 제외한 영역만 360 비디오 데이터를 포함할 수 있는데, 이 부분을 액티브 비디오 영역이라고 할 수 있다.
크롭된 영역 관련 메타데이터는 is_cropped_region 필드, cr_region_left_top_x 필드, cr_region_left_top_y 필드, cr_region_width 필드 및/또는 cr_region_height 필드를 포함할 수 있다. 실시예에 따라 크롭된 영역 관련 메타데이터는 추가적인 정보들을 더 포함할 수도 있다.
is_cropped_region 필드는 이미지 프레임의 전체 영역이 360 비디오 수신 장치 내지 VR 디스플레이에 의해 사용되는지 여부를 나타내는 플래그일 수 있다. 즉, 본 필드는 이미지 프레임 전체가 액티브 비디오 영역인지 여부를 지시할 수 있다. 이미지 프레임의 일부만이 액티브 비디오 영역인 경우, 하기의 4 필드가 더 추가될 수 있다.
cr_region_left_top_x 필드, cr_region_left_top_y 필드, cr_region_width 필드, cr_region_height 필드는 이미지 프레임 상에서 액티브 비디오 영역을 나타낼 수 있다. 이 필드들은 각각 액티브 비디오 영역의 좌상단의 x 좌표, 액티브 비디오 영역의 좌상단의 y 좌표, 액티브 비디오 영역의 가로 길이(width), 액티브 비디오 영역의 세로 길이(height) 를 나타낼 수 있다. 가로 길이와 세로 길이는 픽셀을 단위로 나타내어질 수 있다.
도 9 는 본 발명의 다른 실시예에 따른 360 비디오 관련 메타데이터를 도시한 도면이다.
전술한 바와 같이, 360 비디오 관련 메타데이터는 별도의 시그널링 테이블에 포함되어 전송될 수도 있고, DASH MPD 내에 포함되어 전송될 수도 있고, ISOBMFF 또는 Common File Format 등의 파일 포맷에 box 형태로 포함되거나, 별도의 트랙 내의 데이터로 포함되어 전달될 수도 있다.
360 비디오 관련 메타데이터가 box 형태로 포함되는 경우, 360 비디오 관련 메타데이터는 OMVideoConfigurationBox 클래스로 정의될 수 있다. OMVideoConfigurationBox 는 omvc 박스로 불릴 수 있다. 이러한 360 비디오 관련 메타데이터는 파일, 프래그먼트, 트랙, 샘플 엔트리, 샘플 등등 다양한 레벨에 포함되어 전달될 수 있고, 포함되는 레벨에 따라 해당 360 비디오 관련 메타데이터는 해당되는 레벨의 데이터에 대한 메타데이터를 제공할 수 있다(트랙, 스트림, 샘플 등).
본 발명에 따른 360 비디오 관련 메타데이터의 다른 실시예에 의하면, 360 비디오 관련 메타데이터는 360 비디오의 지원 범위 관련 메타데이터, vr_geometry 필드 관련 메타데이터, projection_scheme 필드 관련 메타데이터, 수신측 Stitching 관련 메타데이터, HDR (High Dynamic Range) 관련 메타데이터, WCG (Wide Color Gamut) 관련 메타데이터 및/또는 리전(Region) 관련 메타데이터를 더 포함할 수 있다.
본 발명에 따른 360 비디오 관련 메타데이터의 실시예들은 전술한 기본 메타데이터, 스테레오스코픽 관련 메타데이터, 초기 시점 관련 메타데이터, ROI 관련 메타데이터, FOV 관련 메타데이터, 크롭된 영역 관련 메타데이터, 360 비디오의 지원 범위 관련 메타데이터, vr_geometry 필드 관련 메타데이터, projection_scheme 필드 관련 메타데이터, 수신측 Stitching 관련 메타데이터, HDR 관련 메타데이터, WCG 관련 메타데이터 및/또는 리전 관련 메타데이터 중 적어도 하나 이상을 포함할 수 있다. 본 발명에 따른 360 비디오 관련 메타데이터의 실시예들은 포함하는 세부 메타데이터들의 경우의 수에 따라 다양하게 구성될 수 있으며, 실시예에 따라 360 비디오 관련 메타데이터는 전술한 것 외에 추가적인 정보들을 더 포함할 수도 있다.
360 비디오의 지원 범위 관련 메타데이터는 해당 360 비디오가 3D 공간 상에서 지원하는 범위에 관한 정보들을 포함할 수 있다. 360 비디오의 지원 범위 관련 메타데이터는 is_pitch_angle_less_180 필드, pitch_angle 필드, is_yaw_angle_less_360 필드, yaw_angle 필드 및 또는 is_yaw_only 필드를 포함할 수 있다. 실시예에 따라 360 비디오의 지원 범위 관련 메타데이터는 추가적인 정보들을 더 포함할 수도 있다. 실시예에 따라 360 비디오의 지원 범위 관련 메타데이터의 세부 필드들은 다른 메타데이터로 분류될 수도 있다.
is_pitch_angle_less_180 필드는 해당 360 비디오를 3D 공간에 리-프로젝션 또는 렌더링하는 경우, 해당 360 비디오가 커버하게 되는(지원하는) 3D 공간 상의 피치(pitch) 범위가 180 도 보다 작은지 여부를 지시할 수 있다. 즉, 본 필드는 해당 360 비디오가 지원하는 피치 각도의 최대값과 최소값의 차이가 180 도 보다 작은지 여부를 지시할 수 있다.
pitch_angle 필드는 해당 360 비디오를 3D 공간에 리-프로젝션 또는 렌더링하는 경우, 해당 360 비디오가 지원하는 피치 각도의 최대값과 최소값의 차이를 나타낼 수 있다. 본 필드는 is_pitch_angle_less_180 필드의 값에 따라 생략될 수도 있다.
is_yaw_angle_less_360 필드는 해당 360 비디오를 3D 공간에 리-프로젝션 또는 렌더링하는 경우, 해당 360 비디오가 커버하게 되는(지원하는) 3D 공간 상의 야(yaw) 범위가 360 도 보다 작은지 여부를 지시할 수 있다. 즉, 본 필드는 해당 360 비디오가 지원하는 야(yaw) 각도의 최대값과 최소값의 차이가 360 도 보다 작은지 여부를 지시할 수 있다.
yaw_angle 필드는 해당 360 비디오를 3D 공간에 리-프로젝션 또는 렌더링하는 경우, 해당 360 비디오가 지원하는 yaw 각도의 최대값과 최소값의 차이를 나타낼 수 있다. 본 필드는 is_yaw_angle_less_360 필드의 값에 따라 생략될 수도 있다.
is_pitch_angle_less_180 필드가 pitch 지원범위가 180도 보다 작다고 지시하고, pitch_angle 필드가 180 보다 작은 값을 가지는 경우, 360 비디오의 지원 범위 관련 메타데이터는 min_pitch 필드 및/또는 max_pitch 필드를 더 포함할 수 있다.
min_pitch 필드 및 max_pitch 필드는 각각 해당 360 비디오를 3D 공간에 리-프로젝션 또는 렌더링하는 경우, 해당 360 비디오가 지원하는 pitch(또는 φ) 의 최소값, 최대값을 나타낼 수 있다.
is_yaw_angle_less_360 필드가 yaw 지원범위가 360도 보다 작다고 지시하고, yaw_angle 필드가 360 보다 작은 값을 가지는 경우, 360 비디오의 지원 범위 관련 메타데이터는 min_yaw 필드 및/또는 max_yaw필드를 더 포함할 수 있다.
min_yaw 필드 및 max_yaw 필드는 각각 해당 360 비디오를 3D 공간에 리-프로젝션 또는 렌더링하는 경우, 해당 360 비디오가 지원하는 yaw(또는 θ) 의 최소값, 최대값을 나타낼 수 있다.
is_yaw_only 필드는 해당 360 비디오에 대한 사용자의 인터랙션이 yaw 방향으로만 제한됨을 지시하는 플래그일 수 있다. 즉, 본 필드는 해당 360 비디오에 대한 헤드 모션(motion)이 yaw 방향으로만 제한됨을 지시하는 플래그일 수 있다. 예를 들어 본 필드가 셋(set)된 경우, 사용자가 VR 디스플레이를 착용하여 머리를 좌우로 움직일 때, yaw 축으로만의 회전 방향 및 정도가 반영되어 360 비디오 경험이 제공될 수 있다. 사용자가 머리를 위 아래로만 움직이는 경우, 이에 따른 360 비디오의 영역이 변화되지 않을 수 있다. 본 필드는 360 비디오의 지원 범위 관련 메타데이터가 아닌 다른 메타데이터로서 분류될 수도 있다.
vr_geometry 필드 관련 메타데이터는 전술한 vr_geometry 필드가 지시하는 3D 모델의 타입에 따른 3D 모델 관련 세부 정보들을 제공할 수 있다. 전술한 바와 같이 vr_geometry 필드는, 해당 360 비디오 데이터가 지원하는 3D 모델의 타입을 지시할 수 있는데, vr_geometry 필드 관련 메타데이터는 지시된 각각의 3D 모델(구형, 큐브, 실린더, 피라미드 등)에 대한 구체적인 정보를 제공할 수 있다. 이 구체적인 정보에 대한 자세한 사항은 후술한다.
추가적으로 vr_geometry 필드 관련 메타데이터는 spherical_flag 필드를 더 포함할 수 있다. spherical_flag 필드는 해당 360 비디오가 구형(spherical) 비디오인지 여부를 나타낼 수 있다. 본 필드는 생략될 수 있다.
실시예에 따라 vr_geometry 필드 관련 메타데이터는 추가적인 정보들을 더 포함할 수도 있다. 실시예에 따라 vr_geometry 필드 관련 메타데이터의 세부 필드들은 다른 메타데이터로 분류될 수도 있다.
projection_scheme 필드 관련 메타데이터는 전술한 projection_scheme 필드가 지시하는 프로젝션 스킴에 대한 세부적인 정보들을 제공할 수 있다. 전술한 바와 같이 projection_scheme 필드는 해당 360 비디오 데이터가 2D 이미지 상에 프로젝션될 때 사용된 프로젝션 스킴을 지시할 수 있는데, projection_scheme 필드 관련 메타데이터는 지시된 각각의 프로젝션 스킴(등정방형 프로젝션 스킴, 큐빅 프로젝션 스킴, 실린더형 프로젝션 스킴, 피라미드 프로젝션 스킴, 파노라믹 프로젝션 스킴, 스티칭없이 프로젝션되는 경우 등)에 대한 구체적인 정보를 제공할 수 있다. 이 구체적인 정보에 대한 자세한 사항은 후술한다.
실시예에 따라 projection_scheme 필드 관련 메타데이터는 추가적인 정보들을 더 포함할 수도 있다. 실시예에 따라 projection_scheme 필드 관련 메타데이터의 세부 필드들은 다른 메타데이터로 분류될 수도 있다.
수신측 Stitching 관련 메타데이터는 수신측에서 스티칭이 수행되는 경우에 필요한 정보들을 제공할 수 있다. 수신측에서 스티칭이 되는 경우란, 전술한 360 비디오 전송 장치의 스티처가 360 비디오 데이터에 대한 스티칭을 수행하지 않고, 스티칭되지 않은 360 비디오 데이터가 그대로 2D 이미지 상에 프로젝션되어 전송되는 경우일 수 있다. 이 경우, projection_scheme 필드는 전술한 바와 같이 6 의 값을 가질 수 있다.
이 경우, 전술한 360 비디오 수신 장치는 디코딩된 2D 이미지 상에 프로젝션되어 있는 360 비디오 데이터를 추출하여 스티칭을 수행할 수 있다. 이 경우 360 비디오 수신 장치는 스티처를 더 포함할 수 있다. 360 비디오 수신 장치의 스티처는 '수신측 Stitching 관련 메타데이터' 를 이용하여 스티칭을 수행할 수 있다. 360 비디오 수신 장치의 리-프로젝션 처리부 내지는 렌더러는 수신측에서 스티칭된 360 비디오 데이터를 3D 공간 상에 리-프로젝션하고 렌더링할 수 있다.
예를 들어, 360 비디오 데이터가 라이브(live) 로 생성되어, 즉시 수신측으로 전달되고 사용자에 의해 소모되는 경우, 수신측에서 스티칭이 수행되는 것이 빠른 데이터 전달을 위해 더 효율적일 수 있다. 또한, VR 을 지원하는 기기와 지원하지 않는 기기를 동시에 대상으로 하여 360 비디오 데이터가 전달되는 경우, 수신측에서 스티칭이 수행되는 것이 더 효율적일 수 있다. VR 을 지원하는 기기는 스티칭하여 360 비디오 데이터를 VR 로서 제공하고, VR 을 지원하지 않는 기기는 2D 이미지 상의 360 비디오 데이터를 VR 이 아닌 일반 스크린으로서 제공할 수 있기 때문이다.
수신측 Stitching 관련 메타데이터는 stitched_flag 필드 및/또는 camera_info_flag 필드를 포함할 수 있다. 여기서 수신측 Stitching 관련 메타데이터는 실시예에 따라 수신측에서만 사용되지 않을 수도 있으므로, 단순히 Stitching 관련 메타데이터라고 불릴 수도 있다.
stitched_flag 필드는 적어도 하나 이상의 카메라 센서를 통해 획득된(캡쳐된) 해당 360 비디오가 스티칭 과정을 거쳤는지 여부를 지시할 수 있다. 전술한 projection_scheme 필드값이 6 인 경우, 본 필드는 false 값을 가질 수 있다.
camera_info_flag 필드는 해당 360 비디오 데이터를 캡쳐할 때 사용된 카메라의 세부적인 정보들이 메타데이터로서 제공되는지 여부를 지시할 수 있다.
전술한 stitched_flag 필드가 스티칭 과정이 수행되었음을 지시하는 경우, 수신측 Stitching 관련 메타데이터는 stitching_type 필드 및/또는 num_camera 필드를 포함할 수 있다.
stitching_type 필드는 해당 360 비디오 데이터에 적용된 스티칭 타입을 지시할 수 있다. 이 스티칭 타입이란 예를 들어 스티칭 소프트웨어와 관련된 정보일 수 있다. 동일한 프로젝션 스킴이 사용되더라도, 스티칭 타입에 따라 360 비디오가 2D 이미지 상에 다르게 프로젝션될 수 있다. 따라서, 스티칭 타입 정보가 제공되는 경우, 360 비디오 수신 장치에서 그 정보를 활용하여 리-프로젝션을 수행할 수 있다.
num_camera 필드는 해당 360 비디오 데이터의 캡쳐시에 사용된 카메라의 개수를 나타낼 수 있다.
전술한 camera_info_flag 필드가 카메라 정보의 세부적인 정보들이 메타데이터로서 제공됨을 지시하는 경우, 수신측 Stitching 관련 메타데이터는 num_camera 필드를 더 포함할 수 있다. num_camera 필드의 의미는 전술한 바와 같다. stitched_flag 필드의 값에 따라 num_camera 필드가 포함되는 경우, num_camera 필드가 중복되어 포함될 수도 있는데, 이 경우 360 비디오 관련 메타데이터는 둘 중 하나의 필드를 생략할 수 있다.
num_camera 필드가 지시하는 카메라 수 만큼, 각각의 카메라에 대한 정보가 포함될 수 있다. 이 각각의 카메라에 대한 정보는 intrinsic_camera_params 필드, extrinsic_camera_params 필드, camera_center_pitch 필드, camera_center_yaw 필드 및/또는 camera_center_roll 필드를 포함할 수 있다.
intrinsic_camera_params 필드 및 extrinsic_camera_params 필드는 각각 해당 카메라에 대한 내부 파라미터들, 외부 파라미터들을 포함할 수 있다. 양 필드는 각각 IntrinsicCameraParametersBox 클래스, ExtrinsicCameraParametersBox 클래스로 정의된 구조를 가질 수 있다. 이에 대한 자세한 사항은 후술한다.
camera_center_pitch 필드, camera_center_yaw 필드 및 camera_center_roll 필드는 각각 해당 카메라로부터 획득한 이미지/영상의 정 중앙지점과 매칭되는 3D 공간의 pitch(또는 θ), yaw(또는 φ), roll 값을 나타낼 수 있다.
실시예에 따라 수신측 Stitching 관련 메타데이터는 추가적인 정보들을 더 포함할 수도 있다. 실시예에 따라 수신측 Stitching 관련 메타데이터의 세부 필드들은 다른 메타데이터로 분류될 수도 있다.
실시예에 따라 360 비디오 관련 메타데이터는 is_not_centered 필드 및 is_not_centered 필드의 값에 따라 존재할 수 있는 center_theta 필드 및/또는 center_phi 필드를 더 포함할 수 있다. 실시예에 따라 center_theta 필드, center_phi 필드는 center_pitch 필드, center_yaw 필드 및/또는 center_roll 필드로 대체될 수도 있다. 이 필드들은 해당 360 비디오 데이터가 프로젝션된 2D 이미지의 중앙 픽셀 및 3D 공간 상의 중점과 관련된 메타데이터를 제공할 수 있다. 실시예에 따라 이 필드들은 360 비디오 관련 메타데이터 내에서 별도의 메타데이터로 분류되거나, Stitching 관련 메타데이터 등 다른 메타데이터에 포함되는 것으로 분류될 수도 있다.
is_not_centered 필드는 해당 360 비디오 데이터가 프로젝션된 2D 이미지의 중앙 픽셀이, 3D 공간(구형 면) 상의 중점과 동일한지 여부를 지시할 수 있다. 다르게 말하면, 본 필드는 해당 360 비디오 데이터가 3D 공간에 프로젝션 내지 리-프로젝션되는 경우에, 해당 3D 공간의 중점이 월드 좌표계의 원점 혹은 캡쳐 스페이스 좌표계의 원점 좌표에 비하여 변경(회전)되었는지 여부를 나타낼 수 있다. 캡쳐 스페이스란 360 비디오의 캡처시의 공간을 의미할 수 있다. 캡쳐 스페이스 좌표계는 캡쳐 스페이스를 나타내는 구형 좌표계(spherical coordinate) 를 의미할 수 있다.
360 비디오 데이터가 프로젝션/리-프로젝션되는 3D 공간은, 캡처 스페이스 좌표계의 좌표 원점 내지 월드 좌표계의 원점에 비하여 회전될 수 있다. 이 경우 3D 공간의 중점은 캡처 스페이스 좌표계의 좌표 원점 내지 월드 좌표계의 원점과 다르게 된다. is_not_centered 필드는 이러한 변경(회전)이 있는지를 지시할 수 있다. 실시예에 따라 3D 공간의 중점은 2D 이미지의 중앙 픽셀이 3D 공간 상에서 나타내어지는 점과 같을 수 있다.
여기서 3D 공간의 중점이란, 3D 공간의 오리엔테이션(orientation)으로 불릴 수 있다. 여기서 3D 공간의 중점은 3D 공간을 구 좌표계(spherical coordinate) 로 나타내는 경우 θ = 0, φ = 0 인 점을 의미할 수 있고, 비행기 주축(yaw/pitch/roll 좌표계)으로 나타내는 경우 pitch=0, yaw=0, roll=0 인 점을 의미할 수 있다. 본 필드 값이 0 인 경우 3D 공간의 중점과 캡처 스페이스 좌표계의 좌표 원점 혹은 월드 좌표계의 원점이 매칭/매핑됨을 의미할 수 있다. 여기서 3D 공간은 프로젝션 스트럭쳐(projection structure) 또는 VR 지오메트리(geometry) 로 불릴 수 있다.
실시예에 따라, is_not_centered 필드는 projection_scheme 필드의 값을 변수로 다른 의미를 가질 수 있다. projection_scheme 필드가 0, 3 또는 5 의 값을 가지는 경우, 본 필드는 2D 이미지의 중앙 픽셀이 구형 면 상의 θ = 0, φ = 0 인 점과 동일한지 여부를 지시할 수 있다. projection_scheme 필드가 1 의 값을 가지는 경우, 본 필드는 2D 이미지 내의 앞면(front) 의 중앙 픽셀이 구형 면 상의 θ = 0, φ = 0 인 점과 동일한지 여부를 지시할 수 있다. projection_scheme 필드가 2 의 값을 가지는 경우, 본 필드는 2D 이미지 내의 옆면(side) 의 중앙 픽셀이 구형 면 상의 θ = 0, φ = 0 인 점과 동일한지 여부를 지시할 수 있다. projection_scheme 필드가 4 의 값을 가지는 경우, 본 필드는 2D 이미지 내의 앞면(front) 의 중앙 픽셀이 구형 면 상의 θ = 0, φ = 0 인 점과 동일한지 여부를 지시할 수 있다.
전술한 is_not_centered 필드가 3D 공간(구형 면)의 중점이 회전되어 있음을 지시하는 경우, 360 비디오 관련 메타데이터는 center_theta 필드 및/또는 center_phi 필드를 더 포함할 수 있다. 실시예에 따라 center_theta 필드, center_phi 필드는 center_pitch 필드, center_yaw 필드 및/또는 center_roll 필드로 대체될 수도 있다.
이 필드들은 전술한 projection_scheme 필드의 값을 변수로 다른 의미를 가질 수 있다. projection_scheme 필드가 0, 3 또는 5 의 값을 가지는 경우, 이 필드들은 각각 2D 이미지의 중앙 픽셀과 매핑되는 3D 공간(구형 면) 상에서의 점을, (θ, φ) 값으로 나타내거나 (yaw, pitch, roll) 값으로 나타낼 수 있다. projection_scheme 필드가 1 의 값을 가지는 경우, 이 필드들은 각각 2D 이미지 내의 큐브의 앞면(front) 의 중앙 픽셀과 매핑되는 3D 공간(구형 면) 상에서의 점을, (θ, φ) 값으로 나타내거나 (yaw, pitch, roll) 값으로 나타낼 수 있다. projection_scheme 필드가 2 의 값을 가지는 경우, 이 필드들은 각각 2D 이미지 내의 실린더의 옆면(side)의 중앙 픽셀과 매핑되는 3D 공간(구형 면) 상에서의 점을, (θ, φ) 값으로 나타내거나 (yaw, pitch, roll) 값으로 나타낼 수 있다. projection_scheme 필드가 4 의 값을 가지는 경우, 이 필드들은 각각 2D 이미지 내의 피라미드의 앞면(front) 의 중앙 픽셀과 매핑되는 3D 공간(구형 면) 상에서의 점을, (θ, φ) 값으로 나타내거나 (yaw, pitch, roll) 값으로 나타낼 수 있다.
실시예에 따라 center_pitch 필드, center_yaw 필드 및/또는 center_roll 필드는 3D 공간의 중점이 캡처 스페이스 좌표계의 좌표 원점 내지 월드 좌표계의 원점에 비하여 회전된 정도를 나타낼 수 있다. 이 경우 각 필드들은 회전된 정도를 pitch, yaw, roll 값으로 나타낼 수 있다.
HDR 관련 메타데이터는 해당 360 비디오와 관련된 HDR 정보를 제공할 수 있다. HDR 관련 메타데이터는 hdr_flag 필드 및/또는 hdr_config 필드를 포함할 수 있다. 실시예에 따라 HDR 관련 메타데이터는 추가적인 정보들을 더 포함할 수도 있다.
hdr_flag 필드는 해당 360 비디오가 HDR 을 지원하는지 여부를 지시할 수 있다. 동시에 본 필드는 360 비디오 관련 메타데이터가 HDR 관련 세부 파라미터(hdr_config 필드)를 포함하는지 여부를 지시할 수 있다.
hdr_config 필드는 해당 360 비디오와 관련된 HDR 파라미터를 나타낼 수 있다. 본 필드는 HDRConfigurationBox 클래스로 정의된 구조를 가질 수 있다. 이에 대한 자세한 사항은 후술한다. 본 필드의 정보를 이용하여 디스플레이 상에서 HDR 효과가 효과적으로 재현될 수 있다.
WCG 관련 메타데이터는 해당 360 비디오와 관련된 WCG 정보를 제공할 수 있다. WCG 관련 메타데이터는 WCG_flag 필드 및/또는 WCG_config 필드를 포함할 수 있다. 실시예에 따라 WCG 관련 메타데이터는 추가적인 정보들을 더 포함할 수도 있다.
WCG_flag 필드는 해당 360 비디오가 WCG 를 지원하는지 여부를 지시할 수 있다. 동시에 본 필드는 메타데이터가 WCG 관련 세부 파라미터(WCG_config 필드)를 포함하는지 여부를 지시할 수 있다.
WCG_config 필드는 해당 360 비디오와 관련된 WCG 파라미터를 나타낼 수 있다. 본 필드는 CGConfigurationBox 클래스로 정의된 구조를 가질 수 있다. 이에 대한 자세한 사항은 후술한다.
Region 관련 메타데이터는 해당 360 비디오 데이터의 리전(Region) 들과 관련된 메타데이터를 제공할 수 있다. Region 관련 메타데이터는 region_info_flag 필드 및/또는 region 필드를 포함할 수 있다. 실시예에 따라 Region 관련 메타데이터는 추가적인 정보들을 더 포함할 수도 있다.
region_info_flag 필드는 해당 360 비디오 데이터가 프로젝션된 2D 이미지가 하나 이상의 리전으로 나뉘어져 있는지 여부를 지시할 수 있다. 동시에 본 필드는 360 비디오 관련 메타데이터가 각각의 리전에 대한 세부 정보를 포함하는지 여부를 지시할 수 있다.
region 필드는 각각의 리전들에 대한 세부 정보를 포함할 수 있다. 본 필드는 RegionGroup 내지 RegionGroupBox 클래스로 정의된 구조를 가질 수 있다. RegionGroupBox 클래스는 사용된 프로젝션 스킴과 무관하게 리전에 대한 정보를 일반적으로 기술하며, RegionGroup 클래스는 projection_scheme 필드를 변수로 하여, 프로젝션 스킴에 따른 세부 리전 정보를 기술할 수 있다. 이에 대한 자세한 사항은 후술한다.
도 10 은 본 발명의 일 실시예에 따른, 360 비디오의 지원범위에 따른 2D 이미지 상의 프로젝션 영역 및 3D 모델들을 도시한 도면이다.
도시된 (a), (b) 에 관하여, 전술한 바와 같이, 360 비디오가 3D 공간 상에서 지원하는 범위가 pitch 방향으로 180 도 보다 작을 수 있고, yaw 방향으로 360 도 보다 작을 수 있다. 이 경우, 전술한 360 비디오의 지원 범위 관련 메타데이터가 지원하는 범위를 시그널링해줄 수 있다.
지원하는 범위가 각각 180도, 360도 보다 작은 경우, 프로젝션 시에 2D 이미지 전체가 아닌 일부분에만 360 비디오 데이터가 프로젝션될 수 있다. 전술한 360 비디오의 지원 범위 관련 메타데이터는, 이 경우 2D 이미지의 일부분에만 360 비디오 데이터가 프로젝션되어 있음을 수신기 측에 알려주는데 사용될 수 있다. 360 비디오 수신 장치는 이를 이용하여, 2D 이미지 상에서 360 비디오 데이터가 실제로 존재하는 부분만을 처리할 수 있다.
예를 들어, 360 비디오가 지원하는 pitch 범위가 -45도 에서 45 도 사이인 경우, 등정방형 프로젝션을 통해 360 비디오가 2D 이미지에 프로젝션되면 도시된 (a) 와 같은 형태가 될 수 있다. 도시된 (a) 에서, 2D 이미지의 일정 영역에만 360 비디오 데이터가 존재할 수 있다. 이 때 2D 이미지 상에서 360 비디오 데이터가 존재하는 영역에 대한 세로 길이(height) 정보가 픽셀 값의 형태로 메타데이터에 더 포함될 수 있다.
또한 예를 들어, 360 비디오가 지원하는 yaw 범위가 -90도 에서 90 도 사이인 경우, 등정방형 프로젝션을 통해 360 비디오가 2D 이미지에 프로젝션되면 도시된 (b) 와 같은 형태가 될 수 있다. 도시된 (b) 에서, 2D 이미지의 일정 영역에만 360 비디오 데이터가 존재할 수 있다. 이 때 2D 이미지 상에서 360 비디오 데이터가 존재하는 영역에 대한 가로 길이 정보가 픽셀 값의 형태로 메타데이터에 더 포함될 수 있다.
360 비디오의 지원 범위에 관련된 정보가 360 비디오 관련 메타데이터로서 수신측에 전달됨으로써, 전송 캐패시티(capacity) 및 확장성이 개선될 수 있다. 컨텐츠에 따라 전체 3D 공간(예를 들어 구형 면)이 아닌 일부 pitch, yaw 영역만이 캡쳐될 수 있다. 이러한 경우 360 비디오 데이터를 2D 이미지에 프로젝션하더라도 일부 영역에만 360 비디오 데이터가 존재할 수 있다. 360 비디오 데이터가 프로젝션된 일부 영역을 지시하는 메타데이터를 전달함으로써, 수신측은 해당 영역만 처리할 수 있다. 또한, 나머지 영역을 통하여 부가적인 데이터가 전달됨으로써, 전송 캐패시티가 늘어날 수 있다.
도시된 (c), (d), (e) 에 관하여, 전술한 바와 같이 vr_geometry 필드 관련 메타데이터는 지시된 각각의 3D 모델(구형, 큐브, 실린더, 피라미드 등)에 대한 구체적인 정보를 제공할 수 있다.
vr_geometry 필드 관련 메타데이터는 vr_geometry 필드가 3D 모델이 구형(sphere) 임을 지시하는 경우, sphere_radius 필드를 포함할 수 있다. sphere_radius 필드는 3D 모델이 된 구의 반지름을 나타낼 수 있다.
vr_geometry 필드 관련 메타데이터는 vr_geometry 필드가 3D 모델이 실린더(Cylinder) 임을 지시하는 경우, cylinder_radius 필드 및/또는 cylinder_height 필드를 포함할 수 있다. 양 필드는, 도시된 (c) 와 같이, 3D 모델이 된 실린더의 윗면/바닥면의 반지름, 실린더의 높이를 각각 나타낼 수 있다.
vr_geometry 필드 관련 메타데이터는 vr_geometry 필드가 3D 모델이 피라미드(Pyramid) 임을 지시하는 경우, pyramid_front_width 필드, pyramid_front_height 필드 및/또는 pyramid_height 필드를 포함할 수 있다. 세 필드는, 도시된 (d) 와 같이, 3D 모델이 된 피라미드의 앞면(front) 의 가로길이(width), 앞면의 세로길이(height), 피라미드의 높이를 각각 나타낼 수 있다. 피라미드의 높이란 앞면으로부터 피라미드의 꼭지점에 이르는 수직 높이를 의미할 수 있다.
vr_geometry 필드 관련 메타데이터는 vr_geometry 필드가 3D 모델이 큐브(Cube) 임을 지시하는 경우, cube_front_width 필드, cube_front_height 필드 및/또는 cube_height 필드를 포함할 수 있다. 세 필드는, 도시된 (e) 와 같이, 3D 모델이 된 큐브의 앞면(front) 의 가로길이(width), 앞면의 세로길이(height), 큐브의 높이를 각각 나타낼 수 있다.
도 11 은 본 발명의 일 실시예에 따른, 프로젝션 스킴들을 도시한 도면이다.
도시된 (a), (b), (c) 에 관하여, 전술한 바와 같이 projection_scheme 필드 관련 메타데이터는 전술한 projection_scheme 필드가 지시하는 프로젝션 스킴에 대한 세부적인 정보들을 제공할 수 있다.
projection_scheme 필드 관련 메타데이터는 projection_scheme 필드가 프로젝션 스킴이 등정방형 프로젝션(Equirectangular Projection) 스킴 또는 타일-베이스드(Tile-based) 프로젝션 스킴임을 지시하는 경우, sphere_radius 필드를 포함할 수 있다. sphere_radius 필드는 프로젝션시에 적용한 구(sphere)의 반지름을 나타낼 수 있다.
카메라로부터 획득한 360 비디오 데이터는 구형 면(spherical surface) 로 나타내어질 수 있다(도시된 (a)). 구형 면 상의 각 점은 구 좌표계를 이용하여, r(구의 반지름), θ(z축을 기준으로 회전 방향 및 정도), φ(x-y 평면의 z축을 향한 회전 방향 및 정도) 를 통해 표현될 수 있다. 전술한 sphere_radius 필드는 r 값을 의미할 수 있다. 실시예에 따라 구형 면은 월드 좌표계와 일치하거나, 앞면 카메라(front camera) 의 프린시펄 포인트(principal point) 를 구형 면의 (r, 0, 0) 지점으로 가정할 수 있다.
프로젝션 과정에서 구형 면의 360 비디오 데이터가 XY 좌표로 표현되는 2D 이미지 상에 매핑될 수 있다. XY 좌표계의 좌상단이 (0, 0) 원점이고, 이를 기준으로 오른쪽 방향으로 x축 좌표값이 커지고, 아래 방향으로 y축 좌표값이 커질 수 있다. 이 때, 구형 면 상의 360 비디오 데이터(r, θ, φ) 는 XY 좌표계로 다음과 같이 변환 가능하다.
x = (θ - θ0) * cos(φ0) * r
y= φ * r
여기서 θ0 는 프로젝션의 중앙 자오선(central meridian of projection) 이고, 등정방형 프로젝션에서 φ0 = 0 으로 고정될 수 있다. XY 좌표계의 x, y 범위가 -πr * cos(φ0) ≤ x ≤ πr * cos(φ0), -π/2*r ≤ y ≤ π/2*r 라면, θ와 φ 의 범위는 -π+θ0≤θ≤π+θ0, -π/2 ≤ φ ≤ π/2 일 수 있다.
XY 좌표계로 변환된 값 (x, y) 는 2D 이미지 상에 다음과 같이 (X, Y) 픽셀로 변환될 수 있다.
X = Kx * x + XO = Kx * (θ-θ0) * cos(φ0) * r + XO
Y = -Ky * y - YO = -Ky * φ * r - YO
여기서, Kx Ky 는 각각 2D 이미지에 프로젝션이 수행될 때, 2D 이미지의 X 축, Y 축에 대한 스케일링 팩터일 수 있다. Kx 는 (매핑된 이미지의 너비)/ (2πr * cos(φ0)) 이고, Ky 는 (매핑된 이미지의 높이)/πr 일 수 있다. Xo 는 Kx 값에 따라 스케일링된 x 좌표값에 대한 x 축으로 이동한 정도를 나타내는 오프셋(offset) 값이고, Yo 는 Ky 값에 따라 스케일링된 y 좌표값에 대한 y 축으로 이동한 정도를 나타내는 오프셋 값일 수 있다.
등정방형 프로젝션 시에, 구형 면 상의 (r, θ0, 0) 즉, θ = θ0 , φ = 0 인 점과 2D 이미지의 중앙 픽셀이 매핑될 수 있다. 또한, 앞면 카메라(front camera) 의 프린시펄 포인트(principal point) 를 구형 면의 (r, 0, 0) 지점으로 가정할 수 있다. 또한, φ0 = 0 으로 고정될 수 있다. 또한, 2D 이미지의 좌상단 픽셀을 XY 좌표계의 (0,0) 에 위치시키는 경우, 오프셋 값들은 각각 XO = Kx*π*r, YO= -Ky*π/2*r 과 같이 나타낼 수 있다. 이를 이용해 XY 좌표계로의 변환식을 다시 쓰면 다음과 같을 수 있다.
X = Kx * x + XO = Kx * (π+θ-θ0) * r
Y = -Ky * y - YO = Ky * (π/2- φ) * r
예를 들어 θ0 =0 인 경우, 즉 2D 이미지의 중앙 픽셀이 구형 면 상의 θ =0 인 데이터를 가리키는 경우, 구형 면은 (0,0)을 기준으로 2D 이미지 상에서 가로길이(width) = 2Kxπr 이고 세로길이(height) = Kxπr 인 영역에 매핑될 수 있다. 구형 면 상에서 φ = π/2 인 데이터는 2D 이미지 상의 윗쪽 변 전체에 매핑될 수 있다. 또한, 구형 면 상에서 (r, π/2, 0) 인 데이터는 2D 이미지 상의 (3πKxr/2, πKxr/2) 인 점에 매핑될 수 있다.
수신 측에서는, 2D 이미지 상의 360 비디오 데이터를 구형 면 상으로 리-프로젝션할 수 있다. 이를 변환식으로 쓰면 다음과 같을 수 있다.
θ = θ0+X/Kx*r - π
φ = π/2 - Y/Ky*r
예를 들어 2D 이미지 상에서 XY 좌표값이 (Kxπr, 0) 인 픽셀은 구형 면 상의 θ = θ0, φ = π/2 인 점으로 리-프로젝션될 수 있다.
등정방형 프로젝션 스킴이 사용되는 경우, 전술한 center_theta 필드는 θ0 값과 같은 값을 나타낼 수 있다.
타일-베이스드(Tile-based) 프로젝션 스킴이 쓰이는 경우, 전술한 프로젝션 처리부는 구형 면 상의 360 비디오 데이터를, 도시된 (b) 와 같이 하나 이상의 세부 영역으로 나누어 2D 이미지 상에 프로젝션할 수 있다.
projection_scheme 필드 관련 메타데이터는 projection_scheme 필드가 프로젝션 스킴이 큐빅 프로젝션 스킴임을 지시하는 경우, cube_front_width 필드, cube_front_height 필드 및/또는 cube_height 필드를 포함할 수 있다. 세 필드는, 프로젝션시에 적용한 큐브의 앞면(front) 의 가로길이(width), 앞면의 세로길이(height), 큐브의 높이를 각각 나타낼 수 있다.
projection_scheme 필드 관련 메타데이터는 projection_scheme 필드가 프로젝션 스킴이 큐빅 프로젝션 스킴임을 지시하는 경우, cube_front_width 필드, cube_front_height 필드 및/또는 cube_height 필드를 포함할 수 있다. 세 필드는, 프로젝션시에 적용한 큐브의 앞면(front) 의 가로길이(width), 앞면의 세로길이(height), 큐브의 높이를 각각 나타낼 수 있다. 큐빅 프로젝션 스킴에 대해서는 전술하였다. 앞면(front) 는 정면을 바라보는 카메라가 획득한 360 비디오 데이터를 포함하는 리전일 수 있다.
projection_scheme 필드 관련 메타데이터는 projection_scheme 필드가 프로젝션 스킴이 실린더형 프로젝션 스킴임을 지시하는 경우, cylinder_radius 필드 및/또는 cylinder_height 필드를 포함할 수 있다. 양 필드는, 프로젝션시에 적용한 실린더의 윗면/바닥면의 반지름, 실린더의 높이를 각각 나타낼 수 있다. 실린더형 프로젝션 스킴에 대해서는 전술하였다.
projection_scheme 필드 관련 메타데이터는 projection_scheme 필드가 프로젝션 스킴이 피라미드 프로젝션 스킴임을 지시하는 경우, pyramid_front_width 필드, pyramid_front_height 필드 및/또는 pyramid_height 필드를 포함할 수 있다. 세 필드는, 프로젝션시에 적용한 피라미드의 앞면(front) 의 가로길이(width), 앞면의 세로길이(height), 피라미드의 높이를 각각 나타낼 수 있다. 피라미드의 높이란 앞면으로부터 피라미드의 꼭지점에 이르는 수직 높이를 의미할 수 있다. 피라미드 프로젝션 스킴에 대해서는 전술하였다. 앞면(front) 는 정면을 바라보는 카메라가 획득한 360 비디오 데이터를 포함하는 리전일 수 있다.
피라미드 프로젝션 스킴의 경우, projection_scheme 필드 관련 메타데이터는 pyramid_front_rotation 필드를 더 포함할 수 있다. pyramid_front_rotation 필드는 피라미드의 앞면(front) 의 회전 정도 및 방향을 나타낼 수 있다. 도시된 (c) 에서, 앞면이 회전되지 않은 경우(t11010) 와 45도 회전된 경우(t11020) 가 나타나 있다. 회전되지 않은 경우, 프로젝션된 최종 2D 이미지는 도시된 (t11030) 과 같을 수 있다.
도 12 는 본 발명의 다른 실시예에 따른, 프로젝션 스킴들을 도시한 도면이다.
projection_scheme 필드 관련 메타데이터는 projection_scheme 필드가 프로젝션 스킴이 파노라믹 프로젝션 스킴임을 지시하는 경우, panorama_height 필드를 포함할 수 있다. 파노라믹 프로젝션 스킴이 쓰이는 경우, 전술한 프로젝션 처리부는, 도시된 (d) 와 같이, 구형 면 상의 360 비디오 데이터 중 옆면 만을 2D 이미지 상에 프로젝션할 수 있다. 이는 실린더형 프로젝션 스킴에서 윗면(top)과 바닥면(bottom) 이 존재하지 않는 경우와 같을 수 있다. panorama_height 필드는 프로젝션시 적용된 파노라마의 높이를 나타낼 수 있다.
projection_scheme 필드 관련 메타데이터는 projection_scheme 필드가 스티칭없이 프로젝션되는 경우임을 지시하는 경우, 이에 대한 추가적인 필드들을 포함하지 않을 수 있다. 스티칭없이 프로젝션되는 경우, 전술한 프로젝션 처리부는, 도시된 (e) 와 같이, 360 비디오 데이터를 그대로 2D 이미지 상에 프로젝션할 수 있다. 이 경우 스티칭은 수행되지 않고, 카메라에서 획득된 각각의 이미지들이 그대로 2D 이미지 상에 프로젝션될 수 있다.
도시된 실시예에서, 두 개의 이미지가 2D 이미지 상에 스티칭없이 프로젝션되어 있다. 각 이미지는 구형 카메라(spherical camera) 에서 각 센서를 통해 획득한 어안(fish-eye) 이미지일 수 있다. 전술한 바와 같이, 수신측에서 스치팅이 수행될 수 있다.
도 13 은 본 발명의 일 실시예에 따른 IntrinsicCameraParametersBox 클래스 및 ExtrinsicCameraParametersBox 클래스를 도시한 도면이다.
전술한 intrinsic_camera_params 필드는 해당 카메라에 대한 내부 파라미터들을 포함할 수 있다. 이 필드는 도시된(t14010) IntrinsicCameraParametersBox 클래스에 따라 정의될 수 있다.
IntrinsicCameraParametersBox 클래스는 이미지 포인트의 픽셀 좌표와 해당 포인트의 카메라 레퍼런스 프레임내의 좌표를 링크하는 카메라 파라미터들을 포함할 수 있다.
IntrinsicCameraParametersBox 클래스는 ref_view_id 필드, prec_focal_length 필드, prec_principal_point 필드, prec_skew_factor 필드, exponent_focal_length_x 필드, mantissa_focal_length_x 필드, exponent_focal_length_y 필드, mantissa_focal_length_y 필드, exponent_principal_point_x 필드, mantissa_principal_point_x 필드, exponent_principal_point_y 필드, mantissa_principal_point_y 필드, exponent_skew_factor 필드 및/또는 mantissa_skew_factor 필드를 포함할 수 있다.
ref_view_id 필드는 해당 카메라의 뷰(view) 를 식별하는 view_id 를 지시할 수 있다. prec_focal_length 필드는 focal_length_x 및 focal_length_y 에 허용되는 최대 절단(truncation) 에러의 익스포넨트(expoenent) 를 특정할 수 있다. 2-prec_focal_length 와 같이 나타내어질 수 있다. prec_principal_point 필드 principal_point_x 및 principal_point_y 에 허용되는 최대 절단(truncation) 에러의 익스포넨트(expoenent) 를 특정할 수 있다. 2-prec_principal_point 와 같이 나타내어질 수 있다.
prec_skew_factor 필드는 skew 팩터에 허용되는 최대 절단(truncation) 에러의 익스포넨트(expoenent) 를 특정할 수 있다. 2prec_skew_factor와 같이 나타내어질 수 있다.
exponent_focal_length_x 필드는 수평 방향의 focal 길이의 익스포넨트(exponent) 파트를 지시할 수 있다. mantissa_focal_length_x 필드는 수평 방향의 i 번째 카메라의 focal 길이의 mantisssa 파트를 지시할 수 있다. exponent_focal_length_y 필드는 수직 방향의 focal 길이의 익스포넨트(exponent) 파트를 지시할 수 있다. mantissa_focal_length_y 필드는 수직 방향의 focal 길이의 mantisssa 파트를 지시할 수 있다.
exponent_principal_point_x 필드는 수평 방향의 프린시펄 포인트(principal point) 의 익스포넨트 파트를 지시할 수 있다. mantissa_principal_point_x 필드는 수평 방향의 프린시펄 포인트(principal point) 의 mantissa 파트를 지시할 수 있다. exponent_principal_point_y 필드는 수직 방향의 프린시펄 포인트(principal point) 의 익스포넨트 파트를 지시할 수 있다. mantissa_principal_point_y 필드는 수직 방향의 프린시펄 포인트(principal point) 의 mantissa 파트를 지시할 수 있다.
exponent_skew_factor 필드는 skew 팩터의 익스포넨트 파트를 지시할 수 있다. mantissa_skew_factor 필드는 skew 팩터의 mantissa 파트를 지시할 수 있다.
전술한 extrinsic_camera_params 필드는 해당 카메라에 대한 내부 파라미터들을 포함할 수 있다. 이 필드는 도시된(t14020) ExtrinsicCameraParametersBox 클래스에 따라 정의될 수 있다.
ExtrinsicCameraParametersBox 클래스는 월드 좌표계(known world reference frame) 를 기준으로 카메라 레퍼런스 프레임의 위치, 오리엔테이션을 정의하는 카메라 파라미터들을 포함할 수 있다. 즉, 월드 좌표계를 기준으로 각 카메라의 회전(rotation) 및 평행이동(translation) 등에 관한 내용을 나타내는 파라미터들을 포함할 수 있다.
ExtrinsicCameraParametersBox 클래스는 ref_view_id 필드, prec_rotation_param 필드, prec_translation_param 필드, exponent_r[j][k] 필드, mantissa_r [j][k] 필드, exponent_t[j] 필드 및/또는 mantissa_t[j] 필드를 포함할 수 있다.
ref_view_id 필드는 내부 카메라 파라미터들과 관계된 뷰를 식별하는 view_id 를 지시할 수 있다.
prec_rotation_param 필드는 r[ j ][ k ] 에 허용되는 최대 절단(truncation) 에러의 익스포넨트 파트를 특정할 수 있다. 이는 2-prec_rotation_param와 같이 표현될 수 있다. prec_translation_param 필드는 t[ j ] 에 허용되는 최대 절단(truncation) 에러의 익스포넨트 파트를 특정할 수 있다. 이는 2-prec_translation_param와 같이 표현될 수 있다.
exponent_r[j][k] 필드는 로테이션 매트릭스의 (j, k) 컴포넌트의 익스포넌트 파트를 특정할 수 있다. mantissa_r [j][k] 필드는 로테이션 매트릭스의 (j, k) 컴포넌트의 mantissa 파트를 특정할 수 있다. exponent_t[j] 필드는 트랜스레이션 벡트의 j 번째 컴포넌트의 익스포넌트 파트를 특정할 수 있다. 이는 0 에서 62 사이의 값을 가질 수 있다. mantissa_t[j] 필드는 트랜스레이션 벡트의 j 번째 컴포넌트의 mantissa 파트를 특정할 수 있다.
도 14 는 본 발명의 일 실시예에 따른 HDRConfigurationBox 클래스를 도시한 도면이다.
HDRConfigurationBox 클래스는 360 비디오와 관련된 HDR 정보를 제공할 수 있다.
HDRConfigurationBox 클래스는 hdr_param_set 필드, hdr_type_transition_flag 필드, hdr_sdr_transition_flag 필드, sdr_hdr_transition_flag 필드 sdr_compatibility_flag 필드 및/또는 hdr_config_flag 필드를 포함할 수 있다. hdr_config_flag 필드는 HDR 관련 세부 파라미터 정보들이 포함되는지 여부를 지시할 수 있다. hdr_config_flag 필드의 값에 따라, HDRConfigurationBox 클래스는 OETF_type 필드, max_mastering_display_luminance 필드, min_mastering_display_luminance 필드, average_frame_luminance_level 필드 및/또는 max_frame_pixel_luminance 필드를 포함할 수 있다.
hdr_param_set 필드는 해당 HDR 관련 정보가 어떠한 HDR 관련 파라미터들의 조합을 따르는지 식별할 수 있다. 예를 들어 본 필드가 1 인 경우, 적용되는 HDR 관련 파라미터들은 EOTF가 SMPTE ST2084, Bit depth는 12bit/pixel, peak luminance는 10000nit, codec은 HEVC dual codec (HEVC+HEVC), metadata는 SMPTE ST 2086, SMPTE ST 2094 를 사용할 수 있다. 본 필드가 2 인 경우, 적용되는 HDR 관련 파라미터들은 EOTF가 SMPTE ST2084, Bit depth는 10bit/pixel, peak luminance는 4000nit, codec은 HEVC single codec, metadata는 SMPTE ST 2086, SMPTE ST 2094 를 사용할 수 있다. 본 필드가 3 인 경우, 적용되는 HDR 관련 파라미터들은 EOTF가 BBC EOTF, Bit depth는 10bit/pixel, peak luminance는 1000nit, codec은 HEVC single codec 을 사용할 수 있다.
hdr_type_transition_flag 필드는 해당 비디오 데이터에 대한 HDR 정보가 변경되어 다른 타입의 HDR 정보가 적용되는지 여부를 나타내는 플래그일 수 있다. hdr_sdr_transition_flag 필드는 해당 비디오 데이터가 HDR 에서 SDR 로 전환되는지 여부를 나타내는 플래그일 수 있다. sdr_hdr_transition_flag 필드는 해당 비디오 데이터가 SDR 에서 HDR 로 전환되는지 여부를 나타내는 플래그일 수 있다. sdr_compatibility_flag 필드는 해당 비디오 데이터가 SDR 디코더 내지 SDR 디스플레이와 호환이 가능한지 여부를 나타내는 플래그일 수 있다.
OETF_type 필드는 해당 비디오 데이터의 소스 OETF (opto-electronic transfer function) 의 타입을 지시할 수 있다. 본 필드의 값이 1, 2, 3 인 경우, 각각 ITU-R BT.1886, ITU-R BT.709, ITU-R BT.2020 타입에 해당할 수 있다. 다른 값은 향후 사용을 위해 남겨둘 수 있다.
max_mastering_display_luminance 필드는 해당 비디오 데이터의 마스터링 디스플레이의 피크 루미넌스(peak luminance) 값을 나타낼 수 있다. 이 값은 100-1000 사이의 정수 값일 수 있다.
min_mastering_display_luminance 필드는 해당 비디오 데이터의 마스터링 디스플레이의 최소 루미넌스(minimum luminance) 값을 나타낼 수 있다. 이 값은 0-0.1 사이의 분수(fractional number) 값일 수 있다.
average_frame_luminance_level 필드는 하나의 비디오 샘플에 대해서는 루미넌스 레벨의 평균값을 나타낼 수 있다. 또한 본 필드는 샘플 그룹 또는 비디오 트랙(스트림)에 대해서는 그곳에 소속된 샘플 각각의 루미넌스 레벨의 평균값들 중 최대값을 나타낼 수 있다.
max_frame_pixel_luminance 필드는 하나의 비디오 샘플에 대해서는 픽셀 루미넌스 값 중의 최대값을 나타낼 수 있다. 또한 본 필드는 샘플 그룹 또는 비디오 트랙(스트림)에 대해서는 그곳에 소속된 샘플 각각의 픽셀 루미넌스 최대값들 중 가장 큰 값을 나타낼 수 있다.
상기 필드들이 기술하는 대상인 “해당 (360) 비디오 데이터” 는, 미디어 파일 내의 비디오 트랙, 비디오 샘플 그룹 또는 각각의 비디오 샘플들일 수 있다. 기술 대상에 따라 각 필드들이 기술하는 범위가 달라질 수 있다. 예를 들어 hdr_type_transition_flag 필드는 해당 비디오 트랙이 HDR 에서 SDR 로 전환되는지를 지시하거나, 비디오 샘플 하나가 HDR 에서 SDR 로 전환되는지 여부를 지시할 수 있다.
도 15 는 본 발명의 일 실시예에 따른 CGConfigurationBox 클래스를 도시한 도면이다.
CGConfigurationBox 클래스는 360 비디오와 관련된 WCG 정보를 제공할 수 있다. 360 비디오 데이터의 생성시, 비디오 트랙(스트림) 또는 샘플 등과 관련된 color gamut 정보를 저장, 시그널링할 수 있도록, CGConfigurationBox 클래스가 정의될 수 있다(t15010).
CGConfigurationBox 클래스는 360 비디오의 컨텐트 color gamut 또는 컨테이너 color gamut 을 표현하는데에 각각 사용될 수 있다. WCG 관련 메타데이터는 해당 360 비디오 데이터의 컨텐트 color gamut 및 컨테이너 color gamut 을 모두 시그널링해주기 위하여, CGConfigurationBox 클래스를 가지는 container_wcg_config 필드 및 content_wcg_config 필드를 포함할 수 있다.
CGConfigurationBox 클래스는 color_gamut_type 필드, color_space_transition_flag 필드, wcg_scg_transition_flag 필드 ,scg_wcg_transition_flag 필드, scg_compatibility_flag 필드 및/또는 color_primary_flag 필드를 포함할 수 있다. 또한 color_primary_flag 필드의 값에 따라 color_primaryRx 필드, color_primaryRy 필드, color_primaryGx 필드, color_primaryGy 필드, color_primaryBx 필드, color_primaryBy 필드, color_whitePx 필드 및/또는 color_whitePy 필드가 더 포함될 수도 있다.
color_gamut_type 필드는 해당 360 비디오 데이터에 대한 color gamut 의 타입을 지시할 수 있다. 컨텐트 color gamut 을 시그널링하는 경우, 이 필드는 소스 프라이머리스(primaries)의 크로마티시티 코디네이트(chromaticity coordinates)를 지시할 수 있다. 컨테이너 color gamut 을 시그널링하는 경우, 이 필드는 인코딩/디코딩시 사용한(사용할 수 있는) 컬러 프라이머리에 대한 크로마티시티 코디네이트를 지시할 수 있다. 이 필드의 값에 따라 VUI(video usability information) 의 컬러 프라이머리(colour primaries) 값이 지시될 수 있다. 실시예에 따라(t15020), 도시된 바와 같이 본 필드의 값들이 지시될 수 있다.
color_space_transition_flag 필드는 컨텐트 color gamut 을 시그널링하는 경우, 해당 비디오 데이터에 대해 소스 프라이머리스의 크로마티시티 코디네이트가 다른 크로마티시티 코디네이트로 변경되는지 여부를 나타내는 플래그일 수 있다. 컨테이너 color gamut 을 시그널링하는 경우, 이 필드는 인코딩/디코딩시 사용한(사용할 수 있는) 컬러 프라이머리스의 크로마티시티 코디네이트가 다른 크로마티시티 코디네이트로 변경되는지 여부를 나타내는 플래그일 수 있다.
wcg_scg_transition_flag 필드는 컨텐트 color gamut 을 시그널링하는 경우, 해당 비디오 데이터가 WCG (Wide Color Gamut) 에서 SCG (Standard Color Gamut) 으로 전환되는지 여부를 나타내는 플래그일 수 있다. 컨테이너 color gamut 을 시그널링하는 경우, 이 필드는 컨테이너 color gamut 이 WCG 에서 SCG 로 전환되는지 여부를 나타내는 플래그일 수 있다. 예를 들어 BT.2020 의 WCG 에서 BT.709 의 SCG 로 변환되는 경우, 이 필드의 값이 1 로 설정될 수 있다.
scg_wcg_transition_flag 필드는 컨텐트 color gamut 을 시그널링하는 경우 해당 비디오 데이터가 SCG 에서 WCG 으로 전환되는지 여부를 나타내는 플래그일 수 있다. 컨테이너 color gamut 을 시그널링하는 경우, 이 필드는 컨테이너 color gamut 이 SCG 에서 WCG 로 전환되는지 여부를 나타내는 플래그일 수 있다. 예를 들어 BT.709 의 SCG 에서 BT.2020 의 WCG 로 변환되는 경우, 이 필드의 값이 1 로 설정될 수 있다.
scg_compatibility_flag 필드는 컨텐트 color gamut 을 시그널링하는 경우 해당 WCG 비디오가 SCG 기반의 디코더, 디스플레이와 호환이 가능한지 여부를 나타내는 플래그일 수 있다. 컨테 이너 color gamut 을 시그널링하는 경우, 이 필드는 컨테이너 color gamut 이 SCG 기반의 디코더, 디스플레이와 호환이 가능한지 여부를 나타내는 플래그일 수 있다. 즉, 기존의 SCG 디코더 내지 디스플레이가 사용되는 경우에 있어, 별도의 매핑 정보나 업그레이드 없이도 해당 WCG 비디오를 퀄리티 문제 없이 출력이 가능한지 여부가, 이 필드로 인해 확인될 수 있다.
color_primary_flag 필드는 컨텐트 color gamut 을 시그널링하는 경우 해당 비디오에 대한 컬러 프라이머리스의 크로마티시티 코디네이트에 대한 세부 정보가 존재하는지 여부를 나타내는 플래그일 수 있다. 전술한 color_gamut_type 필드가 “unspecified” 를 지시하는 경우, 해당 비디오에 대해 컬러 프라이머리스의 크로마티시티 코디네이트에 대한 세부정보가 제공되어야 할 수 있다. 컨테이너 color gamut 을 시그널링하는 경우, 이 필드는 인코딩/디코딩시 사용한(사용할 수 있는) 칼러 프라이머리의 크로마시티 코디네이트 관련 세부정보가 존재하는지 여부를 지시할 수 있다. 전술한 바와 같이, color_primary_flag 필드가 1 로 세팅되는 경우, 즉 세부 정보가 존재하는 걸로 지시되는 경우, 후술할 필드들이 더 추가될 수 있다.
color_primaryRx 필드 및 color_primaryRy 필드는 컨텐트 color gamut 을 시그널링하는 경우, 각각 해당 비디오 소스의 R-컬러에 대한 x 좌표, y 좌표값을 나타낼 수 있다. 이는 0 과 1 사이의 분수(fractional number) 형태일 수 있다. 컨테이너 color gamut 을 시그널링하는 경우, 이 필드는 인코딩/디코딩시 사용한(사용할 수 있는) 컬러 프라이머리의 R-컬러에 대한 x 좌표, y 좌표값을 나타낼 수 있다.
color_primaryGx 필드 및 color_primaryGy 필드는 컨텐트 color gamut 을 시그널링하는 경우, 각각 해당 비디오 소스의 G-컬러에 대한 x 좌표, y 좌표값을 나타낼 수 있다. 이는 0 과 1 사이의 분수(fractional number) 형태일 수 있다. 컨테이너 color gamut 을 시그널링하는 경우, 이 필드는 인코딩/디코딩시 사용한(사용할 수 있는) 컬러 프라이머리의 G-컬러에 대한 x 좌표, y 좌표값을 나타낼 수 있다.
color_primaryBx 필드 및 color_primaryBy 필드는 컨텐트 color gamut 을 시그널링하는 경우, 각각 해당 비디오 소스의 B-컬러에 대한 x 좌표, y 좌표값을 나타낼 수 있다. 이는 0 과 1 사이의 분수(fractional number) 형태일 수 있다. 컨테이너 color gamut 을 시그널링하는 경우, 이 필드는 인코딩/디코딩시 사용한(사용할 수 있는) 컬러 프라이머리의 B-컬러에 대한 x 좌표, y 좌표값을 나타낼 수 있다.
color_whitePx 필드 및 color_whitePy 필드는 컨텐트 color gamut 을 시그널링하는 경우, 각각 해당 비디오 소스의 화이트 포인트(White point) 에 대한 x 좌표, y 좌표값을 나타낼 수 있다. 이는 0 과 1 사이의 분수(fractional number) 형태일 수 있다. 컨테이너 color gamut 을 시그널링하는 경우, 이 필드는 인코딩/디코딩시 사용한(사용할 수 있는) 컬러 프라이머리의 화이트 포인트(White point) 에 대한 x 좌표, y 좌표값을 나타낼 수 있다.
도 16 은 본 발명의 일 실시예에 따른 RegionGroupBox 클래스를 도시한 도면이다.
전술한 바와 같이 RegionGroupBox 클래스는 사용된 프로젝션 스킴과 무관하게 리전에 대한 정보를 일반적으로 기술할 수 있다. RegionGroupBox 클래스는 전술한 프로젝티드 프레임, 팩드 프레임의 리전들에 대한 정보를 기술할 수 있다.
RegionGroupBox 클래스는 group_id 필드, coding_dependency 필드 및/또는 num_regions 필드를 포함할 수 있다. num_regions 필드의 값에 따라, RegionGroupBox 클래스는 각각의 리전들에 대하여 region_id 필드, horizontal_offset 필드, vertical_offset 필드, region_width 필드 및/또는 region_height 필드를 포함할 수 있다.
group_id 필드는 각 리전들이 속한 해당 그룹의 식별자를 나타낼 수 있다. coding_dependency 필드는 리전들 간의 코딩 디펜던시(coding dependency) 의 형태을 나타낼 수 있다. 본 필드는 코딩 디펜던시가 존재하지 않거나(각 리전별로 코딩이 독립적으로 수행 가능한 경우), 리전들간에 코딩 디펜던시가 존재함을 나타낼 수 있다.
num_regions 필드는 해당 비디오 트랙, 해당 트랙 내의 샘플 그룹 또는 샘플에 포함되어 있는 리전들의 개수를 나타낼 수 있다. 예를 들어 하나의 비디오 트랙의 각 비디오 프레임에 모든 리전 정보가 포함되는 경우, 본 필드는 하나의 비디오 프레임을 구성하는 모든 리전의 개수를 나타낼 수 있다.
region_id 필드는 각 리전에 대한 식별자를 나타낼 수 있다. horizontal_offset 필드 및 vertical_offset 필드는 각각 2D 이미지 상에서 해당 리전의 좌상단 픽셀의 x, y 좌표를 나타낼 수 있다. 또는 양 필드는 각각 좌상단 픽셀의 수평, 수직 오프셋 값을 나타낼 수 있다. region_width 필드 및 region_height 필드는 해당 리전의 가로길이, 세로길이 픽셀을 나타낼 수 있다.
RegionGroupBox 클래스의 일 실시예(t17010)에 따르면, RegionGroupBox 클래스는 surface_center_pitch 필드, surface_pitch_angle 필드, surface_center_yaw 필드, surface_yaw_angle 필드, surface_center_roll 필드 및/또는 surface_roll_angle 필드를 더 포함할 수 있다.
surface_center_pitch 필드, surface_center_yaw 필드 및 surface_center_roll 필드는 각각 해당 리전이 3D 공간 상에 위치할 때, 그 정중앙 픽셀의 pitch, yaw, roll 값을 나타낼 수 있다.
surface_pitch_angle 필드, surface_yaw_angle 필드 및 surface_roll_angle 필드는 각각 해당 리전이 3D 공간 상에 위치할 때, pitch 의 최소값과 최대값의 차이, yaw 의 최소값과 최대값의 차이, roll 의 최소값과 최대값의 차이를 나타낼 수 있다.
RegionGroupBox 클래스의 다른 실시예(t17020)에 따르면, RegionGroupBox 클래스는 min_surface_pitch 필드, max_surface_pitch 필드, min_surface_yaw 필드, max_surface_yaw 필드, min_surface_roll 필드 및/또는 max_surface_roll 필드를 더 포함할 수 있다.
min_surface_pitch 필드 및 max_surface_pitch 필드는 각각 해당 리전이 3D 공간 상에 위치할 때, pitch 의 최소값과 최대값을 나타낼 수 있다. min_surface_yaw 필드 및 max_surface_yaw 필드는 각각 해당 리전이 3D 공간 상에 위치할 때, yaw 의 최소값과 최대값을 나타낼 수 있다. min_surface_roll 필드 및 max_surface_roll 필드는 각각 해당 리전이 3D 공간 상에 위치할 때, roll 의 최소값과 최대값을 나타낼 수 있다.
도 17 은 본 발명의 일 실시예에 따른 RegionGroup 클래스를 도시한 도면이다.
전술한 바와 같이 RegionGroup 클래스는 projection_scheme 필드를 변수로 하여, 프로젝션 스킴에 따른 세부 리전 정보를 기술할 수 있다.
RegionGroup 클래스는 전술한 RegionGroupBox 클래스와 같이, group_id 필드, coding_dependency 필드 및/또는 num_regions 필드를 포함할 수 있다. num_regions 필드의 값에 따라, RegionGroup 클래스는 각각의 리전들에 대하여 region_id 필드, horizontal_offset 필드, vertical_offset 필드, region_width 필드 및/또는 region_height 필드를 포함할 수 있다. 각 필드들에 대한 정의는 전술한 바와 같다.
RegionGroup 클래스는 sub_region_flag 필드, region_rotation_flag 필드, region_rotation_axis 필드, region_rotation 필드 및/또는 각각의 프로젝션 스킴에 따른 리전 정보들을 포함할 수 있다.
sub_region_flag 필드는 해당 리전이 서브 리전으로 나뉘어졌는지 여부를 지시할 수 있다. region_rotation_flag 필드는 해당 360 비디오 데이터가 2D 이미지 상에 프로젝션된 후에 해당 리전에 회전이 발생하였는지 여부를 지시할 수 있다.
region_rotation_axis 필드는 해당 360 비디오 데이터에 회전이 발생한 경우, 그 회전의 기준이 되는 축을 나타낼 수 있다. 본 필드의 값이 0x0, 0x1 인 경우, 각각 이미지의 세로축, 가로축을 기준으로 회전이 수행되었음을 나타낼 수 있다. region_rotation 필드는 해당 360 비디오 데이터에 회전이 발생한 경우, 회전된 방향 및 정도를 나타낼 수 있다.
RegionGroup 클래스는 각각의 리전들에 대한 정보를 프로젝션 스킴에 따라 다르게 기술할 수 있다.
RegionGroup 클래스는 projection_scheme 필드가 프로젝션 스킴이 등정방형 프로젝션 스킴 또는 타일-베이스드 프로젝션 스킴임을 지시하는 경우, min_region_pitch 필드, max_region_pitch 필드, min_region_yaw 필드, max_region_yaw 필드, min_region_roll 필드 및/또는 max_region_roll 필드를 포함할 수 있다.
min_region_pitch 필드 및 max_region_pitch 필드는 해당 리전이 3D 공간 상에 리-프로젝션되는 영역의 pitch 의 최소값, 최대값을 각각 나타낼 수 있다. 이는 캡쳐된 360 비디오 데이터가 구형 면으로 나타내어질 때, 그 구형 면 상의 φ 의 최소값, 최대값일 수 있다.
min_region_yaw 필드 및 max_region_yaw 필드는 해당 리전이 3D 공간 상에 리-프로젝션되는 영역의 yaw 의 최소값, 최대값을 각각 나타낼 수 있다. 이는 캡쳐된 360 비디오 데이터가 구형 면으로 나타내어질 때, 그 구형 면 상의 θ 의 최소값, 최대값일 수 있다.
min_region_roll 필드 및 max_region_roll 필드는 해당 리전이 3D 공간 상에 리-프로젝션되는 영역의 roll 의 최소값, 최대값을 각각 나타낼 수 있다.
RegionGroup 클래스는 projection_scheme 필드가 프로젝션 스킴이 큐빅 프로젝션 스킴임을 지시하는 경우, cube_face 필드를 포함할 수 있다. sub_region_flag 필드가 해당 리전이 서브 리전으로 나뉘어졌다고 지시하는 경우, RegionGroup 클래스는 cube_face 필드가 지칭하는 면 내의 서브 리전의 영역 정보, 즉, sub_region_horizental_offset 필드, sub_region_vertical_offset 필드, sub_region_width 필드 및/또는 sub_region_height 필드를 포함할 수 있다.
cube_face 필드는 해당 리전이, 프로젝션 시에 적용된 큐브의 어느 면에 해당하는지를 지시할 수 있다. 예를 들어 본 필드의 값이 0x00, 0x01, 0x02, 0x03, 0x04, 0x05 인 경우, 해당 리전은 각각 큐브의 앞면(front), 좌측 옆면(left), 우측 옆면(right), 뒷면(back), 윗면(top), 바닥면(bottom) 에 해당할 수 있다.
sub_region_horizental_offset 필드 및 sub_region_vertical_offset 필드는 각각, 해당 리전의 좌상단 픽셀을 기준으로 해당 서브 리전의 좌상단 픽셀의 수평, 수직 오프셋 값을 나타낼 수 있다. 즉, 두 필드는 각각, 해당 리전의 좌상단 픽셀을 기준으로 한 해당 서브 리전의 좌상단 픽셀의 상대적인 x 좌표, y 좌표값을 나타낼 수 있다.
sub_region_width 필드 및 sub_region_height 필드는 각각, 해당 서브 리전의 가로길이(width), 세로길이(height) 를 픽셀값으로 나타낼 수 있다.
해당 서브 리전이 3D 공간 상에 리-프로젝션되는 경우, 3D 공간 상에서 해당 서브 리전이 차지하는 영역의 최소/최대 가로길이(width) 는, 전술한 horizontal_offset 필드, sub_region_horizental_offset 필드 및 sub_region_width 필드의 값을 기반으로 유추될 수 있다. 실시예에 따라, min_sub_region_width 필드, max_sub_region_width 필드가 더 추가되어, 이 최소/최대 가로길이가 명시적으로 시그널링될 수도 있다.
또한, 해당 서브 리전이 3D 공간 상에 리-프로젝션되는 경우, 3D 공간 상에서 해당 서브 리전이 차지하는 영역의 최소/최대 세로길이(height) 는, 전술한 vertical_offset 필드, sub_region_vertical_offset 필드 및 sub_region_height 필드의 값을 기반으로 유추될 수 있다. 실시예에 따라, min_sub_region_height 필드, max_sub_region_height 필드가 더 추가되어, 이 최소/최대 세로길이가 명시적으로 시그널링될 수도 있다.
RegionGroup 클래스는 projection_scheme 필드가 프로젝션 스킴이 실린더형 프로젝션 스킴임을 지시하는 경우, cylinder_face 필드를 포함할 수 있다. sub_region_flag 필드가 해당 리전이 서브 리전으로 나뉘어졌다고 지시하는 경우, RegionGroup 클래스는 sub_region_horizental_offset 필드, sub_region_vertical_offset 필드, sub_region_width 필드, sub_region_height 필드, min_sub_region_yaw 필드 및/또는 max_sub_region_yaw 필드를 포함할 수 있다.
cylinder_face 필드는 해당 리전이, 프로젝션 시에 적용된 실린더의 어느 면에 해당하는지를 지시할 수 있다. 예를 들어 본 필드의 값이 0x00, 0x01, 0x02 인 경우, 해당 리전은 각각 실린더의 옆면(side), 윗면(top), 바닥면(bottom) 에 해당할 수 있다.
sub_region_horizental_offset 필드, sub_region_vertical_offset 필드, sub_region_width 필드, sub_region_height 필드는 전술한 바와 같다.
min_sub_region_yaw 필드 및 max_sub_region_yaw 필드는 각각, 해당 리전이 3D 공간 상에 리-프로젝션되는 영역의 yaw 의 최소값, 최대값을 각각 나타낼 수 있다. 이는 캡쳐된 360 비디오 데이터가 구형 면으로 나타내어질 때, 그 구형 면 상의 θ 의 최소값, 최대값일 수 있다. 실린더형 프로젝션 스킴이 적용되었으므로, yaw 에 대한 정보만 시그널링되어도 충분할 수 있다.
RegionGroup 클래스는 projection_scheme 필드가 프로젝션 스킴이 피라미드 프로젝션 스킴임을 지시하는 경우, pyramid_face 필드를 포함할 수 있다. sub_region_flag 필드가 해당 리전이 서브 리전으로 나뉘어졌다고 지시하는 경우, RegionGroup 클래스는 sub_region_horizental_offset 필드, sub_region_vertical_offset 필드, sub_region_width 필드, sub_region_height 필드, min_sub_region_yaw 필드 및/또는 max_sub_region_yaw 필드를 포함할 수 있다. sub_region_horizental_offset 필드, sub_region_vertical_offset 필드, sub_region_width 필드, sub_region_height 필드는 전술한 바와 같다.
pyramid_face 필드는 해당 리전이, 프로젝션 시에 적용된 피라미드의 어느 면에 해당하는지를 지시할 수 있다. 예를 들어 본 필드의 값이 0x00, 0x01, 0x02, 0x03, 0x04 인 경우, 해당 리전은 각각 피라미드의 앞면(front), 좌상단면(left-top), 좌하단면(left-bottom), 우상단면(right-top), 우하단면(right-bottom) 에 해당할 수 있다.
RegionGroup 클래스는 projection_scheme 필드가 프로젝션 스킴이 파라노믹 프로젝션 스킴임을 지시하는 경우, min_region_yaw 필드, max_region_yaw 필드, min_region_height 필드 및/또는 max_region_height 필드를 포함할 수 있다. min_region_yaw 필드, max_region_yaw 필드는 전술한 바와 같다.
min_region_height 필드 및 max_region_height 필드는 해당 리전이 3D 공간 상에 리-프로젝션되는 영역의 세로길이(height) 의 최소값, 최대값을 각각 나타낼 수 있다. 파라노믹 프로젝션 스킴이 적용되었으므로, yaw 및 세로길이 정보만 시그널링되어도 충분할 수 있다.
RegionGroup 클래스는 projection_scheme 필드가 스티칭없이 프로젝션되는 경우임을 지시하는 경우, ref_view_id 필드를 포함할 수 있다. ref_view_id 필드는 해당 리전과 연관된 카메라 내부/외부 파라미터들을 해당 리전과 연관시켜주기 위하여, 해당 리전의 카메라 내부/외부 파라미터들을 가지는 IntrinsicCameraParametersBox / ExtrinsicCameraParametersBox 클래스의 ref_view_id 필드를 지시할 수 있다.
도 18 은 본 발명의 일 실시예에 따른 미디어 파일의 구조를 도시한 도면이다.
도 19 는 본 발명의 일 실시예에 따른 ISOBMFF 내의 박스들의 계층적 구조를 도시한 도면이다.
오디오 또는 비디오 등의 미디어 데이터를 저장하고 전송하기 위하여, 정형화된 미디어 파일 포맷이 정의될 수 있다. 실시예에 따라 미디어 파일은 ISO BMFF (ISO base media file format) 를 기반으로한 파일 포맷을 가질 수 있다.
본 발명에 따른 미디어 파일은 적어도 하나 이상의 박스를 포함할 수 있다. 여기서 박스(box)는 미디어 데이터 또는 미디어 데이터에 관련된 메타데이터 등을 포함하는 데이터 블락 내지 오브젝트일 수 있다. 박스들은 서로 계층적 구조를 이룰 수 있으며, 이에 따라 데이터들이 분류되어 미디어 파일이 대용량 미디어 데이터의 저장 및/또는 전송에 적합한 형태를 띄게 될 수 있다. 또한 미디어 파일은, 사용자가 미디어 컨텐츠의 특정지점으로 이동하는 등, 미디어 정보에 접근하는데 있어 용이한 구조를 가질 수 있다.
본 발명에 따른 미디어 파일은 ftyp 박스, moov 박스 및/또는 mdat 박스를 포함할 수 있다.
ftyp 박스(파일 타입 박스)는 해당 미디어 파일에 대한 파일 타입 또는 호환성 관련 정보를 제공할 수 있다. ftyp 박스는 해당 미디어 파일의 미디어 데이터에 대한 구성 버전 정보를 포함할 수 있다. 복호기는 ftyp 박스를 참조하여 해당 미디어 파일을 구분할 수 있다.
moov 박스(무비 박스)는 해당 미디어 파일의 미디어 데이터에 대한 메타 데이터를 포함하는 박스일 수 있다. moov 박스는 모든 메타 데이터들을 위한 컨테이너 역할을 할 수 있다. moov 박스는 메타 데이터 관련 박스들 중 최상위 계층의 박스일 수 있다. 실시예에 따라 moov 박스는 미디어 파일 내에 하나만 존재할 수 있다.
mdat 박스(미디어 데이터 박스) 는 해당 미디어 파일의 실제 미디어 데이터들을 담는 박스일 수 있다. 미디어 데이터들은 오디오 샘플 및/또는 비디오 샘플들을 포함할 수 있는데, mdat 박스는 이러한 미디어 샘플들을 담는 컨테이너 역할을 할 수 있다.
실시예에 따라 전술한 moov 박스는 mvhd 박스, trak 박스 및/또는 mvex 박스 등을 하위 박스로서 더 포함할 수 있다.
mvhd 박스(무비 헤더 박스)는 해당 미디어 파일에 포함되는 미디어 데이터의 미디어 프리젠테이션 관련 정보를 포함할 수 있다. 즉, mvhd 박스는 해당 미디어 프리젠테이션의 미디어 생성시간, 변경시간, 시간규격, 기간 등의 정보를 포함할 수 있다.
trak 박스(트랙 박스)는 해당 미디어 데이터의 트랙에 관련된 정보를 제공할 수 있다. trak 박스는 오디오 트랙 또는 비디오 트랙에 대한 스트림 관련 정보, 프리젠테이션 관련 정보, 액세스 관련 정보 등의 정보를 포함할 수 있다. trak 박스는 트랙의 개수에 따라 복수개 존재할 수 있다.
trak 박스는 실시예에 따라 tkhd 박스(트랙 헤더 박스)를 하위 박스로서 더 포함할 수 있다. tkhd 박스는 trak 박스가 나타내는 해당 트랙에 대한 정보를 포함할 수 있다. tkhd 박스는 해당 트랙의 생성시간, 변경시간, 트랙 식별자 등의 정보를 포함할 수 있다.
mvex 박스(무비 익스텐드 박스)는 해당 미디어 파일에 후술할 moof 박스가 있을 수 있음을 지시할 수 있다. 특정 트랙의 모든 미디어 샘플들을 알기 위해서, moof 박스들이 스캔되어야할 수 있다.
본 발명에 따른 미디어 파일은, 실시예에 따라, 복수개의 프래그먼트로 나뉘어질 수 있다(t18010). 이를 통해 미디어 파일이 분할되어 저장되거나 전송될 수 있다. 미디어 파일의 미디어 데이터들(mdat 박스)은 복수개의 프래그먼트로 나뉘어지고, 각각의 프래그먼트는 moof 박스와 나뉘어진 mdat 박스를 포함할 수 있다. 실시예에 따라 프래그먼트들을 활용하기 위해서는 ftyp 박스 및/또는 moov 박스의 정보가 필요할 수 있다.
moof 박스(무비 프래그먼트 박스)는 해당 프래그먼트의 미디어 데이터에 대한 메타 데이터를 제공할 수 있다. moof 박스는 해당 프래그먼트의 메타데이터 관련 박스들 중 최상위 계층의 박스일 수 있다.
mdat 박스(미디어 데이터 박스)는 전술한 바와 같이 실제 미디어 데이터를 포함할 수 있다. 이 mdat 박스는 각각의 해당 프래그먼트에 해당하는 미디어 데이터들의 미디어 샘플들을 포함할 수 있다.
실시예에 따라 전술한 moof 박스는 mfhd 박스 및/또는 traf 박스 등을 하위 박스로서 더 포함할 수 있다.
mfhd 박스(무비 프래그먼트 헤더 박스)는 분할된 복수개의 프래그먼트들 간의 연관성과 관련한 정보들을 포함할 수 있다. mfhd 박스는 시퀀스 넘버(sequence number) 를 포함하여, 해당 프래그먼트의 미디어 데이터가 분할된 몇 번째 데이터인지를 나타낼 수 있다. 또한, mfhd 박스를 이용하여 분할된 데이터 중 누락된 것은 없는지 여부가 확인될 수 있다.
traf 박스(트랙 프래그먼트 박스)는 해당 트랙 프래그먼트에 대한 정보를 포함할 수 있다. traf 박스는 해당 프래그먼트에 포함되는 분할된 트랙 프래그먼트에 대한 메타데이터를 제공할 수 있다. traf 박스는 해당 트랙 프래그먼트 내의 미디어 샘플들이 복호화/재생될 수 있도록 메타데이터를 제공할 수 있다. traf 박스는 트랙 프래그먼트의 개수에 따라 복수개 존재할 수 있다.
실시예에 따라 전술한 traf 박스는 tfhd 박스 및/또는 trun 박스 등을 하위 박스로서 더 포함할 수 있다.
tfhd 박스(트랙 프래그먼트 헤더 박스)는 해당 트랙 프래그먼트의 헤더 정보를 포함할 수 있다. tfhd 박스는 전술한 traf 박스가 나타내는 트랙 프래그먼트의 미디어 샘플들에 대하여, 기본적인 샘플크기, 기간, 오프셋, 식별자 등의 정보를 제공할 수 있다.
trun 박스(트랙 프래그먼트 런 박스)는 해당 트랙 프래그먼트 관련 정보를 포함할 수 있다. trun 박스는 미디어 샘플별 기간, 크기, 재생시점 등과 같은 정보를 포함할 수 있다.
전술한 미디어 파일 내지 미디어 파일의 프래그먼트들은 세그먼트들로 처리되어 전송될 수 있다. 세그먼트에는 초기화 세그먼트(initialization segment) 및/또는 미디어 세그먼트(media segment) 가 있을 수 있다.
도시된 실시예(t18020)의 파일은, 미디어 데이터는 제외하고 미디어 디코더의 초기화와 관련된 정보 등을 포함하는 파일일 수 있다. 이 파일은 예를 들어 전술한 초기화 세그먼트에 해당할 수 있다. 초기화 세그먼트는 전술한 ftyp 박스 및/또는 moov 박스를 포함할 수 있다.
도시된 실시예(t18030)의 파일은, 전술한 프래그먼트를 포함하는 파일일 수 있다. 이 파일은 예를 들어 전술한 미디어 세그먼트에 해당할 수 있다. 미디어 세그먼트는 전술한 moof 박스 및/또는 mdat 박스를 포함할 수 있다. 또한, 미디어 세그먼트는 styp 박스 및/또는 sidx 박스를 더 포함할 수 있다.
styp 박스(세그먼트 타입 박스) 는 분할된 프래그먼트의 미디어 데이터를 식별하기 위한 정보를 제공할 수 있다. styp 박스는 분할된 프래그먼트에 대해, 전술한 ftyp 박스와 같은 역할을 수행할 수 있다. 실시예에 따라 styp 박스는 ftyp 박스와 동일한 포맷을 가질 수 있다.
sidx 박스(세그먼트 인덱스 박스) 는 분할된 프래그먼트에 대한 인덱스를 나타내는 정보를 제공할 수 있다. 이를 통해 해당 분할된 프래그먼트가 몇번째 프래그먼트인지가 지시될 수 있다.
실시예에 따라(t18040) ssix 박스가 더 포함될 수 있는데, ssix 박스(서브 세그먼트 인덱스 박스)는 세그먼트가 서브 세그먼트로 더 나뉘어지는 경우에 있어, 그 서브 세그먼트의 인덱스를 나타내는 정보를 제공할 수 있다.
미디어 파일 내의 박스들은, 도시된 실시예(t18050)와 같은 박스 내지 풀 박스(FullBox) 형태를 기반으로, 더 확장된 정보들을 포함할 수 있다. 이 실시예에서 size 필드, largesize 필드는 해당 박스의 길이를 바이트 단위 등으로 나타낼 수 있다. version 필드는 해당 박스 포맷의 버전을 나타낼 수 있다. type 필드는 해당 박스의 타입 내지 식별자를 나타낼 수 있다. flags 필드는 해당 박스와 관련된 플래그 등을 나타낼 수 있다.
도 20 은 본 발명의 일 실시예에 따른, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터가 각 box 에서 전달되는 것을 도시한 도면이다.
전술한 바와 같이 360 비디오 관련 메타데이터는 OMVideoConfigurationBox 클래스로 정의된 box 형태를 가질 수 있다. 전술한 모든 실시예들에 따른 360 비디오 관련 메타데이터들은 OMVideoConfigurationBox 클래스로 정의될 수 있다. 이 경우 각 실시예들에 따라 시그널링 필드들이 이 box 에 포함될 수 있다.
ISOBMFF, CFF(Common File Format) 등의 파일 포맷을 기반으로 360 비디오 데이터를 저장, 전송하는 경우에 있어서, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 ISOBMFF 파일 포맷의 각 박스들에 포함될 수 있다. 이러한 방식으로 360 비디오 데이터와 함께 360 비디오 관련 메타데이터가 저장, 시그널링될 수 있다.
전술한 바와 같이 OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 파일, 프래그먼트, 트랙, 샘플 엔트리, 샘플 등등 다양한 레벨에 포함되어 전달될 수 있고, 포함되는 레벨에 따라 해당 360 비디오 관련 메타데이터는 해당되는 레벨의 데이터에 대한 메타데이터를 제공할 수 있다(트랙, 스트림, 샘플 그룹, 샘플, 샘플 엔트리 등).
본 발명의 일 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 전술한 tkhd 박스에 포함되어 전달될 수 있다(t20010). 이 경우, tkhd 박스에는 omv_flag 필드 및/또는 OMVideoConfigurationBox 클래스를 가지는 omv_config 필드가 포함될 수 있다.
omv_flag 필드는 해당 비디오 트랙 내에 360 비디오(또는 omnidirectional video) 가 포함되어 있는지 여부를 나타내는 플래그일 수 있다. 본 필드의 값이 1 인 경우 360 비디오 데이터가 해당 비디오 트랙 내에 포함되고, 0 인 경우 그렇지 않을 수 있다. 본 필드의 값에 따라 omv_config 필드가 존재할 수 있다.
omv_config 필드는 전술한 OMVideoConfigurationBox 클래스에 따라, 해당 비디오 트랙 내에 포함된 360 비디오 데이터에 대한 메타데이터를 제공할 수 있다.
본 발명의 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 vmhd 박스에 포함되어 전달될 수 있다. 여기서 vmhd 박스(비디오 미디어 헤더 박스) 는 전술한 trak 박스의 하위 박스로서, 해당 비디오 트랙에 대한 일반적인(general) 프리젠테이션 관련 정보를 제공할 수 있다. 이 경우, vmhd 박스에는 마찬가지로, omv_flag 필드 및/또는 OMVideoConfigurationBox 클래스를 가지는 omv_config 필드가 포함될 수 있다. 각 필드의 의미는 전술한 바와 같다.
실시예에 따라, tkhd 박스와 vmhd 박스에 360 비디오 관련 메타데이터가 동시에 포함될 수도 있다. 이 경우 각각의 박스에 포함되는 360 비디오 관련 메타데이터들은 전술한 360 비디오 관련 메타데이터의 실시예 중 서로 다른 것들을 따를 수도 있다.
tkhd 박스와 vmhd 박스에 360 비디오 관련 메타데이터가 동시에 포함되는 경우, tkhd 박스에 정의된 360 비디오 관련 메타데이터들의 값은, vmhd 박스에 정의된 360 비디오 관련 메타데이터들의 값으로 오버라이드(override) 될 수 있다. 즉, 양자에 정의된 360 비디오 관련 메타데이터들의 값이 다른 경우, vmhd 박스 내의 값이 사용될 수 있다. vmhd 박스 내에 360 비디오 관련 메타데이터가 포함되어 있지 않은 경우, tkhd 박스 내의 360 비디오 관련 메타데이터가 사용될 수 있다.
본 발명의 또 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 메타데이터는 trex 박스에 포함되어 전달될 수 있다. 비디오 스트림이 하나 이상의 무비 프래그먼트로 프래그멘테이션되어 ISOBMFF 로 전달되는 경우에 360 비디오 관련 메타데이터가 trex 박스에 포함되어 전달될 수 있다. 여기서 trex 박스(트랙 익스탠드 박스) 는 전술한 mvex 박스의 하위 박스로서, 각각의 무비 프래그먼트에 의해 사용되는 디폴트 값들을 셋업할 수 있다. 이 박스는 디폴트 값을 제공함으로써, traf 박스 내의 공간과 복잡성을 줄일 수 있다. 이 경우, trex 박스는 default_sample_omv_flag 필드 및/또는 OMVideoConfigurationBox 클래스를 가지는 default_sample_omv_config 필드가 포함될 수 있다.
default_sample_omv_flag 필드는 해당 무비 프래그먼트 내에 해당 비디오 트랙 프래그먼트에 360 비디오 샘플들이 포함되어 있는지 여부를 나타내는 플래그일 수 있다. 본 필드의 값이 1 인 경우 360 비디오 샘플들이 디폴트로 포함되어 있음을 나타낼 수 있으며, 이 경우 trex 박스는 default_sample_omv_config 필드를 더 포함될 수 있다.
default_sample_omv_config 필드는 전술한 OMVideoConfigurationBox 클래스에 따라, 해당 트랙 프래그먼트의 비디오 샘플들 각각에 적용될 수 있는 360 비디오 관련 세부 메타데이터를 제공할 수 있다. 이 메타데이터들은 해당 트랙 프래그먼트 내의 샘플들에 디폴트로 적용될 수 있다.
본 발명의 또 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 전술한 tfhd 박스에 포함되어 전달될 수 있다(t20020). 비디오 스트림이 하나 이상의 무비 프래그먼트로 프래그멘테이션되어 ISOBMFF 로 전달되는 경우에 360 비디오 관련 메타데이터가 tfhd 박스에 포함되어 전달될 수 있다. 이 경우, tfhd 박스는 마찬가지로, omv_flag 필드 및/또는 OMVideoConfigurationBox 클래스를 가지는 omv_config 필드를 포함할 수 있다. 각 필드의 의미는 전술한 바와 같으나, 이 경우 두 필드는 해당 무비 프래그먼트가 포함하는 해당 트랙 프래그먼트의 360 비디오 데이터를 대상으로 360 비디오 관련 세부 파라미터들을 기술할 수 있다.
실시예에 따라 360 비디오 관련 메타데이터가 tfhd 박스에 포함되어 전달되는 경우, omv_flag 필드가 생략되고, omv_config 필드 대신 default_sample_omv_config 필드가 포함될 수 있다(t20030).
이 경우 tfhd 박스의 tr_flags 필드에 의해 360 비디오 관련 메타데이터가 tfhd 박스에 포함되는지가 지시될 수 있다. 예를 들어 tf_flags 필드가 0x400000 을 포함하는 경우, 이는 해당 무비 프래그먼트의 해당 비디오 트랙 프래그먼트내에 포함된 비디오 샘플들과 연관된 360 비디오 관련 메타데이터의 디폴트 값이 존재함을 나타낼 수 있다. 또한 이 경우, tfhd 박스 내에 default_sample_omv_config 필드가 존재할 수 있다. default_sample_omv_config 필드는 전술한 바와 같다.
본 발명의 또 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 전술한 trun 박스에 포함되어 전달될 수 있다. 비디오 스트림이 하나 이상의 무비 프래그먼트로 프래그멘테이션되어 ISOBMFF 로 전달되는 경우에 360 비디오 관련 메타데이터가 trun 박스에 포함되어 전달될 수 있다. 이 경우, trun 박스는 마찬가지로, omv_flag 필드 및/또는 OMVideoConfigurationBox 클래스를 가지는 omv_config 필드를 포함할 수 있다. 각 필드의 의미는 전술한 바와 같으나, 이 경우 두 필드는 해당 무비 프래그먼트가 포함하는 해당 트랙 프래그먼트의 비디오 샘플들에 공통적으로 적용될 수 있는 360 비디오 관련 세부 파라미터들을 기술할 수 있다.
실시예에 따라 360 비디오 관련 메타데이터가 trun 박스에 포함되어 전달되는 경우, omv_flag 필드가 생략될 수 있다. 이 경우 trun 박스의 tr_flags 필드에 의해 360 비디오 관련 메타데이터가 trun 박스에 포함되는지가 지시될 수 있다.
예를 들어 tf_flags 필드가 0x008000 을 포함하는 경우, 이는 해당 무비 프래그먼트의 해당 비디오 트랙 프래그먼트내에 포함된 비디오 샘플들에 공통적으로 적용될 수 있는 360 비디오 관련 메타데이터가 존재함을 나타낼 수 있다. 또한 이 경우, trun 박스 내의 omv_config 필드는 OMVideoConfigurationBox 클래스에 따라, 각 비디오 샘플들에 공통적으로 적용될 수 있는 360 비디오 관련 메타데이터를 제공할 수 있다. 이 때 omv_config 필드는 trun 박스 내에서 박스 레벨에 위치할 수 있다.
또한, tf_flags 필드가 0x004000 을 포함하는 경우, 이는 해당 무비 프래그먼트의 해당 비디오 트랙 프래그먼트내에 포함된 비디오 샘플 각각에 적용될 수 있는 360 비디오 관련 메타데이터가 존재함을 나타낼 수 있다. 또한 이 경우, trun 박스는 각 샘플 레벨에서 OMVideoConfigurationBox 클래스를 따르는 sample_omv_config 필드를 포함할 수 있다. sample_omv_config 필드는 각 샘플에 적용될 수 있는 360 비디오 관련 메타데이터를 제공할 수 있다.
tfhd 박스와 trun 박스에 360 비디오 관련 메타데이터가 동시에 포함되는 경우, tfhd 박스에 정의된 360 비디오 관련 메타데이터들의 값은, trun 박스에 정의된 360 비디오 관련 메타데이터들의 값으로 오버라이드(override) 될 수 있다. 즉, 양자에 정의된 360 비디오 관련 메타데이터들의 값이 다른 경우, trun 박스 내의 값이 사용될 수 있다. trun 박스 내에 360 비디오 관련 메타데이터가 포함되어 있지 않은 경우, tfhd 박스 내의 360 비디오 관련 메타데이터가 사용될 수 있다.
본 발명의 또 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 비주얼 샘플 그룹 엔트리(Visual Sample Group Entry) 에 포함되어 전달될 수 있다. 하나의 파일 혹은 무비 프래그먼트 내에 존재하는 하나 이상의 비디오 샘플들에 동일한 360 비디오 관련 메타데이터가 적용될 수 있는 경우, 360 비디오 관련 메타데이터는 비주얼 샘플 그룹 엔트리에 포함되어 전달될 수 있다. 이 때 비주얼 샘플 그룹 엔트리는 omv_flag 필드 및/또는 OMVideoConfigurationBox 클래스를 가지는 omv_config 필드를 포함할 수 있다.
omv_flag 필드는 해당 샘플 그룹이 360 비디오 샘플 그룹인지 여부를 지시할 수 있다. omv_config 필드는 전술한 OMVideoConfigurationBox 클래스에 따라, 해당 비디오 샘플 그룹 내에 포함된 360 비디오 샘플들에 공통적으로 적용될 수 있는 360 비디오 관련 세부 파라미터들을 기술할 수 있다. 예를 들어 OMVideoConfigurationBox 클래스의 initial_view_yaw_degree 필드, initial_view_pitch_degree 필드, initial_view_roll_degree 필드를 이용하여 각 샘플 그룹과 연관된 360 비디오에 대한 초기 시점(initial view)이 설정될 수 있다.
본 발명의 또 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 비주얼 샘플 엔트리(Visual Sample Entry) 에 포함되어 전달될 수 있다. 하나의 파일 혹은 무비 프래그먼트 내에 존재하는 각각의 비디오 샘플을 디코딩하기 위해 필요한 초기화 정보로서 각 샘플들에 관련된 360 비디오 관련 메타데이터는 비주얼 샘플 엔트리에 포함되어 전달될 수 있다. 이 때 비주얼 샘플 엔트리는 omv_flag 필드 및/또는 OMVideoConfigurationBox 클래스를 가지는 omv_config 필드를 포함할 수 있다.
omv_flag 필드는 해당 비디오 트랙/샘플이 360 비디오 샘플을 포함하는지 여부를 지시할 수 있다. omv_config 필드는 전술한 OMVideoConfigurationBox 클래스에 따라, 해당 비디오 트랙/샘플 등과 연관된 360 비디오 관련 세부 파라미터들을 기술할 수 있다.
본 발명의 또 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 HEVC 샘플 엔트리(HEVCSampleEntry) 에 포함되어 전달될 수 있다. 하나의 파일 혹은 무비 프래그먼트 내에 존재하는 각 HEVC 샘플들을 디코딩하기 위한 초기화 정보로서, 각 HEVC 샘플과 관련된 360 비디오 관련 메타데이터가 HEVC 샘플 엔트리에 포함되어 전달될 수 있다. 이 때 HEVC 샘플 엔트리는 OMVideoConfigurationBox 클래스를 가지는 omv_config 필드를 포함할 수 있다. omv_config 필드는 전술한 바와 같다.
마찬가지로, 360 비디오 관련 메타데이터는 AVCSampleEntry(), AVC2SampleEntry(), SVCSampleEntry(), MVCSampleEntry() 에 동일한 방법으로 포함되어 전달될 수도 있다.
본 발명의 또 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 HEVC 컨피규레이션 박스(HEVCConfigurationBox) 에 포함되어 전달될 수 있다. 하나의 파일 혹은 무비 프래그먼트 내에 존재하는 각 HEVC 샘플들을 디코딩하기 위한 초기화 정보로서, 각 HEVC 샘플과 관련된 360 비디오 관련 메타데이터가 HEVC 컨피규레이션 박스에 포함되어 전달될 수 있다. 이 때 HEVC 컨피규레이션 박스는 OMVideoConfigurationBox 클래스를 가지는 omv_config 필드를 포함할 수 있다. omv_config 필드는 전술한 바와 같다.
마찬가지로, 360 비디오 관련 메타데이터는 AVCConfigurationBox, SVCConfigurationBox, MVCConfigurationBox 에 동일한 방법으로 포함되어 전달될 수도 있다.
본 발명의 또 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 HEVCDecoderConfigurationRecord 에 포함되어 전달될 수 있다. 하나의 파일 혹은 무비 프래그먼트 내에 존재하는 각 HEVC 샘플들을 디코딩하기 위한 초기화 정보로서, 각 HEVC 샘플과 관련된 360 비디오 관련 메타데이터가 HEVCDecoderConfigurationRecord 에 포함되어 전달될 수 있다. 이 때 HEVCDecoderConfigurationRecord 는 omv_flag 필드 및/또는 OMVideoConfigurationBox 클래스를 가지는 omv_config 필드를 포함할 수 있다. omv_flag 필드 및 omv_config 필드는 전술한 바와 같다.
마찬가지로, 360 비디오 관련 메타데이터는 AVCecoderConfigurationRecord, SVCecoderConfigurationRecord, MVCecoderConfigurationRecord 에 동일한 방법으로 포함되어 전달될 수도 있다.
본 발명의 또 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 OmnidirectionalMediaMetadataSample 에 포함되어 전달될 수 있다.
360 비디오 관련 메타데이터는 메타데이터 샘플의 형태로 저장, 전달될 수 있는데, 이 메타데이터 샘플은 OmnidirectionalMediaMetadataSample 로 정의될 수 있다. OmnidirectionalMediaMetadataSample 은 전술한 OMVideoConfigurationBox 클래스에서 정의된 시그널링 필드들을 포함할 수 있다.
도 21 은 본 발명의 다른 실시예에 따른, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터가 각 box 에서 전달되는 것을 도시한 도면이다.
본 발명의 또 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 VrVideoBox 에 포함되어 전달될 수 있다.
360 비디오 관련 메타데이터를 전달하기 위하여 VrVideoBox 가 새로 정의될 수 있다(t21010). VrVideoBox 는 전술한 360 비디오 관련 메타데이터들을 포함할 수 있다. VrVideoBox 의 박스 타입은 'vrvd' 이고, Scheme Information box('schi') 에 포함되어 전달될 수 있다. VrVideoBox 의 SchemeType 은 'vrvd' 이고, SchemeType 이 'vrvd' 인 경우 본 박스는 필수(mandatory) 박스로서 하나 존재할 수 있다. VrVideoBox 는 해당 트랙 등에 포함된 비디오 데이터가 360 비디오 데이터임을 지시할 수 있다. 이를 통해 VR 비디오를 지원하지 못하는 수신기의 경우 schi 내의 타입 값이 vrvd 인 경우, 이를 처리하지 못함을 파악하여 해당 파일 포멧 내의 데이터를 처리 하지 않을 수 있다.
VrVideoBox 는 vr_mapping_type 필드 및/또는 OMVideoConfigurationBox 클래스로 정의된 omv_config 필드를 포함할 수 있다.
vr_mapping_type 필드는 구형 면 등의 형태를 가지는 360 비디오 데이터를 2D 이미지 포맷 상에 프로젝션하는데 사용한 프로젝션 스킴을 지시하는 정수(integer) 값일 수 있다. 본 필드는 전술한 projection_scheme 과 같은 의미를 가질 수 있다.
omv_config 필드는 전술한 OMVideoConfigurationBox 클래스에 따라 360 비디오 관련 메타데이터를 기술할 수 있다.
본 발명의 또 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 OmnidirectionalMediaMetadataSampleEntry 에 포함되어 전달될 수 있다.
OmnidirectionalMediaMetadataSampleEntry 는 360 비디오 데이터를 위한 메타데이터를 운반하는 메타데이터 트랙의 샘플 엔트리를 정의할 수 있다. OmnidirectionalMediaMetadataSampleEntry 는 OMVideoConfigurationBox 클래스로 정의된 omv_config 필드를 포함할 수 있다. omv_config 필드는 전술한 바와 같다.
본 발명의 또 다른 실시예에 따르면, OMVideoConfigurationBox 클래스로 정의된 360 비디오 관련 메타데이터는 OMVInformationSEIBox 에 포함되어 전달될 수 있다.
360 비디오 관련 메타데이터를 전달하기 위하여 OMVInformationSEIBox 가 새로 정의될 수 있다(t21020). OMVInformationSEIBox 는 전술한 360 비디오 관련 메타데이터들을 포함하는 SEI NAL 유닛을 포함할 수 있다. 이 SEI NAL 유닛은 360 비디오 관련 메타데이터를 포함하는 SEI 메시지를 포함할 수 있다. OMVInformationSEIBox 는 omvinfosei 필드를 포함할 수 있다. omvinfosei 필드는 전술한 360 비디오 관련 메타데이터를 포함하는 SEI NAL 유닛을 포함할 수 있다. 360 비디오 관련 메타데이터는 전술한 바와 같다.
OMVInformationSEIBox 는 VisualSampleEntry, AVCSampleEntry, MVCSampleEntry, SVCSampleEntry, HEVCSampleEntry 등에 포함되어 전달될 수 있다.
본 발명의 또 다른 실시예에 따르면, 360 비디오 관련 메타데이터는 복수개의 트랙 중 어느 특정 트랙을 통해서만 전달되고, 나머지 트랙들은 단지 그 특정 트랙을 레퍼런싱해줄 수 있다.
전술한 바와 같이 2D 이미지는 복수개의 리전으로 나뉘어질 수 있고, 각 리전은 인코딩되어 하나 이상의 트랙을 통해 저장, 전달될 수 있다. 여기서 트랙은 전술한 ISOBMFF 등의 파일 포맷 상의 트랙을 의미할 수 있다. 실시예에 따라 하나의 트랙은 하나의 리전에 해당하는 360 비디오 데이터를 저장, 전달하는데 사용될 수 있다.
이 때, 각각의 트랙이 전술한 OMVideoConfigurationBox 클래스에 따른 360 비디오 관련 메타데이터를 그 내부 박스들에 포함할 수도 있으나, 어느 특정 트랙만이 해당 360 비디오 관련 메타데이터를 포함할 수도 있다. 이 경우, 해당 360 비디오 관련 메타데이터를 포함하지 않는 다른 트랙들은, 해당 360 비디오 관련 메타데이터를 전달하고 있는 그 특정 트랙을 지시하는 정보를 포함할 수 있다.
여기서, 전술한 다른 트랙들은 TrackReferenceTypeBox 를 포함할 수 있다. TrackReferenceTypeBox 는 다른 트랙을 지시하는데 사용되는 박스일 수 있다(t21030).
TrackReferenceTypeBox 는 track_id 필드를 포함할 수 있다. track_id 필드는 해당 트랙과 프리젠테이션 내의 다른 트랙 간의 레퍼런스를 제공하는 정수 값일 수 있다. 본 필드는 재 사용되지 않으며 0 값을 가지지 않을 수 있다.
TrackReferenceTypeBox 는 reference_type 을 변수로 가질 수 있는데, reference_type 은 해당 TrackReferenceTypeBox 가 제공하는 레퍼런스 타입을 지시할 수 있다.
예를 들어 TrackReferenceTypeBox 의 reference_type 이 'subt' 타입을 가지는 경우, 해당 트랙은 TrackReferenceTypeBox 의 track_id 필드가 지시하는 트랙을 위한 subtitle, timed text, overlay graphical information 을 포함하고 있음이 지시될 수 있다.
본 발명에서 TrackReferenceTypeBox 가 reference_type 이 'omvb' 타입을 가지는 경우, 이 박스는 전술한 360 비디오 관련 메타데이터를 운반하고 있는 특정 트랙을 지시할 수 있다. 구체적으로, 각각의 리전들을 포함하는 각 트랙들은 디코딩될 때, 360 비디오 관련 메타데이터 중 기본적인 베이스 레이어 정보가 필요할 수 있다. 이 박스는 그 베이스 레이어 정보를 운반하고 있는 특정 트랙을 지시할 수 있다.
본 발명에서 TrackReferenceTypeBox 가 reference_type 이 'omvm' 타입을 가지는 경우, 이 박스는 전술한 360 비디오 관련 메타데이터를 운반하고 있는 특정 트랙을 지시할 수 있다. 구체적으로, 360 비디오 관련 메타데이터가 전술한 OmnidirectionalMediaMetadataSample() 과 같이 별도의 개별적인 트랙으로 저장, 전달될 수 있다. 이 박스는 그 개별적인 트랙을 지시할 수 있다.
360 비디오 데이터가 렌더링되어 사용자에게 제공되는 경우, 사용자는 360 비디오 중 일부만을 볼 수 있다. 따라서, 360 비디오 데이터의 각 리전이 서로 다른 트랙으로 저장, 전달되는 것이 유리할 수 있다. 이 때, 각각의 트랙들이 전체 360 비디오 관련 메타데이터를 모두 포함하는 것은 전송 효율 및 캐패시티를 떨어뜨릴 수 있다. 따라서, 특정 트랙만이 360 비디오 관련 메타데이터 내지는 360 비디오 관련 메타데이터 중 베이스 레이어 정보를 포함하고, 나머지 트랙들은 필요한 경우 TrackReferenceTypeBox 를 이용하여 그 특정 트랙에 접근하는 것이 유리할 수 있다.
본 발명에 따른 360 비디오 관련 메타데이터의 저장/전달 방안은, 360 비디오에 대한 미디어 파일의 생성, MPEG DASH 상에서 동작하는 DASH 세그먼트의 생성 또는 MPEG MMT 상에서 동작하는 MPU 생성시에 적용될 수 있다. 수신기(DASH 클라이언트, MMT 클라이언트 등을 포함)는, 디코더 등에서 360 비디오 관련 메타데이터(플래그, 파라미터, 박스 등등)을 획득하여, 이를 기반으로 해당 컨텐트를 효과적으로 제공할 수 있다.
전술한 OMVideoConfigurationBox 는 하나의 미디어 파일, DASH 세그먼트 또는 MMT MPU 내의 여러 박스들에 동시에 존재할 수도 있다. 이 경우, 상위 박스에서 정의된 360 비디오 관련 메타데이터들은 하위 박스에서 정의된 360 비디오 관련 메타데이터들에 의해 오버라이드(override) 될 수 있다.
또한 전술한 OMVideoConfigurationBox 내의 각 필드(속성)들은 360 비디오 데이터의 SEI(Supplemental enhancement information) 혹은 VUI (Video Usability Information)에 포함되어 전달될 수 있다.
또한 시간의 흐름에 따라 전술한 OMVideoConfigurationBox 내의 각 필드(속성) 값들이 변화할 수 있는데, 이 경우 OMVideoConfigurationBox 는 타임드 메타데이터(timed metadata)로서 파일 내의 하나의 트랙에 저장될 수 있다. 파일 내의 한 트랙에 타임드 메타데이터로서 저장된 OMVideoConfigurationBox 는, 파일 내의 다른 하나 이상의 미디어 트랙으로 전달되는 360 비디오 데이터에 대하여, 시간의 흐름에 따라 변화하는 360 비디오 관련 메타데이터들을 시그널링할 수 있다.
도 22 는 본 발명의 일 실시예에 따른 DASH 기반 적응형(Adaptive) 스트리밍 모델의 전반적인 동작을 도시한 도면이다.
도시된 실시예(t50010)에 따른 DASH 기반 적응형 스트리밍 모델은, HTTP 서버와 DASH 클라이언트 간의 동작을 기술하고 있다. 여기서 DASH (Dynamic Adaptive Streaming over HTTP) 는, HTTP 기반 적응형 스트리밍을 지원하기 위한 프로토콜로서, 네트워크 상황에 따라 동적으로 스트리밍을 지원할 수 있다. 이에 따라 AV 컨텐트 재생이 끊김없이 제공될 수 있다.
먼저 DASH 클라이언트는 MPD 를 획득할 수 있다. MPD 는 HTTP 서버 등의 서비스 프로바이더로부터 전달될 수 있다. DASH 클라이언트는 MPD 에 기술된 세그먼트에의 접근 정보를 이용하여 서버로 해당 세그먼트들을 요청할 수 있다. 여기서 이 요청은 네트워크 상태를 반영하여 수행될 수 있다.
DASH 클라이언트는 해당 세그먼트를 획득한 후, 이를 미디어 엔진에서 처리하여 화면에 디스플레이할 수 있다. DASH 클라이언트는 재생 시간 및/또는 네트워크 상황 등을 실시간으로 반영하여, 필요한 세그먼트를 요청, 획득할 수 있다(Adaptive Streaming). 이를 통해 컨텐트가 끊김없이 재생될 수 있다.
MPD (Media Presentation Description) 는 DASH 클라이언트로 하여금 세그먼트를 동적으로 획득할 수 있도록 하기 위한 상세 정보를 포함하는 파일로서 XML 형태로 표현될 수 있다.
DASH 클라이언트 컨트롤러(DASH Client Controller) 는 네트워크 상황을 반영하여 MPD 및/또는 세그먼트를 요청하는 커맨드를 생성할 수 있다. 또한, 이 컨트롤러는 획득된 정보를 미디어 엔진 등등의 내부 블락에서 사용할 수 있도록 제어할 수 있다.
MPD 파서(Parser) 는 획득한 MPD 를 실시간으로 파싱할 수 있다. 이를 통해, DASH 클라이언트 컨트롤러는 필요한 세그먼트를 획득할 수 있는 커맨드를 생성할 수 있게 될 수 있다.
세그먼트 파서(Parser) 는 획득한 세그먼트를 실시간으로 파싱할 수 있다. 세그먼트에 포함된 정보들에 따라 미디어 엔진 등의 내부 블락들은 특정 동작을 수행할 수 있다.
HTTP 클라이언트는 필요한 MPD 및/또는 세그먼트 등을 HTTP 서버에 요청할 수 있다. 또한 HTTP 클라이언트는 서버로부터 획득한 MPD 및/또는 세그먼트들을 MPD 파서 또는 세그먼트 파서로 전달할 수 있다.
미디어 엔진(Media Engine) 은 세그먼트에 포함된 미디어 데이터를 이용하여 컨텐트를 화면상에 표시할 수 있다. 이 때, MPD 의 정보들이 활용될 수 있다.
DASH 데이터 모델은 하이라키 구조(t50020)를 가질 수 있다. 미디어 프리젠테이션은 MPD 에 의해 기술될 수 있다. MPD 는 미디어 프리젠테이션를 만드는 복수개의 피리오드(Period)들의 시간적인 시퀀스를 기술할 수 있다. 피리오드는 미디어 컨텐트의 한 구간을 나타낼 수 있다.
한 피리오드에서, 데이터들은 어댑테이션 셋들에 포함될 수 있다. 어댑테이션 셋은 서로 교환될 수 있는 복수개의 미디어 컨텐트 컴포넌트들의 집합일 수 있다. 어댑테이션은 레프리젠테이션들의 집합을 포함할 수 있다. 레프리젠테이션은 미디어 컨텐트 컴포넌트에 해당할 수 있다. 한 레프리젠테이션 내에서, 컨텐트는 복수개의 세그먼트들로 시간적으로 나뉘어질 수 있다. 이는 적절한 접근성과 전달(delivery)를 위함일 수 있다. 각각의 세그먼트에 접근하기 위해서 각 세그먼트의 URL 이 제공될 수 있다.
MPD 는 미디어 프리젠테이션에 관련된 정보들을 제공할 수 있고, 피리오드 엘레멘트, 어댑테이션 셋 엘레멘트, 레프리젠테이션 엘레멘트는 각각 해당 피리오드, 어댑테이션 셋, 레프리젠테이션에 대해서 기술할 수 있다. 레프리젠테이션은 서브 레프리젠테이션들로 나뉘어질 수 있는데, 서브 레프리젠테이션 엘레멘트는 해당 서브 레프리젠테이션에 대해서 기술할 수 있다.
여기서 공통(Common) 속성/엘레멘트들이 정의될 수 있는데, 이 들은 어댑테이션 셋, 레프리젠테이션, 서브 레프리젠테이션 등에 적용될 수 (포함될 수) 있다. 공통 속성/엘레멘트 중에는 에센셜 프로퍼티(EssentialProperty) 및/또는 서플멘탈 프로퍼티(SupplementalProperty) 가 있을 수 있다.
에센셜 프로퍼티는 해당 미디어 프리젠테이션 관련 데이터를 처리함에 있어서 필수적이라고 여겨지는 엘레멘트들을 포함하는 정보일 수 있다. 서플멘탈 프로퍼티는 해당 미디어 프리젠테이션 관련 데이터를 처리함에 있어서 사용될 수도 있는 엘레멘트들을 포함하는 정보일 수 있다. 실시예에 따라후술할 디스크립터들은, MPD 를 통해 전달되는 경우, 에센셜 프로퍼티 및/또는 서플멘탈 프로퍼티 내에 정의되어 전달될 수 있다.
도 23 은 본 발명의 일 실시예에 따른, DASH 기반 디스크립터 형태로 기술한 360 비디오 관련 메타데이터를 도시한 도면이다.
DASH 기반 디스크립터는 @schemeIdUri 필드, @value 필드 및/또는 @id 필드를 포함할 수 있다. @schemeIdUri 필드는 해당 디스크립터의 스킴(scheme)을 식별하기 위한 URI 를 제공할 수 있다. @value 필드는 @schemeIdUri 필드가 지시하는 스킴에 의해 그 의미가 정의되는 값(value) 들을 가질 수 있다. 즉, @value 필드는 해당 스킴에 따른 디스크립터 엘레멘트들의 값들을 가질 수 있으며, 이 들은 파라미터라고 불릴 수 있다. 이 들은 서로 ',' 에 의해 구분될 수 있다. @id 는 해당 디스크립터의 식별자를 나타낼 수 있다. 동일한 식별자를 가지는 경우, 동일한 스킴 ID, 값(value), 파라미터를 포함할 수 있다.
전술한 360 비디오 관련 메타데이터의 각각의 실시예들은 DASH 기반 디스크립터 형태로 다시 쓸 수 있다. DASH 에 따라 360 비디오 데이터가 전달되는 경우, 360 비디오 관련 메타데이터들은 DASH 디스크립터 형태로 기술되어, MPD 등에 포함되어 수신측으로 전달될 수 있다. 이 디스크립터들은 전술한 에센셜 프로퍼티 디스크립터 및/또는 서플멘탈 프로퍼티 디스크립터의 형태로 전달될 수 있다. 이 디스크립터들은 MPD 의 어댑테이션 셋, 레프리젠테이션, 서브 레프리젠테이션 등에 포함되어 전달될 수 있다.
360 비디오 관련 메타데이터를 전달하는 디스크립터의 경우, @schemeIdURI 필드가 urn:mpeg:dash:vr:201x 값을 가질 수 있다. 이는 해당 디스크립터가 360 비디오 관련 메타데이터를 전달하는 디스크립터임을 식별하는 값일 수 있다.
이 디스크립터의 @value 필드는 도시된 실시예와 같은 값을 가질 수 있다. 즉, @value 의 ',' 에 의해 구분되는 각각의 파라미터들은, 전술한 360 비디오 관련 메타데이터의 각각의 필드들에 해당할 수 있다. 도시된 실시예는 전술한 360 비디오 관련 메타데이터의 다양한 실시예들 중, 하나의 실시예를 @value 의 파라미터로 기술한 것이지만, 각 시그널링 필드들을 파라미터로 치환하여 전술한 모든 360 비디오 관련 메타데이터의 실시예들이 @value 의 파라미터로 기술될 수 있다. 즉, 전술한 모든 실시예에 따른 360 비디오 관련 메타데이터는 DASH 기반의 디스크립터 형태로도 기술될 수 있다.
도시된 실시예에서 각 파라미터들은 전술한 동명의 시그널링 필드와 같은 의미를 가질 수 있다. 여기서 M 은 해당 파라미터가 필수 파라미터(Mandatory)임을, O 는 해당 파라미터가 옵셔널 파라미터(Optional)임을, OD 는 해당 파라미터가 디폴트 값을 가지는 옵셔널 파라미터(Optional with Default)임을 의미할 수 있다. OD 인 파라미터 값이 주어지지 않는 경우, 기 정의된 디폴트 값이 해당 파라미터 값으로 쓰일 수 있다. 도시된 실시예에서 각 OD 파라미터들의 디폴트 값이 괄호 내에 주어져있다.
도 24 는 본 발명의 일 실시예에 따른 특정 영역 혹은 ROI 지시 관련 메타데이터를 도시한 도면이다.
360 비디오 제공자는, 사용자가 360 비디오를 시청함에 있어 디렉터스 컷 (director's cut)과 같이 의도된 시점 또는 영역을 시청하도록 할 수 있다. 이를 위하여 본 발명의 또 다른 실시예에 따른 360 비디오 관련 메타데이터는 특정 영역 지시 관련 메타데이터를 더 포함할 수 있다. 본 발명의 360 비디오 수신 장치는 렌더링시에 특정 영역 지시 관련 메타데이터를 이용하여 사용자가 360 비디오의 특정 영역/시점을 보도록 할 수 있다. 특정 영역 지시 관련 메타데이터는 전술한 OMVideoConfigurationBox 에 포함될 수도 있다.
실시예에 따라 특정 영역 지시 관련 메타데이터는 2D 이미지 상에서 특정 영역 내지 시점을 지시할 수 있다. 실시예에 따라 특정 영역 지시 관련 메타데이터는 ISOBMFF 내에서 타임드 메타데이터(timed metadata)로서 하나의 트랙으로 저장될 수 있다.
본 발명의 일 실시예에 따른 특정 영역 지시 관련 메타데이터를 포함하는 트랙의 샘플 엔트리는 reference_width 필드, reference_height 필드, min_top_left_x 필드, max_top_left_x 필드, min_top_left_y 필드, max_top_left_y 필드, min_width 필드, max_width 필드, min_height 필드 및/또는 max_height 필드를 포함할 수 있다(t24010).
reference_width 필드 및 reference_height 필드는 각각 해당 2D 이미지의 가로크기, 세로크기를 픽셀 수로 나타낼 수 있다.
min_top_left_x 필드, max_top_left_x 필드, min_top_left_y 필드, max_top_left_y 필드는 해당 트랙에 포함되어 있는 샘플들이 지시하고자 하는 특정 영역들의 좌상단 픽셀의 좌표에 관한 정보를 나타낼 수 있다. 각 필드들은 차례로 해당 트랙에 포함되어 있는 각 샘플들이 포함하는 영역의 좌상단 픽셀의 x 좌표값 (top_left_x)의 최소값, 최대값, 그리고 각 샘플이 포함하는 영역의 좌상단 픽셀의 y 좌표값(top_left_y)의 최소값, 최대값을 나타낼 수 있다.
min_width 필드, max_width 필드, min_height 필드, max_height 필드는 해당 트랙에 포함되어 있는 샘플들이 지시하고자 하는 특정 영역들의 지시하고자 하는 영역의 크기에 관한 정보를 나타낼 수 있다. 각 필드들은 차례로 해당 트랙에 포함되어 있는 각 샘플들이 포함하는 영역의 가로크기(width)의 최소값, 가로크기의 최대값, 세로크기(height)의 최소값, 세로크기의 최대값을 픽셀수로 나타낼 수 있다.
2D 이미지 상에서 지시하고자 하는 특정 영역을 나타내는 정보는 메타데이터 트랙의 개별 샘플로 저장될 수 있다(t24020). 이 때 각 샘플은 top_left_x 필드, top_left_y 필드, width 필드, height 필드 및/또는 interpolate 필드를 포함할 수 있다.
top_left_x 필드 및 top_left_y 필드는 지시하고자 하는 특정 영역의 좌상단 픽셀의 x, y 좌표를 각각 나타낼 수 있다. width 필드 및 height 필드는 지시하고자 하는 특정 영역의 가로크기, 세로크기를 픽셀 수로 나타낼 수 있다. interpolate 필드는 1로 설정될 경우, 이전 샘플이 표현하는 영역과 현재 샘플이 표현하는 영역 사이의 값들은 선형 보간 값(linearly interpolated values) 으로 채워짐을 지시할 수 있다.
본 발명의 다른 실시예에 따른 특정 영역 지시 관련 메타데이터를 포함하는 트랙의 샘플 엔트리는 reference_width 필드, reference_height 필드, min_x 필드, max_x 필드, min_y 필드 및/또는 max_y 필드를 포함할 수 있다. reference_width 필드, reference_height 필드는 전술한 바와 같다. 이 경우, 특정 영역 지시 관련 메타데이터는 영역이 아닌 특정 지점(시점)을 지시할 수 있다(t24030).
min_x 필드, max_x 필드, min_y 필드, max_y 필드는 각각, 해당 트랙에 포함되어 있는 각 샘플들이 포함하는 시점의 x 좌표의 최소값, x 좌표의 최대값, y 좌표의 최소값, y 좌표의 최대값을 나타낼 수 있다.
2D 이미지 상에서 지시하고자 하는 특정 지점을 나타내는 정보는 개별 샘플로 저장될 수 있다(t24040). 이 때 각 샘플은 x 필드, y 필드 및/또는 interpolate 필드를 포함할 수 있다.
x 필드, y 필드는 각각, 지시하고자 하는 지점의 x, y 좌표를 나타낼 수 있다. interpolate 필드는 1로 설정될 경우, 이전 샘플이 표현하는 지점과 현재 샘플이 표현하는 지점 사이의 값들은 선형 보간 값(linearly interpolated values) 으로 채워짐을 지시할 수 있다.
도 25 는 본 발명의 다른 실시예에 따른 특정 영역 지시 관련 메타데이터를 도시한 도면이다.
실시예에 따라 특정 영역 지시 관련 메타데이터는 3D 공간 상에서 특정 영역 내지 시점을 지시할 수 있다. 실시예에 따라 특정 영역 지시 관련 메타데이터는 ISOBMFF 내에서 타임드 메타데이터(timed metadata)로서 하나의 트랙으로 저장될 수 있다.
본 발명의 또 다른 실시예에 따른 특정 영역 지시 관련 메타데이터를 포함하는 트랙의 샘플 엔트리는 min_yaw 필드, max_yaw 필드, min_pitch 필드, max_pitch 필드, min_roll 필드, max_roll 필드, min_field_of_view 필드 및/또는 max_field_of_view 필드를 포함할 수 있다.
min_yaw 필드, max_yaw 필드, min_pitch 필드, max_pitch 필드, min_roll 필드, max_roll 필드는 해당 트랙에 포함되어 있는 각 샘플들이 포함하는 지시하고자 하는 특정 영역의 yaw, pitch, roll 기준 회전량의 최소/최대값을 나타낼 수 있다. 이 필드들은 차례로 해당 트랙에 포함되어 있는 각 샘플들이 포함하는 yaw 축 기준 회전량의 최소값, 해당 트랙에 포함되어 있는 각 샘플들이 포함하는 yaw 축 기준 회전량의 최대값, 해당 트랙에 포함되어 있는 각 샘플들이 포함하는 pitch 축 기준 회전량의 최소값, 해당 트랙에 포함되어 있는 각 샘플들이 포함하는 pitch 축 기준 회전량의 최대값, 해당 트랙에 포함되어 있는 각 샘플들이 포함하는 roll 축 기준 회전량의 최소값, 해당 트랙에 포함되어 있는 각 샘플들이 포함하는 roll 축 기준 회전량의 최대값을 나타낼 수 있다.
min_field_of_view 필드, max_field_of_view 필드는 해당 트랙에 포함되어 있는 각 샘플들이 포함하는 지시하고자 하는 특정 영역의 수직/수평 FOV 의 최소/최대값을 나타낼 수 있다.
3D 공간 상에서 지시하고자 하는 특정 영역을 나타내는 정보는 개별 샘플로 저장될 수 있다(t25020). 이 때 각 샘플은 yaw 필드, pitch 필드, roll 필드, interpolate 필드 및/또는 field_of_view 필드를 포함할 수 있다.
yaw 필드, pitch 필드, roll 필드는 각각 지시하고자 하는 특정 영역의 yaw, pitch, roll 축 기준 회전량을 나타낼 수 있다. interpolate 필드는 이전 샘플이 표현하는 영역과 현재 샘플이 표현하는 영역 사이의 값들은 선형 보간 값(linearly interpolated values) 으로 채워야 하는지 여부를 지시할 수 있다. field_of_view 필드는 표현하고자 하는 수직/수평 시야 범위(field of view)를 나타낼 수 있다.
3D 공간 상에서 지시하고자 하는 특정 시점을 나타내는 정보는 개별 샘플로 저장될 수 있다(t25030). 이 때 각 샘플은 yaw 필드, pitch 필드, roll 필드 및/또는 interpolate 필드를 포함할 수 있다.
yaw 필드, pitch 필드, roll 필드는 각각 지시하고자 하는 특정 시점의 yaw, pitch, roll 축 기준 회전량을 나타낼 수 있다. interpolate 필드는 이전 샘플이 표현하는 지점과 현재 샘플이 표현하는 지점 사이의 값들은 선형 보간 값(linearly interpolated values) 으로 채워야 하는지 여부를 지시할 수 있다.
특정 영역 지시 관련 메타데이터를 전달하는 경우, 전술한 실시예들에 따른 360 비디오 관련 메타데이터 전달방법들이 모두 적용될 수 있다. 예를 들어, 전술한 바와 같이 특정 영역 지시 관련 메타데이터는 복수개의 트랙 중 어느 특정 트랙을 통해서만 전달되고, 나머지 트랙들은 단지 그 특정 트랙을 레퍼런싱해주는 방법이 사용될 수 있다.
본 발명에서 TrackReferenceTypeBox 가 reference_type 이 'vdsc' 타입을 가지는 경우, 이 박스는 전술한 특정 영역 지시 관련 메타데이터를 운반하고 있는 특정 트랙을 지시할 수 있다.
또는 현재 트랙이 특정 영역 지시 관련 메타데이터를 운반하고 있는 트랙이고, 지시되는 트랙이 해당 메타데이터가 적용되는 360 비디오 데이터를 운반하는 트랙일 수도 있다. 이 경우 reference_type 은 'vdsc' 타입 외에 'cdsc' 타입을 가질 수도 있다. 'cdsc' 타입이 사용되는 경우, 지시되는 트랙이 현재 트랙에 의해 기술됨을 나타낼 수 있다. 'cdsc' 타입은 전술한 360 비디오 관련 메타데이터 전반에도 쓰일 수 있다.
도 26 는 본 발명의 일 실시예에 따른 GPS 관련 메타데이터를 도시한 도면이다.
360 비디오의 재생에 있어, 해당 영상과 관련된 GPS 관련 메타데이터가 더 전달될 수 있다. GPS 관련 메타데이터는 전술한 360 비디오 관련 메타데이터 내지 OMVideoConfigurationBox 에 포함될 수도 있다.
본 발명의 일 실시예에 따른 GPS 관련 메타데이터는 ISOBMFF 내에서 타임드 메타데이터(timed metadata)로서 하나의 트랙으로 저장될 수 있다. 이 트랙의 샘플 엔트리는 coordinate_reference_sys 필드 및/또는 altitude_flag 필드를 포함할 수 있다(t26010).
coordinate_reference_sys 필드는 해당 샘플에 포함되어 있는 위도,경도,고도 값에 대한 coordinate reference system 을 나타낼 수 있다. 이는 URI 등의 형태로 표현될 수 있으며 예를 들어 “urn:ogc:def:crs:EPSG::4979” (EPSG 데이터 베이스에서 code 4979 인 Coordinate Reference System (CRS) )등을 나타낼 수 있다.
altitude_flag 필드는 해당 샘플에 고도값이 포함되었는지 여부를 나타낼 수 있다.
GPS 관련 메타데이터는 개별 샘플로 저장될 수 있다(t26020). 이 때 각 샘플은 longitude 필드, latitude 필드 및/또는 altitude 필드를 포함할 수 있다.
longitude 필드는 해당 지점의 경도 값을 나타낼 수 있다. 양의 값은 eastern longitude 을 나타내며 음의 값은 western longitude 을 나타낼 수 있다. latitude 필드는 해당 지점의 위도 값을 나타낼 수 있다. 양의 값은 northern latitude 을 나타내며 음의 값은 southern latitude을 나타낼 수 있다. altitude 필드는 해당 지점의 고도값을 나타낼 수 있다.
GPSSampleEntry 의 altitude_flag 필드가 0 인 경우, altitude 필드가 포함되지 않은 샘플 포맷이 사용될 수도 있다(t26030).
GPS 관련 메타데이터를 전달하는 경우, 전술한 실시예들에 따른 360 비디오 관련 메타데이터 전달방법들이 모두 적용될 수 있다. 예를 들어, 전술한 바와 같이 GPS 관련 메타데이터는 복수개의 트랙 중 어느 특정 트랙을 통해서만 전달되고, 나머지 트랙들은 단지 그 특정 트랙을 레퍼런싱해주는 방법이 사용될 수 있다.
본 발명에서 TrackReferenceTypeBox 가 reference_type 이 'gpsd' 타입을 가지는 경우, 이 박스는 전술한 GPS 관련 메타데이터를 운반하고 있는 특정 트랙을 지시할 수 있다.
또는 현재 트랙이 GPS 관련 메타데이터를 운반하고 있는 트랙이고, 지시되는 트랙이 해당 메타데이터가 적용되는 360 비디오 데이터를 운반하는 트랙일 수도 있다. 이 경우 reference_type 은 'gpsd' 타입 외에 'cdsc' 타입을 가질 수도 있다. 'cdsc' 타입이 사용되는 경우, 지시되는 트랙이 현재 트랙에 의해 기술됨을 나타낼 수 있다.
본 발명에 따른 360 비디오 관련 메타데이터의 저장/전달 방안은, 360 비디오에 대한 미디어 파일의 생성, MPEG DASH 상에서 동작하는 DASH 세그먼트의 생성 또는 MPEG MMT 상에서 동작하는 MPU 생성시에 적용될 수 있다. 수신기(DASH 클라이언트, MMT 클라이언트 등을 포함)는, 디코더 등에서 360 비디오 관련 메타데이터(플래그, 파라미터, 박스 등등)을 획득하여, 이를 기반으로 해당 컨텐트를 효과적으로 제공할 수 있다.
전술한 2DReagionCartesianCoordinatesSampleEntry, 2DPointCartesianCoordinatesSampleEntry, 3DCartesianCoordinatesSampleEntry, GPSSampleEntry, OMVideoConfigurationBox 는 하나의 미디어 파일, DASH 세그먼트 또는 MMT MPU 내의 여러 박스들에 동시에 존재할 수도 있다. 이 경우, 상위 박스에서 정의된 360 비디오 관련 메타데이터들은 하위 박스에서 정의된 360 비디오 관련 메타데이터들에 의해 오버라이드(override) 될 수 있다.
도 27 은 본 발명의 일 실시예에 따른 360 비디오를 전송하는 방법을 도시한 도면이다.
본 발명의 일 실시예에 따른 360 비디오를 전송하는 방법은 적어도 하나 이상의 카메라에 의해 캡쳐된 360 비디오 데이터를 전달받는 단계, 상기 360 비디오 데이터를 처리하여 2D 이미지로 프로젝션(Projection)하는 단계, 상기 360 비디오 데이터에 대한 메타데이터를 생성하는 단계, 상기 2D 이미지를 인코딩하는 단계 및 상기 인코딩된 2D 이미지 및 상기 메타데이터에 전송을 위한 처리를 수행하고, 방송망을 통하여 전송하는 단계를 포함할 수 있다. 여기서 360 비디오 데이터에 대한 메타데이터는, 전술한 360 비디오 관련 메타데이터에 해당할 수 있다. 문맥에 따라 360 비디오 데이터에 대한 메타데이터는 360 비디오 데이터에 대한 시그널링 정보로 불릴 수도 있다. 문맥에 따라 메타데이터는 시그널링 정보로 불릴 수도 있다.
360 비디오 전송 장치의 데이터 입력부는 적어도 하나 이상의 카메라에 의해 캡쳐된 360 비디오 데이터를 전달받을 수 있다. 360 비디오 전송 장치의 스티처 및 프로젝션 처리부는 360 비디오 데이터를 처리하여 2D 이미지로 프로젝션할 수 있다. 스티처 및 프로젝션 처리부는 실시예에 따라 하나의 내부 컴포넌트로 구성될 수 있다. 360 비디오 전송 장치의 시그널링 처리부는 360 비디오 데이터에 대한 메타데이터를 생성할 수 있다. 360 비디오 전송 장치의 데이터 인코더는 전술한 2D 이미지를 인코딩할 수 있다. 360 비디오 전송 장치의 전송 처리부는 인코딩된 2D 이미지 및 메타데이터에 전송을 위한 처리를 수행할 수 있다. 360 비디오 전송 장치의 전송부는 이를 방송망을 통하여 전송할 수 있다. 여기서, 메타데이터는 360 비디오 데이터가 2D 이미지 상에 프로젝션되는데 사용된 프로젝션 스킴을 지시하는 프로젝션 스킴 정보를 포함할 수 있다. 여기서 프로젝션 스킴 정보는 전술한 projection_scheme 필드일 수 있다.
본 발명의 다른 실시예에 따른 360 비디오를 전송하는 방법에서, 스티처는 360 비디오 데이터를 스티칭하고, 프로젝션 처리부는 스티칭된 360 비디오 데이터를 2D 이미지 상에 프로젝션할 수 있다.
본 발명의 또 다른 실시예에 따른 360 비디오를 전송하는 방법에서, 프로젝션 스킴 정보가 특정 스킴을 지시하는 경우, 프로젝션 처리부는 스티칭없이 360 비디오 데이터를 2D 이미지 상에 프로젝션할 수 있다.
본 발명의 또 다른 실시예에 따른 360 비디오를 전송하는 방법에서, 메타데이터는 360 비디오 데이터 중 ROI 영역을 지시하는 ROI 정보 또는 360 비디오 데이터 중 360 비디오 데이터의 재생시 처음으로 사용자에 보여지는 초기 시점 영역을 지시하는 초기 시점 정보를 포함할 수 있다. ROI 정보는 ROI 영역을 2D 이미지 상에서 X, Y 좌표를 통해 나타내거나, 또는 360 비디오 데이터를 3D 공간에 리-프로젝션했을 때 3D 공간 상에서 나타나는 ROI 영역을 피치(Pitch), 야(Yaw) 및 롤(Roll) 을 통해서 나타낼 수 있다. 초기 시점 정보는 초기 시점 영역을 2D 이미지 상에서 X, Y 좌표를 통해 나타내거나, 또는 3D 공간 상에서 나타나는 초기 시점 영역을 피치, 야 및 롤을 통해서 나타낼 수 있다.
본 발명의 또 다른 실시예에 따른 360 비디오를 전송하는 방법에서, 데이터 인코더는 2D 이미지 상에서 ROI 영역 또는 초기 시점 영역이 해당하는 리전들을 어드밴스드 레이어로 인코딩하고, 2D 이미지 상의 나머지 리전들은 베이스 레이어로 인코딩할 수 있다.
본 발명의 또 다른 실시예에 따른 360 비디오를 전송하는 방법에서, 메타데이터는 360 비디오 데이터의 스티칭이 수신기에서 수행되기 위해 필요한 스티칭 메타데이터를 더 포함할 수 있다. 스티칭 메타데이터는 전술한 수신측 stitching 관련 메타데이터에 해당할 수 있다. 스티칭 메타데이터는 360 비디오 데이터에 스티칭이 수행되었는지 여부를 지시하는 스티칭 플래그 정보 및 360 비디오 데이터를 캡쳐한 적어도 하나 이상의 카메라에 대한 카메라 정보를 포함할 수 있다. 카메라 정보는 적어도 하나 이상의 카메라의 개수 정보, 각각의 카메라에 대한 내부(Intrinsic) 카메라 정보, 각각의 카메라에 대한 외부(Extrinsic) 카메라 정보 및 각각의 카메라가 캡쳐하는 이미지의 중심이 3D 공간 상에서 어디에 위치하는지를 피치(Pitch), 야(Yaw) 및 롤(Roll) 값으로 지시하는 카메라 중심 정보를 포함할 수 있다.
본 발명의 또 다른 실시예에 따른 360 비디오를 전송하는 방법에서, 스티칭 메타데이터는 2D 이미지 상에서의 각 리전들이 회전되어 있는지 여부를 나타내는 회전 플래그 정보, 각 리전들이 회전된 축을 나타내는 회전 축 정보 및 각 리전들이 회전된 방향과 정도를 나타내는 회전량 정보를 더 포함할 수 있다.
본 발명의 또 다른 실시예에 따른 360 비디오를 전송하는 방법에서, 프로젝션 스킴 정보가 특정 스킴을 지시하는 경우, 스티칭없이 프로젝션되는 360 비디오 데이터는 구형(Spherical) 카메라에 의해 캡쳐된 어안(Fish-eye) 이미지일 수 있다.
본 발명의 또 다른 실시예에 따른 360 비디오를 전송하는 방법에서, 메타데이터는 360 비디오 데이터가 지원하는 피치(Pitch)의 각도 범위가 180도 보다 작은지 여부를 지시하는 피치 각도 플래그를 더 포함할 수 있다. 메타데이터는 360 비디오 데이터가 지원하는 야(Yaw)의 각도 범위가 360도 보다 작은지 여부를 지시하는 야(Yaw) 각도 플래그를 더 포함할 수 있다. 이는 전술한 360 비디오의 지원 범위 관련 메타데이터에 해당할 수 있다.
본 발명의 또 다른 실시예에 따른 360 비디오를 전송하는 방법에서, 피치(Pitch) 각도 플래그가 피치의 각도 범위가 180도 보다 작다고 지시하는 경우, 메타데이터는 360 비디오 데이터가 지원하는 피치의 최소 각도 및 최대 각도를 각각 지시하는 최소 피치 정보 및 최대 피치 정보를 더 포함할 수 있다. 야(Yaw) 각도 플래그가 야(Yaw)의 각도 범위가 360도 보다 작다고 지시하는 경우, 메타데이터는 360 비디오 데이터가 지원하는 야(Yaw)의 최소 각도 및 최대 각도를 각각 지시하는 최소 야(Yaw) 정보 및 최대 야(Yaw) 정보를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 360 비디오를 수신하는 방법을 설명한다. 이 방법은 도면에 도시되지 아니하였다.
본 발명의 일 실시예에 따른 360 비디오를 수신하는 방법은 수신부가 방송망을 통하여 360 비디오 데이터를 포함하는 2D 이미지 및 상기 360 비디오 데이터에 대한 메타데이터를 포함하는 방송 신호를 수신하는 단계, 수신 처리부가 상기 방송 신호를 처리하여 상기 2D 이미지 및 상기 메타데이터를 획득하는 단계, 데이터 디코더가 상기 2D 이미지를 디코딩하는 단계; 시그널링 파서가 메타데이터를 파싱하는 단계 및 렌더러가 2D 이미지를 처리하여 360 비디오 데이터를 3D 공간으로 렌더링하는 단계를 포함할 수 있다.
본 발명의 실시예들에 따른 360 비디오를 수신하는 방법들은, 전술한 본 발명의 실시예들에 따른 360 비디오를 전송하는 방법들에 대응될 수 있다. 360 비디오를 수신하는 방법은, 전술한 360 비디오를 전송하는 방법의 실시예들에 대응되는 실시예들을 가질 수 있다.
전술한 단계들은 실시예에 따라 생략되거나, 유사/동일한 동작을 수행하는 다른 단계에 의해 대체될 수 있다.
본 발명의 일 실시예에 따른 360 비디오 전송 장치는 전술한 데이터 입력부, 스티처, 시그널링 처리부, 프로젝션 처리부, 데이터 인코더, 전송 처리부 및/또는 전송부를 포함할 수 있다. 각각의 내부 컴포넌트들은 전술한 바와 같다. 본 발명의 일 실시예에 따른 360 비디오 전송 장치 및 그 내부 컴포넌트들은, 전술한 본 발명의 360 비디오를 전송하는 방법의 실시예들을 수행할 수 있다.
본 발명의 일 실시예에 따른 360 비디오 수신 장치는 전술한 수신부, 수신 처리부, 데이터 디코더, 시그널링 파서, 리-프로젝션 처리부 및/또는 렌더러를 포함할 수 있다. 각각의 내부 컴포넌트들은 전술한 바와 같다. 본 발명의 일 실시예에 따른 360 비디오 수신 장치 및 그 내부 컴포넌트들은, 전술한 본 발명의 360 비디오를 수신하는 방법의 실시예들을 수행할 수 있다.
전술한 장치의 내부 컴포넌트들은 메모리에 저장된 연속된 수행과정들을 실행하는 프로세서들이거나, 그 외의 하드웨어로 구성된 하드웨어 컴포넌트들일 수 있다. 이 들은 장치 내/외부에 위치할 수 있다.
전술한 모듈들은 실시예에 따라 생략되거나, 유사/동일한 동작을 수행하는 다른 모듈에 의해 대체될 수 있다.
전술한 각각의 파트, 모듈 또는 유닛은 메모리(또는 저장 유닛)에 저장된 연속된 수행과정들을 실행하는 프로세서이거나 하드웨어 파트일 수 있다. 전술한 실시예에 기술된 각 단계들은 프로세서 또는 하드웨어 파트들에 의해 수행될 수 있다. 전술한 실시예에 기술된 각 모듈/블락/유닛들은 하드웨어/프로세서로서 동작할 수 있다. 또한, 본 발명이 제시하는 방법들은 코드로서 실행될 수 있다. 이 코드는 프로세서가 읽을 수 있는 저장매체에 쓰여질 수 있고, 따라서 장치(apparatus)가 제공하는 프로세서에 의해 읽혀질 수 있다.
설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 통상의 기술자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 본 발명의 권리범위에 속한다.
본 발명에 따른 장치 및 방법은 상술한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상술한 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
한편, 본 발명이 제안하는 방법을 네트워크 디바이스에 구비된, 프로세서가 읽을 수 있는 기록매체에, 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 이해된다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.
본 명세서에서 장치 및 방법 발명이 모두 언급되고, 장치 및 방법 발명 모두의 설명은 서로 보완하여 적용될 수 있다.
발명의 실시를 위한 형태
다양한 실시예가 본 발명을 실시하기 위한 최선의 형태에서 설명되었다.
본 발명은 일련의 VR 관련 분야에서 이용된다.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.

Claims (20)

  1. 적어도 하나 이상의 카메라에 의해 캡쳐된 360 비디오 데이터를 전달받는 단계;
    상기 360 비디오 데이터를 처리하여 2D 이미지로 프로젝션(Projection)하는 단계;
    상기 360 비디오 데이터에 대한 시그널링 정보를 생성하는 단계;
    상기 2D 이미지를 인코딩하는 단계; 및
    상기 인코딩된 2D 이미지 및 상기 시그널링 정보에 전송을 위한 처리를 수행하고, 방송망을 통하여 전송하는 단계; 를 포함하고,
    상기 시그널링 정보는 상기 360 비디오 데이터가 상기 2D 이미지 상에 프로젝션되는데 사용된 프로젝션 스킴(scheme) 을 지시하는 프로젝션 스킴 정보를 포함하는 것을 특징으로 하는 360 비디오를 전송하는 방법.
  2. 제 1 항에 있어서, 상기 360 비디오 데이터를 처리하여 2D 이미지로 프로젝션하는 단계는:
    상기 360 비디오 데이터를 스티칭(stitching)하는 단계, 및
    상기 스티칭된 360 비디오 데이터를 상기 2D 이미지 상에 프로젝션하는 단계;
    를 포함하는 360 비디오를 전송하는 방법.
  3. 제 1 항에 있어서, 상기 프로젝션 스킴 정보가 특정 스킴을 지시하는 경우, 상기 360 비디오 데이터를 처리하여 2D 이미지로 프로젝션하는 단계는:
    스티칭없이 상기 360 비디오 데이터를 상기 2D 이미지 상에 프로젝션하는 단계;
    를 포함하는 360 비디오를 전송하는 방법.
  4. 제 2 항에 있어서,
    상기 시그널링 정보는 상기 360 비디오 데이터 중 ROI (Region Of Interest) 영역을 지시하는 ROI 정보 또는 상기 360 비디오 데이터 중 상기 360 비디오 데이터의 재생시 처음으로 사용자에 보여지는 초기 시점 영역을 지시하는 초기 시점 정보를 포함하고,
    상기 ROI 정보는 상기 ROI 영역을 상기 2D 이미지 상에서 X, Y 좌표를 통해 나타내거나, 또는 상기 360 비디오 데이터를 3D 공간에 리-프로젝션(Re-Projection) 했을 때 상기 3D 공간 상에서 나타나는 상기 ROI 영역을 피치(Pitch), 야(Yaw) 및 롤(Roll) 을 통해서 나타내고,
    상기 초기 시점 정보는 상기 초기 시점 영역을 상기 2D 이미지 상에서 X, Y 좌표를 통해 나타내거나, 또는 상기 3D 공간 상에서 나타나는 상기 초기 시점 영역을 피치, 야 및 롤을 통해서 나타내는 360 비디오를 전송하는 방법.
  5. 제 2 항에 있어서, 상기 시그널링 정보는 상기 360 비디오 데이터가 리-프로젝션되는 3D 공간의 중점(orientation)에 대한 3D 공간 중점 정보를 더 포함하고,
    상기 3D 공간 중점 정보는 상기 3D 공간의 중점이 캡쳐 스페이스 좌표계의 원점을 기준으로 회전된 정도를 피치(Pitch), 야(Yaw) 및 롤(Roll) 을 통해서 나타내는 것을 특징으로 하는 360 비디오를 전송하는 방법.
  6. 제 3 항에 있어서,
    상기 시그널링 정보는 상기 360 비디오 데이터의 스티칭이 수신기에서 수행되기 위해 필요한 스티칭 시그널링 정보를 더 포함하고,
    상기 스티칭 시그널링 정보는 상기 360 비디오 데이터에 스티칭이 수행되었는지 여부를 지시하는 스티칭 플래그 정보 및 상기 360 비디오 데이터를 캡쳐한 상기 적어도 하나 이상의 카메라에 대한 카메라 정보를 포함하고,
    상기 카메라 정보는 상기 적어도 하나 이상의 카메라의 개수 정보, 각각의 상기 카메라에 대한 내부(Intrinsic) 카메라 정보, 각각의 상기 카메라에 대한 외부(Extrinsic) 카메라 정보 및 각각의 상기 카메라가 캡쳐하는 이미지의 중심이 3D 공간 상에서 어디에 위치하는지를 피치(Pitch), 야(Yaw) 및 롤(Roll) 값으로 지시하는 카메라 중심 정보를 포함하는 것을 특징으로 하는 360 비디오를 전송하는 방법.
  7. 제 6 항에 있어서,
    상기 스티칭 시그널링 정보는 상기 2D 이미지 상에서의 각 리전들이 회전되어 있는지 여부를 나타내는 회전 플래그 정보, 상기 각 리전들이 회전된 축을 나타내는 회전 축 정보 및 상기 각 리전들이 회전된 방향과 정도를 나타내는 회전량 정보를 더 포함하는 것을 특징으로 하는 360 비디오를 전송하는 방법.
  8. 제 3 항에 있어서,
    상기 프로젝션 스킴 정보가 상기 특정 스킴을 지시하는 경우, 상기 스티칭없이 프로젝션되는 360 비디오 데이터는 구형(Spherical) 카메라에 의해 캡쳐된 어안(Fish-eye) 이미지인 것을 특징으로 하는 360 비디오를 전송하는 방법.
  9. 제 1 항에 있어서,
    상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 피치(Pitch)의 각도 범위가 180도 보다 작은지 여부를 지시하는 피치 각도 플래그를 더 포함하고,
    상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 야(Yaw)의 각도 범위가 360도 보다 작은지 여부를 지시하는 야(Yaw) 각도 플래그를 더 포함하는 것을 특징으로 하는 360 비디오를 전송하는 방법.
  10. 제 9 항에 있어서,
    상기 피치(Pitch) 각도 플래그가 상기 피치의 각도 범위가 180도 보다 작다고 지시하는 경우, 상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 피치의 최소 각도 및 최대 각도를 각각 지시하는 최소 피치 정보 및 최대 피치 정보를 더 포함하고,
    상기 야(Yaw) 각도 플래그가 상기 야(Yaw)의 각도 범위가 360도 보다 작다고 지시하는 경우, 상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 야(Yaw)의 최소 각도 및 최대 각도를 각각 지시하는 최소 야(Yaw) 정보 및 최대 야(Yaw) 정보를 더 포함하는 것을 특징으로 하는 360 비디오를 전송하는 방법.
  11. 방송망을 통하여 360 비디오 데이터를 포함하는 2D 이미지 및 상기 360 비디오 데이터에 대한 시그널링 정보를 포함하는 방송 신호를 수신하는 수신부;
    상기 방송 신호를 처리하여 상기 2D 이미지 및 상기 시그널링 정보를 획득하는 수신 처리부;
    상기 2D 이미지를 디코딩하는 데이터 디코더;
    상기 시그널링 정보를 파싱하는 시그널링 파서; 및
    상기 2D 이미지를 처리하여 상기 360 비디오 데이터를 3D 공간으로 렌더링하는 렌더러; 를 포함하고,
    상기 시그널링 정보는 상기 360 비디오 데이터가 상기 2D 이미지 상에 프로젝션되는데 사용된 프로젝션 스킴(scheme) 을 지시하는 프로젝션 스킴 정보를 포함하는 것을 특징으로 하는 360 비디오 수신 장치.
  12. 제 11 항에 있어, 상기 렌더러는:
    상기 2D 이미지 상에 프로젝션된 상기 360 비디오 데이터를 상기 3D 공간에 리-프로젝션하는 것을 특징으로 하는 360 비디오 수신 장치.
  13. 제 11 항에 있어, 상기 360 비디오 수신 장치는:
    상기 프로젝션 스킴 정보가 특정 스킴을 지시하는 경우, 상기 2D 이미지 상에 프로젝션된 상기 360 비디오 데이터를 추출하고, 상기 시그널링 정보를 이용하여 상기 추출된 360 비디오 데이터를 스티칭(stitching)하는 스티처;를 더 포함하고,
    상기 렌더러는 상기 스티칭된 360 비디오 데이터를 상기 3D 공간에 리-프로젝션하는 것을 특징으로 하는 360 비디오 수신 장치.
  14. 제 12 항에 있어서,
    상기 시그널링 정보는 상기 360 비디오 데이터 중 ROI (Region Of Interest) 영역을 지시하는 ROI 정보 또는 상기 360 비디오 데이터 중 상기 360 비디오 데이터의 재생시 처음으로 사용자에 보여지는 초기 시점 영역을 지시하는 초기 시점 정보를 포함하고,
    상기 ROI 정보는 상기 ROI 영역을 상기 2D 이미지 상에서 X, Y 좌표를 통해 나타내거나, 또는 상기 3D 공간 상에서 나타나는 상기 ROI 영역을 피치(Pitch), 야(Yaw) 및 롤(Roll) 을 통해서 나타내고,
    상기 초기 시점 정보는 상기 초기 시점 영역을 상기 2D 이미지 상에서 X, Y 좌표를 통해 나타내거나, 또는 상기 3D 공간 상에서 나타나는 상기 초기 시점 영역을 피치, 야 및 롤을 통해서 나타내는 것을 특징으로 하는 360 비디오 수신 장치.
  15. 제 12 항에 있어서,
    상기 시그널링 정보는 상기 360 비디오 데이터가 리-프로젝션되는 3D 공간의 중점(orientation)에 대한 3D 공간 중점 정보를 더 포함하고,
    상기 3D 공간 중점 정보는 상기 3D 공간의 중점이 캡쳐 스페이스 좌표계의 원점을 기준으로 회전된 정도를 피치(Pitch), 야(Yaw) 및 롤(Roll) 을 통해서 나타내는 것을 특징으로 하는 360 비디오 수신 장치.
  16. 제 13 항에 있어서,
    상기 시그널링 정보는 상기 360 비디오 데이터의 스티칭이 수신기에서 수행되기 위해 필요한 스티칭 시그널링 정보를 더 포함하고,
    상기 스티칭 시그널링 정보는 상기 360 비디오 데이터에 스티칭이 수행되었는지 여부를 지시하는 스티칭 플래그 정보 및 상기 360 비디오 데이터를 캡쳐한 적어도 하나 이상의 카메라에 대한 카메라 정보를 포함하고,
    상기 카메라 정보는 상기 적어도 하나 이상의 카메라의 개수 정보, 각각의 상기 카메라에 대한 내부(Intrinsic) 카메라 정보, 각각의 상기 카메라에 대한 외부(Extrinsic) 카메라 정보 및 각각의 상기 카메라가 캡쳐하는 이미지의 중심이 3D 공간 상에서 어디에 위치하는지를 피치(Pitch), 야(Yaw) 및 롤(Roll) 값으로 지시하는 카메라 중심 정보를 포함하는 것을 특징으로 하는 360 비디오 수신 장치.
  17. 제 16 항에 있어서,
    상기 스티칭 시그널링 정보는 상기 2D 이미지 상에서의 각 리전들이 회전되어 있는지 여부를 나타내는 회전 플래그 정보, 상기 각 리전들이 회전된 축을 나타내는 회전 축 정보 및 상기 각 리전들이 회전된 방향과 정도를 나타내는 회전량 정보를 더 포함하는 것을 특징으로 하는 360 비디오 수신 장치.
  18. 제 13 항에 있어서,
    상기 프로젝션 스킴 정보가 상기 특정 스킴을 지시하는 경우, 상기 추출된 360 비디오 데이터는 구형(Spherical) 카메라에 의해 캡쳐된 어안(Fish-eye) 이미지인 것을 특징으로 하는 360 비디오 수신 장치.
  19. 제 11 항에 있어서,
    상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 피치(Pitch)의 각도 범위가 180도 보다 작은지 여부를 지시하는 피치 각도 플래그를 더 포함하고,
    상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 야(Yaw)의 각도 범위가 360도 보다 작은지 여부를 지시하는 야(Yaw) 각도 플래그를 더 포함하는 것을 특징으로 하는 360 비디오 수신 장치.
  20. 제 19 항에 있어서,
    상기 피치(Pitch) 각도 플래그가 상기 피치의 각도 범위가 180도 보다 작다고 지시하는 경우, 상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 피치의 최소 각도 및 최대 각도를 각각 지시하는 최소 피치 정보 및 최대 피치 정보를 더 포함하고,
    상기 야(Yaw) 각도 플래그가 상기 야(Yaw)의 각도 범위가 360도 보다 작다고 지시하는 경우, 상기 시그널링 정보는 상기 360 비디오 데이터가 지원하는 야(Yaw)의 최소 각도 및 최대 각도를 각각 지시하는 최소 야(Yaw) 정보 및 최대 야(Yaw) 정보를 더 포함하는 것을 특징으로 하는 360 비디오 수신 장치.
KR1020187023124A 2016-02-17 2017-02-17 360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치 KR102157655B1 (ko)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201662296534P 2016-02-17 2016-02-17
US201662296535P 2016-02-17 2016-02-17
US62/296,534 2016-02-17
US62/296,535 2016-02-17
US201662297951P 2016-02-22 2016-02-22
US62/297,951 2016-02-22
US201662337299P 2016-05-16 2016-05-16
US62/337,299 2016-05-16
PCT/KR2017/001789 WO2017142353A1 (ko) 2016-02-17 2017-02-17 360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치

Publications (2)

Publication Number Publication Date
KR20180107149A true KR20180107149A (ko) 2018-10-01
KR102157655B1 KR102157655B1 (ko) 2020-09-18

Family

ID=59626071

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187023124A KR102157655B1 (ko) 2016-02-17 2017-02-17 360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치

Country Status (5)

Country Link
US (1) US10880535B2 (ko)
EP (1) EP3419295A4 (ko)
KR (1) KR102157655B1 (ko)
CN (1) CN108702528B (ko)
WO (1) WO2017142353A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065632B1 (ko) * 2018-10-22 2020-02-11 전자부품연구원 복수의 가상 카메라를 이용한 게임 내 360 vr 영상 획득 장치 및 방법
KR20200076529A (ko) * 2018-12-19 2020-06-29 가천대학교 산학협력단 가상 현실 비디오 스트리밍에서의 관심영역 타일 인덱싱
KR20200078818A (ko) * 2018-12-24 2020-07-02 서울과학기술대학교 산학협력단 하이브리드망 기반의 영상 전송 시스템 및 방법
KR20200124906A (ko) * 2019-04-25 2020-11-04 주식회사 엘지유플러스 영상 스트리밍 서비스 제공 장치 및 방법

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195881A1 (ja) * 2016-05-13 2017-11-16 ソニー株式会社 ファイル生成装置およびファイル生成方法、並びに、再生装置および再生方法
KR102358757B1 (ko) * 2016-08-25 2022-02-07 엘지전자 주식회사 전방향 비디오를 전송하는 방법, 전방향 비디오를 수신하는 방법, 전방향 비디오 전송 장치, 전방향 비디오 수신 장치
EP3503546A4 (en) * 2016-08-25 2020-01-22 LG Electronics Inc. -1- METHOD FOR SENDING AN OMNIDIRECTIONAL VIDEO, METHOD FOR RECEIVING AN OMNIDIRECTIONAL VIDEO, DEVICE FOR SENDING AN OMNIDIRECTIONAL VIDEO, AND DEVICE FOR RECEIVING AN OMNIDIRECTIONAL VIDEO
CN107888987B (zh) * 2016-09-29 2019-12-06 华为技术有限公司 一种全景视频播放方法及装置
WO2018070810A1 (ko) * 2016-10-12 2018-04-19 삼성전자 주식회사 가상 현실 영상을 처리하는 방법 및 장치
KR102598082B1 (ko) * 2016-10-28 2023-11-03 삼성전자주식회사 영상 표시 장치, 모바일 장치 및 그 동작방법
CN112738530B (zh) 2016-11-17 2024-02-23 英特尔公司 全景视频的建议视口指示
CN110268711B (zh) * 2016-11-17 2021-07-02 英特尔公司 用于编码宽视图视频的球面旋转的方法及装置
US10931971B2 (en) * 2016-12-27 2021-02-23 Samsung Electronics Co., Ltd. Method and apparatus for encoding and decoding 360-degree image
RU2019129256A (ru) * 2017-03-24 2021-03-17 Сони Корпорейшн Способ обработки информации, устройство для обработки информации и программа
US10506255B2 (en) * 2017-04-01 2019-12-10 Intel Corporation MV/mode prediction, ROI-based transmit, metadata capture, and format detection for 360 video
WO2018218028A1 (en) * 2017-05-25 2018-11-29 Vid Scale, Inc. Hybrid cubemap projection for 360-degree video coding
CN110546688B (zh) * 2017-05-30 2023-11-17 索尼公司 图像处理装置和方法、文件生成装置和方法及程序
US11049219B2 (en) 2017-06-06 2021-06-29 Gopro, Inc. Methods and apparatus for multi-encoder processing of high resolution content
EP3646604A1 (en) * 2017-06-30 2020-05-06 VID SCALE, Inc. Weighted to spherically uniform psnr for 360-degree video quality evaluation using cubemap-based projections
GB2566478B (en) * 2017-09-14 2019-10-30 Samsung Electronics Co Ltd Probability based 360 degree video stabilisation
KR102600011B1 (ko) * 2017-09-15 2023-11-09 인터디지털 브이씨 홀딩스 인코포레이티드 3 자유도 및 볼류메트릭 호환 가능한 비디오 스트림을 인코딩 및 디코딩하기 위한 방법들 및 디바이스들
EP3685585A1 (en) 2017-09-20 2020-07-29 Vid Scale, Inc. Handling face discontinuities in 360-degree video coding
US10659761B2 (en) 2017-09-22 2020-05-19 Lg Electronics Inc. Method for transmitting 360 video, method for receiving 360 video, apparatus for transmitting 360 video, and apparatus for receiving 360 video
US10848737B2 (en) 2017-09-26 2020-11-24 Lg Electronics Inc. Overlay processing method in 360 video system, and device thereof
WO2019066191A1 (ko) * 2017-09-28 2019-04-04 엘지전자 주식회사 스티칭 및 리프로젝션 관련 메타데이터를 이용한 6dof 비디오를 송수신하는 방법 및 그 장치
GB201717011D0 (en) * 2017-10-17 2017-11-29 Nokia Technologies Oy An apparatus a method and a computer program for volumetric video
KR102390208B1 (ko) * 2017-10-17 2022-04-25 삼성전자주식회사 멀티미디어 데이터를 전송하는 방법 및 장치
EP3474562A1 (en) * 2017-10-20 2019-04-24 Thomson Licensing Method, apparatus and stream for volumetric video format
WO2019083266A1 (ko) * 2017-10-24 2019-05-02 엘지전자 주식회사 피쉬아이 비디오 정보를 포함한 360도 비디오를 송수신하는 방법 및 그 장치
JP6472864B1 (ja) * 2017-11-29 2019-02-20 株式会社近江デジタルファブリケーションズ 画像配信システム、及び配信画像生成方法
US10217488B1 (en) 2017-12-15 2019-02-26 Snap Inc. Spherical video editing
EP3739899A4 (en) * 2018-01-12 2020-11-18 Sony Corporation INFORMATION PROCESSING DEVICE AND METHOD
WO2019147008A1 (ko) * 2018-01-23 2019-08-01 엘지전자 주식회사 카메라 렌즈 정보를 포함한 360도 비디오를 송수신하는 방법 및 그 장치
JP7047095B2 (ja) * 2018-02-27 2022-04-04 エルジー エレクトロニクス インコーポレイティド カメラレンズ情報を含む360°ビデオを送受信する方法及びその装置
KR102344073B1 (ko) * 2018-04-05 2021-12-28 엘지전자 주식회사 360도 비디오를 전송하는 방법, 360도 비디오를 수신하는 방법, 360도 비디오를 전송하는 장치 및 360도 비디오를 수신하는 장치
KR102564729B1 (ko) 2018-04-05 2023-08-09 삼성전자주식회사 복수의 뷰포인트들을 포함하는 3차원 컨텐트에 대한 정보를 전송하기 위한 방법 및 장치
WO2019198883A1 (ko) * 2018-04-11 2019-10-17 엘지전자 주식회사 핫스팟 및 roi 관련 메타데이터를 이용한 360도 비디오를 송수신하는 방법 및 그 장치
KR20190136417A (ko) * 2018-05-30 2019-12-10 삼성전자주식회사 3차원 360도 영상 데이터의 전송 방법, 그에 따른 디스플레이 장치, 및 그에 따른 영상 저장 장치
WO2019231178A1 (ko) * 2018-06-01 2019-12-05 엘지전자 주식회사 복수의 뷰포인트들에 대한 메타데이터를 송수신하는 방법 및 장치
WO2019235849A1 (ko) * 2018-06-06 2019-12-12 엘지전자 주식회사 360 비디오 시스템에서 오버레이 미디어 처리 방법 및 그 장치
US11012657B2 (en) * 2018-06-08 2021-05-18 Lg Electronics Inc. Method for processing overlay in 360-degree video system and apparatus for the same
WO2020009341A1 (ko) 2018-07-06 2020-01-09 엘지전자 주식회사 동적 뷰포인트의 좌표계에 대한 메타데이터를 송수신하는 방법 및 장치
WO2020012968A1 (ja) 2018-07-11 2020-01-16 ソニー株式会社 画像処理装置および方法
EP3595319A1 (en) * 2018-07-12 2020-01-15 InterDigital VC Holdings, Inc. Methods and apparatus for volumetric video transport
EP3823274A4 (en) * 2018-07-13 2022-03-30 LG Electronics Inc. METHOD AND DEVICE FOR TRANSMITTING AND RECEIVING METADATA ON A DYNAMIC POINT COORDINATE SYSTEM
US11677922B2 (en) 2018-08-12 2023-06-13 Lg Electronics Inc. Apparatus for transmitting a video, a method for transmitting a video, an apparatus for receiving a video, and a method for receiving a video
CN109246477B (zh) * 2018-08-17 2021-04-27 南京泓众电子科技有限公司 一种全景视频插帧方法及装置
CN113206826B (zh) * 2018-09-28 2022-10-04 华为技术有限公司 传输媒体数据的方法、客户端和服务器
KR102201763B1 (ko) * 2018-10-02 2021-01-12 엘지전자 주식회사 360 비디오 시스템에서 오버레이 처리 방법 및 그 장치
CN111263191B (zh) 2018-11-30 2023-06-27 中兴通讯股份有限公司 视频数据的处理方法、装置、相关设备及存储介质
JP7271672B2 (ja) * 2018-12-14 2023-05-11 中興通訊股▲ふん▼有限公司 没入型ビデオビットストリーム処理
EP3709659A1 (en) * 2019-03-11 2020-09-16 InterDigital VC Holdings, Inc. A method and apparatus for encoding and decoding volumetric video
KR20210138090A (ko) * 2019-03-20 2021-11-18 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 Vr360 애플리케이션에서 시점 전환 기능을 전송하는 방법 및 장치(method and device for transmitting viewpoint switching capabilities in a vr360 application)
US11228781B2 (en) 2019-06-26 2022-01-18 Gopro, Inc. Methods and apparatus for maximizing codec bandwidth in video applications
CN117635815A (zh) 2019-06-28 2024-03-01 上海交通大学 基于三维点云的初始视角控制和呈现方法及系统
WO2021071257A1 (ko) * 2019-10-07 2021-04-15 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
US11481863B2 (en) 2019-10-23 2022-10-25 Gopro, Inc. Methods and apparatus for hardware accelerated image processing for spherical projections
CN112511866B (zh) 2019-12-03 2024-02-23 中兴通讯股份有限公司 媒体资源播放方法、装置、设备和存储介质
EP4078532A1 (en) * 2019-12-20 2022-10-26 InterDigital VC Holdings France A method and apparatus for coding and decoding volumetric video with view-driven specularity
US11833419B2 (en) * 2020-03-16 2023-12-05 Tencent America LLC Method and apparatus for cloud gaming
CN112261408B (zh) * 2020-09-16 2023-04-25 青岛小鸟看看科技有限公司 用于头戴显示设备的图像处理方法、装置及电子设备
US11888913B2 (en) * 2021-04-28 2024-01-30 Lemon Inc. External stream representation properties
CN116233493A (zh) * 2021-09-29 2023-06-06 腾讯科技(深圳)有限公司 沉浸媒体的数据处理方法、装置、设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140039231A (ko) * 2011-07-15 2014-04-01 엘지전자 주식회사 3d 서비스 처리 방법 및 장치
KR20150010752A (ko) * 2012-07-04 2015-01-28 인텔 코오퍼레이션 파노라마 기반 3d 비디오 코딩
WO2015126144A1 (ko) * 2014-02-18 2015-08-27 엘지전자 주식회사 파노라마 서비스를 위한 방송 신호 송수신 방법 및 장치
US9674498B1 (en) * 2013-03-15 2017-06-06 Google Inc. Detecting suitability for converting monoscopic visual content to stereoscopic 3D
US20180374192A1 (en) * 2015-12-29 2018-12-27 Dolby Laboratories Licensing Corporation Viewport Independent Image Coding and Rendering

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060853A1 (en) * 1999-04-08 2000-10-12 Internet Pictures Corporation Method and apparatus for providing virtual processing effects for wide-angle video images
US20030022414A1 (en) * 2001-07-25 2003-01-30 Motorola, Inc. Structure and method for fabricating anopto-electronic device having an electrochromic switch
CN101754037B (zh) * 2009-06-17 2012-07-25 中国科学院自动化研究所 真三维成像引擎系统及投影方法
CN101729920B (zh) * 2009-11-23 2011-10-19 南京大学 一种自由视角立体视频显示方法
KR20120133006A (ko) 2011-05-30 2012-12-10 (주)포스트미디어 Iptv 파노라마 영상의 스트리밍 서비스 제공 방법 및 그 서비스 제공 시스템
US9135955B2 (en) * 2012-03-26 2015-09-15 Max Abecassis Playing a video presentation with playback functions
US9911454B2 (en) 2014-05-29 2018-03-06 Jaunt Inc. Camera array including camera modules
CN207096551U (zh) * 2014-05-30 2018-03-13 芬兰国家技术研究中心股份公司 全方向成像装置
US10204658B2 (en) 2014-07-14 2019-02-12 Sony Interactive Entertainment Inc. System and method for use in playing back panorama video content

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140039231A (ko) * 2011-07-15 2014-04-01 엘지전자 주식회사 3d 서비스 처리 방법 및 장치
KR20150010752A (ko) * 2012-07-04 2015-01-28 인텔 코오퍼레이션 파노라마 기반 3d 비디오 코딩
US9674498B1 (en) * 2013-03-15 2017-06-06 Google Inc. Detecting suitability for converting monoscopic visual content to stereoscopic 3D
WO2015126144A1 (ko) * 2014-02-18 2015-08-27 엘지전자 주식회사 파노라마 서비스를 위한 방송 신호 송수신 방법 및 장치
US20180374192A1 (en) * 2015-12-29 2018-12-27 Dolby Laboratories Licensing Corporation Viewport Independent Image Coding and Rendering

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065632B1 (ko) * 2018-10-22 2020-02-11 전자부품연구원 복수의 가상 카메라를 이용한 게임 내 360 vr 영상 획득 장치 및 방법
WO2020085570A1 (ko) * 2018-10-22 2020-04-30 전자부품연구원 복수의 가상 카메라를 이용한 게임 내 360 vr 영상 획득 장치 및 방법
US11951394B2 (en) 2018-10-22 2024-04-09 Korea Electronics Technology Institute Apparatus and method for acquiring in-game 360 VR image by using plurality of virtual cameras
KR20200076529A (ko) * 2018-12-19 2020-06-29 가천대학교 산학협력단 가상 현실 비디오 스트리밍에서의 관심영역 타일 인덱싱
KR20200078818A (ko) * 2018-12-24 2020-07-02 서울과학기술대학교 산학협력단 하이브리드망 기반의 영상 전송 시스템 및 방법
WO2020138536A1 (ko) * 2018-12-24 2020-07-02 서울과학기술대학교 산학협력단 하이브리드망 기반의 영상 전송 시스템 및 방법
KR20200124906A (ko) * 2019-04-25 2020-11-04 주식회사 엘지유플러스 영상 스트리밍 서비스 제공 장치 및 방법

Also Published As

Publication number Publication date
EP3419295A1 (en) 2018-12-26
KR102157655B1 (ko) 2020-09-18
CN108702528A (zh) 2018-10-23
CN108702528B (zh) 2021-06-01
EP3419295A4 (en) 2019-08-28
US20200084428A1 (en) 2020-03-12
US10880535B2 (en) 2020-12-29
WO2017142353A1 (ko) 2017-08-24

Similar Documents

Publication Publication Date Title
KR102157655B1 (ko) 360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치
US11109013B2 (en) Method of transmitting 360-degree video, method of receiving 360-degree video, device for transmitting 360-degree video, and device for receiving 360-degree video
US11115641B2 (en) Method of transmitting omnidirectional video, method of receiving omnidirectional video, device for transmitting omnidirectional video, and device for receiving omnidirectional video
KR102358757B1 (ko) 전방향 비디오를 전송하는 방법, 전방향 비디오를 수신하는 방법, 전방향 비디오 전송 장치, 전방향 비디오 수신 장치
KR102208129B1 (ko) 360 비디오 시스템에서 오버레이 처리 방법 및 그 장치
KR102118056B1 (ko) 복수의 뷰포인트들에 대한 메타데이터를 송수신하는 방법 및 장치
KR102157659B1 (ko) 360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치
US11206387B2 (en) Method for transmitting 360 video, method for receiving 360 video, apparatus for transmitting 360 video, and apparatus for receiving 360 video
KR20190039669A (ko) 360 비디오를 전송하는 방법, 360 비디오를 수신하는 방법, 360 비디오 전송 장치, 360 비디오 수신 장치
KR102243666B1 (ko) 360도 비디오를 전송하는 방법, 360도 비디오를 수신하는 방법, 360도 비디오 전송 장치, 360도 비디오 수신 장치

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant