KR20180105730A - Modulation of dystrophia myotonica-protein kinase (dmpk) expression - Google Patents

Modulation of dystrophia myotonica-protein kinase (dmpk) expression Download PDF

Info

Publication number
KR20180105730A
KR20180105730A KR1020187026597A KR20187026597A KR20180105730A KR 20180105730 A KR20180105730 A KR 20180105730A KR 1020187026597 A KR1020187026597 A KR 1020187026597A KR 20187026597 A KR20187026597 A KR 20187026597A KR 20180105730 A KR20180105730 A KR 20180105730A
Authority
KR
South Korea
Prior art keywords
dmpk
antisense
certain embodiments
rna
mice
Prior art date
Application number
KR1020187026597A
Other languages
Korean (ko)
Inventor
씨. 프란크 베네트
수잔 엠. 프리에르
로버트 에이. 마클레오드
산자이 케이. 판데이
찰스 에이. 손톤
투르만 휠러
셍 에이치. 쳉
앤드류 리거
브루스 엠. 웬트워스
Original Assignee
아이오니스 파마수티컬즈, 인코포레이티드
유니버시티 오브 로체스터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45497419&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20180105730(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 아이오니스 파마수티컬즈, 인코포레이티드, 유니버시티 오브 로체스터 filed Critical 아이오니스 파마수티컬즈, 인코포레이티드
Publication of KR20180105730A publication Critical patent/KR20180105730A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • C12N2310/3181Peptide nucleic acid, PNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • C12N2310/33415-Methylcytosine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/341Gapmers, i.e. of the type ===---===
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/352Nature of the modification linked to the nucleic acid via a carbon atom
    • C12N2310/3525MOE, methoxyethoxy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Neurology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Neurosurgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Psychiatry (AREA)
  • Reproductive Health (AREA)
  • Psychology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

동물에서 DMPK mRNA 및 단백질의 발현을 감소시키기 위한 방법, 화합물 및 조성물이 본원에 제공된다. 동물에서 CUGexp DMPK RNA를 선택적으로 감소시키거나, 근육긴장증을 감소시키거나, 스플라이스오패시를 감소시키기 위한 방법, 화합물 및 조성물이 또한 본원에 제공된다. 이러한 방법, 화합물 및 조성물은 타입 1 근육긴장성 이영양증 또는 이의 증상을 치료하거나, 예방하거나, 지연시키거나, 개선시키는데 유용하다.Methods, compounds and compositions for reducing the expression of DMPK mRNA and protein in an animal are provided herein. Also provided herein are methods, compounds, and compositions for selectively reducing CUGexp DMPK RNA in an animal, reducing muscle tension, or reducing splice disruption. Such methods, compounds, and compositions are useful for treating, preventing, delaying, or ameliorating Type I muscle tonic dystrophy or symptoms thereof.

Description

근육긴장성 이영양증-단백질 키나제(DMPK) 발현의 조절 방법{MODULATION OF DYSTROPHIA MYOTONICA-PROTEIN KINASE (DMPK) EXPRESSION}Method for regulating the expression of muscle tone dystrophy-protein kinase (DMPK) {MODULATION OF DYSTROPHIA MYOTONICA-PROTEIN KINASE (DMPK) EXPRESSION}

서열목록Sequence list

본 출원은 전자 포맷의 서열목록과 함께 출원된다. 서열목록은 약 216Mb 크기의 2011년 7월 19일에 생성된 BIOL0134USL2SEQ.txt를 제목으로 하는 파일로 제공된다. 서열목록의 전자 포맷의 정보는 전체내용이 참조로서 본원에 포함된다.This application is filed with a sequence listing in electronic format. The sequence list is provided as a file titled BIOL0134USL2SEQ.txt generated on July 19, 2011 with a size of about 216Mb. Information in the electronic format of the Sequence Listing is incorporated herein by reference in its entirety.

분야Field

동물에서 DMPK mRNA 및 단백질의 발현을 감소시키기 위한 방법, 화합물 및 조성물이 본원에 제공된다. 또한, 동물에서 CUGexp DMPK RNA를 선택적으로(preferentially) 감소시키거나, 근육긴장증을 감소시키거나, 스플라이스오패시(spliceopathy)를 감소시키기 위한 방법, 화합물, 및 DMPK 억제제를 포함하는 조성물이 본원에 제공된다. 이러한 방법, 화합물 및 조성물은, 예를 들어, 동물에서 타입 1 근육긴장성 이영양증(DM1)을 치료하거나, 예방하거나, 개선시키는데 유용하다.Provided herein are methods, compounds and compositions for reducing the expression of DMPK mRNA and proteins in animals. In addition, methods, compounds, and compositions comprising DMPK inhibitors for selectively reducing CUGexp DMPK RNA, reducing muscle tone, or reducing spliceopathy in animals are provided herein. do. These methods, compounds and compositions are useful, for example, to treat, prevent or ameliorate type 1 myotonic dystrophy (DM1) in animals.

근육긴장성 이영양증 타입 1(DM1)은 7,500명 중 1명의 추정 빈도로 성인에 존재하는 가장 흔한 형태의 근육 이영양증이다(Harper PS., Myotonic Dystrophy. London: W.B. Saunders Company; 2001). DM1은 DMPK1에서의 비-코딩 CTG 반복부의 확장에 의해 야기되는 보통염색체 우성 질환이다. DMPK1은 세포질 세린/트레오닌 키나제를 엔코딩하는 유전자이다(Brook JD, et al., Cell, 1992, 68(4):799-808). 상기 키나제의 생리학적 기능 및 기질은 완전히 결정되지 않았다. 확장된 CTG 반복부는 DMPK1의 3' 비번역 영역(UTR)에 위치된다. 이러한 돌연변이는 확장된 CUG 반복부(CUGexp)를 함유하는 RNA의 발현이 세포 기능이상을 유도하는 과정인 RNA 우세를 발생시킨다(Osborne RJ and Thornton CA., Human Molecular Genetics., 2006, 15(2): R162-R169).Muscular dystrophy type 1 (DM1) is the most common form of muscular dystrophy present in adults with an estimated frequency of 1 in 7,500 (Harper PS., Myotonic Dystrophy. London: WB Saunders Company; 2001). DM1 is an autosomal dominant disease caused by the expansion of non-coding CTG repeats in DMPK1. DMPK1 is a gene encoding cytoplasmic serine/threonine kinase (Brook JD, et al., Cell , 1992 , 68(4) :799-808). The physiological function and substrate of the kinase have not been completely determined. The expanded CTG repeat is located in the 3'untranslated region (UTR) of DMPK1. These mutations cause RNA dominance, a process in which the expression of RNA containing extended CUG repeats (CUGexp) induces cell dysfunction (Osborne RJ and Thornton CA., Human Molecular Genetics. , 2006 , 15(2)) : R162-R169).

DMPK 유전자는 보통 3' 비번역 영역 내에 5-37개의 CTG 반복부를 갖는다. 근육긴장성 이영양증 타입 I에서, 이러한 수는 현저히 확장되고, 이는, 예를 들어, 50개 내지 3,500개 초과의 범위이다(Harper, Myotonic Dystrophy (Saunders, London, ed.3, 2001); Annu. Rev. Neurosci. 29: 259, 2006; EMBO J. 19: 4439, 2000; Curr Opin Neurol. 20: 572, 2007).The DMPK gene usually has 5-37 CTG repeats within the 3'untranslated region. In myosonic dystrophy type I, this number expands significantly, which ranges, for example, from 50 to more than 3,500 (Harper, Myotonic Dystrophy (Saunders, London, ed. 3, 2001); Annu. Rev. Neurosci. 29: 259, 2006; EMBO J. 19: 4439, 2000; Curr Opin Neurol. 20: 572, 2007).

CUGexp 트랙(tract)은 스플라이싱 인자인 muscleblind-유사(MBNL) 단백질을 포함하는 RNA 결합 단백질과 상호작용하고, 돌연변이 전사물이 핵 초점(nuclear foci) 내에 유지되도록 한다. 이러한 RNA의 독성은 RNA 결합 단백질의 격리 및 신호전달 경로의 활성화로부터 발생한다. 동물 모델에서의 연구에서 CUGexp RNA의 독성이 감소되는 경우에 DM1의 표현형이 역전될 수 있는 것으로 밝혀졌다(Wheeler TM, et al., Science., 2009, 325(5938):336-339; Mulders SA, et al., Proc Natl Acad Sci USA., 2009, 106(33):13915-13920).The CUGexp tract interacts with RNA binding proteins, including the splicing factor muscleblind-like (MBNL) protein, and allows mutant transcripts to remain within the nuclear foci. This RNA toxicity results from the isolation of RNA binding proteins and activation of signaling pathways. Studies in animal models have shown that the phenotype of DM1 can be reversed when the toxicity of CUGexp RNA is reduced (Wheeler TM, et al., Science ., 2009 , 325 (5938):336-339; Mulders SA. , et al., Proc Natl Acad Sci USA ., 2009 , 106 (33):13915-13920).

DM1에서, 골격근은 가장 심각하게 영향을 받는 조직이나, 상기 질병은 또한 심장 및 평활근, 안구 렌즈 및 뇌에 중요한 영향을 미친다. 두개, 말단지(distal limb) 및 횡경막 근육이 우선적으로 영향을 받는다. 수동민첩성(Manual dexterity)은 초기에 손상되고, 이는 수십년간의 심한 장애를 야기시킨다. 사망시의 정중 연령은 55세이고, 이러한 사망은 보통 호흡부전으로부터 유래된다(de Die-Smulders CE, et al., Brain., 1998, 121(Pt 8): 1557-1563).In DM1, skeletal muscle is the most severely affected tissue, but the disease also has a significant effect on the heart and smooth muscle, ocular lens and brain. The cranial, distal limb and diaphragm muscles are primarily affected. Manual dexterity is initially impaired, causing severe disability for decades. The median age at death is 55 years, and these deaths usually result from respiratory failure (de Die-Smulders CE, et al., Brain ., 1998 , 121 (Pt 8): 1557-1563).

안티센스 기술은 특정 유전자 생성물의 발현을 조절하기 위한 효과적인 수단으로 최근 만들어졌으며, 따라서 이는 DMPK1의 조절을 위한 다수의 치료, 진단 및 연구 적용에 독특하게 유용한 것을 알 수 있다. CAG-반복부를 표적으로 하는 완전히 변형된 올리고뉴클레오타이드의 근내 주사는 마우스에서 CUGexp-MBNL1 복합체의 형성을 차단하고, CUGexp 전사물의 핵 초점을 분산시키고, CUGexp 전사물의 핵세포질 수송(nucleocytoplasmic transport) 및 번역을 향상시키고, 핵질로 MBNL 단백질을 방출시키고, MBNL-의존성 엑손의 대안적 스플라이싱을 정상화시키고, CUGexp-발현 트랜스제닉 마우스에서 근육긴장증을 제거하는 것으로 밝혀졌다(Wheeler TM, et al., Science., 2009, 325(5938):336-339; WO2008/036406).Antisense technology has recently been created as an effective means for regulating the expression of certain gene products, and thus it can be found that it is uniquely useful in a number of therapeutic, diagnostic and research applications for the regulation of DMPK1. Intramuscular injection of a fully modified oligonucleotide targeting the CAG-repeat blocks the formation of the CUGexp-MBNL1 complex in mice, disperses the nuclear foci of CUGexp transcripts, and facilitates nuclear cytoplasmic transport and translation of CUGexp transcripts. It has been shown to enhance, release MBNL protein into the nucleus, normalize alternative splicing of MBNL-dependent exons, and eliminate dystonia in CUGexp-expressing transgenic mice (Wheeler TM, et al., Science . , 2009 , 325 (5938):336-339; WO2008/036406).

현재, DM1의 과정을 조절할 수 있는 치료가 없다. 따라서, 질병의 부담이 현저하다. 따라서, DM1을 치료하기 위한 화합물, 조성물 및 방법을 제공하는 것이 본원의 목적이다.Currently, there is no treatment that can modulate the process of DM1. Therefore, the burden of disease is remarkable. Accordingly, it is an object of the present application to provide compounds, compositions and methods for treating DM1.

DMPK의 발현을 억제하고, DMPK 관련 질병 및/또는 이의 증상을 치료하거나, 예방하거나, 지연시키거나, 개선시키는 방법, 화합물 및 조성물이 본원에 제공된다. 특정 구체예에서, 상기 화합물 및 조성물은 돌연변이 DMPK 또는 CUGexp DMPK를 억제한다.Provided herein are methods, compounds and compositions for inhibiting the expression of DMPK and treating, preventing, delaying, or ameliorating DMPK-related diseases and/or symptoms thereof. In certain embodiments, the compounds and compositions inhibit mutant DMPK or CUGexp DMPK.

특정 구체예는 DMPK를 표적으로 하는 본원에 추가로 기재되는 바와 같은 변형된 올리고뉴클레오타이드를 포함하는 화합물을 동물에게 투여하는 것을 포함하는 동물의 DMPK 발현을 감소시키는 방법을 제공한다.Certain embodiments provide a method of reducing DMPK expression in an animal comprising administering to the animal a compound comprising a modified oligonucleotide as further described herein targeting DMPK.

특정 구체예는 CUGexp DMPK를 표적으로 하는 본원에 추가로 기재되는 바와 같은 변형된 올리고뉴클레오타이드를 포함하는 화합물을 동물에게 투여하는 것을 포함하는 동물에서 CUGexp DMPK를 선택적으로 감소시키거나, 근육긴장증을 감소시키거나, 스플라이스오패시를 감소시키는 방법을 제공한다. CUGexp DMPK 전사물은 이의 핵에서의 보다 긴 체류 시간으로 인해 핵 리보누클레아제를 통한 안티센스 넉다운(knockdown)에 특히 민감한 것으로 생각되며, 이러한 민감성은 안티센스 올리고뉴클레오타이드의 조직 흡수에 대한 생체분포 장벽에도 불구하고 근육과 같은 관련 조직에서 CUGexp DMPK 전사물의 효과적인 안티센스 억제를 가능케 하는 것으로 생각된다. 예를 들어, 문헌[Wheeler TM, et al., Science., 2009, 325(5938):336-339] 및 WO2008/036406호에 기재된 CAG-반복부 ASO와 같은 핵 리보누클레아제를 통한 절단을 유도하지 않는 안티센스 메커니즘은 동일한 치료 장점을 제공하지 않는다.Certain embodiments selectively reduce CUGexp DMPK or reduce myotonia in an animal comprising administering to the animal a compound comprising a modified oligonucleotide as further described herein targeting CUGexp DMPK. Or, it provides a method of reducing splice error. CUGexp DMPK transcripts are thought to be particularly sensitive to antisense knockdown via nuclear ribonuclease due to their longer residence time in the nucleus, despite the biodistribution barrier to tissue uptake of antisense oligonucleotides. It is believed to enable effective antisense inhibition of CUGexp DMPK transcripts in related tissues such as muscle. For example, cleavage through nuclear ribonuclease such as CAG-repeat ASO described in Wheeler TM, et al., Science., 2009, 325(5938):336-339 and WO2008/036406 Antisense mechanisms that do not induce do not provide the same therapeutic benefits.

특정 구체예는 타입 1 근육긴장성 이영양증을 지닌 동물을 치료하는 방법을 제공한다. 특정 구체예에서, 상기 방법은 DMPK를 표적으로 하는 본원에 추가로 기재되는 바와 같은 변형된 올리고뉴클레오타이드를 포함하는 치료적 유효량의 화합물을 동물에게 투여하는 것을 포함한다. 특정 구체예에서, 상기 방법은 타입 1 근육긴장성 이영양증을 지닌 동물을 확인하는 것을 포함한다.Certain embodiments provide a method of treating an animal with type 1 myotonic dystrophy. In certain embodiments, the method comprises administering to the animal a therapeutically effective amount of a compound comprising a modified oligonucleotide as further described herein targeting DMPK. In certain embodiments, the method comprises identifying an animal with type 1 muscular dystrophy.

특정 구체예는 근육 경직, 근육긴장증, 불능화 원위 약화(disabling distal weakness), 안면 및 턱 근육의 약화, 연하(swallowing)의 어려움, 눈꺼풀의 힘없음(안검하수증), 목 근육의 약화, 팔 및 다리 근육의 약화, 지속적인 근육 동통, 과다수면, 근육 소모, 연하곤란, 호흡기능부전, 불규칙한 심박동, 심장 근육 손상, 무감동, 인슐린 내성, 및 백내장을 포함하는 DM1의 발달과 관련된 증상 및 결과를 치료하거나, 예방하거나, 지연시키거나, 개선시키는 방법을 제공한다. 특정 구체예는 발달 지연, 학습 장애, 언어 및 말 문제, 및 인격 발달 문제를 포함하는 아동에서의 DM1의 발달과 관련된 증상 및 결과를 치료하거나, 예방하거나, 지연시키거나, 개선시키는 방법을 제공한다.Specific embodiments include muscle stiffness, muscle tone, distal weakness, weakness of the facial and jaw muscles, difficulty swallowing, weakness in the eyelids (ptosis), weakness of the neck muscles, arms and legs. Treat symptoms and consequences associated with the development of DM1, including muscle weakness, persistent muscle pain, excessive sleep, muscle wasting, dysphagia, respiratory failure, irregular heartbeat, heart muscle damage, numbness, insulin resistance, and cataracts, or It provides a method of preventing, delaying, or improving. Certain embodiments provide methods of treating, preventing, delaying, or ameliorating the symptoms and outcomes associated with the development of DM1 in children, including developmental delays, learning disabilities, language and speech problems, and personality development problems. .

특정 구체예는 병원성 전사물의 절단을 유도함으로써 RNA 우세를 중화시키는 안티센스 올리고뉴클레오타이드를 투여하는 방법을 제공한다.Certain embodiments provide methods of administering antisense oligonucleotides that neutralize RNA dominance by inducing cleavage of pathogenic transcripts.

특정 구체예에서, DMPK는 유전자은행 등록번호(GenBank Accession No.) NM_001081560.1에 나열된 바와 같은 서열(서열번호 1로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 뉴클레오타이드 18540696으로부터 18555106까지 트렁케이션된 유전자은행 등록번호 NT_011109.15에 나열된 바와 같은 서열(서열번호 2로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 뉴클레오타이드 16666001로부터 16681000까지 트렁케이션된 유전자은행 등록번호 NT_039413.7에 나열된 바와 같은 서열(서열번호 3으로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 NM_032418.1에 나열된 바와 같은 서열(서열번호 4로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 AI007148.1에 나열된 바와 같은 서열(서열번호 5로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 AI304033.1에 나열된 바와 같은 서열(서열번호 6으로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 BC024150.1로 본원에 나열된 바와 같은 서열(서열번호 7로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 BC056615.1에 나열된 바와 같은 서열(서열번호 8로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 BC075715.1에 나열된 바와 같은 서열(서열번호 793으로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 BU519245.1에 나열된 바와 같은 서열(서열번호 794로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 CB247909.1에 나열된 바와 같은 서열(서열번호 795로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 CX208906.1에 나열된 바와 같은 서열(서열번호 796으로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 CX732022.1에 나열된 바와 같은 서열(서열번호 797로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 S60315.1에 나열된 바와 같은 서열(서열번호 798로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 S60316.1에 나열된 바와 같은 서열(서열번호 799로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 NM_001081562.1에 나열된 바와 같은 서열(서열번호 800으로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 NM_001100.3에 나열된 바와 같은 서열(서열번호 801로 본원에 포함됨)을 갖는다.In certain embodiments, the DMPK has a sequence as listed in GenBank Accession No. NM_001081560.1 (incorporated herein as SEQ ID NO: 1). In certain embodiments, the DMPK has a sequence as listed in Genbank accession number NT_011109.15 (incorporated herein as SEQ ID NO: 2) truncate from nucleotides 18540696 to 18555106. In certain embodiments, the DMPK has a sequence as listed in Genbank accession number NT_039413.7 (incorporated herein as SEQ ID NO: 3) truncate from nucleotides 16666001 to 16681000. In certain embodiments, the DMPK has a sequence as listed in Genbank accession number NM_032418.1 (incorporated herein as SEQ ID NO: 4). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number AI007148.1 (incorporated herein as SEQ ID NO: 5). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number AI304033.1 (incorporated herein as SEQ ID NO: 6). In certain embodiments, the DMPK has a sequence as listed herein under Genbank Accession No. BC024150.1 (incorporated herein as SEQ ID No. 7). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number BC056615.1 (incorporated herein as SEQ ID NO: 8). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number BC075715.1 (incorporated herein as SEQ ID NO: 793). In certain embodiments, the DMPK has a sequence as listed in Genbank accession number BU519245.1 (incorporated herein as SEQ ID NO: 794). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number CB247909.1 (incorporated herein as SEQ ID NO: 795). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession No. CX208906.1 (incorporated herein as SEQ ID No. 796). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number CX732022.1 (incorporated herein as SEQ ID NO: 797). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number S60315.1 (incorporated herein as SEQ ID NO: 798). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number S60316.1 (incorporated herein as SEQ ID NO: 799). In certain embodiments, the DMPK has a sequence as listed in Genbank accession number NM_001081562.1 (incorporated herein as SEQ ID NO: 800). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number NM_001100.3 (incorporated herein as SEQ ID NO: 801).

상기 일반적 기재 및 하기의 상세한 설명 둘 모두는 단지 예시적이고 설명을 위한 것이며, 청구되는 바와 같은 본 발명을 제한하는 것이 아님이 이해되어야 한다. 본원에서, 단수의 사용은 특별히 달리 언급되지 않는 한 복수를 포함한다. 본원에서, "또는"의 사용은 달리 언급하지 않는 한 "및/또는"을 의미한다. 더욱이, 용어 "포함하는" 뿐만 아니라 다른 형태, 예를 들어, "포함하다" 및 "포함된"의 사용은 제한되지 않는다. 또한, "성분" 또는 "구성요소"와 같은 용어는 특별히 달리 언급되지 않는 한 하나의 유닛을 포함하는 성분 및 구성요소 및 하나 이상의 서브유닛을 포함하는 성분 및 구성요소 둘 모두를 포함한다.It is to be understood that both the above general description and the following detailed description are illustrative and illustrative only, and are not intended to limit the invention as claimed. In this application, the use of the singular includes the plural unless specifically stated otherwise. In this application, the use of “or” means “and/or” unless stated otherwise. Moreover, the use of the term “comprising” as well as other forms such as “comprises” and “included” is not limited. In addition, terms such as "component" or "component" include both components and components comprising one unit and components and components comprising one or more subunits, unless specifically stated otherwise.

본원에서 사용되는 섹션 제목은 단지 구성 목적을 위한 것이며, 기재된 주제를 제한하는 것으로 해석되어선 안된다. 특허, 특허 출원, 문헌, 서적 및 논문을 포함하나 이에 제한되지는 않는 본 출원에 본 출원에 인용된 모든 문서 또는 문서의 일부는 본원에 논의된 이러한 문서의 일부뿐만 아니라 이의 전체내용에 있어서 참조로서 특별히 본원에 포함된다.Section headings as used herein are for organizational purposes only and should not be construed as limiting the subject matter described. All documents or portions of documents cited in this application in this application, including but not limited to patents, patent applications, literature, books and papers, are by reference in their entirety as well as portions of these documents discussed herein. Specifically included herein.

정의Justice

특정한 정의가 제공되지 않는 한, 본원에 기재된 분석 화학, 합성 유기 화학, 및 의약 화학 및 제약 화학의 절차 및 기술과 관련되어 사용되는 명명법은 당 분야에 널리 공지되고 통상적으로 사용되는 것이다. 화학 합성 및 화학 분석을 위해 표준 기술이 사용될 수 있다. 허용되는 경우, 본원의 개시 전체에 걸쳐 언급되는 모든 특허, 출원, 공개된 출원 및 다른 출원, 미국 국립생물정보센터(NCBI)와 같은 데이터베이스를 통해 입수가능한 유전자은행 등록번호 및 관련 서열 정보 및 다른 데이터는 본원에 논의된 이러한 문서의 일부뿐만 아니라 이의 전체내용에 있어서 참조로서 본원에 포함된다.Unless a specific definition is provided, the nomenclature used in connection with the procedures and techniques of analytical chemistry, synthetic organic chemistry, and medicinal chemistry and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques can be used for chemical synthesis and chemical analysis. Where permitted, all patents, applications, published applications and other applications referred to throughout this disclosure, Genbank registration numbers and related sequence information and other data available through databases such as the National Center for Biological Information (NCBI). Is incorporated herein by reference in its entirety, as well as some of these documents discussed herein.

달리 표시하지 않는 한, 하기 용어는 하기 의미를 갖는다:Unless otherwise indicated, the following terms have the following meanings:

"2'-O-메톡시에틸"(또한, 2'-MOE 및 2'-O(CH2)2-OCH3)은 푸라노실 고리의 2' 위치의 O-메톡시-에틸 변형을 의미한다. 2'-O-메톡시에틸 변형된 당은 변형된 당이다."2'-O-methoxyethyl" (also 2'-MOE and 2'-O(CH 2 ) 2 -OCH 3 ) refers to the O-methoxy-ethyl modification of the 2'position of the furanosyl ring. . The 2'-O-methoxyethyl modified sugar is a modified sugar.

"2'-O-메톡시에틸 뉴클레오타이드"는 2'-O-메톡시에틸 변형된 당 모이어티를 포함하는 뉴클레오타이드를 의미한다."2'-O-methoxyethyl nucleotide" means a nucleotide comprising a 2'-O-methoxyethyl modified sugar moiety.

"5-메틸사이토신"은 위치 5에 부착된 메틸기로 변형된 사이토신을 의미한다. 5-메틸사이토신은 변형된 핵염기이다."5-methylcytosine" means a cytosine modified with a methyl group attached to position 5. 5-methylcytosine is a modified nucleobase.

"약"은 값의 ±7% 내를 의미한다. 예를 들어, "화합물이 DMPK의 적어도 70% 억제에 영향을 줬다"라고 언급되는 경우, 이는 DMPK 수준이 63% 및 77%의 범위 내에서 억제되는 것을 의미한다.“About” means within ±7% of a value. For example, if it is stated that "the compound affected at least 70% inhibition of DMPK", this means that DMPK levels are inhibited within the range of 63% and 77%.

"활성 약학적 작용제"는 개체에 투여되는 경우에 치료적 이점을 제공하는 약학적 조성물 내의 물질 또는 물질들을 의미한다. 예를 들어, 특정 구체예에서, DMPK를 표적으로 하는 안티센스 올리고뉴클레오타이드는 활성 약학적 작용제이다.“Active pharmaceutical agent” means a substance or substances in a pharmaceutical composition that provides a therapeutic benefit when administered to a subject. For example, in certain embodiments, antisense oligonucleotides targeting DMPK are active pharmaceutical agents.

"활성 표적 영역" 또는 "표적 영역"은 하나 이상의 활성 안티센스 화합물이 표적으로 하는 영역을 의미한다. "활성 안티센스 화합물"은 표적 핵산 수준 또는 단백질 수준을 감소시키는 안티센스 화합물을 의미한다."Active target region" or "target region" means a region to which one or more active antisense compounds are targeted. “Active antisense compound” means an antisense compound that reduces the level of a target nucleic acid or protein.

"동시 투여된"은 2개의 작용제의 약리학적 효과가 동시에 환자에서 나타나는 임의의 방식의 2개의 작용제의 공동 투여를 의미한다. 동시 투여는 둘 모두의 작용제가 단일한 약학적 조성물, 동일한 투여 형태 또는 동일한 투여 경로로 투여되는 것을 필요로 하지 않는다. 둘 모두의 작용제의 효과는 동시에 둘 모두의 작용제 효과 자체가 나타나는 것을 필요로 하지 않는다. 상기 효과는 단지 일정 기간 동안 중첩되는 것을 필요로 하며, 공존하는 것을 필요로 하지 않는다.“Concurrently administered” means the co-administration of two agents in any manner in which the pharmacological effect of the two agents is simultaneously manifested in a patient. Simultaneous administration does not require both agents to be administered in a single pharmaceutical composition, the same dosage form, or the same route of administration. The effect of both agents does not require that the effects of both agents themselves appear at the same time. The effect only needs to be superimposed over a period of time and does not need to coexist.

"투여하는"은 동물에게 작용제를 제공하는 것을 의미하며, 이는 의학 전문가에 의한 투여 및 자가 투여를 포함하나, 이에 제한되지는 않는다.“Administering” means providing an agent to the animal, including, but not limited to, administration and self-administration by a medical professional.

"작용제"는 동물에게 투여되는 경우에 치료적 이점을 제공할 수 있는 활성 물질을 의미한다. "첫번째 작용제"는 본 발명의 치료 화합물을 의미한다. 예를 들어, 첫번째 작용제는 DMPK를 표적으로 하는 안티센스 올리고뉴클레오타이드일 수 있다. "두번째 작용제"는 본 발명의 두번째 치료 화합물(예를 들어, DMPK를 표적으로 하는 두번째 안티센스 올리고뉴클레오타이드) 및/또는 비-DMPK 치료 화합물을 의미한다.“Agent” means an active substance capable of providing a therapeutic benefit when administered to an animal. "First agent" means a therapeutic compound of the present invention. For example, the first agent may be an antisense oligonucleotide targeting DMPK. "Second agent" means a second therapeutic compound of the invention (eg, a second antisense oligonucleotide targeting DMPK) and/or a non-DMPK therapeutic compound.

"개선"은 관련 질병, 장애 또는 질환의 적어도 하나의 지표, 징후 또는 증상의 감소를 의미한다. 지표의 중증도는 당업자에게 공지된 주관적 또는 객관적 척도에 의해 결정될 수 있다.“Improvement” means a reduction in at least one indicator, sign or symptom of a related disease, disorder or condition. The severity of an indicator can be determined by subjective or objective measures known to those skilled in the art.

"동물"은 인간, 또는 마우스, 래트, 토끼, 개, 고양이, 돼지를 포함하나 이에 제한되지는 않는 비-인간 동물, 및 원숭이 및 침팬지를 포함하나 이에 제한되지는 않는 비-인간 영장류를 의미한다.“Animal” means human or non-human animals including, but not limited to, mice, rats, rabbits, dogs, cats, pigs, and non-human primates including, but not limited to, monkeys and chimpanzees. .

"안티센스 활성"은 안티센스 화합물의 표적 핵산에 대한 안티센스 화합물의 하이브리드화에 기인하는 임의의 검출가능하거나 측정가능한 활성을 의미한다. 특정 구체예에서, 안티센스 활성은 표적 핵산 또는 상기 표적 핵산에 의해 엔코딩되는 단백질의 양 또는 발현에서의 감소이다.“Antisense activity” means any detectable or measurable activity resulting from the hybridization of an antisense compound to a target nucleic acid of the antisense compound. In certain embodiments, antisense activity is a decrease in the amount or expression of a target nucleic acid or a protein encoded by the target nucleic acid.

"안티센스 화합물"은 수소 결합을 통한 표적 핵산으로의 하이브리드화를 경험할 수 있는 올리고머 화합물을 의미한다. 안티센스 화합물의 예는 단일 가닥 및 이중 가닥의 화합물, 예를 들어, 안티센스 올리고뉴클레오타이드, siRNA, shRNA, snoRNA, miRNA 및 위성 반복부(satellite repeat)를 포함한다."Antisense compound" means an oligomeric compound capable of undergoing hybridization to a target nucleic acid through hydrogen bonding. Examples of antisense compounds include single-stranded and double-stranded compounds such as antisense oligonucleotides, siRNA, shRNA, snoRNA, miRNA and satellite repeats.

"안티센스 억제"는 안티센스 화합물의 부재하에서의 표적 핵산 수준 또는 표적 단백질 수준에 비한 표적 핵산에 상보적인 안티센스 화합물의 존재하에서의 표적 핵산 수준 또는 표적 단백질 수준의 감소를 의미한다.“Antisense inhibition” refers to a reduction in the level of a target nucleic acid or a level of a target protein in the presence of an antisense compound complementary to the target nucleic acid compared to the level of the target nucleic acid or the level of the target protein in the absence of the antisense compound.

"안티센스 올리고뉴클레오타이드"는 표적 핵산의 상응하는 영역 또는 세그먼트에 대한 하이브리드화를 가능케 하는 핵염기 서열을 갖는 단일 가닥의 올리고뉴클레오타이드를 의미한다.“Antisense oligonucleotide” means a single stranded oligonucleotide having a nucleobase sequence that allows hybridization to a corresponding region or segment of a target nucleic acid.

"바이사이클릭 당"은 2개의 비-이중(non-geminal) 탄소 고리 원자의 브릿지 형성에 의해 변형된 푸라노실 고리를 의미한다. 바이사이클릭 당은 변형된 당이다."Bicyclic sugar" means a furanosyl ring modified by bridging two non-geminal carbon ring atoms. Bicyclic sugars are modified sugars.

"바이사이클릭 핵산" 또는 "BNA"는 뉴클레오사이드 또는 뉴클레오타이드의 푸라노스 부분이 푸라노스 고리 상의 2개의 탄소 원자를 연결시키는 브릿지를 포함함으로써 바이사이클릭 고리 시스템을 형성하는 뉴클레오사이드 또는 뉴클레오타이드를 의미한다."Bicyclic nucleic acid" or "BNA" refers to a nucleoside or nucleotide that forms a bicyclic ring system by including a bridge in which the furanose portion of the nucleoside or nucleotide comprises a bridge connecting two carbon atoms on the furanose ring. it means.

"캡 구조" 또는 "말단 캡 모이어티"는 안티센스 화합물의 어느 한 말단에 통합된 화학적 변형을 의미한다.“Cap structure” or “terminal cap moiety” refers to a chemical modification incorporated at either end of an antisense compound.

"화학적으로 별개의 영역"은 동일한 안티센스 화합물의 또 다른 영역과 어떤 점에서든지 화학적으로 상이한 안티센스 화합물의 영역을 의미한다. 예를 들어, 2'-O-메톡시에틸 뉴클레오타이드를 갖는 영역은 2'-O-메톡시에틸 변형을 갖지 않는 뉴클레오타이드를 갖는 영역과 화학적으로 별개이다."Chemically distinct regions" means regions of an antisense compound that are in some way chemically different from another region of the same antisense compound. For example, a region having a 2'-O-methoxyethyl nucleotide is chemically distinct from a region having a nucleotide that does not have a 2'-O-methoxyethyl modification.

"키메라 안티센스 화합물"은 적어도 2개의 화학적으로 별개의 영역을 갖는 안티센스 화합물을 의미한다.“Chimeric antisense compound” means an antisense compound having at least two chemically distinct regions.

"공동 투여"는 개체로의 2개 이상의 작용제의 투여를 의미한다. 2개 이상의 작용제는 단일한 약학적 조성물로 존재할 수 있거나, 별개의 약학적 조성물로 존재할 수 있다. 2개 이상의 작용제 각각은 동일하거나 상이한 투여 경로를 통해 투여될 수 있다. 공동 투여는 병행 또는 순차적 투여를 포함한다.“Co-administration” means administration of two or more agents to a subject. Two or more agents can exist in a single pharmaceutical composition, or can exist in separate pharmaceutical compositions. Each of the two or more agents may be administered via the same or different routes of administration. Co-administration includes concurrent or sequential administration.

"상보성"은 첫번째 핵산 및 두번째 핵산의 핵염기 사이에서 쌍을 형성하는 능력을 의미한다."Complementary" means the ability to form a pair between the nucleobase of a first nucleic acid and a second nucleic acid.

"연속적 핵염기"는 서로 바로 인접한 핵염기를 의미한다."Continuous nucleobases" means nucleobases immediately adjacent to each other.

"CUGexp DMPK"는 확장된 CUG 반복부(CUGexp)를 함유하는 돌연변이 DMPK RNA를 의미한다. 야생형 DMPK 유전자는 3' 비번역 영역에 5-37개의 CTG 반복부를 갖는다. "CUGexp DMPK"에서(예를 들어, 근육긴장성 이영양증 타입 I 환자에서), 이러한 수는 현저히 확장되고, 이는, 예를 들어, 50개 내지 3,500개 초과의 범위이다(Harper, Myotonic Dystrophy (Saunders, London, ed.3, 2001); Annu. Rev. Neurosci. 29: 259, 2006; EMBO J. 19: 4439, 2000; Curr Opin Neurol. 20: 572, 2007).“CUGexp DMPK” means a mutant DMPK RNA containing extended CUG repeats (CUGexp). The wild-type DMPK gene has 5-37 CTG repeats in the 3'untranslated region. In “CUGexp DMPK” (eg, in myosonic dystrophy type I patients), this number expands significantly, which ranges, for example, from 50 to more than 3,500 (Harper, Myotonic Dystrophy (Saunders, London , ed. 3, 2001); Annu. Rev. Neurosci. 29: 259, 2006; EMBO J. 19: 4439, 2000; Curr Opin Neurol. 20: 572, 2007).

"희석제"는 약리학적 활성이 결핍되어 있으나, 약학적으로 필요하거나 요망되는 조성물 내의 성분을 의미한다. 예를 들어, 주사되는 조성물 내의 성분은 액체, 예를 들어, 염수 용액일 수 있다."Diluent" refers to an ingredient in a composition that is lacking in pharmacological activity, but is pharmaceutically necessary or desired. For example, the component in the composition to be injected may be a liquid, such as a saline solution.

"DMPK"는 DMPK의 임의의 핵산 또는 단백질을 의미한다. DMPK는 CUGexp DMPK 핵산을 포함하는 돌연변이 DMPK일 수 있다.“DMPK” means any nucleic acid or protein of DMPK. The DMPK may be a mutant DMPK comprising a CUGexp DMPK nucleic acid.

"DMPK 발현"은 DMPK를 엔코딩하는 유전자로부터 전사된 mRNA의 수준 또는 mRNA로부터 번역된 단백질의 수준을 의미한다. DMPK 발현은 노던(Northern) 또는 웨스턴 블롯(Western blot)과 같은 당 분야에 공지된 방법에 의해 결정될 수 있다."DMPK expression" means the level of mRNA transcribed from a gene encoding DMPK or the level of protein translated from the mRNA. DMPK expression can be determined by methods known in the art such as Northern or Western blot.

"DMPK 핵산"은 DMPK를 엔코딩하는 임의의 핵산을 의미한다. 예를 들어, 특정 구체예에서, DMPK 핵산은 DMPK를 엔코딩하는 DNA 서열, DMPK를 엔코딩하는 DNA(인트론 및 엑손을 포함하는 유전체 DNA를 포함함)로부터 전사된 RNA 서열, 및 DMPK를 엔코딩하는 mRNA 또는 프리-mRNA 서열을 포함한다. "DMPK mRNA"는 DMPK 단백질을 엔코딩하는 mRNA를 의미한다.“DMPK nucleic acid” means any nucleic acid encoding DMPK. For example, in certain embodiments, the DMPK nucleic acid is a DNA sequence encoding DMPK, an RNA sequence transcribed from DNA encoding DMPK (including genomic DNA including introns and exons), and mRNA encoding DMPK or Contains pre-mRNA sequences. "DMPK mRNA" means an mRNA encoding a DMPK protein.

"용량"은 단일 투여 또는 특정한 기간으로 제공되는 약학적 작용제의 특정량을 의미한다. 특정 구체예에서, 용량은 1, 2 또는 이 이상의 횟수의 볼루스, 정제 또는 주사로 투여될 수 있다. 예를 들어, 피하 투여가 요망되는 특정 구체예에서, 요망되는 용량은 단일 주사에 의해 용이하게 제공되지 않는 부피를 필요로 하며, 따라서 요망되는 용량을 달성하기 위해 2회 이상의 주사가 이용될 수 있다. 특정 구체예에서, 약학적 작용제는 연장된 기간에 걸쳐 또는 지속적으로 주입에 의해 투여된다. 용량은 시간, 일, 주 또는 월 당 약학적 작용제의 양으로 언급될 수 있다."Dose" means a single dose or a specific amount of a pharmaceutical agent given over a specific period of time. In certain embodiments, the dose may be administered as one, two or more boluses, tablets or injections. For example, in certain embodiments where subcutaneous administration is desired, the desired dose requires a volume that is not readily provided by a single injection, so two or more injections may be used to achieve the desired dose. . In certain embodiments, the pharmaceutical agent is administered by infusion over an extended period of time or continuously. Dosage can be referred to as the amount of the pharmaceutical agent per hour, day, week or month.

"유효량" 또는 "치료적 유효량"은 작용제를 필요로 하는 개체에서 요망되는 생리학적 결과를 실현하기에 충분한 활성 약학적 작용제의 양을 의미한다. 유효량은 치료되는 개체의 건강 및 신체 상태, 치료되는 개체의 분류집단, 조성물의 제형, 개체의 의학적 상태의 평가, 및 다른 관련 요인에 따라 개체마다 다양할 수 있다.“Effective amount” or “therapeutically effective amount” means an amount of an active pharmaceutical agent sufficient to achieve the desired physiological result in an individual in need of the agent. The effective amount may vary from individual to individual depending on the health and physical condition of the individual being treated, the classification of the individual being treated, the formulation of the composition, the assessment of the individual's medical condition, and other relevant factors.

"완전히 상보적" 또는 "100% 상보적"은 첫번째 핵산의 핵염기 서열의 각각의 핵염기가 두번째 핵산의 두번째 핵염기 서열 내에 상보적인 핵염기를 갖는 것을 의미한다. 특정 구체예에서, 첫번째 핵산은 안티센스 화합물이고, 표적 핵산은 두번째 핵산이다.“Fully complementary” or “100% complementary” means that each nucleobase of the nucleobase sequence of the first nucleic acid has a complementary nucleobase within the second nucleobase sequence of the second nucleic acid. In certain embodiments, the first nucleic acid is an antisense compound and the target nucleic acid is a second nucleic acid.

"갭머"는 RNase H 절단을 지지하는 다수의 뉴클레오사이드를 갖는 내부 영역이 하나 이상의 뉴클레오사이드를 갖는 외부 영역 사이에 위치되는 키메라 안티센스 화합물을 의미하며, 상기 내부 영역을 포함하는 뉴클레오사이드는 외부 영역을 포함하는 뉴클레오사이드 또는 뉴클레오사이드들과 화학적으로 별개이다. 내부 영역은 "갭 세그먼트"로 언급될 수 있고, 외부 영역은 "윙 세그먼트"로 언급될 수 있다."Gapmer" refers to a chimeric antisense compound in which an inner region having a plurality of nucleosides supporting RNase H cleavage is located between an outer region having one or more nucleosides, and a nucleoside comprising the inner region is It is chemically distinct from the nucleosides or nucleosides comprising the outer region. The inner region may be referred to as a “gap segment” and the outer region may be referred to as a “wing segment”.

"갭-확장된"은 1 내지 6개의 뉴클레오사이드를 갖는 5' 및 3' 윙 세그먼트 사이에 위치되고, 이에 바로 인접한 12개 이상의 연속적 2'-데옥시리보뉴클레오사이드의 갭 세그먼트를 갖는 키메라 안티센스 화합물을 의미한다."Gap-expanded" is a chimera having a gap segment of 12 or more consecutive 2'-deoxyribonucleosides located between 5'and 3'wing segments having 1 to 6 nucleosides and immediately adjacent thereto. It means an antisense compound.

"하이브리드화"는 상보적 핵산 분자의 어닐링(annealing)을 의미한다. 특정 구체예에서, 상보적 핵산 분자는 안티센스 화합물 및 표적 핵산을 포함한다.“Hybridization” means the annealing of complementary nucleic acid molecules. In certain embodiments, the complementary nucleic acid molecule comprises an antisense compound and a target nucleic acid.

"타입 1 근육긴장성 이영양증을 지닌 동물을 확인"은 1 근육긴장성 이영양증 장애 또는 질환을 갖는 것으로 진단된 동물을 확인하거나, 타입 1 근육긴장성 이영양증 장애 또는 질환이 발달하기 쉬운 동물을 확인하는 것을 의미한다. 예를 들어, 가족력을 갖는 개체는 타입 1 근육긴장성 이영양증 장애 또는 질환이 발달하기 쉬울 수 있다. 이러한 확인은 개체의 의학력(medical history) 및 표준 임상 시험 또는 평가를 평가하는 것을 포함하는 임의의 방법에 의해 달성될 수 있다."Identifying an animal with type 1 muscular dystrophy" means identifying an animal diagnosed as having a 1 muscular dystrophy disorder or disease, or identifying an animal prone to develop a type 1 muscular dystrophy disorder or disease. For example, an individual with a family history may be susceptible to developing a type 1 muscular dystrophy disorder or disease. Such identification can be achieved by any method including evaluating the individual's medical history and standard clinical trials or evaluations.

"바로 인접한"은 성분 사이에 바로 인접하여 개재 성분이 존재하지 않는 것을 의미한다."Immediately adjacent" means that there are no intervening components in the immediate vicinity between the components.

"개체"는 치료 또는 요법을 위해 선별된 인간 또는 비-인간 동물을 의미한다.“Individual” means a human or non-human animal selected for treatment or therapy.

"뉴클레오사이드간 결합"은 뉴클레오사이드 사이의 화학적 결합을 의미한다."Internucleoside bond" means a chemical bond between nucleosides.

"결합된 뉴클레오사이드"는 뉴클레오사이드간 결합에 의해 함께 결합되거나 연결되는 인접한 뉴클레오사이드를 의미한다."Bound nucleosides" means adjacent nucleosides that are joined or linked together by nucleoside bonds.

"미스매치" 또는 "비-상보적 핵염기"는 첫번째 핵산의 핵염기가 두번째 또는 표적 핵산의 상응하는 핵염기와 쌍을 형성할 수 없는 경우를 의미한다."Mismatch" or "non-complementary nucleobase" means when the nucleobase of the first nucleic acid is unable to pair with the corresponding nucleobase of the second or target nucleic acid.

"변형된 뉴클레오사이드간 결합"은 자연 발생 뉴클레오사이드간 결합(즉, 포스포다이에스터 뉴클레오사이드간 결합)으로부터의 치환 또는 임의의 변화를 의미한다."Modified internucleoside linkage" means a substitution or any change from a naturally occurring internucleoside linkage (ie, a phosphodiester internucleoside linkage).

"변형된 핵염기"는 아데닌, 사이토신, 구아닌, 티미딘 또는 유라실이 아닌 임의의 핵염기를 의미한다. "변형되지 않은 핵염기"는 퓨린 염기 아데닌(A) 및 구아닌(G), 및 피리미딘 염기 티민(T), 사이토신(C) 및 유라실(U)을 의미한다."Modified nucleobase" means any nucleobase that is not adenine, cytosine, guanine, thymidine or uracil. “Unmodified nucleobase” means purine bases adenine (A) and guanine (G), and pyrimidine bases thymine (T), cytosine (C) and uracil (U).

"변형된 뉴클레오타이드"는 변형된 당 모이어티, 변형된 뉴클레오사이드간 결합 또는 변형된 핵염기를 독립적으로 갖는 뉴클레오타이드를 의미한다. "변형된 뉴클레오사이드"는 변형된 당 모이어티 또는 변형된 핵염기를 독립적으로 갖는 뉴클레오사이드를 의미한다."Modified nucleotide" means a nucleotide that independently has a modified sugar moiety, a modified internucleoside bond or a modified nucleobase. “Modified nucleoside” means a nucleoside that independently has a modified sugar moiety or a modified nucleobase.

"변형된 올리고뉴클레오타이드"는 적어도 하나의 변형된 뉴클레오타이드를 포함하는 올리고뉴클레오타이드를 의미한다.“Modified oligonucleotide” means an oligonucleotide comprising at least one modified nucleotide.

"변형된 당"은 자연 당으로부터의 치환 또는 변형을 의미한다."Modified sugar" means a substitution or modification from a natural sugar.

"모티프"는 안티센스 화합물 내의 화학적으로 별개의 영역의 패턴을 의미한다.“Motif” refers to a pattern of chemically distinct regions within an antisense compound.

"근육긴장증"은 수의 수축 또는 전기 자극 후의 근육의 비정상적인 느린 이완을 의미한다."Myotonia" means abnormal slow relaxation of a muscle after voluntary contraction or electrical stimulation.

"핵 리보누클레아제"는 핵에서 발견된 리보누클레아제를 의미한다. 핵 리보누클레아제는 RNase H1 및 RNase H2를 포함하는 RNase H, 이중 가닥의 RNase drosha 및 다른 이중 가닥의 RNase를 포함하나, 이에 제한되지는 않는다."Nuclear ribonuclease" means a ribonuclease found in the nucleus. Nuclear ribonucleases include, but are not limited to, RNase H, including RNase H1 and RNase H2, double-stranded RNase drosha, and other double-stranded RNases.

"자연 발생 뉴클레오사이드간 결합"은 3'으로부터 5'으로의 포스포다이에스터 결합을 의미한다."Naturally occurring internucleoside linkage" means a phosphodiester linkage from 3'to 5'.

"자연 당 모이어티"는 DNA (2'-H) 또는 RNA (2'-OH)에서 발견되는 당을 의미한다.“Natural sugar moiety” means a sugar found in DNA (2'-H) or RNA (2'-OH).

"핵산"은 모노머 뉴클레오타이드로 구성되는 분자를 의미한다. 핵산은 리보핵산(RNA), 데옥시리보핵산(DNA), 단일 가닥의 핵산, 이중 가닥의 핵산, 작은 간섭 리보핵산(small interfering ribonucleic acid, siRNA) 및 마이크로RNA(miRNA)를 포함한다. 핵산은 또한 단일 분자 내에 상기 성분의 조합을 포함할 수 있다."Nucleic acid" means a molecule composed of monomeric nucleotides. Nucleic acids include ribonucleic acid (RNA), deoxyribonucleic acid (DNA), single-stranded nucleic acid, double-stranded nucleic acid, small interfering ribonucleic acid (siRNA) and microRNA (miRNA). Nucleic acids may also contain a combination of these components within a single molecule.

"핵염기"는 또 다른 핵산의 염기와 쌍을 이룰 수 있는 헤테로사이클릭 모이어티를 의미한다."Nucleobase" means a heterocyclic moiety capable of pairing with a base of another nucleic acid.

"핵염기 서열"은 임의의 당, 결합 또는 핵염기 변형과 독립적인 연속적 핵염기의 순서를 의미한다."Nucleobase sequence" means a sequence of consecutive nucleobases independent of any sugar, bond or nucleobase modification.

"뉴클레오사이드"는 당에 결합된 핵염기를 의미한다."Nucleoside" means a nucleobase bound to a sugar.

"뉴클레오사이드 모방체(mimetic)"는, 예를 들어, 모르폴리노, 사이클로헥세닐, 사이클로헥실, 테트라하이드로피라닐, 바이사이클로 또는 트라이사이클로 당 모방체, 예를 들어, 비 푸라노스 당 유닛을 갖는 뉴클레오사이드 모방체와 같은 올리고머 화합물의 하나 이상의 위치에 당 또는 당 및 염기, 및 반드시 그러한 것은 아니지만 결합을 대체하는데 사용되는 구조를 포함한다.“Nucleoside mimetic” refers to, for example, morpholino, cyclohexenyl, cyclohexyl, tetrahydropyranyl, bicyclo or tricyclo sugar mimetics, such as non-furanose sugar units A sugar or sugar and a base at one or more positions of an oligomeric compound, such as a nucleoside mimetic having, and not necessarily, a structure used to replace a bond.

"뉴클레오타이드"는 뉴클레오사이드의 당 부분에 공유적으로 결합된 포스페이트 기를 갖는 뉴클레오사이드를 의미한다."Nucleoside" means a nucleoside having a phosphate group covalently bonded to the sugar moiety of the nucleoside.

"뉴클레오타이드 모방체"는, 예를 들어, 펩티드 핵산 또는 모르폴리노(모르폴리노는 -N(H)-C(=O)-O- 또는 다른 비-포스포다이에스터 결합에 의해 연결됨)와 같은 올리고머 화합물의 하나 이상의 위치의 뉴클레오사이드 및 결합을 대체하기 위해 사용되는 구조를 포함한다.A “nucleotide mimic” is, for example, a peptide nucleic acid or morpholino (morpholino is linked by -N(H)-C(=O)-O- or other non-phosphodiester bonds). Includes structures used to replace nucleosides and bonds at one or more positions of an oligomeric compound.

"올리고머 화합물" 또는 "올리고머"는 핵산 분자의 적어도 한 영역에 하이브리드화될 수 있는 결합된 모노머 서브유닛의 중합체를 의미한다.“Oligomer compound” or “oligomer” means a polymer of bound monomeric subunits capable of hybridizing to at least one region of a nucleic acid molecule.

"올리고뉴클레오타이드"는 각각이 서로 독립적으로 변형되거나 변형되지 않을 수 있는 결합된 뉴클레오사이드의 중합체를 의미한다."Oligonucleotide" means a polymer of linked nucleosides, each of which may or may not be modified independently of one another.

"비경구 투여"는 주사 또는 주입을 통한 투여를 의미한다. 비경구 투여는 피하 투여, 정맥내 투여, 근내 투여, 동맥내 투여, 복막내 투여, 또는 두개내 투여, 예를 들어, 수막강내 또는 뇌실내 투여를 포함한다. 투여는 연속, 또는 만성, 또는 단기, 또는 간헐적 투여일 수 있다.“Parental administration” means administration via injection or infusion. Parenteral administration includes subcutaneous administration, intravenous administration, intramuscular administration, intraarterial administration, intraperitoneal administration, or intracranial administration, such as intrathecal or intraventricular administration. Administration may be continuous, or chronic, or short, or intermittent.

"펩티드"는 아미노 결합에 의해 적어도 2개의 아미노산을 결합시킴으로써 형성된 분자를 의미한다. 펩티드는 폴리펩티드 및 단백질을 의미한다.“Peptide” refers to a molecule formed by linking at least two amino acids by amino bonds. Peptide refers to polypeptides and proteins.

"약학적 조성물"은 개체로의 투여에 적합한 물질의 혼합물을 의미한다. 예를 들어, 약학적 조성물은 하나 이상의 활성제 및 멸균 수용액을 포함할 수 있다."Pharmaceutical composition" means a mixture of substances suitable for administration to a subject. For example, the pharmaceutical composition may comprise one or more active agents and a sterile aqueous solution.

"약학적으로 허용되는 염"은 안티센스 화합물의 생리학적 및 약학적으로 허용되는 염, 즉, 모(parent) 올리고뉴클레오타이드의 요망되는 생물학적 활성을 보유하고, 모 올리고뉴클레오타이드에 요망되지 않는 독물학적 효과를 제공하지 않는 염을 의미한다.“Pharmaceutically acceptable salt” is a physiological and pharmaceutically acceptable salt of an antisense compound, that is, retains the desired biological activity of the parent oligonucleotide, and has an undesirable toxicological effect on the parent oligonucleotide. It means a salt that does not provide.

"포스포로티오에이트 결합"은 포스포다이에스터 결합이 브릿지를 형성하지 않는 산소 원자 중 하나를 황 원자로 대체함으로써 변형된, 뉴클레오사이드 사이의 결합을 의미한다. 포스포로티오에이트 결합은 변형된 뉴클레오사이드간 결합이다.“Phosphorothioate bond” means a bond between nucleosides wherein a phosphodiester bond is modified by replacing one of the oxygen atoms that do not form a bridge with a sulfur atom. Phosphorothioate bonds are modified internucleoside bonds.

"부분"은 핵산의 연속적(즉, 결합된) 핵염기의 규정된 수를 의미한다. 특정 구체예에서, 부분은 표적 핵산의 연속적 핵염기의 규정된 수이다. 특정 구체예에서, 부분은 안티센스 화합물의 연속적 핵염기의 규정된 수이다."Part" means a defined number of contiguous (ie, bound) nucleobases of a nucleic acid. In certain embodiments, the portion is a defined number of consecutive nucleobases of the target nucleic acid. In certain embodiments, the moiety is a defined number of consecutive nucleobases of the antisense compound.

"CUG exp DMPK RNA를 선택적으로 감소시키는"은 정상 DMPK 대립유전자로부터의 RNA 전사물에 비한 CUGexp DMPK 대립유전자로부터의 RNA 전사물의 선택적 감소를 의미한다.“Selectively reducing CUG exp DMPK RNA” refers to a selective reduction of RNA transcripts from the CUGexp DMPK allele compared to RNA transcripts from normal DMPK alleles.

"예방하다"는 수분 내지 무기한의 기간 동안 질병, 장애 또는 질환의 발생 또는 발달을 지연시키거나 미리 방해하는 것을 의미한다. 예방은 또한 질병, 장애 또는 질환이 발달 위험을 감소시키는 것을 의미한다."Prevent" means to delay or prevent the occurrence or development of a disease, disorder or condition for a period of minutes to indefinitely. Prevention also means that the disease, disorder or condition reduces the risk of development.

"프로드러그"는 내인성 효소 또는 다른 화합물 또는 상태의 작용에 의해 체내 또는 세포 내에서 활성 형태로 전환되는 비활성 형태로 제조되는 치료제를 의미한다."Prodrug" means a therapeutic agent that is prepared in an inactive form that is converted into an active form in the body or in cells by the action of an endogenous enzyme or other compound or condition.

"부작용"은 요망되는 효과가 아닌 치료에 기인하는 생리학적 반응을 의미한다. 특정 구체예에서, 부작용은 주사 부위 반응, 간 기능 시험 이상, 신장 기능 이상, 간 독성, 신장 독성, 중추신경계 이상, 근육병증 및 권태감을 포함한다. 예를 들어, 혈청에서의 증가된 아미노전이효소 수준은 간 독성 또는 간 기능 이상을 나타낼 수 있다. 예를 들어, 증가된 빌리루빈은 간 독성 또는 간 기능 이상을 나타낼 수 있다."Side effect" refers to a physiological response resulting from treatment that is not the desired effect. In certain embodiments, side effects include injection site reactions, liver function test abnormalities, kidney function abnormalities, liver toxicity, kidney toxicity, central nervous system abnormalities, myopathy and malaise. For example, elevated aminotransferase levels in serum can indicate liver toxicity or liver dysfunction. For example, increased bilirubin can indicate liver toxicity or liver dysfunction.

"단일 가닥의 올리고뉴클레오타이드"는 상보적 가닥에 하이브리드화되지 않은 올리고뉴클레오타이드를 의미한다.“Single stranded oligonucleotide” means an oligonucleotide that has not hybridized to a complementary strand.

"특이적으로 하이브리드화가능한"은 특이적 결합이 요망되는 조건, 즉, 생체내 검정 및 치료적 치료의 경우에 생리학적 조건하에서 요망되는 효과를 유도하기에 안티센스 올리고뉴클레오타이드와 표적 핵산 사이에 충분한 정도의 상보성을 갖지만, 비-표적 핵산에 대해서는 최소의 효과를 나타내거나 효과를 나타내지 않는 안티센스 화합물을 의미한다.“Specifically hybridizable” means a degree sufficient between the antisense oligonucleotide and the target nucleic acid to induce the desired effect under conditions in which specific binding is desired, ie, in the case of in vivo assays and therapeutic treatments, under physiological conditions. It has the complementarity of, but exhibits minimal or no effect on non-target nucleic acid means an antisense compound.

"스플라이스오패시"는 특정 조직 내의 변경된 스플라이스 생성물의 발현을 발생시키는 하나 이상의 RNA의 대안적 스플라이싱에서의 변화를 의미한다.“Splice opacity” means a change in alternative splicing of one or more RNAs that results in the expression of an altered splice product within a particular tissue.

"피하 투여"는 피부 바로 아래의 투여를 의미한다.“Subcutaneous administration” means administration just below the skin.

"당 대용물(surrogate)"은 약간 더 광범위한 용어 "뉴클레오사이드 모방체"와 중복되지만, 이는 당 단위(푸라노스 고리)만의 대체를 나타내고자 하는 것이다. 본원에 제공된 테트라하이드로피라닐 고리는 푸라노스 당 기가 테트라하이드로피라닐 고리 시스템으로 대체된 당 대용물의 예를 예시한다.“Sugar surrogate” overlaps with the slightly broader term “nucleoside mimetic”, but is intended to denote the replacement of only sugar units (furanose rings). The tetrahydropyranyl ring provided herein exemplifies an example of a sugar substitute in which a furanose sugar group has been replaced with a tetrahydropyranyl ring system.

"표적으로 하는" 또는 "표적화된"은 표적 핵산에 특이적으로 하이브리드화되고, 요망되는 효과를 유도하는 안티센스 화합물의 설계 및 선별 과정을 의미한다.“Targeting” or “targeted” refers to the process of designing and selecting antisense compounds that specifically hybridize to a target nucleic acid and induce a desired effect.

"표적 핵산", "표적 RNA" 및 "표적 RNA 전사물" 모두는 안티센스 화합물에 의해 표적화될 수 있는 핵산을 의미한다.“Target nucleic acid”, “target RNA” and “target RNA transcript” all refer to a nucleic acid that can be targeted by an antisense compound.

"표적 세그먼트"는 안티센스 화합물이 표적으로 하는 표적 핵산의 뉴클레오타이드의 서열을 의미한다. "5' 표적 부위"는 표적 세그먼트의 가장 5'의 뉴클레오타이드를 의미한다. "3' 표적 부위"는 표적 세그먼트의 가장 3'의 뉴클레오타이드를 의미한다.“Target segment” means the sequence of nucleotides of a target nucleic acid targeted by an antisense compound. "5' target site" means the 5'most nucleotide of a target segment. "3' target site" means the 3'most nucleotide of a target segment.

"치료적 유효량"은 개체에 치료적 이점을 제공하는 작용제의 양을 의미한다."Therapeutically effective amount" means an amount of an agent that provides a therapeutic benefit to an individual.

"치료하다"는 질병, 장애 또는 질환의 변경 또는 개선을 성취하기 위해 약학적 조성물을 투여하는 것을 의미한다."Treat" means administering a pharmaceutical composition to achieve alteration or amelioration of a disease, disorder or condition.

"타입 1 근육긴장성 이영양증" 또는 "DM1"은 DMPK에서 비-코딩 CTG 반복부의 확장에 의해 야기되는 보통염색체 우성 장애를 의미한다. 이러한 돌연변이는 확장된 CUG 반복부(CUGexp)를 함유하는 RNA의 발현이 세포 기능이상을 유도하는 과정인 RNA 우세를 발생시킨다. CUGexp 트랙은 RNA 결합 단백질과 상호작용하고, 돌연변이 전사물이 핵 초점(nuclear foci) 내에 유지되도록 한다. 이러한 RNA의 독성은 RNA 결합 단백질의 격리 및 신호전달 경로의 활성화로부터 발생한다."Type 1 muscular dystrophy" or "DM1" refers to an autosomal dominant disorder caused by the expansion of non-coding CTG repeats in DMPK. These mutations give rise to RNA dominance, a process by which the expression of RNA containing extended CUG repeats (CUGexp) induces cellular dysfunction. The CUGexp track interacts with the RNA binding protein and allows mutant transcripts to remain within the nuclear foci. This RNA toxicity results from the isolation of RNA binding proteins and activation of signaling pathways.

"변형되지 않은 뉴클레오타이드"는 자연 발생 핵염기, 당 모이어티, 및 뉴클레오사이드간 결합으로 구성되는 뉴클레오타이드를 의미한다. 특정 구체예에서, 변형되지 않은 뉴클레오타이드는 RNA 뉴클레오타이드(즉, β-D-리보뉴클레오사이드) 또는 DNA 뉴클레오타이드(즉, β-D-데옥시리보뉴클레오사이드)이다.“Unmodified nucleotide” means a nucleotide consisting of a naturally occurring nucleobase, a sugar moiety, and an internucleoside linkage. In certain embodiments, the unmodified nucleotide is an RNA nucleotide (ie, β-D-ribonucleoside) or a DNA nucleotide (ie, β-D-deoxyribonucleoside).

특정 구체예Specific embodiment

특정 구체예는 DMPK 발현을 억제하기 위한 방법, 화합물 및 조성물을 제공한다.Certain embodiments provide methods, compounds and compositions for inhibiting DMPK expression.

특정 구체예는 DMPK를 표적으로 하는 변형된 올리고뉴클레오타이드를 포함하는 화합물을 동물에게 투여하는 것을 포함하는 동물의 DMPK 발현을 감소시키는 방법을 제공한다.Certain embodiments provide a method of reducing DMPK expression in an animal comprising administering to the animal a compound comprising a modified oligonucleotide targeting DMPK.

특정 구체예는 DMPK를 표적으로 하는 변형된 올리고뉴클레오타이드를 포함하는 화합물을 동물에게 투여하는 것을 포함하는 동물에서 CUGexp DMPK RNA를 선택적으로 감소시키거나, 근육긴장증을 감소시키거나, 스플라이스오패시를 감소시키는 방법을 제공하며, 상기 변형된 올리고뉴클레오타이드는 동물에서 CUGexp DMPK RNA를 선택적으로 감소시키거나, 근육긴장증을 감소시키거나, 스플라이스오패시를 감소시킨다.Certain embodiments selectively reduce CUGexp DMPK RNA, reduce muscle tone, or reduce spliceopathy in an animal comprising administering to the animal a compound comprising a modified oligonucleotide targeting DMPK. And the modified oligonucleotide selectively reduces CUGexp DMPK RNA, reduces myotonia, or reduces spliceopathy in animals.

특정 구체예는 병원성 전사물의 절단을 유도함으로써 RNA 우세를 중화시키는 안티센스 올리고뉴클레오타이드를 투여하는 방법을 제공한다.Certain embodiments provide methods of administering antisense oligonucleotides that neutralize RNA dominance by inducing cleavage of pathogenic transcripts.

특정 구체예는 Serca1의 스플라이스오패시를 감소시키는 방법을 제공한다. 특정 구체예에서, 본원에 제공된 방법은 엑손 22 봉입(inclusion)을 야기시킨다. 특정 구체예에서, 교정 스플라이싱은 앞정강근, 장딴지근 및 대퇴사두근에서 발생한다.Certain embodiments provide a method of reducing spliceopacity of Serca1. In certain embodiments, the methods provided herein result in exon 22 inclusion. In certain embodiments, orthodontic splicing occurs in the anterior tibialis, calf muscles and quadriceps muscles.

특정 구체예는 m-Titin의 스플라이스오패시를 감소시키는 방법을 제공한다. 특정 구체예에서, 본원에 제공된 방법은 엑손 5 봉입을 야기시킨다. 특정 구체예에서, 교정 스플라이싱은 앞정강근, 장딴지근 및 대퇴사두근에서 발생한다.Certain embodiments provide a method of reducing spliceopacity of m-Titin. In certain embodiments, the methods provided herein result in exon 5 encapsulation. In certain embodiments, orthodontic splicing occurs in the anterior tibialis, calf muscles and quadriceps muscles.

특정 구체예는 Clcn1의 스플라이스오패시를 감소시키는 방법을 제공한다. 특정 구체예에서, 본원에 제공된 방법은 엑손 7a 봉입을 야기시킨다. 특정 구체예에서, 교정 스플라이싱은 앞정강근, 장딴지근 및 대퇴사두근에서 발생한다.Certain embodiments provide a method of reducing the spliceopacity of Clcn1. In certain embodiments, the methods provided herein result in exon 7a encapsulation. In certain embodiments, orthodontic splicing occurs in the anterior tibialis, calf muscles and quadriceps muscles.

특정 구체예는 Zasp의 스플라이스오패시를 감소시키는 방법을 제공한다. 특정 구체예에서, 본원에 제공된 방법은 엑손 11 봉입을 야기시킨다. 특정 구체예에서, 교정 스플라이싱은 앞정강근, 장딴지근 및 대퇴사두근에서 발생한다.Certain embodiments provide a method of reducing spliceopacity of Zasp. In certain embodiments, the methods provided herein result in exon 11 encapsulation. In certain embodiments, orthodontic splicing occurs in the anterior tibialis, calf muscles and quadriceps muscles.

특정 구체예는, a) 타입 1 근육긴장성 이영양증을 지닌 동물을 선별하는 단계, 및 b) DMPK를 표적으로 하는 변형된 올리고뉴클레오타이드를 포함하는 치료적 유효량의 화합물을 상기 동물에게 투여하는 단계를 포함하는, 타입 1 근육긴장성 이영양증을 지닌 동물을 치료하는 방법을 제공한다. 특정 구체예에서, 동물에게 투여되는 치료적 유효량의 화합물은 동물에서 CUGexp DMPK RNA를 선택적으로 감소시키거나, 근육긴장증을 감소시키거나, 스플라이스오패시를 감소시킨다.Certain embodiments comprise the steps of: a) selecting an animal with type 1 muscular dystrophy, and b) administering to the animal a therapeutically effective amount of a compound comprising a modified oligonucleotide targeting DMPK. , Provides a method of treating an animal with type 1 dystrophic dystrophy. In certain embodiments, a therapeutically effective amount of a compound administered to an animal selectively reduces CUGexp DMPK RNA, reduces myotonia, or reduces spliceopacity in the animal.

특정 구체예는 타입 1 근육긴장성 이영양증 또는 CUGexp DMPK RNA를 갖는 것으로 의심되는 피검체에 상기 CUGexp DMPK RNA의 비-반복부 영역에 상보적인 변형된 안티센스 올리고뉴클레오타이드를 투여하는 단계를 포함하는 CUGexp DMPK RNA의 선택적 감소를 달성하는 방법을 제공한다. 변형된 안티센스 올리고뉴클레오타이드는 상기 CUGexp DMPK RNA에 결합하는 경우 CUGexp DMPK RNA의 선택적 감소를 달성한다.A specific embodiment is a CUGexp DMPK RNA comprising the step of administering a modified antisense oligonucleotide complementary to the non-repeating region of the CUGexp DMPK RNA to a subject suspected of having type 1 dystrophy or CUGexp DMPK RNA. Provides a way to achieve selective reduction. The modified antisense oligonucleotide achieves a selective reduction of CUGexp DMPK RNA when bound to the CUGexp DMPK RNA.

특정 구체예는 타입 1 근육긴장성 이영양증 또는 CUGexp DMPK RNA를 갖는 피검체를 선별하는 단계, 및 상기 CUGexp DMPK RNA의 비-반복부 영역에 상보적인 변형된 안티센스 올리고뉴클레오타이드를 상기 피검체에 투여하는 단계를 포함하는 CUGexp DMPK RNA의 선택적 감소를 달성하는 방법을 제공한다. 변형된 안티센스 올리고뉴클레오타이드는 상기 CUGexp DMPK RNA에 결합하는 경우 리보누클레아제 또는 핵 리보누클레아제를 활성화시킴으로써 핵 내의 CUGexp DMPK RNA의 선택적 감소를 달성한다.A specific embodiment comprises the steps of selecting a subject having type 1 dystrophy or CUGexp DMPK RNA, and administering to the subject a modified antisense oligonucleotide complementary to the non-repeated region of the CUGexp DMPK RNA. It provides a method of achieving the selective reduction of containing CUGexp DMPK RNA. Modified antisense oligonucleotides achieve selective reduction of CUGexp DMPK RNA in the nucleus by activating ribonuclease or nuclear ribonuclease when binding to the CUGexp DMPK RNA.

특정 구체예는 타입 1 근육긴장성 이영양증 또는 돌연변이 또는 CUGexp DMPK RNA를 갖는 피검체를 선별하는 단계, 및 상기 CUGexp DMPK RNA의 비-반복부 영역에 상보적인 변형된 안티센스 올리고뉴클레오타이드를 상기 피검체에 전신 투여하는 단계를 포함하는 CUGexp DMPK RNA의 선택적 감소를 달성하는 방법을 제공한다. 변형된 안티센스 올리고뉴클레오타이드는 상기 돌연변이 또는 CUGexp DMPK RNA에 결합하는 경우 돌연변이 또는 CUGexp DMPK RNA의 선택적 감소를 달성한다.A specific embodiment is the step of selecting a subject having type 1 dystrophy or mutation or CUGexp DMPK RNA, and systemically administering a modified antisense oligonucleotide complementary to the non-repeating region of the CUGexp DMPK RNA to the subject. It provides a method of achieving the selective reduction of CUGexp DMPK RNA comprising the step of. The modified antisense oligonucleotide achieves the mutation or selective reduction of CUGexp DMPK RNA when bound to the mutation or CUGexp DMPK RNA.

특정 구체예는 근육긴장증을 감소시킬 필요가 있는 피검체의 근육긴장증을 감소시키는 방법을 제공한다. 상기 방법은 DMPK RNA의 비-반복부 영역에 상보적인 변형된 안티센스 올리고뉴클레오타이드를 피검체에 투여하는 단계를 포함하며, 상기 변형된 안티센스 올리고뉴클레오타이드는 DMPK RNA에 결합하는 경우 리보누클레아제 또는 핵 리보누클레아제를 활성화시킴으로써 근육긴장증을 감소시킨다. 특정 구체예에서, 피검체는 타입 1 근육긴장성 이영양증 또는 돌연변이 DMPK RNA 또는 CUGexp DMPK RNA를 갖거나, 이를 갖는 것으로 의심된다. 특정 구체예에서, DMPK RNA는 핵 유지된다.Certain embodiments provide a method of reducing myotonia in a subject in need thereof. The method comprises administering to a subject a modified antisense oligonucleotide complementary to a non-repeating region of DMPK RNA, wherein the modified antisense oligonucleotide is ribonuclease or nuclear ribonucleotide when bound to DMPK RNA. Reduces muscle tone by activating nuclease. In certain embodiments, the subject has, or is suspected of having, type 1 myotonic dystrophy or mutant DMPK RNA or CUGexp DMPK RNA. In certain embodiments, the DMPK RNA is nuclear retained.

특정 구체예는 스플라이스오패시를 감소시킬 필요가 있는 피검체의 스플라이스오패시를 감소시키는 방법을 제공한다. 상기 방법은 DMPK RNA의 비-반복부 영역에 상보적인 변형된 안티센스 올리고뉴클레오타이드를 피검체에 투여하는 단계를 포함하며, 상기 변형된 안티센스 올리고뉴클레오타이드는 DMPK RNA에 결합하는 경우 리보누클레아제 또는 핵 리보누클레아제를 활성화시킴으로써 스플라이스오패시를 감소시킨다. 특정 구체예에서, 피검체는 타입 1 근육긴장성 이영양증 또는 핵 유지된 CUGexp DMPK RNA를 갖거나, 이를 갖는 것으로 의심된다. 특정 구체예에서, DMPK RNA는 핵 유지된다. 특정 구체예에서, 스플라이스오패시는 MBNL 의존성 스플라이스오패시이다.Certain embodiments provide a method of reducing splice errors in a subject in need of reducing splice errors. The method comprises administering to a subject a modified antisense oligonucleotide complementary to a non-repeating region of DMPK RNA, wherein the modified antisense oligonucleotide is ribonuclease or nuclear ribonucleotide when bound to DMPK RNA. By activating nucleases, splice opacity is reduced. In certain embodiments, the subject has, or is suspected of having, type 1 myotonic dystrophy or nuclear retained CUGexp DMPK RNA. In certain embodiments, the DMPK RNA is nuclear retained. In a specific embodiment, the spliceofface is an MBNL dependent spliceofface.

특정 구체예에서, 상기 방법의 변형된 안티센스 올리고뉴클레오타이드는 키메라 안티센스 올리고뉴클레오타이드이다. 특정 구체예에서, 상기 방법의 변형된 안티센스 올리고뉴클레오타이드는 갭머이다.In certain embodiments, the modified antisense oligonucleotide of the method is a chimeric antisense oligonucleotide. In certain embodiments, the modified antisense oligonucleotide of the method is a gapmer.

본원에 제공된 방법의 특정 구체예에서, 투여는 피하 투여이다. 특정 구체예에서, 투여는 정맥내 투여이다.In certain embodiments of the methods provided herein, the administration is subcutaneous administration. In certain embodiments, administration is intravenous.

특정 구체예에서, 상기 방법의 변형된 안티센스 올리고뉴클레오타이드는 DMPK RNA의 비-반복부 영역 내의 비-코딩 서열을 표적으로 한다. 특정 구체예에서, 올리고뉴클레오타이드는 돌연변이 DMPK RNA의 코딩 영역, 인트론, 5'UTR 또는 3'UTR을 표적으로 한다.In certain embodiments, the modified antisense oligonucleotide of the method targets a non-coding sequence within the non-repeat region of DMPK RNA. In certain embodiments, the oligonucleotide targets the coding region, intron, 5'UTR or 3'UTR of the mutant DMPK RNA.

본원에 제공된 방법의 특정 구체예에서, 핵 리보누클레아제는 RNase H1이다.In certain embodiments of the methods provided herein, the nuclear ribonuclease is RNase H1.

상기 방법의 특정 구체예에서, DMPK RNA는 근육 조직에서 감소된다. 특정 구체예에서, 돌연변이 DMPK RNA CUGexp DMPK RNA가 선택적으로 감소된다.In certain embodiments of the method, DMPK RNA is reduced in muscle tissue. In certain embodiments, the mutant DMPK RNA CUGexp DMPK RNA is selectively reduced.

특정 구체예에서, DMPK는 유전자은행 등록번호 NM_001081560.1에 나열된 바와 같은 서열(서열번호 1로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 뉴클레오타이드 18540696으로부터 18555106까지 트렁케이션된 유전자은행 등록번호 NT_011109.15에 나열된 바와 같은 서열(서열번호 2로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 뉴클레오타이드 16666001로부터 16681000까지 트렁케이션된 유전자은행 등록번호 NT_039413.7에 나열된 바와 같은 서열(서열번호 3으로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 NM_032418.1에 나열된 바와 같은 서열(서열번호 4로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 AI007148.1에 나열된 바와 같은 서열(서열번호 5로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 AI304033.1에 나열된 바와 같은 서열(서열번호 6으로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 BC024150.1로 본원에 나열된 바와 같은 서열(서열번호 7로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 BC056615.1에 나열된 바와 같은 서열(서열번호 8로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 BC075715.1에 나열된 바와 같은 서열(서열번호 793으로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 BU519245.1에 나열된 바와 같은 서열(서열번호 794로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 CB247909.1에 나열된 바와 같은 서열(서열번호 795로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 CX208906.1에 나열된 바와 같은 서열(서열번호 796으로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 CX732022.1에 나열된 바와 같은 서열(서열번호 797로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 S60315.1에 나열된 바와 같은 서열(서열번호 798로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 S60316.1에 나열된 바와 같은 서열(서열번호 799로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 NM_001081562.1에 나열된 바와 같은 서열(서열번호 800으로 본원에 포함됨)을 갖는다. 특정 구체예에서, DMPK는 유전자은행 등록번호 NM_001100.3에 나열된 바와 같은 서열(서열번호 801로 본원에 포함됨)을 갖는다.In certain embodiments, the DMPK has a sequence as listed in Genbank accession number NM_001081560.1 (incorporated herein as SEQ ID NO: 1). In certain embodiments, the DMPK has a sequence as listed in Genbank accession number NT_011109.15 (incorporated herein as SEQ ID NO: 2) truncate from nucleotides 18540696 to 18555106. In certain embodiments, the DMPK has a sequence as listed in Genbank accession number NT_039413.7 (incorporated herein as SEQ ID NO: 3) truncate from nucleotides 16666001 to 16681000. In certain embodiments, the DMPK has a sequence as listed in Genbank accession number NM_032418.1 (incorporated herein as SEQ ID NO: 4). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number AI007148.1 (incorporated herein as SEQ ID NO: 5). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number AI304033.1 (incorporated herein as SEQ ID NO: 6). In certain embodiments, the DMPK has a sequence as listed herein under Genbank Accession No. BC024150.1 (incorporated herein as SEQ ID No. 7). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number BC056615.1 (incorporated herein as SEQ ID NO: 8). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number BC075715.1 (incorporated herein as SEQ ID NO: 793). In certain embodiments, the DMPK has a sequence as listed in Genbank accession number BU519245.1 (incorporated herein as SEQ ID NO: 794). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number CB247909.1 (incorporated herein as SEQ ID NO: 795). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession No. CX208906.1 (incorporated herein as SEQ ID No. 796). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number CX732022.1 (incorporated herein as SEQ ID NO: 797). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number S60315.1 (incorporated herein as SEQ ID NO: 798). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number S60316.1 (incorporated herein as SEQ ID NO: 799). In certain embodiments, the DMPK has a sequence as listed in Genbank accession number NM_001081562.1 (incorporated herein as SEQ ID NO: 800). In certain embodiments, the DMPK has a sequence as listed in Genbank Accession Number NM_001100.3 (incorporated herein as SEQ ID NO: 801).

특정 구체예에서, 변형된 올리고뉴클레오타이드는 서열번호 12-156, 160-770 및 774-792 중 어느 하나에 열거된 핵염기 서열 중 적어도 8개의 연속적 핵염기를 포함하는 핵염기 서열을 갖는다. 특정 구체예에서, 변형된 올리고뉴클레오타이드는 서열번호 12-156, 160-770 및 774-792 중 어느 하나에 열거된 핵염기 서열 중 적어도 9개, 적어도 10개 또는 적어도 11개의 연속적 핵염기를 포함하는 핵염기 서열을 갖는다.In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 8 contiguous nucleobases of the nucleobase sequences listed in any one of SEQ ID NOs: 12-156, 160-770 and 774-792. In certain embodiments, the modified oligonucleotide comprises at least 9, at least 10, or at least 11 consecutive nucleobases of the nucleobase sequence listed in any one of SEQ ID NOs: 12-156, 160-770 and 774-792. It has a nucleobase sequence.

특정 구체예에서, 변형된 올리고뉴클레오타이드는 서열번호 12-156, 160-770 및 774-792 중 어느 하나에 열거된 핵염기 서열 중 적어도 12개의 연속적 핵염기를 포함하는 핵염기 서열을 갖는다. 특정 구체예에서, 변형된 올리고뉴클레오타이드는 서열번호 12-156, 160-770 및 774-792 중 어느 하나에 열거된 핵염기 서열 중 적어도 13개 또는 적어도 14개의 연속적 핵염기를 포함하는 핵염기 서열을 갖는다.In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 12 contiguous nucleobases of the nucleobase sequences listed in any one of SEQ ID NOs: 12-156, 160-770 and 774-792. In certain embodiments, the modified oligonucleotide comprises a nucleobase sequence comprising at least 13 or at least 14 consecutive nucleobases of the nucleobase sequence listed in any one of SEQ ID NOs: 12-156, 160-770 and 774-792. Have.

특정 구체예에서, 변형된 올리고뉴클레오타이드는 서열번호 12-156, 160-770 및 774-792 중 어느 하나에 열거된 핵염기 서열 중 적어도 15개의 연속적 핵염기를 포함하는 핵염기 서열을 갖는다. 특정 구체예에서, 변형된 올리고뉴클레오타이드는 서열번호 12-156, 160-770 및 774-792 중 어느 하나에 열거된 핵염기 서열 중 적어도 16개 또는 적어도 17개의 연속적 핵염기를 포함하는 핵염기 서열을 갖는다.In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 15 contiguous nucleobases of the nucleobase sequences listed in any one of SEQ ID NOs: 12-156, 160-770 and 774-792. In certain embodiments, the modified oligonucleotide comprises a nucleobase sequence comprising at least 16 or at least 17 contiguous nucleobases of the nucleobase sequence listed in any one of SEQ ID NOs: 12-156, 160-770 and 774-792. Have.

특정 구체예에서, 변형된 올리고뉴클레오타이드는 서열번호 12-156, 160-770 및 774-792 중 어느 하나에 열거된 핵염기 서열 중 적어도 18개의 연속적 핵염기를 포함하는 핵염기 서열을 갖는다. 특정 구체예에서, 변형된 올리고뉴클레오타이드는 서열번호 12-156, 160-770 및 774-792 중 어느 하나에 열거된 핵염기 서열 중 적어도 19개의 연속적 핵염기를 포함하는 핵염기 서열을 갖는다.In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 18 contiguous nucleobases of the nucleobase sequences listed in any one of SEQ ID NOs: 12-156, 160-770 and 774-792. In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 19 contiguous nucleobases of the nucleobase sequences listed in any one of SEQ ID NOs: 12-156, 160-770 and 774-792.

특정 구체예에서, 본원에 제공된 변형된 올리고뉴클레오타이드는 서열번호 1:1178-1206, 2159-2182, 2174-2196, 2426-2447, 2450-2518, 2679-2704 및 2697-2725의 영역 중 어느 하나를 표적으로 한다.In certain embodiments, the modified oligonucleotides provided herein comprise any of the regions of SEQ ID NOs: 1:1178-1206, 2159-2182, 2174-2196, 2426-2447, 2450-2518, 2679-2704 and 2697-2725. Target.

특정 구체예에서, 본원에 제공된 변형된 올리고뉴클레오타이드는 서열번호 1:178-223, 232-253, 279-299, 366-399, 519-541, 923-975, 1073-1105, 1171-1196, 1215-1246, 1263-1324, 1706-1734, 1743-1763, 1932-1979, 1981-2003, 2077-2108 및 2152-2173의 영역 중 어느 하나를 표적으로 한다.In certain embodiments, the modified oligonucleotides provided herein are SEQ ID NOs: 1:178-223, 232-253, 279-299, 366-399, 519-541, 923-975, 1073-1105, 1171-1196, 1215 -Targets any of the areas of 1246, 1263-1324, 1706-1734, 1743-1763, 1932-1979, 1981-2003, 2077-2108 and 2152-2173.

특정 구체예에서, 본원에 제공된 변형된 올리고뉴클레오타이드는 서열번호 2:1251-1303, 1305-1326, 1352-1372, 3762-3795, 4170-4192, 5800-5852, 6124-6149, 6168-6199, 6216-6277, 11979-12007, 12016-12036, 12993- 13042, 13044-13066, 13140-13171 및 13215-13236의 영역 중 어느 하나를 표적으로 한다.In certain embodiments, the modified oligonucleotides provided herein are SEQ ID NOs: 2:1251-1303, 1305-1326, 1352-1372, 3762-3795, 4170-4192, 5800-5852, 6124-6149, 6168-6199, 6216 It targets any of the areas of -6277, 11979-12007, 12016-12036, 12993-13042, 13044-13066, 13140-13171 and 13215-13236.

특정 구체예에서, 동물은 인간이다.In certain embodiments, the animal is human.

특정 구체예에서, 본 발명의 화합물 또는 조성물은 첫번째 작용제로 지정되고, 본 발명의 방법은 두번째 작용제를 투여하는 것을 추가로 포함한다. 특정 구체예에서, 첫번째 작용제 및 두번째 작용제는 공동 투여된다. 특정 구체예에서, 첫번째 작용제 및 두번째 작용제는 순차적으로 또는 동시에 공동 투여된다.In certain embodiments, the compound or composition of the invention is designated as a first agent, and the methods of the invention further comprise administering a second agent. In certain embodiments, the first agent and the second agent are administered co-administered. In certain embodiments, the first agent and the second agent are administered sequentially or concurrently.

특정 구체예에서, 투여는 비경구 투여를 포함한다.In certain embodiments, administration includes parenteral administration.

특정 구체예에서, 화합물은 단일 가닥의 변형된 올리고뉴클레오타이드이다. 특정 구체예에서, 변형된 올리고뉴클레오타이드의 핵염기 서열은 상기 변형된 올리고뉴클레오타이드의 전체에 걸쳐 측정 시 서열번호 1-8 및 793-801 중 어느 하나에 적어도 95% 상보적이다. 특정 구체예에서, 변형된 올리고뉴클레오타이드의 핵염기 서열은 상기 변형된 올리고뉴클레오타이드의 전체에 걸쳐 측정 시 서열번호 1-8 및 793-801 중 어느 하나에 100% 상보적이다.In certain embodiments, the compound is a single stranded modified oligonucleotide. In certain embodiments, the nucleobase sequence of the modified oligonucleotide is at least 95% complementary to any one of SEQ ID NOs: 1-8 and 793-801 as measured throughout the modified oligonucleotide. In certain embodiments, the nucleobase sequence of the modified oligonucleotide is 100% complementary to any one of SEQ ID NOs: 1-8 and 793-801 as measured throughout the modified oligonucleotide.

특정 구체예에서, 상기 변형된 올리고뉴클레오타이드의 적어도 하나의 뉴클레오사이드간 결합은 변형된 뉴클레오사이드간 결합이다. 특정 구체예에서, 각각의 뉴클레오사이드간 결합은 포스포로티오에이트 뉴클레오사이드간 결합이다.In certain embodiments, at least one internucleoside linkage of the modified oligonucleotide is a modified internucleoside linkage. In certain embodiments, each internucleoside linkage is a phosphorothioate internucleoside linkage.

특정 구체예에서, 상기 변형된 올리고뉴클레오타이드의 적어도 하나의 뉴클레오사이드는 변형된 당을 포함한다. 특정 구체예에서, 적어도 하나의 변형된 당은 바이사이클릭 당이다. 특정 구체예에서, 적어도 하나의 변형된 당은 2'-O-메톡시에틸, 또는 n이 1 또는 2인 4'-(CH2)n-O-2' 브릿지를 포함한다.In certain embodiments, at least one nucleoside of the modified oligonucleotide comprises a modified sugar. In certain embodiments, the at least one modified sugar is a bicyclic sugar. In certain embodiments, the at least one modified sugar comprises 2'-0-methoxyethyl, or a 4'-(CH 2 ) n -O-2' bridge in which n is 1 or 2.

특정 구체예에서, 상기 변형된 올리고뉴클레오타이드의 적어도 하나의 뉴클레오사이드는 변형된 핵염기를 포함한다. 특정 구체예에서, 변형된 핵염기는 5-메틸사이토신이다.In certain embodiments, at least one nucleoside of the modified oligonucleotide comprises a modified nucleobase. In certain embodiments, the modified nucleobase is 5-methylcytosine.

특정 구체예에서, 변형된 올리고뉴클레오타이드는 a) 결합된 데옥시뉴클레오사이드로 구성되는 갭 세그먼트; b) 결합된 뉴클레오사이드로 구성되는 5' 윙 세그먼트; 및 c) 결합된 뉴클레오사이드로 구성되는 3' 윙 세그먼트를 포함한다. 갭 세그먼트는 5' 윙 세그먼트와 3' 윙 세그먼트 사이에 위치되고, 각각의 윙 세그먼트의 각각의 뉴클레오사이드는 변형된 당을 포함한다.In certain embodiments, the modified oligonucleotide comprises a) a gap segment consisting of bound deoxynucleosides; b) a 5'wing segment consisting of linked nucleosides; And c) a 3'wing segment consisting of linked nucleosides. The gap segment is located between the 5'wing segment and the 3'wing segment, and each nucleoside of each wing segment contains a modified sugar.

특정 구체예에서, 변형된 올리고뉴클레오타이드는 a) 10개의 결합된 데옥시뉴클레오사이드로 구성되는 갭 세그먼트; b) 5개의 결합된 뉴클레오사이드로 구성되는 5' 윙 세그먼트; 및 c) 5개의 결합된 뉴클레오사이드로 구성되는 3' 윙 세그먼트를 포함한다. 갭 세그먼트는 5' 윙 세그먼트와 3' 윙 세그먼트 사이에 위치되고, 각각의 윙 세그먼트의 각각의 뉴클레오사이드는 2'-O-메톡시에틸 당을 포함하고, 상기 변형된 올리고뉴클레오타이드의 각각의 뉴클레오사이드간 결합은 포스포로티오에이트 결합이고, 상기 변형된 올리고뉴클레오타이드 중 각각의 사이토신은 5'-메틸사이토신이다.In certain embodiments, the modified oligonucleotide comprises a) a gap segment consisting of 10 linked deoxynucleosides; b) a 5'wing segment consisting of 5 linked nucleosides; And c) a 3'wing segment consisting of 5 linked nucleosides. The gap segment is located between the 5'wing segment and the 3'wing segment, and each nucleoside of each wing segment contains a 2'-0-methoxyethyl sugar, and each nucleus of the modified oligonucleotide. The cleoside bond is a phosphorothioate bond, and each cytosine in the modified oligonucleotide is 5'-methylcytosine.

특정 구체예에서, 변형된 올리고뉴클레오타이드는 20개의 결합된 뉴클레오사이드로 구성된다.In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides.

특정 구체예는 10개의 결합된 데옥시뉴클레오사이드, 5개의 결합된 뉴클레오사이드로 구성되는 5' 윙 세그먼트 및 5개의 결합된 뉴클레오사이드로 구성되는 3' 윙 세그먼트로 구성되는 갭 세그먼트를 갖는 변형된 올리고뉴클레오타이드를 포함하는 화합물을 동물에게 투여하는 것을 포함하는 동물에서 CUGexp DMPK RNA를 선택적으로 감소시키거나, 근육긴장증을 감소시키거나, 스플라이스오패시를 감소시키는 방법을 제공한다. 갭 세그먼트는 5' 윙 세그먼트와 3' 윙 세그먼트 사이에 위치되고, 각각의 윙 세그먼트의 각각의 뉴클레오사이드는 2'-O-메톡시에틸 당을 포함하고, 상기 변형된 올리고뉴클레오타이드의 각각의 뉴클레오사이드간 결합은 포스포로티오에이트 결합이고, 상기 변형된 올리고뉴클레오타이드 중 각각의 사이토신은 5'-메틸사이토신이다.Certain embodiments have a gap segment consisting of a 5'wing segment consisting of 10 linked deoxynucleosides, a 5'wing segment consisting of 5 linked nucleosides, and a 3'wing segment consisting of 5 linked nucleosides. It provides a method of selectively reducing CUGexp DMPK RNA, reducing myotonia, or reducing spliceopacity in an animal comprising administering to the animal a compound comprising a modified oligonucleotide. The gap segment is located between the 5'wing segment and the 3'wing segment, and each nucleoside of each wing segment contains a 2'-0-methoxyethyl sugar, and each nucleus of the modified oligonucleotide. The cleoside bond is a phosphorothioate bond, and each cytosine in the modified oligonucleotide is 5'-methylcytosine.

특정 구체예는 본원에 기재된 치료 방법 중 임의의 방법에서 사용하기 위한 약제의 제조에서의 본원에 기재된 바와 같은 임의의 화합물의 용도를 제공한다. 예를 들어, 특정 구체예는 타입 1 근육긴장성 이영양증을 치료하거나, 개선시키거나, 예방하기 위한 약제의 제조에서의 본원에 기재된 바와 같은 화합물의 용도를 제공한다. 특정 구체예는 DMPK의 발현을 억제하고, DMPK 관련 질병 및/또는 이의 증상을 치료하거나, 예방하거나, 지연시키거나, 개선시키기 위한 약제의 제조에서의 본원에 기재된 바와 같은 화합물의 용도를 제공한다. 특정 구체예는 동물에서 DMPK 발현을 감소시키기 위한 약제의 제조에서의 본원에 기재된 바와 같은 화합물의 용도를 제공한다. 특정 구체예는 동물에서 CUGexp DMPK를 선택적으로 감소시키거나, 근육긴장증을 감소시키거나, 스플라이스오패시를 감소시키기 위한 약제의 제조에서의 본원에 기재된 바와 같은 화합물의 용도를 제공한다. 특정 구체예는 타입 1 근육긴장성 이영양증을 지닌 동물을 치료하기 위한 약제의 제조에서의 본원에 기재된 바와 같은 화합물의 용도를 제공한다. 특정 구체예는 근육 경직, 근육긴장증, 불능화 원위 약화(disabling distal weakness), 안면 및 턱 근육의 약화, 연하(swallowing)의 어려움, 눈꺼풀의 힘없음(안검하수증), 목 근육의 약화, 팔 및 다리 근육의 약화, 지속적인 근육 동통, 과다수면, 근육 소모, 연하곤란, 호흡기능부전, 불규칙한 심박동, 심장 근육 손상, 무감동, 인슐린 내성 및 백내장을 포함하는 DM1의 발달과 관련된 증상 및 결과를 치료하거나, 예방하거나, 지연시키거나, 개선시키기 위한 약제의 제조에서의 본원에 기재된 바와 같은 화합물의 용도를 제공한다. 특정 구체예는 병원성 전사물의 분해를 유도함으로써 RNA 우세를 중화시키는 약제의 제조에서의 본원에 기재된 바와 같은 화합물의 용도를 제공한다.Certain embodiments provide for the use of any compound as described herein in the manufacture of a medicament for use in any of the methods of treatment described herein. For example, certain embodiments provide the use of a compound as described herein in the manufacture of a medicament for treating, ameliorating, or preventing type 1 muscular dystrophy. Certain embodiments provide the use of a compound as described herein in the manufacture of a medicament for inhibiting the expression of DMPK and treating, preventing, delaying, or ameliorating DMPK related diseases and/or symptoms thereof. Certain embodiments provide for the use of a compound as described herein in the manufacture of a medicament for reducing DMPK expression in an animal. Certain embodiments provide the use of a compound as described herein in the manufacture of a medicament for selectively reducing CUGexp DMPK, reducing myotonia, or reducing spliceopathy in an animal. Certain embodiments provide for the use of a compound as described herein in the manufacture of a medicament for the treatment of an animal with type 1 muscular dystrophy. Specific embodiments include muscle stiffness, muscle tone, distal weakness, weakness of the facial and jaw muscles, difficulty swallowing, weakness in the eyelids (ptosis), weakness of the neck muscles, arms and legs. Treat or prevent symptoms and consequences associated with the development of DM1, including muscle weakness, persistent muscle pain, excessive sleep, muscle wasting, dysphagia, respiratory failure, irregular heartbeat, heart muscle damage, numbness, insulin resistance, and cataracts. Use of a compound as described herein in the manufacture of a medicament for performing, delaying, or improving is provided. Certain embodiments provide the use of a compound as described herein in the manufacture of a medicament that neutralizes RNA dominance by inducing degradation of pathogenic transcripts.

특정 구체예는 본원에 기재된 바와 같은 타입 1 근육긴장성 이영양증을 치료하거나, 예방하거나, 개선시키기 위한 키트를 제공하며, 상기 키트는 a) 본원에 기재된 바와 같은 화합물, 및 임의로 b) 본원에 기재된 바와 같은 추가 작용제 또는 요법을 포함한다. 키트는 타입 1 근육긴장성 이영양증을 치료하거나, 예방하거나, 개선시키기 위한 키트를 사용하기 위한 설명서 또는 라벨을 추가로 포함할 수 있다.Certain embodiments provide kits for treating, preventing, or ameliorating type 1 muscular dystrophy as described herein, the kit comprising a) a compound as described herein, and optionally b) a compound as described herein. And additional agents or therapy. The kit may further include instructions or labels for using the kit to treat, prevent, or ameliorate type 1 muscular dystrophy.

특정 구체예는 본원에 기재된 치료 방법 중 임의의 치료 방법에서 사용하기 위한 본원에 기재된 바와 같은 임의의 화합물 또는 조성물을 제공한다. 예를 들어, 특정 구체예는 DMPK의 발현을 억제하고, DMPK 관련 질병 및/또는 이의 증상을 치료하거나, 예방하거나, 지연시키거나, 개선시키기 위한 본원에 기재된 바와 같은 화합물 또는 조성물을 제공한다. 특정 구체예는 동물에서의 DMPK 발현을 감소시키는데 사용하기 위한 본원에 기재된 바와 같은 화합물 또는 조성물을 제공한다. 특정 구체예는 동물에서 CUGexp DMPK를 선택적으로 감소시키거나, 근육긴장증을 감소시키거나, 스플라이스오패시를 감소시키는데 사용하기 위한 본원에 기재된 바와 같은 화합물 또는 조성물을 제공한다. 특정 구체예는 타입 1 근육긴장성 이영양증을 지닌 동물을 치료하는데 사용하기 위한 본원에 기재된 바와 같은 화합물 또는 조성물을 제공한다. 특정 구체예는 근육 경직, 근육긴장증, 불능화 원위 약화, 안면 및 턱 근육의 약화, 연하의 어려움, 눈꺼풀의 힘없음(안검하수증), 목 근육의 약화, 팔 및 다리 근육의 약화, 지속적인 근육 동통, 과다수면, 근육 소모, 연하곤란, 호흡기능부전, 불규칙한 심박동, 심장 근육 손상, 무감동, 인슐린 내성, 및 백내장을 포함하는 DM1의 발달과 관련된 증상 및 결과를 치료하거나, 예방하거나, 지연시키거나, 개선시키는데 사용하기 위한 본원에 기재된 바와 같은 화합물 또는 조성물을 제공한다. 특정 구체예는 병원성 전사물의 절단을 유도함으로써 RNA 우세를 중화시키는데 사용하기 위한 본원에 기재된 바와 같은 화합물 또는 조성물을 제공한다. 특정 구체예는 서열번호 12-156, 160-770 및 774-792의 핵염기 서열 중 임의의 핵염기 서열의 적어도 12개의 연속적 핵염기를 포함하는 핵염기 서열을 갖는 12 내지 30개의 결합된 뉴클레오사이드로 구성되는 변형된 올리고뉴클레오타이드를 포함하는 화합물을 제공한다.Certain embodiments provide any compound or composition as described herein for use in any of the methods of treatment described herein. For example, certain embodiments provide a compound or composition as described herein for inhibiting the expression of DMPK and treating, preventing, delaying, or ameliorating DMPK related diseases and/or symptoms thereof. Certain embodiments provide a compound or composition as described herein for use in reducing DMPK expression in an animal. Certain embodiments provide a compound or composition as described herein for use in selectively reducing CUGexp DMPK, reducing myotonia, or reducing spliceopathy in an animal. Certain embodiments provide a compound or composition as described herein for use in treating an animal with type 1 myotonic dystrophy. Certain embodiments include muscle stiffness, dystonia, disability distal weakness, facial and jaw muscles weakness, difficulty swallowing, eyelid weakness (ptosis), neck muscle weakness, arm and leg muscles weakness, persistent muscle pain, Treat, prevent, delay, or ameliorate the symptoms and consequences associated with the development of DM1, including excessive sleep, muscle wasting, dysphagia, respiratory failure, irregular heartbeat, heart muscle damage, numbness, insulin resistance, and cataracts. Compounds or compositions as described herein are provided for use in making. Certain embodiments provide a compound or composition as described herein for use in neutralizing RNA dominance by inducing cleavage of a pathogenic transcript. Certain embodiments include 12 to 30 linked nucleos having a nucleobase sequence comprising at least 12 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 12-156, 160-770 and 774-792. It provides a compound comprising a modified oligonucleotide consisting of sides.

본원에 기재된 방법에 사용될 수 있는 다른 화합물이 또한 제공된다.Other compounds that can be used in the methods described herein are also provided.

예를 들어, 특정 구체예는 서열번호 41, 44, 76, 109, 153, 320, 321, 322, 325, 329, 335 및 657의 핵염기 서열 중 임의의 핵염기 서열의 적어도 8, 적어도 9, 적어도 10, 적어도 11, 적어도 12, 적어도 13, 적어도 14, 적어도 15, 적어도 16, 적어도 17, 적어도 18 또는 적어도 19개의 연속적 핵염기를 포함하는 핵염기 서열을 갖는 10 내지 80, 12 내지 50, 12 내지 30, 15 내지 30, 18 내지 24, 19 내지 22, 또는 20개의 결합된 뉴클레오사이드로 구성되는 변형된 올리고뉴클레오타이드를 포함하는 화합물을 제공한다.For example, certain embodiments include at least 8, at least 9 of any of the nucleobase sequences of SEQ ID NOs: 41, 44, 76, 109, 153, 320, 321, 322, 325, 329, 335 and 657, 10 to 80, 12 to 50, 12 having a nucleobase sequence comprising at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18 or at least 19 consecutive nucleobases To 30, 15 to 30, 18 to 24, 19 to 22, or 20 linked nucleosides.

특정 구체예는 서열번호 15, 73, 77, 79, 83, 85, 130, 602, 648, 655, 674 및 680의 핵염기 서열 중 임의의 핵염기 서열의 적어도 8, 적어도 9, 적어도 10, 적어도 11, 적어도 12, 적어도 13, 적어도 14, 적어도 15, 적어도 16, 적어도 17, 적어도 18, 적어도 19개의 연속적 핵염기를 포함하는 핵염기 서열을 갖는 10 내지 80, 12 내지 50, 12 내지 30, 15 내지 30, 18 내지 24, 19 내지 22, 또는 20개의 결합된 뉴클레오사이드로 구성되는 변형된 올리고뉴클레오타이드를 포함하는 화합물을 제공한다.Certain embodiments include at least 8, at least 9, at least 10, at least of any of the nucleobase sequences of SEQ ID NOs: 15, 73, 77, 79, 83, 85, 130, 602, 648, 655, 674 and 680. 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, 10 to 80, 12 to 50, 12 to 30, 15 having a nucleobase sequence comprising at least 19 consecutive nucleobases To 30, 18 to 24, 19 to 22, or 20 linked nucleosides.

특정 구체예는 서열번호 1의 핵염기 664-683, 773-792, 926-945, 927-946, 928-947, 931-950, 935-954, 941-960, 2089-2108, 2163-2182, 2490-2509, 2499-2518, 2676-2695, 2685-2704, 2676-2695, 2688-2707, 2697-2716, 2764-2783 및 2770-2789의 동일 길이 부분과 상보적인 적어도 8, 적어도 9, 적어도 10, 적어도 11, 적어도 12, 적어도 13, 적어도 14, 적어도 15, 적어도 16, 적어도 17, 적어도 18 또는 적어도 19개 또는 이 초과의 연속적 핵염기의 부분을 포함하는 핵염기 서열을 갖는 10 내지 80, 12 내지 50, 12 내지 30, 15 내지 30, 18 내지 24, 19 내지 22, 또는 20개의 결합된 뉴클레오사이드로 구성되는 변형된 올리고뉴클레오타이드를 포함하는 화합물을 제공하며, 상기 핵염기 서열은 서열번호 1에 상보적이다.Specific embodiments include the nucleobases 664-683, 773-792, 926-945, 927-946, 928-947, 931-950, 935-954, 941-960, 2089-2108, 2163-2182, At least 8, at least 9, at least 10 complementary to the same length portions of 2490-2509, 2499-2518, 2676-2695, 2685-2704, 2676-2695, 2688-2707, 2697-2716, 2764-2783 and 2770-2789 , 10 to 80, 12 having a nucleobase sequence comprising portions of at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18 or at least 19 or more contiguous nucleobases. To 50, 12 to 30, 15 to 30, 18 to 24, 19 to 22, or provides a compound comprising a modified oligonucleotide consisting of 20 linked nucleosides, wherein the nucleobase sequence is SEQ ID NO: 1 Is complementary to

특정 구체예는 서열번호 2의 핵염기 812-831, 3629-3648, 4447-4466, 4613-4632, 5803-5822, 5804-5823, 5805-5824, 5808-5827, 5818-5837, 6794-6813, 12463-12482, 13152-13171 및 13553-13572의 동일 길이 부분에 상보적인 적어도 8, 적어도 9, 적어도 10, 적어도 11, 적어도 12, 적어도 13, 적어도 14, 적어도 15, 적어도 16, 적어도 17, 적어도 18 또는 적어도 19개 또는 이 초과의 연속적 핵염기의 부분을 포함하는 핵염기 서열을 갖는 10 내지 80, 12 내지 50, 12 내지 30, 15 내지 30, 18 내지 24, 19 내지 22, 또는 20개의 결합된 뉴클레오사이드로 구성되는 변형된 올리고뉴클레오타이드를 포함하는 화합물을 제공하며, 상기 핵염기 서열은 서열번호 2에 상보적이다.Specific embodiments include the nucleobases 812-831, 3629-3648, 4447-4466, 4613-4632, 5803-5822, 5804-5823, 5805-5824, 5808-5827, 5818-5837, 6794-6813 of SEQ ID NO: 2, At least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18 complementary to the same length portion of 12463-12482, 13152-13171 and 13553-13572 Or 10 to 80, 12 to 50, 12 to 30, 15 to 30, 18 to 24, 19 to 22, or 20 linked nucleobases having a nucleobase sequence comprising portions of at least 19 or more contiguous nucleobases. It provides a compound comprising a modified oligonucleotide consisting of nucleosides, wherein the nucleobase sequence is complementary to SEQ ID NO: 2.

특정 구체예에서, 변형된 올리고뉴클레오타이드는 단일 가닥의 올리고뉴클레오타이드이다.In certain embodiments, the modified oligonucleotide is a single stranded oligonucleotide.

특정 구체예에서, 변형된 올리고뉴클레오타이드의 핵염기 서열은 서열번호 1-8 및 793-801 중 임의의 것에 적어도 70%, 적어도 75%, 적어도 80%, 적어도 85%, 적어도 90%, 적어도 95% 또는 100% 상보적이다.In certain embodiments, the nucleobase sequence of the modified oligonucleotide is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% of any of SEQ ID NOs: 1-8 and 793-801. Or 100% complementary.

특정 구체예에서, 적어도 하나의 뉴클레오사이드간 결합은 변형된 뉴클레오사이드간 결합이다.In certain embodiments, the at least one internucleoside linkage is a modified internucleoside linkage.

특정 구체예에서, 각각의 뉴클레오사이드간 결합은 포스포로티오에이트 뉴클레오사이드간 결합이다.In certain embodiments, each internucleoside linkage is a phosphorothioate internucleoside linkage.

특정 구체예에서, 적어도 하나의 뉴클레오사이드는 변형된 당을 포함한다.In certain embodiments, at least one nucleoside comprises a modified sugar.

특정 구체예에서, 적어도 하나의 변형된 당은 바이사이클릭 당이다.In certain embodiments, the at least one modified sugar is a bicyclic sugar.

특정 구체예에서, 적어도 하나의 변형된 당은 2'-O-메톡시에틸을 포함한다.In certain embodiments, the at least one modified sugar comprises 2'-0-methoxyethyl.

특정 구체예에서, 적어도 하나의 뉴클레오사이드는 변형된 핵염기를 포함한다.In certain embodiments, at least one nucleoside comprises a modified nucleobase.

특정 구체예에서, 변형된 핵염기는 5-메틸사이토신이다.In certain embodiments, the modified nucleobase is 5-methylcytosine.

특정 구체예에서, 변형된 올리고뉴클레오타이드는In certain embodiments, the modified oligonucleotide is

결합된 데옥시뉴클레오사이드로 구성되는 갭 세그먼트;A gap segment consisting of bound deoxynucleosides;

결합된 뉴클레오사이드로 구성되는 5' 윙 세그먼트; 및A 5'wing segment consisting of linked nucleosides; And

결합된 뉴클레오사이드로 구성되는 3' 윙 세그먼트를 포함하며,It includes a 3'wing segment consisting of linked nucleosides,

상기 갭 세그먼트는 5' 윙 세그먼트와 3' 윙 세그먼트 사이에 위치되고, 각각의 윙 세그먼트의 각각의 뉴클레오사이드는 변형된 당을 포함한다.The gap segment is located between the 5'wing segment and the 3'wing segment, and each nucleoside of each wing segment contains a modified sugar.

특정 구체예에서, 변형된 올리고뉴클레오타이드는 In certain embodiments, the modified oligonucleotide is

10개의 결합된 데옥시뉴클레오사이드로 구성되는 갭 세그먼트;A gap segment consisting of 10 bound deoxynucleosides;

5개의 결합된 뉴클레오사이드로 구성되는 5' 윙 세그먼트; 및A 5'wing segment consisting of 5 linked nucleosides; And

5개의 결합된 뉴클레오사이드로 구성되는 3' 윙 세그먼트를 포함하며,It contains a 3'wing segment consisting of 5 linked nucleosides,

상기 갭 세그먼트는 5' 윙 세그먼트와 3' 윙 세그먼트 사이에 위치되고, 각각의 윙 세그먼트의 각각의 뉴클레오사이드는 2'-O-메톡시에틸 당을 포함하고, 각각의 뉴클레오사이드간 결합은 포스포로티오에이트 결합이다.The gap segment is located between the 5'wing segment and the 3'wing segment, and each nucleoside of each wing segment contains a 2'-O-methoxyethyl sugar, and each nucleoside bond is It is a phosphorothioate bond.

특정 구체예에서, 변형된 올리고뉴클레오타이드는 14개의 결합된 뉴클레오사이드로 구성된다.In certain embodiments, the modified oligonucleotide consists of 14 linked nucleosides.

특정 구체예에서, 변형된 올리고뉴클레오타이드는 16개의 결합된 뉴클레오사이드로 구성된다.In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides.

특정 구체예에서, 변형된 올리고뉴클레오타이드는 20개의 결합된 뉴클레오사이드로 구성된다.In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides.

안티센스 화합물Antisense compounds

올리고머 화합물은 올리고뉴클레오타이드, 올리고뉴클레오사이드, 올리고뉴클레오타이드 유사체, 올리고뉴클레오타이드 모방체(mimetics), 안티센스 화합물, 안티센스 올리고뉴클레오타이드 및 siRNA를 포함하나, 이에 제한되지는 않는다. 올리고머 화합물은 표적 핵산에 대해 "안티센스"일 수 있고, 이는 수소 결합을 통해 표적 핵산에 대한 하이브리드화를 경험할 수 있는 것을 의미한다.Oligomeric compounds include, but are not limited to, oligonucleotides, oligonucleotides, oligonucleotide analogs, oligonucleotide mimetics, antisense compounds, antisense oligonucleotides and siRNA. The oligomeric compound may be “antisense” to the target nucleic acid, meaning that it is capable of undergoing hybridization to the target nucleic acid through hydrogen bonding.

특정 구체예에서, 안티센스 화합물은 5'에서 3' 방향으로 기재하는 경우 표적화되는 표적 핵산의 표적 세그먼트의 역 상보체를 포함하는 핵염기 서열을 갖는다. 상기 특정 구체예에서, 안티센스 올리고뉴클레오타이드는 5'에서 3' 방향으로 기재하는 경우 표적화되는 표적 핵산의 표적 세그먼트의 역 상보체를 포함하는 핵염기 서열을 갖는다.In certain embodiments, the antisense compound has a nucleobase sequence comprising the reverse complement of the target segment of the target nucleic acid to be targeted when described in the 5'to 3'direction. In this specific embodiment, the antisense oligonucleotide has a nucleobase sequence comprising the reverse complement of the target segment of the target nucleic acid to be targeted when described in the 5'to 3'direction.

특정 구체예에서, 본원에 기재된 바와 같은 DMPK를 표적으로 하는 안티센스 화합물은 10 내지 30개의 뉴클레오타이드 길이이다. 즉, 안티센스 화합물은 일부 구체예에서 10 내지 30개의 결합된 핵염기이다. 다른 구체예에서, 안티센스 화합물은 8 내지 80, 10 내지 80, 12 내지 30, 12 내지 50, 15 내지 30, 18 내지 24, 19 내지 22, 또는 20개의 결합된 핵염기로 구성되는 변형된 올리고뉴클레오타이드를 포함한다. 상기 특정 구체예에서, 안티센스 화합물은 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 또는 80개의 결합된 핵염기 길이, 또는 상기 값 중 임의의 2개에 의해 규정되는 범위로 구성되는 변형된 올리고뉴클레오타이드를 포함한다. 특정 구체예에서, 상기 길이 중 임의의 길이의 안티센스 화합물은 본원에 기재된 예시적 안티센스 화합물 중 임의의 안티센스 화합물의 핵염기 서열의 적어도 8, 적어도 9, 적어도 10, 적어도 11, 적어도 12, 적어도 13, 적어도 14, 적어도 15, 적어도 16, 적어도 17, 적어도 18 또는 적어도 19개의 연속적 핵염기(예를 들어, 서열번호 12-156, 160-770 및 774-792 중 어느 하나에 열거된 핵염기 서열의 적어도 8개의 연속적 핵염기)를 함유한다.In certain embodiments, antisense compounds targeting DMPK as described herein are 10 to 30 nucleotides in length. That is, the antisense compound is in some embodiments 10 to 30 linked nucleobases. In other embodiments, the antisense compound is a modified oligonucleotide consisting of 8 to 80, 10 to 80, 12 to 30, 12 to 50, 15 to 30, 18 to 24, 19 to 22, or 20 linked nucleobases. Includes. In this specific embodiment, the antisense compound is 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 , 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53 , 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78 , 79 or 80 linked nucleobases in length, or a range defined by any two of the above values. In certain embodiments, the antisense compound of any of the lengths is at least 8, at least 9, at least 10, at least 11, at least 12, at least 13 of the nucleobase sequence of any of the exemplary antisense compounds described herein, At least 14, at least 15, at least 16, at least 17, at least 18 or at least 19 consecutive nucleobases (e.g., at least of the nucleobase sequence listed in any one of SEQ ID NOs: 12-156, 160-770 and 774-792 8 consecutive nucleobases).

특정 구체예에서, 안티센스 화합물은 단축되거나 트렁케이션된 변형된 올리고뉴클레오타이드를 포함한다. 단축되거나 트렁케이션된 변형된 올리고뉴클레오타이드는 5' 말단(5' 트렁케이션), 또는 대안적으로 3' 말단(3' 트렁케이션)으로부터 결실된 단일 뉴클레오사이드를 가질 수 있다. 단축되거나 트렁케이션된 올리고뉴클레오타이드는 5' 말단으로부터 결실된 2개의 뉴클레오사이드를 가질 수 있거나, 대안적으로 3' 말단으로부터 결실된 2개의 서브유닛을 가질 수 있다. 대안적으로, 결실된 뉴클레오사이드는, 예를 들어, 5'으로부터 결실된 하나의 뉴클레오사이드 및 3' 말단으로부터 결실된 하나의 뉴클레오사이드를 갖는 안티센스 화합물 중의 변형된 올리고뉴클레오타이드 전체에 걸쳐 분산될 수 있다.In certain embodiments, the antisense compound comprises a shortened or truncated modified oligonucleotide. A shortened or truncated modified oligonucleotide may have a single nucleoside deleted from the 5'end (5' truncation), or alternatively from the 3'end (3' truncation). Shortened or truncated oligonucleotides can have two nucleosides deleted from the 5'end, or alternatively can have two subunits deleted from the 3'end. Alternatively, the deleted nucleoside is dispersed throughout the modified oligonucleotide in an antisense compound having, for example, one nucleoside deleted from the 5'and one nucleoside deleted from the 3'end. Can be.

단일한 첨가 뉴클레오사이드가 연장된 올리고뉴클레오타이드에 존재하는 경우, 첨가 뉴클레오사이드는 올리고뉴클레오타이드의 5' 또는 3' 말단에 위치될 수 있다. 2개 이상의 첨가 뉴클레오사이드가 존재하는 경우, 첨가된 뉴클레오사이드는, 예를 들어, 올리고뉴클레오타이드의 5' 말단(5' 첨가), 또는 대안적으로 3' 말단(3' 첨가)에 첨가된 2개의 뉴클레오사이드를 갖는 올리고뉴클레오타이드 중에서 서로 인접하여 존재할 수 있다. 대안적으로, 첨가된 뉴클레오사이드는, 예를 들어, 5' 말단에 첨가된 하나의 뉴클레오사이드 및 3' 말단에 첨가된 하나의 서브유닛을 갖는 올리고뉴클레오타이드 중에서 안티센스 화합물 전체에 걸쳐 분산될 수 있다.When a single additional nucleoside is present in the extended oligonucleotide, the additional nucleoside may be located at the 5'or 3'end of the oligonucleotide. If two or more additional nucleosides are present, the added nucleosides are, for example, added to the 5'end (5' addition) of the oligonucleotide, or alternatively to the 3'end (3' addition). Among oligonucleotides having two nucleosides, they may exist adjacent to each other. Alternatively, the added nucleoside can be dispersed throughout the antisense compound in an oligonucleotide having, for example, one nucleoside added to the 5'end and one subunit added to the 3'end. have.

활성을 제거하지 않고 안티센스 올리고뉴클레오타이드와 같은 안티센스 화합물의 길이를 증가시키거나 감소시키고/시키거나 매스매치 염기를 도입시키는 것이 가능하다. 예를 들어, 문헌[Woolfet al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992)]에서, 13-25개 핵염기 길이의 일련의 안티센스 올리고뉴클레오타이드가 난모세포 주입 모델에서 표적 RNA의 절단을 유도하는 능력에 대해 시험되었다. 안티센스 올리고뉴클레오타이드의 말단 근처에 8 또는 11개의 미스매치 염기를 갖는 25개 핵염기 길이의 안티센스 올리고뉴클레오타이드는 미스매치를 함유하지 않은 안티센스 올리고뉴클레오타이드보다 정도는 덜하지만 표적 mRNA의 특이적 절단을 유도할 수 있었다. 유사하게, 표적 특이적 절단이 1 또는 3개의 미스매치를 갖는 것을 포함하는 13개의 핵염기 안티센스 올리고뉴클레오타이드를 이용하여 달성되었다.It is possible to increase or decrease the length of an antisense compound such as an antisense oligonucleotide and/or to introduce a massmatch base without removing activity. See, for example, Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992)], the ability of a series of antisense oligonucleotides of 13-25 nucleobases in length to induce cleavage of target RNA in an oocyte injection model was examined. Was tested. Antisense oligonucleotides with a length of 25 nucleobases with 8 or 11 mismatch bases near the end of the antisense oligonucleotide are to a lesser degree than antisense oligonucleotides without mismatches, but can induce specific cleavage of the target mRNA. there was. Similarly, target specific cleavage was achieved using 13 nucleobase antisense oligonucleotides, including those with 1 or 3 mismatches.

문헌[Gautschi et al (J. Natl. Cancer Inst. 93:463-471, March 2001)]에서 시험관내 및 생체내에서 bcl-2 및 bcl-xL 둘 모두의 발현을 감소시키는, bcl-2 mRNA에 대해 100% 상보성을 갖고 bcl-xL mRNA에 대해 3개의 미스매치를 갖는 올리고뉴클레오타이드의 능력이 입증되었다. 또한, 이러한 올리고뉴클레오타이드는 생체내에서 효능 있는 항-종양 활성을 나타내었다.In Gautschi et al (J. Natl. Cancer Inst. 93:463-471, March 2001), the expression of both bcl-2 and bcl-xL was reduced in bcl-2 mRNA in vitro and in vivo. The ability of oligonucleotides with 100% complementarity to and three mismatches to bcl-xL mRNA was demonstrated. In addition, these oligonucleotides showed potent anti-tumor activity in vivo.

문헌[Maher and Dolnick (Nuc. Acid. Res. 16:3341-3358, 1988)]에서 토끼 망상적혈구 검정에서 인간 DHFR의 번역을 억제하는 능력에 대해 일련의 탠덤(tandem)의 14개의 핵염기 안티센스 올리고뉴클레오타이드, 및 2 또는 3개의 탠덤 안티센스 올리고뉴클레오타이드의 서열로 구성되는 28 및 42개의 핵염기 안티센스 올리고뉴클레오타이드가 각각 시험되었다. 3개의 14개의 핵염기 안티센스 올리고뉴클레오타이드 각각은 단독으로 28 또는 42개의 핵염기 안티센스 올리고뉴클레오타이드보다 약한(modest) 수준에도 불구하고 번역을 억제할 수 있었다.14 nucleobase antisense oligos of a series of tandems for the ability to inhibit the translation of human DHFR in rabbit reticulocyte assay in Maher and Dolnick (Nuc. Acid. Res. 16:3341-3358, 1988). Nucleotide, and 28 and 42 nucleobase antisense oligonucleotides consisting of a sequence of 2 or 3 tandem antisense oligonucleotides, respectively, were tested. Each of the three 14 nucleobase antisense oligonucleotides alone was able to inhibit translation despite a milder level than the 28 or 42 nucleobase antisense oligonucleotides alone.

안티센스 화합물 모티프Antisense compound motif

특정 구체예에서, DMPK 핵산을 표적으로 하는 안티센스 화합물은 억제 활성 향상, 표적 핵산에 대한 증가된 결합 친화성, 또는 생체내 누클레아제에 의한 분해에 대한 내성과 같은 특성을 안티센스 화합물에 부여하는, 패턴 또는 모티프로 배열된 화학적으로 변형된 서브유닛을 갖는다.In certain embodiments, the antisense compound targeting the DMPK nucleic acid confers properties to the antisense compound, such as enhanced inhibitory activity, increased binding affinity for the target nucleic acid, or resistance to degradation by nucleases in vivo. It has chemically modified subunits arranged in a pattern or motif.

키메라 안티센스 화합물은 통상적으로 누클레아제 분해에 대한 증가된 내성, 증가된 세포 흡수, 표적 핵산에 대한 증가된 결합 친화성 및/또는 증가된 억제 활성을 부여하기 위해 변형된 적어도 하나의 영역을 함유한다. 키메라 안티센스 화합물의 두번째 영역은 RNA:DNA 듀플렉스(duplex)의 RNA 가닥을 절단하는 세포 엔도누클레아제 RNase H에 대한 기질로 임의로 작용할 수 있다.Chimeric antisense compounds typically contain at least one region modified to confer increased resistance to nuclease degradation, increased cellular uptake, increased binding affinity for the target nucleic acid and/or increased inhibitory activity. . The second region of the chimeric antisense compound can optionally serve as a substrate for the cellular endonuclease RNase H, which cleaves the RNA strand of an RNA:DNA duplex.

갭머 모티프를 갖는 안티센스 화합물이 키메라 안티센스 화합물로 간주된다. 갭머에서, RNaseH 절단을 지지하는 다수의 뉴클레오타이드를 갖는 내부 영역은 내부 영역의 뉴클레오사이드와 화학적으로 다른 다수의 뉴클레오타이드를 갖는 외부 영역 사이에 위치된다. 갭머 모티프를 갖는 안티센스 올리고뉴클레오타이드의 경우, 갭 세그먼트는 일반적으로 엔도누클레아제 절단에 대한 기질로 작용하는 한편, 윙 세그먼트는 변형된 뉴클레오사이드를 포함한다. 특정 구체예에서, 갭머의 영역은 각각의 별개의 영역을 포함하는 당 모이어티(moiety)의 유형에 의해 구별된다. 갭머의 영역을 구별하는데 사용되는 당 모이어티의 유형은 일부 구체예에서 β-D-리보뉴클레오사이드, β-D-데옥시리보뉴클레오사이드, 2'-변형된 뉴클레오사이드(이러한 2'-변형된 뉴클레오사이드는 2'-MOE, 특히 2'-O-CH3를 포함할 수 있음), 및 바이사이클릭 당 변형된 뉴클레오사이드(이러한 바이사이클릭 당 변형된 뉴클레오사이드는 4'-(CH2)n-O-2' 브릿지를 갖는 것을 포함할 수 있으며, 여기서 n=1 또는 n=2임)를 포함할 수 있다. 바람직하게는, 각각의 별개의 영역은 균일한 당 모이어티를 포함한다. 윙-갭-윙 모티프는 종종 "X-Y-Z"로 기재되며, 여기서 "X"는 5' 윙 영역의 길이이고, "Y"는 갭 영역의 길이이고, "Z"는 3' 윙 영역의 길이이다. 본원에서 사용되는 바와 같은, "X-Y-Z"로 기재되는 갭머는, 갭 세그먼트가 5' 윙 세그먼트 및 3' 윙 세그먼트 각각에 바로 인접하여 위치되도록 하는 형태를 갖는다. 따라서, 5' 윙 세그먼트와 갭 세그먼트 사이, 또는 갭 세그먼트와 3' 윙 세그먼트 사이에 개재되는 뉴클레오타이드가 존재하지 않는다. 본원에 기재된 안티센스 화합물 중 임의의 안티센스 화합물은 갭머 모티프를 가질 수 있다. 일부 구체예에서, X 및 Z는 동일하고, 다른 구체예에서, 이들은 상이하다. 한 바람직한 구체예에서, Y는 8 내지 15개의 뉴클레오타이드이다. X, Y 또는 Z는 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30개 또는 이 초과의 뉴클레오타이드 중 임의의 뉴클레오타이드일 수 있다. 따라서, 갭머는, 예를 들어, 5-10-5, 4-8-4, 4-12-3, 4-12-4, 3-14-3, 2-13-5, 2-16-2, 1-18-1, 3-10-3, 2-10-2, 1-10-1, 2-8-2, 6-8-6, 5-8-5, 1-8-1 또는 2-6-2를 포함하나, 이에 제한되지는 않는다.Antisense compounds with a gapmer motif are considered chimeric antisense compounds. In a gapmer, an inner region with multiple nucleotides supporting RNaseH cleavage is located between the nucleosides of the inner region and an outer region with multiple nucleotides that are chemically different. For antisense oligonucleotides with a gapmer motif, the gap segment generally serves as a substrate for endonuclease cleavage, while the wing segment contains modified nucleosides. In certain embodiments, regions of the gapmer are distinguished by the type of sugar moiety comprising each distinct region. The type of sugar moiety used to distinguish the region of the gapmer is in some embodiments β-D-ribonucleoside, β-D-deoxyribonucleoside, 2'-modified nucleoside (such as 2' -The modified nucleoside may comprise 2'-MOE, especially 2'-O-CH 3 ), and a modified nucleoside per bicyclic (such a modified nucleoside per bicyclic is 4 It may include those having a'-(CH 2 ) n -O-2' bridge, where n=1 or n=2). Preferably, each distinct region contains a homogeneous sugar moiety. The wing-gap-wing motif is often described as "XYZ", where "X" is the length of the 5'wing area, "Y" is the length of the gap area, and "Z" is the length of the 3'wing area. As used herein, a gapmer described as “XYZ” has a shape such that the gap segment is positioned immediately adjacent to each of the 5'wing segment and the 3'wing segment. Thus, there is no nucleotide intervening between the 5'wing segment and the gap segment, or between the gap segment and the 3'wing segment. Any of the antisense compounds described herein can have a gapmer motif. In some embodiments, X and Z are the same, and in other embodiments, they are different. In one preferred embodiment, Y is 8 to 15 nucleotides. X, Y or Z are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30 Or any of more nucleotides. Thus, gapmers are, for example, 5-10-5, 4-8-4, 4-12-3, 4-12-4, 3-14-3, 2-13-5, 2-16-2 , 1-18-1, 3-10-3, 2-10-2, 1-10-1, 2-8-2, 6-8-6, 5-8-5, 1-8-1 or 2 Including, but not limited to -6-2.

특정 구체예에서, "윙머(wingmer)" 모티프로서의 안티센스 화합물은 윙-갭 또는 갭-윙 형태, 즉, 갭머 형태에 대해 상기 기재된 바와 같은 X-Y 또는 Y-Z 형태를 갖는다. 따라서, 윙머 형태는, 예를 들어, 5-10, 8-4, 4-12, 12-4, 3-14, 16-2, 18-1, 10-3, 2-10, 1-10, 8-2, 2-13 또는 5-13을 포함하나, 이에 제한되지는 않는다.In certain embodiments, the antisense compound as a “wingmer” motif has a wing-gap or gap-wing form, ie, an X-Y or Y-Z form as described above for a gapmer form. Thus, the wingmer form is, for example, 5-10, 8-4, 4-12, 12-4, 3-14, 16-2, 18-1, 10-3, 2-10, 1-10, 8-2, 2-13 or 5-13.

특정 구체예에서, DMPK 핵산을 표적으로 하는 안티센스 화합물은 5-10-5 갭머 모티프를 갖는다.In certain embodiments, antisense compounds targeting DMPK nucleic acids have a 5-10-5 gapmer motif.

특정 구체예에서, DMPK 핵산을 표적으로 하는 안티센스 화합물은 갭-확장된 모티프를 갖는다.In certain embodiments, antisense compounds targeting DMPK nucleic acids have a gap-expanded motif.

특정 구체예에서, 상기 갭머 또는 윙머 모티프 중 임의의 것의 안티센스 화합물은 본원에 기재된 예시적 안티센스 화합물 중 임의의 것의 핵염기 서열의 적어도 8, 적어도 9, 적어도 10, 적어도 11, 적어도 12, 적어도 13, 적어도 14, 적어도 15, 적어도 16, 적어도 17, 적어도 18 또는 적어도 19개의 연속적 핵염기(예를 들어, 서열번호 12-156, 160-770 및 774-792 중 어느 하나에 열거된 핵염기 서열 중 적어도 8개의 연속적 핵염기)를 함유한다.In certain embodiments, the antisense compound of any of the gapmer or wingmer motifs is at least 8, at least 9, at least 10, at least 11, at least 12, at least 13 of the nucleobase sequence of any of the exemplary antisense compounds described herein, At least 14, at least 15, at least 16, at least 17, at least 18 or at least 19 consecutive nucleobases (e.g., at least one of the nucleobase sequences listed in any one of SEQ ID NOs: 12-156, 160-770 and 774-792 8 consecutive nucleobases).

표적 핵산, 표적 영역 및 뉴클레오타이드 서열Target nucleic acid, target region and nucleotide sequence

DMPK를 엔코딩하는 뉴클레오타이드 서열은, 비제한적인 예로, 유전자은행 등록번호 NM_001081560.1(서열번호 1로 본원에 포함됨), 뉴클레오타이드 18540696으로부터 18555106까지 트렁케이션된 유전자은행 등록번호 NT_011109.15(서열번호 2로 본원에 포함됨, 뉴클레오타이드 16666001로부터 16681000까지 트렁케이션된 유전자은행 등록번호 NT_039413.7(서열번호 3으로 본원에 포함됨), 유전자은행 등록번호 NM_032418.1(서열번호 4로 본원에 포함됨), 유전자은행 등록번호 AI007148.1(서열번호 5로 본원에 포함됨), 유전자은행 등록번호 AI304033.1(서열번호 6으로 본원에 포함됨), 유전자은행 등록번호 BC024150.1(서열번호 7로 본원에 포함됨), 유전자은행 등록번호 BC056615.1(서열번호 8로 본원에 포함됨), 유전자은행 등록번호 BC075715.1(서열번호 793으로 본원에 포함됨), 유전자은행 등록번호 BU519245.1(서열번호 794로 본원에 포함됨), 유전자은행 등록번호 CB247909.1(서열번호 795로 본원에 포함됨), 유전자은행 등록번호 CX208906.1(서열번호 796으로 본원에 포함됨), 유전자은행 등록번호 CX732022.1(서열번호 797로 본원에 포함됨), 유전자은행 등록번호 S60315.1(서열번호 798로 본원에 포함됨), 유전자은행 등록번호 S60316.1(서열번호 799로 본원에 포함됨), 유전자은행 등록번호 NM_001081562.1(서열번호 800로 본원에 포함됨) 및 유전자은행 등록번호 NM_001100.3(서열번호 801로 본원에 포함됨)에 나열된 바와 같은 서열을 포함한다. 본원에 포함된 실시예의 각각의 서열번호에 나열된 서열은 당 모이어티, 뉴클레오사이드간 결합, 또는 핵염기에 대한 임의의 변형과 독립적인 것이 이해된다. 이와 같이, 서열번호에 의해 규정되는 안티센스 화합물은 독립적으로 당 모이어티, 뉴클레오사이드간 결합, 또는 핵염기에 대한 하나 이상의 변형을 포함할 수 있다. 아이시스 번호(Isis Number)(Isis No)에 의해 기재된 안티센스 화합물은 핵염기 서열 및 모티프의 조합을 나타낸다.The nucleotide sequence encoding DMPK is, by way of example, non-limiting example, Genbank registration number NM_001081560.1 (incorporated herein as SEQ ID NO: 1), Genbank registration number NT_011109.15 (SEQ ID NO: 2) truncate from nucleotides 18540696 to 18555106 (as SEQ ID NO: 2) Included herein, Genbank registration number NT_039413.7 (incorporated herein as SEQ ID NO: 3), Genbank registration number NM_032418.1 (incorporated herein as SEQ ID NO: 4), Truncate from nucleotide 16666001 to 16681000, Genbank registration number AI007148.1 (incorporated herein as SEQ ID NO: 5), Genbank registration number AI304033.1 (incorporated herein as SEQ ID NO: 6), Genbank registration number BC024150.1 (incorporated herein as SEQ ID NO: 7), Genbank registration No. BC056615.1 (incorporated herein as SEQ ID NO: 8), Genbank registration number BC075715.1 (incorporated herein as SEQ ID NO: 793), Genbank registration number BU519245.1 (incorporated herein as SEQ ID NO: 794), Genbank Registration number CB247909.1 (incorporated herein as SEQ ID NO: 795), Genbank registration number CX208906.1 (incorporated herein as SEQ ID NO: 796), Genbank registration number CX732022.1 (incorporated herein as SEQ ID NO: 797), gene Bank registration number S60315.1 (incorporated herein as SEQ ID NO: 798), Genbank registration number S60316.1 (incorporated herein as SEQ ID NO: 799), Genbank registration number NM_001081562.1 (incorporated herein as SEQ ID NO: 800) and Includes sequences as listed in GenBank Accession No. NM_001100.3 (incorporated herein as SEQ ID NO: 801.) Sequences listed in each of the SEQ ID NOs of the Examples included herein are sugar moieties, nucleoside linkages, or It is understood that it is independent of any modification to the nucleobase. As such, the antisense compounds defined by SEQ ID NOs are independently sugar moieties, nucleoside bonds, or nucleobases. May contain more than one variation. Antisense compounds described by Isis Number (Isis No) represent a combination of nucleobase sequence and motif.

특정 구체예에서, 표적 영역은 표적 핵산의 구조적으로 규정된 영역이다. 예를 들어, 표적 영역은 3' UTR, 5' UTR, 엑손, 인트론, 엑손/인트론 접합부, 코딩 영역, 번역 개시 영역, 번역 종료 영역 또는 다른 규정된 핵산 영역을 포함할 수 있다. DMPK에 대해 구조적으로 규정된 영역은 NCBI와 같은 서열 데이터베이스로부터의 등록 번호에 의해 수득될 수 있고, 이러한 정보는 참조로서 본원에 포함된다. 특정 구체예에서, 표적 영역은 표적 영역 내의 하나의 표적 세그먼트의 5' 표적 부위로부터 표적 영역 내의 또 다른 표적 세그먼트의 3' 표적 부위까지의 서열을 포함할 수 있다.In certain embodiments, the target region is a structurally defined region of a target nucleic acid. For example, the target region may include a 3'UTR, 5'UTR, exon, intron, exon/intron junction, coding region, translation initiation region, translation termination region, or other defined nucleic acid region. Regions structurally defined for DMPK can be obtained by accession numbers from sequence databases such as NCBI, and such information is incorporated herein by reference. In certain embodiments, the target region may comprise a sequence from the 5'target site of one target segment within the target region to the 3'target site of another target segment within the target region.

표적화는 안티센스 화합물이 하이브리드화되어 요망되는 효과가 발생하는 적어도 하나의 표적 세그먼트의 결정을 포함한다. 특정 구체예에서, 요망되는 효과는 mRNA 표적 핵산 수준의 감소이다. 특정 구체예에서, 요망되는 효과는 표적 핵산에 의해 엔코딩되는 단백질 수준의 감소 또는 표적 핵산과 관련된 표현형 변화이다.Targeting involves the determination of at least one target segment where the antisense compound hybridizes and the desired effect occurs. In certain embodiments, the desired effect is a decrease in the level of the mRNA target nucleic acid. In certain embodiments, the desired effect is a decrease in the level of the protein encoded by the target nucleic acid or a phenotypic change associated with the target nucleic acid.

표적 영역은 하나 이상의 표적 세그먼트를 함유할 수 있다. 표적 영역 내의 다수의 표적 세그먼트는 중첩될 수 있다. 대안적으로, 다수의 표적 세그먼트는 중첩되지 않을 수 있다. 특정 구체예에서, 표적 영역 내의 표적 세그먼트는 약 300개 이하의 뉴클레오타이드에 의해 분리된다. 특정 구체예에서, 표적 영역 내의 표적 세그먼트는 표적 핵산 상의 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20 또는 10개의 뉴클레오타이드, 또는 상기 값의 임의의 2개의 값에 의해 규정된 범위인 다수의 뉴클레오타이드에 의해 분리된다. 특정 구체예에서, 표적 영역 내의 표적 세그먼트는 표적 핵산 상의 5개 이하 또는 약 5개 이하의 뉴클레오타이드에 의해 분리된다. 특정 구체예에서, 표적 세그먼트는 연속적이다. 본원에 나열된 5' 표적 부위 또는 3' 표적 부위 중 임의의 것인 시작 핵산을 갖는 범위에 의해 규정되는 표적 영역이 고려된다.The target region may contain one or more target segments. Multiple target segments within the target region may overlap. Alternatively, multiple target segments may not overlap. In certain embodiments, the target segment within the target region is separated by no more than about 300 nucleotides. In certain embodiments, the target segment within the target region is 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20 or 10 nucleotides on the target nucleic acid, or any two of the above values. It is separated by a number of nucleotides, which is a range defined by values. In certain embodiments, the target segment within the target region is separated by no more than 5 or no more than about 5 nucleotides on the target nucleic acid. In certain embodiments, the target segment is contiguous. A target region is contemplated that is defined by a range with a starting nucleic acid that is any of the 5'target sites or 3'target sites listed herein.

적합한 표적 세그먼트는 5' UTR, 코딩 영역, 3' UTR, 인트론, 엑손 또는 엑손/인트론 접합부 내에서 발견될 수 있다. 시작 코돈 또는 정지 코돈을 함유하는 표적 세그먼트가 또한 적합한 표적 세그먼트이다. 적합한 표적 세그먼트는 특별히 특정한 구조적으로 규정된 영역, 예를 들어, 시작 코돈 또는 정지 코돈을 배제할 수 있다.Suitable target segments can be found within the 5'UTR, coding region, 3'UTR, intron, exon or exon/intron junction. Target segments containing a start or stop codon are also suitable target segments. Suitable target segments may specifically exclude certain structurally defined regions, such as start codons or stop codons.

적합한 표적 세그먼트의 결정은 유전체 전체에 걸친 다른 서열에 대한 표적 핵산의 서열의 비교를 포함할 수 있다. 예를 들어, 다양한 핵산 사이에서 유사한 영역을 확인하기 위해 BLAST 알고리즘이 사용될 수 있다. 이러한 비교는 선별된 표적 핵산이 아닌 서열(즉, 비-표적 또는 표적외(off-target) 서열)에 비특이적 방식으로 하이브리드화될 수 있는 안티센스 화합물 서열의 선별을 방지할 수 있다.Determination of suitable target segments may include comparison of the sequence of the target nucleic acid to other sequences throughout the genome. For example, the BLAST algorithm can be used to identify similar regions among various nucleic acids. Such comparison may prevent the selection of antisense compound sequences that may hybridize in a non-specific manner to sequences other than the selected target nucleic acid (ie, non-target or off-target sequences).

활성 표적 영역 내의 안티센스 화합물의 활성에서의 변화(예를 들어, 표적 핵산 수준의 감소 퍼센트에 의해 규정됨)가 존재할 수 있다. 특정 구체예에서, DMPK mRNA 수준에서의 감소는 DMPK 단백질 발현의 억제를 나타낸다. DMPK 단백질 수준의 감소는 또한 표적 mRNA 발현의 억제를 나타낸다. 추가로, 표현형 변화, 예를 들어, 근육긴장증 감소 또는 스플라이스오패시 감소는 DMPK mRNA 및/또는 단백질 발현의 억제로 나타날 수 있다.There may be a change in the activity of the antisense compound within the active target region (eg, defined by the percent reduction in the target nucleic acid level). In certain embodiments, a decrease in DMPK mRNA level indicates inhibition of DMPK protein expression. A decrease in the DMPK protein level also indicates inhibition of target mRNA expression. In addition, phenotypic changes, such as reduction in dystonia or reduction in splice opacity, can result from inhibition of DMPK mRNA and/or protein expression.

하이브리드화Hybridization

일부 구체예에서, 하이브리드화는 본원에 개시된 안티센스 화합물과 DMPK 핵산 사이에서 발생한다. 하이브리드화의 가장 통상적인 메커니즘은 핵산 분자의 상보적 핵염기 사이의 수소 결합(예를 들어, 왓슨-크릭(Watson-Crick), 후그스틴(Hoogsteen) 또는 역(reversed) 후그스틴 수소 결합)을 포함한다.In some embodiments, hybridization occurs between an antisense compound disclosed herein and a DMPK nucleic acid. The most common mechanisms of hybridization involve hydrogen bonding between complementary nucleobases of nucleic acid molecules (e.g., Watson-Crick, Hoogsteen, or reversed Hoogsteen hydrogen bonding). do.

하이브리드화는 다양한 조건하에서 발생할 수 있다. 엄격한 조건은 서열-의존적이고, 하이브리드화되는 핵산 분자의 특성 및 조성에 의해 결정된다.Hybridization can occur under a variety of conditions. Stringent conditions are sequence-dependent and are determined by the nature and composition of the nucleic acid molecule to be hybridized.

서열이 표적 핵산에 특이적으로 하이브리드화되는지의 여부를 결정하는 방법은 당 분야에 널리 공지되어 있다(Sambrooke and Russell, Molecular Cloning: A Laboratory Manual, 3rd Ed., 2001). 특정 구체예에서, 본원에 제공된 안티센스 화합물은 DMPK 핵산과 특별히 하이브리드화 가능하다.Methods for determining whether a sequence specifically hybridizes to a target nucleic acid are well known in the art (Sambrooke and Russell, Molecular Cloning: A Laboratory Manual, 3 rd Ed., 2001). In certain embodiments, antisense compounds provided herein are specifically hybridizable with DMPK nucleic acids.

상보성Complementarity

안티센스 화합물 및 표적 핵산은 안티센스 화합물의 충분한 수의 핵염기가 표적 핵산의 상응하는 핵염기와 수소 반응하여 요망되는 결과(예를 들어, 표적 핵산, 예를 들어, DMPK 핵산의 안티센스 억제)가 발생할 수 있는 경우에 서로 상보적이다.Antisense compounds and target nucleic acids are capable of hydrogen reaction of a sufficient number of nucleobases of the antisense compound with the corresponding nucleobases of the target nucleic acid to produce the desired result (e.g., antisense inhibition of the target nucleic acid, e.g., DMPK nucleic acid). If present, they are complementary to each other.

안티센스 화합물은 개재 또는 인접 세그먼트가 하이브리드화 사건과 관련되지 않도록 하면서(예를 들어, 루프 구조, 미스매치 또는 헤어핀 구조) DMPK 핵산의 하나 이상의 세그먼트 상에 하이브리드화 될 수 있다Antisense compounds can hybridize on one or more segments of a DMPK nucleic acid, such that intervening or adjacent segments are not associated with hybridization events (e.g., loop structures, mismatches, or hairpin structures).

특정 구체예에서, 본원에 제공된 안티센스 화합물 또는 이의 특정된 부분은 DMPK 핵산, 표적 영역, 표적 세그먼트, 또는 이의 특정된 부분에 적어도 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 100% 상보적이다. 특정 구체예에서, 안티센스 화합물은 DMPK 핵산, 표적 영역, 표적 세그먼트, 또는 이의 특정된 부분에 적어도 70%, 적어도 80%, 적어도 85%, 적어도 86%, 적어도 87%, 적어도 88%, 적어도 89%, 적어도 90%, 적어도 91%, 적어도 92%, 적어도 93%, 적어도 94%, 적어도 95%, 적어도 96%, 적어도 97%, 적어도 98%, 적어도 99% 또는 100% 상보적이고, 이는 본원에 기재된 예시적 안티센스 화합물 중 임의의 안티센스 화합물의 핵염기 서열의 적어도 8, 적어도 9, 적어도 10, 적어도 11, 적어도 12, 적어도 13, 적어도 14, 적어도 15, 적어도 16, 적어도 17, 적어도 18 또는 적어도 19개의 연속적 핵염기(예를 들어, 서열번호 12-156, 160-770 및 774-792 중 어느 하나에 열거된 핵염기 서열 중 적어도 8개의 연속적 핵염기)를 함유한다. 표적 핵산을 갖는 안티센스 화합물의 상보성 퍼센트는 통상적인 방법을 이용하여 결정될 수 있고, 이는 안티센스 화합물의 전체에 걸쳐 측정된다.In certain embodiments, an antisense compound provided herein, or a specified portion thereof, is at least 70%, 80%, 85%, 86%, 87%, 88%, to a DMPK nucleic acid, a target region, a target segment, or a specified portion thereof, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% complementary. In certain embodiments, the antisense compound is at least 70%, at least 80%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89% to a DMPK nucleic acid, a target region, a target segment, or a specified portion thereof. , At least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% complementary, as described herein At least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18 or at least 19 of the nucleobase sequence of any of the exemplary antisense compounds. It contains contiguous nucleobases (eg, at least 8 contiguous nucleobases of the nucleobase sequence listed in any one of SEQ ID NOs: 12-156, 160-770 and 774-792). The percent complementarity of an antisense compound with a target nucleic acid can be determined using conventional methods, which are measured throughout the antisense compound.

예를 들어, 안티센스 화합물의 20개의 핵염기 중 18개가 표적 영역에 상보적이고, 따라서 특이적으로 하이브리드화되는 안티센스 화합물은 90 퍼센트 상보성을 나타낸다. 이러한 예에서, 나머지 비상보적인 핵염기는 상보적 핵염기에 대해 밀집되거나 산재되어 있을 수 있고, 서로 또는 상보적 핵염기에 대해 연속적일 필요는 없다. 이와 같이, 표적 핵산과 완전한 상보성의 2 영역의 측면에 존재하는 4개(네개)의 비상보적 핵염기를 갖는 18개의 핵염기 길이인 안티센스 화합물은 표적 핵산과 전체적으로 77.8%의 상보성을 가지며, 따라서 본 발명의 범위에 속한다. 안티센스 화합물과 표적 핵산의 영역의 상보성 퍼센트는 당 분야에 공지된 BLAST 프로그램(기본 국소 정렬 검색 도구) 및 PowerBLAST 프로그램을 이용하여 통상적으로 결정될 수 있다(Altschul et al., J. Mol. Biol., 1990, 215, 403 410; Zhang and Madden, Genome Res., 1997, 7, 649 656). 상동성, 서열 동일성 또는 상보성 퍼센트는, 예를 들어, 스미스 및 워터맨(Smith and Waterman)의 알고리즘(Adv. Appl. Math., 1981, 2, 482 489)을 이용하는 디폴트 설정을 이용하는 Gap 프로그램(Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.)에 의해 결정될 수 있다.For example, 18 of the 20 nucleobases of an antisense compound are complementary to the target region, and thus an antisense compound that hybridizes specifically exhibits 90 percent complementarity. In this example, the remaining non-complementary nucleobases may be clustered or scattered with respect to the complementary nucleobases, and need not be contiguous to each other or to complementary nucleobases. As described above, an antisense compound having a length of 18 nucleobases having 4 (4) non-complementary nucleobases on the flanks of 2 regions of complete complementarity with the target nucleic acid has 77.8% complementarity with the target nucleic acid as a whole, and thus the present It belongs to the scope of the invention. The percent complementarity of the region of the antisense compound and the target nucleic acid can be determined conventionally using the BLAST program (basic local alignment search tool) and the PowerBLAST program known in the art (Altschul et al., J. Mol. Biol., 1990 , 215, 403 410; Zhang and Madden, Genome Res., 1997, 7, 649 656). Percent homology, sequence identity or complementarity is determined by the Gap program (Wisconsin Sequence) using default settings using, for example, Smith and Waterman's algorithm (Adv. Appl. Math., 1981, 2, 482 489). Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.).

특정 구체예에서, 본원에 제공된 안티센스 화합물 또는 이의 특정된 부분은 표적 핵산 또는 이의 특정된 부분에 완전히 상보적(즉, 100% 상보적)이다. 예를 들어, 안티센스 화합물은 DMPK 핵산, 또는 표적 영역, 또는 표적 세그먼트 또는 이의 표적 서열에 완전히 상보적일 수 있다. 본원에서 사용되는 바와 같은 "완전히 상보적"은 안티센스 화합물의 각각의 핵염기가 표적 핵산의 상응하는 핵염기와 정확한 염기쌍을 형성할 수 있는 것을 의미한다. 예를 들어, 20개의 핵염기 안티센스 화합물은, 안티센스 화합물과 완전히 상보적인 표적 핵산의 상응하는 20개의 핵염기 부분이 존재하는 한 400개의 핵염기 길이인 표적 서열에 완전히 상보적이다. 완전한 상보성은 또한 첫번째 및/또는 두번째 핵산의 특정된 부분과 관련하여 사용될 수 있다. 예를 들어, 30개의 핵염기 안티센스 화합물의 20개의 핵염기 부분은 400개의 핵염기 길이인 표적 서열에 대해 "완전히 상보적"일 수 있다. 30개의 핵염기 올리고뉴클레오타이드 중 20개의 핵염기 부분은, 표적 서열이 각각의 핵염기가 안티센스 화합물의 20개의 핵염기 부분에 상보적인 상응하는 20개의 핵염기 부분을 갖는 경우에, 표적 서열에 완전히 상보적이다. 동시에, 전체 30개의 핵염기 안티센스 화합물은, 안티센스 화합물의 나머지 10개의 핵염기가 또한 표적 서열에 상보적인지의 여부에 따라 표적 서열에 완전히 상보적일 수 있다.In certain embodiments, an antisense compound provided herein or a specified portion thereof is completely complementary (ie, 100% complementary) to the target nucleic acid or specified portion thereof. For example, an antisense compound can be completely complementary to a DMPK nucleic acid, or a target region, or a target segment or target sequence thereof. As used herein, “fully complementary” means that each nucleobase of an antisense compound is capable of forming an exact base pair with the corresponding nucleobase of the target nucleic acid. For example, a 20 nucleobase antisense compound is completely complementary to a target sequence that is 400 nucleobases long as long as there are corresponding 20 nucleobase portions of the target nucleic acid that are completely complementary to the antisense compound. Full complementarity can also be used with respect to a specified portion of the first and/or second nucleic acid. For example, a portion of the 20 nucleobases of a 30 nucleobase antisense compound may be "fully complementary" to a target sequence that is 400 nucleobases long. The 20 nucleobase moieties of the 30 nucleobase oligonucleotides are completely complementary to the target sequence if each nucleobase has a corresponding 20 nucleobase moiety that is complementary to the 20 nucleobase moiety of the antisense compound. It's the enemy. At the same time, a total of 30 nucleobase antisense compounds can be completely complementary to the target sequence depending on whether the remaining 10 nucleobases of the antisense compound are also complementary to the target sequence.

비-상보적 핵염기의 위치는 안티센스 화합물의 5' 말단 또는 3' 말단에 존재할 수 있다. 대안적으로, 비-상보적 핵염기 또는 핵염기들은 안티센스 화합물의 내부 위치에 존재할 수 있다. 2개 이상의 비-상보적 핵염기가 존재하는 경우, 이들은 연속적(즉, 연결된 상태)이거나 비-연속적으로 존재할 수 있다. 일 구체예에서, 비-상보적 핵염기는 갭머 안티센스 올리고뉴클레오타이드의 윙 세그먼트에 위치된다.The position of the non-complementary nucleobase may be at the 5'end or 3'end of the antisense compound. Alternatively, non-complementary nucleobases or nucleobases may be present at the internal position of the antisense compound. When two or more non-complementary nucleobases are present, they can be contiguous (i.e. linked) or non-contiguous. In one embodiment, the non-complementary nucleobase is located in the wing segment of the gapmer antisense oligonucleotide.

특정 구체예에서, 10, 12, 13, 14, 15, 16, 17, 18, 19 또는 20개의 핵염기 길이이거나, 그 이하의 핵염기 길이인 안티센스 화합물은 표적 핵산, 예를 들어, DMPK 핵산, 또는 이의 특정된 부분에 비해 4개 이하, 3개 이하, 2개 이하 또는 1개 이하의 비-상보적 핵염기(들)를 포함한다.In certain embodiments, an antisense compound having a length of 10, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleobases or less nucleobases is a target nucleic acid, e.g., a DMPK nucleic acid, Or 4 or less, 3 or less, 2 or less, or 1 or less non-complementary nucleobase(s) relative to the specified portion thereof.

특정 구체예에서, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 또는 30개의 핵염기 길이이거나, 그 이하의 핵염기 길이인 안티센스 화합물은 표적 핵산, 예를 들어, DMPK 핵산, 또는 이의 특정된 부분에 비해 6개 이하, 5개 이하, 4개 이하, 3개 이하, 2개 이하 또는 1개 이하의 비-상보적 핵염기(들)를 포함한다.In certain embodiments, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleobases are in length, or Antisense compounds with a nucleobase length of less than or equal to a target nucleic acid, e.g., a DMPK nucleic acid, or a specified portion thereof, is 6 or less, 5 or less, 4 or less, 3 or less, 2 or less, or 1 or less. Contains non-complementary nucleobase(s) of.

본원에 제공된 안티센스 화합물은 또한 표적 핵산의 부분에 상보적인 것을 포함한다. 본원에서 사용되는 용어 "부분"은 표적 핵산의 영역 또는 세그먼트 내의 연속적(즉, 연결된) 핵염기의 규정된 수를 의미한다. "부분"은 또한 안티센스 화합물의 연속적 핵염기의 규정된 수를 의미한다. 특정 구체예에서, 안티센스 화합물은 표적 세그먼트의 적어도 8개의 핵염기 부분에 상보적이다. 특정 구체예에서, 안티센스 화합물은 표적 세그먼트의 적어도 10개의 핵염기 부분에 상보적이다. 특정 구체예에서, 안티센스 화합물은 표적 세그먼트의 적어도 15개의 핵염기 부분에 상보적이다. 표적 세그먼트의 적어도 8, 적어도 9, 적어도 10, 적어도 11, 적어도 12, 적어도 13, 적어도 14, 적어도 15, 적어도 16, 적어도 17, 적어도 18, 적어도 19, 적어도 20개 또는 이 초과의 핵염기 부분, 또는 상기 값의 임의의 2개의 값에 의해 규정된 범위에 상보적인 안티센스 화합물이 또한 고려된다.Antisense compounds provided herein also include those that are complementary to a portion of the target nucleic acid. As used herein, the term “portion” refers to a defined number of contiguous (ie linked) nucleobases within a region or segment of a target nucleic acid. "Part" also means a defined number of consecutive nucleobases of an antisense compound. In certain embodiments, the antisense compound is complementary to at least 8 nucleobase moieties of the target segment. In certain embodiments, the antisense compound is complementary to at least 10 nucleobase moieties of the target segment. In certain embodiments, the antisense compound is complementary to at least 15 nucleobase moieties of the target segment. At least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20 or more nucleobase portions of the target segment, Or antisense compounds that are complementary to the range defined by any two of the above values are also contemplated.

동일성sameness

본원에 제공된 안티센스 화합물은 또한 특정 뉴클레오타이드 서열, 서열번호, 또는 특정 Isis 번호에 의해 표시되는 화합물, 또는 이의 부분에 대한 규정된 동일성 퍼센트를 가질 수 있다. 본원에서 사용되는 바와 같은 안티센스 화합물은 이러한 안티센스 화합물이 동일한 핵염기쌍 형성 능력을 갖는 경우 본원에 개시된 서열과 동일하다. 예를 들어, 개시된 DNA 서열 내에 티미딘 대신 유라실을 함유하는 RNA는 유라실 및 티미딘이 아데닌과 쌍을 형성하므로 DNA 서열과 동일한 것으로 간주된다. 본원에 기재된 안티센스 화합물의 단축된 형태 및 연장된 형태 뿐만 아니라 본원에 제공된 안티센스 화합물과 비교하여 동일하지 않은 염기를 갖는 화합물이 또한 고려된다. 동일하지 않은 염기는 서로 인접하여 존재할 수 있거나, 안티센스 화합물 전체에 걸쳐 분산되어 있을 수 있다. 안티센스 화합물의 동일성 퍼센트는 비교되는 서열에 비해 동일한 염기쌍 형성을 갖는 염기의 수에 따라 계산된다.Antisense compounds provided herein may also have a defined percent identity to a compound represented by a particular nucleotide sequence, a sequence number, or a particular Isis number, or a portion thereof. Antisense compounds as used herein are identical to the sequences disclosed herein if such antisense compounds have the same nucleobase pairing ability. For example, RNA containing uracil instead of thymidine within the disclosed DNA sequence is considered identical to the DNA sequence as uracil and thymidine pair with adenine. Shortened and extended forms of the antisense compounds described herein as well as compounds having bases that are not identical compared to the antisense compounds provided herein are also contemplated. Bases that are not identical may exist adjacent to each other or may be dispersed throughout the antisense compound. The percent identity of an antisense compound is calculated according to the number of bases having the same base pairing compared to the sequence being compared.

특정 구체예에서, 안티센스 화합물 또는 이의 부분은 본원에 개시된 예시적 안티센스 화합물 또는 서열번호, 또는 이의 부분 중 하나 이상과 적어도 70%, 적어도 75%, 적어도 80%, 적어도 85%, 적어도 90%, 적어도 95%, 적어도 96%, 적어도 97%, 적어도 98%, 적어도 99% 또는 100% 동일하다.In certain embodiments, the antisense compound or portion thereof is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least one or more of the exemplary antisense compounds or SEQ ID NOs disclosed herein, or portions thereof. 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% identical.

변형transform

뉴클레오사이드는 염기-당 조합물이다. 뉴클레오사이드의 핵염기(염기로도 공지됨) 부분은 보통 헤테로사이클릭 염기 모이어티이다. 뉴클레오타이드는 뉴클레오사이드의 당 부분에 공유적으로 결합된 포스페이트 기를 추가로 포함하는 뉴클레오사이드이다. 펜토푸라노실 당을 포함하는 뉴클레오사이드에 대해, 포스페이트 기는 당의 2', 3' 또는 5' 하이드록실 모이어티에 결합될 수 있다. 올리고뉴클레오타이드는 서로 인접한 뉴클레오사이드의 공유 결합을 통해 형성되어, 선형의 중합 올리고뉴클레오타이드가 형성된다. 올리고뉴클레오타이드 구조 내에서, 포스페이트 기는 보통 올리고뉴클레오타이드의 뉴클레오사이드간 결합을 형성하는 것으로 언급된다.Nucleosides are base-sugar combinations. The nucleobase (also known as base) portion of the nucleoside is usually a heterocyclic base moiety. A nucleotide is a nucleoside that further contains a phosphate group covalently bonded to the sugar moiety of the nucleoside. For nucleosides comprising pentofuranosyl sugars, the phosphate group may be attached to the 2', 3'or 5'hydroxyl moiety of the sugar. Oligonucleotides are formed through covalent bonds of nucleosides adjacent to each other to form linear polymeric oligonucleotides. Within the oligonucleotide structure, the phosphate group is usually referred to as forming an internucleoside linkage of the oligonucleotide.

안티센스 화합물에 대한 변형은 뉴클레오사이드간 결합, 당 모이어티 또는 핵염기에 대한 치환 또는 변화를 포함한다. 요망되는 특성, 예를 들어, 향상된 세포 흡수, 핵산 표적에 대한 향상된 친화성, 누클레아제의 존재하에서의 증가된 안정성, 또는 증가된 억제 활성으로 인해 변형된 안티센스 화합물이 종종 자연 형태보다 선호된다.Modifications to antisense compounds include internucleoside linkages, substitutions or changes to sugar moieties or nucleobases. Modified antisense compounds are often preferred over the natural form due to desired properties, such as improved cellular uptake, improved affinity for nucleic acid targets, increased stability in the presence of nucleases, or increased inhibitory activity.

화학적으로 변형된 뉴클레오사이드는 또한 표적 핵산에 대한 단축되거나 트렁케이션된 안티센스 올리고뉴클레오타이드의 결합 친화성을 증가시키기 위해 사용될 수 있다. 결과로서, 상기 화학적으로 변형된 뉴클레오사이드를 갖는 보다 짧은 안티센스 화합물을 이용하여 동등한 결과가 종종 수득될 수 있다.Chemically modified nucleosides can also be used to increase the binding affinity of shortened or truncated antisense oligonucleotides to target nucleic acids. As a result, equivalent results can often be obtained using shorter antisense compounds with such chemically modified nucleosides.

변형된 뉴클레오사이드간 결합Modified nucleoside linkage

RNA 및 DNA의 자연 발생 뉴클레오사이드간 결합은 3'으로부터 5'으로의 포스포다이에스터 결합이다. 요망되는 특성, 예를 들어, 향상된 세포 흡수, 표적 핵산에 대한 향상된 친화성, 및 누클레아제의 존재하에서의 증가된 안정성으로 인해 하나 이상의 변형된, 즉, 비-자연 발생의 뉴클레오사이드간 결합을 갖는 안티센스 화합물이 종종 자연 발생 뉴클레오사이드간 결합을 갖는 안티센스 화합물보다 더 선별된다.The linkage between the naturally occurring nucleosides of RNA and DNA is a phosphodiester linkage from 3′ to 5′. One or more modified, i.e., non-naturally occurring internucleoside binding, due to the desired properties, e.g., improved cellular uptake, improved affinity for the target nucleic acid, and increased stability in the presence of nucleases. Antisense compounds having are often more screened than antisense compounds having naturally occurring internucleoside linkages.

변형된 뉴클레오사이드간 결합을 갖는 올리고뉴클레오타이드는 인 원자를 보유하는 뉴클레오사이드간 결합뿐만 아니라 인 원자를 갖지 않는 뉴클레오사이드간 결합을 포함한다. 대표적인 인 함유 뉴클레오사이드간 결합은 포스포다이에스터, 포스포트라이에스터, 메틸포스포네이트, 포스포라미데이트 및 포스포로티오에이트를 포함하나, 이에 제한되지는 않는다. 인-함유 결합 및 인을 함유하지 않는 결합의 제조 방법은 널리 공지되어 있다.Oligonucleotides having a modified internucleoside bond include an internucleoside bond having a phosphorus atom as well as an internucleoside bond not having a phosphorus atom. Representative phosphorus-containing internucleoside linkages include, but are not limited to, phosphodiesters, phospholiesters, methylphosphonates, phosphoramidates and phosphorothioates. Phosphorus-containing bonds and methods of making phosphorus-free bonds are well known.

특정 구체예에서, DMPK 핵산을 표적으로 하는 안티센스 화합물은 하나 이상의 변형된 뉴클레오사이드간 결합을 포함한다. 특정 구체예에서, 변형된 뉴클레오사이드간 결합은 포스포로티오에이트 결합이다. 특정 구체예에서, 안티센스 화합물의 각각의 뉴클레오사이드간 결합은 포스포로티오에이트 뉴클레오사이드간 결합이다.In certain embodiments, antisense compounds targeting DMPK nucleic acids comprise one or more modified internucleoside linkages. In certain embodiments, the modified internucleoside linkage is a phosphorothioate linkage. In certain embodiments, each internucleoside linkage of the antisense compound is a phosphorothioate internucleoside linkage.

변형된 당 모이어티Modified sugar moiety

본 발명의 안티센스 화합물은 임의로 당 기가 변형된 하나 이상의 뉴클레오사이드를 함유할 수 있다. 이러한 당 변형된 뉴클레오사이드는 향상된 누클레아제 안정성, 증가된 결합 친화성, 또는 안티센스 화합물에 있어서 일부 다른 유리한 생물학적 특성을 제공할 수 있다. 특정 구체예에서, 뉴클레오사이드는 화학적으로 변형된 리보푸라노스 고리 모이어티를 포함한다. 화학적으로 변형된 리보푸라노스 고리의 예는, 비제한적인 예로, 치환된 기(5' 및 2' 치환기를 포함함)의 첨가, 바이사이클릭 핵산(BNA)을 형성하는 비-이중(non-geminal) 고리 원자의 브릿징(bridging), 리보실 고리 산소 원자의 S, N(R) 또는 C(R1)(R2)(R, R1 및 R2는 각각 독립적으로 H, C1-C12 알킬 또는 보호기임)로의 치환, 및 이의 조합을 포함한다. 화학적으로 변형된 당의 예는 2'-F-5'-메틸 치환된 뉴클레오사이드(다른 개시된 5',2'-비스 치환된 뉴클레오사이드에 대해서는 2008년 8월 21일에 공개된 PCT 국제 출원 WO 2008/101157호 참조) 또는 2'-위치에서의 추가 치환과 함께 리보실 고리 산소 원자의 S로의 치환(2005년 6월 16일에 공개된 미국 특허 출원 US2005-0130923호 참조) 또는 대안적으로 BNA의 5'-치환(2007년 11월 22일에 공개된 PCT 국제 출원 WO 2007/134181호 참조, 여기서 LNA는, 예를 들어, 5'-메틸 또는 5'-비닐기로 치환됨)을 포함한다.Antisense compounds of the present invention may optionally contain one or more nucleosides with modified sugar groups. Such sugar modified nucleosides can provide improved nuclease stability, increased binding affinity, or some other advantageous biological property for antisense compounds. In certain embodiments, the nucleoside comprises a chemically modified ribofuranose ring moiety. Examples of chemically modified ribofuranose rings include, but are not limited to, the addition of substituted groups (including 5'and 2'substituents), non-double (non-double) to form bicyclic nucleic acids (BNA). geminal) bridging of ring atoms, S, N(R) or C(R 1 )(R 2 )(R, R 1 and R 2 of the ribosyl ring oxygen atom are each independently H, C 1- C 12 alkyl or a protecting group), and combinations thereof. Examples of chemically modified sugars include 2'-F-5'-methyl substituted nucleosides (PCT international application published on August 21, 2008 for other disclosed 5',2'-bis substituted nucleosides). WO 2008/101157) or replacement of the ribosyl ring oxygen atom with S with further substitution at the 2′-position (see US Patent Application No. US2005-0130923 published June 16, 2005) or alternatively 5'-substitution of BNA (see PCT International Application WO 2007/134181 published on November 22, 2007, wherein LNA is substituted with, for example, 5'-methyl or 5'-vinyl group). .

변형된 당 모이어티를 갖는 뉴클레오사이드의 예는, 비제한적인 예로, 5'-비닐, 5'-메틸(R 또는 S), 4'-S, 2'-F, 2'-OCH3, 2'-OCH2CH3, 2'-OCH2CH2F 및 2'-O(CH2)2OCH3 치환기를 포함하는 뉴클레오사이드를 포함한다. 2' 위치에서의 치환은 또한 알릴, 아미노, 아지도, 티오, O-알릴, O-C1-C10 알킬, OCF3, OCH2F, O(CH2)2SCH3, O(CH2)2-O-N(Rm)(Rn), O-CH2-C(=O)-N(Rm)(Rn) 및 O-CH2-C(=O)-N(R1)-(CH2)2-N(Rm)(Rn)으로부터 선택될 수 있고, 여기서 각각의 R1, Rm 및 Rn은 독립적으로 H 또는 치환되거나 비치환된 C1-C10 알킬이다.Examples of nucleosides with modified sugar moieties include, but are not limited to, 5'-vinyl, 5'-methyl ( R or S ), 4'-S, 2'-F, 2'-OCH 3 , 2'-OCH 2 CH 3 , 2'-OCH 2 CH 2 F and 2'-O(CH 2 ) 2 OCH 3 substituents. Substitution at the 2'position is also allyl, amino, azido, thio, O-allyl, OC 1 -C 10 alkyl, OCF 3 , OCH 2 F, O(CH 2 ) 2 SCH 3 , O(CH 2 ) 2 -ON(R m )(R n ), O-CH 2 -C(=O)-N(R m )(R n ) and O-CH 2 -C(=O)-N(R 1 )-( CH 2 ) 2 -N(R m )(R n ), wherein each R 1 , R m and R n is independently H or substituted or unsubstituted C 1 -C 10 alkyl.

바이사이클릭 핵산(BNA)의 예는, 비제한적인 예로, 4'와 2' 리보실 고리 원자 사이에 브릿지를 포함하는 뉴클레오사이드를 포함한다. 특정 구체예에서, 본원에 제공된 안티센스 화합물은 브릿지가 4'-(CH2)-O-2'(LNA); 4'-(CH2)-S-2'; 4'-(CH2)2-O-2'(ENA); 4'-CH(CH3)-O-2' 및 4'-CH(CH2OCH3)-O-2'(및 이의 유사체, 2008년 7월 15일에 발행된 미국 특허 제7,399,845호 참조); 4'-C(CH3)(CH3)-O-2'(및 이의 유사체, 2009년 1월 8일에 WO/2009/006478호로 공개된 PCT/US2008/068922호 참조); 4'-CH2-N(OCH3)-2'(및 이의 유사체, 2008년 12월 11일에 WO/2008/150729호로 공개된 PCT/US2008/064591호 참조); 4'-CH2-O-N(CH3)-2'(2004년 9월 2일에 공개된 공개 미국 특허 출원 US2004-0171570호 참조); R이 H, C1-C12 알킬 또는 보호기인 4'-CH2-N(R)-O-2'(2008년 9월 23일에 발행된 미국 특허 제7,427,672호 참조); 4'-CH2-C(H)(CH3)-2'(Chattopadhyaya et al., J. Org. Chem., 2009, 74, 118-134 참조); 및 4'-CH2-C(=CH2)-2'(및 이의 유사체, 2008년 12월 8일에 WO 2008/154401호로 공개된 PCT/US2008/066154호 참조)의 식 중 하나를 포함하는 하나 이상의 BNA 뉴클레오사이드를 포함한다.Examples of bicyclic nucleic acids (BNA) include, but are not limited to, nucleosides comprising a bridge between 4'and 2'ribosyl ring atoms. In certain embodiments, antisense compounds provided herein have a bridge of 4'-(CH 2 )-O-2'(LNA);4'-(CH 2 )-S-2';4'-(CH 2 ) 2 -O-2'(ENA);4'-CH(CH 3 )-O-2' and 4'-CH(CH 2 OCH 3 )-O-2' (and analogs thereof, see U.S. Patent No. 7,399,845 issued July 15, 2008) ; 4′-C(CH 3 )(CH 3 )-O-2′ (and analogs thereof, see PCT/US2008/068922 published on Jan. 8, 2009 as WO/2009/006478); 4'-CH 2 -N(OCH 3 )-2' (and analogs thereof, see PCT/US2008/064591 published on Dec. 11, 2008 as WO/2008/150729); 4'-CH 2 -ON(CH 3 )-2' (see published US patent application US2004-0171570 published Sep. 2, 2004); 4′-CH 2 -N(R)-O-2′ in which R is H, C 1 -C 12 alkyl or a protecting group (see US Pat. No. 7,427,672 issued Sep. 23, 2008); 4'-CH 2 -C(H)(CH 3 )-2' (see Chattopadhyaya et al., J. Org. Chem. , 2009, 74 , 118-134); And 4'-CH 2 -C(=CH 2 )-2' (and analogs thereof, see PCT/US2008/066154 published as WO 2008/154401 on December 8, 2008). It contains one or more BNA nucleosides.

추가 바이사이클릭 뉴클레오사이드는 공개된 문헌에 보고되어 있다(예를 들어, Srivastava et al., J. Am. Chem. Soc, 2007, 129(26) 8362-8379; Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372; Elayadi et al., Curr. Opinion Invens. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol, 2001, 8, 1-7; Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; Wahlestedt et al., Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 5633-5638; Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; 미국 특허 제7,399,845호; 제7,053,207호; 제7,034,133호; 제6,794,499호; 제6,770,748호; 제6,670,461호; 제6,525,191호; 제6,268,490호; 미국 특허 공개 번호: US2008-0039618호; US2007-0287831호; US2004-0171570호; 미국 특허 출원 제12/129,154호; 제61/099,844호; 제61/097,787호; 제61/086,231호; 제61/056,564호; 제61/026,998호; 제61/026,995호; 제60/989,574호; 국제 출원 WO 2007/134181호; WO 2005/021570호; WO 2004/106356호; WO 94/14226호; 및 PCT 국제 출원 번호: PCT/US2008/068922호; PCT/US2008/066154호; 및 PCT/US2008/064591호 참조). 상기 바이사이클릭 뉴클레오사이드 각각은, 예를 들어, α-L-리보푸라노스 및 β-D-리보푸라노스를 포함하는 하나 이상의 입체화학 당 형태를 갖도록 제조될 수 있다(WO 99/14226호로 1999년 3월 25일에 공개된 PCT 국제 출원 PCT/DK98/00393호 참조).Additional bicyclic nucleosides have been reported in published literature (e.g., Srivastava et al., J. Am. Chem. Soc , 2007, 129(26) 8362-8379; Frieden et al., Nucleic Acids. Research , 2003, 21 , 6365-6372; Elayadi et al., Curr. Opinion Invens. Drugs , 2001, 2 , 558-561; Braasch et al., Chem. Biol , 2001, 8 , 1-7; Orum et al. ., Curr. Opinion Mol. Ther. , 2001, 3 , 239-243; Wahlestedt et al., Proc. Natl. Acad. Sci. USA , 2000, 97 , 5633-5638; Singh et al., Chem. Commun . , 1998, 4 , 455-456; Koshkin et al., Tetrahedron , 1998, 54 , 3607-3630; Kumar et al., Bioorg. Med. Chem. Lett. , 1998, 8 , 2219-2222; Singh et al. , J. Org. Chem. , 1998, 63 , 10035-10039; U.S. Patent Nos. 7,399,845; 7,053,207; 7,034,133; 6,794,499; 6,770,748; 6,670,461; 6,525,191; 6,268,490; U.S. Patent Publication Nos: US2008-0039618; US2007-0287831; US2004-0171570; U.S. Patent Application Nos. 12/129,154; 61/099,844; 61/097,787; 61/086,231; 61/ 056,564; 61/026,998; 61/026,995; 60/989,574; international application WO 2007/134181; WO 2005/021570; WO 2004/106356; WO 94/14226; and PCT International Filing Number: PCT/US2008/068922; PCT/US2008/066154; And PCT/US2008/064591). Each of the bicyclic nucleosides may be prepared to have one or more stereochemical sugar forms including, for example, α-L-ribofuranose and β-D-ribofuranose (as WO 99/14226). See PCT International Application PCT/DK98/00393 published March 25, 1999).

특정 구체예에서, 바이사이클릭 뉴클레오사이드는 -[C(Ra)(Rb)]n-, -C(Ra)=C(Rb)-, -C(Ra)=N-, -C(=NRa)-, -C(=O)-, -C(=S)-, -O-, -Si(Ra)2-, -S(=O)x- 및 -N(Ra)-로부터 독립적으로 선택된 1 또는 1 내지 4개의 결합된 기를 포함하는 브릿지를 비제한적인 예로 포함하는 펜토푸라노실 당 모이어티의 4'와 2' 탄소 원자 사이의 브릿지를 포함하며, 상기 식에서, x는 0, 1 또는 2이고, n은 1, 2, 3 또는 4이고; 각각의 Ra 및 Rb는 독립적으로 H, 보호기, 하이드록실, C1-C12 알킬, 치환된 C1-C12 알킬, C2-C12 알케닐, 치환된 C2-C12 알케닐, C2-C12 알키닐, 치환된 C2-C12 알키닐, C5-C20 아릴, 치환된 C5-C20 아릴, 헤테로사이클 라디칼, 치환된 헤테로사이클 라디칼, 헤테로아릴, 치환된 헤테로아릴, C5-C7 알리사이클릭 라디칼, 치환된 C5-C7 알리사이클릭 라디칼, 할로겐, OJ1, NJ1J2, SJ1, N3, COOJ1, 아실 (C(=O)-H), 치환된 아실, CN, 설포닐(S(=O)2-J1) 또는 설폭실(S(=O)-J1)이고, 각각의 J1 및 J2는 독립적으로 H, C1-C12 알킬, 치환된 C1-C12 알킬, C2-C12 알케닐, 치환된 C2-C12 알케닐, C2-C12 알키닐, 치환된 C2-C12 알키닐, C5-C20 아릴, 치환된 C5-C20 아릴, 아실 (C(=O)-H), 치환된 아실, 헤테로사이클 라디칼, 치환된 헤테로사이클 라디칼, C1-C12 아미노알킬, 치환된 C1-C12 아미노알킬 또는 보호기이다.In certain embodiments, the bicyclic nucleoside is -[C(R a )(R b )] n -, -C(R a )=C(R b )-, -C(R a )=N- , -C(=NR a )-, -C(=O)-, -C(=S)-, -O-, -Si(R a ) 2 -, -S(=O) x -and -N (R a )-includes a bridge between the 4'and 2'carbon atoms of the pentofuranosyl sugar moiety, including, but not limited to, a bridge comprising 1 or 1 to 4 bonded groups independently selected from -, wherein Where x is 0, 1 or 2 and n is 1, 2, 3 or 4; Each R a and R b is independently H, protecting group, hydroxyl, C 1 -C 12 alkyl, substituted C 1 -C 12 alkyl, C 2 -C 12 alkenyl, substituted C 2 -C 12 alkenyl , C 2 -C 12 alkynyl, substituted C 2 -C 12 alkynyl, C 5 -C 20 aryl, substituted C 5 -C 20 aryl, heterocycle radical, substituted heterocycle radical, heteroaryl, substituted Heteroaryl, C 5 -C 7 alicyclic radical, substituted C 5 -C 7 alicyclic radical, halogen, OJ 1 , NJ 1 J 2 , SJ 1 , N 3 , COOJ 1 , acyl (C(=O )-H), substituted acyl, CN, sulfonyl (S(=O) 2 -J 1 ) or sulfoxyl (S(=O)-J 1 ), and each of J 1 and J 2 is independently H , C 1 -C 12 alkyl, substituted C 1 -C 12 alkyl, C 2 -C 12 alkenyl, substituted C 2 -C 12 alkenyl, C 2 -C 12 alkynyl, substituted C 2 -C 12 Alkynyl, C 5 -C 20 aryl, substituted C 5 -C 20 aryl, acyl (C(=O)-H), substituted acyl, heterocycle radical, substituted heterocycle radical, C 1 -C 12 amino Alkyl, substituted C 1 -C 12 aminoalkyl or a protecting group.

특정 구체예에서, 바이사이클릭 당 모이어티의 브릿지는 -[C(Ra)(Rb)]n-, -[C(Ra)(Rb)]n-O-, -C(RaRb)-N(R)-O- 또는 -C(RaRb)-O-N(R)-이다. 특정 구체예에서, 브릿지는 4'-CH2-2', 4'-(CH2)2-2', 4'-(CH2)3-2', 4'-CH2-O-2', 4'-(CH2)2-O-2', 4'-CH2-O-N(R)-2' 및 4'-CH2-N(R)-O-2-이고, 상기 식에서 각각의 R은 독립적으로 H, 보호기 또는 C1-C12 알킬이다.In certain embodiments, the bridging of the bicyclic sugar moiety is -[C(R a )(R b )] n -, -[C(R a )(R b )] n -O-, -C(R a R b )-N(R)-O- or -C(R a R b )-ON(R)-. In certain embodiments, the bridge is 4'-CH 2 -2', 4'-(CH 2 ) 2 -2', 4'-(CH 2 ) 3 -2', 4'-CH 2 -O-2' , 4'-(CH 2 ) 2 -O-2', 4'-CH 2 -ON(R)-2' and 4'-CH 2 -N(R)-O-2-, and in the above formula, each R is independently H, a protecting group or C 1 -C 12 alkyl.

특정 구체예에서, 바이사이클릭 뉴클레오사이드는 이성질체 형태에 의해 추가로 규정된다. 예를 들어, 4'-(CH2)-O-2' 브릿지를 포함하는 뉴클레오사이드는 α-L 형태 또는 β-D 형태로 존재할 수 있다. 이전에, α-L-메틸렌옥시 (4'-CH2-O-2') BNA가 안티센스 활성을 나타낸 안티센스 올리고뉴클레오타이드로 통합되었었다(Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372).In certain embodiments, bicyclic nucleosides are further defined by isomeric forms. For example, a nucleoside including a 4'-(CH 2 )-O-2' bridge may exist in an α-L form or a β-D form. Previously, α-L-methyleneoxy (4'-CH 2 -O-2') BNA was incorporated into antisense oligonucleotides showing antisense activity (Frieden et al., Nucleic Acids Research, 2003, 21 , 6365-6372 ).

특정 구체예에서, 바이사이클릭 뉴클레오사이드는 4'으로부터 2'으로의 브릿지를 갖는 것을 포함하며, 여기서 상기 브릿지는, 비제한적인 예로, α-L-4'-(CH2)-O-2', β-D-4'-CH2-O-2', 4'-(CH2)2-O-2', 4'-CH2-O-N(R)-2', 4'-CH2-N(R)-O-2', 4'-CH(CH3)-O-2', 4'-CH2-S-2', 4'-CH2-N(R)-2', 4'-CH2-CH(CH3)-2' 및 4'-(CH2)3-2'을 포함하며, 여기서 R은 H, 보호기 또는 C1-C12 알킬이다.In certain embodiments, bicyclic nucleosides include those having a 4'to 2'bridge, wherein the bridge is, by way of non-limiting example, α-L-4'-(CH 2 )-O- 2', β-D-4'-CH 2 -O-2', 4'-(CH 2 ) 2 -O-2', 4'-CH 2 -ON(R)-2', 4'-CH 2 -N(R)-O-2', 4'-CH(CH 3 )-O-2', 4'-CH 2 -S-2', 4'-CH 2 -N(R)-2' , 4'-CH 2 -CH(CH 3 )-2' and 4'-(CH 2 ) 3 -2', wherein R is H, a protecting group or C 1 -C 12 alkyl.

특정 구체예에서, 바이사이클릭 뉴클레오사이드는 하기 화학식을 갖는다:In certain embodiments, bicyclic nucleosides have the formula:

Figure pat00001
Figure pat00001

상기 식에서,In the above formula,

Bx는 헤테로사이클릭 염기 모이어티이고;Bx is a heterocyclic base moiety;

-Qa-Qb-Qc-는 -CH2-N(Rc)-CH2-, -C(=O)-N(Rc)-CH2-, -CH2-O-N(Rc)-, -CH2-N(Rc)-O- 또는 -N(Rc)-O-CH2이고;-Q a -Q b -Q c -is -CH 2 -N(R c )-CH 2 -, -C(=O)-N(R c )-CH 2 -, -CH 2 -ON(R c )-, -CH 2 -N(R c )-O- or -N(R c )-O-CH 2 ;

Rc는 C1-C12 알킬 또는 아미노 보호기이고;R c is a C 1 -C 12 alkyl or amino protecting group;

Ta 및 Tb는 각각 독립적으로 H, 하이드록실 보호기, 컨쥬게이트 기, 반응성 인 기, 인 모이어티 또는 지지체 매질에 대한 공유적 부착이다.T a and T b are each independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to the support medium.

특정 구체예에서, 바이사이클릭 뉴클레오사이드는 하기 화학식을 갖는다:In certain embodiments, bicyclic nucleosides have the formula:

Figure pat00002
Figure pat00002

상기 식에서,In the above formula,

Bx는 헤테로사이클릭 염기 모이어티이고;Bx is a heterocyclic base moiety;

Ta 및 Tb는 각각 독립적으로 H, 하이드록실 보호기, 컨쥬게이트 기, 반응성 인 기, 인 모이어티 또는 지지체 매질에 대한 공유적 부착이고;T a and T b are each independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to the support medium;

Za는 C1-C6 알킬, C2-C6 알케닐, C2-C6 알키닐, 치환된 C1-C6 알킬, 치환된 C2-C6 알케닐, 치환된 C2-C6 알키닐, 아실, 치환된 아실, 치환된 아미드, 티올 또는 치환된 티올이다.Z a is C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, substituted C 1 -C 6 alkyl, substituted C 2 -C 6 alkenyl, substituted C 2- C 6 alkynyl, acyl, substituted acyl, substituted amide, thiol or substituted thiol.

일 구체예에서, 치환된 기 각각은 독립적으로 할로겐, 옥소, 하이드록실, OJc, NJcJd, SJc, N3, OC(=X)Jc 및 NJeC(=X)NJcJd로부터 선택된 치환기로 치환된 모노 또는 폴리이고, 여기서 각각의 Jc, Jd 및 Je는 독립적으로 H, C1-C6 알킬 또는 치환된 C1-C6 알킬이고, X는 O 또는 NJc이다.In one embodiment, each of the substituted groups is independently halogen, oxo, hydroxyl, OJ c , NJ c J d , SJ c , N 3 , OC(=X)J c and NJ e C(=X)NJ c Is mono or poly substituted with a substituent selected from J d , wherein each J c , J d and J e is independently H, C 1 -C 6 alkyl or substituted C 1 -C 6 alkyl, and X is O or NJ c .

특정 구체예에서, 바이사이클릭 뉴클레오사이드는 하기 화학식을 갖는다:In certain embodiments, bicyclic nucleosides have the formula:

Figure pat00003
Figure pat00003

상기 식에서,In the above formula,

Bx는 헤테로사이클릭 염기 모이어티이고;Bx is a heterocyclic base moiety;

Ta 및 Tb는 각각 독립적으로 H, 하이드록실 보호기, 컨쥬게이트 기, 반응성 인 기, 인 모이어티 또는 지지체 매질에 대한 공유적 부착이고;T a and T b are each independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to the support medium;

Zb는 C1-C6 알킬, C2-C6 알케닐, C2-C6 알키닐, 치환된 C1-C6 알킬, 치환된 C2-C6 알케닐, 치환된 C2-C6 알키닐 또는 치환된 아실 (C(=O)-)이다.Z b is C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, substituted C 1 -C 6 alkyl, substituted C 2 -C 6 alkenyl, substituted C 2- C 6 alkynyl or substituted acyl (C(=O)-).

특정 구체예에서, 바이사이클릭 뉴클레오사이드는 하기 화학식을 갖는다:In certain embodiments, bicyclic nucleosides have the formula:

Figure pat00004
Figure pat00004

상기 식에서,In the above formula,

Bx는 헤테로사이클릭 염기 모이어티이고;Bx is a heterocyclic base moiety;

Ta 및 Tb는 각각 독립적으로 H, 하이드록실 보호기, 컨쥬게이트 기, 반응성 인 기, 인 모이어티 또는 지지체 매질에 대한 공유적 부착이고;T a and T b are each independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to the support medium;

Rd는 C1-C6 알킬, 치환된 C1-C6 알킬, C2-C6 알케닐, 치환된 C2-C6 알케닐, C2-C6 알키닐 또는 치환된 C2-C6 알키닐이고;R d is C 1 -C 6 alkyl, substituted C 1 -C 6 alkyl, C 2 -C 6 alkenyl, substituted C 2 -C 6 alkenyl, C 2 -C 6 alkynyl or substituted C 2- C 6 alkynyl;

각각의 qa, qb, qc 및 qd는 독립적으로 H, 할로겐, C1-C6 알킬, 치환된 C1-C6 알킬, C2-C6 알케닐, 치환된 C2-C6 알케닐, C2-C6 알키닐 또는 치환된 C2-C6 알키닐, C1-C6 알콕실, 치환된 C1-C6 알콕실, 아실, 치환된 아실, C1-C6 아미노알킬 또는 치환된 C1-C6 아미노알킬이다.Each of q a , q b , q c and q d is independently H, halogen, C 1 -C 6 alkyl, substituted C 1 -C 6 alkyl, C 2 -C 6 alkenyl, substituted C 2 -C 6 alkenyl, C 2 -C 6 alkynyl or substituted C 2 -C 6 alkynyl, C 1 -C 6 alkoxyl, substituted C 1 -C 6 alkoxyl, acyl, substituted acyl, C 1 -C 6 aminoalkyl or substituted C 1 -C 6 aminoalkyl.

특정 구체예에서, 바이사이클릭 뉴클레오사이드는 하기 화학식을 갖는다:In certain embodiments, bicyclic nucleosides have the formula:

Figure pat00005
Figure pat00005

상기 식에서,In the above formula,

Bx는 헤테로사이클릭 염기 모이어티이고;Bx is a heterocyclic base moiety;

Ta 및 Tb는 각각 독립적으로 H, 하이드록실 보호기, 컨쥬게이트 기, 반응성 인 기, 인 모이어티 또는 지지체 매질에 대한 공유적 부착이고;T a and T b are each independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to the support medium;

qa, qb, qe 및 qf는 각각 독립적으로 수소, 할로겐, C1-C12 알킬, 치환된 C1-C12 알킬, C2-C12 알케닐, 치환된 C2-C12 알케닐, C2-C12 알키닐, 치환된 C2-C12 알키닐, C1-C12 알콕시, 치환된 C1-C12 알콕시, OJj, SJj, SOJj, SO2Jj, NJjJk, N3, CN, C(=O)OJj, C(=O)NJjJk, C(=O)Jj, O-C(=O)NJjJk, N(H)C(=NH)NJjJk, N(H)C(=O)NJjJk 또는 N(H)C(=S)NJjJk이거나;q a , q b , q e and q f are each independently hydrogen, halogen, C 1 -C 12 alkyl, substituted C 1 -C 12 alkyl, C 2 -C 12 alkenyl, substituted C 2 -C 12 Alkenyl, C 2 -C 12 alkynyl, substituted C 2 -C 12 alkynyl, C 1 -C 12 alkoxy, substituted C 1 -C 12 alkoxy, OJ j , SJ j , SOJ j , SO 2 J j , NJ j J k , N 3 , CN, C(=O)OJ j , C(=O)NJ j J k , C(=O)J j , OC(=O)NJ j J k , N(H )C(=NH)NJ j J k , N(H)C(=O)NJ j J k or N(H)C(=S)NJ j J k ;

qe 및 qf는 함께 =C(qg)(qh)이고;q e and q f together are =C(q g )(q h );

qg 및 qh는 각각 독립적으로 H, 할로겐, C1-C12 알킬 또는 치환된 C1-C12 알킬이다.q g and q h are each independently H, halogen, C 1 -C 12 alkyl or substituted C 1 -C 12 alkyl.

올리고머화, 및 핵산 인지 특성과 함께 4'-CH2-O-2' 브릿지를 갖는 아데닌, 사이토신, 구아닌, 5-메틸-사이토신, 티민 및 유라실 바이사이클릭 뉴클레오사이드의 합성 및 제조가 기재되어 있다(Koshkin et al., Tetrahedron, 1998, 54, 3607-3630). 바이사이클릭 뉴클레오사이드의 합성이 또한 WO 98/39352호 및 WO 99/14226호에 기재되어 있다.Synthesis and preparation of adenine, cytosine, guanine, 5-methyl-cytosine, thymine and uracil bicyclic nucleosides with 4'-CH 2 -O-2' bridges with oligomerization and nucleic acid recognition properties (Koshkin et al., Tetrahedron , 1998, 54 , 3607-3630). The synthesis of bicyclic nucleosides is also described in WO 98/39352 and WO 99/14226.

4'-CH2-O-2' 및 4'-CH2-S-2'와 같은 4'으로부터 2'으로의 브릿지 형성 기를 갖는 다양한 바이사이클릭 뉴클레오사이드의 유사체가 또한 제조되었다(Kumar et al., Bioorg. Med. Chem. Lett, 1998, 8, 2219-2222). 핵산 중합효소에 대한 기질로 사용하기 위한 바이사이클릭 뉴클레오사이드를 포함하는 올리고데옥시리보뉴클레오타이드 듀플렉스의 제조가 또한 기재되었다(Wengel et al., WO 99/14226). 더욱이, 신규한 형태적으로 제한된 고-친화성의 올리고뉴클레오타이드 유사체인 2'-아미노-BNA의 합성이 또한 당 분야에서 기재되었다(Singh et al., J Org. Chem., 1998, 63, 10035-10039). 또한, 2'-아미노- 및 2'-메틸아미노-BNA가 제조되었고, 상보적 RNA 및 DNA 가닥과의 듀플렉스의 열 안정성이 이전에 보고되었다.Analogs of various bicyclic nucleosides with 4'to 2'bridging groups such as 4'-CH 2 -O-2' and 4'-CH 2 -S-2' have also been prepared (Kumar et al. al., Bioorg. Med. Chem. Lett , 1998, 8, 2219-2222). The preparation of oligodeoxyribonucleotide duplexes comprising bicyclic nucleosides for use as substrates for nucleic acid polymerases has also been described (Wengel et al., WO 99/14226). Moreover, the synthesis of 2'-amino-BNA, a novel conformationally limited high-affinity oligonucleotide analogue, has also been described in the art (Singh et al., J Org. Chem. , 1998, 63 , 10035-10039. ). In addition, 2'-amino- and 2'-methylamino-BNA were prepared, and the thermal stability of the duplex with complementary RNA and DNA strands was previously reported.

특정 구체예에서, 바이사이클릭 뉴클레오사이드는 하기 화학식을 갖는다:In certain embodiments, bicyclic nucleosides have the formula:

Figure pat00006
Figure pat00006

상기 식에서,In the above formula,

Bx는 헤테로사이클릭 염기 모이어티이고;Bx is a heterocyclic base moiety;

Ta 및 Tb는 각각 독립적으로 H, 하이드록실 보호기, 컨쥬게이트 기, 반응성 인 기, 인 모이어티 또는 지지체 매질에 대한 공유적 부착이고;T a and T b are each independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to the support medium;

각각의 qi, qj, qk 및 ql은 독립적으로 H, 할로겐, C1-C12 알킬, 치환된 C1-C12 알킬, C2-C12 알케닐, 치환된 C2-C12 알케닐, C2-C12 알키닐, 치환된 C2-C12 알키닐, C1-C12 알콕실, 치환된 C1-C12 알콕실, OJj, SJj, SOJj, SO2Jj, NJjJk, N3, CN, C(=O)OJj, C(=O)NJjJk, C(=O)Jj, O-C(=O)NJjJk, N(H)C(=NH)NJjJk, N(H)C(=O)NJjJk 또는 N(H)C(=S)NJjJk이고;Each of q i , q j , q k and q l is independently H, halogen, C 1 -C 12 alkyl, substituted C 1 -C 12 alkyl, C 2 -C 12 alkenyl, substituted C 2 -C 12 alkenyl, C 2 -C 12 alkynyl, substituted C 2 -C 12 alkynyl, C 1 -C 12 alkoxyl, substituted C 1 -C 12 alkoxyl, OJ j , SJ j , SOJ j , SO 2 J j , NJ j J k , N 3 , CN, C(=O)OJ j , C(=O)NJ j J k , C(=O)J j , OC(=O)NJ j J k , N(H)C(=NH)NJ j J k , N(H)C(=O)NJ j J k or N(H)C(=S)NJ j J k ;

qi 및 qj 또는 ql 및 qk는 함께 =C(qg)(qh)이고, 여기서 qg 및 qh는 각각 독립적으로 H, 할로겐, C1-C12 알킬 또는 치환된 C1-C12 알킬이다.q i and q j or q l and q k together are =C(q g )(q h ), where q g and q h are each independently H, halogen, C 1 -C 12 alkyl or substituted C 1 -C 12 alkyl.

4'-(CH2)3-2' 브릿지 및 알케닐 유사체 브릿지 4'-CH=CH-CH2-2'를 갖는 하나의 카보사이클릭 바이사이클릭 뉴클레오사이드가 기재되었다(Frier et al., Nucleic Acids Research, 1997, 25(22), 4429-4443 및 Albaek et al., J. Org. Chem., 2006, 71, 7731-7740). 올리고머화 및 생화학적 연구와 함께 카보사이클릭 바이사이클릭 뉴클레오사이드의 합성 및 제조가 또한 기재되었다(Srivastava et al., J. Am. Chem. Soc. 2007, 129(26), 8362-8379).One carbocyclic bicyclic nucleoside with a 4'-(CH 2 ) 3 -2' bridge and an alkenyl analog bridge 4'-CH=CH-CH 2 -2' has been described (Frier et al. , Nucleic Acids Research , 1997, 25(22) , 4429-4443 and Albaek et al., J. Org. Chem. , 2006, 71 , 7731-7740). Synthesis and preparation of carbocyclic bicyclic nucleosides along with oligomerization and biochemical studies have also been described (Srivastava et al., J. Am. Chem. Soc . 2007, 129(26) , 8362-8379). .

특정 구체예에서, 바이사이클릭 뉴클레오사이드는 하기 도시되는 바와 같은 (A) α-L-메틸렌옥시 (4'-CH2-O-2') BNA, (B) β-D-메틸렌옥시 (4'-CH2-O-2') BNA, (C) 에틸렌옥시 (4'-(CH2)2-O-2') BNA, (D) 아미노옥시 (4'-CH2-O-N(R)-2') BNA, (E) 옥시아미노 (4'-CH2-N(R)-O-2') BNA, (F) 메틸(메틸렌옥시) (4'-CH(CH3)-O-2') BNA (구속 에틸(constrained ethyl) 또는 cEt로도 언급됨), (G) 메틸렌-티오 (4'-CH2-S-2') BNA, (H) 메틸렌-아미노 (4'-CH2-N(R)-2') BNA, (I) 메틸 카보사이클릭 (4'-CH2-CH(CH3)-2') BNA, (J) 프로필렌 카보사이클릭 (4'-(CH2)3-2') BNA 및 (K) 비닐 BNA를 포함하나, 이에 제한되지는 않는다.In certain embodiments, the bicyclic nucleoside is (A) α-L-methyleneoxy (4′-CH 2 -O-2′) BNA, (B) β-D-methyleneoxy ( 4'-CH 2 -O-2') BNA, (C) ethyleneoxy (4'-(CH 2 ) 2 -O-2') BNA, (D) aminooxy (4'-CH 2 -ON(R )-2') BNA, (E) oxyamino (4'-CH 2 -N(R)-O-2') BNA, (F) methyl(methyleneoxy) (4'-CH(CH 3 )-O -2') BNA (also referred to as constrained ethyl or cEt), (G) methylene-thio (4'-CH 2 -S-2') BNA, (H) methylene-amino (4'-CH 2 -N(R)-2') BNA, (I) methyl carbocyclic (4'-CH 2 -CH(CH 3 )-2') BNA, (J) propylene carbocyclic (4'-(CH 2 ) 3 -2') BNA and (K) vinyl BNA.

Figure pat00007
Figure pat00007

상기 식에서, Bx는 염기 모이어티이고, R은 독립적으로 H, 보호기, C1-C6 알킬 또는 C1-C6 알콕시이다.Wherein Bx is a base moiety and R is independently H, a protecting group, C 1 -C 6 alkyl or C 1 -C 6 alkoxy.

특정 구체예에서, 뉴클레오사이드는 리보실 고리의 당 대용물(surrogate)로의 치환에 의해 변형된다. 이러한 변형은 리보실 고리의 대용물 고리 시스템(때때로 DNA 유사체로 언급됨), 예를 들어, 모르폴리노 고리, 사이클로헥세닐 고리, 사이클로헥실 고리 또는 테트라하이드로피라닐 고리, 예를 들어, 하기 화학식 중 하나를 갖는 것을 포함하나, 이에 제한되지는 않는다:In certain embodiments, nucleosides are modified by substitution of a ribosyl ring with a sugar surrogate. Such modifications can be made with a surrogate ring system of the ribosyl ring (sometimes referred to as a DNA analog), e.g., a morpholino ring, a cyclohexenyl ring, a cyclohexyl ring or a tetrahydropyranyl ring, e.g. the formula Including, but not limited to, having one of:

Figure pat00008
Figure pat00008

특정 구체예에서, 하기 화학식을 갖는 당 대용물이 선택된다:In certain embodiments, sugar substitutes are selected having the formula:

Figure pat00009
Figure pat00009

상기 식에서,In the above formula,

Bx는 헤테로사이클릭 염기 모이어티이고;Bx is a heterocyclic base moiety;

T3 및 T4는 각각 독립적으로 올리고머 화합물에 테트라하이드로피란 뉴클레오사이드 유사체를 연결시키는 뉴클레오사이드간 결합기이거나, T3 및 T4 중 하나는 올리고머 화합물 또는 올리고뉴클레오타이드에 테트라하이드로피란 뉴클레오사이드 유사체를 연결시키는 뉴클레오사이드간 결합기이고, T3 및 T4 중 나머지는 H, 하이드록실 보호기, 결합된 컨쥬게이트 기 또는 5' 또는 3'-말단 기이고;T 3 and T 4 are each independently an internucleoside linking group that connects a tetrahydropyran nucleoside analog to an oligomeric compound, or one of T 3 and T 4 is an oligomeric compound or a tetrahydropyran nucleoside analog to an oligonucleotide. Is an internucleoside linking group connecting T 3 and T 4 , and the rest of T 3 and T 4 are H, a hydroxyl protecting group, a bonded conjugate group, or a 5′ or 3′-terminal group;

q1, q2, q3, q4, q5, q6 및 q7은 각각 독립적으로 H, C1-C6 알킬, 치환된 C1-C6 알킬, C2-C6 알케닐, 치환된 C2-C6 알케닐, C2-C6 알키닐 또는 치환된 C2-C6 알키닐이고;q 1 , q 2 , q 3 , q 4 , q 5 , q 6 and q 7 are each independently H, C 1 -C 6 alkyl, substituted C 1 -C 6 alkyl, C 2 -C 6 alkenyl, Substituted C 2 -C 6 alkenyl, C 2 -C 6 alkynyl or substituted C 2 -C 6 alkynyl;

R1 및 R2 중 하나는 수소이고, 나머지는 할로겐, 치환되거나 비치환된 알콕시, NJ1J2, SJ1, N3, OC(=X)J1, OC(=X)NJ1J2, NJ3C(=X)NJ1J2 및 CN으로부터 선택되고, 여기서 X는 O, S 또는 NJ1이고, 각각의 J1, J2 및 J3는 독립적으로 H 또는 C1-C6 알킬이다.One of R 1 and R 2 is hydrogen, and the rest is halogen, substituted or unsubstituted alkoxy, NJ 1 J 2 , SJ 1 , N 3 , OC(=X)J 1 , OC(=X)NJ 1 J 2 , NJ 3 C(=X)NJ 1 J 2 and CN, wherein X is O, S or NJ 1 , and each J 1 , J 2 and J 3 is independently H or C 1 -C 6 alkyl to be.

특정 구체예에서, q1, q2, q3, q4, q5, q6 및 q7은 각각 H이다. 특정 구체예에서, q1, q2, q3, q4, q5, q6 및 q7 중 적어도 하나는 H가 아니다. 특정 구체예에서, q1, q2, q3, q4, q5, q6 및 q7 중 적어도 하나는 메틸이다. 특정 구체예에서, THP 뉴클레오사이드가 제공되고, 여기서 R1 및 R2 중 하나는 F이다. 특정 구체예에서, R1은 플루오로이고, R2는 H이고; R1은 메톡시이고, R2는 H이고, R1은 메톡시에톡시이고, R2는 H이다.In certain embodiments, q 1 , q 2 , q 3 , q 4 , q 5 , q 6 and q 7 are each H. In certain embodiments, at least one of q 1 , q 2 , q 3 , q 4 , q 5 , q 6 and q 7 is not H. In certain embodiments, at least one of q 1 , q 2 , q 3 , q 4 , q 5 , q 6 and q 7 is methyl. In certain embodiments, THP nucleosides are provided, wherein one of R 1 and R 2 is F. In certain embodiments, R 1 is fluoro and R 2 is H; R 1 is methoxy, R 2 is H, R 1 is methoxyethoxy, and R 2 is H.

이러한 당 대용물은 헥시톨 핵산(HNA), 알트리톨 핵산(ANA) 및 만니톨 핵산(MNA)으로 당 분야에서 언급되는 것을 포함하나, 이에 제한되지는 않는다(Leumann, C. J., Bioorg. & Med. Chem., 2002, 10, 841-854 참조).Such sugar substitutes include, but are not limited to, those referred to in the art as hexitol nucleic acids (HNA), altitol nucleic acids (ANA) and mannitol nucleic acids (MNA) (Leumann, CJ, Bioorg. & Med. Chem. . , 2002, 10 , 841-854).

특정 구체예에서, 안티센스 화합물은 자연 발생 뉴클레오사이드 중 펜토푸라노실 잔기 대신에 6-원 사이클로헥세닐을 갖는 뉴클레오사이드인 하나 이상의 변형된 사이클로헥세닐 뉴클레오사이드를 포함한다. 변형된 사이클로헥세닐 뉴클레오사이드는 당 분야에 기재된 것을 포함하나, 이에 제한되지는 않는다(예를 들어, 통상적으로 소유된 2010년 4월 10일에 공개된 PCT 출원 WO 2010/036696호, Robeyns et al., J. Am. Chem. Soc, 2008, 130(6), 1979-1984; Horvath et al., Tetrahedron Letters, 2007, 48, 3621-3623; Nauwelaerts et al., J. Am. Chem. Soc, 2007, 129(30), 9340-9348; Gu et al., Nucleosides, Nucleotides & Nucleic Acids, 2005, 24(5-7), 993-998; Nauwelaerts et al., Nucleic Acids Research, 2005, 33(8), 2452-2463; Robeyns et al., Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 2005, F61(6), 585-586; Gu et al., Tetrahedron, 2004, 60(9), 2111-2123; Gu et al., Oligonucleotides, 2003, 13(6), 479-489; Wang et al., J. Org. Chem., 2003, 68, 4499-4505; Verbeure et al., Nucleic Acids Research, 2001, 29(24), 4941-4947; Wang et al., J. Org. Chem., 2001, 66, 8478-82; Wang et al., Nucleosides, Nucleotides & Nucleic Acids, 2001, 20(4-7), 785-788; Wang et al., J. Am. Chem., 2000, 122, 8595-8602; 공개된 PCT 출원, WO 06/047842호; 및 공개된 PCT 출원 WO 01/049687호를 참조하라; 상기 문헌 각각은 전체내용이 본원에 참조로서 포함됨). 특정한 변형된 사이클로헥세닐 뉴클레오사이드는 하기 화학식을 갖는다:In certain embodiments, the antisense compound comprises one or more modified cyclohexenyl nucleosides that are nucleosides having a 6-membered cyclohexenyl instead of a pentofuranosyl moiety of the naturally occurring nucleosides. Modified cyclohexenyl nucleosides include, but are not limited to, those described in the art (e.g., commonly owned PCT application WO 2010/036696 published on April 10, 2010, Robeyns et al., J. Am. Chem. Soc , 2008, 130(6) , 1979-1984; Horvath et al., Tetrahedron Letters , 2007, 48 , 3621-3623; Nauwelaerts et al., J. Am. Chem. Soc , 2007, 129(30) , 9340-9348; Gu et al., Nucleosides, Nucleotides & Nucleic Acids , 2005, 24(5-7) , 993-998; Nauwelaerts et al., Nucleic Acids Research , 2005, 33( 8) , 2452-2463; Robeyns et al., Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 2005, F61(6), 585-586; Gu et al., Tetrahedron, 2004, 60(9), 2111- 2123; Gu et al., Oligonucleotides, 2003, 13(6), 479-489; Wang et al., J. Org. Chem ., 2003, 68 , 4499-4505; Verbeure et al., Nucleic Acids Research, 2001 , 29(24), 4941-4947; Wang et al., J. Org. Chem. , 2001, 66 , 8478-82; Wang et al., Nucleosides, Nucleotides & Nucleic Acids , 2001, 20(4-7) , 785-788; Wang et al., J. Am. Chem. , 2000, 122, 8595-8602; published PCT application, WO 06/047842; and See published PCT application WO 01/049687; Each of these documents is incorporated herein by reference in its entirety). Certain modified cyclohexenyl nucleosides have the formula:

Figure pat00010
Figure pat00010

상기 식에서,In the above formula,

Bx는 헤테로사이클릭 염기 모이어티이고;Bx is a heterocyclic base moiety;

T3 및 T4는 각각 독립적으로 안티센스 화합물에 사이클로헥세닐 뉴클레오사이드 유사체를 연결시키는 뉴클레오사이드간 결합기이거나, T3 및 T4 중 하나는 안티센스 화합물에 테트라하이드로피란 뉴클레오사이드 유사체를 연결시키는 뉴클레오사이드간 결합기이고, T3 및 T4 중 나머지는 H, 하이드록실 보호기, 결합된 컨쥬게이트 기 또는 5' 또는 3'-말단 기이고; q1, q2, q3, q4, q5, q6, q7, q8 및 q9 각각은 독립적으로 H, C1-C6 알킬, 치환된 C1-C6 알킬, C2-C6 알케닐, 치환된 C2-C6 알케닐, C2-C6 알키닐, 치환된 C2-C6 알키닐 또는 다른 당 치환기이다.T 3 and T 4 are each independently an internucleoside linking group linking a cyclohexenyl nucleoside analog to an antisense compound, or one of T 3 and T 4 is a tetrahydropyran nucleoside analog linking an antisense compound. Is an internucleoside linking group, and the rest of T 3 and T 4 are H, a hydroxyl protecting group, a bonded conjugate group, or a 5'or 3'-terminal group; q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 and q 9 are each independently H, C 1 -C 6 alkyl, substituted C 1 -C 6 alkyl, C 2 -C 6 alkenyl, substituted C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, substituted C 2 -C 6 alkynyl or other sugar substituent.

안티센스 화합물로의 통합을 위해 뉴클레오사이드를 변형시키는데 사용될 수 있는 많은 다른 바이사이클릭 및 트라이사이클릭 당 대용물 고리 시스템이 또한 당 분야에 공지되어 있다(예를 들어, 종설: Leumann, Christian J., Bioorg. & Med. Chem., 2002, 10, 841-854 참조). 이러한 고리 시스템은 활성을 향상시키기 위해 다양한 추가 치환을 겪을 수 있다.Many other bicyclic and tricyclic sugar surrogate ring systems that can be used to modify nucleosides for incorporation into antisense compounds are also known in the art (see, for example, Leumann, Christian J. , Bioorg. & Med. Chem. , 2002, 10 , 841-854). These ring systems can undergo various additional substitutions to enhance activity.

변형된 당의 제조 방법은 당업자에게 널리 공지되어 있다. 이러한 변형된 당의 제조를 교시하는 일부 대표적 미국 특허는 미국 특허 제4,981,957호; 제5,118,800호; 제5,319,080호; 제5,359,044호; 제5,393,878호; 제5,446,137호; 제5,466,786호; 제5,514,785호; 제5,519,134호; 제5,567,811호; 제5,576,427호; 제5,591,722호; 제5,597,909호; 제5,610,300호; 제5,627,053호; 제5,639,873호; 제5,646,265호; 제5,670,633호; 제5,700,920호; 제5,792,847호 및 제6,600,032호, 및 2005년 6월 2일에 출원되고, 2005년 12월 22일에 WO 2005/121371호로 공개된 국제 출원 PCT/US2005/019219호를 포함하나, 이에 제한되지는 않고, 상기 특허 각각은 전체내용이 참조로서 본원에 포함된다.Methods of making modified sugars are well known to those skilled in the art. Some representative US patents teaching the preparation of such modified sugars are described in US Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,387,878; 5,393,878; 5,446,137; 5,446,137; 5,466,786; 5,514,785; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,591,722; 5,597,909; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,639,873; 5,646,265; 5,670,633; 5,700,920; 5,792,847 and 6,600,032, and international applications PCT/US2005/019219, filed on June 2, 2005 and published as WO 2005/121371 on December 22, 2005, but are not limited thereto. , Each of the above patents is incorporated herein by reference in its entirety.

변형된 당 모이어티를 갖는 뉴클레오타이드에서, 핵염기 모이어티(자연, 변형 또는 이의 조합물)가 적절한 핵산 표적과의 하이브리드화를 위해 유지된다.In nucleotides with modified sugar moieties, nucleobase moieties (natural, modified or combinations thereof) are maintained for hybridization with appropriate nucleic acid targets.

특정 구체예에서, DMPK 핵산을 표적으로 하는 안티센스 화합물은 변형된 당 모이어티를 갖는 하나 이상의 뉴클레오타이드를 포함한다. 특정 구체예에서, 변형된 당 모이어티는 2'-MOE이다. 특정 구체예에서, 2'-MOE 변형된 뉴클레오타이드는 갭머 모티프 내에 배열된다.In certain embodiments, antisense compounds targeting DMPK nucleic acids comprise one or more nucleotides with modified sugar moieties. In certain embodiments, the modified sugar moiety is 2'-MOE. In certain embodiments, the 2'-MOE modified nucleotides are arranged within a gapmer motif.

변형된 핵염기Modified nucleobase

핵염기(또는 염기) 변형 또는 치환은 자연 발생 또는 합성의 변형되지 않은 핵염기와 구조적으로 구별가능하나, 기능적으로는 상호 교환된다. 자연 및 변형된 핵염기 둘 모두는 수소 결합에 관여할 수 있다. 이러한 핵염기 변형은 안티센스 화합물에 누클레아제 안정성, 결합 친화성 또는 일부 다른 유리한 생물학적 특성을 제공할 수 있다. 변형된 핵염기는 합성 및 자연 핵염기, 예를 들어, 5-메틸사이토신(5-me-C)을 포함한다. 5-메틸사이토신 치환을 포함하는 특정 핵염기 치환이 표적 핵산에 대한 안티센스 화합물의 결합 친화성을 증가시키는데 특히 유용하다. 예를 들어, 5-메틸사이토신 치환은 핵산 듀플렉스 안정성을 0.6-1.2℃까지 증가시키는 것으로 밝혀졌다(Sanghvi, Y.S., Crooke, S.T. and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278).Nucleobase (or base) modifications or substitutions are structurally distinguishable from naturally occurring or synthetic unmodified nucleobases, but functionally interchangeable. Both natural and modified nucleobases can participate in hydrogen bonding. Such nucleobase modifications can provide antisense compounds with nuclease stability, binding affinity, or some other advantageous biological property. Modified nucleobases include synthetic and natural nucleobases, such as 5-methylcytosine (5-me-C). Certain nucleobase substitutions, including 5-methylcytosine substitutions, are particularly useful for increasing the binding affinity of an antisense compound for a target nucleic acid. For example, 5-methylcytosine substitution has been shown to increase nucleic acid duplex stability to 0.6-1.2°C (Sanghvi, YS, Crooke, ST and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278).

추가의 변형되지 않은 핵염기는 5-하이드록시메틸 사이토신, 잔틴, 하이포잔틴, 2-아미노아데닌, 6-메틸 및 아데닌 및 구아닌의 다른 알킬 유도체, 2-프로필 및 아데닌 및 구아닌의 다른 알킬 유도체, 2-티오유라실, 2-티오타이민 및 2-티오사이토신, 5-할로유라실 및 사이토신, 5-프로피닐(-C≡C-CH3) 유라실 및 사이토신 및 피리미딘 염기의 다른 알키닐 유도체, 6-아조 유라실, 사이토신 및 타이민, 5-유라실(슈도유라실), 4-티오유라실, 8-할로, 8-아미노, 8-티올, 8-티오알킬, 8-하이드록실 및 다른 8-치환된 아데닌 및 구아닌, 5-할로, 특히 5-브로모, 5-트리플루오로메틸 및 다른 5-치환된 유라실 및 사이토신, 7-메틸구아닌 및 7-메틸아데닌, 2-F-아데닌, 2-아미노-아데닌, 8-아자구아닌 및 8-아자아데닌, 7-데아자구아닌 및 7-데아자아데닌 및 3-데아자구아닌 및 3-데아자아데닌을 포함한다.Additional unmodified nucleobases include 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenin, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiotimine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (-C≡C-CH 3 ) uracil and cytosine and pyrimidine base Other alkynyl derivatives, 6-azouracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenine and guanine, 5-halo, especially 5-bromo, 5-trifluoromethyl and other 5-substituted uracil and cytosine, 7-methylguanine and 7-methyl Adenine, 2-F-adenine, 2-amino-adenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. .

헤테로사이클릭 염기 모이어티는 또한 퓨린 또는 피리미딘 염기가 다른 헤테로사이클, 예를 들어, 7-데아자-아데닌, 7-데아자구아노신, 2-아미노피리딘 및 2-피리돈으로 대체된 것을 포함할 수 있다. 안티센스 화합물의 결합 친화성을 증가시키는데 특히 유용한 핵염기는 5-치환된 피리미딘, 6-아자피리미딘 및 N-2, N-6 및 O-6 치환된 퓨린, 예를 들어, 2 아미노프로필아데닌, 5-프로피닐유라실 및 5-프로피닐사이토신을 포함한다.Heterocyclic base moieties also include those in which purine or pyrimidine bases have been replaced by other heterocycles, such as 7-deaza-adenine, 7-deazaguanosine, 2-aminopyridine and 2-pyridone. can do. Particularly useful nucleobases for increasing the binding affinity of antisense compounds are 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, such as 2 aminopropyladenine. , 5-propynyluracil and 5-propynylcytosine.

특정 구체예에서, DMPK 핵산을 표적으로 하는 안티센스 화합물은 하나 이상의 변형된 핵염기를 포함한다. 특정 구체예에서, DMPK 핵산을 표적으로 하는 갭-확장된 안티센스 올리고뉴클레오타이드는 하나 이상의 변형된 핵염기를 포함한다. 특정 구체예에서, 변형된 핵염기는 5-메틸사이토신이다. 특정 구체예에서, 각각의 사이토신은 5-메틸사이토신이다.In certain embodiments, antisense compounds targeting DMPK nucleic acids comprise one or more modified nucleobases. In certain embodiments, gap-expanded antisense oligonucleotides targeting DMPK nucleic acids comprise one or more modified nucleobases. In certain embodiments, the modified nucleobase is 5-methylcytosine. In certain embodiments, each cytosine is 5-methylcytosine.

약학적 조성물을 제형화시키기 위한 조성물 및 방법Compositions and methods for formulating pharmaceutical compositions

안티센스 올리고뉴클레오타이드는 약학적 조성물 또는 제형의 제조를 위해 약학적으로 허용되는 활성 또는 비활성 물질과 혼합될 수 있다. 약학적 조성물의 제형화를 위한 조성 및 방법은 투여 경로, 질병의 정도 또는 투여되는 용량을 포함하나 이에 제한되지는 않는 다수의 기준에 좌우된다.Antisense oligonucleotides can be mixed with pharmaceutically acceptable active or inactive substances for the preparation of pharmaceutical compositions or formulations. The composition and method for formulating the pharmaceutical composition depends on a number of criteria including, but not limited to, the route of administration, the extent of the disease, or the dose administered.

DMPK 핵산을 표적으로 하는 안티센스 화합물이 안티센스 화합물과 적합한 약학적으로 허용되는 희석제 또는 담체를 조합시킴으로써 약학적 조성물에서 이용될 수 있다. 약학적으로 허용되는 희석제는 포스페이트-완충 염수(PBS)를 포함한다. PBS는 비경구로 전달되는 조성물에서 사용하기에 적합한 희석제이다. 따라서, 일 구체예에서, 본원에 기재된 방법에서 DMPK 핵산을 표적으로 하는 안티센스 화합물 및 약학적으로 허용되는 희석제를 포함하는 약학적 조성물이 사용된다. 특정 구체예에서, 약학적으로 허용되는 희석제는 PBS이다. 특정 구체예에서, 인티센스 화합물은 안티센스 올리고뉴클레오타이드이다.Antisense compounds targeting DMPK nucleic acids can be used in pharmaceutical compositions by combining the antisense compound with a suitable pharmaceutically acceptable diluent or carrier. Pharmaceutically acceptable diluents include phosphate-buffered saline (PBS). PBS is a suitable diluent for use in compositions delivered parenterally. Thus, in one embodiment, a pharmaceutical composition comprising an antisense compound targeting a DMPK nucleic acid and a pharmaceutically acceptable diluent is used in the methods described herein. In certain embodiments, the pharmaceutically acceptable diluent is PBS. In certain embodiments, the intisense compound is an antisense oligonucleotide.

안티센스 화합물을 포함하는 약학적 조성물은 인간을 포함하는 동물에게 투여시 생물학적으로 활성인 대사물 또는 이의 잔여물을 (직접 또는 간접적으로) 제공할 수 있는 임의의 약학적으로 허용되는 염, 에스터 또는 상기 에스터의 염, 또는 임의의 다른 올리고뉴클레오타이드를 포함한다. 따라서, 예를 들어, 본 발명의 개시는 또한 안티센스 화합물의 약학적으로 허용되는 염, 프로드러그, 상기 프로드러그의 약학적으로 허용되는 염, 및 다른 생물학적 동등물(bioequivalent)에 관한 것이다. 적합한 약학적으로 허용되는 염은 소듐 및 포타슘 염을 포함하나, 이에 제한되지는 않는다.Pharmaceutical compositions comprising antisense compounds are any pharmaceutically acceptable salts, esters, or any pharmaceutically acceptable salts, esters or the above capable of providing (directly or indirectly) biologically active metabolites or residues thereof when administered to animals, including humans. Salts of esters, or any other oligonucleotides. Thus, for example, the present disclosure also relates to pharmaceutically acceptable salts, prodrugs, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents of antisense compounds. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.

프로드러그는 체내에서 내인성 누클레아제에 의해 절단되어 활성 안티센스 화합물을 형성시키는 안티센스 화합물의 한 말단 또는 양 말단에 추가 뉴클레오사이드의 통합을 포함할 수 있다.Prodrugs may include the incorporation of additional nucleosides at one or both ends of an antisense compound that is cleaved by an endogenous nuclease in the body to form an active antisense compound.

컨쥬게이션된 안티센스 화합물Conjugated antisense compounds

안티센스 화합물은 발생되는 안티센스 올리고뉴클레오타이드의 활성, 세포 분포 또는 세포 흡수를 향상시키는 하나 이상의 모이어티 또는 컨쥬게이트에 공유적으로 결합될 수 있다. 통상적인 컨쥬게이트 기는 콜레스테롤 모이어티 및 지질 모이어티를 포함한다. 추가 컨쥬게이트 기는 탄수화물, 인지질, 비오틴, 페나진, 폴레이트, 페난트리딘, 안트라퀴논, 아크리딘, 플루오레세인, 로다민, 쿠마린, 및 염료를 포함한다.Antisense compounds may be covalently linked to one or more moieties or conjugates that enhance the activity, cellular distribution, or cellular uptake of the resulting antisense oligonucleotide. Typical conjugate groups include cholesterol moieties and lipid moieties. Additional conjugate groups include carbohydrates, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, and dyes.

안티센스 화합물은 또한, 예를 들어, 누클레아제 안정성과 같은 특성을 향상시키기 위해 안티센스 화합물의 한 말단 또는 양 말단에 일반적으로 부착되는 하나 이상의 안정화 기를 갖도록 변형될 수 있다. 캡 구조가 안정화 기에 포함된다. 이러한 말단 변형은 말단 핵산을 갖는 안티센스 화합물을 엑소누클레아제 분해로부터 보호하고, 이는 또한 세포 내에서의 전달 및/또는 국소화를 도울 수 있다. 캡은 5'-말단(5'-캡) 또는 3'-말단(3'-캡)에 존재할 수 있거나, 양 말단에 존재할 수 있다. 캡 구조는 당 분야에 널리 공지되어 있고, 이는, 예를 들어, 역위된 데옥시 어베이직(abasic) 캡을 포함한다. 추가로, 누클레아제 안정성을 제공하기 위해 안티센스 화합물의 한 말단 또는 양 말단을 캡핑시키는데 사용될 수 있는 3' 및 5'-안정화 기는 2003년 1월 16일에 공개된 WO 03/004602호에 개시된 것을 포함한다.Antisense compounds can also be modified to have one or more stabilizing groups generally attached to one or both ends of the antisense compound to enhance properties such as, for example, nuclease stability. The cap structure is included in the stabilizing group. These terminal modifications protect antisense compounds with terminal nucleic acids from exonuclease degradation, which can also aid in delivery and/or localization in cells. The cap may be present at the 5'-end (5'-cap) or the 3'-end (3'-cap), or may be present at both ends. Cap structures are well known in the art and include, for example, inverted deoxy abasic caps. Additionally, 3'and 5'-stabilizing groups that can be used to cap one or both ends of an antisense compound to provide nuclease stability are disclosed in WO 03/004602, published on January 16, 2003. Includes.

세포 배양 및 안티센스 화합물 처리Cell culture and antisense compound treatment

DMPK 핵산의 수준, 활성 또는 발현에 대한 안티센스 화합물의 효과는 다양한 세포 유형에서 시험관내 시험될 수 있다. 상기 분석에 사용되는 세포 유형은 시판 업체(예를 들어, American Type Culture Collection, 버지니아주의 머내서스시에 소재; Zen-Bio, Inc., 노스캐롤라이나주의 리서치 트라이앵글 파크에 소재; Clonetics Corporation, 매릴랜드주의 워커스빌시에 소재)로부터 이용가능하고, 세포는 상업적으로 이용가능한 시약(예를 들어, Invitrogen Life Technologies, 캘리포니아주의 칼스배드시에 소재)을 이용하여 업체의 설명서에 따라 배양된다. 예시적 세포 유형은 HepG2 세포, Hep3B 세포, 일차 간세포, A549 세포, GM04281 섬유모세포 및 LLC-MK2 세포를 포함하나, 이에 제한되지는 않는다.The effect of antisense compounds on the level, activity or expression of DMPK nucleic acids can be tested in vitro in a variety of cell types. Cell types used in the assay were commercially available (e.g., American Type Culture Collection, Manassas, Virginia; Zen-Bio, Inc., Research Triangle Park, NC; Clonetics Corporation, Walker, Maryland). Sville City), and cells are cultured according to the manufacturer's instructions using commercially available reagents (eg, Invitrogen Life Technologies, Carlsbad, CA). Exemplary cell types include, but are not limited to, HepG2 cells, Hep3B cells, primary hepatocytes, A549 cells, GM04281 fibroblasts, and LLC-MK2 cells.

안티센스 올리고뉴클레오타이드의 시험관내 시험In vitro testing of antisense oligonucleotides

다른 안티센스 화합물을 이용한 치료를 위해 적절히 변형될 수 있는, 안티센스 올리고뉴클레오타이드를 이용한 세포의 처리를 위한 방법이 본원에 기재된다.Described herein are methods for the treatment of cells with antisense oligonucleotides, which can be suitably modified for treatment with other antisense compounds.

일반적으로, 세포가 배양 중에 약 60 내지 80% 컨플루언스(confluence)에 도달하는 경우에 세포는 안티센스 올리고뉴클레오타이드로 처리된다.In general, cells are treated with antisense oligonucleotides when cells reach about 60-80% confluence during culture.

배양된 세포로 안티센스 올리고뉴클레오타이드를 도입시키는데 통상적으로 사용되는 한 시약은 양이온성 지질 트랜스펙션 시약 LIPOFECTIN(등록상표)(Invitrogen, 캘리포니아주의 칼스배드시에 소재)을 포함한다. 안티센스 올리고뉴클레오타이드는 100nM 안티센스 올리고뉴클레오타이드 당 통상적으로 2 내지 12 ug/mL 범위인 안티센스 올리고뉴클레오타이드의 요망되는 최종 농도 및 LIPOFECTIN(등록상표) 농도를 달성하기 위해 OPTI-MEM(등록상표) 1 중 LIPOFECTIN(등록상표)(Invitrogen, 캘리포니아주의 칼스배드시에 소재)과 혼합된다.One reagent commonly used to introduce antisense oligonucleotides into cultured cells includes the cationic lipid transfection reagent LIPOFECTIN® (Invitrogen, Carlsbad, Calif.). The antisense oligonucleotide is LIPOFECTIN (registered trademark) in OPTI-MEM (registered trademark) 1 to achieve the desired final concentration and LIPOFECTIN (registered trademark) concentration of the antisense oligonucleotide, typically in the range of 2 to 12 ug/mL per 100 nM antisense oligonucleotide. Trademark) (Invitrogen, Carlsbad, CA).

배양된 세포로 안티센스 올리고뉴클레오타이드를 도입시키기 위해 사용되는 또 다른 시약은 LIPOFECTAMINE 2000(등록상표)(Invitrogen, 캘리포니아주의 칼스배드시에 소재)을 포함한다. 안티센스 올리고뉴클레오타이드는 OPTI-MEM(등록상표) 1 감소 혈청 배지 중 LIPOFECTAMINE 2000(등록상표)(Invitrogen, 캘리포니아주의 칼스배드시에 소재)과 혼합되어 100nM 안티센스 올리고뉴클레오타이드 당 통상적으로 2 내지 12 ug/mL 범위의 안티센스 올리고뉴클레오타이드의 요망되는 농도 및 LIPOFECTAMINE(등록상표) 농도가 달성된다.Another reagent used to introduce antisense oligonucleotides into cultured cells includes LIPOFECTAMINE 2000® (Invitrogen, Carlsbad, Calif.). Antisense oligonucleotides are mixed with LIPOFECTAMINE 2000 (registered trademark) (Invitrogen, Carlsbad, Calif.) in OPTI-MEM (registered trademark) 1 reduced serum medium, and typically in the range of 2 to 12 ug/mL per 100 nM antisense oligonucleotide. The desired concentration and LIPOFECTAMINE® concentration of the antisense oligonucleotide of are achieved.

배양된 세포로 안티센스 올리고뉴클레오타이드를 도입시키는데 사용되는 또 다른 시약은 Cytofectin(등록상표)(Invitrogen, 캘리포니아주의 칼스배드시에 소재)을 포함한다. 안티센스 올리고뉴클레오타이드는 OPTI-MEM(등록상표) 1 감소 혈청 배지 중 Cytofectin(등록상표)(Invitrogen, 캘리포니아주의 칼스배드시에 소재)과 혼합되어 100nM 안티센스 올리고뉴클레오타이드 당 통상적으로 2 내지 12 ug/mL 범위의 안티센스 올리고뉴클레오타이드의 요망되는 농도 및 Cytofectin(등록상표) 농도가 달성된다.Another reagent used to introduce antisense oligonucleotides into cultured cells includes Cytofectin® (Invitrogen, Carlsbad, Calif.). Antisense oligonucleotides are mixed with Cytofectin (registered trademark) (Invitrogen, Carlsbad, Calif.) in OPTI-MEM (registered trademark) 1 reduced serum medium, and typically in the range of 2 to 12 ug/mL per 100 nM antisense oligonucleotide. The desired concentration of antisense oligonucleotide and Cytofectin® concentration are achieved.

배양된 세포로 안티센스 올리고뉴클레오타이드를 도입시키는데 사용되는 또 다른 기술은 전기천공을 포함한다.Another technique used to introduce antisense oligonucleotides into cultured cells involves electroporation.

세포는 통상적인 방법에 의해 안티센스 올리고뉴클레오타이드로 처리된다. 세포는 통상적으로 안티센스 올리고뉴클레오타이드 처리 16-24시간 후에 수거되고, 이때 표적 핵산의 RNA 또는 단백질 수준이 당 분야에 공지되고 본원에 기재된 방법에 의해 측정된다. 일반적으로, 처리가 다수의 반복으로 수행되는 경우, 데이터는 반복 처리의 평균으로 제시된다.Cells are treated with antisense oligonucleotides by conventional methods. Cells are typically harvested 16-24 hours after antisense oligonucleotide treatment, where the RNA or protein level of the target nucleic acid is determined by methods known in the art and described herein. In general, when processing is performed with multiple iterations, the data is presented as the average of the iterations.

사용된 안틴센스 올리고뉴클레오타이드의 농도는 세포주마다 다양하였다. 특정 세포주에 대한 최적의 안티센스 올리고뉴클레오타이드를 결정하는 방법은 당 분야에 널리 공지되어 있다. 안티센스 올리고뉴클레오타이드는 통상적으로 LIPOFECTAMINE2000(등록상표), Lipofectin 또는 Cytofectin으로 트랜스펙션되는 경우 1nM 내지 300nM 범위의 농도로 사용된다. 안티센스 올리고뉴클레오타이드는 전기천공을 이용하여 트랜스펙션되는 경우 625 내지 20,000nM 범위의 높은 농도로 사용된다.The concentration of the antisense oligonucleotide used varied from cell line to cell line. Methods for determining the optimal antisense oligonucleotide for a particular cell line are well known in the art. Antisense oligonucleotides are typically used in a concentration ranging from 1 nM to 300 nM when transfected with LIPOFECTAMINE2000 (registered trademark), Lipofectin or Cytofectin. Antisense oligonucleotides are used in high concentrations ranging from 625 to 20,000 nM when transfected using electroporation.

RNA 분리RNA isolation

RNA 분석은 전체 세포 RNA 또는 폴리(A)+ mRNA에서 수행될 수 있다. RNA 분리의 방법은 당 분야에 널리 공지되어 있다. RNA는 당 분야에 널리 공지된 방법, 예를 들어, 제조업체의 권장된 프로토콜에 따라 TRIZOL(등록상표) 시약(Invitrogen, 캘리포니아주의 칼스배드시에 소재)을 이용하여 제조된다.RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are well known in the art. RNA is prepared using methods well known in the art, eg, using the TRIZOL® reagent (Invitrogen, Carlsbad, Calif.) according to the manufacturer's recommended protocol.

표적 수준 또는 발현의 억제의 분석Analysis of inhibition of target level or expression

DMPK 핵산의 수준 또는 발현의 억제는 당 분야에 공지된 다양한 방식으로 검정될 수 있다. 예를 들어, 표적 핵산 수준은, 예를 들어, 노던 블롯(Northern blot) 분석, 경쟁 중합효소 연쇄반응(PCR) 또는 정량 실시간 PCR에 의해 정량될 수 있다. RNA 분석은 전체 세포 RNA 또는 폴리(A)+ mRNA에서 수행될 수 있다. RNA 분리의 방법은 당 분야에 널리 공지되어 있다. 노던 블롯 분석은 또한 당 분야에서 통상적이다. 정량 실시간 PCR은 PE-어플라이드 바이오시스템즈(PE-Applied Biosystems, 캘리포니아주의 포스터 시티에 소재)에서 이용가능한 시판되고, 제조업체의 설명서에 따라 사용되는 ABI PRISM(등록상표) 7600, 7700 또는 7900 서열 검출 시스템을 이용하여 편리하게 달성될 수 있다.Inhibition of the level or expression of DMPK nucleic acids can be assayed in a variety of ways known in the art. For example, target nucleic acid levels can be quantified, for example, by Northern blot analysis, competitive polymerase chain reaction (PCR) or quantitative real-time PCR. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are well known in the art. Northern blot analysis is also common in the art. Quantitative real-time PCR is a commercially available ABI PRISM® 7600, 7700 or 7900 sequence detection system available from PE-Applied Biosystems (Foster City, CA) and used according to the manufacturer's instructions. It can be conveniently achieved by using.

표적 RNA 수준의 정량 실시간 PCR 분석Quantitative real-time PCR analysis of target RNA level

표적 RNA 수준의 정량은 제조업체의 설명서에 따라 ABI PRISM(등록상표) 7600, 7700 또는 7900 서열 검출 시스템(PE-Applied Biosystems, 캘리포니아주의 포스터 시티에 소재)을 이용하여 정량 실시간 PCR에 의해 달성될 수 있다. 정량 실시간 PCR의 방법은 당 분야에 널리 공지되어 있다.Quantification of target RNA levels can be achieved by quantitative real-time PCR using an ABI PRISM® 7600, 7700 or 7900 sequence detection system (PE-Applied Biosystems, Foster City, CA) according to the manufacturer's instructions. . Methods of quantitative real-time PCR are well known in the art.

실시간 PCR 전에, 분리된 RNA는 실시간 PCR 증폭을 위한 기질로 이후에 사용되는 상보적 DNA(cDNA)를 생성시키는 역전사효소(RT) 반응에 적용된다. RT 및 실시간 PCR 반응은 동일 샘플 웰에서 연속적으로 수행된다. RT 및 실시간 PCR 시약은 Invitrogen(캘리포니아주의 칼스배드시에 소재)으로부터 수득된다. RT, 실시간 PCR 반응은 당업자에게 널리 공지된 방법에 의해 수행된다.Prior to real-time PCR, the isolated RNA is subjected to a reverse transcriptase (RT) reaction to generate complementary DNA (cDNA) that is used later as a substrate for real-time PCR amplification. RT and real-time PCR reactions are performed continuously in the same sample well. RT and real-time PCR reagents are obtained from Invitrogen (Carlsbad, Calif.). RT, real-time PCR reaction is performed by a method well known to those skilled in the art.

실시간 PCR에 의해 수득되는 유전자(또는 RNA) 표적 양은 발현이 일정한 유전자, 예를 들어, 사이클로필린 A(cyclophilin A)의 발현 수준을 이용하거나, RIBOGREEN(등록상표)(Invitrogen, Inc. 캘리포니아주의 칼스배드시에 소재)을 이용하여 전체 RNA를 정량함으로써 표준화된다. 사이클로필린 A 발현은 실시간 PCR에 의해 정량되고, 이는 표적과 동시에, 또는 다중으로, 또는 독립적으로 수행된다. 전체 RNA는 RIBOGREEN(등록상표) RNA 정량 시약(Invitrogen, Inc. 오리건주의 유진시에 소재)을 이용하여 정량된다. RIBOGREEN(등록상표)에 의한 RNA 정량의 방법은 문헌[Jones, L.J., et al, (Analytical Biochemistry, 1998, 265, 368-374)]에 교시되어 있다. CYTOFLUOR(등록상표) 4000 기계(PE Applied Biosystems)는 RIBOGREEN(등록상표) 형광을 측정하는데 사용된다.The target amount of a gene (or RNA) obtained by real-time PCR is determined by using the expression level of a gene with constant expression, for example, cyclophilin A, or RIBOGREEN (registered trademark) (Invitrogen, Inc. Carlsbad, CA). City) is standardized by quantifying total RNA. Cyclophilin A expression is quantified by real-time PCR, which is performed simultaneously with the target, or in multiples, or independently. Total RNA is quantified using RIBOGREEN (registered trademark) RNA quantification reagent (Invitrogen, Inc., Eugene, Oregon). The method of RNA quantification by RIBOGREEN (registered trademark) is taught in Jones, L.J., et al, (Analytical Biochemistry, 1998, 265, 368-374). The CYTOFLUOR® 4000 machine (PE Applied Biosystems) is used to measure RIBOGREEN® fluorescence.

프로브 및 프라이머는 DMPK 핵산에 하이브리드화되도록 설계된다. 실시간 PCR 프로브 및 프라이머를 설계하는 방법은 당 분야에 널리 공지되어 있고, 이는 PRIMER EXPRESS(등록상표) 소프트웨어(Applied Biosystems, 캘리포니아주의 포스터 시티에 소재)와 같은 소프트웨어의 사용을 포함할 수 있다.Probes and primers are designed to hybridize to DMPK nucleic acids. Methods for designing real-time PCR probes and primers are well known in the art and may include the use of software such as PRIMER EXPRESS® software (Applied Biosystems, Foster City, CA).

단백질 수준의 분석Protein level analysis

DMPK 핵산의 안티센스 억제는 DMPK 단백질 수준을 측정함으로써 평가될 수 있다. DMPK의 단백질 수준은 당 분야에 널리 공지된 다양한 방식, 예를 들어, 면역침전, 웨스턴 블롯(Western blot) 분석(면역블로팅), 효소결합면역흡착측정법(ELISA), 정량적 단백질 검정, 단백질 활성 검정(예를 들어, 카스파제 활성 검정), 면역조직화학, 면역세포화학 또는 형광 활성화 세포 분류(FACS)로 평가되거나 정량될 수 있다. 표적에 특이적인 항체는 항체의 MSRS 카탈로그(Aerie Corporation, 미시건주의 버밍엄시에 소재)와 같은 다양한 소스로부터 확인되고 수득될 수 있거나, 이는 당 분야에 널리 공지된 통상적인 모노클로날 또는 폴리클로날 항체 생성 방법을 통해 제조될 수 있다.Antisense inhibition of DMPK nucleic acids can be assessed by measuring DMPK protein levels. The protein level of DMPK is determined in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), enzyme-linked immunosorbent assay (ELISA), quantitative protein assay, protein activity assay. (E.g., caspase activity assay), immunohistochemistry, immunocytochemistry, or fluorescence activated cell sorting (FACS). Antibodies specific for the target can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham City, Michigan), or these are conventional monoclonal or polyclonal antibodies well known in the art. It can be manufactured through a production method.

안티센스 화합물의 생체내 시험In vivo testing of antisense compounds

안티센스 화합물, 예를 들어, 안티센스 올리고뉴클레오타이드는 DMPK의 발현을 억제하고, 표현형 변화를 생성시키는 능력을 평가하기 위해 동물에서 시험된다. 시험은 정상 동물, 또는 실험 질병 모델, 예를 들어, 근육긴장성 이영양증(DM1)의 HSALR 마우스 모델에서 수행될 수 있다.Antisense compounds, such as antisense oligonucleotides, are tested in animals to assess their ability to inhibit the expression of DMPK and produce phenotypic changes. The test can be performed in a normal animal, or in an experimental disease model, for example, an HSA LR mouse model of muscular dystrophy (DM1).

HSALR 마우스 모델은 DM1에 대해 확립된 모델이다(Mankodi, A. et al. Science. 289: 1769, 2000). 마우스는 유전자의 3' UTR에 삽입된 220개의 CTG 반복부를 갖는 인간 골격 액틴(hACTA1) 트랜스진을 갖는다. hACTA1-CUGexp 전사물은 골격근 내의 핵 초점(nuclear foci)으로 축적되고, 이는 인간 DM1의 근육긴장증과 유사한 근육긴장증을 발생시킨다(Mankodi, A. et al. Mol. Cell 10: 35, 2002; Lin, X. et al. Hum. Mol. Genet. 15: 2087, 2006). 그러므로, hACTA1 트랜스진의 안티센스 억제에 의한 HSALR 마우스에서의 DM1 증상의 개선은 DMPK 전사물의 안티센스 억제에 의한 인간 환자에서의 유사한 증상의 개선을 예측하는 것이 예상된다.The HSA LR mouse model is an established model for DM1 (Mankodi, A. et al. Science. 289: 1769, 2000). Mice have a human skeletal actin ( hACTA1 ) transgene with 220 CTG repeats inserted into the 3'UTR of the gene. The hACTA1- CUG exp transcript accumulates in the nuclear foci in skeletal muscle, which causes dystonia similar to that of human DM1 (Mankodi, A. et al. Mol. Cell 10: 35, 2002; Lin. , X. et al. Hum. Mol. Genet. 15: 2087, 2006). Therefore, improvement of DM1 symptoms in HSA LR mice by antisense inhibition of hACTA1 transgene is expected to predict the improvement of similar symptoms in human patients by antisense inhibition of DMPK transcripts.

마우스에서의 CUGexp RNA의 발현은 근육 전사체의 광범위한 리모델링을 야기시키고, 이 중 많은 것은 MBNL1의 제거에 의해 재생된다. 그러므로, HSALR 마우스에서의 전사체의 정상화는 DMPK 전사물의 안티센스 억제에 의한 DM1 환자에서의 인간 전사체의 정상화를 예측하는 것이 예상된다. Expression of CUG exp RNA in mice results in extensive remodeling of muscle transcripts, many of which are regenerated by removal of MBNL1. Therefore, normalization of transcripts in HSA LR mice is expected to predict normalization of human transcripts in DM1 patients by antisense inhibition of DMPK transcripts.

동물로의 투여를 위해, 안티센스 올리고뉴클레오타이드는 약학적으로 허용되는 희석제, 예를 들어, 포스페이트-완충 염수 중에서 제형화된다. 투여는 비경구 투여 경로를 포함한다. 안티센스 올리고뉴클레오타이드를 이용한 일정 기간의 처리 후, RNA가 조직으로부터 분리되고, DMPK 핵산 발현에서의 변화가 측정된다. DMPK 단백질 수준에서의 변화가 또한 측정된다.For administration to animals, antisense oligonucleotides are formulated in a pharmaceutically acceptable diluent, such as phosphate-buffered saline. Administration includes parenteral routes of administration. After a period of treatment with antisense oligonucleotides, RNA is isolated from the tissue and changes in DMPK nucleic acid expression are measured. Changes in the DMPK protein level are also measured.

스플라이싱Splicing

근육긴장성 이영양증(DM1)은 DMPK 유전자의 3' 비번역되는 영역 내의 CTG 반복부 확장에 의해 야기된다(Brook, J.D. et al. Cell. 68: 799, 1992). 이러한 돌연변이는 확장된 CUG 반복부(CUGexp)를 함유하는 RNA의 발현이 세포 기능이상을 유도하는 과정인 RNA 우세를 발생시킨다(Osborne RJ and Thornton CA., Human Molecular Genetics., 2006, 15(2): R162-R169). 이러한 CUGexp는 골격근의 핵 초점으로 유지된다(Davis, B.M. et al. Proc. Natl. Acad. Sci. U.S.A. 94:7388, 1997). 핵 초첨 내의 CUGexp의 축적은 폴리(CUG)-결합 단백질, 예를 들어, Muscleblind-유사 1(MBLN1)의 격리를 발생시킨다(Miller, J. W. et al. EMBO J. 19: 4439, 2000). MBLN1은 스플라이싱 인자이고, 이는 Serca1, CIC-1, Titin 및 Zasp와 같은 유전자의 스플라이싱을 조절한다. 따라서, CUGexp에 의한 MBLN1의 격리는 MBLN1이 보통 조절하는 유전자의 엑손의 오조절된 대안적 스플라이싱을 촉발시킨다(Lin, X. et al. Hum. Mol. Genet. 15: 2087, 2006). DM1 환자 및 HSALR 마우스 모델에서와 같은 상기 이상조절을 나타내는 동물에서의 대안적 스플라이싱의 교정은 안티센스 올리고구클레오티드를 이용한 처리를 포함하는 처리의 효능에 대한 유용한 지표이다.Myosonic dystrophy (DM1) is caused by expansion of CTG repeats within the 3'untranslated region of the DMPK gene (Brook, JD et al. Cell. 68: 799, 1992). These mutations cause RNA dominance, a process in which the expression of RNA containing extended CUG repeats (CUGexp) induces cell dysfunction (Osborne RJ and Thornton CA., Human Molecular Genetics. , 2006 , 15(2)) : R162-R169). These CUGexps are maintained as the nuclear foci of skeletal muscle (Davis, BM et al. Proc. Natl. Acad. Sci. USA 94:7388, 1997). Accumulation of CUGexp in the nuclear focal point results in sequestration of poly(CUG)-binding proteins, such as Muscleblind-like 1 (MBLN1) (Miller, JW et al. EMBO J. 19: 4439, 2000). MBLN1 is a splicing factor, which regulates the splicing of genes such as Serca1, CIC-1, Titin and Zasp. Thus, sequestration of MBLN1 by CUGexp triggers a misregulated alternative splicing of exons of genes normally regulated by MBLN1 (Lin, X. et al. Hum. Mol. Genet. 15: 2087, 2006). Correction of alternative splicing in animals exhibiting this dysregulation, such as in DM1 patients and HSALR mouse models, is a useful indicator of the efficacy of treatments including treatment with antisense oligonucleotides.

특정 바이오마커Specific biomarker

마우스 모델에서의 DM1 중증도는 핵 또는 핵 초점의 CUGexp 전사물 축적의 수준에 의해 적어도 부분적으로 결정된다. DM1 중증도에 대한 유용한 생리학적 마커는 불수의 활동 전위의 고-빈도 수행의 발달(근육긴장증)이다.DM1 severity in the mouse model is determined at least in part by the level of CUG exp transcript accumulation in the nucleus or nuclear foci. A useful physiological marker for DM1 severity is the development of high-frequency performance of involuntary action potentials (myotonia).

특정 지표Specific indicator

특정 구체예에서, 본원에 기재된 바와 같은 하나 이상의 약학적 조성물을 투여하는 것을 포함하는 개체를 치료하는 방법이 본원에 제공된다. 특정 구체예에서, 개체는 타입 1 근육긴장성 이영양증(DM1)을 갖는다.In certain embodiments, provided herein are methods of treating an individual comprising administering one or more pharmaceutical compositions as described herein. In certain embodiments, the subject has type 1 muscular dystrophy (DM1).

따라서, 타입 1 근육긴장성 이영양증과 관련된 증상을 개선시킬 필요가 있는 피검체의 타입 1 근육긴장성 이영양증과 관련된 증상을 개선시키는 방법이 본원에 제공된다. 특정 구체예에서, 타입 1 근육긴장성 이영양증과 관련된 증상의 발생 속도를 감소시키는 방법이 제공된다. 특정 구체예에서, 타입 1 근육긴장성 이영양증과 관련된 증상의 중증도를 감소시키는 방법이 제공된다. 특정 구체예에서, DM1과 관련된 증상은 근육 경직, 근육긴장증, 불능화 원위 약화(disabling distal weakness), 안면 및 턱 근육의 약화, 연하(swallowing)의 어려움, 눈꺼풀의 힘없음(안검하수증), 목 근육의 약화, 팔 및 다리 근육의 약화, 지속적인 근육 동통, 과다수면, 근육 소모, 연하곤란, 호흡기능부전, 불규칙한 심박동, 심장 근육 손상, 무감동, 인슐린 내성, 및 백내장을 포함한다. 아동에서, 증상은 또한 발달 지연, 학습 장애, 언어 및 말 문제, 및 인격 발달 문제일 수 있다.Accordingly, provided herein is a method of ameliorating the symptoms associated with type 1 muscular dystrophy in a subject in need of ameliorating the symptoms associated with type 1 muscular dystrophy. In certain embodiments, a method of reducing the rate of onset of symptoms associated with type 1 muscular dystrophy is provided. In certain embodiments, a method of reducing the severity of symptoms associated with type 1 muscular dystrophy is provided. In certain embodiments, symptoms associated with DM1 include muscle stiffness, dystonia, distal distal weakness, facial and jaw muscles weakness, difficulty swallowing, loss of eyelid strength (ptosis), neck muscles. Weakness, weakness of the arm and leg muscles, persistent muscle pain, hypersomnia, muscle wasting, dysphagia, respiratory failure, irregular heartbeat, heart muscle damage, numbness, insulin resistance, and cataracts. In children, symptoms can also be developmental delays, learning disabilities, language and speech problems, and personality development problems.

특정 구체예에서, 상기 방법은 DMPK 핵산을 표적으로 하는 치료적 유효량의 화합물을 이를 필요로 하는 개체에 투여하는 것을 포함한다.In certain embodiments, the method comprises administering to a subject in need thereof a therapeutically effective amount of a compound targeting the DMPK nucleic acid.

특정 구체예에서, DMPK 핵산을 표적으로 하는 안티센스 화합물의 투여는 적어도 약 15%, 적어도 약 20%, 적어도 약 25%, 적어도 약 30%, 적어도 약 35%, 적어도 약 40%, 적어도 약 45%, 적어도 약 50%, 적어도 약 55%, 적어도 약 60%, 적어도 약 65%, 적어도 약 70%, 적어도 약 75%, 적어도 약 80%, 적어도 약 85%, 적어도 약 90%, 적어도 약 95% 또는 적어도 약 99%, 또는 상기 값 중 임의의 2개의 값에 의해 규정된 범위까지 DMPK 발현의 감소를 발생시킨다.In certain embodiments, administration of an antisense compound targeting a DMPK nucleic acid is at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%. , At least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95% Or at least about 99%, or to a range defined by any two of the above values.

특정 구체예에서, DMPK를 표적으로 하는 안티센스 화합물을 포함하는 약학적 조성물이 타입 1 근육긴장성 이영양증에 걸려 있거나 이에 민감한 환자를 치료하기 위한 약제의 제조를 위해 사용된다.In certain embodiments, a pharmaceutical composition comprising an antisense compound targeting DMPK is used for the manufacture of a medicament for treating a patient suffering from or susceptible to type 1 myotonic dystrophy.

특정 구체예에서, 본원에 기재된 방법은 서열번호 12-156, 160-770 및 774-792에 열거된 서열의 본원에 기재된 바와 같은 연속적 핵염기 부분을 갖는 변형된 올리고뉴클레오타이드를 포함하는 화합물을 투여하는 것을 포함한다.In certain embodiments, the methods described herein administer a compound comprising a modified oligonucleotide having a contiguous nucleobase moiety as described herein of the sequences listed in SEQ ID NOs: 12-156, 160-770 and 774-792. Includes that.

투여administration

특정 구체예에서, 본원에 기재된 바와 같은 화합물 및 조성물은 비경구로 투여된다.In certain embodiments, compounds and compositions as described herein are administered parenterally.

특정 구체예에서, 비경구 투여는 주입에 의한 것이다. 주입은 만성 또는 연속 또는 단기 또는 간헐적 주입일 수 있다. 특정 구체예에서, 주입된 약학적 작용제는 펌프를 이용하여 전달된다. 특정 구체예에서, 비경구 투여는 주사(예를 들어, 볼루스 주사)에 의한 것이다. 주사는 주사기를 이용하여 전달될 수 있다.In certain embodiments, parenteral administration is by infusion. Infusion can be chronic or continuous or short or intermittent infusion. In certain embodiments, the infused pharmaceutical agent is delivered using a pump. In certain embodiments, parenteral administration is by injection (eg, bolus injection). Injections can be delivered using a syringe.

비경구 투여는 피하 투여, 정맥내 투여, 근내 투여, 동맥내 투여, 복막내 투여 또는 두개내 투여, 예를 들어, 수막강내 또는 뇌실내 투여를 포함한다. 투여는 연속, 또는 만성, 또는 단기, 또는 간헐적 투여일 수 있다.Parenteral administration includes subcutaneous administration, intravenous administration, intramuscular administration, intraarterial administration, intraperitoneal administration or intracranial administration, such as intrathecal or intraventricular administration. Administration may be continuous, or chronic, or short, or intermittent.

특정 구체예에서, 투여는 피하, 정맥내, 뇌내, 뇌실내, 수막강내 또는 올리고뉴클레오타이드의 전신 효과를 발생시키는 또 다른 투여(전신 투여는 전신 효과, 즉, 하나 이상의 조직에서의 효과를 특징으로 함) 또는 CNS 또는 CSF로의 전달이다.In certain embodiments, the administration is subcutaneous, intravenous, intracranial, intraventricular, intrathecal or another administration that results in a systemic effect of an oligonucleotide (systemic administration is characterized by a systemic effect, i. ) Or delivery to the CNS or CSF.

DM1의 HSALR 마우스 모델에서의 알파 1 액틴의 억제 및 근육긴장증의 감소에 의해 측정되는 바와 같은 작용의 지속기간은 대퇴사두근, 장딴지근 및 앞정강근(하기 실시예 참조)을 포함하는 근육 조직에서 연장된다. 4주 동안의 안티센스 올리고뉴클레오타이드의 피하 주사는 투여 종료 후에 적어도 11주(77일) 동안 HSALR 마우스의 대퇴사두근, 장딴지근 및 앞정강근에서 적어도 70%까지 알파 1 액틴의 억제를 발생시킨다. 4주 동안의 안티센스 올리고뉴클레오타이드의 피하 주사는 투여 종료 후에 적어도 11주(77일) 동안 HSALR 마우스의 대퇴사두근, 장딴지근 및 앞정강근에서 근육긴장증의 제거를 발생시킨다.The duration of action as measured by inhibition of alpha 1 actin and reduction of dystonia in the HSA LR mouse model of DM1 extends in muscle tissue including the quadriceps muscle, calf muscle and tibialis anterior muscle (see Examples below). do. Subcutaneous injection of antisense oligonucleotides for 4 weeks results in inhibition of alpha 1 actin by at least 70% in the quadriceps, calf and anterior tibialis muscles of HSA LR mice for at least 11 weeks (77 days) after the end of dosing. Subcutaneous injection of antisense oligonucleotides for 4 weeks results in the removal of myotonia in the quadriceps, calf and anterior tibialis in HSA LR mice for at least 11 weeks (77 days) after the end of administration.

특정 구체예에서, 본원에 기재된 바와 같은 화합물 또는 조성물의 전달은 적어도 77일 동안 표적 mRNA 및/또는 표적 단백질의 적어도 70% 하향조절을 발생시킨다. 특정 구체예에서, 본원에 기재된 바와 같은 화합물 또는 조성물의 전달은 적어도 30일, 적어도 35일, 적어도 40일, 적어도 45일, 적어도 50일, 적어도 55일, 적어도 60일, 적어도 65일, 적어도 70일, 적어도 75일, 적어도 76일, 적어도 77일, 적어도 78일, 적어도 79일, 적어도 80일, 적어도 85일, 적어도 90일, 적어도 95일, 적어도 100일, 적어도 105일, 적어도 110일, 적어도 115일, 적어도 120일, 적어도 1년 동안 표적 mRNA 및/또는 표적 단백질의 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% 또는 100% 하향조절을 발생시킨다.In certain embodiments, delivery of a compound or composition as described herein results in at least 70% downregulation of the target mRNA and/or target protein for at least 77 days. In certain embodiments, the delivery of a compound or composition as described herein is at least 30 days, at least 35 days, at least 40 days, at least 45 days, at least 50 days, at least 55 days, at least 60 days, at least 65 days, at least 70 days. Days, at least 75 days, at least 76 days, at least 77 days, at least 78 days, at least 79 days, at least 80 days, at least 85 days, at least 90 days, at least 95 days, at least 100 days, at least 105 days, at least 110 days, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or of the target mRNA and/or target protein for at least 115 days, at least 120 days, at least 1 year 100% downregulation occurs.

특정 구체예에서, 안티센스 올리고뉴클레오타이드는 77일 동안 매일 1회의 주사 또는 주입에 의해 전달된다. 특정 구체예에서, 안티센스 올리고뉴클레오타이드는 매월 1회, 2개월에 1회, 3개월에 1회, 6개월에 1회, 1년에 2회 또는 1년에 1회 주사 또는 주입에 의해 전달된다.In certain embodiments, the antisense oligonucleotide is delivered by injection or infusion once daily for 77 days. In certain embodiments, the antisense oligonucleotide is delivered by injection or infusion once a month, once every two months, once every three months, once every six months, twice a year, or once a year.

특정 병용 요법Specific combination therapy

특정 구체예에서, 본 발명의 변형된 올리고뉴클레오타이드를 포함하는 첫번째 작용제는 하나 이상의 두번째 작용제와 공동 투여된다. 특정 구체예에서, 이러한 두번째 작용제는 본원에 기재된 첫번째 작용제와 동일한 타입 1 근육긴장성 이영양증을 치료하도록 설계된다. 특정 구체예에서, 이러한 두번째 작용제는 본원에 기재된 첫번째 작용제와 상이한 질병, 장애 또는 질환을 치료하도록 설계된다. 특정 구체예에서, 이러한 두번째 작용제는 본원에 기재된 바와 같은 하나 이상의 약학적 조성물의 요망되지 않는 부작용을 치료하도록 설계된다. 특정 구체예에서, 두번째 작용제는 첫번째 작용제의 요망되지 않는 결과를 치료하기 위해 첫번째 작용제와 공동 투여된다. 특정 구체예에서, 두번째 작용제는 조합 효과를 발생시키기 위해 첫번째 작용제와 공동 투여된다. 특정 구체예에서, 두번째 작용제는 상승작용 효과를 생성시키기 위해 첫번째 작용제와 공동 투여된다.In certain embodiments, a first agent comprising a modified oligonucleotide of the invention is co-administered with one or more second agents. In certain embodiments, this second agent is designed to treat the same type 1 myotonic dystrophy as the first agent described herein. In certain embodiments, this second agent is designed to treat a different disease, disorder or condition than the first agent described herein. In certain embodiments, this second agent is designed to treat undesired side effects of one or more pharmaceutical compositions as described herein. In certain embodiments, the second agent is co-administered with the first agent to treat the undesired consequences of the first agent. In certain embodiments, the second agent is co-administered with the first agent to produce a combination effect. In certain embodiments, the second agent is co-administered with the first agent to produce a synergistic effect.

특정 구체예에서, 첫번째 작용제 및 하나 이상의 두번째 작용제는 동시에 투여된다. 특정 구체예에서, 첫번째 작용제 및 하나 이상의 두번째 작용제는 상이한 시간에 투여된다. 특정 구체예에서, 첫번째 작용제 및 하나 이상의 두번째 작용제는 단일한 약학적 제형으로 함께 제조된다. 특정 구체예에서, 첫번째 작용제 및 하나 이상의 두번째 작용제는 별개로 제조된다.In certain embodiments, the first agent and one or more second agents are administered simultaneously. In certain embodiments, the first agent and one or more second agents are administered at different times. In certain embodiments, the first agent and one or more second agents are prepared together in a single pharmaceutical formulation. In certain embodiments, the first agent and at least one second agent are prepared separately.

실시예Example

비제한적 개시 및 참조로서의 포함Non-limiting disclosure and inclusion by reference

본원에 기재된 특정 화합물, 조성물 및 방법은 특정 구체예에 따라 특이적으로 기재되었으나, 하기 실시예는 단지 본원에 기재된 화합물을 예시하기 위해 제공되며, 이를 제한하고자 하는 것이 아니다. 본 출원에 언급된 참조 각각은 이의 전체내용이 참조로서 본원에 포함된다.Certain compounds, compositions and methods described herein have been specifically described according to specific embodiments, but the following examples are provided merely to illustrate the compounds described herein, and are not intended to be limiting. Each of the references mentioned in this application is incorporated herein by reference in its entirety.

실시예 1: 인간 골격근 세포(hSKMC)에서의 인간 근긴장성 이영양증 단백질 키나제(DMPK)의 안티센스 억제Example 1: Antisense inhibition of human myotonic dystrophy protein kinase (DMPK) in human skeletal muscle cells (hSKMC)

인간 DMPK 핵산을 표적으로 하는 안티센스 올리고뉴클레오타이드를 시험관내 DMPK RNA 전사물에 대한 이의 효과에 대해 시험하였다. 웰 당 20,000개 세포의 밀도의 배양된 hSKM 세포를 전기천공을 이용하여 100nM 안티센스 올리고뉴클레오타이드로 트랜스펙션시켰다. 약 24시간 후, RNA를 세포로부터 분리시키고, DMPK RNA 전사물 수준을 인간 프라이머 프로브 세트 RTS3164(정방향 서열 AGCCTGAGCCGGGAGATG, 서열번호 9로 본원에 표시됨; 역방향 서열 GCGTAGTTGACTGGCGAAGTT, 서열번호 10으로 본원에 표시됨; 프로브 서열 AGGCCATCCGCACGGACAACCX, 서열번호 11로 본원에 표시됨)를 이용한 정량 실시간 PCR에 의해 측정하였다. DMPK RNA 전사물 수준을 RIBOGREEN(등록상표)에 의해 측정되는 바와 같은 전체 RNA 함량에 따라 조정하였다. 결과는 처리되지 않은 대조군 세포에 비한 hDMPK의 억제 퍼센트로 제시된다.Antisense oligonucleotides targeting human DMPK nucleic acids were tested for their effect on DMPK RNA transcripts in vitro. Cultured hSKM cells at a density of 20,000 cells per well were transfected with 100 nM antisense oligonucleotides using electroporation. After about 24 hours, RNA was isolated from the cells and the level of the DMPK RNA transcript was determined by the human primer probe set RTS3164 (forward sequence AGCCTGAGCCGGGAGATG, represented herein as SEQ ID NO: 9; reverse sequence GCGTAGTTGACTGGCGAAGTT, represented herein as SEQ ID NO: 10; probe sequence. AGGCCATCCGCACGGACAACCX, represented herein as SEQ ID NO: 11) was measured by quantitative real-time PCR. DMPK RNA transcript levels were adjusted according to total RNA content as measured by RIBOGREEN®. Results are presented as percent inhibition of hDMPK compared to untreated control cells.

표 1 및 표 2의 안티센스 올리고뉴클레오타이드는 5-10-5 갭머이고, 여기서 갭 세그먼트는 10개의 2'-데옥시뉴클레오사이드를 포함하고, 각각의 윙 세그먼트는 5개의 2'-MOE 뉴클레오사이드를 포함한다. 각각의 갭머 전체에 걸친 뉴클레오사이드간 결합은 포스포로티오에이트(P=S) 결합이다. 각각의 갭머 전체에 걸친 모든 사이토신 잔기는 5-메틸사이토신이다. '표적 시작 부위'는 안티센스 올리고뉴클레오타이드가 표적으로 하는 가장 5'의 뉴클레오사이드를 나타낸다. '표적 정지 부위'는 안티센스 올리고뉴클레오타이드가 표적으로 하는 가장 3'의 뉴클레오사이드를 나타낸다. 표 1에 나열된 모든 안티센스 올리고뉴클레오타이드는 서열번호 1(유전자은행 등록번호 NM_001081560.1)을 표적으로 한다. 표 2에 나열된 모든 안티센스 올리고뉴클레오타이드는 서열번호 2(뉴클레오타이드 18540696으로부터 18555106까지 트렁케이션된 유전자은행 등록번호 NT_011109.15의 상보체)를 표적으로 한다.The antisense oligonucleotides of Tables 1 and 2 are 5-10-5 gapmers, wherein the gap segment contains 10 2'-deoxynucleosides, and each wing segment contains 5 2'-MOE nucleosides. Includes. The internucleoside bonds throughout each gapmer are phosphorothioate (P=S) bonds. All cytosine residues throughout each gapmer are 5-methylcytosine. The'target start site' represents the 5 most nucleosides targeted by the antisense oligonucleotide. 'Target stop site' represents the 3 most nucleosides targeted by the antisense oligonucleotide. All antisense oligonucleotides listed in Table 1 target SEQ ID NO: 1 (gene bank registration number NM_001081560.1). All antisense oligonucleotides listed in Table 2 target SEQ ID NO: 2 (complement of Genbank accession number NT_011109.15 truncated from nucleotides 18540696 to 18555106).

여러 안티센스 올리고뉴클레오타이드는 상기 특정된 조건하에서 인간 DMPK mRNA 수준의 유의한 억제를 나타내었다.Several antisense oligonucleotides showed significant inhibition of human DMPK mRNA levels under the conditions specified above.

표 1: 서열번호 1을 표적으로 하는 5-10-5 갭머에 의한 hSKMC에서의 인간 DMPK RNA 전사물의 억제 Table 1 : Inhibition of human DMPK RNA transcripts in hSKMC by 5-10-5 gapmers targeting SEQ ID NO: 1

Figure pat00011
Figure pat00011

Figure pat00012
Figure pat00012

Figure pat00013
Figure pat00013

Figure pat00014
Figure pat00014

표 2: 서열번호 2를 표적으로 하는 5-10-5 갭머에 의한 hSKMC에서의 인간 DMPK RNA 전사물의 억제 Table 2 : Inhibition of human DMPK RNA transcripts in hSKMC by 5-10-5 gapmers targeting SEQ ID NO: 2

Figure pat00015
Figure pat00015

표 1 및 표 2로부터의 안티센스 올리고뉴클레오타이드를 또한 상기 기재된 것과 유사한 조건을 갖는 검정으로 시험하였고, mRNA 수준을 인간 프라이머 프로브RTS3162(정방향 서열 CGGGCCGTCCGTGTT, 서열번호 157로 본원에 표시됨; 역방향 서열 CTTTGCACTTTGCGAACCAA, 서열번호 158로 본원에 표시됨; 프로브 서열 CATCCTCCACGCACCCCCACCX, 서열번호 159로 본원에 표시됨)로 측정하였다. 결과는 표 3에 제시된다. DMPK mRNA 발현을 또한 3'UTR 근처의 DMPK 유전자를 표적으로 하는 RTS3162에 의해 평가하였다. 전체 DMPK 유전자의 발현이 억제된 것을 확인하기 위해 두번째 프라이머 프로브의 사용을 이용하였다.Antisense oligonucleotides from Tables 1 and 2 were also tested in assays with conditions similar to those described above, and mRNA levels were tested for human primer probe RTS3162 (forward sequence CGGGCCGTCCGTGTT, represented herein as SEQ ID NO: 157; reverse sequence CTTTGCACTTTGCGAACCAA, SEQ ID NO: Designated herein as 158; measured with the probe sequence CATCCTCCACGCACCCCCACCX, designated herein as SEQ ID NO: 159). The results are presented in Table 3. DMPK mRNA expression was also assessed by RTS3162 targeting the DMPK gene near 3'UTR. In order to confirm that the expression of the entire DMPK gene was suppressed, the use of a second primer probe was used.

표 3: 프라이머 프로브 세트 RTS3162를 이용하여 측정된 5-10-5 갭머에 의한 hSKMC에서의 인간 DMPK RNA 전사물의 억제 Table 3 : Inhibition of human DMPK RNA transcripts in hSKMC by 5-10-5 gapmers measured using primer probe set RTS3162

Figure pat00016
Figure pat00016

Figure pat00017
Figure pat00017

Figure pat00018
Figure pat00018

Figure pat00019
Figure pat00019

실시예 2: CUG 반복부를 표적으로 하는 안티센스 올리고뉴클레오타이드의 설계Example 2: Design of antisense oligonucleotides targeting CUG repeats

다수의 CUG 반복부를 함유하는 mRNA 전사물을 표적으로 하는 안티센스 올리고뉴클레오타이드를 설계하였다. 이러한 올리고뉴클레오타이드 뿐만 아니라 이의 서열의 화학은 표 4에 제시되어 있다. 당 유형에 대해 지정된 기호는 아래첨자의 염기 뒤에 제시되고, 이는 다음과 같다: b = 2'-O-N-[2-(디메틸아미노)에틸]아세트아미도 리보스; d = 2'-데옥시리보스; e = 2'-O-메톡시에틸 리보스; f = 2'-알파-플루오로-2'-데옥시리보스; g = 2'-O-2[2-(2-메톡시에톡시)에톡시]에틸 리보스; h = 3'-플루오로-HNA; k = (S)-cEt; l = LNA(잠금 핵산); n = 2'-O-(N-메틸아세트아미드) 리보스; o = 2'-O-디메틸아미노옥시에틸(DMAOE) 리보스; p = PNA; r = 프로필리보스; 및 x = 아미노산 코어. 헤테로사이클명은 아데닌, 사이토신, 티민 및 구아닌에 대해 표준 기호, 5-메틸사이토신에 대해 'mC', 및 리신 측쇄에 대해 'K'로 정의된다. 링커는 아래첨자의 당 유형 뒤에 제시되고, 이는 다음과 같은 기호로 지정된다: g = PNA-글리신 전체; a = 아미노산; 및 s = 티오에이트 에스터.Antisense oligonucleotides were designed that target mRNA transcripts containing multiple CUG repeats. The chemistry of these oligonucleotides as well as their sequences is shown in Table 4. The symbol designated for the sugar type is given after the base of the subscript, which is as follows: b = 2'-O-N-[2-(dimethylamino)ethyl]acetamido ribose; d = 2'-deoxyribose; e = 2'-0-methoxyethyl ribose; f = 2'-alpha-fluoro-2'-deoxyribose; g = 2'-0-2[2-(2-methoxyethoxy)ethoxy]ethyl ribose; h = 3'-fluoro-HNA; k = (S)-cEt; l = LNA (locked nucleic acid); n = 2'-0-(N-methylacetamide) ribose; o = 2'-O-dimethylaminooxyethyl (DMAOE) ribose; p = PNA; r = propylribose; And x = amino acid core. Heterocycle names are defined as standard symbols for adenine, cytosine, thymine and guanine,'mC' for 5-methylcytosine, and'K' for lysine side chain. The linker is shown after the sugar type in the subscript, which is designated by the following symbols: g = PNA-glycine total; a = amino acid; And s = thioate ester.

표 4: CUG 반복부를 표적으로 하는 안티센스 올리고뉴클레오타이드의 설계 Table 4 : Design of antisense oligonucleotides targeting CUG repeats

Figure pat00020
Figure pat00020

실시예 3: 인간 골격근 세포에서의 인간 DMPK의 용량 의존성 안티센스 억제Example 3: Dose-dependent antisense inhibition of human DMPK in human skeletal muscle cells

hSKMC에서 DMPK의 시험관내 억제를 나타내는 여러 안티센스 올리고뉴클레오타이드(실시예 1 참조)를 다양한 용량으로 시험하였다. 세포를 웰 당 20,000개의 세포의 밀도로 플레이팅하고, 전기천공을 이용하여 1,250nM, 2,500nM, 5,000nM, 10,000nM 및 20,000nM 농도의 각각의 안티센스 올리고뉴클레오타이드로 트랜스펙션시켰다. 약 16시간 후, RNA를 세포로부터 분리시키고, DMPK mRNA 전사물 수준을 상기 기재된 프라이머 프로브 세트 RTS3164를 이용한 정량 실시간 PCR에 의해 측정하였다. DMPK mRNA 전사물 수준을 RIBOGREEN(등록상표)에 의해 측정되는 바와 같은 전체 RNA 함량에 대해 표준화시켰다. 결과는 처리되지 않은 대조군 세포에 비한 DMPK의 억제 퍼센트로서 표 5에 제시된다.Several antisense oligonucleotides (see Example 1) showing in vitro inhibition of DMPK in hSKMC were tested at various doses. Cells were plated at a density of 20,000 cells per well and transfected with respective antisense oligonucleotides at concentrations of 1,250nM, 2,500nM, 5,000nM, 10,000nM and 20,000nM using electroporation. After about 16 hours, RNA was isolated from the cells and DMPK mRNA transcript levels were determined by quantitative real-time PCR using the primer probe set RTS3164 described above. DMPK mRNA transcript levels were normalized to total RNA content as measured by RIBOGREEN®. Results are presented in Table 5 as percent inhibition of DMPK compared to untreated control cells.

시험된 안티센스 올리고뉴클레오타이드는 상기 특정된 조건하에서 DMPK mRNA 수준의 용량 의존적 억제를 나타내었다.The tested antisense oligonucleotides showed a dose dependent inhibition of DMPK mRNA levels under the conditions specified above.

표 5: 프라이머 프로브 세트 RTS3164로 시험된 hSKMC에서의 인간 DMPK의 용량 의존적 안티센스 억제 Table 5 : Dose dependent antisense inhibition of human DMPK in hSKMC tested with primer probe set RTS3164

Figure pat00021
Figure pat00021

Figure pat00022
Figure pat00022

표 5로부터의 안티센스 올리고뉴클레오타이드를 또한 상기 기재된 프라이머 프로브 세트 RTS3162로 시험하였다. 결과는 표 6에 제시된다. DMPK mRNA 발현을 또한 3'UTR 근처의 DMPK 유전자를 표적으로 하는 RTS3162에 의해 평가하였다. 전체 DMPK 유전자의 발현이 억제된 것을 확인하기 위해 두번째 프라이머 프로브의 사용을 이용하였다.Antisense oligonucleotides from Table 5 were also tested with the primer probe set RTS3162 described above. The results are presented in Table 6. DMPK mRNA expression was also assessed by RTS3162 targeting the DMPK gene near 3'UTR. In order to confirm that the expression of the entire DMPK gene was suppressed, the use of a second primer probe was used.

표 6: 프라이머 프로브 세트 RTS3164로 시험된 hSKMC에서의 인간 DMPK의 용량 의존적 안티센스 억제 Table 6 : Dose dependent antisense inhibition of human DMPK in hSKMC tested with primer probe set RTS3164

Figure pat00023
Figure pat00023

Figure pat00024
Figure pat00024

실시예 4: 인간 골격근 세포에서의 인간 DMPK의 용량 의존적 안티센스 억제Example 4: Dose-dependent antisense inhibition of human DMPK in human skeletal muscle cells

hSKMC에서 DMPK의 시험관내 억제를 나타내는 여러 안티센스 올리고뉴클레오타이드(실시예 3 참조)를 다양한 용량으로 시험하였다. 세포를 웰 당 20,000개의 세포의 밀도로 플레이팅하고, 전기천공을 이용하여 1,250nM, 2,500nM, 5,000nM, 10,000nM 및 20,000nM 농도의 각각의 안티센스 올리고뉴클레오타이드로 트랜스펙션시켰다. 약 16시간 후, RNA를 세포로부터 분리시키고, DMPK mRNA 전사물 수준을 상기 기재된 프라이머 프로브 세트 RTS3164를 이용한 정량 실시간 PCR에 의해 측정하였다. DMPK mRNA 전사물 수준을 RIBOGREEN(등록상표)에 의해 측정되는 바와 같은 전체 RNA 함량에 대해 표준화시켰다. 결과는 처리되지 않은 대조군 세포에 비한 DMPK의 억제 퍼센트로서 표 7에 제시된다.Several antisense oligonucleotides (see Example 3) showing in vitro inhibition of DMPK in hSKMC were tested at various doses. Cells were plated at a density of 20,000 cells per well and transfected with respective antisense oligonucleotides at concentrations of 1,250nM, 2,500nM, 5,000nM, 10,000nM and 20,000nM using electroporation. After about 16 hours, RNA was isolated from the cells and DMPK mRNA transcript levels were determined by quantitative real-time PCR using the primer probe set RTS3164 described above. DMPK mRNA transcript levels were normalized to total RNA content as measured by RIBOGREEN®. Results are presented in Table 7 as percent inhibition of DMPK compared to untreated control cells.

시험된 안티센스 올리고뉴클레오타이드 대부분은 상기 특정된 조건하에서 DMPK mRNA 수준의 용량 의존적 억제를 나타내었다.Most of the tested antisense oligonucleotides showed dose dependent inhibition of DMPK mRNA levels under the conditions specified above.

표 7: 프라이머 프로브 세트 RTS3164로 시험된 hSKMC에서의 인간 DMPK의 용량 의존적 안티센스 억제 Table 7 : Dose dependent antisense inhibition of human DMPK in hSKMC tested with primer probe set RTS3164

Figure pat00025
Figure pat00025

Figure pat00026
Figure pat00026

실시예 5: 인간 골격근 세포에서의 인간 DMPK의 용량 의존적 안티센스 억제Example 5: Dose-dependent antisense inhibition of human DMPK in human skeletal muscle cells

인간 DMPK mRNA를 표적으로 하는 여러 안티센스 올리고뉴클레오타이드를 설계하고, 다양한 용량으로 hSKMC에서 시험하였다. 인간 액틴 mRNA를 표적으로 하는 여러 다른 안티센스 올리고뉴클레오타이드를 설계하고, 또한 다양한 용량으로 hSKMC에서 시험하였다. 새로이 설계된 갭머는 2-10-2 MOE 또는 3-10-3 MOE 갭머이다. 2-10-2 MOE 갭머는 14개의 뉴클레오사이드 길이이고, 여기서 갭 세그먼트는 10개의 2'-데옥시뉴클레오사이드를 포함하고, 각각의 윙 세그먼트는 2개의 2'-MOE 뉴클레오사이드를 포함한다. 3-10-3 MOE 갭머는 16개의 뉴클레오사이드 길이이고, 여기서 갭 세그먼트는 10개의 2'-데옥시뉴클레오사이드를 포함하고, 각각의 윙 세그먼트는 3개의 2'-MOE 뉴클레오사이드를 포함한다. 각각의 갭머 전체에 걸친 뉴클레오사이드간 결합은 포스포로티오에이트(P=S) 결합이다. 각각의 갭머 전체에 걸친 모든 사이토신 잔기는 5-메틸사이토신이다. '표적 시작 부위'는 안티센스 올리고뉴클레오타이드가 표적으로 하는 가장 5'의 뉴클레오사이드를 나타낸다. '표적 정지 부위'는 안티센스 올리고뉴클레오타이드가 표적으로 하는 가장 3'의 뉴클레오사이드를 나타낸다. 표 8에 나열된 안티센스 올리고뉴클레오타이드는 서열번호 2로 본원에 표시된 인간 DMPK 유전체 서열(뉴클레오타이드 18540696으로부터 18555106까지 트렁케이션된 유전자은행 등록번호 NT_011109.15의 상보체) 또는 서열번호 801로 본원에 표시된 인간 액틴 서열(유전자은행 등록번호 NM_001100.3)을 표적으로 한다.Several antisense oligonucleotides targeting human DMPK mRNA were designed and tested in hSKMC at various doses. Several different antisense oligonucleotides targeting human actin mRNA were designed and also tested in hSKMC at various doses. The newly designed gapmers are 2-10-2 MOE or 3-10-3 MOE gapmers. The 2-10-2 MOE gapmer is 14 nucleosides long, wherein the gap segment contains 10 2'-deoxynucleosides, and each wing segment contains 2 2'-MOE nucleosides. do. 3-10-3 MOE gapmer is 16 nucleosides long, wherein the gap segment contains 10 2'-deoxynucleosides, and each wing segment contains 3 2'-MOE nucleosides. do. The internucleoside bonds throughout each gapmer are phosphorothioate (P=S) bonds. All cytosine residues throughout each gapmer are 5-methylcytosine. The'target start site' represents the 5 most nucleosides targeted by the antisense oligonucleotide. 'Target stop site' represents the 3 most nucleosides targeted by the antisense oligonucleotide. The antisense oligonucleotides listed in Table 8 are the human DMPK genomic sequence represented herein as SEQ ID NO: 2 (complement of Genbank accession number NT_011109.15 truncated from nucleotides 18540696 to 18555106) or human actin sequence represented herein as SEQ ID NO: 801 Target (gene bank registration number NM_001100.3).

세포를 웰 당 20,000개의 세포의 밀도로 플레이팅하고, 전기천공을 이용하여 1,250nM, 2,500nM, 5,000nM, 10,000nM 및 20,000nM 농도의 각각의 안티센스 올리고뉴클레오타이드로 트랜스펙션시켰다. 약 16시간 후, RNA를 세포로부터 분리시키고, DMPK mRNA 전사물 수준을 상기 기재된 프라이머 프로브 세트 RTS3162를 이용한 정량 실시간 PCR에 의해 측정하였다. DMPK mRNA 전사물 수준을 RIBOGREEN(등록상표)에 의해 측정되는 바와 같은 전체 RNA 함량에 대해 표준화시켰다. 결과는 처리되지 않은 대조군 세포에 비한 DMPK의 억제 퍼센트로서 표 8에 제시된다. 안티센스 올리고뉴클레오타이드를 또한 RTS3164와 유사한 조건하에서 시험하였다. 결과는 표 9에 제시된다.Cells were plated at a density of 20,000 cells per well and transfected with respective antisense oligonucleotides at concentrations of 1,250nM, 2,500nM, 5,000nM, 10,000nM and 20,000nM using electroporation. After about 16 hours, RNA was isolated from the cells, and DMPK mRNA transcript levels were determined by quantitative real-time PCR using the primer probe set RTS3162 described above. DMPK mRNA transcript levels were normalized to total RNA content as measured by RIBOGREEN®. Results are presented in Table 8 as percent inhibition of DMPK compared to untreated control cells. Antisense oligonucleotides were also tested under conditions similar to RTS3164. The results are presented in Table 9.

시험된 많은 안티센스 올리고뉴클레오타이드는 상기 특정된 조건하에서 DMPK mRNA 수준의 용량 의존적 억제를 나타내었다.Many of the antisense oligonucleotides tested showed dose dependent inhibition of DMPK mRNA levels under the conditions specified above.

표 8: 프라이머 프로브 세트 RTS3162로 시험된 hSKMC에서의 인간 DMPK 및 인간 액틴의 용량 의존적 안티센스 억제 Table 8 : Dose-dependent antisense inhibition of human DMPK and human actin in hSKMC tested with primer probe set RTS3162

Figure pat00027
Figure pat00027

표 9: 프라이머 프로브 세트 RTS3164로 시험된 hSKMC에서의 인간 DMPK의 용량 의존적 안티센스 억제 Table 9 : Dose dependent antisense inhibition of human DMPK in hSKMC tested with primer probe set RTS3164

Figure pat00028
Figure pat00028

실시예 6: DM1 섬유모세포 세포에서의 인간 근육긴장성 이영양증-단백질 키나제(DMPK)를 표적으로 하는 안티센스 올리고뉴클레오타이드를 이용한 용량 반응 연구Example 6: Dose response study using antisense oligonucleotides targeting human myotonic dystrophy-protein kinase (DMPK) in DM1 fibroblast cells

큰 CUG 반복부를 갖는 DMPK mRNA의 돌연변이 형태는 완전히 전사되고 아데닐중합체형성되나, 핵 내에 포획된 채로 남아 있는다(Davis et al, 1997, Proc. Natl. Acad. Sci. U.S.A. 94, 7388-7393). 이러한 돌연변이의 핵-유지된 mRNA는 근육긴장성 이영양증 1(DM1)의 가장 중요한 병리학적 특징 중 하나이다. DM1 섬유모세포 세포에서의 돌연변이 DMPK mRNA의 안티센스 억제를 연구하였다.The mutant form of DMPK mRNA with large CUG repeats is completely transcribed and forms adenyl polymer, but remains entrapped in the nucleus (Davis et al, 1997, Proc. Natl. Acad. Sci. USA 94, 7388-7393 ). The nuclear-retained mRNA of this mutation is one of the most important pathological features of myosonic dystrophy 1 (DM1). Antisense inhibition of mutant DMPK mRNA in DM1 fibroblast cells was studied.

DMPK 유전자는 보통 3' 비번역 영역 내에 5-37개의 CTG 반복부를 갖는다. 근육긴장성 이영양증 타입 I에서, 이러한 수는 현저히 확장되고, 이는 50개 내지 3,500개 초과의 범위일 수 있다(Harper, Myotonic Dystrophy (Saunders, London, ed.3, 2001); Annu. Rev. Neurosci. 29: 259, 2006; EMBO J. 19: 4439, 2000; Curr Opin Neurol. 20: 572, 2007). DM1 섬유모세포 세포를 웰 당 4,500개의 세포의 밀도로 플레이팅하고, Cytofectin 시약을 이용하여 9.4nM, 18.8nM, 37.5nM, 75.0nM, 150.0nM 및 300.0nM 농도의 각각의 안티센스 올리고뉴클레오타이드로 트랜스펙션시켰다. 약 16시간 후, RNA를 세포로부터 분리시키고, DMPK RNA 전사물 수준을 상기 기재된 프라이머 프로브 세트 RTS3164를 이용한 정량 실시간 PCR에 의해 측정하였다. DMPK RNA 전사물 수준을 RIBOGREEN(등록상표)에 의해 측정되는 바와 같은 전체 RNA 함량에 대해 표준화시켰다. 결과는 처리되지 않은 대조군 세포에 비한 DMPK의 억제 퍼센트로서 표 10에 제시된다.The DMPK gene usually has 5-37 CTG repeats within the 3'untranslated region. In myosonic dystrophy type I, this number expands significantly, which can range from 50 to more than 3,500 (Harper, Myotonic Dystrophy (Saunders, London, ed. 3, 2001); Annu. Rev. Neurosci. 29 : 259, 2006; EMBO J. 19: 4439, 2000; Curr Opin Neurol. 20: 572, 2007). DM1 fibroblast cells were plated at a density of 4,500 cells per well, and transfected with respective antisense oligonucleotides at concentrations of 9.4 nM, 18.8 nM, 37.5 nM, 75.0 nM, 150.0 nM and 300.0 nM using Cytofectin reagent. Made it. After about 16 hours, RNA was isolated from the cells and DMPK RNA transcript levels were determined by quantitative real-time PCR using the primer probe set RTS3164 described above. DMPK RNA transcript levels were normalized to total RNA content as measured by RIBOGREEN®. Results are presented in Table 10 as percent inhibition of DMPK compared to untreated control cells.

유사한 조건을 갖는 검정을 또한 DMPK 전사물의 3'-말단을 표적으로 하는 상기 기재된 프라이머 프로브 세트 RTS3162로 수행하였다. 결과는 처리되지 않은 대조군 세포에 비한 DMPK의 억제 퍼센트로 표 11에 제시된다.Assays with similar conditions were also performed with the above described primer probe set RTS3162 targeting the 3'-end of the DMPK transcript. Results are presented in Table 11 as percent inhibition of DMPK compared to untreated control cells.

시험된 안티센스 올리고뉴클레오타이드는 상기 특정된 조건하에서 DMPK mRNA 수준의 용량 의존적 억제를 나타내었다.The tested antisense oligonucleotides showed a dose dependent inhibition of DMPK mRNA levels under the conditions specified above.

표 10: RTS3164를 이용한 DM1 섬유모세포 세포에서의 DMPK mRNA의 용량 의존적 안티센스 억제 Table 10 : Dose-dependent antisense inhibition of DMPK mRNA in DM1 fibroblast cells using RTS3164

Figure pat00029
Figure pat00029

표 11: RTS3162를 이용한 DM1 섬유모세포 세포에서의 DMPK mRNA의 용량 의존적 안티센스 억제 Table 11 : Dose-dependent antisense inhibition of DMPK mRNA in DM1 fibroblast cells using RTS3162

Figure pat00030
Figure pat00030

실시예 7: 인간 골격근 세포(hSKMc)에서의 인간 DMPK의 안티센스 억제Example 7: Antisense inhibition of human DMPK in human skeletal muscle cells (hSKMc)

인간 DMPK 핵산을 표적으로 하는 안티센스 올리고뉴클레오타이드를 시험관내에서 DMPK RNA 전사물에 대한 이의 효과에 대해 시험하였다. 웰 당 20,000개 세포의 밀도로 배양된 hSKMc를 전기천공을 이용하여 10,000nM 안티센스 올리고뉴클레오타이드로 트랜스펙션시켰다. 약 24시간 후, RNA를 세포로부터 분리시키고, DMPK 전사물 수준을 정량 실시간 PCR에 의해 측정하였다. DMPK RNA 전사물 수준을 RIBOGREEN(등록상표)에 의해 측정되는 바와 같은 전체 RNA 함량에 따라 조정하였다. 결과는 처리되지 않은 대조군 세포에 비한 DMPK의 억제 퍼센트로 제시된다.Antisense oligonucleotides targeting human DMPK nucleic acids were tested for their effect on DMPK RNA transcripts in vitro. HSKMc cultured at a density of 20,000 cells per well was transfected with 10,000 nM antisense oligonucleotides using electroporation. After about 24 hours, RNA was isolated from the cells and DMPK transcript levels were measured by quantitative real-time PCR. DMPK RNA transcript levels were adjusted according to total RNA content as measured by RIBOGREEN®. Results are presented as percent inhibition of DMPK compared to untreated control cells.

표 12 및 표 13의 안티센스 올리고뉴클레오타이드는 5-10-5 갭머이며, 여기서 갭 세그먼트는 10개의 2'-데옥시뉴클레오사이드를 포함하고, 각각의 윙 세그먼트는 5개의 2'-MOE 뉴클레오사이드를 포함한다. 각각의 갭머 전체에 걸친 뉴클레오사이드간 결합은 포스포로티오에이트(P=S) 결합이다. 각각의 갭머 전체에 걸친 모든 사이토신 잔기는 5-메틸사이토신이다. '표적 시작 부위'는 안티센스 올리고뉴클레오타이드가 인간 유전체 유전자 서열 내에서 표적으로 하는 가장 5'의 뉴클레오사이드를 나타낸다. '표적 정지 부위'는 안티센스 올리고뉴클레오타이드가 인간 유전체 서열 내에서 표적으로 하는 가장 3'의 뉴클레오사이드를 나타낸다. 표 12에 나열된 모든 안티센스 올리고뉴클레오타이드는 서열번호 1(유전자은행 등록번호 NM_001081560.1)을 표적으로 한다. 표 13에 나열된 모든 안티센스 올리고뉴클레오타이드는 서열번호 2(뉴클레오타이드 18540696으로부터 18555106까지 트렁케이션된 유전자은행 등록번호 NT_011109.15의 상보체)를 표적으로 한다.The antisense oligonucleotides of Table 12 and Table 13 are 5-10-5 gapmers, wherein the gap segment contains 10 2'-deoxynucleosides, and each wing segment contains 5 2'-MOE nucleosides. Includes. The internucleoside bonds throughout each gapmer are phosphorothioate (P=S) bonds. All cytosine residues throughout each gapmer are 5-methylcytosine. 'Target start site' refers to the 5 most nucleosides that the antisense oligonucleotide targets within the human genomic gene sequence. 'Target stop site' refers to the 3'most nucleosides targeted by antisense oligonucleotides in the human genome sequence. All antisense oligonucleotides listed in Table 12 target SEQ ID NO: 1 (gene bank registration number NM_001081560.1). All antisense oligonucleotides listed in Table 13 target SEQ ID NO: 2 (complement of GenBank Accession Number NT_011109.15, truncate from nucleotides 18540696 to 18555106).

여러 안티센스 올리고뉴클레오타이드는 상기 특정된 조건하에서 DMPK mRNA 수준의 유의한 억제를 나타내었다.Several antisense oligonucleotides showed significant inhibition of DMPK mRNA levels under the conditions specified above.

표 12: 서열번호 1을 표적으로 하는 5-10-5 갭머에 의한 hSKMc에서의 인간 DMPK RNA 전사물의 억제 Table 12 : Inhibition of human DMPK RNA transcripts in hSKMc by 5-10-5 gapmers targeting SEQ ID NO: 1

Figure pat00031
Figure pat00031

Figure pat00032
Figure pat00032

Figure pat00033
Figure pat00033

Figure pat00034
Figure pat00034

Figure pat00035
Figure pat00035

Figure pat00036
Figure pat00036

Figure pat00037
Figure pat00037

Figure pat00038
Figure pat00038

Figure pat00039
Figure pat00039

Figure pat00040
Figure pat00040

Figure pat00041
Figure pat00041

Figure pat00042
Figure pat00042

Figure pat00043
Figure pat00043

Figure pat00044
Figure pat00044

표 13: 서열번호 2를 표적으로 하는 5-10-5 갭머에 의한 hSKMc에서의 인간 DMPK RNA 전사물의 억제 Table 13 : Inhibition of human DMPK RNA transcripts in hSKMc by 5-10-5 gapmers targeting SEQ ID NO: 2

Figure pat00045
Figure pat00045

Figure pat00046
Figure pat00046

Figure pat00047
Figure pat00047

Figure pat00048
Figure pat00048

Figure pat00049
Figure pat00049

Figure pat00050
Figure pat00050

Figure pat00051
Figure pat00051

Figure pat00052
Figure pat00052

Figure pat00053
Figure pat00053

Figure pat00054
Figure pat00054

Figure pat00055
Figure pat00055

Figure pat00056
Figure pat00056

Figure pat00057
Figure pat00057

Figure pat00058
Figure pat00058

Figure pat00059
Figure pat00059

실시예 8: 마우스 일차 간세포에서의 뮤린 DMPK의 안티센스 억제Example 8: Antisense inhibition of murine DMPK in mouse primary hepatocytes

뮤린 DMPK 핵산을 표적으로 하는 안티센스 올리고뉴클레오타이드를 시험관내에서 DMPK RNA 전사물에 대한 이의 효과에 대해 시험하였다. 웰 당 35,000개 세포의 밀도의 배양된 마우스 일차 간세포를 전기천공을 이용하여 8,000nM 안티센스 올리고뉴클레오타이드로 트랜스펙션시켰다. 약 24시간 후, RNA를 세포로부터 분리시키고, DMPK 전사물 수준을 정량 실시간 PCR에 의해 측정하였다. DMPK RNA 전사물 수준을 RIBOGREEN(등록상표)에 의해 측정되는 바와 같은 전체 RNA 함량에 따라 조정하였다. 결과는 처리되지 않은 대조군 세포에 비한 DMPK의 억제 퍼센트로 제시된다.Antisense oligonucleotides targeting murine DMPK nucleic acids were tested for their effect on DMPK RNA transcripts in vitro. Cultured mouse primary hepatocytes at a density of 35,000 cells per well were transfected with 8,000 nM antisense oligonucleotides using electroporation. After about 24 hours, RNA was isolated from the cells and DMPK transcript levels were measured by quantitative real-time PCR. DMPK RNA transcript levels were adjusted according to total RNA content as measured by RIBOGREEN®. Results are presented as percent inhibition of DMPK compared to untreated control cells.

표 14, 표 15 및 표 16의 안티센스 올리고뉴클레오타이드는 5-10-5 갭머이고, 여기서 갭 세그먼트는 10개의 2'-데옥시뉴클레오사이드를 포함하고, 각각의 윙 세그먼트는 5개의 2'-MOE 뉴클레오사이드를 포함한다. 각각의 갭머 전체에 걸친 뉴클레오사이드간 결합은 포스포로티오에이트(P=S) 결합이다. 각각의 갭머 전체에 걸친 모든 사이토신 잔기는 5-메틸사이토신이다. '뮤린 표적 시작 부위'는 안티센스 올리고뉴클레오타이드가 뮤린 유전자 서열 내에서 표적으로 하는 가장 5'의 뉴클레오사이드를 나타낸다. '뮤린 표적 정지 부위'는 안티센스 올리고뉴클레오타이드가 뮤린 유전자 서열 내에서 표적으로 하는 가장 3'의 뉴클레오사이드를 나타낸다. 표 12에 나열된 모든 안티센스 올리고뉴클레오타이드는 서열번호 3(뉴클레오타이드 16666001로부터 16681000까지 트렁케이션된 유전자은행 등록번호 NT_039413.7)을 표적으로 한다. 표 13에 나열된 모든 안티센스 올리고뉴클레오타이드는 서열번호 4(유전자은행 등록번호 NM_032418.1)를 표적으로 한다. 표 14의 안티센스 올리고뉴클레오타이드는 서열번호 5(유전자은행 등록번호 AI007148.1), 서열번호 6(유전자은행 등록번호 AI304033.1), 서열번호 7(유전자은행 등록번호 BC024150.1), 서열번호 8(유전자은행 등록번호 BC056615.1), 서열번호 793(유전자은행 등록번호 BC075715.1), 서열번호 794(유전자은행 등록번호 BU519245.1), 서열번호 795(유전자은행 등록번호 CB247909.1), 서열번호 796(유전자은행 등록번호 CX208906.1), 서열번호 797(유전자은행 등록번호 CX732022.1), 서열번호 798(유전자은행 등록번호 S60315.1) 또는 서열번호 799(유전자은행 등록번호 S60316.1)를 표적으로 한다. 또한, 서열번호 800(유전자은행 등록번호 NM_001081562.1)을 표적으로 하는 인간 안티센스 올리고뉴클레오타이드 ISIS 451421이 또한 상기 검정에 포함되었고, 이는 표 14에 나열되어 있다.The antisense oligonucleotides of Tables 14, 15 and 16 are 5-10-5 gapmers, wherein the gap segment contains 10 2'-deoxynucleosides, and each wing segment contains 5 2'-MOEs. Contains nucleosides. The internucleoside bonds throughout each gapmer are phosphorothioate (P=S) bonds. All cytosine residues throughout each gapmer are 5-methylcytosine. The'murine target start site' refers to the 5'most nucleoside to which the antisense oligonucleotide is targeted in the murine gene sequence. The'murine target stop site' refers to the 3'most nucleoside to which the antisense oligonucleotide is targeted in the murine gene sequence. All antisense oligonucleotides listed in Table 12 target SEQ ID NO: 3 (Genbank accession number NT_039413.7 truncate from nucleotides 16666001 to 16681000). All antisense oligonucleotides listed in Table 13 target SEQ ID NO: 4 (gene bank registration number NM_032418.1). Antisense oligonucleotides in Table 14 are SEQ ID NO: 5 (gene bank registration number AI007148.1), SEQ ID NO: 6 (gene bank registration number AI304033.1), SEQ ID NO: 7 (gene bank registration number BC024150.1), SEQ ID NO: 8 ( Genbank registration number BC056615.1), SEQ ID NO: 793 (gene bank registration number BC075715.1), SEQ ID NO: 794 (gene bank registration number BU519245.1), SEQ ID NO: 795 (gene bank registration number CB247909.1), SEQ ID NO: 796 (gene bank registration number CX208906.1), SEQ ID NO: 797 (gene bank registration number CX732022.1), SEQ ID NO: 798 (gene bank registration number S60315.1) or SEQ ID NO: 799 (gene bank registration number S60316.1) Target. In addition, the human antisense oligonucleotide ISIS 451421 targeting SEQ ID NO: 800 (gene bank registration number NM_001081562.1) was also included in the assay, which are listed in Table 14.

표 14, 표 15 및 표 16의 뮤린 올리고뉴클레오타이드는 또한 인간 유전자 서열과 교차 반응될 수 있다. '미스매치'는 뮤린 올리고뉴클레오타이드가 인간 유전자 서열과 미스매치되는 핵염기의 수를 나타낸다. 뮤린 올리고뉴클레오타이드와 인간 서열 사이에 상보성이 클수록, 뮤린 올리고누클레티드가 인간 서열과 교차 반응할 수 있는 가능성이 더 크다. 표 14, 표 15 및 표 16의 뮤린 올리고뉴클레오타이드를 서열번호 800(유전자은행 등록번호 NM_001081562.1)과 비교하였다. "인간 표적 시작 부위"는 갭머가 인간 유전자 서열 내에서 표적으로 하는 가장 5'의 뉴클레오사이드를 나타낸다. "인간 표적 정지 부위"는 갭머가 인간 유전자 서열 내에서 표적으로 하는 가장 3'의 뉴클레오사이드를 나타낸다.The murine oligonucleotides of Tables 14, 15 and 16 can also be cross-reacted with human gene sequences. 'Mismatch' refers to the number of nucleobases at which the murine oligonucleotide mismatches the human gene sequence. The greater the complementarity between the murine oligonucleotide and the human sequence, the greater the likelihood that the murine oligonucleotide can cross-react with the human sequence. The murine oligonucleotides of Tables 14, 15 and 16 were compared with SEQ ID NO: 800 (gene bank registration number NM_001081562.1). “Human target start site” refers to the 5′ most nucleoside that the gapmer targets within the human gene sequence. “Human target stop site” refers to the 3′ most nucleoside that the gapmer targets within the human gene sequence.

시험된 여러 안티센스 올리고뉴클레오타이드는 상기 특정된 조건하에서 DMPK mRNA 수준의 유의한 억제를 나타내었다. 시험된 특정 안티센스 올리고뉴클레오타이드는 인간 유전자 서열과 교차 반응성이다.Several antisense oligonucleotides tested showed significant inhibition of DMPK mRNA levels under the conditions specified above. Certain antisense oligonucleotides tested are cross-reactive with human gene sequences.

표 14: 서열번호 800을 표적으로 하는 5-10-5 갭머에 의한 마우스 일차 간세포에서의 뮤린 DMPK RNA 전사물의 억제 Table 14 : Inhibition of murine DMPK RNA transcripts in mouse primary hepatocytes by 5-10-5 gapmers targeting SEQ ID NO: 800

Figure pat00060
Figure pat00060

Figure pat00061
Figure pat00061

표 15: 서열번호 800을 표적으로 하는 5-10-5 갭머에 의한 마우스 일차 간세포에서의 뮤린 DMPK RNA 전사물의 억제 Table 15 : Inhibition of murine DMPK RNA transcripts in mouse primary hepatocytes by 5-10-5 gapmers targeting SEQ ID NO: 800

Figure pat00062
Figure pat00062

표 16: 서열번호 5-8 및 793-799를 표적으로 하는 5-10-5 갭머에 의한 마우스 일차 간세포에서의 뮤린 DMPK RNA 전사물의 억제 Table 16 : Inhibition of murine DMPK RNA transcripts in mouse primary hepatocytes by 5-10-5 gapmers targeting SEQ ID NOs: 5-8 and 793-799

Figure pat00063
Figure pat00063

실시예 9: 마우스 일차 간세포에서의 뮤린 DMPK의 용량 의존적 안티센스 억제Example 9: Dose-dependent antisense inhibition of murine DMPK in mouse primary hepatocytes

마우스 일차 간세포에서의 DMPK의 시험관내 억제를 나타내는 여러 안티센스 올리고뉴클레오타이드(실시예 8 참조)를 다양한 용량으로 시험하였다. 세포를 웰 당 35,000개 세포의 밀도로 플레이팅시키고, 전기천공을 이용하여 1,000nM, 2,000nM, 4,000nM, 8,000nM 및 16,000nM 농도의 각각의 안티센스 올리고뉴클레오타이드로 트랜스펙션시켰다. 약 16시간 후, RNA를 세포로부터 분리시키고, DMPK 전사물 수준을 프라이머 프로브 세트 RTS3181(정방향 서열 GACATATGCCAAGATTGTGCACTAC, 서열번호 771로 본원에 표시됨; 역방향 서열 CACGAATGAGGTCCTGAGCTT, 서열번호 772로 본원에 표시됨; 프로브 서열 AACACTTGTCGCTGCCGCTGGCX, 서열번호 773으로 본원에 표시됨)를 이용한 정량 실시간 PCR에 의해 측정하였다. DMPK 전사물 수준을 RIBOGREEN(등록상표)에 의해 측정되는 바와 같은 전체 RNA 함량에 대해 표준화시켰다. 결과는 미처리된 대조군 세포에 비한 DMPK의 억제 퍼센트로 표 17에 제시된다.Several antisense oligonucleotides (see Example 8) showing in vitro inhibition of DMPK in mouse primary hepatocytes were tested at various doses. Cells were plated at a density of 35,000 cells per well and transfected with respective antisense oligonucleotides at concentrations of 1,000 nM, 2,000 nM, 4,000 nM, 8,000 nM and 16,000 nM using electroporation. After about 16 hours, RNA was isolated from the cells and the DMPK transcript level was determined by primer probe set RTS3181 (forward sequence GACATATGCCAAGATTGTGCACTAC, represented herein as SEQ ID NO: 771; reverse sequence CACGAATGAGGTCCTGAGCTT, represented herein as SEQ ID NO: 772; probe sequence AACACTTGTCGCTGCCGCTGGCX, It was measured by quantitative real-time PCR using (represented herein as SEQ ID NO: 773). DMPK transcript levels were normalized to total RNA content as measured by RIBOGREEN®. Results are presented in Table 17 as percent inhibition of DMPK compared to untreated control cells.

시험된 안티센스 올리고뉴클레오타이드 대부분은 상기 특정된 조건하에서 DMPK mRNA 수준의 용량 의존적 억제를 나타내었다.Most of the tested antisense oligonucleotides showed dose dependent inhibition of DMPK mRNA levels under the conditions specified above.

표 17: 마우스 일차 간세포에서의 뮤린 DMPK의 용량 의존적 안티센스 억제 Table 17 : Dose-dependent antisense inhibition of murine DMPK in mouse primary hepatocytes

Figure pat00064
Figure pat00064

실시예 10: HepG2 세포에서의 인간 알파1 골격 액틴의 안티센스 억제Example 10: Antisense inhibition of human alpha1 skeletal actin in HepG2 cells

마우스 모델에 삽입되는 경우 DM1의 증상을 야기시킬 수 있는 확장된 CTG 반복부를 가질 수 있는 유전자인 인간 알파1 골격 액틴 핵산을 표적으로 하는 안티센스 올리고뉴클레오타이드를 시험관내에서 알파1 액틴 RNA 전사물에 대한 이의 효과에 대해 시험하였다. 웰당 20,000개 세포의 밀도로 배양된 HepG2 세포를 전기천공을 이용하여 10,000nM 안티센스 올리고뉴클레오타이드로 트랜스펙션시켰다. 약 24시간 후, RNA를 세포로부터 분리시키고, 알파1 액틴 RNA 전사물 수준을 정량 실시간 PCR에 의해 측정하였다. 알파1 액틴 RNA 전사물 수준을 RIBOGREEN(등록상표)에 의해 측정되는 바와 같은 전체 RNA 함량에 따라 조정하였다. 결과는 처리되지 않은 대조군 세포에 비한 알파1 액틴의 억제 퍼센트로 제시된다.Antisense oligonucleotides targeting human alpha1 scaffold actin nucleic acids, a gene that can have extended CTG repeats that can cause symptoms of DM1 when inserted into a mouse model, are used in vitro against alpha1 actin RNA transcripts. Tested for effectiveness. HepG2 cells cultured at a density of 20,000 cells per well were transfected with 10,000 nM antisense oligonucleotides using electroporation. After about 24 hours, RNA was isolated from the cells, and alpha1 actin RNA transcript levels were measured by quantitative real-time PCR. Alpha1 actin RNA transcript levels were adjusted according to the total RNA content as measured by RIBOGREEN®. Results are presented as percent inhibition of alpha1 actin compared to untreated control cells.

표 18의 안티센스 올리고뉴클레오타이드는 5-10-5 갭머이고, 여기서 갭 세그먼트는 10개의 2'-데옥시뉴클레오사이드를 포함하고, 각각의 윙 세그먼트는 5개의 2'-MOE 뉴클레오사이드를 포함한다. 각각의 갭머 전체에 걸친 뉴클레오사이드간 결합은 포스포로티오에이트(P=S) 결합이다. 각각의 갭머 전체에 걸친 모든 사이토신 잔기는 5-메틸사이토신이다. '표적 시작 부위'는 안티센스 올리고뉴클레오타이드가 표적으로 하는 가장 5'의 뉴클레오사이드를 나타낸다. '표적 정지 부위'는 안티센스 올리고뉴클레오타이드가 표적으로 하는 가장 3'의 뉴클레오사이드를 나타낸다. 표 18에 나열된 모든 안티센스 올리고뉴클레오타이드는 서열번호 801(유전자은행 등록번호 NM_001100.3)을 표적으로 한다.The antisense oligonucleotides of Table 18 are 5-10-5 gapmers, wherein the gap segment contains 10 2'-deoxynucleosides, and each wing segment contains 5 2'-MOE nucleosides. . The internucleoside bonds throughout each gapmer are phosphorothioate (P=S) bonds. All cytosine residues throughout each gapmer are 5-methylcytosine. The'target start site' represents the 5 most nucleosides targeted by the antisense oligonucleotide. 'Target stop site' represents the 3 most nucleosides targeted by the antisense oligonucleotide. All antisense oligonucleotides listed in Table 18 target SEQ ID NO: 801 (gene bank registration number NM_001100.3).

시험된 안티센스 올리고뉴클레오타이드 서열은 상기 특정된 조건하에서의 알파1 액틴 mRNA 수준의 용량 의존적 억제를 나타내었다.The tested antisense oligonucleotide sequences showed dose dependent inhibition of alpha1 actin mRNA levels under the conditions specified above.

표 18: 서열번호 801을 표적으로 하는 5-10-5 갭머에 의한 HepG2 세포에서의 인간 알파1 액틴 RNA 전사물의 억제 Table 18 : Inhibition of human alpha1 actin RNA transcripts in HepG2 cells by 5-10-5 gapmers targeting SEQ ID NO: 801

Figure pat00065
Figure pat00065

실시예 11: HepG2 세포에서의 인간 알파1 액틴의 용량 의존적 안티센스 억제Example 11: Dose-dependent antisense inhibition of human alpha1 actin in HepG2 cells

HepG2 세포에서의 알파1 액틴의 시험관내 억제를 나타내는 여러 안티센스 올리고뉴클레오타이드(실시예 8 참조)를 다양한 용량으로 시험하였다. 세포를 웰 당 20,000개 세포의 밀도로 플레이팅시키고, 전기천공을 이용하여 625nM, 1,250nM, 2,500nM, 5,000nM, 10,000nM 및 20,000nM 농도의 각각의 안티센스 올리고뉴클레오타이드로 트랜스펙션시켰다. 약 16시간 후, RNA를 세포로부터 분리시키고, 알파1 액틴 RNA 전사물 수준을 프라이머 프로브 세트 RTS3154(정방향 CCACCGCAAATGCTTCTAGAC, 서열번호 785로 본원에 표시됨; 역방향 CCCCCCCATTGAGAAGATTC, 서열번호 786으로 본원에 표시됨; 프로브 서열 CTCCACCTCCAGCACGCGACTTCTX, 서열번호 787로 본원에 표시됨)를 이용하여 정량 실시간 PCR에 의해 측정하였다. 알파1 액틴 RNA 전사물 수준을 RIBOGREEN(등록상표)에 의해 측정되는 바와 같은 전체 RNA 함량에 따라 표준화시켰다. 결과는 처리되지 않은 대조군 세포에 비한 알파1 액틴의 억제 퍼센트로 표 19에 제시된다.Several antisense oligonucleotides (see Example 8) showing in vitro inhibition of alpha1 actin in HepG2 cells were tested at various doses. Cells were plated at a density of 20,000 cells per well and transfected with respective antisense oligonucleotides at concentrations of 625 nM, 1,250 nM, 2,500 nM, 5,000 nM, 10,000 nM and 20,000 nM using electroporation. After about 16 hours, RNA was isolated from cells and the alpha1 actin RNA transcript level was determined by primer probe set RTS3154 (forward CCACCGCAAATGCTTCTAGAC, represented herein as SEQ ID NO: 785; reverse CCCCCCCATTGAGAAGATTC, represented herein as SEQ ID NO: 786; probe sequence CTCCACCTCCAGCACGCGACTTCTX , Represented herein as SEQ ID NO: 787) by quantitative real-time PCR. Alpha1 actin RNA transcript levels were normalized according to total RNA content as measured by RIBOGREEN®. Results are presented in Table 19 as percent inhibition of alpha1 actin relative to untreated control cells.

여러 안티센스 올리고뉴클레오타이드는 상기 특정된 조건하에서 알파1 액틴 mRNA 수준의 용량 의존적 억제를 나타내었다.Several antisense oligonucleotides showed dose dependent inhibition of alpha1 actin mRNA levels under the conditions specified above.

표 19: HepG2 세포에서의 인간 알파1 액틴의 용량 의존적 안티센스 억제 Table 19 : Dose-dependent antisense inhibition of human alpha1 actin in HepG2 cells

Figure pat00066
Figure pat00066

실시예 12: 트랜스제닉 마우스에서의 근내 투여에 의한 인간 알파1 액틴의 생체내 안티센스 억제Example 12: In vivo antisense inhibition of human alpha1 actin by intramuscular administration in transgenic mice

근육긴장성 이영양증의 치료를 위한 안티센스 억제의 효과를 시험하기 위해, 적절한 마우스 모델을 필요로 하였다. HSALR 마우스 모델은 DM1에 대해 확립된 모델이다(Mankodi, A. et al. Science. 289: 1769, 2000). 상기 마우스는 유전자의 3' UTR에 삽입된 220개의 CTG 반복부를 갖는 인간 골격 액틴(hACTA1) 트랜스진을 갖는다. hACTA1-CUGexp 전사물은 골격근 내의 핵 초점으로 축적되고, 이는 인간 DM1의 근육긴장증과 유사한 근육긴장증을 발생시킨다(Mankodi, A. et al. Mol. Cell 10: 35, 2002; Lin, X. et al. Hum. Mol. Genet. 15: 2087, 2006). 그러므로, hACTA1 트랜스진의 안티센스 억제에 의한 HSALR 마우스에서의 DM1 증상의 개선이 DMPK 전사물의 안티센스 억제에 의한 인간 환자에서의 유사한 증상의 개선을 예측하는 것이 예상되었다.In order to test the effect of antisense inhibition for the treatment of muscular dystrophy, an appropriate mouse model was needed. The HSA LR mouse model is an established model for DM1 (Mankodi, A. et al. Science. 289: 1769, 2000). The mouse has a human skeletal actin (hACTA1) transgene with 220 CTG repeats inserted into the 3'UTR of the gene. The hACTA1-CUGexp transcript accumulates into the nuclear foci in skeletal muscle, which causes dystonia similar to that of human DM1 (Mankodi, A. et al. Mol. Cell 10: 35, 2002; Lin, X. et al. Hum. Mol. Genet. 15: 2087, 2006). Therefore, it was expected that the improvement of DM1 symptoms in HSA LR mice by antisense inhibition of the hACTA1 transgene predicted the improvement of similar symptoms in human patients by antisense inhibition of the DMPK transcript.

HSA(인간 골격 액틴)LR (긴 반복부) DM1 마우스를 인간 골격 액틴의 3' UTR 내의 250개의 CUG 반복부를 갖는 트랜스진의 FVB/N 마우스 내의 삽입에 의해 생성시켰다. 트랜스진은 핵 내에 유지되는 CUG 반복부 RNA로서 마우스에서 발현되어, 근육긴장성 이영양증(DM1)을 갖는 환자의 인간 조직 샘플에서 관찰되는 것과 유사한 핵내 봉입(nuclear inclusion) 또는 초점을 형성시킨다.HSA (human skeletal actin) LR (long repeat) DM1 mice were generated by insertion of a transgene into FVB/N mice with 250 CUG repeats in the 3'UTR of human skeletal actin. The transgene is expressed in mice as CUG repeat RNA that is retained in the nucleus, resulting in the formation of a nuclear inclusion or focal point similar to that observed in human tissue samples from patients with muscular dystrophy (DM1).

시험관내에서 통계적으로 유의한 용량 의존적 억제를 나타낸 ISIS 190403 및 ISIS 445238(실시예 11 참조)을 생체내에서 인간 알파1 액틴 RNA 전사물을 감소시키는 능력에 대해 평가하였다.ISIS 190403 and ISIS 445238 (see Example 11), which showed statistically significant dose dependent inhibition in vitro, were evaluated for their ability to reduce human alpha1 actin RNA transcripts in vivo.

처리process

HSALR 마우스를 12시간의 명/암 주기로 유지시키고, 일반적인 퓨리나(Purina) 마우스 먹이를 무제한적으로 공급하였다. 동물을 실험 개시 전에 연구 시설에서 적어도 7일 동안 새 환경에 순응시켰다. 안티센스 올리고뉴클레오타이드(ASO)를 PBS에서 제조하였고, 0.2 마이크론 필터를 통한 여과에 의해 멸균시켰다. 올리고뉴클레오타이드를 주사를 위해 0.9% PBS에 용해시켰다.HSA LR mice were maintained on a 12-hour light/dark cycle, and were fed unrestrictedly with normal Purina mouse food. Animals were acclimated to the new environment for at least 7 days in the study facility prior to initiation of the experiment. Antisense oligonucleotides (ASO) were prepared in PBS and sterilized by filtration through a 0.2 micron filter. Oligonucleotides were dissolved in 0.9% PBS for injection.

마우스를 2개의 처리군으로 나누었다. 2개의 군에 한 측면의 앞정강근 근육에 0.8nM의 용량으로 ISIS 190403 또는 ISIS 445238을 직접적 근내 주사로 투여하였다. 각각의 마우스의 반대쪽 앞정강근 근육에 PBS를 단일 용량의 근내 주사로 투여하였다. PBS 주사된 근육은 대조군으로 작용하였다.Mice were divided into two treatment groups. Two groups were administered ISIS 190403 or ISIS 445238 by direct intramuscular injection at a dose of 0.8 nM to the anterior tibial muscle on one side. PBS was administered as a single dose of intramuscular injection to the opposite anterior tibial muscle of each mouse. PBS injected muscles served as a control.

알파1 액틴 RNA의 억제Inhibition of alpha1 actin RNA

최종 투여 24시간 후, 동물을 희생시키고, 양 측면의 앞정강근 근육으로부터 조직을 분리시켰다. 알파1 액틴의 실시간 PCR 분석을 위해 RNA를 분리시키고, 18s RNA에 대해 표준화시켰다. 표 20에 제시된 바와 같이, 안티센스 올리고뉴클레오타이드를 이용한 처리는 인간 알파1 액틴 RNA 전사물 발현을 감소시켰다. 결과는 PBS 대조군에 비한 알파1 액틴 전사물의 억제 퍼센트로 표현된다.24 hours after the final administration, the animals were sacrificed and the tissue was separated from the anterior tibial muscle on both sides. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As shown in Table 20, treatment with antisense oligonucleotides reduced human alpha1 actin RNA transcript expression. Results are expressed as percent inhibition of alpha1 actin transcript compared to PBS control.

상기 결과는 ISIS 190403 및 ISIS 445238을 이용한 처리가 마우스에서 알파1 액틴 RNA 수준의 억제를 발생시킨 것을 나타낸다.The above results indicate that treatment with ISIS 190403 and ISIS 445238 resulted in inhibition of alpha1 actin RNA levels in mice.

표 20: HSALR 마우스에서의 인간 알파1 액틴 RNA 전사물의 억제 퍼센트 Table 20 : Percent inhibition of human alpha1 actin RNA transcripts in HSA LR mice

Figure pat00067
Figure pat00067

실시예 13: 트랜스제닉 마우스에서의 근내 투여에 의한 인간 알파1 액틴의 용량 의존적 안티센스 억제Example 13: Dose-dependent antisense inhibition of human alpha1 actin by intramuscular administration in transgenic mice

시험관내에서 통계적으로 유의한 용량 의존적 억제를 나타낸 ISIS 445236(실시예 11 참조)을 생체내에서 인간 알파1 액틴 RNA 전사물을 감소시키는 이의 능력에 대해 평가하였다.ISIS 445236 (see Example 11), which showed statistically significant dose dependent inhibition in vitro, was evaluated for its ability to reduce human alpha1 actin RNA transcripts in vivo.

처리process

HSALR 마우스를 12시간의 명/암 주기로 유지시키고, 일반적인 퓨리나(Purina) 마우스 먹이를 무제한적으로 공급하였다. 동물을 실험 개시 전에 연구 시설에서 적어도 7일 동안 새 환경에 순응시켰다. 안티센스 올리고뉴클레오타이드(ASO)를 PBS에서 제조하였고, 0.2 마이크론 필터를 통한 여과에 의해 멸균시켰다. 올리고뉴클레오타이드를 주사를 위해 0.9% PBS에 용해시켰다.HSA LR mice were maintained on a 12-hour light/dark cycle, and were fed unrestrictedly with normal Purina mouse food. Animals were acclimated to the new environment for at least 7 days in the study facility prior to initiation of the experiment. Antisense oligonucleotides (ASO) were prepared in PBS and sterilized by filtration through a 0.2 micron filter. Oligonucleotides were dissolved in 0.9% PBS for injection.

마우스를 3개의 처리군으로 나누었다. 상기 군에 한 측면의 앞정강근 근육에 0.2nM, 0.4nM 또는 0.8nM의 용량으로 ISIS 445236을 직접적 근내 주사로 투여하였다. 각각의 마우스의 반대쪽 앞정강근 근육에 PBS를 단일 용량의 근내 주사로 투여하였다. PBS 주사된 근육은 대조군으로 작용하였다.Mice were divided into 3 treatment groups. The group was administered ISIS 445236 by direct intramuscular injection at a dose of 0.2 nM, 0.4 nM or 0.8 nM to the anterior tibial muscle of one side. PBS was administered as a single dose of intramuscular injection to the opposite anterior tibial muscle of each mouse. PBS injected muscles served as a control.

알파1 액틴 RNA의 억제Inhibition of alpha1 actin RNA

최종 투여 24시간 후, 동물을 희생시키고, 양 측면의 앞정강근 근육으로부터 조직을 분리시켰다. 알파1 액틴의 실시간 PCR 분석을 위해 RNA를 분리시키고, 18s RNA에 대해 표준화시켰다. 표 21에 제시된 바와 같이, ISIS 445236을 이용한 처리는 모든 투여량에서 인간 알파1 액틴 RNA 전사물 발현을 감소시켰다. 결과는 대조군에 비한 알파1 액틴 전사물의 억제 퍼센트로 표현된다.24 hours after the final administration, the animals were sacrificed and the tissue was separated from the anterior tibial muscle on both sides. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As shown in Table 21, treatment with ISIS 445236 reduced human alpha1 actin RNA transcript expression at all doses. Results are expressed as percent inhibition of alpha1 actin transcript compared to control.

상기 결과는 ISIS 445236을 이용한 처리가 상기 특정된 조건하에서 알파1 액틴 mRNA 수준의 유의한 억제를 발생시킨 것을 나타낸다.The results indicate that treatment with ISIS 445236 resulted in significant inhibition of alpha1 actin mRNA levels under the conditions specified above.

표 21: HSALR 마우스에서의 ISIS 445236에 의한 인간 알파1 액틴 RNA 전사물의 억제 Table 21 : Inhibition of human alpha1 actin RNA transcripts by ISIS 445236 in HSA LR mice

Figure pat00068
Figure pat00068

근전도검사에 의한 근육긴장증의 평가Evaluation of muscle tone by electromyography

근육긴장증은 근섬유의 지연된 이완으로 인한 반복 활동 전위를 의미한다. 이러한 현상은 근육긴장성 이영양증의 환자뿐만 아니라 HSALR 마우스에서 관찰된다. EMG 바늘이 근육긴장증 근육에 삽입되는 경우, 전기 활동은 삽입 활동이 보통 정지된 후 수초까지 연장된다. 근육긴장증성 방전의 주파수는 초당 50 내지 100 임펄스 범위이다.Muscular dystonia refers to a recurrent action potential due to delayed relaxation of muscle fibers. This phenomenon is observed in HSA LR mice as well as patients with dystrophic dystrophy. When an EMG needle is inserted into the dystonia muscle, electrical activity is usually extended to a few seconds after the insertion activity is stopped. The frequency of the dystonia discharge ranges from 50 to 100 impulses per second.

근육긴장증을 근전도검사를 통해 측정하고, 다음과 같은 방식으로 등급화시켰다: 등급 0은 어떠한 바늘 삽입에 의해 근육긴장증이 유도되지 않은 것을 나타내고(0%); 등급 1은 50% 미만의 바늘 삽입에 의해 근육긴장증이 유도된 것을 나타내고; 등급 2는 50% 이상의 바늘 삽입에 의해 근육긴장증이 유도된 것을 나타내고; 등급 3은 100% 바늘 삽입에 의해 근육긴장증이 유도된 것을 나타낸다.Muscular dystonia was measured via electromyography and graded in the following manner: Grade 0 indicates that dystonia was not induced by any needle insertion (0%); Grade 1 indicates that muscle tone was induced by less than 50% needle insertion; Grade 2 indicates that muscle dystonia was induced by at least 50% needle insertion; Grade 3 indicates that muscle tone was induced by 100% needle insertion.

근전도검사 전, 마우스를 100 ㎎/㎏ 케타민, 10 ㎎/㎏ 크실라진, 및 3 ㎎/㎏ 아세프로마진의 칵테일을 복막내 이용하여 마취시켰다. 좌측 및 우측 대퇴사두근, 좌측 및 우측 장딴지근 근육, 좌측 및 우측 앞정강근 근육 및 요추 척추옆 근육에 대한 근전도검사를 30 게이지 동심 바늘 전극 및 각각의 근육에 대한 최소 10회의 바늘 삽입을 이용하여 이전에 기재(Kanadia et al, 2003, Science, 302: 1978-1980)된 바와 같이 수행하였다. 데이터는 각각의 군의 4마리의 마우스에서 관찰된 평균 근육긴장증 등급으로서 표 22에 제시되고, 이는 ISIS 445236으로 처리된 마우스에서의 근육긴장증의 유의한 감소를 나타내었다.Before electromyography, mice were anesthetized using a cocktail of 100 mg/kg ketamine, 10 mg/kg xylazine, and 3 mg/kg acepromazine intraperitoneally. Electromyography of the left and right quadriceps, left and right rectus muscles, left and right anterior tibialis muscles, and lumbar vertebral muscles were previously performed using a 30 gauge concentric needle electrode and at least 10 needle insertions for each muscle. It was performed as described (Kanadia et al, 2003, Science, 302: 1978-1980). Data are presented in Table 22 as the average dystonia grade observed in 4 mice in each group, indicating a significant reduction in dystonia in mice treated with ISIS 445236.

표 22: 안티센스 올리고뉴클레오타이드 처리된 HSALR 마우스의 다양한 근육에서의 근육긴장증의 평균 감소 Table 22 : Mean reduction of dystonia in various muscles of HSA LR mice treated with antisense oligonucleotides

Figure pat00069
Figure pat00069

대안적 스플라이싱의 교정Correction of alternative splicing

DM1/HSALR 마우스 모델에서, 핵 내의 확장된 CUG RNA의 축적은 Muscleblind-유사 1(MBLN1)과 같은 폴리(CUG)-결합 단백질의 격리를 발생시킨다(Miller, J.W. et al. EMBO J. 19: 4439, 2000). Serca1 유전자의 대안적 스플라이싱을 조절하는 스플라이싱 인자 MBNL1은 확장된 CUG 초점 내에 격리된다. 이는 상기 유전자의 대안적 스플라이싱의 이상조절을 촉발시킨다. 상기 대안적 스플라이싱에 대한 인간 알파1 액틴의 안티센스 억제의 효과를 평가하기 위해, 전체 RNA를 제조업체의 설명서에 따라 RNeasy Lipid Tissue Mini Kit(Qiagen)를 이용하여 앞정강근, 장딴지근 및 대퇴사두근 근육으로부터 정제하였다. RT-PCR을 cDNA 합성 및 PCR 증폭을 위한 유전자 특이적 프라이머를 이용하여 Superscript III One-Step RT-PCR System 및 Platinum Taq Polymerase(Invitrogen)로 수행하였다. Serca-1에 대한 정방향 및 역방향 프라이머는 문헌[Bennett and Swayze (Annu. Rev. Pharmacol. 2010; 50: 259-93)]에 기재되어 있다. PCR 생성물을 아가로스 겔 상에서 분리시키고, SybrGreen I Nucleic Acid Gel Stain(Invitrogen)으로 염색시키고, Fujifilm LAS-3000 Intelligent Dark Box를 이용하여 이미지화시켰다.In the DM1/HSA LR mouse model, accumulation of expanded CUG RNA in the nucleus results in sequestration of poly(CUG)-binding proteins such as Muscleblind-like 1 (MBLN1) (Miller, JW et al. EMBO J. 19: 4439, 2000). The splicing factor MBNL1, which regulates alternative splicing of the Serca1 gene, is isolated within the expanded CUG foci. This triggers dysregulation of alternative splicing of the gene. In order to evaluate the effect of antisense inhibition of human alpha1 actin on the alternative splicing, total RNA was prepared according to the manufacturer's instructions using the RNeasy Lipid Tissue Mini Kit (Qiagen). Purified from. RT-PCR was performed with Superscript III One-Step RT-PCR System and Platinum Taq Polymerase (Invitrogen) using gene-specific primers for cDNA synthesis and PCR amplification. Forward and reverse primers for Serca-1 are described by Bennett and Swayze (Annu. Rev. Pharmacol. 2010; 50: 259-93). The PCR product was separated on an agarose gel, stained with SybrGreen I Nucleic Acid Gel Stain (Invitrogen), and imaged using a Fujifilm LAS-3000 Intelligent Dark Box.

PBS 대조군에서의 Serca1 스플라이싱의 PCR 생성물은 MBLN1의 이상조절의 결과로서 엑손 22 배제를 나타내었다. ISIS 445236을 이용한 처리는 엑손 22 봉입 및 앞정강근, 장딴지근 및 대퇴사두근 근육에서의 Serca1 유전자의 대안적 스플라이싱의 정상화를 발생시켰다. Serca1's PCR product of the splice in the PBS control group was characterized by the 22 exons excluded as a result of the above adjustment of MBLN1. Treatment with ISIS 445236 resulted in exon 22 inclusion and normalization of alternative splicing of the Serca1 gene in the anterior tibialis, calf and quadriceps muscles.

따라서, 알파1 액틴의 안티센스 억제는 Serca1 스플라이싱 이상조절을 교정하였고, 이는 안티센스 올리고누클레오티를 이용한 처리가 핵 초점 내의 CUGexp의 축적을 감소시킨 것을 나타낸다. 핵 초점 내의 CUGexp의 감소된 축적은 MBLN1 격리를 교정함으로써, 정상적인 스플라이싱이 발생하도록 한다.Thus, antisense inhibition of alpha1 actin corrected Serca1 splicing dysregulation, indicating that treatment with antisense oligonucleotides reduced the accumulation of CUGexp in the nuclear foci. Reduced accumulation of CUGexp in the nuclear foci corrects for MBLN1 sequestration, allowing normal splicing to occur.

실시예 14: 트랜스제닉 마우스에서의 피하 투여에 의한 인간 알파1 액틴의 생체내 안티센스 억제Example 14: In vivo antisense inhibition of human alpha1 actin by subcutaneous administration in transgenic mice

ISIS 190403, ISIS 445236 및 ISIS 445238을 생체내에서 인간 알파1 액틴 RNA 전사물을 감소시키는 이의 능력에 대해 평가하였다.ISIS 190403, ISIS 445236 and ISIS 445238 were evaluated for their ability to reduce human alpha1 actin RNA transcripts in vivo.

처리process

HSALR 마우스를 12시간의 명/암 주기로 유지시키고, 일반적인 퓨리나(Purina) 마우스 먹이를 무제한적으로 공급하였다. 동물을 실험 개시 전에 연구 시설에서 적어도 7일 동안 새 환경에 순응시켰다. 안티센스 올리고뉴클레오타이드(ASO)를 PBS에서 제조하였고, 0.2 마이크론 필터를 통한 여과에 의해 멸균시켰다. 올리고뉴클레오타이드를 주사를 위해 0.9% PBS에 용해시켰다.HSA LR mice were maintained on a 12-hour light/dark cycle, and were fed unrestrictedly with normal Purina mouse food. Animals were acclimated to the new environment for at least 7 days in the study facility prior to initiation of the experiment. Antisense oligonucleotides (ASO) were prepared in PBS and sterilized by filtration through a 0.2 micron filter. Oligonucleotides were dissolved in 0.9% PBS for injection.

마우스를 4개의 처리군으로 나누었다. 처음 3개의 군에 4주 동안 주 당 2회로 25 ㎎/㎏의 용량으로 ISIS 190403, ISIS 445236 또는 ISIS 445238을 피하 주사로 투여하였다. 네번째 군에 4주 동안 1주일에 2회로 PBS를 피하 주사로 투여하였다. PBS 주사된 군은 올리고뉴클레오타이드 처리군과 비교되는 대조군으로 작용하였다.Mice were divided into 4 treatment groups. The first three groups were administered ISIS 190403, ISIS 445236 or ISIS 445238 by subcutaneous injection at a dose of 25 mg/kg twice per week for 4 weeks. The fourth group was administered PBS by subcutaneous injection twice a week for 4 weeks. The PBS-injected group served as a control compared to the oligonucleotide-treated group.

알파1 액틴 RNA의 억제Inhibition of alpha1 actin RNA

최종 투여 24시간 후, 동물을 희생시키고, 대퇴사두근 근육(좌측 및 우측), 장딴지근 근육(좌측 및 우측) 및 앞정강근 근육(좌측 및 우측)으로부터 조직을 분리시켰다. 알파1 액틴의 실시간 PCR 분석을 위해 RNA를 분리시키고, 18s RNA에 대해 표준화시켰다. 표 23에 제시된 바와 같이, 안티센스 올리고뉴클레오타이드를 이용한 처리는 인간 알파1 액틴 RNA 전사물 발현을 감소시켰다. 결과는 대조군에 비한 알파1 액틴 전사물의 억제 퍼센트로 표현된다.24 hours after the final administration, animals were sacrificed, and tissues were separated from the quadriceps muscle (left and right), calf muscle (left and right) and anterior tibialis muscle (left and right). RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As shown in Table 23, treatment with antisense oligonucleotides reduced human alpha1 actin RNA transcript expression. Results are expressed as percent inhibition of alpha1 actin transcript compared to control.

ISIS 445236 및 ISIS 445238 둘 모두는 상기 특정된 조건하에서 알파1 액틴 mRNA 수준의 유의한 억제를 나타내었다.Both ISIS 445236 and ISIS 445238 showed significant inhibition of alpha1 actin mRNA levels under the conditions specified above.

표 23: HSALR 마우스에서의 인간 알파1 액틴 RNA 전사물의 억제 퍼센트 Table 23 : Percent inhibition of human alpha1 actin RNA transcripts in HSA LR mice

Figure pat00070
Figure pat00070

근육에서의 알파1 액틴의 형광 인 시츄 하이브리드화(Fluorescence in situ hybridization)Fluorescence in situ hybridization of alpha1 actin in muscle

동결된 근육 조직 섹션을 15-20분 동안 신선한 PBS 중 3% 파라포름알데하이드 용액에 고정시킨 후, 이를 5분 동안 PBS로 2회 헹구었다. 핵을 5분 동안 0.5% Triton X-100으로 투과화시킨 후, 조직을 30분 동안 정상 염소 혈청으로 차단시켰다. 섹션을 Texas Red(Integrated DNA Technologies)로 5'-표지된 알파1 액틴을 표적으로 하는 2'-O-메틸 RNA와 함께 인큐베이션시켰다. 섹션을 핵을 표지하기 위해 DAPI로 대조 염색시켰다. 섹션을 표준 형광현미경에 올려놓고 관찰하였다. Metavue 소프트웨어에 의해 이미지를 획득하였고, Autoquant 소프트웨어에 의해 디컨볼루션(deconvolution)을 달성하였다.Frozen muscle tissue sections were fixed in a 3% paraformaldehyde solution in fresh PBS for 15-20 minutes, then rinsed twice with PBS for 5 minutes. After the nuclei were permeabilized with 0.5% Triton X-100 for 5 minutes, the tissues were blocked with normal goat serum for 30 minutes. Sections were incubated with 2'-O-methyl RNA targeting 5'-labeled alpha1 actin with Texas Red (Integrated DNA Technologies). Sections were counterstained with DAPI to label the nuclei. The section was placed on a standard fluorescence microscope and observed. Images were acquired by Metavue software, and deconvolution was achieved by Autoquant software.

ISIS 445236 및 ISIS 445238로 처리된 마우스로부터의 모든 근육 조직 섹션은 리보핵 초점에서 알파1 액틴 신호의 감소된 형광 강도를 나타내었고, 이는 인간 알파1 액틴 mRNA의 안티센스 억제 및 핵 초점에서의 RNA의 감소를 나타낸다.All muscle tissue sections from mice treated with ISIS 445236 and ISIS 445238 showed a reduced fluorescence intensity of the alpha1 actin signal in the ribonucleic foci, which is an antisense inhibition of human alpha1 actin mRNA and a reduction of RNA in the nuclear foci. Represents.

근전도검사에 의한 근육긴장증의 평가Evaluation of muscle tone by electromyography

근육긴장증은 근섬유의 지연된 이완으로 인한 반복 활동 전위를 의미한다. 이러한 현상은 근육긴장성 이영양증의 환자뿐만 아니라 HSALR 마우스에서 관찰된다. EMG 바늘이 근육긴장증 근육에 삽입되는 경우, 전기 활동은 삽입 활동이 보통 정지된 후 수초까지 연장된다. 근육긴장증성 방전의 주파수는 초당 50 내지 100 임펄스 범위이다.Muscular dystonia refers to a recurrent action potential due to delayed relaxation of muscle fibers. This phenomenon is observed in HSA LR mice as well as patients with dystrophic dystrophy. When an EMG needle is inserted into the dystonia muscle, electrical activity is usually extended to a few seconds after the insertion activity is stopped. The frequency of the dystonia discharge ranges from 50 to 100 impulses per second.

근육긴장증을 근전도검사를 통해 측정하고, 다음과 같은 방식으로 등급화시켰다: 등급 0은 어떠한 바늘 삽입에 의해 근육긴장증이 유도되지 않은 것을 나타내고(0%); 등급 1은 50% 미만의 바늘 삽입에 의해 근육긴장증이 유도된 것을 나타내고; 등급 2는 50% 이상의 바늘 삽입에 의해 근육긴장증이 유도된 것을 나타내고; 등급 3은 100% 바늘 삽입에 의해 근육긴장증이 유도된 것을 나타낸다.Muscular dystonia was measured via electromyography and graded in the following manner: Grade 0 indicates that dystonia was not induced by any needle insertion (0%); Grade 1 indicates that muscle tone was induced by less than 50% needle insertion; Grade 2 indicates that muscle dystonia was induced by at least 50% needle insertion; Grade 3 indicates that muscle tone was induced by 100% needle insertion.

근전도검사 전, 마우스를 100 ㎎/㎏ 케타민, 10 ㎎/㎏ 크실라진 및 3 ㎎/㎏ 아세프로마진 또는 250 ㎎/㎏ 2,2,2-트라이브로모에탄올을 복막내 이용하여 마취시켰다. 좌측 및 우측 대퇴사두근, 좌측 및 우측 장딴지근 근육, 좌측 및 우측 앞정강근 근육 및 요추 척추옆 근육에 대한 근전도검사를 30 게이지 동심 바늘 전극 및 각각의 근육에 대한 최소 10회의 바늘 삽입을 이용하여 이전에 기재(Kanadia et al, 2003, Science, 302: 1978-1980)된 바와 같이 수행하였다. 데이터는 각각의 군의 4마리의 마우스에서 관찰된 평균 근육긴장증 등급으로서 표 24에 제시되고, 이는 ISIS 445236 및 ISIS 445238로 처리된 마우스에서의 근육긴장증의 유의한 감소를 나타내었다.Before electromyography, mice were anesthetized using 100 mg/kg ketamine, 10 mg/kg xylazine and 3 mg/kg acepromazine or 250 mg/kg 2,2,2-tribromoethanol intraperitoneally. Electromyography of the left and right quadriceps, left and right rectus muscles, left and right anterior tibialis muscles, and lumbar vertebral muscles were previously performed using a 30 gauge concentric needle electrode and at least 10 needle insertions for each muscle. It was performed as described (Kanadia et al, 2003, Science, 302: 1978-1980). Data are presented in Table 24 as the average dystonia grade observed in 4 mice in each group, indicating a significant reduction in dystonia in mice treated with ISIS 445236 and ISIS 445238.

표 24: 안티센스 올리고뉴클레오타이드 처리된 HSALR 마우스의 다양한 근육에서의 근육긴장증의 평균 감소 Table 24 : Mean reduction of dystonia in various muscles of HSA LR mice treated with antisense oligonucleotides

Figure pat00071
Figure pat00071

대안적 스플라이싱의 교정Correction of alternative splicing

Serca1 스플라이싱, m-Titin 스플라이싱, CIC-1 클로라이드 채널 유전자(Clcn1) 스플라이싱 및 Zasp 스플라이싱을 조절하는 스플라이싱 인자 MBNL1은 확장된 CUG 초점 내에 격리된다. MBNL1 격리는 상기 유전자 각각에서 이상조절된 스플라이싱을 촉발시킨다. 스플라이싱에 대한 인간 알파1 액틴의 안티센스 억제의 효과를 평가하기 위해, 전체 RNA를 실시예 13에 기재된 바와 같이 앞정강근, 장딴지근 및 대퇴사두근 근육으로부터 정제시키고, RT-PCR을 수행하였다. Serca-1, m-Titin, Clcn1 및 ZASP에 대한 정방향 및 역방향 프라이머는 문헌[Bennett and Swayze, Annu. Rev. Pharmacol. 2010; 50: 259-93]에 기재되어 있다. The splicing factor MBNL1, which regulates Serca1 splicing, m-Titin splicing, CIC-1 chloride channel gene ( Clcn1 ) splicing, and Zasp splicing, is isolated within the extended CUG foci. MBNL1 sequestration triggers dysregulated splicing in each of these genes. To evaluate the effect of antisense inhibition of human alpha1 actin on splicing, total RNA was purified from the anterior tibialis, calf and quadriceps muscles as described in Example 13, and RT-PCR was performed. Forward and reverse primers for Serca-1 , m-Titin , Clcn1 and ZASP are described in Bennett and Swayze, Annu. Rev. Pharmacol. 2010; 50: 259-93.

PBS 처리된 HSALR 마우스에서, Serca1 스플라이싱은 엑손 22 배제에 의해 입증되는 바와 같이 이상조절된다. ISIS 445236 및 ISIS 445238 각각을 이용한 처리는 앞정강근, 장딴지근 및 대퇴사두근 근육에서 엑손 22 봉입 및 Serca1 유전자의 대안적 스플라이싱의 정상화를 발생시켰다.In PBS treated HSA LR mice, Serca1 splicing is dysregulated as evidenced by exon 22 exclusion. Treatment with ISIS 445236 and ISIS 445238, respectively, resulted in normalization of exon 22 inclusion and alternative splicing of the Serca1 gene in the anterior tibialis, calf and quadriceps muscles.

PBS 처리된 HSALR 마우스에서, m-Titin 스플라이싱은 엑손 5 봉입에 의해 입증되는 바와 같이 이상조절된다. ISIS 445236 및 ISIS 445238 각각을 이용한 처리는 앞정강근, 장딴지근 및 대퇴사두근 근육에서 엑손 5의 스키핑(skipping) 및 m-Titin 유전자의 대안적 스플라이싱의 정상화를 발생시켰다.In PBS treated HSA LR mice, m-Titin splicing is dysregulated as evidenced by exon 5 inclusion. Treatment with ISIS 445236 and ISIS 445238, respectively, resulted in the normalization of skipping of exon 5 and alternative splicing of the m-Titin gene in the anterior tibialis, calf and quadriceps muscles.

PBS 처리된 HSALR 마우스에서, Clcn1 스플라이싱은 엑손 7a 봉입에 의해 입증되는 바와 같이 이상조절된다. ISIS 445236 및 ISIS 445238 각각을 이용한 처리는 앞정강근, 장딴지근 및 대퇴사두근 근육에서 엑손 7a의 스키핑(skipping) 및 Clcn1 유전자의 대안적 스플라이싱의 정상화를 발생시켰다.In PBS treated HSA LR mice, Clcn1 splicing is dysregulated as evidenced by exon 7a inclusion. Treatment with ISIS 445236 and ISIS 445238, respectively, resulted in the normalization of skipping of exon 7a and alternative splicing of the Clcn1 gene in the anterior tibialis, calf and quadriceps muscles.

PBS 처리된 HSALR 마우스에서, Zasp 스플라이싱은 엑손 11 봉입에 의해 입증되는 바와 같이 이상조절된다. ISIS 445236 및 ISIS 445238 각각을 이용한 처리는 앞정강근, 장딴지근 및 대퇴사두근 근육에서 엑손 11의 스키핑(skipping) 및 Zasp 유전자의 대안적 스플라이싱의 정상화를 발생시켰다.In PBS treated HSA LR mice, Zasp splicing is dysregulated as evidenced by exon 11 inclusion. Treatment with ISIS 445236 and ISIS 445238, respectively, resulted in the normalization of skipping of exon 11 and alternative splicing of the Zasp gene in the anterior tibialis, calf and quadriceps muscles.

따라서, 알파1 액틴의 안티센스 억제는 Serca1, m-Titin, Clcn1 및 Zasp 스플라이싱 이상조절을 교정하였고, 이는 안티센스 올리고뉴클레오타이드를 이용한 처리가 핵 초점에서 CUGexp의 축적을 감소시킨 것을 나타낸다. 핵 초점 내의 CUGexp의 감소된 축적은 MBLN1 격리를 교정함으로써, 정상적인 스플라이싱이 발생하도록 한다.Thus, antisense inhibition of alpha1 actin corrected Serca1, m-Titin, Clcn1 and Zasp splicing dysregulation, indicating that treatment with antisense oligonucleotides reduced the accumulation of CUGexp in the nuclear foci. Reduced accumulation of CUGexp in the nuclear foci corrects for MBLN1 sequestration, allowing normal splicing to occur.

실시예 15: 트랜스제닉 마우스에서의 인간 알파1 액틴의 생체내 안티센스 억제Example 15: In vivo antisense inhibition of human alpha1 actin in transgenic mice

HSALR 마우스에서의 근육긴장증에 대한 ISIS 445236 및 ISIS 445238에 의한 인간 알파1 액틴 RNA 전사물의 안티센스 억제를 추가로 평가하였다.Antisense inhibition of human alpha1 actin RNA transcripts by ISIS 445236 and ISIS 445238 against myotonia in HSA LR mice was further evaluated.

처리process

HSALR 마우스를 3개의 처리군으로 나누었다. 처음 2개의 군에 2주 동안 주 당 2회로 25 ㎎/㎏의 용량으로 ISIS 445236 또는 ISIS 445238을 피하 주사로 투여하였다. 세번째 군에 2주 동안 주 당 2회로 PBS를 피하 주사로 투여하였다. PBS 주사된 군은 올리고뉴클레오타이드 처리군과 비교되는 대조군으로 작용하였다.HSA LR mice were divided into three treatment groups. The first two groups were administered ISIS 445236 or ISIS 445238 by subcutaneous injection at a dose of 25 mg/kg twice per week for 2 weeks. The third group was administered PBS by subcutaneous injection twice a week for 2 weeks. The PBS-injected group served as a control compared to the oligonucleotide-treated group.

알파1 액틴 RNA의 억제Inhibition of alpha1 actin RNA

최종 투여 24시간 후, 동물을 희생시키고, 대퇴사두근 근육, 장딴지근 근육 및 앞정강근 근육으로부터 조직을 분리시켰다. 알파1 액틴의 실시간 PCR 분석을 위해 RNA를 분리시키고, 18s RNA에 대해 표준화시켰다. 표 25에 제시된 바와 같이, 안티센스 올리고뉴클레오타이드를 이용한 처리는 인간 알파1 액틴 RNA 전사물 발현을 감소시켰다. 결과는 PBS 대조군에 비한 알파1 액틴 전사물의 억제 퍼센트로 표현된다.24 hours after the final administration, the animals were sacrificed, and tissues were separated from the quadriceps muscle, calf muscle and anterior tibialis muscle. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As shown in Table 25, treatment with antisense oligonucleotides reduced human alpha1 actin RNA transcript expression. Results are expressed as percent inhibition of alpha1 actin transcript compared to PBS control.

ISIS 445236 및 ISIS 445238 둘 모두는 상기 특정된 조건하에서 알파1 액틴 mRNA 수준의 유의한 억제를 나타내었다.Both ISIS 445236 and ISIS 445238 showed significant inhibition of alpha1 actin mRNA levels under the conditions specified above.

표 25: HSALR 마우스에서의 인간 알파1 액틴 RNA 전사물의 억제 퍼센트 Table 25 : Percent inhibition of human alpha1 actin RNA transcripts in HSA LR mice

Figure pat00072
Figure pat00072

근전도검사에 의한 근육긴장증의 평가Evaluation of muscle tone by electromyography

좌측 및 우측 대퇴사두근, 좌측 및 우측 장딴지근 근육, 좌측 및 우측 앞정강근 근육 및 요추 척추옆 근육에 대한 근전도검사를 30 게이지 동심 바늘 전극 및 각각의 근육에 대한 최소 10회의 바늘 삽입을 이용하여 이전에 기재(Kanadia et al, 2003, Science, 302: 1978-1980)된 바와 같이 수행하였다. 데이터는 각각의 군의 4마리의 마우스에서 관찰된 평균 근육긴장증 등급으로서 표 26에 제시되고, 이는 ISIS 445236 및 ISIS 445238로 처리된 마우스에서의 근육긴장증의 유의한 감소를 나타내었다.Electromyography of the left and right quadriceps, left and right rectus muscles, left and right anterior tibialis muscles, and lumbar vertebral muscles were previously performed using a 30 gauge concentric needle electrode and at least 10 needle insertions for each muscle. It was performed as described (Kanadia et al, 2003, Science, 302: 1978-1980). Data are presented in Table 26 as the average dystonia grade observed in 4 mice in each group, indicating a significant reduction in dystonia in mice treated with ISIS 445236 and ISIS 445238.

표 26: 안티센스 올리고뉴클레오타이드 처리된 HSALR 마우스의 다양한 근육에서의 근육긴장증의 평균 감소 Table 26 : Mean reduction of dystonia in various muscles of HSA LR mice treated with antisense oligonucleotides

Figure pat00073
Figure pat00073

대안적 스플라이싱의 교정Correction of alternative splicing

Serca1의 대안적 스플라이싱에 대한 ISIS 190401의 효과를 평가하기 위해, 앞정강근 장딴지근 및 대퇴사두근 근육으로부터 정제된 전체 RNA를 실시예 13에 기재된 것과 유사한 절차로 분석하였다. To evaluate the effect of ISIS 190401 on alternative splicing of Serca1 , total RNA purified from the anterior tibialis calf and quadriceps muscles was analyzed with a procedure similar to that described in Example 13.

PBS 처리된 HSALR 마우스에서, Serca1 스플라이싱은 MBLN1 이상조절의 결과로서 엑손 22 배제에 의해 입증되는 바와 같이 이상조절된다. ISIS 445236 및 ISIS 445238 각각을 이용한 처리는 앞정강근 및 대퇴사두근 근육에서 거의 완전한 포함 및 Serca1 유전자의 엑손 22의 대안적 스플라이싱의 정상화를 발생시켰다.In PBS treated HSA LR mice, Serca1 splicing is dysregulated as evidenced by exon 22 exclusion as a result of MBLN1 dysregulation. Treatment with ISIS 445236 and ISIS 445238 respectively resulted in near complete inclusion in the anterior tibialis and quadriceps muscles and normalization of alternative splicing of exon 22 of the Serca1 gene.

따라서, 알파1 액틴의 안티센스 억제는 Serca1 스플라이싱 이상조절을 교정하였고, 이는 안티센스 올리고뉴클레오타이드를 이용한 처리가 핵 초점에서 CUGexp의 축적을 감소시킨 것을 나타낸다. 핵 초점 내의 CUGexp의 감소된 축적은 MBLN1 격리를 교정함으로써, 정상적인 스플라이싱이 발생하도록 한다.Thus, antisense inhibition of alpha1 actin corrected Serca1 splicing dysregulation, indicating that treatment with antisense oligonucleotides reduced the accumulation of CUGexp in the nuclear foci. Reduced accumulation of CUGexp in the nuclear foci corrects for MBLN1 sequestration, allowing normal splicing to occur.

실시예 16: 트랜스제닉 마우스에서의 인간 알파1 액틴의 용량 의존적 안티센스 억제Example 16: Dose-dependent antisense inhibition of human alpha1 actin in transgenic mice

HSALR 마우스에서의 근육긴장증에 대한 ISIS 445236 및 ISIS 445238에 의한 인간 알파1 액틴 RNA 전사물의 용량 의존적 억제를 평가하였다.Dose-dependent inhibition of human alpha1 actin RNA transcripts by ISIS 445236 and ISIS 445238 on myotonia in HSA LR mice was evaluated.

처리process

HSALR 마우스에 4주 동안 주 당 2회로 2.5 ㎎/㎏, 8.5 ㎎/㎏ 또는 25.0 ㎎/㎏의 용량으로 ISIS 445236 또는 ISIS 445238을 피하 주사하였다. 대조군에 4주 동안 주 당 2회로 PBS를 피하 주사로 투여하였다. PBS 주사된 군은 올리고뉴클레오타이드 처리군과 비교되는 대조군으로 작용하였다.HSA LR mice were injected subcutaneously with ISIS 445236 or ISIS 445238 at doses of 2.5 mg/kg, 8.5 mg/kg or 25.0 mg/kg twice per week for 4 weeks. The control group was administered PBS by subcutaneous injection twice per week for 4 weeks. The PBS-injected group served as a control compared to the oligonucleotide-treated group.

알파1 액틴 RNA의 억제Inhibition of alpha1 actin RNA

최종 투여 24시간 후, 동물을 희생시키고, 대퇴사두근 근육(Quad), 장딴지근 근육(Gastroc) 및 앞정강근 근육(TA)으로부터 조직을 분리시켰다. 알파1 액틴의 실시간 PCR 분석을 위해 RNA를 분리시키고, 18s RNA에 대해 표준화시켰다. 표 27에 제시된 바와 같이, 안티센스 올리고뉴클레오타이드를 이용한 처리는 인간 알파1 액틴 RNA 전사물 발현을 감소시켰다. 결과는 PBS 대조군에 비한 알파1 액틴 전사물의 억제 퍼센트로 표현된다.24 hours after the final administration, animals were sacrificed, and tissues were separated from the quadriceps muscle (Quad), calf muscle (Gastroc) and anterior tibialis muscle (TA). RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As shown in Table 27, treatment with antisense oligonucleotides reduced human alpha1 actin RNA transcript expression. Results are expressed as percent inhibition of alpha1 actin transcript compared to PBS control.

둘 모두의 안티센스 올리고뉴클레오타이드는 상기 특정된 조건하에서 대퇴사두근 근육, 장딴지근 근육 및 앞정강근 근육에서 알파1 액틴 mRNA 수준의 용량 의존적 억제를 나타내었다.Both antisense oligonucleotides showed dose-dependent inhibition of alpha1 actin mRNA levels in the quadriceps muscle, calf muscle and anterior tibialis muscle under the conditions specified above.

표 27: HSALR 마우스에서의 인간 알파1 액틴 RNA 전사물의 용량 의존적 억제 Table 27 : Dose-dependent inhibition of human alpha1 actin RNA transcripts in HSA LR mice

Figure pat00074
Figure pat00074

근전도검사에 의한 근육긴장증의 평가Evaluation of muscle tone by electromyography

좌측 및 우측 대퇴사두근(Quad), 좌측 및 우측 장딴지근 근육(Gastroc), 좌측 및 우측 앞정강근(TA) 근육 및 요추 척추옆 근육에 대한 근전도검사를 30 게이지 동심 바늘 전극 및 각각의 근육에 대한 최소 10회의 바늘 삽입을 이용하여 이전에 기재(Kanadia et al, 2003, Science, 302: 1978-1980)된 바와 같이 수행하였다. 데이터는 각각의 군의 4마리의 마우스에서 관찰된 평균 근육긴장증 등급으로서 표 28에 제시되고, 이는 ISIS 445236 및 ISIS 445238로 처리된 마우스에서의 근육긴장증의 유의한 용량 의존적 감소를 나타내었다.Electromyography of the left and right quadriceps, left and right calf muscles (Gastroc), left and right anterior tibialis (TA) muscles, and lumbar lateral vertebrae muscles were tested with a 30 gauge concentric needle electrode and minimum for each muscle. It was performed as previously described (Kanadia et al, 2003, Science, 302: 1978-1980) using 10 needle insertions. Data are presented in Table 28 as the average dystonia grade observed in 4 mice in each group, indicating a significant dose-dependent reduction in dystonia in mice treated with ISIS 445236 and ISIS 445238.

표 28: 안티센스 올리고뉴클레오타이드 처리된 HSALR 마우스의 다양한 근육에서의 근육긴장증의 평균 감소 Table 28 : Mean reduction of dystonia in various muscles of HSA LR mice treated with antisense oligonucleotides

Figure pat00075
Figure pat00075

대안적 스플라이싱의 교정Correction of alternative splicing

Serca1의 대안적 스플라이싱에 대한 ISIS 190401의 효과를 평가하기 위해, 앞정강근 장딴지근 및 대퇴사두근 근육으로부터 정제된 전체 RNA를 실시예 13에 기재된 것과 유사한 절차로 분석하였다. To evaluate the effect of ISIS 190401 on alternative splicing of Serca1 , total RNA purified from the anterior tibialis calf and quadriceps muscles was analyzed with a procedure similar to that described in Example 13.

PBS 처리된 HSALR 마우스에서, Serca1 스플라이싱은 MBLN1 이상조절의 결과로서 엑손 22 배제에 의해 입증되는 바와 같이 이상조절된다. 1주일에 2회 8.5 ㎎/㎏ 또는 25.0 ㎎/㎏의 용량(또는 17.0 ㎎/㎏/주 및 50.0 ㎎/㎏/주)의 ISIS 445236 또는 ISIS 445238을 이용한 처리는 모든 3개의 근육 유형에서 완전한 봉입 및 Serca1 유전자의 엑손 22의 대안적 스플라이싱의 정상화를 발생시켰다.In PBS treated HSA LR mice, Serca1 splicing is dysregulated as evidenced by exon 22 exclusion as a result of MBLN1 dysregulation. Treatment with ISIS 445236 or ISIS 445238 at doses of 8.5 mg/kg or 25.0 mg/kg twice a week (or 17.0 mg/kg/week and 50.0 mg/kg/week) complete inclusion in all three muscle types. And normalization of alternative splicing of exon 22 of the Serca1 gene.

따라서, 알파1 액틴의 안티센스 억제는 Serca1 스플라이싱 이상조절을 교정하였고, 이는 안티센스 올리고뉴클레오타이드를 이용한 처리가 핵 초점에서 CUGexp의 축적을 감소시킨 것을 나타낸다. 핵 초점 내의 CUGexp의 감소된 축적은 MBLN1 격리를 교정함으로써, 정상적인 스플라이싱이 발생하도록 한다.Thus, antisense inhibition of alpha1 actin corrected Serca1 splicing dysregulation, indicating that treatment with antisense oligonucleotides reduced the accumulation of CUGexp in the nuclear foci. Reduced accumulation of CUGexp in the nuclear foci corrects for MBLN1 sequestration, allowing normal splicing to occur.

실시예 17: 트랜스제닉 마우스에서의 인간 알파1 액틴의 HSA 코딩 영역을 표적으로 하는 올리고뉴클레오타이드에 의한 생체내 안티센스 억제Example 17: In vivo antisense inhibition by oligonucleotides targeting the HSA coding region of human alpha1 actin in transgenic mice

HSALR 마우스에서의 근육긴장증에 대한 ISIS 190401(5'-GCGGTCAGCGATCCCAGGGT-3'(서열번호 788), 서열번호 1의 표적 시작 부위 1028)에 의한 인간 알파1 액틴 RNA 전사물의 안티센스 억제를 평가하였다.Antisense inhibition of human alpha 1 actin RNA transcripts by ISIS 190401 (5'-GCGGTCAGCGATCCCAGGGT-3' (SEQ ID NO: 788), target start site 1028 of SEQ ID NO: 1) against myotonia in HSA LR mice was evaluated.

처리process

HSALR 마우스에 4주 동안 주 당 2회로 25 ㎎/㎏의 용량으로 ISIS 190401을 피하 주사로 투여하였다. 대조군에 2주 동안 주 당 2회로 PBS를 피하 주사로 투여하였다. PBS 주사된 군은 올리고뉴클레오타이드 처리군과 비교되는 대조군으로 작용하였다.HSA LR mice were administered ISIS 190401 by subcutaneous injection at a dose of 25 mg/kg twice per week for 4 weeks. The control group was administered PBS by subcutaneous injection twice per week for 2 weeks. The PBS-injected group served as a control compared to the oligonucleotide-treated group.

알파1 액틴 RNA의 억제Inhibition of alpha1 actin RNA

최종 투여 24시간 후, 동물을 희생시키고, 대퇴사두근 근육, 장딴지근 근육 및 앞정강근 근육으로부터 조직을 분리시켰다. 알파1 액틴의 실시간 PCR 분석을 위해 RNA를 분리시키고, 18s RNA에 대해 표준화시켰다. 표 29에 제시된 바와 같이, 안티센스 올리고뉴클레오타이드를 이용한 처리는 인간 알파1 액틴 RNA 전사물 발현을 감소시켰다. 결과는 PBS 대조군에 비한 알파1 액틴 전사물의 억제 퍼센트로 표현된다.24 hours after the final administration, the animals were sacrificed, and tissues were separated from the quadriceps muscle, calf muscle and anterior tibialis muscle. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As shown in Table 29, treatment with antisense oligonucleotides reduced human alpha1 actin RNA transcript expression. Results are expressed as percent inhibition of alpha1 actin transcript compared to PBS control.

ISIS 190401을 이용한 처리는 상기 특정된 조건하에서 대퇴사두근 근육, 장딴지근 근육 및 앞정강근 근육에서 알파1 액틴 mRNA 수준의 유의한 억제를 발생시켰다.Treatment with ISIS 190401 resulted in significant inhibition of alpha1 actin mRNA levels in the quadriceps muscle, calf muscle and anterior tibialis muscle under the conditions specified above.

표 29: HSALR 마우스에서의 인간 알파1 액틴 RNA 전사물의 안티센스 억제 Table 29 : Antisense inhibition of human alpha1 actin RNA transcripts in HSA LR mice

Figure pat00076
Figure pat00076

근전도검사에 의한 근육긴장증의 평가Evaluation of muscle tone by electromyography

좌측 및 우측 대퇴사두근, 좌측 및 우측 장딴지근 근육, 좌측 및 우측 앞정강근 근육 및 요추 척추옆 근육에 대한 근전도검사를 30 게이지 동심 바늘 전극 및 각각의 근육에 대한 최소 10회의 바늘 삽입을 이용하여 이전에 기재(Kanadia et al, 2003, Science, 302: 1978-1980)된 바와 같이 수행하였다. 데이터는 각각의 군의 4마리의 마우스에서 관찰된 평균 근육긴장증 등급으로서 표 30에 제시되고, 이는 ISIS 190401로 처리된 마우스에서의 근육긴장증의 유의한 감소를 나타내었다.Electromyography of the left and right quadriceps, left and right rectus muscles, left and right anterior tibialis muscles, and lumbar vertebral muscles were previously performed using a 30 gauge concentric needle electrode and at least 10 needle insertions for each muscle. It was performed as described (Kanadia et al, 2003, Science, 302: 1978-1980). Data are presented in Table 30 as the average dystonia grade observed in 4 mice in each group, indicating a significant reduction in dystonia in mice treated with ISIS 190401.

표 30: 안티센스 올리고뉴클레오타이드 처리된 HSALR 마우스의 다양한 근육에서의 근육긴장증의 평균 감소 Table 30 : Mean reduction of dystonia in various muscles of HSA LR mice treated with antisense oligonucleotides

Figure pat00077
Figure pat00077

대안적 스플라이싱의 교정Correction of alternative splicing

Serca1의 대안적 스플라이싱에 대한 ISIS 190401의 효과를 평가하기 위해, 앞정강근 장딴지근 및 대퇴사두근 근육으로부터 정제된 전체 RNA를 실시예 13에 기재된 것과 유사한 절차로 분석하였다. To evaluate the effect of ISIS 190401 on alternative splicing of Serca1 , total RNA purified from the anterior tibialis calf and quadriceps muscles was analyzed with a procedure similar to that described in Example 13.

PBS 처리된 HSALR 마우스에서, Serca1 스플라이싱은 MBLN1 이상조절의 결과로서 엑손 22 배제에 의해 입증되는 바와 같이 이상조절된다. ISIS 190401을 이용한 처리는 모든 3개의 근육 유형에서 완전한 봉입 및 Serca1 유전자의 엑손 22의 대안적 스플라이싱의 정상화를 발생시켰다.In PBS treated HSA LR mice, Serca1 splicing is dysregulated as evidenced by exon 22 exclusion as a result of MBLN1 dysregulation. Treatment with ISIS 190401 resulted in complete inclusion in all three muscle types and normalization of alternative splicing of exon 22 of the Serca1 gene.

따라서, 알파1 액틴의 안티센스 억제는 Serca1 스플라이싱 이상조절을 교정하였고, 이는 안티센스 올리고뉴클레오타이드를 이용한 처리가 핵 초점에서 CUGexp의 축적을 감소시킨 것을 나타낸다. 핵 초점 내의 CUGexp의 감소된 축적은 MBLN1 격 리를 교정함으로써, 정상적인 스플라이싱이 발생하도록 한다.Thus, antisense inhibition of alpha1 actin corrected Serca1 splicing dysregulation, indicating that treatment with antisense oligonucleotides reduced the accumulation of CUGexp in the nuclear foci. Reduced accumulation of CUGexp in the nuclear focal point corrects for MBLN1 sequestration, allowing normal splicing to occur.

실시예 18: 트랜스제닉 마우스에서의 인간 알파1 액틴을 표적으로 하는 올리고뉴클레오타이드에 의한 안티센스 억제의 작용 기간Example 18: Duration of action of antisense inhibition by oligonucleotides targeting human alpha1 actin in transgenic mice

HSALR 마우스에서의 ISIS 445236에 의한 인간 알파1 액틴 RNA 전사물의 안티센스 억제의 작용 기간을 평가하였다.The duration of action of antisense inhibition of human alpha1 actin RNA transcripts by ISIS 445236 in HSA LR mice was evaluated.

처리process

HSALR 마우스에 4주 동안 주 당 2회로 25 ㎎/㎏의 용량으로 ISIS 445236을 피하 주사로 투여하였다. 대조군에 2주 동안 주 당 2회로 PBS를 피하 주사로 투여하였다. PBS 주사된 군은 올리고뉴클레오타이드 처리군과 비교되는 대조군으로 작용하였다. 마우스를 마지막 용량의 투여 후 6주 동안 분석하였다.HSA LR mice were administered ISIS 445236 by subcutaneous injection at a dose of 25 mg/kg twice per week for 4 weeks. The control group was administered PBS by subcutaneous injection twice per week for 2 weeks. The PBS-injected group served as a control compared to the oligonucleotide-treated group. Mice were analyzed for 6 weeks after administration of the last dose.

알파1 액틴 RNA의 억제Inhibition of alpha1 actin RNA

최종 투여 6주 후, 동물을 희생시키고, 대퇴사두근 근육, 장딴지근 근육 및 앞정강근 근육으로부터 조직을 분리시켰다. 알파1 액틴의 실시간 PCR 분석을 위해 RNA를 분리시키고, 18s RNA에 대해 표준화시켰다. 표 31에 제시된 바와 같이, ISIS 445236을 이용한 처리는 인간 알파1 액틴 RNA 전사물 발현을 감소시켰고, 이러한 효과는 적어도 6주 동안 지속되었다. 결과는 PBS 대조군에 비한 알파1 액틴 전사물의 억제 퍼센트로 표현된다.Six weeks after the final administration, the animals were sacrificed, and tissues were separated from the quadriceps muscle, calf muscle and anterior tibialis muscle. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As shown in Table 31, treatment with ISIS 445236 reduced human alpha1 actin RNA transcript expression, and this effect persisted for at least 6 weeks. Results are expressed as percent inhibition of alpha1 actin transcript compared to PBS control.

ISIS 445236을 이용한 처리는 상기 특정된 조건하에서 대퇴사두근 근육, 장딴지근 근육 및 앞정강근 근육에서 알파1 액틴 mRNA 수준의 유의한 억제를 발생시켰다.Treatment with ISIS 445236 resulted in significant inhibition of alpha1 actin mRNA levels in the quadriceps muscle, calf muscle and anterior tibialis muscle under the conditions specified above.

표 31: HSALR 마우스에서의 인간 알파1 액틴 RNA 전사물의 안티센스 억제 Table 31 : Antisense inhibition of human alpha1 actin RNA transcripts in HSA LR mice

Figure pat00078
Figure pat00078

근전도검사에 의한 근육긴장증의 평가Evaluation of muscle tone by electromyography

좌측 및 우측 대퇴사두근, 좌측 및 우측 장딴지근 근육, 좌측 및 우측 앞정강근 근육 및 요추 척추옆 근육에 대한 근전도검사를 30 게이지 동심 바늘 전극 및 각각의 근육에 대한 최소 10회의 바늘 삽입을 이용하여 이전에 기재(Kanadia et al, 2003, Science, 302: 1978-1980)된 바와 같이 수행하였다. 데이터는 각각의 군의 4마리의 마우스에서 관찰된 평균 근육긴장증 등급으로서 표 32에 제시되고, 이는 ISIS 445236으로 처리된 마우스에서의 근육긴장증의 유의한 감소를 나타내었다. 따라서, ISIS 445236에 의한 알파 액틴의 안티센스 억제의 효과는 적어도 6주 동안 지속되었다.Electromyography of the left and right quadriceps, left and right rectus muscles, left and right anterior tibialis muscles, and lumbar vertebral muscles were previously performed using a 30 gauge concentric needle electrode and at least 10 needle insertions for each muscle. It was performed as described (Kanadia et al, 2003, Science, 302: 1978-1980). Data are presented in Table 32 as the average dystonia grade observed in 4 mice in each group, indicating a significant reduction in dystonia in mice treated with ISIS 445236. Thus, the effect of antisense inhibition of alpha actin by ISIS 445236 lasted for at least 6 weeks.

표 32: 안티센스 올리고뉴클레오타이드 처리된 HSALR 마우스의 다양한 근육에서의 근육긴장증의 평균 감소 Table 32 : Mean reduction of dystonia in various muscles of HSA LR mice treated with antisense oligonucleotides

Figure pat00079
Figure pat00079

실시예 19: 트랜스제닉 마우스에서의 근내 투여에 의한 CUG 반복부를 갖는 mRNA의 안티센스 억제의 생체내 효과Example 19: In vivo effect of antisense inhibition of mRNA with CUG repeats by intramuscular administration in transgenic mice

HSALR 마우스에서의 근육긴장증에 대한 다수의 CUG 반복부를 함유하는 mRNA 전사물의 안티센스 억제의 효과를 평가하였다. CUG 반복부를 표적으로 하며, 다양한 길이를 갖는 3개의 안티센스 올리고뉴클레오타이드를 마우스에서 근육긴장증을 억제하는데 있어서의 이의 효과를 검정하였다. ISIS 444745(AGCAGCAGCAGCAGCAGCAGCAGCA(서열번호 789)는 포스포로티오에이트 백본을 갖는 25개 뉴클레오타이드 길이의 균일한 2'-O-메톡시에틸 올리고뉴클레오타이드이다. ISIS 444746(AGCAGCAGCAGCAGCAGCAG(서열번호 790)는 포스포로티오에이트 백본을 갖는 20개 뉴클레오타이드 길이의 균일한 2'-O-메톡시에틸 올리고뉴클레오타이드이다. ISIS 444749(GCAGCAGCAGCAGCA(서열번호 791)는 포스포로티오에이트 백본을 갖는 15개 뉴클레오타이드 길이의 균일한 2'-O-메톡시에틸 올리고뉴클레오타이드이다. ISIS 445236을 양성 대조군으로 검정에 포함시켰다.The effect of antisense inhibition of mRNA transcripts containing multiple CUG repeats was evaluated on muscle tone in HSA LR mice. Targeting the CUG repeats, three antisense oligonucleotides of varying length were assayed for their effect in inhibiting dystonia in mice. ISIS 444745 (AGCAGCAGCAGCAGCAGCAGCAGCA (SEQ ID NO: 789) is a 25 nucleotide long homogeneous 2'-O-methoxyethyl oligonucleotide with a phosphorothioate backbone. ISIS 444746 (AGCAGCAGCAGCAGCAGCAG (SEQ ID NO: 790) is a phosphorothioate backbone). It is a uniform 2'-O-methoxyethyl oligonucleotide of 20 nucleotides long with a backbone.ISIS 444749 (GCAGCAGCAGCAGCA (SEQ ID NO: 791) is a uniform 2'-O of 15 nucleotides long with a phosphorothioate backbone. -Methoxyethyl oligonucleotide ISIS 445236 was included in the assay as a positive control.

처리process

HSALR 마우스를 3개의 처리군으로 나누었다. 상기 군에 앞정강근 근육으로 0.4nM의 용량으로 ISIS 444745, ISIS 444746 또는 ISIS 444749을 직접적 근내 주사로 투여하였다. 각각의 마우스의 반대쪽 앞정강근 근육에 PBS를 단일 용량의 근내 주사로 투여하였다. PBS 주사된 근육은 대조군으로 작용하였다.HSA LR mice were divided into three treatment groups. The group was administered ISIS 444745, ISIS 444746 or ISIS 444749 by direct intramuscular injection at a dose of 0.4 nM to the anterior tibial muscle. PBS was administered as a single dose of intramuscular injection to the opposite anterior tibial muscle of each mouse. PBS injected muscles served as a control.

알파1 액틴 RNA의 억제Inhibition of alpha1 actin RNA

최종 투여 24시간 후, 동물을 희생시키고, 앞정강근(좌측 및 우측)으로부터 조직을 분리시켰다. 알파1 액틴의 실시간 PCR 분석을 위해 RNA를 분리시키고, 18s RNA에 대해 표준화시켰다. 표 33에 제시된 바와 같이, ISIS 444745를 이용한 처리만이 인간 알파1 액틴 RNA 전사물 발현을 감소시켰다. 결과는 PBS 대조군에 비한 알파1 액틴 전사물의 억제 퍼센트로 표현된다.24 hours after the final administration, animals were sacrificed and tissues were separated from the anterior tibialis (left and right). RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As shown in Table 33, only treatment with ISIS 444745 reduced human alpha1 actin RNA transcript expression. Results are expressed as percent inhibition of alpha1 actin transcript compared to PBS control.

표 33: HSALR 마우스에서의 인간 알파1 액틴 RNA 전사물의 억제 퍼센트 Table 33 : Percent inhibition of human alpha1 actin RNA transcripts in HSA LR mice

Figure pat00080
Figure pat00080

실시예 20: 트랜스제닉 마우스에서의 근내 투여에 의한 CUG 반복부를 갖는 mRNA의 생체내 용량 의존적 억제Example 20: In vivo dose-dependent inhibition of mRNA with CUG repeats by intramuscular administration in transgenic mice

ISIS 444745 및 ISIS 444746을 생체내에서 인간 알파1 액틴 mRNA를 감소시키는 이의 능력에 대해 추가로 평가하였다.ISIS 444745 and ISIS 444746 were further evaluated for their ability to reduce human alpha1 actin mRNA in vivo.

처리process

HSALR 마우스를 12시간의 명/암 주기로 유지시키고, 일반적인 퓨리나(Purina) 마우스 먹이를 무제한적으로 공급하였다. 동물을 실험 개시 전에 연구 시설에서 적어도 7일 동안 새 환경에 순응시켰다. 안티센스 올리고뉴클레오타이드(ASO)를 PBS에서 제조하였고, 0.2 마이크론 필터를 통한 여과에 의해 멸균시켰다. 올리고뉴클레오타이드를 주사를 위해 0.9% PBS에 용해시켰다.HSA LR mice were maintained on a 12-hour light/dark cycle, and were fed unrestrictedly with normal Purina mouse food. Animals were acclimated to the new environment for at least 7 days in the study facility prior to initiation of the experiment. Antisense oligonucleotides (ASO) were prepared in PBS and sterilized by filtration through a 0.2 micron filter. Oligonucleotides were dissolved in 0.9% PBS for injection.

마우스를 6개의 처리군으로 나누었다. 3개의 군에 한 측면의 앞정강근 근육에 0.2nM, 0.5nM 또는 1.0nM의 용량으로 ISIS 444745를 직접적 근내 주사로 투여하였다. 또 다른 3개의 군에 한 측면의 앞정강근 근육에 0.2nM, 0.5nM 또는 1.0nM의 용량으로 ISIS 444746을 직접적 근내 주사로 투여하였다. 각각의 마우스의 반대쪽 앞정강근 근육에 PBS를 단일 용량의 근내 주사로 투여하였다. PBS 주사된 근육은 ISIS 올리고뉴클레오타이드로 처리된 상응하는 근육에 대한 대조군으로 작용하였다.Mice were divided into 6 treatment groups. In three groups, ISIS 444745 was administered by direct intramuscular injection at a dose of 0.2 nM, 0.5 nM or 1.0 nM to the anterior tibial muscle on one side. In another 3 groups, ISIS 444746 was administered by direct intramuscular injection at a dose of 0.2 nM, 0.5 nM or 1.0 nM to the anterior tibial muscle on one side. PBS was administered as a single dose of intramuscular injection to the opposite anterior tibial muscle of each mouse. PBS injected muscles served as a control for the corresponding muscles treated with ISIS oligonucleotides.

근전도검사에 의한 근육긴장증의 평가Evaluation of muscle tone by electromyography

좌측 및 우측 대퇴사두근, 좌측 및 우측 장딴지근 근육, 좌측 및 우측 앞정강근 근육 및 요추 척추옆 근육에 대한 근전도검사를 30 게이지 동심 바늘 전극 및 각각의 근육에 대한 최소 10회의 바늘 삽입을 이용하여 이전에 기재(Kanadia et al, 2003, Science, 302: 1978-1980)된 바와 같이 수행하였다. 데이터는 각각의 군의 4마리의 마우스에서 관찰된 평균 근육긴장증 등급으로서 표 34에 제시되고, 이는 ISIS 444745 또는 ISIS 444746으로 처리된 마우스에서의 근육긴장증의 유의한 감소를 나타내었다. ISIS 444745 및 444746에 의한 알파 액틴의 안티센스 억제의 효과는 적어도 6주 동안 지속되었다.Electromyography of the left and right quadriceps, left and right rectus muscles, left and right anterior tibialis muscles, and lumbar vertebral muscles were previously performed using a 30 gauge concentric needle electrode and at least 10 needle insertions for each muscle. It was performed as described (Kanadia et al, 2003, Science, 302: 1978-1980). Data are presented in Table 34 as the average dystonia grade observed in 4 mice in each group, indicating a significant reduction in dystonia in mice treated with ISIS 444745 or ISIS 444746. The effect of antisense inhibition of alpha actin by ISIS 444745 and 444746 lasted for at least 6 weeks.

표 34: 안티센스 올리고뉴클레오타이드 처리된 HSALR 마우스의 근육에서의 근육긴장증의 용량 의존적 감소 Table 34 : Dose-dependent reduction of muscle tone in the muscles of antisense oligonucleotide-treated HSA LR mice

Figure pat00081
Figure pat00081

실시예 21: 트랜스제닉 마우스에서의 피하 투여에 의한 CUG 반복부를 갖는 mRNA의 안티센스 억제의 생체내 효과Example 21: In vivo effect of antisense inhibition of mRNA with CUG repeats by subcutaneous administration in transgenic mice

HSALR 마우스에서의 근육긴장증에 대한 다수의 CUG 반복부를 함유하는 mRNA 전사물의 안티센스 억제의 효과를 평가하였다. ISIS 445236을 양성 대조군으로 검정에 포함시켰다.The effect of antisense inhibition of mRNA transcripts containing multiple CUG repeats was evaluated on muscle tone in HSA LR mice. ISIS 445236 was included in the assay as a positive control.

처리process

HSALR 마우스를 5개의 처리군으로 나누었다. 처음 3개의 군에 4주 동안 주 당 2회로 25 ㎎/㎏의 용량으로 ISIS 444745, ISIS 444746 또는 ISIS 444749를 피하 주사로 투여하였다. 네번째 군에 4주 동안 주 당 2회로 PBS를 피하 주사로 투여하였다. 다섯번째 군에 4주 동안 주 당 2회로 25 ㎎/㎏의 용량으로 ISIS 445236을 피하 주사로 투여하였다. PBS 주사된 군은 올리고뉴클레오타이드 처리군과 비교되는 대조군으로 작용하였다.HSA LR mice were divided into 5 treatment groups. The first three groups were administered ISIS 444745, ISIS 444746 or ISIS 444749 by subcutaneous injection at a dose of 25 mg/kg twice per week for 4 weeks. The fourth group was administered PBS by subcutaneous injection twice a week for 4 weeks. The fifth group was administered ISIS 445236 by subcutaneous injection at a dose of 25 mg/kg twice per week for 4 weeks. The PBS-injected group served as a control compared to the oligonucleotide-treated group.

근전도검사에 의한 근육긴장증의 평가Evaluation of muscle tone by electromyography

좌측 및 우측 대퇴사두근, 좌측 및 우측 장딴지근 근육, 좌측 및 우측 앞정강근 근육 및 요추 척추옆 근육에 대한 근전도검사를 30 게이지 동심 바늘 전극 및 각각의 근육에 대한 최소 10회의 바늘 삽입을 이용하여 이전에 기재(Kanadia et al, 2003, Science, 302: 1978-1980)된 바와 같이 수행하였다. 데이터는 각각의 군의 4마리의 마우스에서 관찰된 평균 근육긴장증 등급으로서 표 35에 제시된다.Electromyography of the left and right quadriceps, left and right rectus muscles, left and right anterior tibialis muscles, and lumbar vertebral muscles were previously performed using a 30 gauge concentric needle electrode and at least 10 needle insertions for each muscle. It was performed as described (Kanadia et al, 2003, Science, 302: 1978-1980). Data are presented in Table 35 as the average dystonia grade observed in 4 mice in each group.

ISIS 445236을 이용한 처리는 근육긴장증에서 유의한 감소를 발생시켰다. ISIS 444745 및 ISIS 444746을 이용한 처리는 또한 시험된 조직 일부에서 감소된 근육긴장증을 발생시켰다.Treatment with ISIS 445236 resulted in a significant reduction in dystonia. Treatment with ISIS 444745 and ISIS 444746 also resulted in reduced myotonia in some of the tissues tested.

표 35: 안티센스 올리고뉴클레오타이드 처리된 HSALR 마우스의 다양한 근육에서의 근육긴장증의 평균 감소 Table 35 : Mean reduction of dystonia in various muscles of HSA LR mice treated with antisense oligonucleotides

Figure pat00082
Figure pat00082

실시예 22: 트랜스제닉 마우스에서의 피하 투여에 의한 긴 CUG 반복부 mRNA(HSAExample 22: Long CUG repeat mRNA by subcutaneous administration in transgenic mice (HSA LRLR 마우스) 및 짧은 CUG 반복부(HSA Mouse) and short CUG repeats (HSA SRSR 마우스)의 용량 의존적 억제 Mice) dose-dependent inhibition

긴 CUG 반복부(HSALR 마우스) 및 짧은 CUG 반복부(HSASR 마우스)를 함유하는 mRNA 전사물의 용량 의존적 억제를 평가하였다. HSA-짧은 반복부(HSASR) 마우스는, 250개 대신 5개의 CUG 반복물이 3' UTR에 삽입된 것을 제외하고는 HSALR 마우스와 동일한 트랜스진을 발현한다. HSASR 마우스는 근육긴장증, 스플라이싱 변화, 또는 임의의 다른 관찰가능한 근육긴장증 표현형을 갖지 않는다. 본 검정에 ISIS 445236을 이용하였다.Dose-dependent inhibition of mRNA transcripts containing long CUG repeats (HSA LR mice) and short CUG repeats (HSA SR mice) was evaluated. HSA-short repeat (HSA SR ) mice express the same transgene as HSA LR mice, except that 5 CUG repeats instead of 250 were inserted into the 3'UTR. HSA SR mice do not have dystonia, splicing changes, or any other observable dystonia phenotype. ISIS 445236 was used for this assay.

처리process

HSALR 마우스를 4개의 처리군으로 나누었다. 처음 3개의 군에 4주 동안 주 당 2회로 2.5 ㎎/㎏, 8.5 ㎎/㎏ 또는 25.0 ㎎/㎏의 용량으로 ISIS 445236을 피하 주사로 투여하였다. 네번째 군에 4주 동안 주 당 2회로 PBS를 피하 주사로 투여하였다. PBS 주사된 군은 올리고뉴클레오타이드 처리군과 비교되는 대조군으로 작용하였다. HSASR 마우스를 또한 4개의 군으로 나누고, 유사하게 처리하였다.HSA LR mice were divided into 4 treatment groups. The first three groups were administered ISIS 445236 by subcutaneous injection at a dose of 2.5 mg/kg, 8.5 mg/kg or 25.0 mg/kg twice per week for 4 weeks. The fourth group was administered PBS by subcutaneous injection twice a week for 4 weeks. The PBS-injected group served as a control compared to the oligonucleotide-treated group. HSA SR mice were also divided into 4 groups and treated similarly.

알파1 액틴 RNA의 억제Inhibition of alpha1 actin RNA

최종 투여 24시간 후, 동물을 희생시키고, 대퇴사두근 근육(좌측 및 우측), 장딴지근 근육(좌측 및 우측) 및 앞정강근 근육(좌측 및 우측)으로부터 조직을 분리시켰다. 알파1 액틴의 실시간 PCR 분석을 위해 RNA를 분리시키고, 18s RNA에 대해 표준화시켰다. 결과는 표 36 및 표 37에 제시되며, 이는 대조군에 비한 알파1 액틴 전사물의 억제 퍼센트로 표현된다. HSASR 마우스의 근육에서의 비-핵 유지된 짧은 반복부에 비해 HSALR 마우스의 근육에서 핵 유지된 긴 반복부의 보다 큰 억제가 달성되었다.24 hours after the final administration, animals were sacrificed, and tissues were separated from the quadriceps muscle (left and right), calf muscle (left and right) and anterior tibialis muscle (left and right). RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. Results are presented in Tables 36 and 37, which are expressed as percent inhibition of alpha1 actin transcript compared to control. A greater inhibition of nuclear retained long repeats in the muscles of HSA LR mice was achieved compared to non-nuclear retained short repeats in the muscles of HSA SR mice.

표 36: HSALR 마우스에서의 인간 알파1 액틴 RNA 전사물의 억제 퍼센트 Table 36 : Percent inhibition of human alpha1 actin RNA transcripts in HSA LR mice

Figure pat00083
Figure pat00083

표 37: HSASR 마우스에서의 인간 알파1 액틴 RNA 전사물의 억제 퍼센트 Table 37 : Percent inhibition of human alpha1 actin RNA transcripts in HSA SR mice

Figure pat00084
Figure pat00084

실시예 23: 트랜스제닉 마우스에서의 인간 DMPK의 생체내 안티센스 억제Example 23: In vivo antisense inhibition of human DMPK in transgenic mice

LC15 마우스 계통 A는 전체 인간 DMPK 3'UTR을 함유하는 트랜스제닉 마우스이다(휠러 등(Wheeler et al, University of Rochester)에 의해 개발됨). 상기 마우스는 FVB 백그라운드로 역교배된 마우스의 두번째 세대이다. 상기 트랜스진은 핵에 유지되는 CUG 반복부 RNA로서 마우스에서 발현되어, 근육긴장성 이영양증(DM1)을 갖는 환자의 인간 조직 샘플에서 관찰되는 것과 유사한 핵내 봉입체 또는 초점을 형성한다. DMPK 트랜스진에는 350-400개의 CUG 반복부가 존재한다. 이러한 마우스는 DM1의 초기 징후를 나타내고, 근육 조직 내에서 어떠한 근육긴장증도 나타내지 않는다.LC15 mouse strain A is a transgenic mouse containing the whole human DMPK 3'UTR (developed by Wheeler et al, University of Rochester). The mice are the second generation of mice backcrossed in the FVB background. The transgene is expressed in mice as CUG repeat RNA retained in the nucleus, forming intranuclear inclusion bodies or foci similar to those observed in human tissue samples from patients with myotonic dystrophy (DM1). There are 350-400 CUG repeats in the DMPK transgene. These mice show early signs of DM1 and do not show any dystonia in the muscle tissue.

시험관내에서 통계적으로 유의한 용량 의존적 억제를 나타낸 ISIS 445569, ISIS 444404, ISIS 444436 및 ISIS 473810(실시예 5 참조)을 생체내에서 인간 DMPK RNA 전사물을 감소시키는 능력에 대해 평가하였다.ISIS 445569, ISIS 444404, ISIS 444436 and ISIS 473810 (see Example 5), which showed statistically significant dose dependent inhibition in vitro, were evaluated for their ability to reduce human DMPK RNA transcripts in vivo.

처리process

LC15 계통 A 마우스를 12시간의 명/암 주기로 유지시키고, 일반적인 퓨리나(Purina) 마우스 먹이를 무제한적으로 공급하였다. 동물을 실험 개시 전에 연구 시설에서 적어도 7일 동안 새 환경에 순응시켰다. 안티센스 올리고뉴클레오타이드(ASO)를 PBS에서 제조하였고, 0.2 마이크론 필터를 통한 여과에 의해 멸균시켰다. 올리고뉴클레오타이드를 주사를 위해 0.9% PBS에 용해시켰다.LC15 line A mice were maintained on a 12-hour light/dark cycle, and were fed unrestrictedly with normal Purina mouse food. Animals were acclimated to the new environment for at least 7 days in the study facility prior to initiation of the experiment. Antisense oligonucleotides (ASO) were prepared in PBS and sterilized by filtration through a 0.2 micron filter. Oligonucleotides were dissolved in 0.9% PBS for injection.

마우스를 5개의 처리군으로 나누었다. 처음 3개의 군에 4주 동안 주 당 2회로 25 ㎎/㎏의 용량으로 ISIS 445569, ISIS 444404 또는 ISIS 444436을 피하 주사로 투여하였다. 네번째 군에 4주 동안 주 당 2회로 12.5 ㎎/㎏의 용량으로 ISIS 473810을 피하 주사로 투여하였다. 다섯번째 군에 4주 동안 주 당 2회로 PBS를 피하 주사로 투여하였다. PBS 주사된 군은 올리고뉴클레오타이드 처리군과 비교되는 대조군으로 작용하였다.Mice were divided into 5 treatment groups. The first three groups were administered ISIS 445569, ISIS 444404 or ISIS 444436 by subcutaneous injection at a dose of 25 mg/kg twice per week for 4 weeks. The fourth group was administered ISIS 473810 by subcutaneous injection at a dose of 12.5 mg/kg twice per week for 4 weeks. The fifth group was administered PBS by subcutaneous injection twice a week for 4 weeks. The PBS-injected group served as a control compared to the oligonucleotide-treated group.

DMPK RNA의 억제Inhibition of DMPK RNA

최종 투여 24시간 후, 동물을 희생시키고, 대퇴사두근 근육으로부터 조직을 분리시켰다. DMPK의 실시간 PCR 분석을 위해 RNA를 분리시키고, 18s RNA에 대해 표준화시켰다. 표 38에 제시된 바와 같이, 안티센스 올리고뉴클레오타이드를 이용한 처리는 인간 DMPK RNA 전사물 발현을 감소시켰다. 결과는 PBS 대조군에 비한 DMPK 전사물의 억제 퍼센트로 표현된다.24 hours after the final administration, the animals were sacrificed and the tissue was separated from the quadriceps muscle. RNA was isolated for real-time PCR analysis of DMPK and normalized to 18s RNA. As shown in Table 38, treatment with antisense oligonucleotides reduced human DMPK RNA transcript expression. Results are expressed as percent inhibition of DMPK transcript compared to PBS control.

표 38: LC15 마우스에서의 인간 DMPK RNA 전사물의 안티센스 억제 Table 38 : Antisense inhibition of human DMPK RNA transcripts in LC15 mice

Figure pat00085
Figure pat00085

근전도검사에 의한 근육긴장증의 평가Evaluation of muscle tone by electromyography

좌측 및 우측 대퇴사두근, 좌측 및 우측 장딴지근 근육, 좌측 및 우측 앞정강근 근육 및 요추 척추옆 근육에 대한 근전도검사를 30 게이지 동심 바늘 전극 및 각각의 근육에 대한 최소 10회의 바늘 삽입을 이용하여 이전에 기재(Kanadia et al, 2003, Science, 302: 1978-1980)된 바와 같이 수행하였다. LC15 마우스는 근육긴장증을 갖지 않으므로, 대조군 및 처리군은 시험된 임의의 근육에서 어떠한 근육긴장증도 나타내지 않았다.Electromyography of the left and right quadriceps, left and right rectus muscles, left and right anterior tibialis muscles, and lumbar vertebral muscles were previously performed using a 30 gauge concentric needle electrode and at least 10 needle insertions for each muscle. It was performed as described (Kanadia et al, 2003, Science, 302: 1978-1980). Since LC15 mice did not have dystonia, the control and treatment groups did not show any dystonia in any of the muscles tested.

실시예 24: 트랜스제닉 마우스에서의 인간 DMPK의 생체내 안티센스 억제Example 24: In vivo antisense inhibition of human DMPK in transgenic mice

LC15 마우스 계통 D는 전체 인간 DMPK 3'UTR을 함유하는 트랜스제닉 마우스이다(휠러 등(Wheeler et al, University of Rochester)에 의해 개발됨). 상기 마우스는 FVB 백그라운드로 역교배된 마우스의 세번째 세대이다. 상기 트랜스진은 핵에 유지되는 CUG 반복부 RNA로서 마우스에서 발현되어, 근육긴장성 이영양증(DM1)을 갖는 환자의 인간 조직 샘플에서 관찰되는 것과 유사한 핵내 봉입 또는 초점을 형성한다. DMPK 트랜스진에는 350-400개의 CUG 반복부가 존재한다. 이러한 마우스는 DM1의 초기 징후를 나타내고, 근육 조직 내에서 어떠한 근육긴장증도 나타내지 않는다.LC15 mouse strain D is a transgenic mouse containing the whole human DMPK 3'UTR (developed by Wheeler et al, University of Rochester). The mice are the third generation of mice backcrossed in the FVB background. The transgene is expressed in mice as CUG repeat RNA maintained in the nucleus, forming an intranuclear inclusion or focal point similar to that observed in human tissue samples from patients with muscular dystrophy (DM1). There are 350-400 CUG repeats in the DMPK transgene. These mice show early signs of DM1 and do not show any dystonia in the muscle tissue.

ISIS 445569, ISIS 444404, ISIS 444436 및 ISIS 473810을 생체내에서 인간 DMPK RNA 전사물을 감소시키는 이의 능력에 대해 추가로 평가하였다.ISIS 445569, ISIS 444404, ISIS 444436 and ISIS 473810 were further evaluated for their ability to reduce human DMPK RNA transcripts in vivo.

처리process

LC15 계통 D 마우스를 12시간의 명/암 주기로 유지시키고, 일반적인 퓨리나(Purina) 마우스 먹이를 무제한적으로 공급하였다. 동물을 실험 개시 전에 연구 시설에서 적어도 7일 동안 새 환경에 순응시켰다. 안티센스 올리고뉴클레오타이드(ASO)를 PBS에서 제조하였고, 0.2 마이크론 필터를 통한 여과에 의해 멸균시켰다. 올리고뉴클레오타이드를 주사를 위해 0.9% PBS에 용해시켰다.LC15 line D mice were maintained on a 12-hour light/dark cycle, and were fed unrestrictedly with normal Purina mouse food. Animals were acclimated to the new environment for at least 7 days in the study facility prior to initiation of the experiment. Antisense oligonucleotides (ASO) were prepared in PBS and sterilized by filtration through a 0.2 micron filter. Oligonucleotides were dissolved in 0.9% PBS for injection.

마우스를 6개의 처리군으로 나누었다. 처음 3개의 군에 4주 동안 주 당 2회로 25.00 ㎎/㎏의 용량으로 ISIS 445569, ISIS 444404 또는 ISIS 444436을 피하 주사로 투여하였다. 네번째 군에 4주 동안 주 당 2회로 12.50 ㎎/㎏의 용량으로 ISIS 473810을 피하 주사로 투여하였다. 다섯번째 군에 4주 동안 주 당 2회로 6.25 ㎎/㎏의 용량으로 ISIS 473810을 피하 주사로 투여하였다. 여섯번째 군에 4주 동안 주 당 2회로 PBS를 피하 주사로 투여하였다. PBS 주사된 군은 올리고뉴클레오타이드 처리군과 비교되는 대조군으로 작용하였다.Mice were divided into 6 treatment groups. The first three groups were administered ISIS 445569, ISIS 444404 or ISIS 444436 by subcutaneous injection at a dose of 25.00 mg/kg twice per week for 4 weeks. The fourth group was administered ISIS 473810 by subcutaneous injection at a dose of 12.50 mg/kg twice per week for 4 weeks. The fifth group was administered ISIS 473810 by subcutaneous injection at a dose of 6.25 mg/kg twice per week for 4 weeks. The sixth group was administered PBS by subcutaneous injection twice a week for 4 weeks. The PBS-injected group served as a control compared to the oligonucleotide-treated group.

DMPK RNA의 억제Inhibition of DMPK RNA

최종 투여 24시간 후, 동물을 희생시키고, 대퇴사두근 근육으로부터 조직을 분리시켰다. DMPK의 실시간 PCR 분석을 위해 RNA를 분리시키고, 18s RNA에 대해 표준화시켰다. 표 39에 제시된 바와 같이, 안티센스 올리고뉴클레오타이드를 이용한 처리는 인간 DMPK RNA 전사물 발현을 감소시켰다. 결과는 PBS 대조군에 비한 DMPK 전사물의 억제 퍼센트로 표현된다.24 hours after the final administration, the animals were sacrificed and the tissue was separated from the quadriceps muscle. RNA was isolated for real-time PCR analysis of DMPK and normalized to 18s RNA. As shown in Table 39, treatment with antisense oligonucleotides reduced human DMPK RNA transcript expression. Results are expressed as percent inhibition of DMPK transcript compared to PBS control.

상기 결과는 안티센스 올리고뉴클레오타이드를 이용한 처리가 마우스에서 DMPK mRNA의 억제를 발생시킨 것을 나타낸다.The above results indicate that treatment with antisense oligonucleotides caused inhibition of DMPK mRNA in mice.

표 39: LC15 마우스에서의 인간 DMPK RNA 전사물의 안티센스 억제 Table 39 : Antisense inhibition of human DMPK RNA transcripts in LC15 mice

Figure pat00086
Figure pat00086

근전도검사에 의한 근육긴장증의 평가Evaluation of muscle tone by electromyography

좌측 및 우측 대퇴사두근, 좌측 및 우측 장딴지근 근육, 좌측 및 우측 앞정강근 근육 및 요추 척추옆 근육에 대한 근전도검사를 30 게이지 동심 바늘 전극 및 각각의 근육에 대한 최소 10회의 바늘 삽입을 이용하여 이전에 기재(Kanadia et al, 2003, Science, 302: 1978-1980)된 바와 같이 수행하였다. LC15 마우스는 근육긴장증을 갖지 않으므로, 대조군 및 처리군은 시험된 임의의 근육에서 어떠한 근육긴장증도 나타내지 않았다.Electromyography of the left and right quadriceps, left and right rectus muscles, left and right anterior tibialis muscles, and lumbar vertebral muscles were previously performed using a 30 gauge concentric needle electrode and at least 10 needle insertions for each muscle. It was performed as described (Kanadia et al, 2003, Science, 302: 1978-1980). Since LC15 mice did not have dystonia, the control and treatment groups did not show any dystonia in any of the muscles tested.

실시예 25: SXL 트랜스제닉 마우스 모델에서의 인간 DMPK의 생체내 안티센스 억제Example 25: In vivo antisense inhibition of human DMPK in SXL transgenic mouse model

hDMPK-표적화 ASO를 이용하여, 가자미근에서의 444401 및 299471 표적 넉다운을 SXL 마우스에서 측정하였다. SXL 마우스는 전체 DMPK 유전자 및 프로모터에 대해 트랜스제닉이고, DMPK 유전자의 3'UTR에 1000개의 CUG 반복부 서열을 함유한다. 마우스에 4주 동안 주 당 2회로 50㎎/㎏을 투여하였다(n= 군 당 3마리의 마우스, n= 염수 주사된 대조군에 대한 2마리는 예외). Taqman 검정의 결과는 ISISI 444401 또는 ISIS 299471을 이용한 처리가 mut-hDMPK mRNA 수준을 유의하게 감소시켰으나, 내인성 마우스 Dmpk mRNA 수준에는 사소하게 영향을 미친 것을 나타내었다.Using hDMPK-targeted ASO, 444401 and 299471 target knockdown in the soleus muscle were measured in SXL mice. SXL mice are transgenic for the entire DMPK gene and promoter, and contain 1000 CUG repeat sequences in the 3'UTR of the DMPK gene. Mice were dosed with 50 mg/kg twice per week for 4 weeks (n=3 mice per group, n=2 except saline injected control group). The results of the Taqman assay showed that treatment with ISISI 444401 or ISIS 299471 significantly reduced mut-hDMPK mRNA levels, but slightly affected the endogenous mouse Dmpk mRNA levels.

따라서, ISIS 444401 및 ISIS 299471은 인간 DMPK mRNA 전사물을 선별적으로 표적화한다.Thus, ISIS 444401 and ISIS 299471 selectively target human DMPK mRNA transcripts.

실시예 26: 트랜스제닉 마우스에서의 인간 알파1 액틴을 표적으로 하는 올리고뉴클레오타이드에 의한 안티센스 억제의 작용 기간Example 26: Duration of action of antisense inhibition by oligonucleotides targeting human alpha1 actin in transgenic mice

HSALR 마우스에서의 ISIS 190401에 의한 인간 알파1 액틴 RNA 전사물의 안티센스 억제의 작용 기간을 평가하였다.The duration of action of antisense inhibition of human alpha1 actin RNA transcripts by ISIS 190401 in HSA LR mice was evaluated.

처리process

HSALR 마우스에 4주 동안 주 당 2회로 25 ㎎/㎏의 용량으로 ISIS 190401을 피하 주사로 투여하였다. 대조군에 4주 동안 주 당 2회로 PBS를 피하 주사로 투여하였다. PBS 주사된 군은 올리고뉴클레오타이드 처리군과 비교되는 대조군으로 작용하였다. 마우스를 마지막 용량의 투여 후에 15주 동안 분석하였다.HSA LR mice were administered ISIS 190401 by subcutaneous injection at a dose of 25 mg/kg twice per week for 4 weeks. The control group was administered PBS by subcutaneous injection twice per week for 4 weeks. The PBS-injected group served as a control compared to the oligonucleotide-treated group. Mice were analyzed for 15 weeks after administration of the last dose.

알파1 액틴 RNA의 억제Inhibition of alpha1 actin RNA

최종 투여 15주 후, 동물을 희생시키고, 대퇴사두근 근육, 장딴지근 근육 및 앞정강근 근육으로부터 조직을 분리시켰다. 알파1 액틴의 실시간 PCR 분석을 위해 RNA를 분리시키고, 18s RNA에 대해 표준화시켰다. 표 40에 제시된 바와 같이, ISIS 190401을 이용한 처리는 인간 알파1 액틴 RNA 전사물 발현을 감소시켰고, 이러한 효과는 적어도 15주 동안 지속되었다. 결과는 PBS 대조군에 비한 알파1 액틴 전사물의 억제 퍼센트로 표현된다.15 weeks after the final administration, animals were sacrificed, and tissues were separated from the quadriceps muscle, calf muscle and anterior tibialis muscle. RNA was isolated for real-time PCR analysis of alpha1 actin and normalized to 18s RNA. As shown in Table 40, treatment with ISIS 190401 reduced human alpha1 actin RNA transcript expression, and this effect lasted for at least 15 weeks. Results are expressed as percent inhibition of alpha1 actin transcript compared to PBS control.

ISIS 190401을 이용한 처리는 상기 특정된 조건하에서 알파1 액틴 mRNA 수준의 유의한 억제를 발생시켰다.Treatment with ISIS 190401 resulted in significant inhibition of alpha1 actin mRNA levels under the conditions specified above.

표 40: HSALR 마우스에서의 인간 알파1 액틴 RNA 전사물의 안티센스 억제 Table 40 : Antisense inhibition of human alpha1 actin RNA transcripts in HSA LR mice

Figure pat00087
Figure pat00087

근전도검사에 의한 근육긴장증의 평가Evaluation of muscle tone by electromyography

좌측 및 우측 대퇴사두근, 좌측 및 우측 장딴지근 근육, 좌측 및 우측 앞정강근 근육 및 요추 척추옆 근육에 대한 근전도검사를 30 게이지 동심 바늘 전극 및 각각의 근육에 대한 최소 10회의 바늘 삽입을 이용하여 이전에 기재(Kanadia et al, 2003, Science, 302: 1978-1980)된 바와 같이 수행하였다. 데이터는 각각의 군의 4마리의 마우스에서 관찰된 평균 근육긴장증 등급으로서 표 41에 제시되고, 이는 ISIS 190401로 처리된 마우스에서의 근육긴장증의 유의한 감소를 나타내었다. 따라서, ISIS 190401에 의한 알파 액틴의 안티센스 억제의 효과는 적어도 15주 동안 지속되었다.Electromyography of the left and right quadriceps, left and right rectus muscles, left and right anterior tibialis muscles, and lumbar vertebral muscles were previously performed using a 30 gauge concentric needle electrode and at least 10 needle insertions for each muscle. It was performed as described (Kanadia et al, 2003, Science, 302: 1978-1980). Data are presented in Table 41 as the average dystonia grade observed in 4 mice in each group, indicating a significant reduction in dystonia in mice treated with ISIS 190401. Thus, the effect of antisense inhibition of alpha actin by ISIS 190401 lasted for at least 15 weeks.

표 41: 안티센스 올리고뉴클레오타이드 처리된 HSALR 마우스의 다양한 근육에서의 근육긴장증의 평균 감소 Table 41 : Mean reduction of dystonia in various muscles of HSA LR mice treated with antisense oligonucleotides

Figure pat00088
Figure pat00088

대안적 스플라이싱의 교정Correction of alternative splicing

Serca1의 대안적 스플라이싱에 대한 ISIS 190401의 효과를 평가하기 위해, 앞정강근 장딴지근 및 대퇴사두근 근육으로부터 정제된 전체 RNA를 실시예 13에 기재된 것과 유사한 절차로 분석하였다. To evaluate the effect of ISIS 190401 on alternative splicing of Serca1 , total RNA purified from the anterior tibialis calf and quadriceps muscles was analyzed with a procedure similar to that described in Example 13.

PBS 처리된 HSALR 마우스에서, Serca1 스플라이싱은 엑손 22 배제에 의해 입증되는 바와 같이 이상조절된다. ISIS 190401을 이용한 처리는 모든 3개의 근육 유형에서 완전한 봉입 및 Serca1 유전자의 엑손 22의 대안적 스플라이싱의 정상화를 발생시켰고, 이는 15주 후에도 지속되었다.In PBS treated HSA LR mice, Serca1 splicing is dysregulated as evidenced by exon 22 exclusion. Treatment with ISIS 190401 resulted in complete inclusion in all three muscle types and normalization of alternative splicing of exon 22 of the Serca1 gene, which persisted after 15 weeks.

따라서, 알파1 액틴의 안티센스 억제는 Serca1 스플라이싱 이상조절을 교정하였고, 이는 안티센스 올리고뉴클레오타이드를 이용한 처리가 핵 초점에서 CUGexp의 축적을 감소시킨 것을 나타낸다. 핵 초점 내의 CUGexp의 감소된 축적은 MBLN1 격리를 교정함으로써, 정상적인 스플라이싱이 발생하도록 한다.Thus, antisense inhibition of alpha1 actin corrected Serca1 splicing dysregulation, indicating that treatment with antisense oligonucleotides reduced the accumulation of CUGexp in the nuclear foci. Reduced accumulation of CUGexp in the nuclear foci corrects for MBLN1 sequestration, allowing normal splicing to occur.

실시예 27: 인간 액틴의 안티센스 억제의 전사체적 효과(transcriptomic effect)의 마이크로어레이 분석Example 27: Microarray analysis of the transcriptomic effect of antisense inhibition of human actin

확장된 CUG 반복부를 갖는 액틴 mRNA의 발현은 근육 전사체의 광범위한 리모델링을 야기시킨다. ISIS 190401 및 ISIS 445236의 전체 전사체적 효과를 평가하기 위해, 마이크로어레이 분석을 HSALR 마우스에서 이용하였다.Expression of actin mRNA with extended CUG repeats leads to extensive remodeling of muscle transcripts. To evaluate the overall transcriptome effect of ISIS 190401 and ISIS 445236, microarray analysis was used in HSA LR mice.

처리process

HSALR 마우스에 4주 동안 주당 2회로 25 ㎎/㎏의 용량으로 ISIS 190401 또는 ISIS 445236을 피하 주사로 투여하였다. 대조군에 4주 동안 주 당 2회로 PBS를 피하 주사로 투여하였다. PBS 주사된 군은 올리고뉴클레오타이드 처리군과 비교되는 대조군으로 작용하였다.HSA LR mice were administered ISIS 190401 or ISIS 445236 by subcutaneous injection at a dose of 25 mg/kg twice per week for 4 weeks. The control group was administered PBS by subcutaneous injection twice per week for 4 weeks. The PBS-injected group served as a control compared to the oligonucleotide-treated group.

마이크로어레이에 의한 전사체 분석Transcript analysis by microarray

야생형 또는 HSALR 마우스의 대퇴사두근 근육으로부터 RNA를 분리시켰다. Agilent Bioanalyzer를 이용하여 RNA 온전성을 확인하였다(RNA 온전성 수 > 7.5). RNA를 상보성 RNA(cRNA)로 처리하고, 제조업체의 권고에 따라 MouseRef-8 v2.0 Expression BeadChip Kits(Illumina, San Diego)를 이용하여 마이크로비드 상에 하이브리드화시켰다. 이미지 데이터를 BeadStudio 소프트웨어(Illumina)를 이용하여 정량하였다. 신호 강도를 분위수 표준화시켰다. 표준화 전에 2 미만의 임의의 값을 피하기 위해 열-특이적 오프셋(Row-specific offset)을 이용하였다. 하이브리드화 혼합물 내의 확장된 반복부(mRNA 내의 CUG 반복부로부터 유래되는 cRNA 내의 CAG 반복부)가 프로브 내의 반복부 서열과 교차 하이브리드화될 수 있는 가능성을 배제시키기 위해 CUG, UGC 또는 GCU 반복부의 6개 이상의 뉴클레오타이드를 갖는 모든 프로브 세트로부터의 데이터를 삭제하였다. 발현이 어레이에서 용이하게 정량되지 않는 유전자를 배제시키기 위해, 0.1 미만의 검출 확률에 대한 P 값을 나타내는 프로브를 모든 샘플에서 삭제하였다. 군 사이의 비교를 요약하고, 평균 발현 수준 및 t 시험의 변화 배수에 의해 순위를 매겼다. 야생형 샘플, ISIS 올리고뉴클레오타이드-처리 샘플 및 PBS-처리 마이크로어레이 샘플에 대한 주요 구성요소 분석(Levin et al. In Antisense Drug Technology: Principles, Strategies, and Applications, S.T. Crooke, Ed. (CRC Press, Boca Raton, 2008), pp 183-215; Geary et al. Drug Metab. Dispos. 2003; 31: 1419-28)을 수행하기 위해 소프트웨어 패키지 R(Butler et al. Diabetes. 2002; 51: 1028-34)을 이용하였다. 주요 구성요소는 3차원 내의 각각의 샘플의 발현 변화의 대부분의 포획을 가능케 한다. 각각의 샘플의 처음 3개의 주요 구성요소를 작도하였다.RNA was isolated from the quadriceps muscle of wild type or HSA LR mice. RNA integrity was confirmed using an Agilent Bioanalyzer (RNA integrity number> 7.5). RNA was treated with complementary RNA (cRNA) and hybridized on microbeads using MouseRef-8 v2.0 Expression BeadChip Kits (Illumina, San Diego) according to the manufacturer's recommendations. Image data was quantified using BeadStudio software (Illumina). The signal intensity was standardized by quantiles. Row-specific offset was used to avoid any value less than 2 before normalization. Six CUG, UGC or GCU repeats to exclude the possibility that extended repeats in the hybridization mixture (CAG repeats in cRNA derived from CUG repeats in mRNA) may cross-hybridize with repeat sequences in the probe. Data from all probe sets having the above nucleotides were deleted. In order to exclude genes whose expression is not readily quantified in the array, probes showing P values for probability of detection less than 0.1 were deleted from all samples. Comparisons between groups were summarized and ranked by mean expression level and fold change of t test. Key component analysis for wild-type samples, ISIS oligonucleotide-treated samples and PBS-treated microarray samples (Levin et al . In Antisense Drug Technology: Principles, Strategies, and Applications , ST Crooke, Ed. (CRC Press, Boca Raton) , 2008), pp 183-215; Geary et al. Drug Metab. Dispos . 2003; 31: 1419-28) using software package R (Butler et al. Diabetes . 2002; 51: 1028-34) I did. The main component allows the capture of most of the expression changes of each sample within three dimensions. The first three major components of each sample were constructed.

미처리된 야생형 및 HSALR 마우스의 주요 구성요소 분석은 광범위하게 군집을 이룬 집단의 야생형 마우스로부터 떨어진 HSALR의 격리를 나타내었다. 대조적으로, 안티센스 올리고뉴클레오타이드 처리된 HSALR 마우스는 야생형 마우스에 보다 근접하게 군집을 이루었고, 이는 전반적인 전사체 정상화의 경향을 암시한다. HSALR 트랜스제닉 마우스와 야생형 마우스의 비교로 하기 표 42에 제시되는 바와 같이 발현 수준이 2배 이상 변경(P < 0.0001)된 93개의 전사물을 확인하였다. 상기 전사물에 대한 이상조절의 정도는 안티센스 올리고뉴클레오타이드에 대해 감소되거나 정상화되었다(ISIS 445236에 반응된 88%의 이상조절된 전사물, ISIS 445236에 대해 P < 0.05, 대 ISIS 190401에 대해 90%가 반응된 PBS 대조군).Analysis of the major components of untreated wild-type and HSA LR mice revealed the isolation of HSA LR away from a broadly clustered population of wild-type mice. In contrast, antisense oligonucleotide treated HSA LR mice clustered more closely to wild-type mice, suggesting a trend of overall transcript normalization. A comparison of HSA LR transgenic mice and wild-type mice confirmed 93 transcripts whose expression levels were changed by more than two times (P <0.0001) as shown in Table 42 below. The degree of dysregulation for the transcript was reduced or normalized for antisense oligonucleotides (88% of dysregulated transcripts responded to ISIS 445236, P <0.05 for ISIS 445236, versus 90% for ISIS 190401. Reacted PBS control).

표적외(off-target) 넉다운을 갖는 전사물을 고려하기 위해, 안티센스 올리고뉴클레오타이드 처리된 HSALR 마우스에서 발현이 감소된 모든 전사물을 확인하였다(어느 하나의 올리고뉴클레오타이드에 의한 2배를 초과하는 감소, P < 0.0001, n = 41 전사물). 상기 기준에 의해 하향 조절된 모든 전사물은 HSALR 마우스에서 상향조절을 나타내었다. 유일한 예외인 콜라겐 6 알파2는 표적외 절단으로부터 발생할 가능성이 없는데, 이는 상기 콜라겐 6 알파2가 비중첩 서열을 갖는 2개의 안티센스 올리고뉴클레오타이드에 의해 하향조절되었기 때문이다.In order to consider transcripts with off-target knockdown, all transcripts with reduced expression in antisense oligonucleotide-treated HSA LR mice were identified (reduction of more than 2 fold by any one oligonucleotide. , P <0.0001, n = 41 transcript). All transcripts downregulated by this criterion showed upregulation in HSA LR mice. The only exception, collagen 6 alpha2, is unlikely to arise from off-target cleavage, as the collagen 6 alpha2 is downregulated by two antisense oligonucleotides with non-overlapping sequences.

이러한 결과는 4주 동안의 안티센스 올리고뉴클레오타이드를 이용한 처리가 표적외 효과에 대한 어떠한 증거 없이 근육 전사체의 전반적 개선을 발생시킨 것을 나타낸다.These results indicate that treatment with antisense oligonucleotides for 4 weeks resulted in overall improvement of the muscle transcriptome without any evidence of off-target effects.

표 42: HSALR 트랜스제닉 마우스와 야생형 마우스의 확인된 93개의 전사물의 비교 Table 42 : Comparison of 93 transcripts identified in HSA LR transgenic mice and wild-type mice

Figure pat00089
Figure pat00089

Figure pat00090
Figure pat00090

Figure pat00091
Figure pat00091

SEQUENCE LISTING <110> C. Frank Bennett Susan M. Freier Robert A. MacLeod Sanjay K. Pandey Charles A. Thornton Thurman Wheeler Seng H. Cheng Andrew Leger Bruce M. Wentworth <120> MODULATION OF DYSTROPHIA MYOTONICA-PROTEIN KINASE (DMPK) EXPRESSION <130> BIOL0134WO <140> PCT/US2011/044555 <141> 2011-07-19 <150> 61/365,775 <151> 2010-07-19 <150> 61/365,762 <151> 2010-07-19 <150> 61/478,021 <151> 2011-04-21 <160> 837 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 2877 <212> DNA <213> Homo sapiens <400> 1 aggggggctg gaccaagggg tggggagaag gggaggaggc ctcggccggc cgcagagaga 60 agtggccaga gaggcccagg ggacagccag ggacaggcag acatgcagcc agggctccag 120 ggcctggaca ggggctgcca ggccctgtga caggaggacc ccgagccccc ggcccgggga 180 ggggccatgg tgctgcctgt ccaacatgtc agccgaggtg cggctgaggc ggctccagca 240 gctggtgttg gacccgggct tcctggggct ggagcccctg ctcgaccttc tcctgggcgt 300 ccaccaggag ctgggcgcct ccgaactggc ccaggacaag tacgtggccg acttcttgca 360 gtgggcggag cccatcgtgg tgaggcttaa ggaggtccga ctgcagaggg acgacttcga 420 gattctgaag gtgatcggac gcggggcgtt cagcgaggta gcggtagtga agatgaagca 480 gacgggccag gtgtatgcca tgaagatcat gaacaagtgg gacatgctga agaggggcga 540 ggtgtcgtgc ttccgtgagg agagggacgt gttggtgaat ggggaccggc ggtggatcac 600 gcagctgcac ttcgccttcc aggatgagaa ctacctgtac ctggtcatgg agtattacgt 660 gggcggggac ctgctgacac tgctgagcaa gtttggggag cggattccgg ccgagatggc 720 gcgcttctac ctggcggaga ttgtcatggc catagactcg gtgcaccggc ttggctacgt 780 gcacagggac atcaaacccg acaacatcct gctggaccgc tgtggccaca tccgcctggc 840 cgacttcggc tcttgcctca agctgcgggc agatggaacg gtgcggtcgc tggtggctgt 900 gggcacccca gactacctgt cccccgagat cctgcaggct gtgggcggtg ggcctgggac 960 aggcagctac gggcccgagt gtgactggtg ggcgctgggt gtattcgcct atgaaatgtt 1020 ctatgggcag acgcccttct acgcggattc cacggcggag acctatggca agatcgtcca 1080 ctacaaggag cacctctctc tgccgctggt ggacgaaggg gtccctgagg aggctcgaga 1140 cttcattcag cggttgctgt gtcccccgga gacacggctg ggccggggtg gagcaggcga 1200 cttccggaca catcccttct tctttggcct cgactgggat ggtctccggg acagcgtgcc 1260 cccctttaca ccggatttcg aaggtgccac cgacacatgc aacttcgact tggtggagga 1320 cgggctcact gccatggaga cactgtcgga cattcgggaa ggtgcgccgc taggggtcca 1380 cctgcctttt gtgggctact cctactcctg catggccctc agggacagtg aggtcccagg 1440 ccccacaccc atggaactgg aggccgagca gctgcttgag ccacacgtgc aagcgcccag 1500 cctggagccc tcggtgtccc cacaggatga aacagctgaa gtggcagttc cagcggctgt 1560 ccctgcggca gaggctgagg ccgaggtgac gctgcgggag ctccaggaag ccctggagga 1620 ggaggtgctc acccggcaga gcctgagccg ggagatggag gccatccgca cggacaacca 1680 gaacttcgcc agtcaactac gcgaggcaga ggctcggaac cgggacctag aggcacacgt 1740 ccggcagttg caggagcgga tggagttgct gcaggcagag ggagccacag ctgtcacggg 1800 ggtccccagt ccccgggcca cggatccacc ttcccatcta gatggccccc cggccgtggc 1860 tgtgggccag tgcccgctgg tggggccagg ccccatgcac cgccgccacc tgctgctccc 1920 tgccagggtc cctaggcctg gcctatcgga ggcgctttcc ctgctcctgt tcgccgttgt 1980 tctgtctcgt gccgccgccc tgggctgcat tgggttggtg gcccacgccg gccaactcac 2040 cgcagtctgg cgccgcccag gagccgcccg cgctccctga accctagaac tgtcttcgac 2100 tccggggccc cgttggaaga ctgagtgccc ggggcacggc acagaagccg cgcccaccgc 2160 ctgccagttc acaaccgctc cgagcgtggg tctccgccca gctccagtcc tgtgatccgg 2220 gcccgccccc tagcggccgg ggagggaggg gccgggtccg cggccggcga acggggctcg 2280 aagggtcctt gtagccggga atgctgctgc tgctgctgct gctgctgctg ctgctgctgc 2340 tgctgctgct gctgctgctg ctggggggat cacagaccat ttctttcttt cggccaggct 2400 gaggccctga cgtggatggg caaactgcag gcctgggaag gcagcaagcc gggccgtccg 2460 tgttccatcc tccacgcacc cccacctatc gttggttcgc aaagtgcaaa gctttcttgt 2520 gcatgacgcc ctgctctggg gagcgtctgg cgcgatctct gcctgcttac tcgggaaatt 2580 tgcttttgcc aaacccgctt tttcggggat cccgcgcccc cctcctcact tgcgctgctc 2640 tcggagcccc agccggctcc gcccgcttcg gcggtttgga tatttattga cctcgtcctc 2700 cgactcgctg acaggctaca ggacccccaa caaccccaat ccacgttttg gatgcactga 2760 gaccccgaca ttcctcggta tttattgtct gtccccacct aggaccccca cccccgaccc 2820 tcgcgaataa aaggccctcc atctgcccaa aaaaaaaaaa aaaaaaaaaa aaaaaaa 2877 <210> 2 <211> 14411 <212> DNA <213> Homo sapiens <400> 2 ctcccagccc agcgcctccc accccttttc atagcaggaa aagccggagc ccagggaggg 60 aacggacctg cgagtcacac aactggtgac ccacaccagc ggctggagca ggaccctctt 120 ggggagaaga gcatcctgcc cgcagccagg gcccctcatc aaagtcctcg gtgtttttta 180 aattatcaga actgcccagg accacgtttc ccaggccctg cccagctggg actcctcggt 240 ccttgcctcc tagtttctca ggcctggccc tctcaaggcc caggcacccc aggccggttg 300 gaggccccga cttccactct ggagaaccgt ccaccctgga aagaagagct cagattcctc 360 ttggctctcg gagccgcagg gagtgtgtct tcccgcgcca ccctccaccc cccgaaatgt 420 ttctgtttct aatcccagcc tgggcaggaa tgtggctccc cggccagggg ccaaggagct 480 attttggggt ctcgtttgcc cagggagggc ttggctccac cactttcctc ccccagcctt 540 tgggcagcag gtcacccctg ttcaggctct gagggtgccc cctcctggtc ctgtcctcac 600 caccccttcc ccacctcctg ggaaaaaaaa aaaaaaaaaa aaaaaaagct ggtataaagc 660 agagagcctg agggctaaat ttaactgtcc gagtcggaat ccatctctga gtcacccaag 720 aagctgccct ggcctcccgt ccccttccca ggcctcaacc cctttctccc acccagcccc 780 aacccccagc cctcaccccc tagcccccag ttctggagct tgtcgggagc aagggggtgg 840 ttgctactgg gtcactcagc ctcaattggc cctgtttcag caatgggcag gttcttcttg 900 aaattcatca cacctgtggc ttcctctgtg ctctaccttt ttattggggt gacagtgtga 960 cagctgagat tctccatgca ttccccctac tctagcactg aagggttctg aagggccctg 1020 gaaggaggga gcttgggggg ctggcttgtg aggggttaag gctgggaggc gggagggggg 1080 ctggaccaag gggtggggag aaggggagga ggcctcggcc ggccgcagag agaagtggcc 1140 agagaggccc aggggacagc cagggacagg cagacatgca gccagggctc cagggcctgg 1200 acaggggctg ccaggccctg tgacaggagg accccgagcc cccggcccgg ggaggggcca 1260 tggtgctgcc tgtccaacat gtcagccgag gtgcggctga ggcggctcca gcagctggtg 1320 ttggacccgg gcttcctggg gctggagccc ctgctcgacc ttctcctggg cgtccaccag 1380 gagctgggcg cctccgaact ggcccaggac aagtacgtgg ccgacttctt gcagtggggt 1440 gagtgcctac cctcggggct cctgcagatg gggtgggggt ggggcaggag acaggtctgg 1500 gcacagaggc ctggctgttg ggggggcagg atggcaggat gggcatgggg agatcctccc 1560 atcctggggc tcagagtgtg gacctgggcc ctggggcaac atttctctgt cctatgccac 1620 cactctggag gggcagagta aggtcagcag aggctagggt ggctgtgact cagagccatg 1680 gcttaggagt cacagcaggc taggctgcca acagcctccc atggcctctc tgcaccccgc 1740 ctcagggtca gggtcagggt catgctggga gctccctctc ctaggaccct ccccccaaaa 1800 gtgggctcta tggccctctc ccctggtttc ctgtggcctg gggcaagcca ggagggccag 1860 catggggcag ctgccagggg cgcagccgac aggcaggtgt tcggcgccag cctctccagc 1920 tgccccaaca ggtgcccagg cactgggagg gcggtgactc acgcgggccc tgtgggagaa 1980 ccagctttgc agacaggcgc caccagtgcc ccctcctctg cgatccagga gggacaactt 2040 tgggttcttc tgggtgtgtc tccttctttt gtaggttctg cacccacccc cacccccagc 2100 cccaaagtct cggttcctat gagccgtgtg ggtcagccac cattcccgcc accccgggtc 2160 cctgcgtcct ttagttctcc tggcccaggg cctccaacct tccagctgtc ccacaaaacc 2220 ccttcttgca agggctttcc agggcctggg gccagggctg gaaggaggat gcttccgctt 2280 ctgccagctg ccttgtctgc ccacctcctc cccaagccca ggactcgggc tcactggtca 2340 ctggtttctt tcattcccag caccctgccc ctctggccct catatgtctg gccctcagtg 2400 actggtgttt ggtttttggc ctgtgtgtaa caaactgtgt gtgacacttg tttcctgttt 2460 ctccgccttc ccctgcttcc tcttgtgtcc atctctttct gacccaggcc tggttccttt 2520 ccctcctcct cccatttcac agatgggaag gtggaggcca agaagggcca ggccattcag 2580 cctctggaaa aaccttctcc caacctccca cagcccctaa tgactctcct ggcctccctt 2640 tagtagagga tgaagttggg ttggcagggt aaactgagac cgggtggggt aggggtctgg 2700 cgctcccggg aggagcactc cttttgtggc ccgagctgca tctcgcggcc cctcccctgc 2760 caggcctggg gcgggggagg gggccagggt tcctgctgcc ttaaaagggc tcaatgtctt 2820 ggctctctcc tccctccccc gtcctcagcc ctggctggtt cgtccctgct ggcccactct 2880 cccggaaccc cccggaaccc ctctctttcc tccagaaccc actgtctcct ctccttccct 2940 cccctcccat acccatccct ctctccatcc tgcctccact tcttccaccc ccgggagtcc 3000 aggcctccct gtccccacag tccctgagcc acaagcctcc accccagctg gtcccccacc 3060 caggctgccc agtttaacat tcctagtcat aggaccttga cttctgagag gcctgattgt 3120 catctgtaaa taaggggtag gactaaagca ctcctcctgg aggactgaga gatgggctgg 3180 accggagcac ttgagtctgg gatatgtgac catgctacct ttgtctccct gtcctgttcc 3240 ttcccccagc cccaaatcca gggttttcca aagtgtggtt caagaaccac ctgcatctga 3300 atctagaggt actggataca accccacgtc tgggccgtta cccaggacat tctacatgag 3360 aacgtggggg tggggccctg gctgcacctg aactgtcacc tggagtcagg gtggaaggtg 3420 gaagaactgg gtcttatttc cttctcccct tgttctttag ggtctgtcct tctgcagact 3480 ccgttacccc accctaacca tcctgcacac ccttggagcc ctctgggcca atgccctgtc 3540 ccgcaaaggg cttctcaggc atctcacctc tatgggaggg catttttggc ccccagaacc 3600 ttacacggtg tttatgtggg gaagcccctg ggaagcagac agtcctaggg tgaagctgag 3660 aggcagagag aaggggagac agacagaggg tggggctttc ccccttgtct ccagtgccct 3720 ttctggtgac cctcggttct tttcccccac caccccccca gcggagccca tcgtggtgag 3780 gcttaaggag gtccgactgc agagggacga cttcgagatt ctgaaggtga tcggacgcgg 3840 ggcgttcagc gaggtaagcc gaaccgggcg ggagcctgac ttgactcgtg gtgggcgggg 3900 cataggggtt ggggcggggc cttagaaatt gatgaatgac cgagccttag aacctagggc 3960 tgggctggag gcggggcttg ggaccaatgg gcgtggtgtg gcaggtgggg cggggccacg 4020 gctgggtgca gaagcgggtg gagttgggtc tgggcgagcc cttttgtttt cccgccgtct 4080 ccactctgtc tcactatctc gacctcaggt agcggtagtg aagatgaagc agacgggcca 4140 ggtgtatgcc atgaagatca tgaacaagtg ggacatgctg aagaggggcg aggtgagggg 4200 ctgggcggac gtggggggct ttgaggatcc gcgccccgtc tccggctgca gctcctccgg 4260 gtgccctgca ggtgtcgtgc ttccgtgagg agagggacgt gttggtgaat ggggaccggc 4320 ggtggatcac gcagctgcac ttcgccttcc aggatgagaa ctacctggtg agctccgggc 4380 cggggtgact aggaagaggg acaagagccc gtgctgtcac tggacgagga ggtggggaga 4440 ggaagctcta ggattggggg tgctgcccgg aaacgtctgt gggaaagtct gtgtgcggta 4500 agagggtgtg tcaggtggat gaggggcctt ccctatctga gacggggatg gtgtccttca 4560 ctgcccgttt ctggggtgat ctgggggact cttataaaga tgtctctgtt gcggggggtc 4620 tcttacctgg aatgggatag gtcttcagga attctaacgg ggccactgcc tagggaagga 4680 gtgtctggga cctattctct gggtgttggg tggcctctgg gttctctttc ccagaacatc 4740 tcagggggag tgaatctgcc cagtgacatc ccaggaaagt ttttttgttt gtgttttttt 4800 ttgaggggcg ggggcggggg ccgcaggtgg tctctgattt ggcccggcag atctctatgg 4860 ttatctctgg gctggggctg caggtctctg cccaaggatg gggtgtctct gggaggggtt 4920 gtcccagcca tccgtgatgg atcagggcct caggggacta ccaaccaccc atgacgaacc 4980 ccttctcagt acctggtcat ggagtattac gtgggcgggg acctgctgac actgctgagc 5040 aagtttgggg agcggattcc ggccgagatg gcgcgcttct acctggcgga gattgtcatg 5100 gccatagact cggtgcaccg gcttggctac gtgcacaggt gggtgcagca tggccgaggg 5160 gatagcaagc ttgttccctg gccgggttct tggaaggtca gagcccagag aggccagggc 5220 ctggagaggg accttcttgg ttggggccca ccggggggtg cctgggagta ggggtcagaa 5280 ctgtagaagc cctacagggg cggaacccga ggaagtgggg tcccaggtgg cactgcccgg 5340 aggggcggag cctggtggga ccacagaagg gaggttcatt tatcccaccc ttctcttttc 5400 ctccgtgcag ggacatcaaa cccgacaaca tcctgctgga ccgctgtggc cacatccgcc 5460 tggccgactt cggctcttgc ctcaagctgc gggcagatgg aacggtgagc cagtgccctg 5520 gccacagagc aactggggct gctgatgagg gatggaaggc acagagtgtg ggagcgggac 5580 tggatttgga ggggaaaaga ggtggtgtga cccaggctta agtgtgcatc tgtgtggcgg 5640 agtattagac caggcagagg gaggggctaa gcatttgggg agtggttgga aggagggccc 5700 agagctggtg ggcccagagg ggtgggccca agcctcgctc tgctcctttt ggtccaggtg 5760 cggtcgctgg tggctgtggg caccccagac tacctgtccc ccgagatcct gcaggctgtg 5820 ggcggtgggc ctgggacagg cagctacggg cccgagtgtg actggtgggc gctgggtgta 5880 ttcgcctatg aaatgttcta tgggcagacg cccttctacg cggattccac ggcggagacc 5940 tatggcaaga tcgtccacta caaggtgagc acggccgcag ggagacctgg cctctcccgg 6000 taggcgctcc caggctatcg cctcctctcc ctctgagcag gagcacctct ctctgccgct 6060 ggtggacgaa ggggtccctg aggaggctcg agacttcatt cagcggttgc tgtgtccccc 6120 ggagacacgg ctgggccggg gtggagcagg cgacttccgg acacatccct tcttctttgg 6180 cctcgactgg gatggtctcc gggacagcgt gccccccttt acaccggatt tcgaaggtgc 6240 caccgacaca tgcaacttcg acttggtgga ggacgggctc actgccatgg tgagcggggg 6300 cggggtaggt acctgtggcc cctgctcggc tgcgggaacc tccccatgct ccctccataa 6360 agttggagta aggacagtgc ctaccttctg gggtcctgaa tcactcattc cccagagcac 6420 ctgctctgtg cccatctact actgaggacc cagcagtgac ctagacttac agtccagtgg 6480 gggaacacag agcagtcttc agacagtaag gccccagagt gatcagggct gagacaatgg 6540 agtgcagggg gtgggggact cctgactcag caaggaaggt cctggagggc tttctggagt 6600 ggggagctat ctgagctgag acttggaggg atgagaagca ggagaggact cctcctccct 6660 taggccgtct ctcttcaccg tgtaacaagc tgtcatggca tgcttgctcg gctctgggtg 6720 cccttttgct gaacaatact ggggatccag cacggaccag atgagctctg gtccctgccc 6780 tcatccagtt gcagtctaga gaattagaga attatggaga gtgtggcagg tgccctgaag 6840 ggaagcaaca ggatacaaga aaaaatgatg gggccaggca cggtggctca cgcctgtaac 6900 cccagcaatt tggcaggccg aagtgggtgg attgcttgag cccaggagtt cgagaccagc 6960 ctgggcaatg tggtgagacc cccgtctcta caaaaatgtt ttaaaaattg gttgggcgtg 7020 gtggcgcatg cctgtatact cagctactag ggtggccgac gtgggcttga gcccaggagg 7080 tcaaggctgc agtgagctgt gattgtgcca ctgcactcca gcctgggcaa cggagagaga 7140 ctctgtctca aaaataagat aaactgaaat taaaaaatag gctgggctgg ccgggcgtgg 7200 tggctcacgc ctgtaatctc agcactttgg gaggccgagg cgggtggatc acgaggtcag 7260 gagatcgaga ccatcttggc taacacggtg aaaccccatc tctcctaaaa atacaaaaaa 7320 ttagccaggc gtggtggcgg gcgcctgtag tcccagctac tcaggaggct gaggcaggag 7380 aatggcgtga acccgggagg cagagtttgc agtgagccga gatcgtgcca ctgcactcca 7440 gcctgggcga cagagcgaga ctctgtctca gaaaaaaaaa aaaaaaaaaa aaaaaatagg 7500 ctggaccgcg gccgggcgct gtggctcatg cctgtaatcc cagcactttg ggagtccaag 7560 gccggtgggt catgagatca ggagttttga gactaggctg gccaacacgg tgaaaccccg 7620 tctctactaa aaatacaaga aaattagctg ggtgtggtct cgggtgcctg taattccagt 7680 tactggggaa gctgaggcag gagaattgct tgaacctggg aggcagagtt tgcagtgagc 7740 caagatcatg ccactacact ccagtctggg tgacagagtg agactctgtc tcaaaaaaaa 7800 aaaaaaaaaa aagggttggg caaggtggtt cacgcctgta atcccagaac tttgggaggc 7860 tgaggcaggc agatcactgg aagtcaggag ttcaagacca gcctggccaa catggtgaaa 7920 ccctgtgtct actaaaaata caaaatttag ccaggcttgg tggcgtatgc ctgtaatgcc 7980 agctactcag gaggctgagg caggagaatc gcttgattga acctgggagg cagagtttgc 8040 agtgggctgg ggttgtgcca ctgcactcta ggctgggaga cagcaagact ccatctaaaa 8100 aaaaaaaaca gaactgggct gggcacagtg gcttatattt gtaatcccag cactttggga 8160 ggctgaggtt ggaggactgc ttgagcccag agtttgggac tacaacagct gaggtaggcg 8220 gatcacttga ggtcagaaga tggagaccag cctggccagc gtggcgaaac cccgtctcta 8280 ccaaaaatat aaaaaattag ccaggcgtgg tagagggcgc ctgtaatctc agctactcag 8340 gacgctgagg caggagaatc gcctgaacct gggaggcgga ggttgcagtg agctgagatt 8400 gcaccactgc actccagcct gggtaacaga gcgagactcc gtatcaaaga aaaagaaaaa 8460 agaaaaaatg ctggaggggc cactttagat aagccctgag ttggggctgg tttgggggga 8520 acatgtaagc caagatcaaa aagcagtgag gggcccgccc tgacgactgc tgctcacatc 8580 tgtgtgtctt gcgcaggaga cactgtcgga cattcgggaa ggtgcgccgc taggggtcca 8640 cctgcctttt gtgggctact cctactcctg catggccctc aggtaagcac tgccctggac 8700 ggcctccagg ggccacgagg ctgcttgagc ttcctgggtc ctgctccttg gcagccaatg 8760 gagttgcagg atcagtcttg gaaccttact gttttgggcc caaagactcc taagaggcca 8820 gagttggagg accttaaatt ttcagatcta tgtacttcaa aatgttagat tgaattttaa 8880 aacctcagag tcacagactg ggcttcccag aatcttgtaa ccattaactt ttacgtctgt 8940 agtacacaga gccacaggac ttcagaactt ggaaaatatg aagtttagac ttttacaatc 9000 agttgtaaaa gaatgcaaat tctttgaatc agccatataa caataaggcc atttaaaagt 9060 attaatttag gcgggccgcg gtggctcacg cctgtaatcc tagcactttg ggaggccaag 9120 gcaggtggat catgaggtca ggagatcgag accatcctgg ctaacacggt gaaaccccgt 9180 ctctactaaa aatacaaaaa aattagccgg gcatggtggc gggcgcttgc ggtcccagct 9240 acttgggagg cgaggcagga gaatggcatg aacccgggag gcggagcttg cagtgagccg 9300 agatcatgcc actgcactcc agcctgggcg acagagcaag actccgtctc aaaaaaaaaa 9360 aaaaaaaagt atttatttag gccgggtgtg gtggctcacg cctgtaattc cagtgctttg 9420 ggaggatgag gtgggtggat cacctgaggt caggagttcg agaccagcct gaccaacgtg 9480 gagaaacctc atctctacta aaaaacaaaa ttagccaggc gtggtggcat atacctgtaa 9540 tcccagctac tcaggaggct gaggcaggag aatcagaacc caggaggggg aggttgtggt 9600 gagctgagat cgtgccattg cattccagcc tgggcaacaa gagtgaaact tcatctcaaa 9660 aaaaaaaaaa aaaaagtact aatttacagg ctgggcatgg tggctcacgc ttggaatccc 9720 agcactttgg gaggctgaag tggacggatt gcttcagccc aggagttcaa gaccagcctg 9780 agcaacataa tgagaccctg tctctacaaa aaattgaaaa aatcgtgcca ggcatggtgg 9840 tctgtgcctg cagtcctagc tactcaggag tctgaagtag gagaatcact tgagcctgga 9900 gtttgaggct tcagtgagcc atgatagatt ccagcctagg caacaaagtg agacctggtc 9960 tcaacaaaag tattaattac acaaataatg cattgcttat cacaagtaaa ttagaaaata 10020 cagataagga aaaggaagtt gatatctcgt gagctcacca gatggcagtg gtccctggct 10080 cacacgtgta ctgacacatg tttaaatagt ggagaacagg tgtttttttg gtttgttttt 10140 ttccccttcc tcatgctact ttgtctaaga gaacagttgg ttttctagtc agcttttatt 10200 actggacaac attacacata ctatacctta tcattaatga actccagctt gattctgaac 10260 cgctgcgggg cctgaacggt gggtcaggat tgaacccatc ctctattaga acccaggcgc 10320 atgtccagga tagctaggtc ctgagccgtg ttcccacagg agggactgct gggttggagg 10380 ggacagccac ttcatacccc agggaggagc tgtccccttc ccacagctga gtggggtgtg 10440 ctgacctcaa gttgccatct tggggtccca tgcccagtct taggaccaca tctgtggagg 10500 tggccagagc caagcagtct ccccatcagg tcggcctccc tgtcctgagg ccctgagaag 10560 aggggtctgc agcggtcaca tgtcaaggga ggagatgagc tgaccctaga acatgggggt 10620 ctggacccca agtccctgca gaaggtttag aaagagcagc tcccaggggc ccaaggccag 10680 gagaggggca gggcttttcc taagcagagg aggggctatt ggcctacctg ggactctgtt 10740 ctcttcgctc tgctgctccc cttcctcaaa tcaggaggtc ttggaagcag ctgcccctac 10800 ccacaggcca gaagttctgg ttctccacca gagaatcagc attctgtctc cctccccact 10860 ccctcctcct ctccccaggg acagtgaggt cccaggcccc acacccatgg aactggaggc 10920 cgagcagctg cttgagccac acgtgcaagc gcccagcctg gagccctcgg tgtccccaca 10980 ggatgaaaca gtaagttggt ggaggggagg gggtccgtca gggacaattg ggagagaaaa 11040 ggtgagggct tcccgggtgg cgtgcactgt agagccctct agggacttcc tgaacagaag 11100 cagacagaaa ccacggagag acgaggttac ttcagacatg ggacggtctc tgtagttaca 11160 gtggggcatt aagtaagggt gtgtgtgttg ctggggatct gagaagtcga tctttgagct 11220 gagcgctggt gaaggagaaa caagccatgg aaggaaaggt gccaagtggt caggcgagag 11280 cctccagggc aaaggccttg ggcaggtggg aatcctgatt tgttcctgaa aggtagtttg 11340 gctgaatcat tcctgagaag gctggagagg ccagcaggaa acaaaaccca gcaaggcctt 11400 ttgtcgtgag ggcattaggg agctggaggg attttgagca gcagagggac ataggttgtg 11460 ttagtgtttg agcaccagcc ctctggtccc tgtgtagatt tagaggacca gactcaggga 11520 tggggctgag ggaggtaggg aagggagggg gcttggatca ttgcaggagc tatggggatt 11580 ccagaaatgt tgaggggacg gaggagtagg ggataaacaa ggattcctag cctggaacca 11640 gtgcccaagt cctgagtctt ccaggagcca caggcagcct taagcctggt ccccatacac 11700 aggctgaagt ggcagttcca gcggctgtcc ctgcggcaga ggctgaggcc gaggtgacgc 11760 tgcgggagct ccaggaagcc ctggaggagg aggtgctcac ccggcagagc ctgagccggg 11820 agatggaggc catccgcacg gacaaccaga acttcgccag gtcgggatcg gggccggggc 11880 cggggccggg atgcgggccg gtggcaaccc ttggcatccc ctctcgtccg gcccggacgg 11940 actcaccgtc cttacctccc cacagtcaac tacgcgaggc agaggctcgg aaccgggacc 12000 tagaggcaca cgtccggcag ttgcaggagc ggatggagtt gctgcaggca gagggagcca 12060 caggtgagtc cctcatgtgt ccccttcccc ggaggaccgg gaggaggtgg gccgtctgct 12120 ccgcggggcg tgtatagaca cctggaggag ggaagggacc cacgctgggg cacgccgcgc 12180 caccgccctc cttcgcccct ccacgcgccc tatgcctctt tcttctcctt ccagctgtca 12240 cgggggtccc cagtccccgg gccacggatc caccttccca tgtaagaccc ctctctttcc 12300 cctgcctcag acctgctgcc cattctgcag atcccctccc tggctcctgg tctccccgtc 12360 cagatatagg gctcacccta cgtctttgcg actttagagg gcagaagccc tttattcagc 12420 cccagatctc cctccgttca ggcctcacca gattccctcc gggatctccc tagataacct 12480 ccccaacctc gattcccctc gctgtctctc gccccaccgc tgagggctgg gctgggctcc 12540 gatcgggtca cctgtccctt ctctctccag ctagatggcc ccccggccgt ggctgtgggc 12600 cagtgcccgc tggtggggcc aggccccatg caccgccgcc acctgctgct ccctgccagg 12660 gtacgtccgg ctgcccacgc ccccctccgc cgtcgcgccc cgcgctccac ccgccccttg 12720 ccacccgctt agctgcgcat ttgcggggct gggcccacgg caggagggcg gatcttcggg 12780 cagccaatca acacaggccg ctaggaagca gccaatgacg agttcggacg ggattcgagg 12840 cgtgcgagtg gactaacaac agctgtaggc tgttggggcg ggggcggggc gcagggaaga 12900 gtgcgggccc acctatgggc gtaggcgggg cgagtcccag gagccaatca gaggcccatg 12960 ccgggtgttg acctcgccct ctccccgcag gtccctaggc ctggcctatc ggaggcgctt 13020 tccctgctcc tgttcgccgt tgttctgtct cgtgccgccg ccctgggctg cattgggttg 13080 gtggcccacg ccggccaact caccgcagtc tggcgccgcc caggagccgc ccgcgctccc 13140 tgaaccctag aactgtcttc gactccgggg ccccgttgga agactgagtg cccggggcac 13200 ggcacagaag ccgcgcccac cgcctgccag ttcacaaccg ctccgagcgt gggtctccgc 13260 ccagctccag tcctgtgatc cgggcccgcc ccctagcggc cggggaggga ggggccgggt 13320 ccgcggccgg cgaacggggc tcgaagggtc cttgtagccg ggaatgctgc tgctgctgct 13380 gctgctgctg ctgctgctgc tgctgctgct gctgctgctg ctgctggggg gatcacagac 13440 catttctttc tttcggccag gctgaggccc tgacgtggat gggcaaactg caggcctggg 13500 aaggcagcaa gccgggccgt ccgtgttcca tcctccacgc acccccacct atcgttggtt 13560 cgcaaagtgc aaagctttct tgtgcatgac gccctgctct ggggagcgtc tggcgcgatc 13620 tctgcctgct tactcgggaa atttgctttt gccaaacccg ctttttcggg gatcccgcgc 13680 ccccctcctc acttgcgctg ctctcggagc cccagccggc tccgcccgct tcggcggttt 13740 ggatatttat tgacctcgtc ctccgactcg ctgacaggct acaggacccc caacaacccc 13800 aatccacgtt ttggatgcac tgagaccccg acattcctcg gtatttattg tctgtcccca 13860 cctaggaccc ccacccccga ccctcgcgaa taaaaggccc tccatctgcc caaagctctg 13920 gactccacag tgtccgcggt ttgcgttgtg ggccggaggc tccgcagcgg gccaatccgg 13980 aggcgtgtgg aggcggccga aggtctggga ggagctagcg ggatgcgaag cggccgaatc 14040 agggttgggg gaggaaaagc cacggggcgg ggctttggcg tccggccaat aggagggcga 14100 gcgggccacc cggaggcacc gcccccgccc agctgtggcc cagctgtgcc accgagcgtc 14160 gagaagaggg ggctgggctg gcagcgcgcg cggccatcct ccttccactg cgcctgcgca 14220 cgccacgcgc atccgctcct gggacgcaag ctcgagaaaa gttgctgcaa actttctagc 14280 ccgttccccg cccctcctcc cggccagacc cgccccccct gcggagccgg gaattccgag 14340 gggcggagcg caggccgaga tggggaatgt gggggcctgc agaggaccct ggagacggag 14400 gcgtgcagaa g 14411 <210> 3 <211> 15000 <212> DNA <213> Mus musculus <400> 3 cagtgtcccc actgcccaag gctggctcca tcacgtaccg ctttggctca gctggccagg 60 acacacagtt ctgcctgtgg gacctcacag aagatgtgct ctcccctcat ccgtctctgg 120 cccgtacccg cacccttccg ggcacacctg gtgccacccc accagcttct ggtagttctc 180 gggccggaga gacaggtgca ggccccctgc cccgctccct gtctcgttcc aacagtctcc 240 cacacccagc tggtggtggc aaggctggtg ggcctagtgc atcgatggag cctggcatac 300 cattcagcat tggccgcttt gccacactga ccctgcagga gcggcgggac cggggagctg 360 agaaggaaca caaacgctac catagcctgg gaaacatcag ccgcggtggc agtgggggca 420 atagcagcaa tgacaagctc agtggtcctg ccccccgaag ccgattggac ccagctaagg 480 tgctgggcac ggcactgtgc cctcggatcc atgaggtgcc actgctggag cctctcgtgt 540 gcaagaagat tgctcaggaa cgcctgaccg tgctactgtt cctggaggat tgtatcatca 600 ctgcctgcca agagggcctc atctgcacct gggcccggcc aggcaaggcg gtgagtccgc 660 acctgcccaa gcgctgaggg gcaccagttc tgtccctacc ggatgccagt tatccgtcag 720 cagaaaggtc aggtatagga gacagaatgg ggggaaccac agctaacgtc tttagagcct 780 ctgctggccc atatggctca tccttagtac ttcacactca aggcagaacc tgtgtttata 840 ggaaatctga agtgtagatg gtgaaacttt attcaggtct agggatgtga ttgagctggg 900 ggcccacttc tggcctgcct cttagacact gtttctgagc cagctgctga aggcctggat 960 gggaattagc cagggtccag gcctgcactt cctcttgctg ctgtgtggtc ctggtcattg 1020 ggtctcacag atgggctgtg cagtggctgt gctcttagtt ggtgaggtgc aggcctgtca 1080 cctggtcagg cttgagcatg tggtctcagt gtctaggacc ctactctgcc ctcagtcctt 1140 cagtcccttg ctttggaagg ctagagtcca gaagccttag aacgtcaggc agttgcagag 1200 ccactgccag gctagtaggg ctgcgggagt tgactgagtt ctcacagaca cccctctgtc 1260 tccctagttc acagacgagg agaccgaggc ccaggcaggg caagcaagtt ggcccaggtc 1320 acccagcaag tcagttgtag aggtaggaca acccctgaag ctgcaagtgg accccagttt 1380 cttttctctc cactgtcgtc ccctgtatgc ccaggacacc tggggccaca ttactgtgga 1440 agtgctactc tgggtcagtg gagacggccg agctgtttgt tcctagctag gacagcagct 1500 ttaggcctgg ggggcagatc ccagctgggg cagcagctcc aaggcctttg ggtggctcct 1560 tctccgggtt ctggcagaag cccaggtgct gtctaatcca cctttctcct cttgttctcc 1620 ccagggcatc tcctcccaac caggcagctc ccccagtggc actgtggtgt gaaatgtgga 1680 tgtcccatgt tcccggcctc ctagccataa ccctccccgc tgacctcaag aatcactgta 1740 ttaacaagac taatcatgat ggaaggactg ctccaagccc cacgctgcac acatactggg 1800 ggtcccctag gttggcccag ccatggggat gtagtgtcct gtgtggcctt ggccctgtcc 1860 tccacccact gccaagtaca atgacctgtt ctctgaaaca tcagtgttaa ccatatccct 1920 gtcccagcat gtgactgttc actcctggga gagacttagc ccacagtacc cctgggtgag 1980 agggcagggc aggggccatc cccactcctg cccaaactcc accccttgct atggtctgtg 2040 attttgaaag tgttaaatta tggaagccct gagggccctc cttgttcccc tggacctctt 2100 atttatacta aagtccttgt ttgcacagtg tttctgttcc ctggggcagg gtagggtggg 2160 ggttgcagta cttggcctcc aagctgtgct ctgaccaaag gaagcccaat cttagctgtt 2220 tccccatccc tagccccgag cagagagccc tctgaaagat gagtctcgac ccccaaagtc 2280 aagaggctga gatggccttc ctactaggtc cttggagatg tttgaaactt gttttaaaca 2340 ccaggactat ccaagcatgc tctccttggg gagaggagga tgctggaatt gactgcactc 2400 cctgcctcct ctgaacatgc ctttgcagtc tgctgcccct ggcccattta tgactggcca 2460 tctagtgcca gctggaggtc atgatttcct ccccagagaa ctggccaccc tagaaagaag 2520 ctaacttgtc gcctggcttg ctgtccaggc agctccgccc tcaaccccta aaatgtttct 2580 gtctctaatc ctagcccagg caggaatgtg gctgccccgg cctgtggcca aggagctatt 2640 ttggggttct cttttgctta aggagggcct ggatccacca cttgcctccc ccaggctggg 2700 gccagcaggt cacccctggc cctggcggct gagcaaactc tctcctgatc ttccttctac 2760 ctcctgccaa aaaatggggg ggcgggtaat acagcaggca caggggctaa atttaactgt 2820 cccaaagtcg gaatccattg ctgagtcacg aagaagctgc ccctggcctt tgcccccccc 2880 actaccccct caccccctgt tgcccaggca tcagcccttt cccccaaccc ctcccagctc 2940 tgagtctata gactggctct cctgggcact gacacctccc acctgtaact ccctgtgctc 3000 tctttatggg tgggtagagt caatgggggg gggcaaccct ggagtattac tctgtcccct 3060 gacattgggc tctgaagagt tttgaggggc cctggaagaa gggagttggg gtgttggctc 3120 aggaggggtt aaaaactggg aggcgggagg ggggctgggc caaggggtgg agaaaagagg 3180 aggaggcctt aagcatagaa ctggccagag agacccaagg gatagtcagg gacgggcaga 3240 catgcagcta gggttctggg gcctggacag gggcagccag gccctgtgac gggaagaccc 3300 cgagctccgg cccggggagg ggccatggtg ttgcctgccc aacatgtcag ccgaagtgcg 3360 gctgaggcag ctccagcagc tggtgctgga cccaggcttc ctgggactgg agcccctgct 3420 cgaccttctc ctgggcgtcc accaggagct gggtgcctct cacctagccc aggacaagta 3480 tgtggccgac ttcttgcagt ggggtgagta tggataggaa gcctggggtt gggtgcaagg 3540 cagaggtggg tctacagggc aagaatgggc tatggagggg caggagggcc tggaaagggc 3600 tttttgtaag ggagccaagc agagctcatg acctgacccc aagctcccct ggtgaggcac 3660 cagggtcagt gaggccacct atgactcagc cagtgcaggc tggggtgggc atagcctcct 3720 gctatctcag cacccacact aggacctggc agctttctct tttaggaccc ttggctcctc 3780 aaactggctt catagccctc cccagtttcc cagagtgtgg ggagggacag cgtggggcag 3840 ctgccagggt gtggcccata ggcaggtgtt tggcgtctgc ctccccagct gccctgacag 3900 gtgtccagga gctatgaggg cactgtgact cacagaggcc ctgggggaga accagcccgg 3960 cagacaggcg ccaccgagca ccctttctgt tccccaaatt aagaggaagg aacaacttca 4020 gcttctgagt gtgcccatcc ctagcactct gatcccgccc agcctttgtg ggccagattg 4080 gtcatccctc ctggcttctc atctgctttt gtggttctag ctcaagacct ctaattcctc 4140 tgctgactta aatgcccttc cccagaggtc ttctcaggcc tagtggacaa gcttggagcc 4200 ttatctgctc ctgcccaaca ttgagccaaa gctccagctt accccagctt ccttacaagt 4260 aacgacctgt tttgttgctc tgtgcctatt attaagggtc caggtcttga ttcttggctg 4320 tctgcccatg tgtgtgaccc tagtgcattc tcccctcctc ccccgtttca cagatggaaa 4380 ggttgaggcc atcggttaga ctgctaagcc tgtgaaagac tttttctcct ctccagtctt 4440 tagtgtctcc ctcaaccttt cttttgaagg atggggtttg ggctggcagg gtaaactgag 4500 aactggggtg ggggcagggg gtctgaccct ctgggaagga gcagtccttt tgtggcctga 4560 gcagcatcct gtgggcccct cccctgccag gcctgggcgg gggagggggc ctgggttccc 4620 gctgccttaa aagggctcaa cgccttggct ctctcctcct ccccaccccc cagccttggc 4680 cctagctgta tcttccccgg ctgcccactt tcccaaaccc ctttcttctc tgtgacccca 4740 tctccccgct tccccacacg tccctcctcc atccttactc cccggcctta gaacttccct 4800 aagggagatc tgacctccct ctgcccaccc cgcaccccca gtcgccagcc tcagacctag 4860 ctgctctccc ctctggctga accaccctag cacaggacct tataccctgg agctttggtt 4920 ataagaagac tctccttcac cctttggaaa ccaagaaagc ccttccaaca gtgtccagga 4980 tgctggaggg cagtgaccct cccccacttc ttcttcgtgc tggctgtgct gacacagctc 5040 cagttcgagg ttgtggcccg agacattaag tgagagcccc gggtgacctg acttagcacc 5100 ctgatcatca catgggagtg aaaggcctga tgcgccagct tctcccactg cctccctttc 5160 tgccctgcaa ccctgtggaa acaggcagtt ctgggtccca caaacatcac agaggttttg 5220 aaagcagaat cctaaagccg atttaagggg cagaaggaag gaggctataa agtcactacc 5280 cttaccgcta gtgttctgat gacccttggt tcttcttccc ccacccccgc ccagtggagc 5340 ccattgcagc aaggcttaag gaggtccgac tgcagaggga tgattttgag attttgaagg 5400 tgatcgggcg tggggcgttc agcgaggtga gtcttcagtg gcctgggaat ggaactttac 5460 ttgatgtggg tggggcataa cagctggggc agagccttaa aaattgatga atgagcttga 5520 atttaaggct ggaggggtgg gggcggagct tgtggtcagt gggcggtgtg cacgtgaggg 5580 cggggctaag gttgggtgga gataagggtg gagtcctgtc tgggtgagcc ttgctggttt 5640 tccctgccac ctcttgctgt catctcggtt ccgtatttag gtagcggtgg tgaagatgaa 5700 acagacgggc caagtgtatg ccatgaagat tatgaataag tgggacatgc tgaagagagg 5760 cgaggtgagg gccagggatt agggcagcgc cctcatctct ccaactcacc tcctgtagct 5820 tctctcctac ctcacaggtg tcgtgcttcc gggaagaaag ggatgtatta gtgaaagggg 5880 accggcgctg gatcacacag ctgcactttg ccttccagga tgagaactac ctggtaagct 5940 ccgggttcag gtgactagga aagagtgaca gttacatcgc cccaagtcaa gaaggctgga 6000 gaagggagaa gctgctgtag atcggggggg tgggggtggg ggggacacac acaggggatg 6060 ggggacgggg gtaggattgt gtctcaagta taggagagac cttccttgag acaggagtga 6120 tatctggttt ggcctttgga tggggcgctc tctcactgtg cgggggtcct ctgtgcttgg 6180 gaacggggtg tctttgggag tcttgggggc taccaaaccc ctgtgacaca cccgctccca 6240 gtacctggtc atggaatact acgtgggcgg ggacctgcta acgctgctga gcaagtttgg 6300 ggagcggatc cccgccgaga tggctcgctt ctacctggcc gagattgtca tggccataga 6360 ctccgtgcac cggctgggct acgtgcacag gtgggcgtgg cggggccctt ggagggttag 6420 cagaatttgt gtgggaagga agggtacctg aaggtcagat cccattgggg acagaatcgg 6480 ggtctagaat tgtagaatcc tgggtggggt ggaagtggat cgagctgacg ggccctaaga 6540 gggaaggttt tcaagaaagc acactttccc tcttctctct atgcacaggg acatcaaacc 6600 agataacatt ctgctggacc gatgtgggca cattcgcctg gcagacttcg gctcctgcct 6660 caaactgcag cctgatggaa tggtaagaag agcctggcga aactctcctc attggtgaag 6720 gaccggatta gggggcgggg ctgggttgag gagcaggagg ggagcttggt ctgggatgtc 6780 ctgcgcacca tatttggaca gtcaagggaa aggttttaag cattcaggtc tgattggcac 6840 aggtgaggtc gctggtggct gtgggcaccc cggactacct gtctcctgag attctgcagg 6900 ccgttggtgg agggcctggg gcaggcagct acgggccaga gtgtgactgg tgggcactgg 6960 gcgtgttcgc ctatgagatg ttctatgggc agaccccctt ctacgcggac tccacagccg 7020 agacatatgc caagattgtg cactacaggg tgagcacaag caccatgcag gggggctgac 7080 ttagtggctt gtgctcccag actgtctttt ttaaaagata tttatttata tgtgtgtgtt 7140 ttctgtgtat gtatatctgt gcactgagta ggtgtgcgaa ggtcagaggg catgggatcc 7200 cctggaactg gagtcacaga ctattgtgtg ctgccatgct gagtgctggg aaacagaacc 7260 ttgatcactc tgcaagagca gccagtgcac tgaaacgaca gagccagctc tgcagcccag 7320 ggctaactgt tgcttttctt tctaaatagg aacacttgtc gctgccgctg gcagacacag 7380 ttgtccccga ggaagctcag gacctcattc gtgggctgct gtgtcctgct gagataaggc 7440 taggtcgagg tggggcaggt gatttccaga aacatccttt cttctttggc cttgattggg 7500 agggtctccg agacagtgta ccccccttta caccagactt cgagggtgcc acggacacat 7560 gcaatttcga tgtggtggag gaccggctca ctgccatggt gagcgggggc ggggtacgta 7620 cctgcagttc ctgatccgtt gaggggactt ccctagcctc ttccataaaa ttggggtgat 7680 tggccaggtg tggtggtgca tacctttaat cgtagaactt cataggcaga ggcaggtggc 7740 tctctggtaa atcaaggcca tcttggtcta catagtgact tctaggccag tcaggagtga 7800 gatcctccct tgaaaaataa aaaagggggt gttgaccttc ctgggtccca aattattatc 7860 ctagagcact gctatgtatc cactcaggta tgaggacaca caggtgacca gtcccaaaga 7920 cagtgagtga ggcctcactc ttggcagtac taaaattgat tgtagggggc tgggctcttg 7980 acccagcctg gaaagtgctg gagggcttcc tggaggagga gactagctga gcccagaagg 8040 atgcaggaga tcctttctcg ggtgagtgct ctcagcattt taacaagctc taggccctgc 8100 agagagaagt ctggtgtggg cagagcccca atagaaagca acaagataga agagaaaatg 8160 gtggagtttg ttagtggggg cagttatgcc gtgaacatag aggggcgaag ggccatctcg 8220 gataactgct agccacaaga gccctgtctg tcttcctagg agacgctgtc agacatgcag 8280 gaagacatgc cccttggggt gcgcctgccc ttcgtgggct actcctactg ctgcatggcc 8340 ttcaggtgag cacgactgcc ccctgctggg gcctgtgtgc aggcccacca cagccactca 8400 attgaaggct cagtcttcaa accaagtatt cctaggagct gtctaagtta ggctttctgc 8460 tgctgcgatg aaccctgact aaaagcaagc tggggaggaa aaggcttatc gggcttacgt 8520 ttccacatgg gagcccatca ctgaaggaag ccaggacagg aactcacagc ggggcaggaa 8580 cgtggagctg atgcagaggc aatggagggg agctgcttac tgacttgatc cttatgtctt 8640 cctcagcctg tttccttgta gagcccagga ccaccaggcc agtgagggct ccactcacaa 8700 tgggctgagc tctcatctat gatcactagt tatgaaaatg cccgataggc ttgcctgcag 8760 cttcagtttt tgaggcactt tccttccttc cttccttcct tccttccttc cttccttcct 8820 ttctttcttt ctttctttct ttctttcttt ctttctttct ttctttcttt ctttctttct 8880 tagtctttta gagacagggt ctttctatgt agctctggct gtcttggaat tcattctgta 8940 gaccaggctg gtcttattta tttattttat gtatgtgagt ccactatcac tgtcctcaga 9000 cacaccagaa gagggcatca gatcccatta cagatggctg tgagccacca tgtggttgct 9060 gggaattgaa ctcaggacct ctggaagagc agccagtgct cctgccctgt agaggcattt 9120 tcttcatgaa ggctgtctcc tctctgatga cttgatgact ctagcttgtt gtgtcaagtg 9180 gacataagac taggaaagca gctacacatg cactttgttt atttttgttt tgctttttga 9240 gactgggtct ctccatctca tagctctggc catcctgcct ggtgacattc cagtccagtt 9300 gtataaccta agaatctgag actcagcctt gcagaatcct gctattaacg ggtctaggac 9360 actccataga atccaggatc ttagaaaaac aaacctgaag tgtgacagtt tattttaaga 9420 acacaattgg agcacataac aataatacaa cttttcagtt ttaaaaagtt ttctgtcttg 9480 ttttttgagg caggagctcc ttaatatagt ctaagccgcc ctgcgagtgc tgtgattgat 9540 gggcatgtac caccatgcct agtcaataaa gcctttaaaa agcatccgtt atgctggctg 9600 tggtgccaca aacctgtaat cccagcactt agaaggtaga ggcaagatta tcagaaattc 9660 aaggccatcc tgggctatac agtaatctaa ggctagcctg gtctacaaga gactctgtct 9720 aaagaaacaa aagataaata gcacccacta ttgctaggca atataaccct ataaccccac 9780 cattgaggag gctgaggctg gagcatcact gcaaatttga ggccaggatg gtcaacaaat 9840 aagtcccaga gctggcatag aggaactctg tctcaacaat aaagagaact tatctagcat 9900 ttatgagggt aaataaaaat ttaccattgc cacaaaaaat gtaaatgaag agactgcttt 9960 taggagtgaa ctgggaagca gggaacactt agaggatgct cactcacaca ggtatccacc 10020 atcaggcatg cctcaggcct gcacagggaa ggacaacttg tttcatgatt tgcaagcagc 10080 atcccatgct ccttagagcg ggttgggccc agcccaccct ctgtggagtt atcgctcagc 10140 caggcagcaa ggcagccaag gtgctgaggc cctggcagtc tgctctcttc tctgctctga 10200 acctccttta gctttagcct aggagcctgg cctggtgccc acaggctagg gagtccctag 10260 cctcttcctc ttctcagaga caatcaggtc ccggacccca cccctatgga actagaggcc 10320 ctgcagttgc ctgtgtcaga cttgcaaggg cttgacttgc agcccccagt gtccccaccg 10380 gatcaagtgg tgagtagact gagaggtggg caaagcttcc tgggtgggtg tacctgcagt 10440 gccaactgcc aggctgttaa ttcagtagga cactgtcccc aactggccca actgcacatc 10500 ctgtagtcag gaggcacagg cagaaaaatc ccaaattcaa ggcttgctcc cgttatgtaa 10560 tgagatcctg tcttggagta aaaaacaaag aagagaacta gggatagctc agaggtagat 10620 gctctcctgg catgggggtg gggtcagaaa gcaacaccaa ccggggcctg ggagggaggg 10680 actgccaacc acctggagga gtctggggta gacttggtga acaaagttca gaggccatca 10740 ggtgggatgc tggtttctta aaagccacag ataggtgggt agcattggaa agaggagtgg 10800 ggggttgcag aaagtgacaa gacacaaact ggggaggcct aagggtaaag ccagggttgt 10860 ctgaagcact gtggagctgg gaggaacacg ctaaacttct gacttcagcc cttcagttcc 10920 cctgttgact acactgtccc cagggaccca gggatgggga gaggtggacg ggggagggaa 10980 gtacgggact gatccagctc caggtcccaa ctctgatccc caccgacagg ctgaagaggc 11040 tgacctagtg gctgtccctg cccctgtggc tgaggcagag accacggtaa cgctgcagca 11100 gctccaggaa gccctggaag aagaggttct cacccggcag agcctgagcc gcgagctgga 11160 ggccatccgg accgccaacc agaacttctc caggtcaggg tcacagtgct ggggtgaggg 11220 gagaggagag cagcaaccct cgcagtctcc tcaccgatag gtcggctcac tcccctatct 11280 ttcccagcca actacaggag gccgaggtcc gaaaccgaga cctggaggcg catgttcggc 11340 agctacagga acggatggag atgctgcagg ccccaggagc cgcaggcgag tccctcacct 11400 gcttccagcc aagggggcac tgggtggaga tggggggcat gttgggtgtg tgaaccctcg 11460 gggcagggga ggagtccagg ctggggcacc gcagccgcgc cactgccttt ctcctccatc 11520 ctccacactc catacacctc tctcttctcc ttccagccat cacgggggtc cccagtcccc 11580 gggccacgga tccaccttcc catgtaagac ccctctctcc cctccccgat ccccatctta 11640 gatatgctac ccacagccct tctcccgtcc acgtttaggg tccattctcc ttgggggttc 11700 cagaagaaag ctgcccttca ctcatccatt cagcatgcac tatctaccag ctctccctcg 11760 tttcaggctt ctcgccaaat cctccccaag ggaactccct atactcccgt tctggcctcg 11820 actagattcc cgcactgcct ctcgccctgc tgctgggctc cgatcgggtc acctgtccct 11880 tctctctcca gctagatggc cccccggccg tggctgtggg ccagtgcccg ctggtggggc 11940 caggccccat gcaccgccgt cacctgctgc tccctgccag ggtatgtccc acgtccgccc 12000 accacgggcc tctgcctagc tctgcccact gagtgtcacc actgcttgct gtgcctctgt 12060 ggagctcggc ccaccgcagg gagggggggt attcgggcgg ccaatcaaca caggctgctg 12120 ctaagtagcc aatgacgagt tccaacagga gctctttctt gcgagcagac caactttagc 12180 tgcgggctgt ggggaccaga gatgcgctca gaggcccatc tatgggtata ggctgggcgg 12240 ctcccaggag ccagtgggcc cctgtagcct agtgctaatc caaccttctc tcctgcagat 12300 ccctaggcct ggcctatccg aggcgcgttg cctgctcctg ttcgccgctg ctctggctgc 12360 tgccgccaca ctgggctgca ctgggttggt ggcctatacc ggcggtctca ccccagtctg 12420 gtgtttcccg ggagccacct tcgccccctg aaccctaaga ctccaagcca tctttcattt 12480 aggcctccta ggaaggtcga gcgaccaggg agcgacccaa agcgtctctg tgcccatcgc 12540 gccccccccc cccccccacc gctccgctcc acacttctgt gagcctgggt ccccacccag 12600 ctccgctcct gtgatccagg cctgccacct ggcggccggg gagggaggaa cagggctcgt 12660 gcccagcacc cctggttcct gcagagctgg tagccaccgc tgctgcagca gctgggcatt 12720 cgccgacctt gctttactca gccccgacgt ggatgggcaa actgctcagc tcatccgatt 12780 tcactttttc actctcccag ccatcagtta caagccataa gcatgagccc cctatttcca 12840 gggacatccc attcccatag tgatggatca gcaagacctc tgccagcaca cacggagtct 12900 ttggcttcgg acagcctcac tcctgggggt tgctgcaact ccttccccgt gtacacgtct 12960 gcactctaac aacggagcca cagctgcact cccccctccc ccaaagcagt gtgggtattt 13020 attgatcttg ttatctgact cactgacaga ctccgggacc cacgttttag atgcattgag 13080 actcgacatt cctcggtatt tattgtctgt ccccacctac gacctccact cccgaccctt 13140 gcgaataaaa tacttctggt ctgccctaaa tcccgcgcaa tatctctgtt gtggaaagga 13200 aaccgccccg caggccaatg gagagtccaa tagagacaac caatggcttg agtgggagct 13260 agaggggagg caaagcgcac gaatcaggtt gaagggtggg gcttaggcat ccagccagta 13320 ggagagaagc aacaagccac cagagacacc accgcccccc accctccccc ccagctgtga 13380 cccagctgtg ccactcaagt ttggaaaaaa gtagggggtt gggccagcag cgggcacacc 13440 atcttcccac tgcgcctgcg caagccacgc gcatccgctt tttggaccga cactccagaa 13500 aagttgctgc aaactttcta gcgcgattcc ccgcccctcc tcccagctag atccaccgcc 13560 tacccgcggg gccgggaatt ccgaggggcg gagcacggcg cggagatggg aagggagggg 13620 gcccttcaag ggacccggga gatgggagcg gcttcgcgcc cttaaccctc cggacggccc 13680 attaccttct ccgttgctct gatagggaaa ctgaggccct gagtcagagg cacacaaggg 13740 gggaaggcca aaagcgcggc cagagacgga gggaaaacaa agaatcctga cagcccggga 13800 ggggggcgga cacacaggga caaggacaga cccgagtgca gagctgggtc tagtctttgg 13860 gagggggcca gaagactgca aggggaccgg gggggggggc ggcgaggagg actgggcgga 13920 ggagggggct ggggaagccc gcgggaggcg gcaaaggagg gaggaacttt ccaaagttgc 13980 caaacatggc tacctcgcct gcggagccga gcgcggggcc cgcggctcgg ggggaggcgg 14040 cggcggcgac cgaggagcag gaggaggaag cgcgccagct tctgcagact ctgcaggcag 14100 ccgaggggga ggcggcggcg gccggggcgg gagatgcggc ggcggcggcg gactctgggt 14160 ccccgagtgg cccggggtct ccccgggaga ccgtgaccga ggtgcccact ggccttcgct 14220 tctcgcccga acaggtggca tgcgtgtgcg aggcgctgct gcaggcgggc cacgccggcc 14280 gcttgagccg cttcctgggc gcgctgcccc cggccgagcg cctacgtggc agcgatccgg 14340 tgctgcgcgc gcgggcccta gtggccttcc agcggggtga atacgccgag ctctaccaac 14400 ttctcgagag ccgccctttc cccgccgccc accacgcctt cctgcaggac ctctacctgc 14460 gcgcgcgcta ccacgaggcc gagcgggccc gtggccgtgc gctgggcgct gtggacaaat 14520 accggctgcg caagaagttc cctctgccca agaccatctg ggatggcgag gagaccgtct 14580 attgcttcaa ggagcgctcg cgagcggcgc tcaaggcctg ctaccgcggc aaccgctatc 14640 ccacgcctga cgagaagcgc cgcctggcca cgctcaccgg cctctcgctt acacaggtca 14700 gcaactggtt caagaaccgg cgacagcgcg accgcactgg gaccggcggt ggagcgcctt 14760 gcaaaaggtg aggggggaac cgaccctcct tcctcggtgg ccgctggagt ctgcgcaagt 14820 gacccttcac atccctcttc ggtggcgtcg gcgagtgcat aggctgagcg tggagagacc 14880 aggcacaccc tgggttctct gggcatcact gcctcagggg cagaggttgt tccagctact 14940 tctaagctgg gaacgcagtg ccaggaatgg gggggggggc gggggcggga cgggcagtga 15000 <210> 4 <211> 1896 <212> DNA <213> Mus musculus <400> 4 atgtcagccg aagtgcggct gaggcagctc cagcagctgg tgctggaccc aggcttcctg 60 ggactggagc ccctgctcga ccttctcctg ggcgtccacc aggagctggg tgcctctcac 120 ctagcccagg acaagtatgt ggccgacttc ttgcagtggg tggagcccat tgcagcaagg 180 cttaaggagg tccgactgca gagggatgat tttgagattt tgaaggtgat cgggcgtggg 240 gcgttcagcg aggtagcggt ggtgaagatg aaacagacgg gccaagtgta tgccatgaag 300 attatgaata agtgggacat gctgaagaga ggcgaggtgt cgtgcttccg ggaagaaagg 360 gatgtattag tgaaagggga ccggcgctgg atcacacagc tgcactttgc cttccaggat 420 gagaactacc tgtacctggt catggaatac tacgtgggcg gggacctgct aacgctgctg 480 agcaagtttg gggagcggat ccccgccgag atggctcgct tctacctggc cgagattgtc 540 atggccatag actccgtgca ccggctgggc tacgtgcaca gggacatcaa accagataac 600 attctgctgg accgatgtgg gcacattcgc ctggcagact tcggctcctg cctcaaactg 660 cagcctgatg gaatggtgag gtcgctggtg gctgtgggca ccccggacta cctgtctcct 720 gagattctgc aggccgttgg tggagggcct ggggcaggca gctacgggcc agagtgtgac 780 tggtgggcac tgggcgtgtt cgcctatgag atgttctatg ggcagacccc cttctacgcg 840 gactccacag ccgagacata tgccaagatt gtgcactaca gggaacactt gtcgctgccg 900 ctggcagaca cagttgtccc cgaggaagct caggacctca ttcgtgggct gctgtgtcct 960 gctgagataa ggctaggtcg aggtggggca ggtgatttcc agaaacatcc tttcttcttt 1020 ggccttgatt gggagggtct ccgagacagt gtacccccct ttacaccaga cttcgagggt 1080 gccacggaca catgcaattt cgatgtggtg gaggaccggc tcactgccat ggtgagcggg 1140 ggcggggaga cgctgtcaga catgcaggaa gacatgcccc ttggggtgcg cctgcccttc 1200 gtgggctact cctactgctg catggccttc agagacaatc aggtcccgga ccccacccct 1260 atggaactag aggccctgca gttgcctgtg tcagacttgc aagggcttga cttgcagccc 1320 ccagtgtccc caccggatca agtggctgaa gaggccgacc tagtggctgt ccctgcccct 1380 gtggctgagg cagagaccac ggtaacgctg cagcagctcc aggaagccct ggaagaagag 1440 gttctcaccc ggcagagcct gagccgcgag ctggaggcca tccggaccgc caaccagaac 1500 ttctccagcc aactacagga ggccgaggtc cgaaaccgag acctggaggc gcatgttcgg 1560 cagctacagg aacggatgga gatgctgcag gccccaggag ccgcagccat cacgggggtc 1620 cccagtcccc gggccacgga tccaccttcc catctagatg gccccccggc cgtggctgtg 1680 ggccagtgcc cgctggtggg gccaggcccc atgcaccgcc gtcacctgct gctccctgcc 1740 aggatcccta ggcctggcct atccgaggcg cgttgcctgc tcctgttcgc cgctgctctg 1800 gctgctgccg ccacactggg ctgcactggg ttggtggcct ataccggcgg tctcacccca 1860 gtctggtgtt tcccgggagc caccttcgcc ccctga 1896 <210> 5 <211> 771 <212> DNA <213> Mus musculus <220> <221> misc_feature <222> 89, 238, 506 <223> n = A,T,C or G <400> 5 cctgcccctg tggctgaggc agagaccacg gtaacgctgc agcagctcca ggaagccctg 60 gaagaagagg ttctcacccg gcagagctng agccgcgagc tggaggccat ccggaccgcc 120 aaccagaact tctccagcca actacaggag gccgaggtcc gaaaccgaga cctggaggcg 180 catgttcggc agctacagga acggatggag atgctgcagg ccccaggagc cgccggantc 240 cctcacctgc ttccagccaa gggggcactg ggtggagatg gggggcatgt tgggtgtgtg 300 aaccctcggg gcaggggagg agtccaggct ggggcaccgc gccgcgccac tgcctttctc 360 ctccatcctc cacactccat acacctctct cttctccttc cagccatcac gggggtccca 420 gtccccgggc cacggatcca ccttcccatc tagatggccc cccggcggtg gctgtgggcc 480 agtgcccgct ggtggggcca ggacantgtc accgccgtca cctgctgctc cctgccagga 540 ttcctaggcc tggctatccg aggcgcgttg ctgctcctgt tcgccgctgc tctggctgct 600 gcgccacact gggctgcact gggttggttg gctataccgg cggtcttcac ccagtctggt 660 gtttcccgtg agcacccttc gcccctgaaa cctaagactt caagccatct ttcatttagg 720 ccttctagga aggtcgagcg acaggggagc gacccaaagc gtctctgtgc c 771 <210> 6 <211> 434 <212> DNA <213> Mus musculus <400> 6 gagagaccca aggggtagtc agggacgggc agacatgcag ctagggttct ggggcctgga 60 caggggcagc caggccctgt gacgggaaga ccccgagctc cggcccgggg aggggccatg 120 gtgttgcctg cccaacatgt cagccgaagt gcggctgagg cagctccagc agctggtgct 180 ggacccaggc ttcctgggac tggagcccct gctcgacctt ctcctgggcg tccaccagga 240 gctgggtgcc tctcacctag cccaggacaa gtatgtggcc gacttcttgc agtgggtgga 300 gcccattgca gcaaggctta aggaggtccg actgcagagg gatgattttg agattttgaa 360 ggtgatcggg cgtggggcgt tcagcgaggt agcggtggtg aagatgaaac acacggagtc 420 tttggcttcg gaca 434 <210> 7 <211> 2688 <212> DNA <213> Mus musculus <400> 7 ccacgcgtcc gcccacgcgt ccggggcaga catgcagcta gggttctggg gcctggacag 60 gggcagccag gccctgtgac gggaagaccc cgagctccgg cccggggagg ggccatggtg 120 ttgcctgccc aacatgtcag ccgaagtgcg gctgaggcag ctccagcagc tggtgctgga 180 cccaggcttc ctgggactgg agcccctgct cgaccttctc ctgggcgtcc accaggagct 240 gggtgcctct cacctagccc aggacaagta tgtggccgac ttcttgcagt gggtggagcc 300 cattgcagca aggcttaagg aggtccgact gcagagggat gattttgaga ttttgaaggt 360 gatcgggcgt ggggcgttca gcgaggtagc ggtggtgaag atgaaacaga cgggccaagt 420 gtatgccatg aagattatga ataagtggga catgctgaag agaggcgagg tgtcgtgctt 480 ccgggaagaa agggatgtat tagtgaaagg ggaccggcgc tggatcacac agctgcactt 540 tgccttccag gatgagaact acctgtacct ggtcatggaa tactacgtgg gcggggacct 600 gctaacgctg ctgagcaagt ttggggagcg gatccccgcc gagatggctc gcttctacct 660 ggccgagatt gtcatggcca tagactccgt gcaccggctg ggctacgtgc acagggacat 720 caaaccagat aacattctgc tggaccgatg tgggcacatt cgcctggcag acttcggctc 780 ctgcctcaaa ctgcagcctg atggaatggt gaggtcgctg gtggctgtgg gcaccccgga 840 ctacctgtct cctgagattc tgcaggccgt tggtggaggg cctggggcag gcagctacgg 900 gccagagtgt gactggtggg cactgggcgt gttcacctat gagatgttct atgggcagac 960 ccccttctac gcggactcca cagccgagac atatgccaag attgtgcact acagggaaca 1020 cttgtcgctg ccgctggcag acacagttgt ccccgaggaa gctcaggacc tcattcgtgg 1080 gctgctgtgt cctgctgaga taaggctagg tcgaggtggg gcaggtgatt tccagaaaca 1140 tcctttcttc tttggccttg attgggaggg tctccgagac agtgtacccc cctttacacc 1200 agacttcgag ggtgccacgg acacatgcaa tttcgatgtg gtggaggacc ggctcactgc 1260 catggtgagc gggggcgggg agacgctgtc agacatgcag gaagacatgc cccttggggt 1320 gcgcctgccc ttcgtgggct actcctactg ctgcatggcc ttcagagaca atcaggtccc 1380 ggaccccacc cctatggaac tagaggccct gcagttgcct gtgtcagact tgcaagggct 1440 tgacttgcag cccccagtgt ccccaccgga tcaagtggct gaagaggctg acctagtggc 1500 tgtccctgcc cctgtggctg aggcagagac cacggtaacg ctgcagcagc tccaggaagc 1560 cctggaagaa gaggttctca cccggcagag cctgagccgc gagctggagg ccatccggac 1620 cgccaaccag aacttctcca gccaactaca ggaggccgag gtccgaaacc gagacctgga 1680 ggcgcatgtt cggcagctac aggaacggat ggagatgctg caggccccag gagccgcaga 1740 tccctaggcc tggcctatcc gaggcgcgtt gcctgctcct gttcgccgct gctctggctg 1800 ctgccgccac actgggctgc actgggttgg tggcctatac cggcggtctc accccagtct 1860 ggtgtttccc gggagccacc ttcgccccct gaaccctaag actccaagcc atctttcatt 1920 taggcctcct aggaaggtcg agcgaccagg gagcgaccca aagcgtctct gtgcccatcg 1980 cccccccccc cccccccacc gctccgctcc acacttctgt gagcctgggt ccccacccag 2040 ctccgctcct gtgatccagg cctgccacct ggcggccggg gagggaggaa cagggctcgt 2100 gcccagcacc cctggttcct gcagagctgg tagccaccgc tgctgcagca gctgggcatt 2160 cgccgacctt gctttactca gccccgacgt ggatgggcaa actgctcagc tcatccgatt 2220 tcactttttc actctcccag ccatcagtta caagccataa gcatgagccc cctatttcca 2280 gggacatccc attcccatag tgatggatca gcaagacctc tgccagcaca cacggagtct 2340 ttggcttcgg acagcctcac tcctgggggt tgctgcaact ccttccccgt gtacacgtct 2400 gcactctaac aacggagcca cagctgcact cccccctccc ccaaagcagt gtgggtattt 2460 attgatcttg ttatctgact cactgacaga ctccgggacc cacgttttag atgcattgag 2520 actcgacatt cctcggtatt tattgtctgt ccccacctac gacctccact cccgaccctt 2580 gcgaataaaa tacttctggt ctgccctaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2640 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaa 2688 <210> 8 <211> 2862 <212> DNA <213> Mus musculus <400> 8 gggatagtca gggacgggca gacatgcagc tagggttctg gggcctggac aggggcagcc 60 aggccctgtg acgggaagac cccgagctcc ggcccgggga ggggccatgg tgttgcctgc 120 ccaacatgtc agccgaagtg cggctgaggc agctccagca gctggtgctg gacccaggct 180 tcctgggact ggagcccctg ctcgaccttc tcctgggcgt ccaccaggag ctgggtgcct 240 ctcacctagc ccaggacaag tatgtggccg acttcttgca gtgggtggag cccattgcag 300 caaggcttaa ggaggtccga ctgcagaggg atgattttga gattttgaag gtgatcgggc 360 gtggggcgtt cagcgaggta gcggtggtga agatgaaaca gacgggccaa gtgtatgcca 420 tgaagattac gaataagtgg gacatgctga agagaggcga ggtgtcgtgc ttccgggaag 480 aaagggatgt attagtgaaa ggggaccggc gctggatcac acagctgcac tttgccttcc 540 aggatgagaa ctacctgtac ctggtcatgg aatactacgt gggcggggac ctgctaacgc 600 tgctgagcaa gtttggggag cggatccccg ccgagatggc tcgcttctac ctggccgaga 660 ttgtcatggc catagactcc gtgcaccggc tgggctacgt gcacagggac atcaaaccag 720 ataacattct gctggaccga tgtgggcaca ttcgcctggc agacttcggc tcctgcctca 780 aactgcagcc tgatggaatg gtgaggtcgc tggtggctgt gggcaccccg gactacctgt 840 ctcctgagat tctgcaggcc gttggtggag ggcctggggc aggcagctac gggccagagt 900 gtgactggtg ggcactgggc gtgttcacct atgagatgtt ctatgggcag acccccttct 960 acgcggactc cacagccgag acatatgcca agattgtgca ctacagggaa cacttgtcgc 1020 tgccgctggc agacacagtt gtccccgagg aagctcagga cctcattcgt gggctgctgt 1080 gtcctgctga gataaggcta ggtcgaggtg gggcaggtga tttccagaaa catcctttct 1140 tctttggcct tgattgggag ggtctccgag acagtgtacc cccctttaca ccagacttcg 1200 agggtgccac ggacacatgc aatttcgatg tggtggagga ccggctcact gccatggaga 1260 cgctgtcaga catgcaggaa gacatgcccc ttggggtgcg cctgcccttc gtgggctact 1320 cctactgctg catggccttc agagacaatc aggtcccgga ccccacccct atggaactag 1380 aggccctgca gttgcctgtg tcagacttgc aagggcttga cttgcagccc ccagtgtccc 1440 caccggatca agtggctgaa gaggctgacc tagtggctgt ccctgcccct gtggctgagg 1500 cagagaccac ggtaacgctg cagcagctcc aggaagccct ggaagaagag gttctcaccc 1560 ggcagagcct gagccgcgag ctggaggcca tccggaccgc caaccagaac ttctccagcc 1620 aactacagga ggccgaggtc cgaaaccgag acctggaggc gcatgttcgg cagctacagg 1680 aacggatgga gatgctgcag gccccaggag ccgcagccat cacgggggtc cccagtcccc 1740 gggccacgga tccaccttcc catgcttctc gccaaatcct ccccaaggga actccctaga 1800 ctcccgttct ggcctcgact agattcccgc actgcctctc gccctgctgc tgggctccga 1860 tcgggtcacc tgtcccttct ctctccagct agatggcccc ccggccgtgg ctgtgggcca 1920 gtgcccgctg gtggggccag gccccatgca ccgccgtcac ctgctgctcc ctgccaggat 1980 ccctaggcct ggcctatccg aggcgcgttg cctgctcctg ttcgccgctg ctctggctgc 2040 tgccgccaca ctgggctgca ctgggttggt ggcctatacc ggcggtctca ccccagtctg 2100 gtgtttcccg ggagccacct tcgccccctg aaccctaaga ctccaagcca tctttcattt 2160 aggcctccta ggaaggtcga gcgaccaggg agcgacccaa agcgtctctg tgcccatcgc 2220 cccccccccc ccccccaccg ctccgctcca cacttctgtg agcctgggtc cccacccagc 2280 tccgctcctg tgatccaggc ctgccacctg gcggccgggg agggaggaac agggctcgtg 2340 cccagcaccc ctggttcctg cagagctggt agccaccgct gctgcagcag ctgggcattc 2400 gccgaccttg ctttactcag ccccgacgtg gatgggcaaa ctgctcagct catccgattt 2460 cactttttca ctctcccagc catcagttac aagccataag catgagcccc ctatttccag 2520 ggacatccca ttcccatagt gatggatcag caagacctct gccagcacac acggagtctt 2580 tggcttcgga cagcctcact cctgggggtt gctgcaactc cttccccgtg tacacgtctg 2640 cactctaaca acggagccac agctgcactc ccccctcccc caaagcagtg tgggtattta 2700 ttgatcttgt tatctgactc actgacagac tccgggaccc acgttttaga tgcattgaga 2760 ctcgacattc ctcggtattt attgtctgtc cccacctacg acctccactc ccgacccttg 2820 cgaataaaat acttctggtc tgccctaaaa aaaaaaaaaa aa 2862 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 9 agcctgagcc gggagatg 18 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 10 gcgtagttga ctggcgaagt t 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe <400> 11 aggccatccg cacggacaac c 21 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 12 ctggctgcat gtctgcctgt 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 13 ccaggagaag gtcgagcagg 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 14 tctatggcca tgacaatctc 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 15 atgtccctgt gcacgtagcc 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 16 atgtgtccgg aagtcgcctg 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 17 ctcaggctct gccgggtgag 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 18 ggcactggcc cacagccacg 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 19 cctggccgaa agaaagaaat 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 20 aaagaaatgg tctgtgatcc 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 21 aagaaagaaa tggtctgtga 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 22 ggccgaaaga aagaaatggt 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 23 cctcagcctg gccgaaagaa 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 24 gggcctcagc ctggccgaaa 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 25 tcagggcctc agcctggccg 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 26 ctgcagtttg cccatccacg 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 27 ggcctgcagt ttgcccatcc 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 28 ccaggcctgc agtttgccca 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 29 gccttcccag gcctgcagtt 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 30 gctgccttcc caggcctgca 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 31 cttgctgcct tcccaggcct 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 32 gcccggcttg ctgccttccc 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 33 acggcccggc ttgctgcctt 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 34 cggacggccc ggcttgctgc 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 35 acacggacgg cccggcttgc 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 36 gatggaacac ggacggcccg 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 37 gaggatggaa cacggacggc 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 38 gtggaggatg gaacacggac 20 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 39 gcgaaccaac gataggtggg 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 40 tttgcgaacc aacgataggt 20 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 41 ttgcactttg cgaaccaacg 20 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 42 gctttgcact ttgcgaacca 20 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 43 aaagctttgc actttgcgaa 20 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 44 aagaaagctt tgcactttgc 20 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 45 cacaagaaag ctttgcactt 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 46 gtcatgcaca agaaagcttt 20 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 47 acgctcccca gagcagggcg 20 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 48 gcagagatcg cgccagacgc 20 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 49 caggcagaga tcgcgccaga 20 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 50 aagcaggcag agatcgcgcc 20 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 51 ccgagtaagc aggcagagat 20 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 52 ttcccgagta agcaggcaga 20 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 53 gcaaatttcc cgagtaagca 20 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 54 aaagcaaatt tcccgagtaa 20 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 55 ttggcaaaag caaatttccc 20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 56 ggtttggcaa aagcaaattt 20 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 57 gcgggtttgg caaaagcaaa 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 58 aaagcgggtt tggcaaaagc 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 59 cccgaaaaag cgggtttggc 20 <210> 60 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 60 atccccgaaa aagcgggttt 20 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 61 cgggatcccc gaaaaagcgg 20 <210> 62 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 62 gcgcgggatc cccgaaaaag 20 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 63 gagagcagcg caagtgagga 20 <210> 64 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 64 tccgagagca gcgcaagtga 20 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 65 ggctccgaga gcagcgcaag 20 <210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 66 aagcgggcgg agccggctgg 20 <210> 67 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 67 ccgaagcggg cggagccggc 20 <210> 68 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 68 aaaccgccga agcgggcgga 20 <210> 69 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 69 tccaaaccgc cgaagcgggc 20 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 70 atatccaaac cgccgaagcg 20 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 71 taaatatcca aaccgccgaa 20 <210> 72 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 72 caataaatat ccaaaccgcc 20 <210> 73 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 73 cgaggtcaat aaatatccaa 20 <210> 74 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 74 ggacgaggtc aataaatatc 20 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 75 ggaggacgag gtcaataaat 20 <210> 76 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 76 gtcggaggac gaggtcaata 20 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 77 cgagtcggag gacgaggtca 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 78 tgtcagcgag tcggaggacg 20 <210> 79 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 79 gcctgtcagc gagtcggagg 20 <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 80 gtagcctgtc agcgagtcgg 20 <210> 81 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 81 cctgtagcct gtcagcgagt 20 <210> 82 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 82 ggtcctgtag cctgtcagcg 20 <210> 83 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 83 aaataccgag gaatgtcggg 20 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 84 aataaatacc gaggaatgtc 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 85 gacaataaat accgaggaat 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 86 cggggccccg gagtcgaaga 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 87 ccaacggggc cccggagtcg 20 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 88 ttccaacggg gccccggagt 20 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 89 gtcttccaac ggggccccgg 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 90 cagtcttcca acggggcccc 20 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 91 ctcagtcttc caacggggcc 20 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 92 gcactcagtc ttccaacggg 20 <210> 93 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 93 ccccgggcac tcagtcttcc 20 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 94 tgccccgggc actcagtctt 20 <210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 95 cgtgccccgg gcactcagtc 20 <210> 96 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 96 gtgccgtgcc ccgggcactc 20 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 97 tctgtgccgt gccccgggca 20 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 98 gcttctgtgc cgtgccccgg 20 <210> 99 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 99 gcggcttctg tgccgtgccc 20 <210> 100 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 100 gcgcggcttc tgtgccgtgc 20 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 101 gggcgcggct tctgtgccgt 20 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 102 ggcggtgggc gcggcttctg 20 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 103 ggcaggcggt gggcgcggct 20 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 104 ctggcaggcg gtgggcgcgg 20 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 105 aactggcagg cggtgggcgc 20 <210> 106 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 106 gtgaactggc aggcggtggg 20 <210> 107 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 107 ggttgtgaac tggcaggcgg 20 <210> 108 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 108 gcggttgtga actggcaggc 20 <210> 109 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 109 cggagcggtt gtgaactggc 20 <210> 110 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 110 cgctcggagc ggttgtgaac 20 <210> 111 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 111 cccacgctcg gagcggttgt 20 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 112 agacccacgc tcggagcggt 20 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 113 cggagaccca cgctcggagc 20 <210> 114 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 114 gggcggagac ccacgctcgg 20 <210> 115 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 115 gctgggcgga gacccacgct 20 <210> 116 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 116 ggagctgggc ggagacccac 20 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 117 ctggagctgg gcggagaccc 20 <210> 118 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 118 ggactggagc tgggcggaga 20 <210> 119 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 119 caggactgga gctgggcgga 20 <210> 120 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 120 atcacaggac tggagctggg 20 <210> 121 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 121 gggcgggccc ggatcacagg 20 <210> 122 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 122 gggggcgggc ccggatcaca 20 <210> 123 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 123 aggcagcacc atggcccctc 20 <210> 124 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 124 ggtccaacac cagctgctgg 20 <210> 125 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 125 cgatcacctt cagaatctcg 20 <210> 126 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 126 cttgttcatg atcttcatgg 20 <210> 127 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 127 ccccattcac caacacgtcc 20 <210> 128 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 128 gcgtgatcca ccgccggtcc 20 <210> 129 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 129 gtaatactcc atgaccaggt 20 <210> 130 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 130 gcagtgtcag caggtccccg 20 <210> 131 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 131 caccgagtct atggccatga 20 <210> 132 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 132 acgtagccaa gccggtgcac 20 <210> 133 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 133 atgtggccac agcggtccag 20 <210> 134 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 134 cttcgtccac cagcggcaga 20 <210> 135 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 135 gaccccttcg tccaccagcg 20 <210> 136 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 136 cctgctccac cccggcccag 20 <210> 137 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 137 cggaagtcgc ctgctccacc 20 <210> 138 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 138 cggagaccat cccagtcgag 20 <210> 139 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 139 tgagggccat gcaggagtag 20 <210> 140 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 140 ctccagttcc atgggtgtgg 20 <210> 141 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 141 gcgcttgcac gtgtggctca 20 <210> 142 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 142 gccacttcag ctgtttcatc 20 <210> 143 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 143 gcctcagcct ctgccgcagg 20 <210> 144 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 144 gcagcgtcac ctcggcctca 20 <210> 145 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 145 ggctcaggct ctgccgggtg 20 <210> 146 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 146 ttccgagcct ctgcctcgcg 20 <210> 147 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 147 ggtcccggtt ccgagcctct 20 <210> 148 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 148 atccgctcct gcaactgccg 20 <210> 149 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 149 gcaactccat ccgctcctgc 20 <210> 150 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 150 aggtggatcc gtggcccggg 20 <210> 151 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 151 cgcggcttct gtgccgtgcc 20 <210> 152 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 152 ttgctgcctt cccaggcctg 20 <210> 153 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 153 tgctcccgac aagctccaga 20 <210> 154 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 154 agaacctgcc cattgctgaa 20 <210> 155 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 155 cactgagggc cagacatatg 20 <210> 156 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 156 ctctagattc agatgcaggt 20 <210> 157 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 157 cgggccgtcc gtgtt 15 <210> 158 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 158 ctttgcactt tgcgaaccaa 20 <210> 159 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe <400> 159 catcctccac gcacccccac c 21 <210> 160 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 160 gcctggcagc ccctgtccag 20 <210> 161 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 161 ggcctggcag cccctgtcca 20 <210> 162 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 162 gggcctggca gcccctgtcc 20 <210> 163 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 163 atggcccctc cccgggccgg 20 <210> 164 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 164 catggcccct ccccgggccg 20 <210> 165 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 165 ccatggcccc tccccgggcc 20 <210> 166 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 166 accatggccc ctccccgggc 20 <210> 167 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 167 caccatggcc cctccccggg 20 <210> 168 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 168 gcaccatggc ccctccccgg 20 <210> 169 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 169 agcaccatgg cccctccccg 20 <210> 170 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 170 cagcaccatg gcccctcccc 20 <210> 171 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 171 gcagcaccat ggcccctccc 20 <210> 172 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 172 ggcagcacca tggcccctcc 20 <210> 173 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 173 caggcagcac catggcccct 20 <210> 174 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 174 acaggcagca ccatggcccc 20 <210> 175 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 175 ggacaggcag caccatggcc 20 <210> 176 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 176 tggacaggca gcaccatggc 20 <210> 177 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 177 ttggacaggc agcaccatgg 20 <210> 178 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 178 gttggacagg cagcaccatg 20 <210> 179 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 179 tgttggacag gcagcaccat 20 <210> 180 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 180 atgttggaca ggcagcacca 20 <210> 181 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 181 catgttggac aggcagcacc 20 <210> 182 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 182 acatgttgga caggcagcac 20 <210> 183 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 183 gacatgttgg acaggcagca 20 <210> 184 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 184 tgacatgttg gacaggcagc 20 <210> 185 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 185 ctgacatgtt ggacaggcag 20 <210> 186 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 186 gctgacatgt tggacaggca 20 <210> 187 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 187 ggctgacatg ttggacaggc 20 <210> 188 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 188 cggctgacat gttggacagg 20 <210> 189 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 189 tcggctgaca tgttggacag 20 <210> 190 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 190 ctcggctgac atgttggaca 20 <210> 191 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 191 cctcggctga catgttggac 20 <210> 192 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 192 acctcggctg acatgttgga 20 <210> 193 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 193 cacctcggct gacatgttgg 20 <210> 194 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 194 gcacctcggc tgacatgttg 20 <210> 195 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 195 cgcacctcgg ctgacatgtt 20 <210> 196 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 196 ccgcacctcg gctgacatgt 20 <210> 197 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 197 gccgcacctc ggctgacatg 20 <210> 198 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 198 agccgcacct cggctgacat 20 <210> 199 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 199 cagccgcacc tcggctgaca 20 <210> 200 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 200 tcagccgcac ctcggctgac 20 <210> 201 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 201 ctcagccgca cctcggctga 20 <210> 202 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 202 cctcagccgc acctcggctg 20 <210> 203 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 203 gcctcagccg cacctcggct 20 <210> 204 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 204 ccaacaccag ctgctggagc 20 <210> 205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 205 tccaacacca gctgctggag 20 <210> 206 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 206 gtccaacacc agctgctgga 20 <210> 207 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 207 gggtccaaca ccagctgctg 20 <210> 208 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 208 ggctccagcc ccaggaagcc 20 <210> 209 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 209 gggctccagc cccaggaagc 20 <210> 210 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 210 caggagaagg tcgagcaggg 20 <210> 211 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 211 cccaggagaa ggtcgagcag 20 <210> 212 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 212 gcccaggaga aggtcgagca 20 <210> 213 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 213 cgcccaggag aaggtcgagc 20 <210> 214 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 214 acgcccagga gaaggtcgag 20 <210> 215 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 215 tcctgggcca gttcggaggc 20 <210> 216 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 216 gtcctgggcc agttcggagg 20 <210> 217 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 217 tgtcctgggc cagttcggag 20 <210> 218 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 218 ttgtcctggg ccagttcgga 20 <210> 219 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 219 cttgtcctgg gccagttcgg 20 <210> 220 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 220 acttgtcctg ggccagttcg 20 <210> 221 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 221 tacttgtcct gggccagttc 20 <210> 222 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 222 gtacttgtcc tgggccagtt 20 <210> 223 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 223 cgtacttgtc ctgggccagt 20 <210> 224 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 224 actgcaagaa gtcggccacg 20 <210> 225 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 225 ccactgcaag aagtcggcca 20 <210> 226 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 226 cccactgcaa gaagtcggcc 20 <210> 227 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 227 gcccactgca agaagtcggc 20 <210> 228 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 228 cgcccactgc aagaagtcgg 20 <210> 229 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 229 ccgcccactg caagaagtcg 20 <210> 230 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 230 tccgcccact gcaagaagtc 20 <210> 231 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 231 ctccgcccac tgcaagaagt 20 <210> 232 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 232 gctccgccca ctgcaagaag 20 <210> 233 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 233 ggctccgccc actgcaagaa 20 <210> 234 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 234 gggctccgcc cactgcaaga 20 <210> 235 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 235 tgggctccgc ccactgcaag 20 <210> 236 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 236 atgggctccg cccactgcaa 20 <210> 237 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 237 gatgggctcc gcccactgca 20 <210> 238 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 238 cgatgggctc cgcccactgc 20 <210> 239 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 239 acgatgggct ccgcccactg 20 <210> 240 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 240 cacgatgggc tccgcccact 20 <210> 241 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 241 ccacgatggg ctccgcccac 20 <210> 242 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 242 accacgatgg gctccgccca 20 <210> 243 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 243 caccacgatg ggctccgccc 20 <210> 244 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 244 tcaccacgat gggctccgcc 20 <210> 245 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 245 ctcaccacga tgggctccgc 20 <210> 246 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 246 cctcaccacg atgggctccg 20 <210> 247 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 247 gcctcaccac gatgggctcc 20 <210> 248 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 248 agcctcacca cgatgggctc 20 <210> 249 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 249 aagcctcacc acgatgggct 20 <210> 250 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 250 taagcctcac cacgatgggc 20 <210> 251 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 251 ttaagcctca ccacgatggg 20 <210> 252 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 252 cttaagcctc accacgatgg 20 <210> 253 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 253 ccttaagcct caccacgatg 20 <210> 254 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 254 tccttaagcc tcaccacgat 20 <210> 255 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 255 ctccttaagc ctcaccacga 20 <210> 256 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 256 cctccttaag cctcaccacg 20 <210> 257 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 257 acctccttaa gcctcaccac 20 <210> 258 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 258 gacctcctta agcctcacca 20 <210> 259 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 259 ggacctcctt aagcctcacc 20 <210> 260 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 260 cggacctcct taagcctcac 20 <210> 261 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 261 tcggacctcc ttaagcctca 20 <210> 262 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 262 gtcggacctc cttaagcctc 20 <210> 263 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 263 cagtcggacc tccttaagcc 20 <210> 264 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 264 gcagtcggac ctccttaagc 20 <210> 265 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 265 tgcagtcgga cctccttaag 20 <210> 266 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 266 ccttcagaat ctcgaagtcg 20 <210> 267 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 267 accttcagaa tctcgaagtc 20 <210> 268 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 268 tcaccttcag aatctcgaag 20 <210> 269 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 269 atcaccttca gaatctcgaa 20 <210> 270 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 270 gatcaccttc agaatctcga 20 <210> 271 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 271 ccgatcacct tcagaatctc 20 <210> 272 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 272 tccgatcacc ttcagaatct 20 <210> 273 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 273 gtccgatcac cttcagaatc 20 <210> 274 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 274 cgtccgatca ccttcagaat 20 <210> 275 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 275 cccgtctgct tcatcttcac 20 <210> 276 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 276 gcccgtctgc ttcatcttca 20 <210> 277 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 277 ggcccgtctg cttcatcttc 20 <210> 278 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 278 tggcccgtct gcttcatctt 20 <210> 279 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 279 ctggcccgtc tgcttcatct 20 <210> 280 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 280 cctggcccgt ctgcttcatc 20 <210> 281 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 281 acctggcccg tctgcttcat 20 <210> 282 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 282 cacctggccc gtctgcttca 20 <210> 283 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 283 acacctggcc cgtctgcttc 20 <210> 284 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 284 tacacctggc ccgtctgctt 20 <210> 285 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 285 ttgttcatga tcttcatggc 20 <210> 286 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 286 acttgttcat gatcttcatg 20 <210> 287 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 287 cacttgttca tgatcttcat 20 <210> 288 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 288 ccacttgttc atgatcttca 20 <210> 289 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 289 cccacttgtt catgatcttc 20 <210> 290 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 290 tcccacttgt tcatgatctt 20 <210> 291 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 291 gtcccacttg ttcatgatct 20 <210> 292 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 292 tgtcccactt gttcatgatc 20 <210> 293 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 293 atgtcccact tgttcatgat 20 <210> 294 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 294 catgtcccac ttgttcatga 20 <210> 295 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 295 gcatgtccca cttgttcatg 20 <210> 296 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 296 agcatgtccc acttgttcat 20 <210> 297 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 297 cagcatgtcc cacttgttca 20 <210> 298 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 298 tcagcatgtc ccacttgttc 20 <210> 299 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 299 ttcagcatgt cccacttgtt 20 <210> 300 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 300 cttcagcatg tcccacttgt 20 <210> 301 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 301 tcttcagcat gtcccacttg 20 <210> 302 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 302 cctcttcagc atgtcccact 20 <210> 303 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 303 ccctcttcag catgtcccac 20 <210> 304 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 304 cccctcttca gcatgtccca 20 <210> 305 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 305 gcccctcttc agcatgtccc 20 <210> 306 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 306 cgcccctctt cagcatgtcc 20 <210> 307 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 307 tcgcccctct tcagcatgtc 20 <210> 308 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 308 ctcgcccctc ttcagcatgt 20 <210> 309 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 309 cctcgcccct cttcagcatg 20 <210> 310 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 310 acctcgcccc tcttcagcat 20 <210> 311 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 311 cacctcgccc ctcttcagca 20 <210> 312 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 312 acacctcgcc cctcttcagc 20 <210> 313 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 313 gacacctcgc ccctcttcag 20 <210> 314 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 314 gccaggcgga tgtggccaca 20 <210> 315 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 315 accgcaccgt tccatctgcc 20 <210> 316 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 316 gaccgcaccg ttccatctgc 20 <210> 317 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 317 acagcctgca ggatctcggg 20 <210> 318 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 318 cacagcctgc aggatctcgg 20 <210> 319 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 319 ccacagcctg caggatctcg 20 <210> 320 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 320 cccacagcct gcaggatctc 20 <210> 321 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 321 gcccacagcc tgcaggatct 20 <210> 322 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 322 cgcccacagc ctgcaggatc 20 <210> 323 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 323 ccgcccacag cctgcaggat 20 <210> 324 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 324 accgcccaca gcctgcagga 20 <210> 325 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 325 caccgcccac agcctgcagg 20 <210> 326 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 326 ccaccgccca cagcctgcag 20 <210> 327 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 327 cccaccgccc acagcctgca 20 <210> 328 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 328 gcccaccgcc cacagcctgc 20 <210> 329 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 329 ggcccaccgc ccacagcctg 20 <210> 330 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 330 aggcccaccg cccacagcct 20 <210> 331 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 331 caggcccacc gcccacagcc 20 <210> 332 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 332 ccaggcccac cgcccacagc 20 <210> 333 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 333 cccaggccca ccgcccacag 20 <210> 334 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 334 tcccaggccc accgcccaca 20 <210> 335 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 335 gtcccaggcc caccgcccac 20 <210> 336 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 336 tgtcccaggc ccaccgccca 20 <210> 337 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 337 ctgtcccagg cccaccgccc 20 <210> 338 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 338 cctgtcccag gcccaccgcc 20 <210> 339 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 339 gcctgtccca ggcccaccgc 20 <210> 340 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 340 tgcctgtccc aggcccaccg 20 <210> 341 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 341 ctgcctgtcc caggcccacc 20 <210> 342 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 342 gctgcctgtc ccaggcccac 20 <210> 343 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 343 agctgcctgt cccaggccca 20 <210> 344 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 344 tagctgcctg tcccaggccc 20 <210> 345 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 345 gtagctgcct gtcccaggcc 20 <210> 346 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 346 cgtagctgcc tgtcccaggc 20 <210> 347 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 347 ccgtagctgc ctgtcccagg 20 <210> 348 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 348 cccgtagctg cctgtcccag 20 <210> 349 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 349 gcccgtagct gcctgtccca 20 <210> 350 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 350 ggcccgtagc tgcctgtccc 20 <210> 351 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 351 tagaacattt cataggcgaa 20 <210> 352 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 352 tctccgccgt ggaatccgcg 20 <210> 353 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 353 gtctccgccg tggaatccgc 20 <210> 354 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 354 ggtctccgcc gtggaatccg 20 <210> 355 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 355 aggtctccgc cgtggaatcc 20 <210> 356 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 356 taggtctccg ccgtggaatc 20 <210> 357 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 357 ttgtagtgga cgatcttgcc 20 <210> 358 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 358 cttgtagtgg acgatcttgc 20 <210> 359 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 359 ccttgtagtg gacgatcttg 20 <210> 360 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 360 tccttgtagt ggacgatctt 20 <210> 361 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 361 ctccttgtag tggacgatct 20 <210> 362 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 362 gctccttgta gtggacgatc 20 <210> 363 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 363 tgctccttgt agtggacgat 20 <210> 364 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 364 gtgctccttg tagtggacga 20 <210> 365 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 365 ggtgctcctt gtagtggacg 20 <210> 366 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 366 aggtgctcct tgtagtggac 20 <210> 367 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 367 gaggtgctcc ttgtagtgga 20 <210> 368 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 368 agaggtgctc cttgtagtgg 20 <210> 369 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 369 gagaggtgct ccttgtagtg 20 <210> 370 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 370 agagaggtgc tccttgtagt 20 <210> 371 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 371 gagagaggtg ctccttgtag 20 <210> 372 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 372 agagagaggt gctccttgta 20 <210> 373 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 373 cagagagagg tgctccttgt 20 <210> 374 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 374 ggcagagaga ggtgctcctt 20 <210> 375 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 375 cggcagagag aggtgctcct 20 <210> 376 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 376 gcggcagaga gaggtgctcc 20 <210> 377 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 377 agcggcagag agaggtgctc 20 <210> 378 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 378 cagcggcaga gagaggtgct 20 <210> 379 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 379 ccagcggcag agagaggtgc 20 <210> 380 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 380 ggcccagccg tgtctccggg 20 <210> 381 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 381 cggcccagcc gtgtctccgg 20 <210> 382 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 382 ccggcccagc cgtgtctccg 20 <210> 383 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 383 cccggcccag ccgtgtctcc 20 <210> 384 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 384 ccccggccca gccgtgtctc 20 <210> 385 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 385 accccggccc agccgtgtct 20 <210> 386 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 386 caccccggcc cagccgtgtc 20 <210> 387 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 387 ccaccccggc ccagccgtgt 20 <210> 388 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 388 tccaccccgg cccagccgtg 20 <210> 389 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 389 ctccaccccg gcccagccgt 20 <210> 390 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 390 gctccacccc ggcccagccg 20 <210> 391 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 391 tgctccaccc cggcccagcc 20 <210> 392 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 392 ctgctccacc ccggcccagc 20 <210> 393 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 393 aagggatgtg tccggaagtc 20 <210> 394 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 394 gaagggatgt gtccggaagt 20 <210> 395 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 395 agaagggatg tgtccggaag 20 <210> 396 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 396 aagaagggat gtgtccggaa 20 <210> 397 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 397 gaagaaggga tgtgtccgga 20 <210> 398 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 398 agaagaaggg atgtgtccgg 20 <210> 399 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 399 aagaagaagg gatgtgtccg 20 <210> 400 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 400 aaagaagaag ggatgtgtcc 20 <210> 401 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 401 caaagaagaa gggatgtgtc 20 <210> 402 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 402 ccaaagaaga agggatgtgt 20 <210> 403 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 403 ggccaaagaa gaagggatgt 20 <210> 404 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 404 aggccaaaga agaagggatg 20 <210> 405 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 405 gaggccaaag aagaagggat 20 <210> 406 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 406 cgaggccaaa gaagaaggga 20 <210> 407 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 407 tcgaggccaa agaagaaggg 20 <210> 408 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 408 gtcgaggcca aagaagaagg 20 <210> 409 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 409 agtcgaggcc aaagaagaag 20 <210> 410 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 410 cagtcgaggc caaagaagaa 20 <210> 411 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 411 ccagtcgagg ccaaagaaga 20 <210> 412 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 412 cccagtcgag gccaaagaag 20 <210> 413 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 413 tcccagtcga ggccaaagaa 20 <210> 414 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 414 atcccagtcg aggccaaaga 20 <210> 415 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 415 catcccagtc gaggccaaag 20 <210> 416 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 416 ccatcccagt cgaggccaaa 20 <210> 417 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 417 accatcccag tcgaggccaa 20 <210> 418 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 418 gaccatccca gtcgaggcca 20 <210> 419 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 419 agaccatccc agtcgaggcc 20 <210> 420 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 420 gagaccatcc cagtcgaggc 20 <210> 421 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 421 ggagaccatc ccagtcgagg 20 <210> 422 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 422 ttcgaaatcc ggtgtaaagg 20 <210> 423 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 423 cttcgaaatc cggtgtaaag 20 <210> 424 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 424 ccttcgaaat ccggtgtaaa 20 <210> 425 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 425 accttcgaaa tccggtgtaa 20 <210> 426 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 426 caccttcgaa atccggtgta 20 <210> 427 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 427 gcaccttcga aatccggtgt 20 <210> 428 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 428 ggcaccttcg aaatccggtg 20 <210> 429 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 429 tggcaccttc gaaatccggt 20 <210> 430 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 430 gtggcacctt cgaaatccgg 20 <210> 431 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 431 ggtggcacct tcgaaatccg 20 <210> 432 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 432 cggtggcacc ttcgaaatcc 20 <210> 433 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 433 tcggtggcac cttcgaaatc 20 <210> 434 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 434 gtcggtggca ccttcgaaat 20 <210> 435 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 435 tgtcggtggc accttcgaaa 20 <210> 436 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 436 gtgtcggtgg caccttcgaa 20 <210> 437 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 437 tgtgtcggtg gcaccttcga 20 <210> 438 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 438 atgtgtcggt ggcaccttcg 20 <210> 439 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 439 catgtgtcgg tggcaccttc 20 <210> 440 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 440 gcatgtgtcg gtggcacctt 20 <210> 441 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 441 tgcatgtgtc ggtggcacct 20 <210> 442 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 442 ttgcatgtgt cggtggcacc 20 <210> 443 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 443 gttgcatgtg tcggtggcac 20 <210> 444 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 444 agttgcatgt gtcggtggca 20 <210> 445 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 445 aagttgcatg tgtcggtggc 20 <210> 446 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 446 gaagttgcat gtgtcggtgg 20 <210> 447 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 447 cgaagttgca tgtgtcggtg 20 <210> 448 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 448 gtcgaagttg catgtgtcgg 20 <210> 449 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 449 agtcgaagtt gcatgtgtcg 20 <210> 450 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 450 aagtcgaagt tgcatgtgtc 20 <210> 451 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 451 caagtcgaag ttgcatgtgt 20 <210> 452 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 452 ccaagtcgaa gttgcatgtg 20 <210> 453 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 453 accaagtcga agttgcatgt 20 <210> 454 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 454 caccaagtcg aagttgcatg 20 <210> 455 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 455 ccaccaagtc gaagttgcat 20 <210> 456 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 456 tccaccaagt cgaagttgca 20 <210> 457 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 457 ctccaccaag tcgaagttgc 20 <210> 458 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 458 cctccaccaa gtcgaagttg 20 <210> 459 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 459 tcctccacca agtcgaagtt 20 <210> 460 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 460 gtcctccacc aagtcgaagt 20 <210> 461 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 461 cgtcctccac caagtcgaag 20 <210> 462 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 462 ccgtcctcca ccaagtcgaa 20 <210> 463 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 463 cccgtcctcc accaagtcga 20 <210> 464 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 464 gcccgtcctc caccaagtcg 20 <210> 465 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 465 agcccgtcct ccaccaagtc 20 <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 466 gagcccgtcc tccaccaagt 20 <210> 467 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 467 tgagcccgtc ctccaccaag 20 <210> 468 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 468 ggttccgagc ctctgcctcg 20 <210> 469 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 469 cggttccgag cctctgcctc 20 <210> 470 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 470 ccggttccga gcctctgcct 20 <210> 471 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 471 cccggttccg agcctctgcc 20 <210> 472 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 472 tcccggttcc gagcctctgc 20 <210> 473 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 473 gtcccggttc cgagcctctg 20 <210> 474 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 474 aggtcccggt tccgagcctc 20 <210> 475 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 475 taggtcccgg ttccgagcct 20 <210> 476 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 476 ctaggtcccg gttccgagcc 20 <210> 477 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 477 tctaggtccc ggttccgagc 20 <210> 478 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 478 ctctaggtcc cggttccgag 20 <210> 479 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 479 cctctaggtc ccggttccga 20 <210> 480 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 480 gcctctaggt cccggttccg 20 <210> 481 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 481 catccgctcc tgcaactgcc 20 <210> 482 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 482 ccatccgctc ctgcaactgc 20 <210> 483 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 483 tccatccgct cctgcaactg 20 <210> 484 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 484 ctccatccgc tcctgcaact 20 <210> 485 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 485 actccatccg ctcctgcaac 20 <210> 486 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 486 aactccatcc gctcctgcaa 20 <210> 487 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 487 caactccatc cgctcctgca 20 <210> 488 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 488 agcaactcca tccgctcctg 20 <210> 489 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 489 cagcaactcc atccgctcct 20 <210> 490 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 490 gcagcaactc catccgctcc 20 <210> 491 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 491 cagctgtggc tccctctgcc 20 <210> 492 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 492 acagctgtgg ctccctctgc 20 <210> 493 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 493 gacagctgtg gctccctctg 20 <210> 494 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 494 tgacagctgt ggctccctct 20 <210> 495 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 495 gtgacagctg tggctccctc 20 <210> 496 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 496 cgtgacagct gtggctccct 20 <210> 497 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 497 ccgtgacagc tgtggctccc 20 <210> 498 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 498 cccgtgacag ctgtggctcc 20 <210> 499 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 499 ccccgtgaca gctgtggctc 20 <210> 500 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 500 cccccgtgac agctgtggct 20 <210> 501 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 501 acccccgtga cagctgtggc 20 <210> 502 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 502 gacccccgtg acagctgtgg 20 <210> 503 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 503 ggacccccgt gacagctgtg 20 <210> 504 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 504 gggacccccg tgacagctgt 20 <210> 505 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 505 gaaggtggat ccgtggcccg 20 <210> 506 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 506 ggaaggtgga tccgtggccc 20 <210> 507 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 507 gggaaggtgg atccgtggcc 20 <210> 508 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 508 tgggaaggtg gatccgtggc 20 <210> 509 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 509 atgggaaggt ggatccgtgg 20 <210> 510 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 510 gatgggaagg tggatccgtg 20 <210> 511 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 511 tagatgggaa ggtggatccg 20 <210> 512 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 512 ctagatggga aggtggatcc 20 <210> 513 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 513 tctagatggg aaggtggatc 20 <210> 514 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 514 atctagatgg gaaggtggat 20 <210> 515 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 515 ccatctagat gggaaggtgg 20 <210> 516 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 516 gccatctaga tgggaaggtg 20 <210> 517 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 517 ggccatctag atgggaaggt 20 <210> 518 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 518 caccagcggg cactggccca 20 <210> 519 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 519 ccaccagcgg gcactggccc 20 <210> 520 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 520 cccaccagcg ggcactggcc 20 <210> 521 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 521 ccccaccagc gggcactggc 20 <210> 522 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 522 ggccccacca gcgggcactg 20 <210> 523 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 523 tggccccacc agcgggcact 20 <210> 524 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 524 ctggccccac cagcgggcac 20 <210> 525 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 525 cctggcccca ccagcgggca 20 <210> 526 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 526 gcctggcccc accagcgggc 20 <210> 527 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 527 gggcctggcc ccaccagcgg 20 <210> 528 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 528 aggtggcggc ggtgcatggg 20 <210> 529 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 529 caggtggcgg cggtgcatgg 20 <210> 530 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 530 gcaggtggcg gcggtgcatg 20 <210> 531 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 531 agcaggtggc ggcggtgcat 20 <210> 532 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 532 cagcaggtgg cggcggtgca 20 <210> 533 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 533 gcagcaggtg gcggcggtgc 20 <210> 534 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 534 agcagcaggt ggcggcggtg 20 <210> 535 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 535 gagcagcagg tggcggcggt 20 <210> 536 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 536 ggagcagcag gtggcggcgg 20 <210> 537 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 537 gggagcagca ggtggcggcg 20 <210> 538 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 538 agggagcagc aggtggcggc 20 <210> 539 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 539 cagggagcag caggtggcgg 20 <210> 540 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 540 gcagggagca gcaggtggcg 20 <210> 541 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 541 ggcagggagc agcaggtggc 20 <210> 542 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 542 tggcagggag cagcaggtgg 20 <210> 543 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 543 ctggcaggga gcagcaggtg 20 <210> 544 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 544 ccctggcagg gagcagcagg 20 <210> 545 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 545 accctggcag ggagcagcag 20 <210> 546 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 546 gaccctggca gggagcagca 20 <210> 547 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 547 ggaccctggc agggagcagc 20 <210> 548 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 548 ggcctaggga ccctggcagg 20 <210> 549 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 549 aggcctaggg accctggcag 20 <210> 550 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 550 ccaggcctag ggaccctggc 20 <210> 551 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 551 gccaggccta gggaccctgg 20 <210> 552 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 552 ggccaggcct agggaccctg 20 <210> 553 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 553 aggccaggcc tagggaccct 20 <210> 554 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 554 taggccaggc ctagggaccc 20 <210> 555 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 555 ataggccagg cctagggacc 20 <210> 556 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 556 gataggccag gcctagggac 20 <210> 557 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 557 cgataggcca ggcctaggga 20 <210> 558 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 558 ccgataggcc aggcctaggg 20 <210> 559 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 559 tccgataggc caggcctagg 20 <210> 560 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 560 ctccgatagg ccaggcctag 20 <210> 561 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 561 cctccgatag gccaggccta 20 <210> 562 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 562 gcctccgata ggccaggcct 20 <210> 563 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 563 gcgcctccga taggccaggc 20 <210> 564 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 564 aacaggagca gggaaagcgc 20 <210> 565 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 565 gaacaggagc agggaaagcg 20 <210> 566 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 566 cgaacaggag cagggaaagc 20 <210> 567 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 567 gcgaacagga gcagggaaag 20 <210> 568 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 568 ggcgaacagg agcagggaaa 20 <210> 569 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 569 cggcgaacag gagcagggaa 20 <210> 570 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 570 acggcgaaca ggagcaggga 20 <210> 571 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 571 aacggcgaac aggagcaggg 20 <210> 572 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 572 caacggcgaa caggagcagg 20 <210> 573 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 573 gggcggcggc acgagacaga 20 <210> 574 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 574 agggcggcgg cacgagacag 20 <210> 575 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 575 cagggcggcg gcacgagaca 20 <210> 576 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 576 ccagggcggc ggcacgagac 20 <210> 577 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 577 cccagggcgg cggcacgaga 20 <210> 578 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 578 gcccagggcg gcggcacgag 20 <210> 579 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 579 agcccagggc ggcggcacga 20 <210> 580 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 580 cagcccaggg cggcggcacg 20 <210> 581 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 581 gcagcccagg gcggcggcac 20 <210> 582 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 582 ctgcggtgag ttggccggcg 20 <210> 583 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 583 actgcggtga gttggccggc 20 <210> 584 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 584 gactgcggtg agttggccgg 20 <210> 585 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 585 agactgcggt gagttggccg 20 <210> 586 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 586 cagactgcgg tgagttggcc 20 <210> 587 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 587 ccagactgcg gtgagttggc 20 <210> 588 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 588 gccagactgc ggtgagttgg 20 <210> 589 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 589 cgccagactg cggtgagttg 20 <210> 590 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 590 aagacagttc tagggttcag 20 <210> 591 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 591 gaagacagtt ctagggttca 20 <210> 592 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 592 cgaagacagt tctagggttc 20 <210> 593 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 593 tcgaagacag ttctagggtt 20 <210> 594 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 594 gtcgaagaca gttctagggt 20 <210> 595 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 595 agtcgaagac agttctaggg 20 <210> 596 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 596 gagtcgaaga cagttctagg 20 <210> 597 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 597 ggagtcgaag acagttctag 20 <210> 598 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 598 cggagtcgaa gacagttcta 20 <210> 599 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 599 ccggagtcga agacagttct 20 <210> 600 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 600 cccggagtcg aagacagttc 20 <210> 601 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 601 ccccggagtc gaagacagtt 20 <210> 602 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 602 gccccggagt cgaagacagt 20 <210> 603 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 603 ggccccggag tcgaagacag 20 <210> 604 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 604 gggccccgga gtcgaagaca 20 <210> 605 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 605 aggcggtggg cgcggcttct 20 <210> 606 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 606 caggcggtgg gcgcggcttc 20 <210> 607 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 607 gcaggcggtg ggcgcggctt 20 <210> 608 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 608 tggcaggcgg tgggcgcggc 20 <210> 609 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 609 actggcaggc ggtgggcgcg 20 <210> 610 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 610 gaactggcag gcggtgggcg 20 <210> 611 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 611 tgaactggca ggcggtgggc 20 <210> 612 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 612 tgtgaactgg caggcggtgg 20 <210> 613 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 613 tggagctggg cggagaccca 20 <210> 614 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 614 actggagctg ggcggagacc 20 <210> 615 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 615 gactggagct gggcggagac 20 <210> 616 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 616 aggactggag ctgggcggag 20 <210> 617 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 617 acaggactgg agctgggcgg 20 <210> 618 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 618 cacaggactg gagctgggcg 20 <210> 619 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 619 tcacaggact ggagctgggc 20 <210> 620 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 620 gcctcagcct ggccgaaaga 20 <210> 621 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 621 ggcctcagcc tggccgaaag 20 <210> 622 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 622 tggtggagcc aagccctccc 20 <210> 623 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 623 gggcaccctc agagcctgaa 20 <210> 624 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 624 accccactgc aagaagtcgg 20 <210> 625 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 625 gccccaggat gggaggatct 20 <210> 626 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 626 cataggacag agaaatgttg 20 <210> 627 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 627 tgctgacctt actctgcccc 20 <210> 628 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 628 taagccatgg ctctgagtca 20 <210> 629 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 629 agagaggcca tgggaggctg 20 <210> 630 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 630 ctggccctcc tggcttgccc 20 <210> 631 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 631 agctgcccca tgctggccct 20 <210> 632 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 632 gcccctggca gctgccccat 20 <210> 633 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 633 ctgtcggctg cgcccctggc 20 <210> 634 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 634 cgccgaacac ctgcctgtcg 20 <210> 635 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 635 cctcccagtg cctgggcacc 20 <210> 636 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 636 gcgcctgtct gcaaagctgg 20 <210> 637 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 637 cccaaagttg tccctcctgg 20 <210> 638 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 638 acacccagaa gaacccaaag 20 <210> 639 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 639 ctgacccaca cggctcatag 20 <210> 640 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 640 tggccccagg ccctggaaag 20 <210> 641 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 641 gacaaggcag ctggcagaag 20 <210> 642 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 642 aagaaaccag tgaccagtga 20 <210> 643 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 643 ctgtgaaatg ggaggaggag 20 <210> 644 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 644 gaaggttttt ccagaggctg 20 <210> 645 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 645 ggccaggaga gtcattaggg 20 <210> 646 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 646 ccacaaaagg agtgctcctc 20 <210> 647 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 647 ccttttaagg cagcaggaac 20 <210> 648 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 648 ctaggactgt ctgcttccca 20 <210> 649 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 649 gtcattcatc aatttctaag 20 <210> 650 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 650 ggaggagctg cagccggaga 20 <210> 651 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 651 gcacccggag gagctgcagc 20 <210> 652 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 652 gcacgacacc tgcagggcac 20 <210> 653 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 653 agctcaccag gtagttctca 20 <210> 654 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 654 gcttcctctc cccacctcct 20 <210> 655 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 655 gcagcacccc caatcctaga 20 <210> 656 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 656 gcccctcatc cacctgacac 20 <210> 657 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 657 ttccaggtaa gagacccccc 20 <210> 658 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 658 agaataggtc ccagacactc 20 <210> 659 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 659 ctccccctga gatgttctgg 20 <210> 660 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 660 ccccagccca gagataacca 20 <210> 661 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 661 cctgatccat cacggatggc 20 <210> 662 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 662 tactccatga ccaggtactg 20 <210> 663 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 663 gctctgacct tccaagaacc 20 <210> 664 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 664 ctcccttctg tggtcccacc 20 <210> 665 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 665 gtcgggtttg atgtccctgc 20 <210> 666 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 666 agggcactgg ctcaccgttc 20 <210> 667 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 667 gggccctcct tccaaccact 20 <210> 668 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 668 gcccacccct ctgggcccac 20 <210> 669 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 669 aggagcagag cgaggcttgg 20 <210> 670 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 670 caccttgtag tggacgatct 20 <210> 671 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 671 ctaccccgcc cccgctcacc 20 <210> 672 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 672 ctaggtcact gctgggtcct 20 <210> 673 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 673 ctcagatagc tccccactcc 20 <210> 674 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 674 aattctctaa ttctctagac 20 <210> 675 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 675 tacctgaggg ccatgcagga 20 <210> 676 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 676 gttccaagac tgatcctgca 20 <210> 677 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 677 aggagggcgg tggcgcggcg 20 <210> 678 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 678 tgacagctgg aaggagaaga 20 <210> 679 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 679 catgggaagg tggatccgtg 20 <210> 680 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 680 ggaggttatc tagggagatc 20 <210> 681 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 681 gaagggacag gtgacccgat 20 <210> 682 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 682 cgtaccctgg cagggagcag 20 <210> 683 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 683 ggactcgccc cgcctacgcc 20 <210> 684 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 684 ctcctgggac tcgccccgcc 20 <210> 685 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 685 gctcctggga ctcgccccgc 20 <210> 686 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 686 attggctcct gggactcgcc 20 <210> 687 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 687 gattggctcc tgggactcgc 20 <210> 688 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 688 gcctctgatt ggctcctggg 20 <210> 689 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 689 gcatgggcct ctgattggct 20 <210> 690 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 690 cacccggcat gggcctctga 20 <210> 691 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 691 gccaggccta gggacctgcg 20 <210> 692 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 692 ttcctccccc aaccctgatt 20 <210> 693 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 693 aagtttgcag caacttttct 20 <210> 694 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 694 gcccctcgga attcccggct 20 <210> 695 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 695 catctcggcc tgcgctccgc 20 <210> 696 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 696 gcaggccccc acattcccca 20 <210> 697 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 697 cttctgcacg cctccgtctc 20 <210> 698 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 698 tggcccacag ccacggccgg 20 <210> 699 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 699 ggcctggccc caccagcggg 20 <210> 700 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 700 cctggcaggg agcagcaggt 20 <210> 701 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 701 cagccgcact tcggctgaca 20 <210> 702 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 702 gcctgggtcc agcaccagct 20 <210> 703 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 703 gtcccaggaa gcctgggtcc 20 <210> 704 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 704 cgttagcagg tccccgccca 20 <210> 705 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 705 gtctatggcc atgacaatct 20 <210> 706 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 706 gtagcccagc cggtgcacgg 20 <210> 707 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 707 gggtgcccac agccaccagc 20 <210> 708 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 708 tggcccgtag ctgcctgccc 20 <210> 709 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 709 ggaaatcacc tgccccacct 20 <210> 710 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 710 ggatgtttct ggaaatcacc 20 <210> 711 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 711 gtggcaccct cgaagtctgg 20 <210> 712 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 712 ccccgctcac catggcagtg 20 <210> 713 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 713 ggtccgggac ctgattgtct 20 <210> 714 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 714 gctgcatgtc tgcccgtccc 20 <210> 715 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 715 ggccccagaa ccctagctgc 20 <210> 716 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 716 tcacagggcc tggctgcccc 20 <210> 717 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 717 ggctgacatg ttgggcaggc 20 <210> 718 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 718 tgtccaggcc ccagaaccct 20 <210> 719 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 719 ggccaggcct agggatctgc 20 <210> 720 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 720 cgcctcggat aggccaggcc 20 <210> 721 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 721 ggcttggagt cttagggttc 20 <210> 722 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 722 tccccggccg ccaggtggca 20 <210> 723 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 723 ggtgctgggc acgagccctg 20 <210> 724 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 724 gcccagctgc tgcagcagcg 20 <210> 725 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 725 ccgtgtgtgc tggcagaggt 20 <210> 726 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 726 ataaataccg aggaatgtcg 20 <210> 727 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 727 gggacagaca ataaataccg 20 <210> 728 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 728 gtgcagccca gtgtggcggc 20 <210> 729 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 729 cctggagaag ttctggttgg 20 <210> 730 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 730 ggtgacccga tcggagccca 20 <210> 731 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 731 agctggagag agaagggaca 20 <210> 732 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 732 gtgagggact cgcctgcggc 20 <210> 733 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 733 gcggctgcgg tgccccagcc 20 <210> 734 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 734 gggccatcta gctggagaga 20 <210> 735 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 735 ccccactgca agaagtcggc 20 <210> 736 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 736 ttgagccctt ttaaggcagc 20 <210> 737 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 737 tgaccaggta ctgggagcgg 20 <210> 738 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 738 cctggagctg gatcagtccc 20 <210> 739 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 739 acatgggaag gtggatccgt 20 <210> 740 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 740 gtgggacata ccctggcagg 20 <210> 741 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 741 gccaggccta gggatctgca 20 <210> 742 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 742 ggaagcacga cacctcgcct 20 <210> 743 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 743 cctcaccatt ccatcaggct 20 <210> 744 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 744 cggcagcgac aagtgttccc 20 <210> 745 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 745 gtctctgaag gccatgcagc 20 <210> 746 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 746 cagccacttg atccggtggg 20 <210> 747 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 747 aggtcggcct cttcagccac 20 <210> 748 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 748 gttggctgga gaagttctgg 20 <210> 749 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 749 ccccgtgatg gctgcggctc 20 <210> 750 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 750 aggccaggcc tagggatcct 20 <210> 751 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 751 ggcgcggtgc cccagcctgg 20 <210> 752 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 752 gtcctggccc caccagcggg 20 <210> 753 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 753 ccaggcctag gaatcctggc 20 <210> 754 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 754 gcgcctcgga tagccaggcc 20 <210> 755 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 755 cccagtgtgg cgcagcagcc 20 <210> 756 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 756 gtgtttcatc ttcaccaccg 20 <210> 757 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 757 aggtcagcct cttcagccac 20 <210> 758 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 758 ggccatatgg gaaggtggat 20 <210> 759 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 759 ggaggatttg gcgagaagca 20 <210> 760 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 760 cgaagtctgc cccacctcga 20 <210> 761 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 761 gtggcaccct cgaagtctgc 20 <210> 762 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 762 gggtccattg taaggaagct 20 <210> 763 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 763 ggtgcccaca gccaccaggg 20 <210> 764 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 764 tccatggcag tgagccggtc 20 <210> 765 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 765 gggaccactt gatccggtgg 20 <210> 766 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 766 ggatcagagt tgggaccact 20 <210> 767 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 767 ccccgtgatg gctgcggttc 20 <210> 768 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 768 gtgtgtcctc ataccccgcc 20 <210> 769 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 769 gcaccctcga agtctcgacc 20 <210> 770 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 770 gctctgaagg ccatgcagca 20 <210> 771 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 771 gacatatgcc aagattgtgc actac 25 <210> 772 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 772 cacgaatgag gtcctgagct t 21 <210> 773 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe <400> 773 aacacttgtc gctgccgctg gc 22 <210> 774 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 774 agcgaggctt cacttggcgc 20 <210> 775 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 775 gggaagcgag gcttcacttg 20 <210> 776 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 776 gcggtcagcg atcccagggt 20 <210> 777 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 777 gggtgccagc gcggtgatct 20 <210> 778 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 778 tgttacaaag aaagtgactg 20 <210> 779 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 779 cgatggcagc aacggaagtt 20 <210> 780 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 780 gtcagtttac gatggcagca 20 <210> 781 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 781 cagggctttg tttcgaaaaa 20 <210> 782 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 782 ccattttctt ccacagggct 20 <210> 783 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 783 atgcttcttc aagttttcca 20 <210> 784 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 784 cagaatgact ttaatgcttc 20 <210> 785 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 785 ccaccgcaaa tgcttctaga c 21 <210> 786 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 786 cccccccatt gagaagattc 20 <210> 787 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Probe <400> 787 ctccacctcc agcacgcgac ttct 24 <210> 788 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 788 gcggtcagcg atcccagggt 20 <210> 789 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 789 agcagcagca gcagcagcag cagca 25 <210> 790 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 790 agcagcagca gcagcagcag 20 <210> 791 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 791 gcagcagcag cagca 15 <210> 792 <400> 792 000 <210> 793 <211> 2611 <212> DNA <213> Mus musculus <400> 793 cgggaagacc ccgagctccg gcccggggag gggccatggt gttgcctgcc caacatgtca 60 gccgaagtgc ggctgaggca gctccagcag ctggtgctgg acccaggctt cctgggactg 120 gagcccctgc tcgaccttct cctgggcgtc caccaggagc tgggtgcctc tcacctagcc 180 caggacaagt atgtggccga cttcttgcag tgggtggagc ccattgcagc aaggcttaag 240 gaggtccgac tgcagaggga tgattttgag attttgaagg tgatcgggcg tggggcgttc 300 agcgaggtag cggtggtgaa gatgaaacag acgggccaag tgtatgccat gaagattatg 360 aataagtggg acatgctgaa gagaggcgag gtgtcgtgct tccgggaaga aagggatgta 420 ttagtgaaag gggaccggcg ctggatcaca cagctgcact ttgccttcca ggatgagaac 480 tacctgtacc tggtcatgga atactacgtg ggcggggacc tgctaacgct gctgagcaag 540 tttggggagc ggatccccgc cgagatggct cgcttctacc tggccgagat tgtcatggcc 600 atagactccg tgcaccggct gggctacgtg cacagggaca tcaaaccaga taacattctg 660 ctggaccgat gtgggcacat tcgcctggca gacttcggct cctgcctcaa actgcagcct 720 gatggaatgg tgaggtcgct ggtggctgtg ggcaccccgg actacctgtc tcctgagatt 780 ctgcaggccg ttggtggagg gcctggggca ggcagctacg ggccagagtg tgactggtgg 840 gcactgggcg tgttcaccta tgagatgttc tatgggcaga cccccttcta cgcggactcc 900 acagccgaga catatgccaa gattgtgcac tacagggaac acttgtcgct gccgctggca 960 gacacagttg tccccgagga agctcaggac ctcattcgtg ggctgctgtg tcctgctgag 1020 ataaggctag gtcgaggtgg ggcagacttc gagggtgcca cggacacatg caatttcgat 1080 gtggtggagg accggctcac tgccatggtg agcgggggcg gggagacgct gtcagacatg 1140 caggaagaca tgccccttgg ggtgcgcctg cccttcgtgg gctactccta ctgctgcatg 1200 gccttcagag acaatcaggt cccggacccc acccctatgg aactagaggc cctgcagttg 1260 cctgtgtcag acttgcaagg gcttgacttg cagcccccag tgtccccacc ggatcaagtg 1320 gctgaagagg ctgacctagt ggctgtccct gcccctgtgg ctgaggcaga gaccacggta 1380 acgctgcagc agctccagga agccctggaa gaagaggttc tcacccggca gagcctgagc 1440 cgcgagctgg aggccatccg gaccgccaac cagaacttct ccagccaact acaggaggcc 1500 gaggtccgaa accgagacct ggaggcgcat gttcggcagc tacaggaacg gatggagatg 1560 ctgcaggccc caggagccgc agccatcacg ggggtcccca gtccccgggc cacggatcca 1620 ccttcccatc tagatggccc cccggccgtg gctgtgggcc agtgcccgct ggtggggcca 1680 ggccccatgc accgccgtca cctgctgctc cctgccagga tccctaggcc tggcctatcc 1740 gaggcgcgtt gcctgctcct gttcgccgct gctctggctg ctgccgccac actgggctgc 1800 actgggttgg tggcctatac cggcggtctc accccagtct ggtgtttccc gggagccacc 1860 ttcgccccct gaaccctaag actccaagcc atctttcatt taggcctcct aggaaggtcg 1920 agcgaccagg gagcgaccca aagcgtctct gtgcccatcg cccccccccc cccccccacc 1980 gctccgctcc acacttctgt gagcctgggt ccccacccag ctccgctcct gtgatccagg 2040 cctgccacct ggcggccggg gagggaggaa cagggctcgt gcccagcacc cctggttcct 2100 gcagagctgg tagccaccgc tgctgcagca gctgggcatt cgccgacctt gctttactca 2160 gccccgacgt ggatgggcaa actgctcagc tcatccgatt tcactttttc actctcccag 2220 ccatcagtta caagccataa gcatgagccc cctatttcca gggacatccc attcccatag 2280 tgatggatca gcaagacctc tgccagcaca cacggagtct ttggcttcgg acagcctcac 2340 tcctgggggt tgctgcaact ccttccccgt gtacacgtct gcactctaac aacggagcca 2400 cagctgcact cccccctccc ccaaagcagt gtgggtattt attgatcttg ttatctgact 2460 cactgacaga ctccgggacc cacgttttag atgcattgag actcgacatt cctcggtatt 2520 tattgtctgt ccccacctac gacctccact cccgaccctt gcgaataaaa tacttctggt 2580 ctgccctaaa aaaaaaaaaa aaaaaaaaaa a 2611 <210> 794 <211> 988 <212> DNA <213> Mus musculus <220> <221> misc_feature <222> 531, 942 <223> n = A,T,C or G <400> 794 gctggaccgg tccggaattc tccggatcgc cagcctttgt gggccatatt cgtcatccct 60 cctggcttct catctgcttt tgtggtccta gctcaagacc tctaattcct ctgctgactt 120 aaatgccctt ccccagaggt cttctcaggc ctagtggaca agcttggagc cttatctgct 180 cctgcccaac attgagccaa agctccagct taccccagct tccttacaat ggaccccatt 240 gcagcaaggc ttaaggaggt ccgactgcag agggatgatt ttgagatttt gaaggtgatc 300 gggcgtgggg cgttcagcga ggtagcggtg gtgaagatga aacagacggg ccaagtgtat 360 gccatgaaga ttatgaataa gtgggacatg ctgaagagag gcgaggtgtc gtgcttccgg 420 gaagaaaggg atgtattagt gaaaggggac cggcgctgga tcacacagct gcactttgcc 480 ttccaggatg agaactacct gtacctggtc atggaatact acgtgggcgg ngacctgcta 540 acgctgctga gcaagttttg gggagcggat ccccgccgag atggctcgct tctacctggc 600 cgagattgtc atggccatag actccgtgca ccggctgggc tacgtgcaca gggacatcaa 660 accagataac attctgctgg accgatgtgg gcacattcgc ctggcagact tcggctcctg 720 gcctcaactg cagcctgatg gaatggtgga gtcccctggt ggctgtgggc acccccggac 780 tacctgtctc ctgaaattct gcagggcctt ggtgggaggc cctggggaag gcaactacgg 840 gccaaaagtt ggaagggggg ggcctggggg gggttcccct atgaaaagtt ctatggggag 900 gacccccttt aagcggaatc ccaggccgaa aaatatgccc angattgggc cctaacaggg 960 aaaacttttc ccctgcccct gggacaat 988 <210> 795 <211> 649 <212> DNA <213> Mus musculus <400> 795 ggcgtgttcg cctatgagat gttctatggg cagaccccct tctacgcgga ctccacagcc 60 gagacatatg ccaagattgt gcactacagg gaacacttgt cgctgccgct ggcagacaca 120 gttgtccccg aggaagctca ggacctcatt cgtgggctgc tgtgtcctgc tgagataagg 180 ctaggtcgag gtggggcagg tgatttccag aaacatcctt tcttctttgg ccttgattgg 240 gagggtctcc gagacagtgt accccccttt acaccagact tcgagggtgc cacggacaca 300 tgcaatttcg atgtggtgga ggaccggctc actgccatgg agacgctgtc agacatgcag 360 gaagacatgc cccttggggt gcgcctgccc ttcgtgggct actcctactg ctgcatggcc 420 ttcagagaca atcaggtccc ggaccccacc cctatggaac tagaggccct gcagttgcct 480 gtgtcagact tgcaagggct tgacttgcag cccccagtgt ccccaccgga tcaagtggtc 540 ccaactctga tccccaccga caggctgaag aggctgacct agtggctgtc cctgcccctg 600 tggctgaggc agagccacgg taacgctgca gcagctccag gaagccctg 649 <210> 796 <211> 527 <212> DNA <213> Mus musculus <400> 796 atttcgatgt ggtggaggac cggctcactg ccatggtgag cgggggcggg gagacgctgt 60 cagacatgca ggaagacatg ccccttgggg tgcgcctgcc cttcgtgggc tactcctact 120 gctgcatggc cttcagagac aatcaggtcc cggaccccac ccctatggaa ctagaggccc 180 tgcagttgcc tgtgtcagac ttgcaagggc ttgacttgca gcccccagtg tccccaccgg 240 atcaagtggc tgaagaggct gacctagtgg ctgtccctgc ccctgtggct gaggcagaga 300 ccacggtaac gctgcagcag ctccaggaag ccctggaaga agaggttctc acccggcaga 360 gcctgagccg cgagctggag gccatccgga ccgccaacca gaacttctcc aggaggccga 420 ggtccgaaac cgagacctgg aggcgcatgt tcggcagcta caggaacgga tggagatgct 480 gcaggcccca ggaaccgcag ccatcacggg ggtccccagt cccccgg 527 <210> 797 <211> 567 <212> DNA <213> Mus musculus <400> 797 atggtgaggt cgctggtggc tgtgggcacc ccggactacc tgtctcctga gattctgcag 60 gccgttggtg gagggcctgg ggcaggcagc tacgggccag agtgtgactg gtgggcactg 120 ggcgtgttcg cctatgagat gttctatggg cagaccccct tctacgcgga ctccacagcc 180 gagacatatg ccaagattgt gcactacagg gaacacttgt cgctgccgct ggcagacaca 240 gttgtccccg aggaagctca ggacctcatt cgtgggctgc tgtgtcctgc tgagataagg 300 ctaggtcgag gtggggcagg tgatttccag aaacatcctt tcttctttgg ccttgattgg 360 gagggtctcc gagacagtgt accccccttt acaccagact tcgagggtgc cacggacaca 420 tgcaatttcg atgtggtgga ggaccggctc actgccatgg tgagcggggg cggggtatga 480 ggacacacag gtgaccagtc cccaagacag tgagtgaggc ttcactcttg gcagtactaa 540 aattgaatgt agggggctgg gctcttg 567 <210> 798 <211> 2474 <212> DNA <213> Mus musculus <400> 798 ccgggaagaa agggatgtat tagtgaaagg ggaccggcgc tggatcacac agctgcactt 60 tgccttccag gatgagaact acctgtacct ggtcatggaa tactacgtgg gcggggacct 120 gctaacgctg ctgagcaagt ttggggagcg gatccccgcc gagatggctc gcttctacct 180 ggccgagatt gtcatggcca tagactccgt gcaccggctg ggctacgtgc acagggacat 240 caaaccagat aacattctgc tggaccgatg tgggcacatt cgcctggcag acttcggctc 300 ctgcctcaaa ctgcagcctg atggaatggt gaggtcgctg gtggctgtgg gcaccccgga 360 ctacctgtct cctgagattc tgcaggccgt tggtggaggg cctggggcag gcagctacgg 420 gccagagtgt gactggtggg cactgggcgt gttcgcctat gagatgttct atgggcagac 480 ccccttctac gcggactcca cagccgagac atatgccaag attgtgcact acagggaaca 540 cttgtcgctg ccgctggcag acacagttgt ccccgaggaa gctcaggacc tcattcgtgg 600 gctgctgtgt cctgctgaga taaggctagg tcgagacttc gagggtgcca cggacacatg 660 caatttcgat gtggtggagg accggctcac tgccatggtg agcgggggcg gggagacgct 720 gtcagacatg caggaagaca tgccccttgg ggtgcgcctg cccttcgtgg gctactccta 780 ctgctgcatg gccttcagag acaatcaggt cccggacccc acccctatgg aactagaggc 840 cctgcagttg cctgtgtcag acttgcaagg gcttgacttg cagcccccag tgtccccacc 900 ggatcaagtg gctgaagagg ccgacctagt ggctgtccct gcccctgtgg ctgaggcaga 960 gaccacggta acgctgcagc agctccagga agccctggaa gaagaggttc tcacccggca 1020 gagcctgagc cgcgagctgg aggccatccg gaccgccaac cagaacttct ccagccaact 1080 acaggaggcc gaggtccgaa accgagacct ggaggcgcat gttcggcagc tacaggaacg 1140 gatggagatg ctgcaggccc caggagccgc aggcgagtcc ctcacctgct tccagccaag 1200 ggggcactgg gtggagatgg ggggcatgtt gggtgtgtga accctcgggg caggggagga 1260 gtccaggctg gggcaccgca gccgcgccac tgcctttctc ctccatcctc cacactccat 1320 acacctctct cttctccttc cagccatcac gggggtcccc agtccccggg ccacggatcc 1380 accttcccat gcttctcgcc aaatcctccc caagggaact ccctagactc ccgttctggc 1440 ctcgactaga ttcccgcact gcctctcgcc ctgctgctgg gctccgatcg ggtcacctgt 1500 cccttctctc tccagctaga tggccccccg gccgtggctg tgggccagtg cccgctggtg 1560 gggccaggcc ccatgcaccg ccgtcacctg ctgctccctg ccaggatccc taggcctggc 1620 ctatccgagg cgcgttgcct gctcctgttc gccgctgctc tggctgctgc cgccacactg 1680 ggctgcactg ggttggtggc ctataccggc ggtctcaccc cagtctggtg tttcccggga 1740 gccaccttcg ccccctgaac cctaagactc caagccatct ttcatttagg cctcctagga 1800 agatcgagcg accagggagc gacccaaagc gtctctgtgc ccatcgcccc cccccccccc 1860 cccaccgctc cgctccacac ttctgtgagc ctgggtcccc acccagctcc gctcctgtga 1920 tccaggcctg ccacctggcg gccggggagg gaggaacagg gctcgtgccc agcacccctg 1980 gttcctgcag agctggtagc caccgctgct gcagcagctg ggcattcgcc gaccttgctt 2040 tactcagccc tgacgtggat gggctaactg ctcagctcat ccgatttcac tttttcactc 2100 tcccagccat cagttacaag ccataagcat gagcccccta tttccaggga catcccattc 2160 ccatagtgat ggatcagcaa gacctctgcc agcacacacg gagtctttgg cttcggacag 2220 cctcactcct gggggttgct gcaactcctt ccccgtgtac acgtctgcac tctaacaacg 2280 gagccacagc tgcactcccc cctcccccaa agcagtgtgg gtatttattg atcttgttat 2340 ctgactcact gacagactcc gggacccacg ttttagatgc attgagactc gacattcctc 2400 ggtatttatt gtctgtcccc acctacgacc tccactcccg acccttgcga ataaaatact 2460 tctggtctgc ccta 2474 <210> 799 <211> 2135 <212> DNA <213> Mus musculus <400> 799 ccgggaagaa agggatgtat tagtgaaagg ggaccggcgc tggatcacac agctgcactt 60 tgccttccag gatgagaact acctgtacct ggtcatggaa tactacgtgg gcggggacct 120 gctaacgctg ctgagcaagt ttggggagcg gatccccgcc gagatggctc gcttctacct 180 ggccgagatt gtcatggcca tagactccgt gcaccggctg ggctacgtgc acagggacat 240 caaaccagat aacattctgc tggaccgatg tgggcacatt cgcctggcag acttcggctc 300 ctgcctcaaa ctgcagcctg atggaatggt gaggtcgctg gtggctgtgg gcaccccgga 360 ctacctgtct cctgagattc tgcaggccgt tggtggaggg cctggggcag gcagctacgg 420 gccagagtgt gactggtggg cactgggcgt gttcgcctat gagatgttct atgggcagac 480 ccccttctac gcggactcca cagccgagac atatgccaag attgtgcact acagggaaca 540 cttgtcgctg ccgctggcag acacagttgt ccccgaggaa gctcaggacc tcattcgtgg 600 gctgctgtgt cctgctgaga taaggctagg tcgaggtggg gcaggtgatt tccagaaaca 660 tcctttcttc tttggccttg attgggaggg tctccgagac agtgtacccc cctttacacc 720 agacttcgag ggtgccacgg acacatgcaa tttcgatgtg gtggaggacc ggctcactgc 780 catggagacg ctgtcagaca tgcaggaaga catgcccctt ggggtgcgcc tgcccttcgt 840 gggctactcc tactgctgca tggccttcag agctgaagag gccgacctag tggctgtccc 900 tgcccctgtg gctgaggcag agaccacggt aacgctgcag cagctccagg aagccctgga 960 agaagaggtt ctcacccggc agagcctgag ccgcgagctg gaggccatcc ggaccgccaa 1020 ccagaacttc tccagccaac tacaggaggc cgaggtccga aaccgagacc tggaggcgca 1080 tgttcggcag ctacaggaac ggatggagat gctgcaggcc ccaggagccg cagccatcac 1140 gggggtcccc agtccccggg ccacggatcc accttcccat atggcccccc ggccgtggct 1200 gtgggccagt gcccgctggt ggggccaggc cccatgcacc gccgtcacct gctgctccct 1260 gccaggatcc ctaggcctgg cctatccgag gcgcgttgcc tgctcctgtt cgccgctgct 1320 ctggctgctg ccgccacact gggctgcact gggttggtgg cctataccgg cggtctcacc 1380 ccagtctggt gtttcccggg agccaccttc gccccctgaa ccctaagact ccaagccatc 1440 tttcatttag gcctcctagg aagatcgagc gaccagggag cgacccaaag cgtctctgtg 1500 cccatcgccc cccccccccc ccccaccgct ccgctccaca cttctgtgag cctgggtccc 1560 cacccagctc cgctcctgtg atccaggcct gccacctggc ggccggggag ggaggaacag 1620 ggctcgtgcc cagcacccct ggttcctgca gagctggtag ccaccgctgc tgcagcagct 1680 gggcattcgc cgaccttgct ttactcagcc ctgacgtgga tgggctaact gctcagctca 1740 tccgatttca ctttttcact ctcccagcca tcagttacaa gccataagca tgagccccct 1800 atttccaggg acatcccatt cccatagtga tggatcagca agacctctgc cagcacacac 1860 ggagtctttg gcttcggaca gcctcactcc tgggggttgc tgcaactcct tccccgtgta 1920 cacgtctgca ctctaacaac ggagccacag ctgcactccc ccctccccca aagcagtgtg 1980 ggtatttatt gatcttgtta tctgactcac tgacagactc cgggacccac gttttagatg 2040 cattgagact cgacattcct cggtatttat tgtctgtccc cacctacgac ctccactccc 2100 gacccttgcg aataaaatac ttctggtctg cccta 2135 <210> 800 <211> 2873 <212> DNA <213> Homo sapiens <400> 800 aggggggctg gaccaagggg tggggagaag gggaggaggc ctcggccggc cgcagagaga 60 agtggccaga gaggcccagg ggacagccag ggacaggcag acatgcagcc agggctccag 120 ggcctggaca ggggctgcca ggccctgtga caggaggacc ccgagccccc ggcccgggga 180 ggggccatgg tgctgcctgt ccaacatgtc agccgaggtg cggctgaggc ggctccagca 240 gctggtgttg gacccgggct tcctggggct ggagcccctg ctcgaccttc tcctgggcgt 300 ccaccaggag ctgggcgcct ccgaactggc ccaggacaag tacgtggccg acttcttgca 360 gtgggcggag cccatcgtgg tgaggcttaa ggaggtccga ctgcagaggg acgacttcga 420 gattctgaag gtgatcggac gcggggcgtt cagcgaggta gcggtagtga agatgaagca 480 gacgggccag gtgtatgcca tgaagatcat gaacaagtgg gacatgctga agaggggcga 540 ggtgtcgtgc ttccgtgagg agagggacgt gttggtgaat ggggaccggc ggtggatcac 600 gcagctgcac ttcgccttcc aggatgagaa ctacctgtac ctggtcatgg agtattacgt 660 gggcggggac ctgctgacac tgctgagcaa gtttggggag cggattccgg ccgagatggc 720 gcgcttctac ctggcggaga ttgtcatggc catagactcg gtgcaccggc ttggctacgt 780 gcacagggac atcaaacccg acaacatcct gctggaccgc tgtggccaca tccgcctggc 840 cgacttcggc tcttgcctca agctgcgggc agatggaacg gtgcggtcgc tggtggctgt 900 gggcacccca gactacctgt cccccgagat cctgcaggct gtgggcggtg ggcctgggac 960 aggcagctac gggcccgagt gtgactggtg ggcgctgggt gtattcgcct atgaaatgtt 1020 ctatgggcag acgcccttct acgcggattc cacggcggag acctatggca agatcgtcca 1080 ctacaaggag cacctctctc tgccgctggt ggacgaaggg gtccctgagg aggctcgaga 1140 cttcattcag cggttgctgt gtcccccgga gacacggctg ggccggggtg gagcaggcga 1200 cttccggaca catcccttct tctttggcct cgactgggat ggtctccggg acagcgtgcc 1260 cccctttaca ccggatttcg aaggtgccac cgacacatgc aacttcgact tggtggagga 1320 cgggctcact gccatggaga cactgtcgga cattcgggaa ggtgcgccgc taggggtcca 1380 cctgcctttt gtgggctact cctactcctg catggccctc agggacagtg aggtcccagg 1440 ccccacaccc atggaactgg aggccgagca gctgcttgag ccacacgtgc aagcgcccag 1500 cctggagccc tcggtgtccc cacaggatga aacagctgaa gtggcagttc cagcggctgt 1560 ccctgcggca gaggctgagg ccgaggtgac gctgcgggag ctccaggaag ccctggagga 1620 ggaggtgctc acccggcaga gcctgagccg ggagatggag gccatccgca cggacaacca 1680 gaacttcgcc agtcaactac gcgaggcaga ggctcggaac cgggacctag aggcacacgt 1740 ccggcagttg caggagcgga tggagttgct gcaggcagag ggagccacag ctgtcacggg 1800 ggtccccagt ccccgggcca cggatccacc ttcccatatg gccccccggc cgtggctgtg 1860 ggccagtgcc cgctggtggg gccaggcccc atgcaccgcc gccacctgct gctccctgcc 1920 agggtcccta ggcctggcct atcggaggcg ctttccctgc tcctgttcgc cgttgttctg 1980 tctcgtgccg ccgccctggg ctgcattggg ttggtggccc acgccggcca actcaccgca 2040 gtctggcgcc gcccaggagc cgcccgcgct ccctgaaccc tagaactgtc ttcgactccg 2100 gggccccgtt ggaagactga gtgcccgggg cacggcacag aagccgcgcc caccgcctgc 2160 cagttcacaa ccgctccgag cgtgggtctc cgcccagctc cagtcctgtg atccgggccc 2220 gccccctagc ggccggggag ggaggggccg ggtccgcggc cggcgaacgg ggctcgaagg 2280 gtccttgtag ccgggaatgc tgctgctgct gctgctgctg ctgctgctgc tgctgctgct 2340 gctgctgctg ctgctgctgg ggggatcaca gaccatttct ttctttcggc caggctgagg 2400 ccctgacgtg gatgggcaaa ctgcaggcct gggaaggcag caagccgggc cgtccgtgtt 2460 ccatcctcca cgcaccccca cctatcgttg gttcgcaaag tgcaaagctt tcttgtgcat 2520 gacgccctgc tctggggagc gtctggcgcg atctctgcct gcttactcgg gaaatttgct 2580 tttgccaaac ccgctttttc ggggatcccg cgcccccctc ctcacttgcg ctgctctcgg 2640 agccccagcc ggctccgccc gcttcggcgg tttggatatt tattgacctc gtcctccgac 2700 tcgctgacag gctacaggac ccccaacaac cccaatccac gttttggatg cactgagacc 2760 ccgacattcc tcggtattta ttgtctgtcc ccacctagga cccccacccc cgaccctcgc 2820 gaataaaagg ccctccatct gcccaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 2873 <210> 801 <211> 1509 <212> DNA <213> Homo sapiens <400> 801 ccaccgcagc ggacagcgcc aagtgaagcc tcgcttcccc tccgcggcga ccagggcccg 60 agccgagagt agcagttgta gctacccgcc cagaaactag acacaatgtg cgacgaagac 120 gagaccaccg ccctcgtgtg cgacaatggc tccggcctgg tgaaagccgg cttcgccggg 180 gatgacgccc ctagggccgt gttcccgtcc atcgtgggcc gcccccgaca ccagggcgtc 240 atggtcggta tgggtcagaa agattcctac gtgggcgacg aggctcagag caagagaggt 300 atcctgaccc tgaagtaccc tatcgagcac ggcatcatca ccaactggga tgacatggag 360 aagatctggc accacacctt ctacaacgag cttcgcgtgg ctcccgagga gcaccccacc 420 ctgctcaccg aggcccccct caatcccaag gccaaccgcg agaagatgac ccagatcatg 480 tttgagacct tcaacgtgcc cgccatgtac gtggccatcc aggccgtgct gtccctctac 540 gcctccggca ggaccaccgg catcgtgctg gactccggcg acggcgtcac ccacaacgtg 600 cccatttatg agggctacgc gctgccgcac gccatcatgc gcctggacct ggcgggccgc 660 gatctcaccg actacctgat gaagatcctc actgagcgtg gctactcctt cgtgaccaca 720 gctgagcgcg agatcgtgcg cgacatcaag gagaagctgt gctacgtggc cctggacttc 780 gagaacgaga tggcgacggc cgcctcctcc tcctccctgg aaaagagcta cgagctgcca 840 gacgggcagg tcatcaccat cggcaacgag cgcttccgct gcccggagac gctcttccag 900 ccctccttca tcggtatgga gtcggcgggc attcacgaga ccacctacaa cagcatcatg 960 aagtgtgaca tcgacatcag gaaggacctg tatgccaaca acgtcatgtc ggggggcacc 1020 acgatgtacc ctgggatcgc tgaccgcatg cagaaagaga tcaccgcgct ggcacccagc 1080 accatgaaga tcaagatcat cgccccgccg gagcgcaaat actcggtgtg gatcggcggc 1140 tccatcctgg cctcgctgtc caccttccag cagatgtgga tcaccaagca ggagtacgac 1200 gaggccggcc cttccatcgt ccaccgcaaa tgcttctaga cacactccac ctccagcacg 1260 cgacttctca ggacgacgaa tcttctcaat gggggggcgg ctgagctcca gccaccccgc 1320 agtcactttc tttgtaacaa cttccgttgc tgccatcgta aactgacaca gtgtttataa 1380 cgtgtacata cattaactta ttacctcatt ttgttatttt tcgaaacaaa gccctgtgga 1440 agaaaatgga aaacttgaag aagcattaaa gtcattctgt taagctgcgt aaaaaaaaaa 1500 aaaaaaaaa 1509 <210> 802 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 802 gcagcagcag cagcagcag 19 <210> 803 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 803 gcagcagcag cagcagcag 19 <210> 804 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 804 agcagcagca gcagcagcag 20 <210> 805 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 805 gcagcagcag cagcagca 18 <210> 806 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 806 agcagcagca gcagcagca 19 <210> 807 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 807 agcagcagca gcagca 16 <210> 808 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 808 ctcccgacaa gctcca 16 <210> 809 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 809 tcccgacaag ctcc 14 <210> 810 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 810 gcttgcacgt gtggct 16 <210> 811 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 811 cttgcacgtg tggc 14 <210> 812 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 812 ggttgtgaac tggcag 16 <210> 813 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 813 gttgtgaact ggca 14 <210> 814 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 814 gagcggttgt gaactg 16 <210> 815 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 815 agcggttgtg aact 14 <210> 816 <211> 16 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 816 gctgccttcc caggcc 16 <210> 817 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 817 ctgccttccc aggc 14 <210> 818 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 818 gcactttgcg aaccaa 16 <210> 819 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 819 cactttgcga acca 14 <210> 820 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 820 gaaagctttg cacttt 16 <210> 821 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 821 aaagctttgc actt 14 <210> 822 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 822 cggaggacga ggtcaa 16 <210> 823 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 823 ggaggacgag gtca 14 <210> 824 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 824 agcctgtcag cgagtc 16 <210> 825 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 825 gcctgtcagc gagt 14 <210> 826 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 826 tcctgtagcc tgtcag 16 <210> 827 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 827 cctgtagcct gtca 14 <210> 828 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 828 gaagcgaggc ttcact 16 <210> 829 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 829 aagcgaggct tcac 14 <210> 830 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 830 acctgcccgt ctggca 16 <210> 831 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 831 cctgcccgtc tggc 14 <210> 832 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 832 ggtcagcgat cccagg 16 <210> 833 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 833 gtcagcgatc ccag 14 <210> 834 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 834 attttcttcc acaggg 16 <210> 835 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 835 ttttcttcca cagg 14 <210> 836 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 836 gaatgacttt aatgct 16 <210> 837 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 837 aatgacttta atgc 14 SEQUENCE LISTING <110> C. Frank Bennett Susan M. Freier Robert A. MacLeod Sanjay K. Pandey Charles A. Thornton Thurman Wheeler Seng H. Cheng Andrew Leger Bruce M. Wentworth <120> MODULATION OF DYSTROPHIA MYOTONICA-PROTEIN KINASE (DMPK) EXPRESSION <130> BIOL0134WO <140> PCT/US2011/044555 <141> 2011-07-19 <150> 61/365,775 <151> 2010-07-19 <150> 61/365,762 <151> 2010-07-19 <150> 61/478,021 <151> 2011-04-21 <160> 837 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 2877 <212> DNA <213> Homo sapiens <400> 1 aggggggctg gaccaagggg tggggagaag gggaggaggc ctcggccggc cgcagagaga 60 agtggccaga gaggcccagg ggacagccag ggacaggcag acatgcagcc agggctccag 120 ggcctggaca ggggctgcca ggccctgtga caggaggacc ccgagccccc ggcccgggga 180 ggggccatgg tgctgcctgt ccaacatgtc agccgaggtg cggctgaggc ggctccagca 240 gctggtgttg gacccgggct tcctggggct ggagcccctg ctcgaccttc tcctgggcgt 300 ccaccaggag ctgggcgcct ccgaactggc ccaggacaag tacgtggccg acttcttgca 360 gtgggcggag cccatcgtgg tgaggcttaa ggaggtccga ctgcagaggg acgacttcga 420 gattctgaag gtgatcggac gcggggcgtt cagcgaggta gcggtagtga agatgaagca 480 gacgggccag gtgtatgcca tgaagatcat gaacaagtgg gacatgctga agaggggcga 540 ggtgtcgtgc ttccgtgagg agagggacgt gttggtgaat ggggaccggc ggtggatcac 600 gcagctgcac ttcgccttcc aggatgagaa ctacctgtac ctggtcatgg agtattacgt 660 gggcggggac ctgctgacac tgctgagcaa gtttggggag cggattccgg ccgagatggc 720 gcgcttctac ctggcggaga ttgtcatggc catagactcg gtgcaccggc ttggctacgt 780 gcacagggac atcaaacccg acaacatcct gctggaccgc tgtggccaca tccgcctggc 840 cgacttcggc tcttgcctca agctgcgggc agatggaacg gtgcggtcgc tggtggctgt 900 gggcacccca gactacctgt cccccgagat cctgcaggct gtgggcggtg ggcctgggac 960 aggcagctac gggcccgagt gtgactggtg ggcgctgggt gtattcgcct atgaaatgtt 1020 ctatgggcag acgcccttct acgcggattc cacggcggag acctatggca agatcgtcca 1080 ctacaaggag cacctctctc tgccgctggt ggacgaaggg gtccctgagg aggctcgaga 1140 cttcattcag cggttgctgt gtcccccgga gacacggctg ggccggggtg gagcaggcga 1200 cttccggaca catcccttct tctttggcct cgactgggat ggtctccggg acagcgtgcc 1260 cccctttaca ccggatttcg aaggtgccac cgacacatgc aacttcgact tggtggagga 1320 cgggctcact gccatggaga cactgtcgga cattcgggaa ggtgcgccgc taggggtcca 1380 cctgcctttt gtgggctact cctactcctg catggccctc agggacagtg aggtcccagg 1440 ccccacaccc atggaactgg aggccgagca gctgcttgag ccacacgtgc aagcgcccag 1500 cctggagccc tcggtgtccc cacaggatga aacagctgaa gtggcagttc cagcggctgt 1560 ccctgcggca gaggctgagg ccgaggtgac gctgcgggag ctccaggaag ccctggagga 1620 ggaggtgctc acccggcaga gcctgagccg ggagatggag gccatccgca cggacaacca 1680 gaacttcgcc agtcaactac gcgaggcaga ggctcggaac cgggacctag aggcacacgt 1740 ccggcagttg caggagcgga tggagttgct gcaggcagag ggagccacag ctgtcacggg 1800 ggtccccagt ccccgggcca cggatccacc ttcccatcta gatggccccc cggccgtggc 1860 tgtgggccag tgcccgctgg tggggccagg ccccatgcac cgccgccacc tgctgctccc 1920 tgccagggtc cctaggcctg gcctatcgga ggcgctttcc ctgctcctgt tcgccgttgt 1980 tctgtctcgt gccgccgccc tgggctgcat tgggttggtg gcccacgccg gccaactcac 2040 cgcagtctgg cgccgcccag gagccgcccg cgctccctga accctagaac tgtcttcgac 2100 tccggggccc cgttggaaga ctgagtgccc ggggcacggc acagaagccg cgcccaccgc 2160 ctgccagttc acaaccgctc cgagcgtggg tctccgccca gctccagtcc tgtgatccgg 2220 gcccgccccc tagcggccgg ggagggaggg gccgggtccg cggccggcga acggggctcg 2280 aagggtcctt gtagccggga atgctgctgc tgctgctgct gctgctgctg ctgctgctgc 2340 tgctgctgct gctgctgctg ctggggggat cacagaccat ttctttcttt cggccaggct 2400 gaggccctga cgtggatggg caaactgcag gcctgggaag gcagcaagcc gggccgtccg 2460 tgttccatcc tccacgcacc cccacctatc gttggttcgc aaagtgcaaa gctttcttgt 2520 gcatgacgcc ctgctctggg gagcgtctgg cgcgatctct gcctgcttac tcgggaaatt 2580 tgcttttgcc aaacccgctt tttcggggat cccgcgcccc cctcctcact tgcgctgctc 2640 tcggagcccc agccggctcc gcccgcttcg gcggtttgga tatttattga cctcgtcctc 2700 cgactcgctg acaggctaca ggacccccaa caaccccaat ccacgttttg gatgcactga 2760 gaccccgaca ttcctcggta tttattgtct gtccccacct aggaccccca cccccgaccc 2820 tcgcgaataa aaggccctcc atctgcccaa aaaaaaaaaa aaaaaaaaaa aaaaaaa 2877 <210> 2 <211> 14411 <212> DNA <213> Homo sapiens <400> 2 ctcccagccc agcgcctccc accccttttc atagcaggaa aagccggagc ccagggaggg 60 aacggacctg cgagtcacac aactggtgac ccacaccagc ggctggagca ggaccctctt 120 ggggagaaga gcatcctgcc cgcagccagg gcccctcatc aaagtcctcg gtgtttttta 180 aattatcaga actgcccagg accacgtttc ccaggccctg cccagctggg actcctcggt 240 ccttgcctcc tagtttctca ggcctggccc tctcaaggcc caggcacccc aggccggttg 300 gaggccccga cttccactct ggagaaccgt ccaccctgga aagaagagct cagattcctc 360 ttggctctcg gagccgcagg gagtgtgtct tcccgcgcca ccctccaccc cccgaaatgt 420 ttctgtttct aatcccagcc tgggcaggaa tgtggctccc cggccagggg ccaaggagct 480 attttggggt ctcgtttgcc cagggagggc ttggctccac cactttcctc ccccagcctt 540 tgggcagcag gtcacccctg ttcaggctct gagggtgccc cctcctggtc ctgtcctcac 600 caccccttcc ccacctcctg ggaaaaaaaa aaaaaaaaaa aaaaaaagct ggtataaagc 660 agagagcctg agggctaaat ttaactgtcc gagtcggaat ccatctctga gtcacccaag 720 aagctgccct ggcctcccgt ccccttccca ggcctcaacc cctttctccc acccagcccc 780 aacccccagc cctcaccccc tagcccccag ttctggagct tgtcgggagc aagggggtgg 840 ttgctactgg gtcactcagc ctcaattggc cctgtttcag caatgggcag gttcttcttg 900 aaattcatca cacctgtggc ttcctctgtg ctctaccttt ttattggggt gacagtgtga 960 cagctgagat tctccatgca ttccccctac tctagcactg aagggttctg aagggccctg 1020 gaaggaggga gcttgggggg ctggcttgtg aggggttaag gctgggaggc gggagggggg 1080 ctggaccaag gggtggggag aaggggagga ggcctcggcc ggccgcagag agaagtggcc 1140 agagaggccc aggggacagc cagggacagg cagacatgca gccagggctc cagggcctgg 1200 acaggggctg ccaggccctg tgacaggagg accccgagcc cccggcccgg ggaggggcca 1260 tggtgctgcc tgtccaacat gtcagccgag gtgcggctga ggcggctcca gcagctggtg 1320 ttggacccgg gcttcctggg gctggagccc ctgctcgacc ttctcctggg cgtccaccag 1380 gagctgggcg cctccgaact ggcccaggac aagtacgtgg ccgacttctt gcagtggggt 1440 gagtgcctac cctcggggct cctgcagatg gggtgggggt ggggcaggag acaggtctgg 1500 gcacagaggc ctggctgttg ggggggcagg atggcaggat gggcatgggg agatcctccc 1560 atcctggggc tcagagtgtg gacctgggcc ctggggcaac atttctctgt cctatgccac 1620 cactctggag gggcagagta aggtcagcag aggctagggt ggctgtgact cagagccatg 1680 gcttaggagt cacagcaggc taggctgcca acagcctccc atggcctctc tgcaccccgc 1740 ctcagggtca gggtcagggt catgctggga gctccctctc ctaggaccct ccccccaaaa 1800 gtgggctcta tggccctctc ccctggtttc ctgtggcctg gggcaagcca ggagggccag 1860 catggggcag ctgccagggg cgcagccgac aggcaggtgt tcggcgccag cctctccagc 1920 tgccccaaca ggtgcccagg cactgggagg gcggtgactc acgcgggccc tgtgggagaa 1980 ccagctttgc agacaggcgc caccagtgcc ccctcctctg cgatccagga gggacaactt 2040 tgggttcttc tgggtgtgtc tccttctttt gtaggttctg cacccacccc cacccccagc 2100 cccaaagtct cggttcctat gagccgtgtg ggtcagccac cattcccgcc accccgggtc 2160 cctgcgtcct ttagttctcc tggcccaggg cctccaacct tccagctgtc ccacaaaacc 2220 ccttcttgca agggcctcc agggcctggg gccagggctg gaaggaggat gcttccgctt 2280 ctgccagctg ccttgtctgc ccacctcctc cccaagccca ggactcgggc tcactggtca 2340 ctggtttctt tcattcccag caccctgccc ctctggccct catatgtctg gccctcagtg 2400 actggtgttt ggtttttggc ctgtgtgtaa caaactgtgt gtgacacttg tttcctgttt 2460 ctccgccttc ccctgcttcc tcttgtgtcc atctctttct gacccaggcc tggttccttt 2520 ccctcctcct cccatttcac agatgggaag gtggaggcca agaagggcca ggccattcag 2580 cctctggaaa aaccttctcc caacctccca cagcccctaa tgactctcct ggcctccctt 2640 tagtagagga tgaagttggg ttggcagggt aaactgagac cgggtggggt aggggtctgg 2700 cgctcccggg aggagcactc cttttgtggc ccgagctgca tctcgcggcc cctcccctgc 2760 caggcctggg gcgggggagg gggccagggt tcctgctgcc ttaaaagggc tcaatgtctt 2820 ggctctctcc tccctccccc gtcctcagcc ctggctggtt cgtccctgct ggcccactct 2880 cccggaaccc cccggaaccc ctctctttcc tccagaaccc actgtctcct ctccttccct 2940 cccctcccat acccatccct ctctccatcc tgcctccact tcttccaccc ccgggagtcc 3000 aggcctccct gtccccacag tccctgagcc acaagcctcc accccagctg gtcccccacc 3060 caggctgccc agtttaacat tcctagtcat aggaccttga cttctgagag gcctgattgt 3120 catctgtaaa taaggggtag gactaaagca ctcctcctgg aggactgaga gatgggctgg 3180 accggagcac ttgagtctgg gatatgtgac catgctacct ttgtctccct gtcctgttcc 3240 ttcccccagc cccaaatcca gggttttcca aagtgtggtt caagaaccac ctgcatctga 3300 atctagaggt actggataca accccacgtc tgggccgtta cccaggacat tctacatgag 3360 aacgtggggg tggggccctg gctgcacctg aactgtcacc tggagtcagg gtggaaggtg 3420 gaagaactgg gtcttatttc cttctcccct tgttctttag ggtctgtcct tctgcagact 3480 ccgttacccc accctaacca tcctgcacac ccttggagcc ctctgggcca atgccctgtc 3540 ccgcaaaggg cttctcaggc atctcacctc tatgggaggg catttttggc ccccagaacc 3600 ttacacggtg tttatgtggg gaagcccctg ggaagcagac agtcctaggg tgaagctgag 3660 aggcagagag aaggggagac agacagaggg tggggctttc ccccttgtct ccagtgccct 3720 ttctggtgac cctcggttct tttcccccac caccccccca gcggagccca tcgtggtgag 3780 gcttaaggag gtccgactgc agagggacga cttcgagatt ctgaaggtga tcggacgcgg 3840 ggcgttcagc gaggtaagcc gaaccgggcg ggagcctgac ttgactcgtg gtgggcgggg 3900 cataggggtt ggggcggggc cttagaaatt gatgaatgac cgagccttag aacctagggc 3960 tgggctggag gcggggcttg ggaccaatgg gcgtggtgtg gcaggtgggg cggggccacg 4020 gctgggtgca gaagcgggtg gagttgggtc tgggcgagcc cttttgtttt cccgccgtct 4080 ccactctgtc tcactatctc gacctcaggt agcggtagtg aagatgaagc agacgggcca 4140 ggtgtatgcc atgaagatca tgaacaagtg ggacatgctg aagaggggcg aggtgagggg 4200 ctgggcggac gtggggggct ttgaggatcc gcgccccgtc tccggctgca gctcctccgg 4260 gtgccctgca ggtgtcgtgc ttccgtgagg agagggacgt gttggtgaat ggggaccggc 4320 ggtggatcac gcagctgcac ttcgccttcc aggatgagaa ctacctggtg agctccgggc 4380 cggggtgact aggaagaggg acaagagccc gtgctgtcac tggacgagga ggtggggaga 4440 ggaagctcta ggattggggg tgctgcccgg aaacgtctgt gggaaagtct gtgtgcggta 4500 agagggtgtg tcaggtggat gaggggcctt ccctatctga gacggggatg gtgtccttca 4560 ctgcccgttt ctggggtgat ctgggggact cttataaaga tgtctctgtt gcggggggtc 4620 tcttacctgg aatgggatag gtcttcagga attctaacgg ggccactgcc tagggaagga 4680 gtgtctggga cctattctct gggtgttggg tggcctctgg gttctctttc ccagaacatc 4740 tcagggggag tgaatctgcc cagtgacatc ccaggaaagt ttttttgttt gtgttttttt 4800 ttgaggggcg ggggcggggg ccgcaggtgg tctctgattt ggcccggcag atctctatgg 4860 ttatctctgg gctggggctg caggtctctg cccaaggatg gggtgtctct gggaggggtt 4920 gtcccagcca tccgtgatgg atcagggcct caggggacta ccaaccaccc atgacgaacc 4980 ccttctcagt acctggtcat ggagtattac gtgggcgggg acctgctgac actgctgagc 5040 aagtttgggg agcggattcc ggccgagatg gcgcgcttct acctggcgga gattgtcatg 5100 gccatagact cggtgcaccg gcttggctac gtgcacaggt gggtgcagca tggccgaggg 5160 gatagcaagc ttgttccctg gccgggttct tggaaggtca gagcccagag aggccagggc 5220 ctggagaggg accttcttgg ttggggccca ccggggggtg cctgggagta ggggtcagaa 5280 ctgtagaagc cctacagggg cggaacccga ggaagtgggg tcccaggtgg cactgcccgg 5340 aggggcggag cctggtggga ccacagaagg gaggttcatt tatcccaccc ttctcttttc 5400 ctccgtgcag ggacatcaaa cccgacaaca tcctgctgga ccgctgtggc cacatccgcc 5460 tggccgactt cggctcttgc ctcaagctgc gggcagatgg aacggtgagc cagtgccctg 5520 gccacagagc aactggggct gctgatgagg gatggaaggc acagagtgtg ggagcgggac 5580 tggatttgga ggggaaaaga ggtggtgtga cccaggctta agtgtgcatc tgtgtggcgg 5640 agtattagac caggcagagg gaggggctaa gcatttgggg agtggttgga aggagggccc 5700 agagctggtg ggcccagagg ggtgggccca agcctcgctc tgctcctttt ggtccaggtg 5760 cggtcgctgg tggctgtggg caccccagac tacctgtccc ccgagatcct gcaggctgtg 5820 ggcggtgggc ctgggacagg cagctacggg cccgagtgtg actggtgggc gctgggtgta 5880 ttcgcctatg aaatgttcta tgggcagacg cccttctacg cggattccac ggcggagacc 5940 tatggcaaga tcgtccacta caaggtgagc acggccgcag ggagacctgg cctctcccgg 6000 taggcgctcc caggctatcg cctcctctcc ctctgagcag gagcacctct ctctgccgct 6060 ggtggacgaa ggggtccctg aggaggctcg agacttcatt cagcggttgc tgtgtccccc 6120 ggagacacgg ctgggccggg gtggagcagg cgacttccgg acacatccct tcttctttgg 6180 cctcgactgg gatggtctcc gggacagcgt gccccccttt acaccggatt tcgaaggtgc 6240 caccgacaca tgcaacttcg acttggtgga ggacgggctc actgccatgg tgagcggggg 6300 cggggtaggt acctgtggcc cctgctcggc tgcgggaacc tccccatgct ccctccataa 6360 agttggagta aggacagtgc ctaccttctg gggtcctgaa tcactcattc cccagagcac 6420 ctgctctgtg cccatctact actgaggacc cagcagtgac ctagacttac agtccagtgg 6480 gggaacacag agcagtcttc agacagtaag gccccagagt gatcagggct gagacaatgg 6540 agtgcagggg gtgggggact cctgactcag caaggaaggt cctggagggc tttctggagt 6600 ggggagctat ctgagctgag acttggaggg atgagaagca ggagaggact cctcctccct 6660 taggccgtct ctcttcaccg tgtaacaagc tgtcatggca tgcttgctcg gctctgggtg 6720 cccttttgct gaacaatact ggggatccag cacggaccag atgagctctg gtccctgccc 6780 tcatccagtt gcagtctaga gaattagaga attatggaga gtgtggcagg tgccctgaag 6840 ggaagcaaca ggatacaaga aaaaatgatg gggccaggca cggtggctca cgcctgtaac 6900 cccagcaatt tggcaggccg aagtgggtgg attgcttgag cccaggagtt cgagaccagc 6960 ctgggcaatg tggtgagacc cccgtctcta caaaaatgtt ttaaaaattg gttgggcgtg 7020 gtggcgcatg cctgtatact cagctactag ggtggccgac gtgggcttga gcccaggagg 7080 tcaaggctgc agtgagctgt gattgtgcca ctgcactcca gcctgggcaa cggagagaga 7140 ctctgtctca aaaataagat aaactgaaat taaaaaatag gctgggctgg ccgggcgtgg 7200 tggctcacgc ctgtaatctc agcactttgg gaggccgagg cgggtggatc acgaggtcag 7260 gagatcgaga ccatcttggc taacacggtg aaaccccatc tctcctaaaa atacaaaaaa 7320 ttagccaggc gtggtggcgg gcgcctgtag tcccagctac tcaggaggct gaggcaggag 7380 aatggcgtga acccgggagg cagagtttgc agtgagccga gatcgtgcca ctgcactcca 7440 gcctgggcga cagagcgaga ctctgtctca gaaaaaaaaa aaaaaaaaaa aaaaaatagg 7500 ctggaccgcg gccgggcgct gtggctcatg cctgtaatcc cagcactttg ggagtccaag 7560 gccggtgggt catgagatca ggagttttga gactaggctg gccaacacgg tgaaaccccg 7620 tctctactaa aaatacaaga aaattagctg ggtgtggtct cgggtgcctg taattccagt 7680 tactggggaa gctgaggcag gagaattgct tgaacctggg aggcagagtt tgcagtgagc 7740 caagatcatg ccactacact ccagtctggg tgacagagtg agactctgtc tcaaaaaaaa 7800 aaaaaaaaaa aagggttggg caaggtggtt cacgcctgta atcccagaac tttgggaggc 7860 tgaggcaggc agatcactgg aagtcaggag ttcaagacca gcctggccaa catggtgaaa 7920 ccctgtgtct actaaaaata caaaatttag ccaggcttgg tggcgtatgc ctgtaatgcc 7980 agctactcag gaggctgagg caggagaatc gcttgattga acctgggagg cagagtttgc 8040 agtgggctgg ggttgtgcca ctgcactcta ggctgggaga cagcaagact ccatctaaaa 8100 aaaaaaaaca gaactgggct gggcacagtg gcttatattt gtaatcccag cactttggga 8160 ggctgaggtt ggaggactgc ttgagcccag agtttgggac tacaacagct gaggtaggcg 8220 gatcacttga ggtcagaaga tggagaccag cctggccagc gtggcgaaac cccgtctcta 8280 ccaaaaatat aaaaaattag ccaggcgtgg tagagggcgc ctgtaatctc agctactcag 8340 gacgctgagg caggagaatc gcctgaacct gggaggcgga ggttgcagtg agctgagatt 8400 gcaccactgc actccagcct gggtaacaga gcgagactcc gtatcaaaga aaaagaaaaa 8460 agaaaaaatg ctggaggggc cactttagat aagccctgag ttggggctgg tttgggggga 8520 acatgtaagc caagatcaaa aagcagtgag gggcccgccc tgacgactgc tgctcacatc 8580 tgtgtgtctt gcgcaggaga cactgtcgga cattcgggaa ggtgcgccgc taggggtcca 8640 cctgcctttt gtgggctact cctactcctg catggccctc aggtaagcac tgccctggac 8700 ggcctccagg ggccacgagg ctgcttgagc ttcctgggtc ctgctccttg gcagccaatg 8760 gagttgcagg atcagtcttg gaaccttact gttttgggcc caaagactcc taagaggcca 8820 gagttggagg accttaaatt ttcagatcta tgtacttcaa aatgttagat tgaattttaa 8880 aacctcagag tcacagactg ggcttcccag aatcttgtaa ccattaactt ttacgtctgt 8940 agtacacaga gccacaggac ttcagaactt ggaaaatatg aagtttagac ttttacaatc 9000 agttgtaaaa gaatgcaaat tctttgaatc agccatataa caataaggcc atttaaaagt 9060 attaatttag gcgggccgcg gtggctcacg cctgtaatcc tagcactttg ggaggccaag 9120 gcaggtggat catgaggtca ggagatcgag accatcctgg ctaacacggt gaaaccccgt 9180 ctctactaaa aatacaaaaa aattagccgg gcatggtggc gggcgcttgc ggtcccagct 9240 acttgggagg cgaggcagga gaatggcatg aacccgggag gcggagcttg cagtgagccg 9300 agatcatgcc actgcactcc agcctgggcg acagagcaag actccgtctc aaaaaaaaaa 9360 aaaaaaaagt atttatttag gccgggtgtg gtggctcacg cctgtaattc cagtgctttg 9420 ggaggatgag gtgggtggat cacctgaggt caggagttcg agaccagcct gaccaacgtg 9480 gagaaacctc atctctacta aaaaacaaaa ttagccaggc gtggtggcat atacctgtaa 9540 tcccagctac tcaggaggct gaggcaggag aatcagaacc caggaggggg aggttgtggt 9600 gagctgagat cgtgccattg cattccagcc tgggcaacaa gagtgaaact tcatctcaaa 9660 aaaaaaaaaa aaaaagtact aatttacagg ctgggcatgg tggctcacgc ttggaatccc 9720 agcactttgg gaggctgaag tggacggatt gcttcagccc aggagttcaa gaccagcctg 9780 agcaacataa tgagaccctg tctctacaaa aaattgaaaa aatcgtgcca ggcatggtgg 9840 tctgtgcctg cagtcctagc tactcaggag tctgaagtag gagaatcact tgagcctgga 9900 gtttgaggct tcagtgagcc atgatagatt ccagcctagg caacaaagtg agacctggtc 9960 tcaacaaaag tattaattac acaaataatg cattgcttat cacaagtaaa ttagaaaata 10020 cagataagga aaaggaagtt gatatctcgt gagctcacca gatggcagtg gtccctggct 10080 cacacgtgta ctgacacatg tttaaatagt ggagaacagg tgtttttttg gtttgttttt 10140 ttccccttcc tcatgctact ttgtctaaga gaacagttgg ttttctagtc agcttttatt 10200 actggacaac attacacata ctatacctta tcattaatga actccagctt gattctgaac 10260 cgctgcgggg cctgaacggt gggtcaggat tgaacccatc ctctattaga acccaggcgc 10320 atgtccagga tagctaggtc ctgagccgtg ttcccacagg agggactgct gggttggagg 10380 ggacagccac ttcatacccc agggaggagc tgtccccttc ccacagctga gtggggtgtg 10440 ctgacctcaa gttgccatct tggggtccca tgcccagtct taggaccaca tctgtggagg 10500 tggccagagc caagcagtct ccccatcagg tcggcctccc tgtcctgagg ccctgagaag 10560 aggggtctgc agcggtcaca tgtcaaggga ggagatgagc tgaccctaga acatgggggt 10620 ctggacccca agtccctgca gaaggtttag aaagagcagc tcccaggggc ccaaggccag 10680 gagaggggca gggcttttcc taagcagagg aggggctatt ggcctacctg ggactctgtt 10740 ctcttcgctc tgctgctccc cttcctcaaa tcaggaggtc ttggaagcag ctgcccctac 10800 ccacaggcca gaagttctgg ttctccacca gagaatcagc attctgtctc cctccccact 10860 ccctcctcct ctccccaggg acagtgaggt cccaggcccc acacccatgg aactggaggc 10920 cgagcagctg cttgagccac acgtgcaagc gcccagcctg gagccctcgg tgtccccaca 10980 ggatgaaaca gtaagttggt ggaggggagg gggtccgtca gggacaattg ggagagaaaa 11040 ggtgagggct tcccgggtgg cgtgcactgt agagccctct agggacttcc tgaacagaag 11100 cagacagaaa ccacggagag acgaggttac ttcagacatg ggacggtctc tgtagttaca 11160 gtggggcatt aagtaagggt gtgtgtgttg ctggggatct gagaagtcga tctttgagct 11220 gagcgctggt gaaggagaaa caagccatgg aaggaaaggt gccaagtggt caggcgagag 11280 cctccagggc aaaggccttg ggcaggtggg aatcctgatt tgttcctgaa aggtagtttg 11340 gctgaatcat tcctgagaag gctggagagg ccagcaggaa acaaaaccca gcaaggcctt 11400 ttgtcgtgag ggcattaggg agctggaggg attttgagca gcagagggac ataggttgtg 11460 ttagtgtttg agcaccagcc ctctggtccc tgtgtagatt tagaggacca gactcaggga 11520 tggggctgag ggaggtaggg aagggagggg gcttggatca ttgcaggagc tatggggatt 11580 ccagaaatgt tgaggggacg gaggagtagg ggataaacaa ggattcctag cctggaacca 11640 gtgcccaagt cctgagtctt ccaggagcca caggcagcct taagcctggt ccccatacac 11700 aggctgaagt ggcagttcca gcggctgtcc ctgcggcaga ggctgaggcc gaggtgacgc 11760 tgcgggagct ccaggaagcc ctggaggagg aggtgctcac ccggcagagc ctgagccggg 11820 agatggaggc catccgcacg gacaaccaga acttcgccag gtcgggatcg gggccggggc 11880 cggggccggg atgcgggccg gtggcaaccc ttggcatccc ctctcgtccg gcccggacgg 11940 actcaccgtc cttacctccc cacagtcaac tacgcgaggc agaggctcgg aaccgggacc 12000 tagaggcaca cgtccggcag ttgcaggagc ggatggagtt gctgcaggca gagggagcca 12060 caggtgagtc cctcatgtgt ccccttcccc ggaggaccgg gaggaggtgg gccgtctgct 12120 ccgcggggcg tgtatagaca cctggaggag ggaagggacc cacgctgggg cacgccgcgc 12180 caccgccctc cttcgcccct ccacgcgccc tatgcctctt tcttctcctt ccagctgtca 12240 cgggggtccc cagtccccgg gccacggatc caccttccca tgtaagaccc ctctctttcc 12300 cctgcctcag acctgctgcc cattctgcag atcccctccc tggctcctgg tctccccgtc 12360 cagatatagg gctcacccta cgtctttgcg actttagagg gcagaagccc tttattcagc 12420 cccagatctc cctccgttca ggcctcacca gattccctcc gggatctccc tagataacct 12480 ccccaacctc gattcccctc gctgtctctc gccccaccgc tgagggctgg gctgggctcc 12540 gatcgggtca cctgtccctt ctctctccag ctagatggcc ccccggccgt ggctgtgggc 12600 cagtgcccgc tggtggggcc aggccccatg caccgccgcc acctgctgct ccctgccagg 12660 gtacgtccgg ctgcccacgc ccccctccgc cgtcgcgccc cgcgctccac ccgccccttg 12720 ccacccgctt agctgcgcat ttgcggggct gggcccacgg caggagggcg gatcttcggg 12780 cagccaatca acacaggccg ctaggaagca gccaatgacg agttcggacg ggattcgagg 12840 cgtgcgagtg gactaacaac agctgtaggc tgttggggcg ggggcggggc gcagggaaga 12900 gtgcgggccc acctatgggc gtaggcgggg cgagtcccag gagccaatca gaggcccatg 12960 ccgggtgttg acctcgccct ctccccgcag gtccctaggc ctggcctatc ggaggcgctt 13020 tccctgctcc tgttcgccgt tgttctgtct cgtgccgccg ccctgggctg cattgggttg 13080 gtggcccacg ccggccaact caccgcagtc tggcgccgcc caggagccgc ccgcgctccc 13140 tgaaccctag aactgtcttc gactccgggg ccccgttgga agactgagtg cccggggcac 13200 ggcacagaag ccgcgcccac cgcctgccag ttcacaaccg ctccgagcgt gggtctccgc 13260 ccagctccag tcctgtgatc cgggcccgcc ccctagcggc cggggaggga ggggccgggt 13320 ccgcggccgg cgaacggggc tcgaagggtc cttgtagccg ggaatgctgc tgctgctgct 13380 gctgctgctg ctgctgctgc tgctgctgct gctgctgctg ctgctggggg gatcacagac 13440 catttctttc tttcggccag gctgaggccc tgacgtggat gggcaaactg caggcctggg 13500 aaggcagcaa gccgggccgt ccgtgttcca tcctccacgc acccccacct atcgttggtt 13560 cgcaaagtgc aaagctttct tgtgcatgac gccctgctct ggggagcgtc tggcgcgatc 13620 tctgcctgct tactcgggaa atttgctttt gccaaacccg ctttttcggg gatcccgcgc 13680 ccccctcctc acttgcgctg ctctcggagc cccagccggc tccgcccgct tcggcggttt 13740 ggatatttat tgacctcgtc ctccgactcg ctgacaggct acaggacccc caacaacccc 13800 aatccacgtt ttggatgcac tgagaccccg acattcctcg gtatttattg tctgtcccca 13860 cctaggaccc ccacccccga ccctcgcgaa taaaaggccc tccatctgcc caaagctctg 13920 gactccacag tgtccgcggt ttgcgttgtg ggccggaggc tccgcagcgg gccaatccgg 13980 aggcgtgtgg aggcggccga aggtctggga ggagctagcg ggatgcgaag cggccgaatc 14040 agggttgggg gaggaaaagc cacggggcgg ggctttggcg tccggccaat aggagggcga 14 100 gcgggccacc cggaggcacc gcccccgccc agctgtggcc cagctgtgcc accgagcgtc 14160 gagaagaggg ggctgggctg gcagcgcgcg cggccatcct ccttccactg cgcctgcgca 14220 cgccacgcgc atccgctcct gggacgcaag ctcgagaaaa gttgctgcaa actttctagc 14280 ccgttccccg cccctcctcc cggccagacc cgccccccct gcggagccgg gaattccgag 14340 gggcggagcg caggccgaga tggggaatgt gggggcctgc agaggaccct ggagacggag 14400 gcgtgcagaa g 14411 <210> 3 <211> 15000 <212> DNA <213> Mus musculus <400> 3 cagtgtcccc actgcccaag gctggctcca tcacgtaccg ctttggctca gctggccagg 60 acacacagtt ctgcctgtgg gacctcacag aagatgtgct ctcccctcat ccgtctctgg 120 cccgtacccg cacccttccg ggcacacctg gtgccacccc accagcttct ggtagttctc 180 gggccggaga gacaggtgca ggccccctgc cccgctccct gtctcgttcc aacagtctcc 240 cacacccagc tggtggtggc aaggctggtg ggcctagtgc atcgatggag cctggcatac 300 cattcagcat tggccgcttt gccacactga ccctgcagga gcggcgggac cggggagctg 360 agaaggaaca caaacgctac catagcctgg gaaacatcag ccgcggtggc agtgggggca 420 atagcagcaa tgacaagctc agtggtcctg ccccccgaag ccgattggac ccagctaagg 480 tgctgggcac ggcactgtgc cctcggatcc atgaggtgcc actgctggag cctctcgtgt 540 gcaagaagat tgctcaggaa cgcctgaccg tgctactgtt cctggaggat tgtatcatca 600 ctgcctgcca agagggcctc atctgcacct gggcccggcc aggcaaggcg gtgagtccgc 660 acctgcccaa gcgctgaggg gcaccagttc tgtccctacc ggatgccagt tatccgtcag 720 cagaaaggtc aggtatagga gacagaatgg ggggaaccac agctaacgtc tttagagcct 780 ctgctggccc atatggctca tccttagtac ttcacactca aggcagaacc tgtgtttata 840 ggaaatctga agtgtagatg gtgaaacttt attcaggtct agggatgtga ttgagctggg 900 ggcccacttc tggcctgcct cttagacact gtttctgagc cagctgctga aggcctggat 960 gggaattagc cagggtccag gcctgcactt cctcttgctg ctgtgtggtc ctggtcattg 1020 ggtctcacag atgggctgtg cagtggctgt gctcttagtt ggtgaggtgc aggcctgtca 1080 cctggtcagg cttgagcatg tggtctcagt gtctaggacc ctactctgcc ctcagtcctt 1140 cagtcccttg ctttggaagg ctagagtcca gaagccttag aacgtcaggc agttgcagag 1200 ccactgccag gctagtaggg ctgcgggagt tgactgagtt ctcacagaca cccctctgtc 1260 tccctagttc acagacgagg agaccgaggc ccaggcaggg caagcaagtt ggcccaggtc 1320 acccagcaag tcagttgtag aggtaggaca acccctgaag ctgcaagtgg accccagttt 1380 cttttctctc cactgtcgtc ccctgtatgc ccaggacacc tggggccaca ttactgtgga 1440 agtgctactc tgggtcagtg gagacggccg agctgtttgt tcctagctag gacagcagct 1500 ttaggcctgg ggggcagatc ccagctgggg cagcagctcc aaggcctttg ggtggctcct 1560 tctccgggtt ctggcagaag cccaggtgct gtctaatcca cctttctcct cttgttctcc 1620 ccagggcatc tcctcccaac caggcagctc ccccagtggc actgtggtgt gaaatgtgga 1680 tgtcccatgt tcccggcctc ctagccataa ccctccccgc tgacctcaag aatcactgta 1740 ttaacaagac taatcatgat ggaaggactg ctccaagccc cacgctgcac acatactggg 1800 ggtcccctag gttggcccag ccatggggat gtagtgtcct gtgtggcctt ggccctgtcc 1860 tccacccact gccaagtaca atgacctgtt ctctgaaaca tcagtgttaa ccatatccct 1920 gtcccagcat gtgactgttc actcctggga gagacttagc ccacagtacc cctgggtgag 1980 agggcagggc aggggccatc cccactcctg cccaaactcc accccttgct atggtctgtg 2040 attttgaaag tgttaaatta tggaagccct gagggccctc cttgttcccc tggacctctt 2100 atttatacta aagtccttgt ttgcacagtg tttctgttcc ctggggcagg gtagggtggg 2160 ggttgcagta cttggcctcc aagctgtgct ctgaccaaag gaagcccaat cttagctgtt 2220 tccccatccc tagccccgag cagagagccc tctgaaagat gagtctcgac ccccaaagtc 2280 aagaggctga gatggccttc ctactaggtc cttggagatg tttgaaactt gttttaaaca 2340 ccaggactat ccaagcatgc tctccttggg gagaggagga tgctggaatt gactgcactc 2400 cctgcctcct ctgaacatgc ctttgcagtc tgctgcccct ggcccattta tgactggcca 2460 tctagtgcca gctggaggtc atgatttcct ccccagagaa ctggccaccc tagaaagaag 2520 ctaacttgtc gcctggcttg ctgtccaggc agctccgccc tcaaccccta aaatgtttct 2580 gtctctaatc ctagcccagg caggaatgtg gctgccccgg cctgtggcca aggagctatt 2640 ttggggttct cttttgctta aggagggcct ggatccacca cttgcctccc ccaggctggg 2700 gccagcaggt cacccctggc cctggcggct gagcaaactc tctcctgatc ttccttctac 2760 ctcctgccaa aaaatggggg ggcgggtaat acagcaggca caggggctaa atttaactgt 2820 cccaaagtcg gaatccattg ctgagtcacg aagaagctgc ccctggcctt tgcccccccc 2880 actaccccct caccccctgt tgcccaggca tcagcccttt cccccaaccc ctcccagctc 2940 tgagtctata gactggctct cctgggcact gacacctccc acctgtaact ccctgtgctc 3000 tctttatggg tgggtagagt caatgggggg gggcaaccct ggagtattac tctgtcccct 3060 gacattgggc tctgaagagt tttgaggggc cctggaagaa gggagttggg gtgttggctc 3120 aggaggggtt aaaaactggg aggcgggagg ggggctgggc caaggggtgg agaaaagagg 3180 aggaggcctt aagcatagaa ctggccagag agacccaagg gatagtcagg gacgggcaga 3240 catgcagcta gggttctggg gcctggacag gggcagccag gccctgtgac gggaagaccc 3300 cgagctccgg cccggggagg ggccatggtg ttgcctgccc aacatgtcag ccgaagtgcg 3360 gctgaggcag ctccagcagc tggtgctgga cccaggcttc ctgggactgg agcccctgct 3420 cgaccttctc ctgggcgtcc accaggagct gggtgcctct cacctagccc aggacaagta 3480 tgtggccgac ttcttgcagt ggggtgagta tggataggaa gcctggggtt gggtgcaagg 3540 cagaggtggg tctacagggc aagaatgggc tatggagggg caggagggcc tggaaagggc 3600 tttttgtaag ggagccaagc agagctcatg acctgacccc aagctcccct ggtgaggcac 3660 cagggtcagt gaggccacct atgactcagc cagtgcaggc tggggtgggc atagcctcct 3720 gctatctcag cacccacact aggacctggc agctttctct tttaggaccc ttggctcctc 3780 aaactggctt catagccctc cccagtttcc cagagtgtgg ggagggacag cgtggggcag 3840 ctgccagggt gtggcccata ggcaggtgtt tggcgtctgc ctccccagct gccctgacag 3900 gtgtccagga gctatgaggg cactgtgact cacagaggcc ctgggggaga accagcccgg 3960 cagacaggcg ccaccgagca ccctttctgt tccccaaatt aagaggaagg aacaacttca 4020 gcttctgagt gtgcccatcc ctagcactct gatcccgccc agcctttgtg ggccagattg 4080 gtcatccctc ctggcttctc atctgctttt gtggttctag ctcaagacct ctaattcctc 4140 tgctgactta aatgcccttc cccagaggtc ttctcaggcc tagtggacaa gcttggagcc 4200 ttatctgctc ctgcccaaca ttgagccaaa gctccagctt accccagctt ccttacaagt 4260 aacgacctgt tttgttgctc tgtgcctatt attaagggtc caggtcttga ttcttggctg 4320 tctgcccatg tgtgtgaccc tagtgcattc tcccctcctc ccccgtttca cagatggaaa 4380 ggttgaggcc atcggttaga ctgctaagcc tgtgaaagac tttttctcct ctccagtctt 4440 tagtgtctcc ctcaaccttt cttttgaagg atggggtttg ggctggcagg gtaaactgag 4500 aactggggtg ggggcagggg gtctgaccct ctgggaagga gcagtccttt tgtggcctga 4560 gcagcatcct gtgggcccct cccctgccag gcctgggcgg gggagggggc ctgggttccc 4620 gctgccttaa aagggctcaa cgccttggct ctctcctcct ccccaccccc cagccttggc 4680 cctagctgta tcttccccgg ctgcccactt tcccaaaccc ctttcttctc tgtgacccca 4740 tctccccgct tccccacacg tccctcctcc atccttactc cccggcctta gaacttccct 4800 aagggagatc tgacctccct ctgcccaccc cgcaccccca gtcgccagcc tcagacctag 4860 ctgctctccc ctctggctga accaccctag cacaggacct tataccctgg agctttggtt 4920 ataagaagac tctccttcac cctttggaaa ccaagaaagc ccttccaaca gtgtccagga 4980 tgctggaggg cagtgaccct cccccacttc ttcttcgtgc tggctgtgct gacacagctc 5040 cagttcgagg ttgtggcccg agacattaag tgagagcccc gggtgacctg acttagcacc 5100 ctgatcatca catgggagtg aaaggcctga tgcgccagct tctcccactg cctccctttc 5160 tgccctgcaa ccctgtggaa acaggcagtt ctgggtccca caaacatcac agaggttttg 5220 aaagcagaat cctaaagccg atttaagggg cagaaggaag gaggctataa agtcactacc 5280 cttaccgcta gtgttctgat gacccttggt tcttcttccc ccacccccgc ccagtggagc 5340 ccattgcagc aaggcttaag gaggtccgac tgcagaggga tgattttgag attttgaagg 5400 tgatcgggcg tggggcgttc agcgaggtga gtcttcagtg gcctgggaat ggaactttac 5460 ttgatgtggg tggggcataa cagctggggc agagccttaa aaattgatga atgagcttga 5520 atttaaggct ggaggggtgg gggcggagct tgtggtcagt gggcggtgtg cacgtgaggg 5580 cggggctaag gttgggtgga gataagggtg gagtcctgtc tgggtgagcc ttgctggttt 5640 tccctgccac ctcttgctgt catctcggtt ccgtatttag gtagcggtgg tgaagatgaa 5700 acagacgggc caagtgtatg ccatgaagat tatgaataag tgggacatgc tgaagagagg 5760 cgaggtgagg gccagggatt agggcagcgc cctcatctct ccaactcacc tcctgtagct 5820 tctctcctac ctcacaggtg tcgtgcttcc gggaagaaag ggatgtatta gtgaaagggg 5880 accggcgctg gatcacacag ctgcactttg ccttccagga tgagaactac ctggtaagct 5940 ccgggttcag gtgactagga aagagtgaca gttacatcgc cccaagtcaa gaaggctgga 6000 gaagggagaa gctgctgtag atcggggggg tgggggtggg ggggacacac acaggggatg 6060 ggggacgggg gtaggattgt gtctcaagta taggagagac cttccttgag acaggagtga 6120 tatctggttt ggcctttgga tggggcgctc tctcactgtg cgggggtcct ctgtgcttgg 6180 gaacggggtg tctttgggag tcttgggggc taccaaaccc ctgtgacaca cccgctccca 6240 gtacctggtc atggaatact acgtgggcgg ggacctgcta acgctgctga gcaagtttgg 6300 ggagcggatc cccgccgaga tggctcgctt ctacctggcc gagattgtca tggccataga 6360 ctccgtgcac cggctgggct acgtgcacag gtgggcgtgg cggggccctt ggagggttag 6420 cagaatttgt gtgggaagga agggtacctg aaggtcagat cccattgggg acagaatcgg 6480 ggtctagaat tgtagaatcc tgggtggggt ggaagtggat cgagctgacg ggccctaaga 6540 gggaaggttt tcaagaaagc acactttccc tcttctctct atgcacaggg acatcaaacc 6600 agataacatt ctgctggacc gatgtgggca cattcgcctg gcagacttcg gctcctgcct 6660 caaactgcag cctgatggaa tggtaagaag agcctggcga aactctcctc attggtgaag 6720 gaccggatta gggggcgggg ctgggttgag gagcaggagg ggagcttggt ctgggatgtc 6780 ctgcgcacca tatttggaca gtcaagggaa aggttttaag cattcaggtc tgattggcac 6840 aggtgaggtc gctggtggct gtgggcaccc cggactacct gtctcctgag attctgcagg 6900 ccgttggtgg agggcctggg gcaggcagct acgggccaga gtgtgactgg tgggcactgg 6960 gcgtgttcgc ctatgagatg ttctatgggc agaccccctt ctacgcggac tccacagccg 7020 agacatatgc caagattgtg cactacaggg tgagcacaag caccatgcag gggggctgac 7080 ttagtggctt gtgctcccag actgtctttt ttaaaagata tttatttata tgtgtgtgtt 7140 ttctgtgtat gtatatctgt gcactgagta ggtgtgcgaa ggtcagaggg catgggatcc 7200 cctggaactg gagtcacaga ctattgtgtg ctgccatgct gagtgctggg aaacagaacc 7260 ttgatcactc tgcaagagca gccagtgcac tgaaacgaca gagccagctc tgcagcccag 7320 ggctaactgt tgcttttctt tctaaatagg aacacttgtc gctgccgctg gcagacacag 7380 ttgtccccga ggaagctcag gacctcattc gtgggctgct gtgtcctgct gagataaggc 7440 taggtcgagg tggggcaggt gatttccaga aacatccttt cttctttggc cttgattggg 7500 agggtctccg agacagtgta ccccccttta caccagactt cgagggtgcc acggacacat 7560 gcaatttcga tgtggtggag gaccggctca ctgccatggt gagcgggggc ggggtacgta 7620 cctgcagttc ctgatccgtt gaggggactt ccctagcctc ttccataaaa ttggggtgat 7680 tggccaggtg tggtggtgca tacctttaat cgtagaactt cataggcaga ggcaggtggc 7740 tctctggtaa atcaaggcca tcttggtcta catagtgact tctaggccag tcaggagtga 7800 gatcctccct tgaaaaataa aaaagggggt gttgaccttc ctgggtccca aattattatc 7860 ctagagcact gctatgtatc cactcaggta tgaggacaca caggtgacca gtcccaaaga 7920 cagtgagtga ggcctcactc ttggcagtac taaaattgat tgtagggggc tgggctcttg 7980 acccagcctg gaaagtgctg gagggcttcc tggaggagga gactagctga gcccagaagg 8040 atgcaggaga tcctttctcg ggtgagtgct ctcagcattt taacaagctc taggccctgc 8100 agagagaagt ctggtgtggg cagagcccca atagaaagca acaagataga agagaaaatg 8160 gtggagtttg ttagtggggg cagttatgcc gtgaacatag aggggcgaag ggccatctcg 8220 gataactgct agccacaaga gccctgtctg tcttcctagg agacgctgtc agacatgcag 8280 gaagacatgc cccttggggt gcgcctgccc ttcgtgggct actcctactg ctgcatggcc 8340 ttcaggtgag cacgactgcc ccctgctggg gcctgtgtgc aggcccacca cagccactca 8400 attgaaggct cagtcttcaa accaagtatt cctaggagct gtctaagtta ggctttctgc 8460 tgctgcgatg aaccctgact aaaagcaagc tggggaggaa aaggcttatc gggcttacgt 8520 ttccacatgg gagcccatca ctgaaggaag ccaggacagg aactcacagc ggggcaggaa 8580 cgtggagctg atgcagaggc aatggagggg agctgcttac tgacttgatc cttatgtctt 8640 cctcagcctg tttccttgta gagcccagga ccaccaggcc agtgagggct ccactcacaa 8700 tgggctgagc tctcatctat gatcactagt tatgaaaatg cccgataggc ttgcctgcag 8760 cttcagtttt tgaggcactt tccttccttc cttccttcct tccttccttc cttccttcct 8820 ttctttcttt ctttctttct ttctttcttt ctttctttct ttctttcttt ctttctttct 8880 tagtctttta gagacagggt ctttctatgt agctctggct gtcttggaat tcattctgta 8940 gaccaggctg gtcttattta tttattttat gtatgtgagt ccactatcac tgtcctcaga 9000 cacaccagaa gagggcatca gatcccatta cagatggctg tgagccacca tgtggttgct 9060 gggaattgaa ctcaggacct ctggaagagc agccagtgct cctgccctgt agaggcattt 9120 tcttcatgaa ggctgtctcc tctctgatga cttgatgact ctagcttgtt gtgtcaagtg 9180 gacataagac taggaaagca gctacacatg cactttgttt atttttgttt tgctttttga 9240 gactgggtct ctccatctca tagctctggc catcctgcct ggtgacattc cagtccagtt 9300 gtataaccta agaatctgag actcagcctt gcagaatcct gctattaacg ggtctaggac 9360 actccataga atccaggatc ttagaaaaac aaacctgaag tgtgacagtt tattttaaga 9420 acacaattgg agcacataac aataatacaa cttttcagtt ttaaaaagtt ttctgtcttg 9480 ttttttgagg caggagctcc ttaatatagt ctaagccgcc ctgcgagtgc tgtgattgat 9540 gggcatgtac caccatgcct agtcaataaa gcctttaaaa agcatccgtt atgctggctg 9600 tggtgccaca aacctgtaat cccagcactt agaaggtaga ggcaagatta tcagaaattc 9660 aaggccatcc tgggctatac agtaatctaa ggctagcctg gtctacaaga gactctgtct 9720 aaagaaacaa aagataaata gcacccacta ttgctaggca atataaccct ataaccccac 9780 cattgaggag gctgaggctg gagcatcact gcaaatttga ggccaggatg gtcaacaaat 9840 aagtcccaga gctggcatag aggaactctg tctcaacaat aaagagaact tatctagcat 9900 ttatgagggt aaataaaaat ttaccattgc cacaaaaaat gtaaatgaag agactgcttt 9960 taggagtgaa ctgggaagca gggaacactt agaggatgct cactcacaca ggtatccacc 10020 atcaggcatg cctcaggcct gcacagggaa ggacaacttg tttcatgatt tgcaagcagc 10080 atcccatgct ccttagagcg ggttgggccc agcccaccct ctgtggagtt atcgctcagc 10140 caggcagcaa ggcagccaag gtgctgaggc cctggcagtc tgctctcttc tctgctctga 10200 acctccttta gctttagcct aggagcctgg cctggtgccc acaggctagg gagtccctag 10260 cctcttcctc ttctcagaga caatcaggtc ccggacccca cccctatgga actagaggcc 10320 ctgcagttgc ctgtgtcaga cttgcaaggg cttgacttgc agcccccagt gtccccaccg 10380 gatcaagtgg tgagtagact gagaggtggg caaagcttcc tgggtgggtg tacctgcagt 10440 gccaactgcc aggctgttaa ttcagtagga cactgtcccc aactggccca actgcacatc 10500 ctgtagtcag gaggcacagg cagaaaaatc ccaaattcaa ggcttgctcc cgttatgtaa 10560 tgagatcctg tcttggagta aaaaacaaag aagagaacta gggatagctc agaggtagat 10620 gctctcctgg catgggggtg gggtcagaaa gcaacaccaa ccggggcctg ggagggaggg 10680 actgccaacc acctggagga gtctggggta gacttggtga acaaagttca gaggccatca 10740 ggtgggatgc tggtttctta aaagccacag ataggtgggt agcattggaa agaggagtgg 10800 ggggttgcag aaagtgacaa gacacaaact ggggaggcct aagggtaaag ccagggttgt 10860 ctgaagcact gtggagctgg gaggaacacg ctaaacttct gacttcagcc cttcagttcc 10920 cctgttgact acactgtccc cagggaccca gggatgggga gaggtggacg ggggagggaa 10980 gtacgggact gatccagctc caggtcccaa ctctgatccc caccgacagg ctgaagaggc 11040 tgacctagtg gctgtccctg cccctgtggc tgaggcagag accacggtaa cgctgcagca 11100 gctccaggaa gccctggaag aagaggttct cacccggcag agcctgagcc gcgagctgga 11160 ggccatccgg accgccaacc agaacttctc caggtcaggg tcacagtgct ggggtgaggg 11220 gagaggagag cagcaaccct cgcagtctcc tcaccgatag gtcggctcac tcccctatct 11280 ttcccagcca actacaggag gccgaggtcc gaaaccgaga cctggaggcg catgttcggc 11340 agctacagga acggatggag atgctgcagg ccccaggagc cgcaggcgag tccctcacct 11400 gcttccagcc aagggggcac tgggtggaga tggggggcat gttgggtgtg tgaaccctcg 11460 gggcagggga ggagtccagg ctggggcacc gcagccgcgc cactgccttt ctcctccatc 11520 ctccacactc catacacctc tctcttctcc ttccagccat cacgggggtc cccagtcccc 11580 gggccacgga tccaccttcc catgtaagac ccctctctcc cctccccgat ccccatctta 11640 gatatgctac ccacagccct tctcccgtcc acgtttaggg tccattctcc ttgggggttc 11700 cagaagaaag ctgcccttca ctcatccatt cagcatgcac tatctaccag ctctccctcg 11760 tttcaggctt ctcgccaaat cctccccaag ggaactccct atactcccgt tctggcctcg 11820 actagattcc cgcactgcct ctcgccctgc tgctgggctc cgatcgggtc acctgtccct 11880 tctctctcca gctagatggc cccccggccg tggctgtggg ccagtgcccg ctggtggggc 11940 caggccccat gcaccgccgt cacctgctgc tccctgccag ggtatgtccc acgtccgccc 12000 accacgggcc tctgcctagc tctgcccact gagtgtcacc actgcttgct gtgcctctgt 12060 ggagctcggc ccaccgcagg gagggggggt attcgggcgg ccaatcaaca caggctgctg 12120 ctaagtagcc aatgacgagt tccaacagga gctctttctt gcgagcagac caactttagc 12180 tgcgggctgt ggggaccaga gatgcgctca gaggcccatc tatgggtata ggctgggcgg 12240 ctcccaggag ccagtgggcc cctgtagcct agtgctaatc caaccttctc tcctgcagat 12300 ccctaggcct ggcctatccg aggcgcgttg cctgctcctg ttcgccgctg ctctggctgc 12360 tgccgccaca ctgggctgca ctgggttggt ggcctatacc ggcggtctca ccccagtctg 12420 gtgtttcccg ggagccacct tcgccccctg aaccctaaga ctccaagcca tctttcattt 12480 aggcctccta ggaaggtcga gcgaccaggg agcgacccaa agcgtctctg tgcccatcgc 12540 gccccccccc cccccccacc gctccgctcc acacttctgt gagcctgggt ccccacccag 12600 ctccgctcct gtgatccagg cctgccacct ggcggccggg gagggaggaa cagggctcgt 12660 gcccagcacc cctggttcct gcagagctgg tagccaccgc tgctgcagca gctgggcatt 12720 cgccgacctt gctttactca gccccgacgt ggatgggcaa actgctcagc tcatccgatt 12780 tcactttttc actctcccag ccatcagtta caagccataa gcatgagccc cctatttcca 12840 gggacatccc attcccatag tgatggatca gcaagacctc tgccagcaca cacggagtct 12900 ttggcttcgg acagcctcac tcctgggggt tgctgcaact ccttccccgt gtacacgtct 12960 gcactctaac aacggagcca cagctgcact cccccctccc ccaaagcagt gtgggtattt 13020 attgatcttg ttatctgact cactgacaga ctccgggacc cacgttttag atgcattgag 13080 actcgacatt cctcggtatt tattgtctgt ccccacctac gacctccact cccgaccctt 13140 gcgaataaaa tacttctggt ctgccctaaa tcccgcgcaa tatctctgtt gtggaaagga 13200 aaccgccccg caggccaatg gagagtccaa tagagacaac caatggcttg agtgggagct 13260 agaggggagg caaagcgcac gaatcaggtt gaagggtggg gcttaggcat ccagccagta 13320 ggagagaagc aacaagccac cagagacacc accgcccccc accctccccc ccagctgtga 13380 cccagctgtg ccactcaagt ttggaaaaaa gtagggggtt gggccagcag cgggcacacc 13440 atcttcccac tgcgcctgcg caagccacgc gcatccgctt tttggaccga cactccagaa 13500 aagttgctgc aaactttcta gcgcgattcc ccgcccctcc tcccagctag atccaccgcc 13560 tacccgcggg gccgggaatt ccgaggggcg gagcacggcg cggagatggg aagggagggg 13620 gcccttcaag ggacccggga gatgggagcg gcttcgcgcc cttaaccctc cggacggccc 13680 attaccttct ccgttgctct gatagggaaa ctgaggccct gagtcagagg cacacaaggg 13740 gggaaggcca aaagcgcggc cagagacgga gggaaaacaa agaatcctga cagcccggga 13800 ggggggcgga cacacaggga caaggacaga cccgagtgca gagctgggtc tagtctttgg 13860 gagggggcca gaagactgca aggggaccgg gggggggggc ggcgaggagg actgggcgga 13920 ggagggggct ggggaagccc gcgggaggcg gcaaaggagg gaggaacttt ccaaagttgc 13980 caaacatggc tacctcgcct gcggagccga gcgcggggcc cgcggctcgg ggggaggcgg 14040 cggcggcgac cgaggagcag gaggaggaag cgcgccagct tctgcagact ctgcaggcag 14 100 ccgaggggga ggcggcggcg gccggggcgg gagatgcggc ggcggcggcg gactctgggt 14160 ccccgagtgg cccggggtct ccccgggaga ccgtgaccga ggtgcccact ggccttcgct 14220 tctcgcccga acaggtggca tgcgtgtgcg aggcgctgct gcaggcgggc cacgccggcc 14280 gcttgagccg cttcctgggc gcgctgcccc cggccgagcg cctacgtggc agcgatccgg 14340 tgctgcgcgc gcgggcccta gtggccttcc agcggggtga atacgccgag ctctaccaac 14400 ttctcgagag ccgccctttc cccgccgccc accacgcctt cctgcaggac ctctacctgc 14460 gcgcgcgcta ccacgaggcc gagcgggccc gtggccgtgc gctgggcgct gtggacaaat 14520 accggctgcg caagaagttc cctctgccca agaccatctg ggatggcgag gagaccgtct 14580 attgcttcaa ggagcgctcg cgagcggcgc tcaaggcctg ctaccgcggc aaccgctatc 14640 ccacgcctga cgagaagcgc cgcctggcca cgctcaccgg cctctcgctt acacaggtca 14700 gcaactggtt caagaaccgg cgacagcgcg accgcactgg gaccggcggt ggagcgcctt 14760 gcaaaaggtg aggggggaac cgaccctcct tcctcggtgg ccgctggagt ctgcgcaagt 14820 gacccttcac atccctcttc ggtggcgtcg gcgagtgcat aggctgagcg tggagagacc 14880 aggcacaccc tgggttctct gggcatcact gcctcagggg cagaggttgt tccagctact 14940 tctaagctgg gaacgcagtg ccaggaatgg gggggggggc gggggcggga cgggcagtga 15000 <210> 4 <211> 1896 <212> DNA <213> Mus musculus <400> 4 atgtcagccg aagtgcggct gaggcagctc cagcagctgg tgctggaccc aggcttcctg 60 ggactggagc ccctgctcga ccttctcctg ggcgtccacc aggagctggg tgcctctcac 120 ctagcccagg acaagtatgt ggccgacttc ttgcagtggg tggagcccat tgcagcaagg 180 cttaaggagg tccgactgca gagggatgat tttgagattt tgaaggtgat cgggcgtggg 240 gcgttcagcg aggtagcggt ggtgaagatg aaacagacgg gccaagtgta tgccatgaag 300 attatgaata agtgggacat gctgaagaga ggcgaggtgt cgtgcttccg ggaagaaagg 360 gatgtattag tgaaagggga ccggcgctgg atcacacagc tgcactttgc cttccaggat 420 gagaactacc tgtacctggt catggaatac tacgtgggcg gggacctgct aacgctgctg 480 agcaagtttg gggagcggat ccccgccgag atggctcgct tctacctggc cgagattgtc 540 atggccatag actccgtgca ccggctgggc tacgtgcaca gggacatcaa accagataac 600 attctgctgg accgatgtgg gcacattcgc ctggcagact tcggctcctg cctcaaactg 660 cagcctgatg gaatggtgag gtcgctggtg gctgtgggca ccccggacta cctgtctcct 720 gagattctgc aggccgttgg tggagggcct ggggcaggca gctacgggcc agagtgtgac 780 tggtgggcac tgggcgtgtt cgcctatgag atgttctatg ggcagacccc cttctacgcg 840 gactccacag ccgagacata tgccaagatt gtgcactaca gggaacactt gtcgctgccg 900 ctggcagaca cagttgtccc cgaggaagct caggacctca ttcgtgggct gctgtgtcct 960 gctgagataa ggctaggtcg aggtggggca ggtgatttcc agaaacatcc tttcttcttt 1020 ggccttgatt gggagggtct ccgagacagt gtacccccct ttacaccaga cttcgagggt 1080 gccacggaca catgcaattt cgatgtggtg gaggaccggc tcactgccat ggtgagcggg 1140 ggcggggaga cgctgtcaga catgcaggaa gacatgcccc ttggggtgcg cctgcccttc 1200 gtgggctact cctactgctg catggccttc agagacaatc aggtcccgga ccccacccct 1260 atggaactag aggccctgca gttgcctgtg tcagacttgc aagggcttga cttgcagccc 1320 ccagtgtccc caccggatca agtggctgaa gaggccgacc tagtggctgt ccctgcccct 1380 gtggctgagg cagagaccac ggtaacgctg cagcagctcc aggaagccct ggaagaagag 1440 gttctcaccc ggcagagcct gagccgcgag ctggaggcca tccggaccgc caaccagaac 1500 ttctccagcc aactacagga ggccgaggtc cgaaaccgag acctggaggc gcatgttcgg 1560 cagctacagg aacggatgga gatgctgcag gccccaggag ccgcagccat cacgggggtc 1620 cccagtcccc gggccacgga tccaccttcc catctagatg gccccccggc cgtggctgtg 1680 ggccagtgcc cgctggtggg gccaggcccc atgcaccgcc gtcacctgct gctccctgcc 1740 aggatcccta ggcctggcct atccgaggcg cgttgcctgc tcctgttcgc cgctgctctg 1800 gctgctgccg ccacactggg ctgcactggg ttggtggcct ataccggcgg tctcacccca 1860 gtctggtgtt tcccgggagc caccttcgcc ccctga 1896 <210> 5 <211> 771 <212> DNA <213> Mus musculus <220> <221> misc_feature <222> 89, 238, 506 <223> n = A,T,C or G <400> 5 cctgcccctg tggctgaggc agagaccacg gtaacgctgc agcagctcca ggaagccctg 60 gaagaagagg ttctcacccg gcagagctng agccgcgagc tggaggccat ccggaccgcc 120 aaccagaact tctccagcca actacaggag gccgaggtcc gaaaccgaga cctggaggcg 180 catgttcggc agctacagga acggatggag atgctgcagg ccccaggagc cgccggantc 240 cctcacctgc ttccagccaa gggggcactg ggtggagatg gggggcatgt tgggtgtgtg 300 aaccctcggg gcaggggagg agtccaggct ggggcaccgc gccgcgccac tgcctttctc 360 ctccatcctc cacactccat acacctctct cttctccttc cagccatcac gggggtccca 420 gtccccgggc cacggatcca ccttcccatc tagatggccc cccggcggtg gctgtgggcc 480 agtgcccgct ggtggggcca ggacantgtc accgccgtca cctgctgctc cctgccagga 540 ttcctaggcc tggctatccg aggcgcgttg ctgctcctgt tcgccgctgc tctggctgct 600 gcgccacact gggctgcact gggttggttg gctataccgg cggtcttcac ccagtctggt 660 gtttcccgtg agcacccttc gcccctgaaa cctaagactt caagccatct ttcatttagg 720 ccttctagga aggtcgagcg acaggggagc gacccaaagc gtctctgtgc c 771 <210> 6 <211> 434 <212> DNA <213> Mus musculus <400> 6 gagagaccca aggggtagtc agggacgggc agacatgcag ctagggttct ggggcctgga 60 caggggcagc caggccctgt gacgggaaga ccccgagctc cggcccgggg aggggccatg 120 gtgttgcctg cccaacatgt cagccgaagt gcggctgagg cagctccagc agctggtgct 180 ggacccaggc ttcctgggac tggagcccct gctcgacctt ctcctgggcg tccaccagga 240 gctgggtgcc tctcacctag cccaggacaa gtatgtggcc gacttcttgc agtgggtgga 300 gcccattgca gcaaggctta aggaggtccg actgcagagg gatgattttg agattttgaa 360 ggtgatcggg cgtggggcgt tcagcgaggt agcggtggtg aagatgaaac acacggagtc 420 tttggcttcg gaca 434 <210> 7 <211> 2688 <212> DNA <213> Mus musculus <400> 7 ccacgcgtcc gcccacgcgt ccggggcaga catgcagcta gggttctggg gcctggacag 60 gggcagccag gccctgtgac gggaagaccc cgagctccgg cccggggagg ggccatggtg 120 ttgcctgccc aacatgtcag ccgaagtgcg gctgaggcag ctccagcagc tggtgctgga 180 cccaggcttc ctgggactgg agcccctgct cgaccttctc ctgggcgtcc accaggagct 240 gggtgcctct cacctagccc aggacaagta tgtggccgac ttcttgcagt gggtggagcc 300 cattgcagca aggcttaagg aggtccgact gcagagggat gattttgaga ttttgaaggt 360 gatcgggcgt ggggcgttca gcgaggtagc ggtggtgaag atgaaacaga cgggccaagt 420 gtatgccatg aagattatga ataagtggga catgctgaag agaggcgagg tgtcgtgctt 480 ccgggaagaa agggatgtat tagtgaaagg ggaccggcgc tggatcacac agctgcactt 540 tgccttccag gatgagaact acctgtacct ggtcatggaa tactacgtgg gcggggacct 600 gctaacgctg ctgagcaagt ttggggagcg gatccccgcc gagatggctc gcttctacct 660 ggccgagatt gtcatggcca tagactccgt gcaccggctg ggctacgtgc acagggacat 720 caaaccagat aacattctgc tggaccgatg tgggcacatt cgcctggcag acttcggctc 780 ctgcctcaaa ctgcagcctg atggaatggt gaggtcgctg gtggctgtgg gcaccccgga 840 ctacctgtct cctgagattc tgcaggccgt tggtggaggg cctggggcag gcagctacgg 900 gccagagtgt gactggtggg cactgggcgt gttcacctat gagatgttct atgggcagac 960 ccccttctac gcggactcca cagccgagac atatgccaag attgtgcact acagggaaca 1020 cttgtcgctg ccgctggcag acacagttgt ccccgaggaa gctcaggacc tcattcgtgg 1080 gctgctgtgt cctgctgaga taaggctagg tcgaggtggg gcaggtgatt tccagaaaca 1140 tcctttcttc tttggccttg attgggaggg tctccgagac agtgtacccc cctttacacc 1200 agacttcgag ggtgccacgg acacatgcaa tttcgatgtg gtggaggacc ggctcactgc 1260 catggtgagc gggggcgggg agacgctgtc agacatgcag gaagacatgc cccttggggt 1320 gcgcctgccc ttcgtgggct actcctactg ctgcatggcc ttcagagaca atcaggtccc 1380 ggaccccacc cctatggaac tagaggccct gcagttgcct gtgtcagact tgcaagggct 1440 tgacttgcag cccccagtgt ccccaccgga tcaagtggct gaagaggctg acctagtggc 1500 tgtccctgcc cctgtggctg aggcagagac cacggtaacg ctgcagcagc tccaggaagc 1560 cctggaagaa gaggttctca cccggcagag cctgagccgc gagctggagg ccatccggac 1620 cgccaaccag aacttctcca gccaactaca ggaggccgag gtccgaaacc gagacctgga 1680 ggcgcatgtt cggcagctac aggaacggat ggagatgctg caggccccag gagccgcaga 1740 tccctaggcc tggcctatcc gaggcgcgtt gcctgctcct gttcgccgct gctctggctg 1800 ctgccgccac actgggctgc actgggttgg tggcctatac cggcggtctc accccagtct 1860 ggtgtttccc gggagccacc ttcgccccct gaaccctaag actccaagcc atctttcatt 1920 taggcctcct aggaaggtcg agcgaccagg gagcgaccca aagcgtctct gtgcccatcg 1980 cccccccccc cccccccacc gctccgctcc acacttctgt gagcctgggt ccccacccag 2040 ctccgctcct gtgatccagg cctgccacct ggcggccggg gagggaggaa cagggctcgt 2100 gcccagcacc cctggttcct gcagagctgg tagccaccgc tgctgcagca gctgggcatt 2160 cgccgacctt gctttactca gccccgacgt ggatgggcaa actgctcagc tcatccgatt 2220 tcactttttc actctcccag ccatcagtta caagccataa gcatgagccc cctatttcca 2280 gggacatccc attcccatag tgatggatca gcaagacctc tgccagcaca cacggagtct 2340 ttggcttcgg acagcctcac tcctgggggt tgctgcaact ccttccccgt gtacacgtct 2400 gcactctaac aacggagcca cagctgcact cccccctccc ccaaagcagt gtgggtattt 2460 attgatcttg ttatctgact cactgacaga ctccgggacc cacgttttag atgcattgag 2520 actcgacatt cctcggtatt tattgtctgt ccccacctac gacctccact cccgaccctt 2580 gcgaataaaa tacttctggt ctgccctaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2640 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaa 2688 <210> 8 <211> 2862 <212> DNA <213> Mus musculus <400> 8 gggatagtca gggacgggca gacatgcagc tagggttctg gggcctggac aggggcagcc 60 aggccctgtg acgggaagac cccgagctcc ggcccgggga ggggccatgg tgttgcctgc 120 ccaacatgtc agccgaagtg cggctgaggc agctccagca gctggtgctg gacccaggct 180 tcctgggact ggagcccctg ctcgaccttc tcctgggcgt ccaccaggag ctgggtgcct 240 ctcacctagc ccaggacaag tatgtggccg acttcttgca gtgggtggag cccattgcag 300 caaggcttaa ggaggtccga ctgcagaggg atgattttga gattttgaag gtgatcgggc 360 gtggggcgtt cagcgaggta gcggtggtga agatgaaaca gacgggccaa gtgtatgcca 420 tgaagattac gaataagtgg gacatgctga agagaggcga ggtgtcgtgc ttccgggaag 480 aaagggatgt attagtgaaa ggggaccggc gctggatcac acagctgcac tttgccttcc 540 aggatgagaa ctacctgtac ctggtcatgg aatactacgt gggcggggac ctgctaacgc 600 tgctgagcaa gtttggggag cggatccccg ccgagatggc tcgcttctac ctggccgaga 660 ttgtcatggc catagactcc gtgcaccggc tgggctacgt gcacagggac atcaaaccag 720 ataacattct gctggaccga tgtgggcaca ttcgcctggc agacttcggc tcctgcctca 780 aactgcagcc tgatggaatg gtgaggtcgc tggtggctgt gggcaccccg gactacctgt 840 ctcctgagat tctgcaggcc gttggtggag ggcctggggc aggcagctac gggccagagt 900 gtgactggtg ggcactgggc gtgttcacct atgagatgtt ctatgggcag acccccttct 960 acgcggactc cacagccgag acatatgcca agattgtgca ctacagggaa cacttgtcgc 1020 tgccgctggc agacacagtt gtccccgagg aagctcagga cctcattcgt gggctgctgt 1080 gtcctgctga gataaggcta ggtcgaggtg gggcaggtga tttccagaaa catcctttct 1140 tctttggcct tgattgggag ggtctccgag acagtgtacc cccctttaca ccagacttcg 1200 agggtgccac ggacacatgc aatttcgatg tggtggagga ccggctcact gccatggaga 1260 cgctgtcaga catgcaggaa gacatgcccc ttggggtgcg cctgcccttc gtgggctact 1320 cctactgctg catggccttc agagacaatc aggtcccgga ccccacccct atggaactag 1380 aggccctgca gttgcctgtg tcagacttgc aagggcttga cttgcagccc ccagtgtccc 1440 caccggatca agtggctgaa gaggctgacc tagtggctgt ccctgcccct gtggctgagg 1500 cagagaccac ggtaacgctg cagcagctcc aggaagccct ggaagaagag gttctcaccc 1560 ggcagagcct gagccgcgag ctggaggcca tccggaccgc caaccagaac ttctccagcc 1620 aactacagga ggccgaggtc cgaaaccgag acctggaggc gcatgttcgg cagctacagg 1680 aacggatgga gatgctgcag gccccaggag ccgcagccat cacgggggtc cccagtcccc 1740 gggccacgga tccaccttcc catgcttctc gccaaatcct ccccaaggga actccctaga 1800 ctcccgttct ggcctcgact agattcccgc actgcctctc gccctgctgc tgggctccga 1860 tcgggtcacc tgtcccttct ctctccagct agatggcccc ccggccgtgg ctgtgggcca 1920 gtgcccgctg gtggggccag gccccatgca ccgccgtcac ctgctgctcc ctgccaggat 1980 ccctaggcct ggcctatccg aggcgcgttg cctgctcctg ttcgccgctg ctctggctgc 2040 tgccgccaca ctgggctgca ctgggttggt ggcctatacc ggcggtctca ccccagtctg 2100 gtgtttcccg ggagccacct tcgccccctg aaccctaaga ctccaagcca tctttcattt 2160 aggcctccta ggaaggtcga gcgaccaggg agcgacccaa agcgtctctg tgcccatcgc 2220 cccccccccc ccccccaccg ctccgctcca cacttctgtg agcctgggtc cccacccagc 2280 tccgctcctg tgatccaggc ctgccacctg gcggccgggg agggaggaac agggctcgtg 2340 cccagcaccc ctggttcctg cagagctggt agccaccgct gctgcagcag ctgggcattc 2400 gccgaccttg ctttactcag ccccgacgtg gatgggcaaa ctgctcagct catccgattt 2460 cactttttca ctctcccagc catcagttac aagccataag catgagcccc ctatttccag 2520 ggacatccca ttcccatagt gatggatcag caagacctct gccagcacac acggagtctt 2580 tggcttcgga cagcctcact cctgggggtt gctgcaactc cttccccgtg tacacgtctg 2640 cactctaaca acggagccac agctgcactc ccccctcccc caaagcagtg tgggtattta 2700 ttgatcttgt tatctgactc actgacagac tccgggaccc acgttttaga tgcattgaga 2760 ctcgacattc ctcggtattt attgtctgtc cccacctacg acctccactc ccgacccttg 2820 cgaataaaat acttctggtc tgccctaaaa aaaaaaaaaa aa 2862 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 9 agcctgagcc gggagatg 18 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 10 gcgtagttga ctggcgaagt t 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe <400> 11 aggccatccg cacggacaac c 21 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 12 ctggctgcat gtctgcctgt 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 13 ccaggagaag gtcgagcagg 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 14 tctatggcca tgacaatctc 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 15 atgtccctgt gcacgtagcc 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 16 atgtgtccgg aagtcgcctg 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 17 ctcaggctct gccgggtgag 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 18 ggcactggcc cacagccacg 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 19 cctggccgaa agaaagaaat 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 20 aaagaaatgg tctgtgatcc 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 21 aagaaagaaa tggtctgtga 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 22 ggccgaaaga aagaaatggt 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 23 cctcagcctg gccgaaagaa 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 24 gggcctcagc ctggccgaaa 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 25 tcagggcctc agcctggccg 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 26 ctgcagtttg cccatccacg 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 27 ggcctgcagt ttgcccatcc 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 28 ccaggcctgc agtttgccca 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 29 gccttcccag gcctgcagtt 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 30 gctgccttcc caggcctgca 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 31 cttgctgcct tcccaggcct 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 32 gcccggcttg ctgccttccc 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 33 acggcccggc ttgctgcctt 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 34 cggacggccc ggcttgctgc 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 35 acacggacgg cccggcttgc 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 36 gatggaacac ggacggcccg 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 37 gaggatggaa cacggacggc 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 38 gtggaggatg gaacacggac 20 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 39 gcgaaccaac gataggtggg 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 40 tttgcgaacc aacgataggt 20 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 41 ttgcactttg cgaaccaacg 20 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 42 gctttgcact ttgcgaacca 20 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 43 aaagctttgc actttgcgaa 20 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 44 aagaaagctt tgcactttgc 20 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 45 cacaagaaag ctttgcactt 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 46 gtcatgcaca agaaagcttt 20 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 47 acgctcccca gagcagggcg 20 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 48 gcagagatcg cgccagacgc 20 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 49 caggcagaga tcgcgccaga 20 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 50 aagcaggcag agatcgcgcc 20 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 51 ccgagtaagc aggcagagat 20 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 52 ttcccgagta agcaggcaga 20 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 53 gcaaatttcc cgagtaagca 20 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 54 aaagcaaatt tcccgagtaa 20 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 55 ttggcaaaag caaatttccc 20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 56 ggtttggcaa aagcaaattt 20 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 57 gcgggtttgg caaaagcaaa 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 58 aaagcgggtt tggcaaaagc 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 59 cccgaaaaag cgggtttggc 20 <210> 60 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 60 atccccgaaa aagcgggttt 20 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 61 cgggatcccc gaaaaagcgg 20 <210> 62 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 62 gcgcgggatc cccgaaaaag 20 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 63 gagagcagcg caagtgagga 20 <210> 64 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 64 tccgagagca gcgcaagtga 20 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 65 ggctccgaga gcagcgcaag 20 <210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 66 aagcgggcgg agccggctgg 20 <210> 67 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 67 ccgaagcggg cggagccggc 20 <210> 68 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 68 aaaccgccga agcgggcgga 20 <210> 69 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 69 tccaaaccgc cgaagcgggc 20 <210> 70 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 70 atatccaaac cgccgaagcg 20 <210> 71 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 71 taaatatcca aaccgccgaa 20 <210> 72 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 72 caataaatat ccaaaccgcc 20 <210> 73 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 73 cgaggtcaat aaatatccaa 20 <210> 74 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 74 ggacgaggtc aataaatatc 20 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 75 ggaggacgag gtcaataaat 20 <210> 76 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 76 gtcggaggac gaggtcaata 20 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 77 cgagtcggag gacgaggtca 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 78 tgtcagcgag tcggaggacg 20 <210> 79 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 79 gcctgtcagc gagtcggagg 20 <210> 80 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 80 gtagcctgtc agcgagtcgg 20 <210> 81 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 81 cctgtagcct gtcagcgagt 20 <210> 82 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 82 ggtcctgtag cctgtcagcg 20 <210> 83 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 83 aaataccgag gaatgtcggg 20 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 84 aataaatacc gaggaatgtc 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 85 gacaataaat accgaggaat 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 86 cggggccccg gagtcgaaga 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 87 ccaacggggc cccggagtcg 20 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 88 ttccaacggg gccccggagt 20 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 89 gtcttccaac ggggccccgg 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 90 cagtcttcca acggggcccc 20 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 91 ctcagtcttc caacggggcc 20 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 92 gcactcagtc ttccaacggg 20 <210> 93 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 93 ccccgggcac tcagtcttcc 20 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 94 tgccccgggc actcagtctt 20 <210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 95 cgtgccccgg gcactcagtc 20 <210> 96 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 96 gtgccgtgcc ccgggcactc 20 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 97 tctgtgccgt gccccgggca 20 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 98 gcttctgtgc cgtgccccgg 20 <210> 99 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 99 gcggcttctg tgccgtgccc 20 <210> 100 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 100 gcgcggcttc tgtgccgtgc 20 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 101 gggcgcggct tctgtgccgt 20 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 102 ggcggtgggc gcggcttctg 20 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 103 ggcaggcggt gggcgcggct 20 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 104 ctggcaggcg gtgggcgcgg 20 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 105 aactggcagg cggtgggcgc 20 <210> 106 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 106 gtgaactggc aggcggtggg 20 <210> 107 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 107 ggttgtgaac tggcaggcgg 20 <210> 108 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 108 gcggttgtga actggcaggc 20 <210> 109 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 109 cggagcggtt gtgaactggc 20 <210> 110 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 110 cgctcggagc ggttgtgaac 20 <210> 111 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 111 cccacgctcg gagcggttgt 20 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 112 agacccacgc tcggagcggt 20 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 113 cggagaccca cgctcggagc 20 <210> 114 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 114 gggcggagac ccacgctcgg 20 <210> 115 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 115 gctgggcgga gacccacgct 20 <210> 116 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 116 ggagctgggc ggagacccac 20 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 117 ctggagctgg gcggagaccc 20 <210> 118 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 118 ggactggagc tgggcggaga 20 <210> 119 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 119 caggactgga gctgggcgga 20 <210> 120 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 120 atcacaggac tggagctggg 20 <210> 121 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 121 gggcgggccc ggatcacagg 20 <210> 122 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 122 gggggcgggc ccggatcaca 20 <210> 123 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 123 aggcagcacc atggcccctc 20 <210> 124 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 124 ggtccaacac cagctgctgg 20 <210> 125 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 125 cgatcacctt cagaatctcg 20 <210> 126 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 126 cttgttcatg atcttcatgg 20 <210> 127 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 127 ccccattcac caacacgtcc 20 <210> 128 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 128 gcgtgatcca ccgccggtcc 20 <210> 129 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 129 gtaatactcc atgaccaggt 20 <210> 130 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 130 gcagtgtcag caggtccccg 20 <210> 131 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 131 caccgagtct atggccatga 20 <210> 132 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 132 acgtagccaa gccggtgcac 20 <210> 133 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 133 atgtggccac agcggtccag 20 <210> 134 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 134 cttcgtccac cagcggcaga 20 <210> 135 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 135 gaccccttcg tccaccagcg 20 <210> 136 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 136 cctgctccac cccggcccag 20 <210> 137 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 137 cggaagtcgc ctgctccacc 20 <210> 138 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 138 cggagaccat cccagtcgag 20 <210> 139 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 139 tgagggccat gcaggagtag 20 <210> 140 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 140 ctccagttcc atgggtgtgg 20 <210> 141 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 141 gcgcttgcac gtgtggctca 20 <210> 142 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 142 gccacttcag ctgtttcatc 20 <210> 143 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 143 gcctcagcct ctgccgcagg 20 <210> 144 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 144 gcagcgtcac ctcggcctca 20 <210> 145 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 145 ggctcaggct ctgccgggtg 20 <210> 146 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 146 ttccgagcct ctgcctcgcg 20 <210> 147 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 147 ggtcccggtt ccgagcctct 20 <210> 148 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 148 atccgctcct gcaactgccg 20 <210> 149 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 149 gcaactccat ccgctcctgc 20 <210> 150 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 150 aggtggatcc gtggcccggg 20 <210> 151 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 151 cgcggcttct gtgccgtgcc 20 <210> 152 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 152 ttgctgcctt cccaggcctg 20 <210> 153 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 153 tgctcccgac aagctccaga 20 <210> 154 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 154 agaacctgcc cattgctgaa 20 <210> 155 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 155 cactgagggc cagacatatg 20 <210> 156 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 156 ctctagattc agatgcaggt 20 <210> 157 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 157 cgggccgtcc gtgtt 15 <210> 158 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 158 ctttgcactt tgcgaaccaa 20 <210> 159 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe <400> 159 catcctccac gcacccccac c 21 <210> 160 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 160 gcctggcagc ccctgtccag 20 <210> 161 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 161 ggcctggcag cccctgtcca 20 <210> 162 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 162 gggcctggca gcccctgtcc 20 <210> 163 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 163 atggcccctc cccgggccgg 20 <210> 164 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 164 catggcccct ccccgggccg 20 <210> 165 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 165 ccatggcccc tccccgggcc 20 <210> 166 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 166 accatggccc ctccccgggc 20 <210> 167 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 167 caccatggcc cctccccggg 20 <210> 168 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 168 gcaccatggc ccctccccgg 20 <210> 169 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 169 agcaccatgg cccctccccg 20 <210> 170 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 170 cagcaccatg gcccctcccc 20 <210> 171 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 171 gcagcaccat ggcccctccc 20 <210> 172 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 172 ggcagcacca tggcccctcc 20 <210> 173 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 173 caggcagcac catggcccct 20 <210> 174 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 174 acaggcagca ccatggcccc 20 <210> 175 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 175 ggacaggcag caccatggcc 20 <210> 176 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 176 tggacaggca gcaccatggc 20 <210> 177 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 177 ttggacaggc agcaccatgg 20 <210> 178 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 178 gttggacagg cagcaccatg 20 <210> 179 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 179 tgttggacag gcagcaccat 20 <210> 180 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 180 atgttggaca ggcagcacca 20 <210> 181 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 181 catgttggac aggcagcacc 20 <210> 182 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 182 acatgttgga caggcagcac 20 <210> 183 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 183 gacatgttgg acaggcagca 20 <210> 184 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 184 tgacatgttg gacaggcagc 20 <210> 185 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 185 ctgacatgtt ggacaggcag 20 <210> 186 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 186 gctgacatgt tggacaggca 20 <210> 187 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 187 ggctgacatg ttggacaggc 20 <210> 188 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 188 cggctgacat gttggacagg 20 <210> 189 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 189 tcggctgaca tgttggacag 20 <210> 190 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 190 ctcggctgac atgttggaca 20 <210> 191 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 191 cctcggctga catgttggac 20 <210> 192 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 192 acctcggctg acatgttgga 20 <210> 193 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 193 cacctcggct gacatgttgg 20 <210> 194 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 194 gcacctcggc tgacatgttg 20 <210> 195 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 195 cgcacctcgg ctgacatgtt 20 <210> 196 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 196 ccgcacctcg gctgacatgt 20 <210> 197 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 197 gccgcacctc ggctgacatg 20 <210> 198 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 198 agccgcacct cggctgacat 20 <210> 199 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 199 cagccgcacc tcggctgaca 20 <210> 200 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 200 tcagccgcac ctcggctgac 20 <210> 201 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 201 ctcagccgca cctcggctga 20 <210> 202 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 202 cctcagccgc acctcggctg 20 <210> 203 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 203 gcctcagccg cacctcggct 20 <210> 204 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 204 ccaacaccag ctgctggagc 20 <210> 205 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 205 tccaacacca gctgctggag 20 <210> 206 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 206 gtccaacacc agctgctgga 20 <210> 207 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 207 gggtccaaca ccagctgctg 20 <210> 208 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 208 ggctccagcc ccaggaagcc 20 <210> 209 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 209 gggctccagc cccaggaagc 20 <210> 210 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 210 caggagaagg tcgagcaggg 20 <210> 211 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 211 cccaggagaa ggtcgagcag 20 <210> 212 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 212 gcccaggaga aggtcgagca 20 <210> 213 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 213 cgcccaggag aaggtcgagc 20 <210> 214 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 214 acgcccagga gaaggtcgag 20 <210> 215 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 215 tcctgggcca gttcggaggc 20 <210> 216 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 216 gtcctgggcc agttcggagg 20 <210> 217 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 217 tgtcctgggc cagttcggag 20 <210> 218 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 218 ttgtcctggg ccagttcgga 20 <210> 219 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 219 cttgtcctgg gccagttcgg 20 <210> 220 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 220 acttgtcctg ggccagttcg 20 <210> 221 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 221 tacttgtcct gggccagttc 20 <210> 222 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 222 gtacttgtcc tgggccagtt 20 <210> 223 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 223 cgtacttgtc ctgggccagt 20 <210> 224 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 224 actgcaagaa gtcggccacg 20 <210> 225 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 225 ccactgcaag aagtcggcca 20 <210> 226 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 226 cccactgcaa gaagtcggcc 20 <210> 227 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 227 gcccactgca agaagtcggc 20 <210> 228 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 228 cgcccactgc aagaagtcgg 20 <210> 229 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 229 ccgcccactg caagaagtcg 20 <210> 230 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 230 tccgcccact gcaagaagtc 20 <210> 231 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 231 ctccgcccac tgcaagaagt 20 <210> 232 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 232 gctccgccca ctgcaagaag 20 <210> 233 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 233 ggctccgccc actgcaagaa 20 <210> 234 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 234 gggctccgcc cactgcaaga 20 <210> 235 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 235 tgggctccgc ccactgcaag 20 <210> 236 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 236 atgggctccg cccactgcaa 20 <210> 237 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 237 gatgggctcc gcccactgca 20 <210> 238 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 238 cgatgggctc cgcccactgc 20 <210> 239 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 239 acgatgggct ccgcccactg 20 <210> 240 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 240 cacgatgggc tccgcccact 20 <210> 241 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 241 ccacgatggg ctccgcccac 20 <210> 242 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 242 accacgatgg gctccgccca 20 <210> 243 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 243 caccacgatg ggctccgccc 20 <210> 244 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 244 tcaccacgat gggctccgcc 20 <210> 245 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 245 ctcaccacga tgggctccgc 20 <210> 246 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 246 cctcaccacg atgggctccg 20 <210> 247 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 247 gcctcaccac gatgggctcc 20 <210> 248 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 248 agcctcacca cgatgggctc 20 <210> 249 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 249 aagcctcacc acgatgggct 20 <210> 250 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 250 taagcctcac cacgatgggc 20 <210> 251 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 251 ttaagcctca ccacgatggg 20 <210> 252 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 252 cttaagcctc accacgatgg 20 <210> 253 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 253 ccttaagcct caccacgatg 20 <210> 254 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 254 tccttaagcc tcaccacgat 20 <210> 255 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 255 ctccttaagc ctcaccacga 20 <210> 256 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 256 cctccttaag cctcaccacg 20 <210> 257 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 257 acctccttaa gcctcaccac 20 <210> 258 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 258 gacctcctta agcctcacca 20 <210> 259 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 259 ggacctcctt aagcctcacc 20 <210> 260 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 260 cggacctcct taagcctcac 20 <210> 261 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 261 tcggacctcc ttaagcctca 20 <210> 262 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 262 gtcggacctc cttaagcctc 20 <210> 263 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 263 cagtcggacc tccttaagcc 20 <210> 264 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 264 gcagtcggac ctccttaagc 20 <210> 265 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 265 tgcagtcgga cctccttaag 20 <210> 266 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 266 ccttcagaat ctcgaagtcg 20 <210> 267 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 267 accttcagaa tctcgaagtc 20 <210> 268 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 268 tcaccttcag aatctcgaag 20 <210> 269 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 269 atcaccttca gaatctcgaa 20 <210> 270 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 270 gatcaccttc agaatctcga 20 <210> 271 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 271 ccgatcacct tcagaatctc 20 <210> 272 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 272 tccgatcacc ttcagaatct 20 <210> 273 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 273 gtccgatcac cttcagaatc 20 <210> 274 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 274 cgtccgatca ccttcagaat 20 <210> 275 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 275 cccgtctgct tcatcttcac 20 <210> 276 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 276 gcccgtctgc ttcatcttca 20 <210> 277 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 277 ggcccgtctg cttcatcttc 20 <210> 278 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 278 tggcccgtct gcttcatctt 20 <210> 279 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 279 ctggcccgtc tgcttcatct 20 <210> 280 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 280 cctggcccgt ctgcttcatc 20 <210> 281 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 281 acctggcccg tctgcttcat 20 <210> 282 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 282 cacctggccc gtctgcttca 20 <210> 283 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 283 acacctggcc cgtctgcttc 20 <210> 284 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 284 tacacctggc ccgtctgctt 20 <210> 285 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 285 ttgttcatga tcttcatggc 20 <210> 286 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 286 acttgttcat gatcttcatg 20 <210> 287 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 287 cacttgttca tgatcttcat 20 <210> 288 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 288 ccacttgttc atgatcttca 20 <210> 289 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 289 cccacttgtt catgatcttc 20 <210> 290 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 290 tcccacttgt tcatgatctt 20 <210> 291 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 291 gtcccacttg ttcatgatct 20 <210> 292 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 292 tgtcccactt gttcatgatc 20 <210> 293 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 293 atgtcccact tgttcatgat 20 <210> 294 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 294 catgtcccac ttgttcatga 20 <210> 295 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 295 gcatgtccca cttgttcatg 20 <210> 296 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 296 agcatgtccc acttgttcat 20 <210> 297 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 297 cagcatgtcc cacttgttca 20 <210> 298 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 298 tcagcatgtc ccacttgttc 20 <210> 299 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 299 ttcagcatgt cccacttgtt 20 <210> 300 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 300 cttcagcatg tcccacttgt 20 <210> 301 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 301 tcttcagcat gtcccacttg 20 <210> 302 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 302 cctcttcagc atgtcccact 20 <210> 303 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 303 ccctcttcag catgtcccac 20 <210> 304 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 304 cccctcttca gcatgtccca 20 <210> 305 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 305 gcccctcttc agcatgtccc 20 <210> 306 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 306 cgcccctctt cagcatgtcc 20 <210> 307 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 307 tcgcccctct tcagcatgtc 20 <210> 308 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 308 ctcgcccctc ttcagcatgt 20 <210> 309 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 309 cctcgcccct cttcagcatg 20 <210> 310 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 310 acctcgcccc tcttcagcat 20 <210> 311 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 311 cacctcgccc ctcttcagca 20 <210> 312 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 312 acacctcgcc cctcttcagc 20 <210> 313 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 313 gacacctcgc ccctcttcag 20 <210> 314 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 314 gccaggcgga tgtggccaca 20 <210> 315 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 315 accgcaccgt tccatctgcc 20 <210> 316 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 316 gaccgcaccg ttccatctgc 20 <210> 317 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 317 acagcctgca ggatctcggg 20 <210> 318 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 318 cacagcctgc aggatctcgg 20 <210> 319 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 319 ccacagcctg caggatctcg 20 <210> 320 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 320 cccacagcct gcaggatctc 20 <210> 321 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 321 gcccacagcc tgcaggatct 20 <210> 322 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 322 cgcccacagc ctgcaggatc 20 <210> 323 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 323 ccgcccacag cctgcaggat 20 <210> 324 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 324 accgcccaca gcctgcagga 20 <210> 325 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 325 caccgcccac agcctgcagg 20 <210> 326 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 326 ccaccgccca cagcctgcag 20 <210> 327 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 327 cccaccgccc acagcctgca 20 <210> 328 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 328 gcccaccgcc cacagcctgc 20 <210> 329 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 329 ggcccaccgc ccacagcctg 20 <210> 330 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 330 aggcccaccg cccacagcct 20 <210> 331 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 331 caggcccacc gcccacagcc 20 <210> 332 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 332 ccaggcccac cgcccacagc 20 <210> 333 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 333 cccaggccca ccgcccacag 20 <210> 334 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 334 tcccaggccc accgcccaca 20 <210> 335 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 335 gtcccaggcc caccgcccac 20 <210> 336 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 336 tgtcccaggc ccaccgccca 20 <210> 337 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 337 ctgtcccagg cccaccgccc 20 <210> 338 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 338 cctgtcccag gcccaccgcc 20 <210> 339 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 339 gcctgtccca ggcccaccgc 20 <210> 340 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 340 tgcctgtccc aggcccaccg 20 <210> 341 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 341 ctgcctgtcc caggcccacc 20 <210> 342 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 342 gctgcctgtc ccaggcccac 20 <210> 343 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 343 agctgcctgt cccaggccca 20 <210> 344 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 344 tagctgcctg tcccaggccc 20 <210> 345 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 345 gtagctgcct gtcccaggcc 20 <210> 346 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 346 cgtagctgcc tgtcccaggc 20 <210> 347 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 347 ccgtagctgc ctgtcccagg 20 <210> 348 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 348 cccgtagctg cctgtcccag 20 <210> 349 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 349 gcccgtagct gcctgtccca 20 <210> 350 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 350 ggcccgtagc tgcctgtccc 20 <210> 351 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 351 tagaacattt cataggcgaa 20 <210> 352 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 352 tctccgccgt ggaatccgcg 20 <210> 353 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 353 gtctccgccg tggaatccgc 20 <210> 354 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 354 ggtctccgcc gtggaatccg 20 <210> 355 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 355 aggtctccgc cgtggaatcc 20 <210> 356 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 356 taggtctccg ccgtggaatc 20 <210> 357 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 357 ttgtagtgga cgatcttgcc 20 <210> 358 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 358 cttgtagtgg acgatcttgc 20 <210> 359 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 359 ccttgtagtg gacgatcttg 20 <210> 360 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 360 tccttgtagt ggacgatctt 20 <210> 361 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 361 ctccttgtag tggacgatct 20 <210> 362 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 362 gctccttgta gtggacgatc 20 <210> 363 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 363 tgctccttgt agtggacgat 20 <210> 364 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 364 gtgctccttg tagtggacga 20 <210> 365 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 365 ggtgctcctt gtagtggacg 20 <210> 366 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 366 aggtgctcct tgtagtggac 20 <210> 367 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 367 gaggtgctcc ttgtagtgga 20 <210> 368 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 368 agaggtgctc cttgtagtgg 20 <210> 369 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 369 gagaggtgct ccttgtagtg 20 <210> 370 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 370 agagaggtgc tccttgtagt 20 <210> 371 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 371 gagagaggtg ctccttgtag 20 <210> 372 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 372 agagagaggt gctccttgta 20 <210> 373 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 373 cagagagagg tgctccttgt 20 <210> 374 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 374 ggcagagaga ggtgctcctt 20 <210> 375 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 375 cggcagagag aggtgctcct 20 <210> 376 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 376 gcggcagaga gaggtgctcc 20 <210> 377 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 377 agcggcagag agaggtgctc 20 <210> 378 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 378 cagcggcaga gagaggtgct 20 <210> 379 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 379 ccagcggcag agagaggtgc 20 <210> 380 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 380 ggcccagccg tgtctccggg 20 <210> 381 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 381 cggcccagcc gtgtctccgg 20 <210> 382 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 382 ccggcccagc cgtgtctccg 20 <210> 383 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 383 cccggcccag ccgtgtctcc 20 <210> 384 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 384 ccccggccca gccgtgtctc 20 <210> 385 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 385 accccggccc agccgtgtct 20 <210> 386 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 386 caccccggcc cagccgtgtc 20 <210> 387 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 387 ccaccccggc ccagccgtgt 20 <210> 388 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 388 tccaccccgg cccagccgtg 20 <210> 389 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 389 ctccaccccg gcccagccgt 20 <210> 390 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 390 gctccacccc ggcccagccg 20 <210> 391 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 391 tgctccaccc cggcccagcc 20 <210> 392 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 392 ctgctccacc ccggcccagc 20 <210> 393 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 393 aagggatgtg tccggaagtc 20 <210> 394 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 394 gaagggatgt gtccggaagt 20 <210> 395 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 395 agaagggatg tgtccggaag 20 <210> 396 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 396 aagaagggat gtgtccggaa 20 <210> 397 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 397 gaagaaggga tgtgtccgga 20 <210> 398 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 398 agaagaaggg atgtgtccgg 20 <210> 399 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 399 aagaagaagg gatgtgtccg 20 <210> 400 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 400 aaagaagaag ggatgtgtcc 20 <210> 401 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 401 caaagaagaa gggatgtgtc 20 <210> 402 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 402 ccaaagaaga agggatgtgt 20 <210> 403 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 403 ggccaaagaa gaagggatgt 20 <210> 404 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 404 aggccaaaga agaagggatg 20 <210> 405 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 405 gaggccaaag aagaagggat 20 <210> 406 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 406 cgaggccaaa gaagaaggga 20 <210> 407 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 407 tcgaggccaa agaagaaggg 20 <210> 408 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 408 gtcgaggcca aagaagaagg 20 <210> 409 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 409 agtcgaggcc aaagaagaag 20 <210> 410 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 410 cagtcgaggc caaagaagaa 20 <210> 411 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 411 ccagtcgagg ccaaagaaga 20 <210> 412 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 412 cccagtcgag gccaaagaag 20 <210> 413 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 413 tcccagtcga ggccaaagaa 20 <210> 414 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 414 atcccagtcg aggccaaaga 20 <210> 415 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 415 catcccagtc gaggccaaag 20 <210> 416 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 416 ccatcccagt cgaggccaaa 20 <210> 417 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 417 accatcccag tcgaggccaa 20 <210> 418 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 418 gaccatccca gtcgaggcca 20 <210> 419 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 419 agaccatccc agtcgaggcc 20 <210> 420 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 420 gagaccatcc cagtcgaggc 20 <210> 421 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 421 ggagaccatc ccagtcgagg 20 <210> 422 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 422 ttcgaaatcc ggtgtaaagg 20 <210> 423 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 423 cttcgaaatc cggtgtaaag 20 <210> 424 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 424 ccttcgaaat ccggtgtaaa 20 <210> 425 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 425 accttcgaaa tccggtgtaa 20 <210> 426 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 426 caccttcgaa atccggtgta 20 <210> 427 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 427 gcaccttcga aatccggtgt 20 <210> 428 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 428 ggcaccttcg aaatccggtg 20 <210> 429 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 429 tggcaccttc gaaatccggt 20 <210> 430 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 430 gtggcacctt cgaaatccgg 20 <210> 431 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 431 ggtggcacct tcgaaatccg 20 <210> 432 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 432 cggtggcacc ttcgaaatcc 20 <210> 433 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 433 tcggtggcac cttcgaaatc 20 <210> 434 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 434 gtcggtggca ccttcgaaat 20 <210> 435 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 435 tgtcggtggc accttcgaaa 20 <210> 436 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 436 gtgtcggtgg caccttcgaa 20 <210> 437 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 437 tgtgtcggtg gcaccttcga 20 <210> 438 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 438 atgtgtcggt ggcaccttcg 20 <210> 439 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 439 catgtgtcgg tggcaccttc 20 <210> 440 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 440 gcatgtgtcg gtggcacctt 20 <210> 441 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 441 tgcatgtgtc ggtggcacct 20 <210> 442 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 442 ttgcatgtgt cggtggcacc 20 <210> 443 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 443 gttgcatgtg tcggtggcac 20 <210> 444 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 444 agttgcatgt gtcggtggca 20 <210> 445 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 445 aagttgcatg tgtcggtggc 20 <210> 446 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 446 gaagttgcat gtgtcggtgg 20 <210> 447 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 447 cgaagttgca tgtgtcggtg 20 <210> 448 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 448 gtcgaagttg catgtgtcgg 20 <210> 449 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 449 agtcgaagtt gcatgtgtcg 20 <210> 450 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 450 aagtcgaagt tgcatgtgtc 20 <210> 451 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 451 caagtcgaag ttgcatgtgt 20 <210> 452 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 452 ccaagtcgaa gttgcatgtg 20 <210> 453 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 453 accaagtcga agttgcatgt 20 <210> 454 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 454 caccaagtcg aagttgcatg 20 <210> 455 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 455 ccaccaagtc gaagttgcat 20 <210> 456 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 456 tccaccaagt cgaagttgca 20 <210> 457 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 457 ctccaccaag tcgaagttgc 20 <210> 458 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 458 cctccaccaa gtcgaagttg 20 <210> 459 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 459 tcctccacca agtcgaagtt 20 <210> 460 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 460 gtcctccacc aagtcgaagt 20 <210> 461 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 461 cgtcctccac caagtcgaag 20 <210> 462 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 462 ccgtcctcca ccaagtcgaa 20 <210> 463 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 463 cccgtcctcc accaagtcga 20 <210> 464 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 464 gcccgtcctc caccaagtcg 20 <210> 465 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 465 agcccgtcct ccaccaagtc 20 <210> 466 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 466 gagcccgtcc tccaccaagt 20 <210> 467 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 467 tgagcccgtc ctccaccaag 20 <210> 468 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 468 ggttccgagc ctctgcctcg 20 <210> 469 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 469 cggttccgag cctctgcctc 20 <210> 470 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 470 ccggttccga gcctctgcct 20 <210> 471 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 471 cccggttccg agcctctgcc 20 <210> 472 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 472 tcccggttcc gagcctctgc 20 <210> 473 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 473 gtcccggttc cgagcctctg 20 <210> 474 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 474 aggtcccggt tccgagcctc 20 <210> 475 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 475 taggtcccgg ttccgagcct 20 <210> 476 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 476 ctaggtcccg gttccgagcc 20 <210> 477 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 477 tctaggtccc ggttccgagc 20 <210> 478 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 478 ctctaggtcc cggttccgag 20 <210> 479 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 479 cctctaggtc ccggttccga 20 <210> 480 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 480 gcctctaggt cccggttccg 20 <210> 481 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 481 catccgctcc tgcaactgcc 20 <210> 482 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 482 ccatccgctc ctgcaactgc 20 <210> 483 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 483 tccatccgct cctgcaactg 20 <210> 484 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 484 ctccatccgc tcctgcaact 20 <210> 485 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 485 actccatccg ctcctgcaac 20 <210> 486 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 486 aactccatcc gctcctgcaa 20 <210> 487 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 487 caactccatc cgctcctgca 20 <210> 488 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 488 agcaactcca tccgctcctg 20 <210> 489 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 489 cagcaactcc atccgctcct 20 <210> 490 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 490 gcagcaactc catccgctcc 20 <210> 491 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 491 cagctgtggc tccctctgcc 20 <210> 492 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 492 acagctgtgg ctccctctgc 20 <210> 493 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 493 gacagctgtg gctccctctg 20 <210> 494 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 494 tgacagctgt ggctccctct 20 <210> 495 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 495 gtgacagctg tggctccctc 20 <210> 496 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 496 cgtgacagct gtggctccct 20 <210> 497 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 497 ccgtgacagc tgtggctccc 20 <210> 498 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 498 cccgtgacag ctgtggctcc 20 <210> 499 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 499 ccccgtgaca gctgtggctc 20 <210> 500 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 500 cccccgtgac agctgtggct 20 <210> 501 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 501 acccccgtga cagctgtggc 20 <210> 502 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 502 gacccccgtg acagctgtgg 20 <210> 503 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 503 ggacccccgt gacagctgtg 20 <210> 504 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 504 gggacccccg tgacagctgt 20 <210> 505 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 505 gaaggtggat ccgtggcccg 20 <210> 506 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 506 ggaaggtgga tccgtggccc 20 <210> 507 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 507 gggaaggtgg atccgtggcc 20 <210> 508 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 508 tgggaaggtg gatccgtggc 20 <210> 509 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 509 atgggaaggt ggatccgtgg 20 <210> 510 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 510 gatgggaagg tggatccgtg 20 <210> 511 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 511 tagatgggaa ggtggatccg 20 <210> 512 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 512 ctagatggga aggtggatcc 20 <210> 513 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 513 tctagatggg aaggtggatc 20 <210> 514 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 514 atctagatgg gaaggtggat 20 <210> 515 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 515 ccatctagat gggaaggtgg 20 <210> 516 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 516 gccatctaga tgggaaggtg 20 <210> 517 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 517 ggccatctag atgggaaggt 20 <210> 518 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 518 caccagcggg cactggccca 20 <210> 519 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 519 ccaccagcgg gcactggccc 20 <210> 520 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 520 cccaccagcg ggcactggcc 20 <210> 521 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 521 ccccaccagc gggcactggc 20 <210> 522 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 522 ggccccacca gcgggcactg 20 <210> 523 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 523 tggccccacc agcgggcact 20 <210> 524 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 524 ctggccccac cagcgggcac 20 <210> 525 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 525 cctggcccca ccagcgggca 20 <210> 526 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 526 gcctggcccc accagcgggc 20 <210> 527 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 527 gggcctggcc ccaccagcgg 20 <210> 528 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 528 aggtggcggc ggtgcatggg 20 <210> 529 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 529 caggtggcgg cggtgcatgg 20 <210> 530 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 530 gcaggtggcg gcggtgcatg 20 <210> 531 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 531 agcaggtggc ggcggtgcat 20 <210> 532 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 532 cagcaggtgg cggcggtgca 20 <210> 533 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 533 gcagcaggtg gcggcggtgc 20 <210> 534 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 534 agcagcaggt ggcggcggtg 20 <210> 535 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 535 gagcagcagg tggcggcggt 20 <210> 536 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 536 ggagcagcag gtggcggcgg 20 <210> 537 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 537 gggagcagca ggtggcggcg 20 <210> 538 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 538 agggagcagc aggtggcggc 20 <210> 539 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 539 cagggagcag caggtggcgg 20 <210> 540 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 540 gcagggagca gcaggtggcg 20 <210> 541 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 541 ggcagggagc agcaggtggc 20 <210> 542 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 542 tggcagggag cagcaggtgg 20 <210> 543 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 543 ctggcaggga gcagcaggtg 20 <210> 544 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 544 ccctggcagg gagcagcagg 20 <210> 545 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 545 accctggcag ggagcagcag 20 <210> 546 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 546 gaccctggca gggagcagca 20 <210> 547 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 547 ggaccctggc agggagcagc 20 <210> 548 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 548 ggcctaggga ccctggcagg 20 <210> 549 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 549 aggcctaggg accctggcag 20 <210> 550 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 550 ccaggcctag ggaccctggc 20 <210> 551 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 551 gccaggccta gggaccctgg 20 <210> 552 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 552 ggccaggcct agggaccctg 20 <210> 553 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 553 aggccaggcc tagggaccct 20 <210> 554 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 554 taggccaggc ctagggaccc 20 <210> 555 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 555 ataggccagg cctagggacc 20 <210> 556 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 556 gataggccag gcctagggac 20 <210> 557 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 557 cgataggcca ggcctaggga 20 <210> 558 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 558 ccgataggcc aggcctaggg 20 <210> 559 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 559 tccgataggc caggcctagg 20 <210> 560 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 560 ctccgatagg ccaggcctag 20 <210> 561 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 561 cctccgatag gccaggccta 20 <210> 562 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 562 gcctccgata ggccaggcct 20 <210> 563 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 563 gcgcctccga taggccaggc 20 <210> 564 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 564 aacaggagca gggaaagcgc 20 <210> 565 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 565 gaacaggagc agggaaagcg 20 <210> 566 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 566 cgaacaggag cagggaaagc 20 <210> 567 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 567 gcgaacagga gcagggaaag 20 <210> 568 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 568 ggcgaacagg agcagggaaa 20 <210> 569 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 569 cggcgaacag gagcagggaa 20 <210> 570 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 570 acggcgaaca ggagcaggga 20 <210> 571 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 571 aacggcgaac aggagcaggg 20 <210> 572 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 572 caacggcgaa caggagcagg 20 <210> 573 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 573 gggcggcggc acgagacaga 20 <210> 574 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 574 agggcggcgg cacgagacag 20 <210> 575 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 575 cagggcggcg gcacgagaca 20 <210> 576 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 576 ccagggcggc ggcacgagac 20 <210> 577 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 577 cccagggcgg cggcacgaga 20 <210> 578 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 578 gcccagggcg gcggcacgag 20 <210> 579 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 579 agcccagggc ggcggcacga 20 <210> 580 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 580 cagcccaggg cggcggcacg 20 <210> 581 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 581 gcagcccagg gcggcggcac 20 <210> 582 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 582 ctgcggtgag ttggccggcg 20 <210> 583 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 583 actgcggtga gttggccggc 20 <210> 584 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 584 gactgcggtg agttggccgg 20 <210> 585 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 585 agactgcggt gagttggccg 20 <210> 586 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 586 cagactgcgg tgagttggcc 20 <210> 587 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 587 ccagactgcg gtgagttggc 20 <210> 588 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 588 gccagactgc ggtgagttgg 20 <210> 589 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 589 cgccagactg cggtgagttg 20 <210> 590 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 590 aagacagttc tagggttcag 20 <210> 591 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 591 gaagacagtt ctagggttca 20 <210> 592 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 592 cgaagacagt tctagggttc 20 <210> 593 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 593 tcgaagacag ttctagggtt 20 <210> 594 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 594 gtcgaagaca gttctagggt 20 <210> 595 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 595 agtcgaagac agttctaggg 20 <210> 596 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 596 gagtcgaaga cagttctagg 20 <210> 597 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 597 ggagtcgaag acagttctag 20 <210> 598 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 598 cggagtcgaa gacagttcta 20 <210> 599 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 599 ccggagtcga agacagttct 20 <210> 600 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 600 cccggagtcg aagacagttc 20 <210> 601 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 601 ccccggagtc gaagacagtt 20 <210> 602 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 602 gccccggagt cgaagacagt 20 <210> 603 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 603 ggccccggag tcgaagacag 20 <210> 604 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 604 gggccccgga gtcgaagaca 20 <210> 605 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 605 aggcggtggg cgcggcttct 20 <210> 606 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 606 caggcggtgg gcgcggcttc 20 <210> 607 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 607 gcaggcggtg ggcgcggctt 20 <210> 608 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 608 tggcaggcgg tgggcgcggc 20 <210> 609 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 609 actggcaggc ggtgggcgcg 20 <210> 610 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 610 gaactggcag gcggtgggcg 20 <210> 611 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 611 tgaactggca ggcggtgggc 20 <210> 612 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 612 tgtgaactgg caggcggtgg 20 <210> 613 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 613 tggagctggg cggagaccca 20 <210> 614 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 614 actggagctg ggcggagacc 20 <210> 615 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 615 gactggagct gggcggagac 20 <210> 616 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 616 aggactggag ctgggcggag 20 <210> 617 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 617 acaggactgg agctgggcgg 20 <210> 618 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 618 cacaggactg gagctgggcg 20 <210> 619 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 619 tcacaggact ggagctgggc 20 <210> 620 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 620 gcctcagcct ggccgaaaga 20 <210> 621 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 621 ggcctcagcc tggccgaaag 20 <210> 622 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 622 tggtggagcc aagccctccc 20 <210> 623 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 623 gggcaccctc agagcctgaa 20 <210> 624 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 624 accccactgc aagaagtcgg 20 <210> 625 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 625 gccccaggat gggaggatct 20 <210> 626 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 626 cataggacag agaaatgttg 20 <210> 627 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 627 tgctgacctt actctgcccc 20 <210> 628 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 628 taagccatgg ctctgagtca 20 <210> 629 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 629 agagaggcca tgggaggctg 20 <210> 630 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 630 ctggccctcc tggcttgccc 20 <210> 631 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 631 agctgcccca tgctggccct 20 <210> 632 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 632 gcccctggca gctgccccat 20 <210> 633 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 633 ctgtcggctg cgcccctggc 20 <210> 634 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 634 cgccgaacac ctgcctgtcg 20 <210> 635 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 635 cctcccagtg cctgggcacc 20 <210> 636 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 636 gcgcctgtct gcaaagctgg 20 <210> 637 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 637 cccaaagttg tccctcctgg 20 <210> 638 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 638 acacccagaa gaacccaaag 20 <210> 639 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 639 ctgacccaca cggctcatag 20 <210> 640 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 640 tggccccagg ccctggaaag 20 <210> 641 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 641 gacaaggcag ctggcagaag 20 <210> 642 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 642 aagaaaccag tgaccagtga 20 <210> 643 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 643 ctgtgaaatg ggaggaggag 20 <210> 644 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 644 gaaggttttt ccagaggctg 20 <210> 645 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 645 ggccaggaga gtcattaggg 20 <210> 646 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 646 ccacaaaagg agtgctcctc 20 <210> 647 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 647 ccttttaagg cagcaggaac 20 <210> 648 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 648 ctaggactgt ctgcttccca 20 <210> 649 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 649 gtcattcatc aatttctaag 20 <210> 650 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 650 ggaggagctg cagccggaga 20 <210> 651 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 651 gcacccggag gagctgcagc 20 <210> 652 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 652 gcacgacacc tgcagggcac 20 <210> 653 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 653 agctcaccag gtagttctca 20 <210> 654 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 654 gcttcctctc cccacctcct 20 <210> 655 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 655 gcagcacccc caatcctaga 20 <210> 656 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 656 gcccctcatc cacctgacac 20 <210> 657 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 657 ttccaggtaa gagacccccc 20 <210> 658 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 658 agaataggtc ccagacactc 20 <210> 659 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 659 ctccccctga gatgttctgg 20 <210> 660 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 660 ccccagccca gagataacca 20 <210> 661 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 661 cctgatccat cacggatggc 20 <210> 662 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 662 tactccatga ccaggtactg 20 <210> 663 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 663 gctctgacct tccaagaacc 20 <210> 664 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 664 ctcccttctg tggtcccacc 20 <210> 665 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 665 gtcgggtttg atgtccctgc 20 <210> 666 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 666 agggcactgg ctcaccgttc 20 <210> 667 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 667 gggccctcct tccaaccact 20 <210> 668 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 668 gcccacccct ctgggcccac 20 <210> 669 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 669 aggagcagag cgaggcttgg 20 <210> 670 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 670 caccttgtag tggacgatct 20 <210> 671 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 671 ctaccccgcc cccgctcacc 20 <210> 672 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 672 ctaggtcact gctgggtcct 20 <210> 673 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 673 ctcagatagc tccccactcc 20 <210> 674 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 674 aattctctaa ttctctagac 20 <210> 675 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 675 tacctgaggg ccatgcagga 20 <210> 676 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 676 gttccaagac tgatcctgca 20 <210> 677 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 677 aggagggcgg tggcgcggcg 20 <210> 678 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 678 tgacagctgg aaggagaaga 20 <210> 679 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 679 catgggaagg tggatccgtg 20 <210> 680 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 680 ggaggttatc tagggagatc 20 <210> 681 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 681 gaagggacag gtgacccgat 20 <210> 682 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 682 cgtaccctgg cagggagcag 20 <210> 683 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 683 ggactcgccc cgcctacgcc 20 <210> 684 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 684 ctcctgggac tcgccccgcc 20 <210> 685 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 685 gctcctggga ctcgccccgc 20 <210> 686 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 686 attggctcct gggactcgcc 20 <210> 687 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 687 gattggctcc tgggactcgc 20 <210> 688 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 688 gcctctgatt ggctcctggg 20 <210> 689 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 689 gcatgggcct ctgattggct 20 <210> 690 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 690 cacccggcat gggcctctga 20 <210> 691 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 691 gccaggccta gggacctgcg 20 <210> 692 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 692 ttcctccccc aaccctgatt 20 <210> 693 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 693 aagtttgcag caacttttct 20 <210> 694 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 694 gcccctcgga attcccggct 20 <210> 695 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 695 catctcggcc tgcgctccgc 20 <210> 696 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 696 gcaggccccc acattcccca 20 <210> 697 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 697 cttctgcacg cctccgtctc 20 <210> 698 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 698 tggcccacag ccacggccgg 20 <210> 699 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 699 ggcctggccc caccagcggg 20 <210> 700 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 700 cctggcaggg agcagcaggt 20 <210> 701 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 701 cagccgcact tcggctgaca 20 <210> 702 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 702 gcctgggtcc agcaccagct 20 <210> 703 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 703 gtcccaggaa gcctgggtcc 20 <210> 704 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 704 cgttagcagg tccccgccca 20 <210> 705 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 705 gtctatggcc atgacaatct 20 <210> 706 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 706 gtagcccagc cggtgcacgg 20 <210> 707 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 707 gggtgcccac agccaccagc 20 <210> 708 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 708 tggcccgtag ctgcctgccc 20 <210> 709 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 709 ggaaatcacc tgccccacct 20 <210> 710 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 710 ggatgtttct ggaaatcacc 20 <210> 711 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 711 gtggcaccct cgaagtctgg 20 <210> 712 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 712 ccccgctcac catggcagtg 20 <210> 713 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 713 ggtccgggac ctgattgtct 20 <210> 714 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 714 gctgcatgtc tgcccgtccc 20 <210> 715 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 715 ggccccagaa ccctagctgc 20 <210> 716 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 716 tcacagggcc tggctgcccc 20 <210> 717 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 717 ggctgacatg ttgggcaggc 20 <210> 718 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 718 tgtccaggcc ccagaaccct 20 <210> 719 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 719 ggccaggcct agggatctgc 20 <210> 720 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 720 cgcctcggat aggccaggcc 20 <210> 721 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 721 ggcttggagt cttagggttc 20 <210> 722 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 722 tccccggccg ccaggtggca 20 <210> 723 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 723 ggtgctgggc acgagccctg 20 <210> 724 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 724 gcccagctgc tgcagcagcg 20 <210> 725 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 725 ccgtgtgtgc tggcagaggt 20 <210> 726 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 726 ataaataccg aggaatgtcg 20 <210> 727 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 727 gggacagaca ataaataccg 20 <210> 728 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 728 gtgcagccca gtgtggcggc 20 <210> 729 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 729 cctggagaag ttctggttgg 20 <210> 730 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 730 ggtgacccga tcggagccca 20 <210> 731 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 731 agctggagag agaagggaca 20 <210> 732 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 732 gtgagggact cgcctgcggc 20 <210> 733 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 733 gcggctgcgg tgccccagcc 20 <210> 734 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 734 gggccatcta gctggagaga 20 <210> 735 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 735 ccccactgca agaagtcggc 20 <210> 736 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 736 ttgagccctt ttaaggcagc 20 <210> 737 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 737 tgaccaggta ctgggagcgg 20 <210> 738 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 738 cctggagctg gatcagtccc 20 <210> 739 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 739 acatgggaag gtggatccgt 20 <210> 740 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 740 gtgggacata ccctggcagg 20 <210> 741 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 741 gccaggccta gggatctgca 20 <210> 742 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 742 ggaagcacga cacctcgcct 20 <210> 743 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 743 cctcaccatt ccatcaggct 20 <210> 744 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 744 cggcagcgac aagtgttccc 20 <210> 745 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 745 gtctctgaag gccatgcagc 20 <210> 746 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 746 cagccacttg atccggtggg 20 <210> 747 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 747 aggtcggcct cttcagccac 20 <210> 748 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 748 gttggctgga gaagttctgg 20 <210> 749 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 749 ccccgtgatg gctgcggctc 20 <210> 750 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 750 aggccaggcc tagggatcct 20 <210> 751 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 751 ggcgcggtgc cccagcctgg 20 <210> 752 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 752 gtcctggccc caccagcggg 20 <210> 753 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 753 ccaggcctag gaatcctggc 20 <210> 754 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 754 gcgcctcgga tagccaggcc 20 <210> 755 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 755 cccagtgtgg cgcagcagcc 20 <210> 756 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 756 gtgtttcatc ttcaccaccg 20 <210> 757 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 757 aggtcagcct cttcagccac 20 <210> 758 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 758 ggccatatgg gaaggtggat 20 <210> 759 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 759 ggaggatttg gcgagaagca 20 <210> 760 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 760 cgaagtctgc cccacctcga 20 <210> 761 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 761 gtggcaccct cgaagtctgc 20 <210> 762 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 762 gggtccattg taaggaagct 20 <210> 763 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 763 ggtgcccaca gccaccaggg 20 <210> 764 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 764 tccatggcag tgagccggtc 20 <210> 765 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 765 gggaccactt gatccggtgg 20 <210> 766 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 766 ggatcagagt tgggaccact 20 <210> 767 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 767 ccccgtgatg gctgcggttc 20 <210> 768 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 768 gtgtgtcctc ataccccgcc 20 <210> 769 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 769 gcaccctcga agtctcgacc 20 <210> 770 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 770 gctctgaagg ccatgcagca 20 <210> 771 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 771 gacatatgcc aagattgtgc actac 25 <210> 772 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 772 cacgaatgag gtcctgagct t 21 <210> 773 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe <400> 773 aacacttgtc gctgccgctg gc 22 <210> 774 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 774 agcgaggctt cacttggcgc 20 <210> 775 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 775 gggaagcgag gcttcacttg 20 <210> 776 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 776 gcggtcagcg atcccagggt 20 <210> 777 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 777 gggtgccagc gcggtgatct 20 <210> 778 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 778 tgttacaaag aaagtgactg 20 <210> 779 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 779 cgatggcagc aacggaagtt 20 <210> 780 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 780 gtcagtttac gatggcagca 20 <210> 781 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 781 cagggctttg tttcgaaaaa 20 <210> 782 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 782 ccattttctt ccacagggct 20 <210> 783 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 783 atgcttcttc aagttttcca 20 <210> 784 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 784 cagaatgact ttaatgcttc 20 <210> 785 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 785 ccaccgcaaa tgcttctaga c 21 <210> 786 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 786 cccccccatt gagaagattc 20 <210> 787 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Probe <400> 787 ctccacctcc agcacgcgac ttct 24 <210> 788 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 788 gcggtcagcg atcccagggt 20 <210> 789 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 789 agcagcagca gcagcagcag cagca 25 <210> 790 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 790 agcagcagca gcagcagcag 20 <210> 791 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 791 gcagcagcag cagca 15 <210> 792 <400> 792 000 <210> 793 <211> 2611 <212> DNA <213> Mus musculus <400> 793 cgggaagacc ccgagctccg gcccggggag gggccatggt gttgcctgcc caacatgtca 60 gccgaagtgc ggctgaggca gctccagcag ctggtgctgg acccaggctt cctgggactg 120 gagcccctgc tcgaccttct cctgggcgtc caccaggagc tgggtgcctc tcacctagcc 180 caggacaagt atgtggccga cttcttgcag tgggtggagc ccattgcagc aaggcttaag 240 gaggtccgac tgcagaggga tgattttgag attttgaagg tgatcgggcg tggggcgttc 300 agcgaggtag cggtggtgaa gatgaaacag acgggccaag tgtatgccat gaagattatg 360 aataagtggg acatgctgaa gagaggcgag gtgtcgtgct tccgggaaga aagggatgta 420 ttagtgaaag gggaccggcg ctggatcaca cagctgcact ttgccttcca ggatgagaac 480 tacctgtacc tggtcatgga atactacgtg ggcggggacc tgctaacgct gctgagcaag 540 tttggggagc ggatccccgc cgagatggct cgcttctacc tggccgagat tgtcatggcc 600 atagactccg tgcaccggct gggctacgtg cacagggaca tcaaaccaga taacattctg 660 ctggaccgat gtgggcacat tcgcctggca gacttcggct cctgcctcaa actgcagcct 720 gatggaatgg tgaggtcgct ggtggctgtg ggcaccccgg actacctgtc tcctgagatt 780 ctgcaggccg ttggtggagg gcctggggca ggcagctacg ggccagagtg tgactggtgg 840 gcactgggcg tgttcaccta tgagatgttc tatgggcaga cccccttcta cgcggactcc 900 acagccgaga catatgccaa gattgtgcac tacagggaac acttgtcgct gccgctggca 960 gacacagttg tccccgagga agctcaggac ctcattcgtg ggctgctgtg tcctgctgag 1020 ataaggctag gtcgaggtgg ggcagacttc gagggtgcca cggacacatg caatttcgat 1080 gtggtggagg accggctcac tgccatggtg agcgggggcg gggagacgct gtcagacatg 1140 caggaagaca tgccccttgg ggtgcgcctg cccttcgtgg gctactccta ctgctgcatg 1200 gccttcagag acaatcaggt cccggacccc acccctatgg aactagaggc cctgcagttg 1260 cctgtgtcag acttgcaagg gcttgacttg cagcccccag tgtccccacc ggatcaagtg 1320 gctgaagagg ctgacctagt ggctgtccct gcccctgtgg ctgaggcaga gaccacggta 1380 acgctgcagc agctccagga agccctggaa gaagaggttc tcacccggca gagcctgagc 1440 cgcgagctgg aggccatccg gaccgccaac cagaacttct ccagccaact acaggaggcc 1500 gaggtccgaa accgagacct ggaggcgcat gttcggcagc tacaggaacg gatggagatg 1560 ctgcaggccc caggagccgc agccatcacg ggggtcccca gtccccgggc cacggatcca 1620 ccttcccatc tagatggccc cccggccgtg gctgtgggcc agtgcccgct ggtggggcca 1680 ggccccatgc accgccgtca cctgctgctc cctgccagga tccctaggcc tggcctatcc 1740 gaggcgcgtt gcctgctcct gttcgccgct gctctggctg ctgccgccac actgggctgc 1800 actgggttgg tggcctatac cggcggtctc accccagtct ggtgtttccc gggagccacc 1860 ttcgccccct gaaccctaag actccaagcc atctttcatt taggcctcct aggaaggtcg 1920 agcgaccagg gagcgaccca aagcgtctct gtgcccatcg cccccccccc cccccccacc 1980 gctccgctcc acacttctgt gagcctgggt ccccacccag ctccgctcct gtgatccagg 2040 cctgccacct ggcggccggg gagggaggaa cagggctcgt gcccagcacc cctggttcct 2100 gcagagctgg tagccaccgc tgctgcagca gctgggcatt cgccgacctt gctttactca 2160 gccccgacgt ggatgggcaa actgctcagc tcatccgatt tcactttttc actctcccag 2220 ccatcagtta caagccataa gcatgagccc cctatttcca gggacatccc attcccatag 2280 tgatggatca gcaagacctc tgccagcaca cacggagtct ttggcttcgg acagcctcac 2340 tcctgggggt tgctgcaact ccttccccgt gtacacgtct gcactctaac aacggagcca 2400 cagctgcact cccccctccc ccaaagcagt gtgggtattt attgatcttg ttatctgact 2460 cactgacaga ctccgggacc cacgttttag atgcattgag actcgacatt cctcggtatt 2520 tattgtctgt ccccacctac gacctccact cccgaccctt gcgaataaaa tacttctggt 2580 ctgccctaaa aaaaaaaaaa aaaaaaaaaa a 2611 <210> 794 <211> 988 <212> DNA <213> Mus musculus <220> <221> misc_feature <222> 531, 942 <223> n = A,T,C or G <400> 794 gctggaccgg tccggaattc tccggatcgc cagcctttgt gggccatatt cgtcatccct 60 cctggcttct catctgcttt tgtggtccta gctcaagacc tctaattcct ctgctgactt 120 aaatgccctt ccccagaggt cttctcaggc ctagtggaca agcttggagc cttatctgct 180 cctgcccaac attgagccaa agctccagct taccccagct tccttacaat ggaccccatt 240 gcagcaaggc ttaaggaggt ccgactgcag agggatgatt ttgagatttt gaaggtgatc 300 gggcgtgggg cgttcagcga ggtagcggtg gtgaagatga aacagacggg ccaagtgtat 360 gccatgaaga ttatgaataa gtgggacatg ctgaagagag gcgaggtgtc gtgcttccgg 420 gaagaaaggg atgtattagt gaaaggggac cggcgctgga tcacacagct gcactttgcc 480 ttccaggatg agaactacct gtacctggtc atggaatact acgtgggcgg ngacctgcta 540 acgctgctga gcaagttttg gggagcggat ccccgccgag atggctcgct tctacctggc 600 cgagattgtc atggccatag actccgtgca ccggctgggc tacgtgcaca gggacatcaa 660 accagataac attctgctgg accgatgtgg gcacattcgc ctggcagact tcggctcctg 720 gcctcaactg cagcctgatg gaatggtgga gtcccctggt ggctgtgggc acccccggac 780 tacctgtctc ctgaaattct gcagggcctt ggtgggaggc cctggggaag gcaactacgg 840 gccaaaagtt ggaagggggg ggcctggggg gggttcccct atgaaaagtt ctatggggag 900 gacccccttt aagcggaatc ccaggccgaa aaatatgccc angattgggc cctaacaggg 960 aaaacttttc ccctgcccct gggacaat 988 <210> 795 <211> 649 <212> DNA <213> Mus musculus <400> 795 ggcgtgttcg cctatgagat gttctatggg cagaccccct tctacgcgga ctccacagcc 60 gagacatatg ccaagattgt gcactacagg gaacacttgt cgctgccgct ggcagacaca 120 gttgtccccg aggaagctca ggacctcatt cgtgggctgc tgtgtcctgc tgagataagg 180 ctaggtcgag gtggggcagg tgatttccag aaacatcctt tcttctttgg ccttgattgg 240 gagggtctcc gagacagtgt accccccttt acaccagact tcgagggtgc cacggacaca 300 tgcaatttcg atgtggtgga ggaccggctc actgccatgg agacgctgtc agacatgcag 360 gaagacatgc cccttggggt gcgcctgccc ttcgtgggct actcctactg ctgcatggcc 420 ttcagagaca atcaggtccc ggaccccacc cctatggaac tagaggccct gcagttgcct 480 gtgtcagact tgcaagggct tgacttgcag cccccagtgt ccccaccgga tcaagtggtc 540 ccaactctga tccccaccga caggctgaag aggctgacct agtggctgtc cctgcccctg 600 tggctgaggc agagccacgg taacgctgca gcagctccag gaagccctg 649 <210> 796 <211> 527 <212> DNA <213> Mus musculus <400> 796 atttcgatgt ggtggaggac cggctcactg ccatggtgag cgggggcggg gagacgctgt 60 cagacatgca ggaagacatg ccccttgggg tgcgcctgcc cttcgtgggc tactcctact 120 gctgcatggc cttcagagac aatcaggtcc cggaccccac ccctatggaa ctagaggccc 180 tgcagttgcc tgtgtcagac ttgcaagggc ttgacttgca gcccccagtg tccccaccgg 240 atcaagtggc tgaagaggct gacctagtgg ctgtccctgc ccctgtggct gaggcagaga 300 ccacggtaac gctgcagcag ctccaggaag ccctggaaga agaggttctc acccggcaga 360 gcctgagccg cgagctggag gccatccgga ccgccaacca gaacttctcc aggaggccga 420 ggtccgaaac cgagacctgg aggcgcatgt tcggcagcta caggaacgga tggagatgct 480 gcaggcccca ggaaccgcag ccatcacggg ggtccccagt cccccgg 527 <210> 797 <211> 567 <212> DNA <213> Mus musculus <400> 797 atggtgaggt cgctggtggc tgtgggcacc ccggactacc tgtctcctga gattctgcag 60 gccgttggtg gagggcctgg ggcaggcagc tacgggccag agtgtgactg gtgggcactg 120 ggcgtgttcg cctatgagat gttctatggg cagaccccct tctacgcgga ctccacagcc 180 gagacatatg ccaagattgt gcactacagg gaacacttgt cgctgccgct ggcagacaca 240 gttgtccccg aggaagctca ggacctcatt cgtgggctgc tgtgtcctgc tgagataagg 300 ctaggtcgag gtggggcagg tgatttccag aaacatcctt tcttctttgg ccttgattgg 360 gagggtctcc gagacagtgt accccccttt acaccagact tcgagggtgc cacggacaca 420 tgcaatttcg atgtggtgga ggaccggctc actgccatgg tgagcggggg cggggtatga 480 ggacacacag gtgaccagtc cccaagacag tgagtgaggc ttcactcttg gcagtactaa 540 aattgaatgt agggggctgg gctcttg 567 <210> 798 <211> 2474 <212> DNA <213> Mus musculus <400> 798 ccgggaagaa agggatgtat tagtgaaagg ggaccggcgc tggatcacac agctgcactt 60 tgccttccag gatgagaact acctgtacct ggtcatggaa tactacgtgg gcggggacct 120 gctaacgctg ctgagcaagt ttggggagcg gatccccgcc gagatggctc gcttctacct 180 ggccgagatt gtcatggcca tagactccgt gcaccggctg ggctacgtgc acagggacat 240 caaaccagat aacattctgc tggaccgatg tgggcacatt cgcctggcag acttcggctc 300 ctgcctcaaa ctgcagcctg atggaatggt gaggtcgctg gtggctgtgg gcaccccgga 360 ctacctgtct cctgagattc tgcaggccgt tggtggaggg cctggggcag gcagctacgg 420 gccagagtgt gactggtggg cactgggcgt gttcgcctat gagatgttct atgggcagac 480 ccccttctac gcggactcca cagccgagac atatgccaag attgtgcact acagggaaca 540 cttgtcgctg ccgctggcag acacagttgt ccccgaggaa gctcaggacc tcattcgtgg 600 gctgctgtgt cctgctgaga taaggctagg tcgagacttc gagggtgcca cggacacatg 660 caatttcgat gtggtggagg accggctcac tgccatggtg agcgggggcg gggagacgct 720 gtcagacatg caggaagaca tgccccttgg ggtgcgcctg cccttcgtgg gctactccta 780 ctgctgcatg gccttcagag acaatcaggt cccggacccc acccctatgg aactagaggc 840 cctgcagttg cctgtgtcag acttgcaagg gcttgacttg cagcccccag tgtccccacc 900 ggatcaagtg gctgaagagg ccgacctagt ggctgtccct gcccctgtgg ctgaggcaga 960 gaccacggta acgctgcagc agctccagga agccctggaa gaagaggttc tcacccggca 1020 gagcctgagc cgcgagctgg aggccatccg gaccgccaac cagaacttct ccagccaact 1080 acaggaggcc gaggtccgaa accgagacct ggaggcgcat gttcggcagc tacaggaacg 1140 gatggagatg ctgcaggccc caggagccgc aggcgagtcc ctcacctgct tccagccaag 1200 ggggcactgg gtggagatgg ggggcatgtt gggtgtgtga accctcgggg caggggagga 1260 gtccaggctg gggcaccgca gccgcgccac tgcctttctc ctccatcctc cacactccat 1320 acacctctct cttctccttc cagccatcac gggggtcccc agtccccggg ccacggatcc 1380 accttcccat gcttctcgcc aaatcctccc caagggaact ccctagactc ccgttctggc 1440 ctcgactaga ttcccgcact gcctctcgcc ctgctgctgg gctccgatcg ggtcacctgt 1500 cccttctctc tccagctaga tggccccccg gccgtggctg tgggccagtg cccgctggtg 1560 gggccaggcc ccatgcaccg ccgtcacctg ctgctccctg ccaggatccc taggcctggc 1620 ctatccgagg cgcgttgcct gctcctgttc gccgctgctc tggctgctgc cgccacactg 1680 ggctgcactg ggttggtggc ctataccggc ggtctcaccc cagtctggtg tttcccggga 1740 gccaccttcg ccccctgaac cctaagactc caagccatct ttcatttagg cctcctagga 1800 agatcgagcg accagggagc gacccaaagc gtctctgtgc ccatcgcccc cccccccccc 1860 cccaccgctc cgctccacac ttctgtgagc ctgggtcccc acccagctcc gctcctgtga 1920 tccaggcctg ccacctggcg gccggggagg gaggaacagg gctcgtgccc agcacccctg 1980 gttcctgcag agctggtagc caccgctgct gcagcagctg ggcattcgcc gaccttgctt 2040 tactcagccc tgacgtggat gggctaactg ctcagctcat ccgatttcac tttttcactc 2100 tcccagccat cagttacaag ccataagcat gagcccccta tttccaggga catcccattc 2160 ccatagtgat ggatcagcaa gacctctgcc agcacacacg gagtctttgg cttcggacag 2220 cctcactcct gggggttgct gcaactcctt ccccgtgtac acgtctgcac tctaacaacg 2280 gagccacagc tgcactcccc cctcccccaa agcagtgtgg gtatttattg atcttgttat 2340 ctgactcact gacagactcc gggacccacg ttttagatgc attgagactc gacattcctc 2400 ggtatttatt gtctgtcccc acctacgacc tccactcccg acccttgcga ataaaatact 2460 tctggtctgc ccta 2474 <210> 799 <211> 2135 <212> DNA <213> Mus musculus <400> 799 ccgggaagaa agggatgtat tagtgaaagg ggaccggcgc tggatcacac agctgcactt 60 tgccttccag gatgagaact acctgtacct ggtcatggaa tactacgtgg gcggggacct 120 gctaacgctg ctgagcaagt ttggggagcg gatccccgcc gagatggctc gcttctacct 180 ggccgagatt gtcatggcca tagactccgt gcaccggctg ggctacgtgc acagggacat 240 caaaccagat aacattctgc tggaccgatg tgggcacatt cgcctggcag acttcggctc 300 ctgcctcaaa ctgcagcctg atggaatggt gaggtcgctg gtggctgtgg gcaccccgga 360 ctacctgtct cctgagattc tgcaggccgt tggtggaggg cctggggcag gcagctacgg 420 gccagagtgt gactggtggg cactgggcgt gttcgcctat gagatgttct atgggcagac 480 ccccttctac gcggactcca cagccgagac atatgccaag attgtgcact acagggaaca 540 cttgtcgctg ccgctggcag acacagttgt ccccgaggaa gctcaggacc tcattcgtgg 600 gctgctgtgt cctgctgaga taaggctagg tcgaggtggg gcaggtgatt tccagaaaca 660 tcctttcttc tttggccttg attgggaggg tctccgagac agtgtacccc cctttacacc 720 agacttcgag ggtgccacgg acacatgcaa tttcgatgtg gtggaggacc ggctcactgc 780 catggagacg ctgtcagaca tgcaggaaga catgcccctt ggggtgcgcc tgcccttcgt 840 gggctactcc tactgctgca tggccttcag agctgaagag gccgacctag tggctgtccc 900 tgcccctgtg gctgaggcag agaccacggt aacgctgcag cagctccagg aagccctgga 960 agaagaggtt ctcacccggc agagcctgag ccgcgagctg gaggccatcc ggaccgccaa 1020 ccagaacttc tccagccaac tacaggaggc cgaggtccga aaccgagacc tggaggcgca 1080 tgttcggcag ctacaggaac ggatggagat gctgcaggcc ccaggagccg cagccatcac 1140 gggggtcccc agtccccggg ccacggatcc accttcccat atggcccccc ggccgtggct 1200 gtgggccagt gcccgctggt ggggccaggc cccatgcacc gccgtcacct gctgctccct 1260 gccaggatcc ctaggcctgg cctatccgag gcgcgttgcc tgctcctgtt cgccgctgct 1320 ctggctgctg ccgccacact gggctgcact gggttggtgg cctataccgg cggtctcacc 1380 ccagtctggt gtttcccggg agccaccttc gccccctgaa ccctaagact ccaagccatc 1440 tttcatttag gcctcctagg aagatcgagc gaccagggag cgacccaaag cgtctctgtg 1500 cccatcgccc cccccccccc ccccaccgct ccgctccaca cttctgtgag cctgggtccc 1560 cacccagctc cgctcctgtg atccaggcct gccacctggc ggccggggag ggaggaacag 1620 ggctcgtgcc cagcacccct ggttcctgca gagctggtag ccaccgctgc tgcagcagct 1680 gggcattcgc cgaccttgct ttactcagcc ctgacgtgga tgggctaact gctcagctca 1740 tccgatttca ctttttcact ctcccagcca tcagttacaa gccataagca tgagccccct 1800 atttccaggg acatcccatt cccatagtga tggatcagca agacctctgc cagcacacac 1860 ggagtctttg gcttcggaca gcctcactcc tgggggttgc tgcaactcct tccccgtgta 1920 cacgtctgca ctctaacaac ggagccacag ctgcactccc ccctccccca aagcagtgtg 1980 ggtatttatt gatcttgtta tctgactcac tgacagactc cgggacccac gttttagatg 2040 cattgagact cgacattcct cggtatttat tgtctgtccc cacctacgac ctccactccc 2100 gacccttgcg aataaaatac ttctggtctg cccta 2135 <210> 800 <211> 2873 <212> DNA <213> Homo sapiens <400> 800 aggggggctg gaccaagggg tggggagaag gggaggaggc ctcggccggc cgcagagaga 60 agtggccaga gaggcccagg ggacagccag ggacaggcag acatgcagcc agggctccag 120 ggcctggaca ggggctgcca ggccctgtga caggaggacc ccgagccccc ggcccgggga 180 ggggccatgg tgctgcctgt ccaacatgtc agccgaggtg cggctgaggc ggctccagca 240 gctggtgttg gacccgggct tcctggggct ggagcccctg ctcgaccttc tcctgggcgt 300 ccaccaggag ctgggcgcct ccgaactggc ccaggacaag tacgtggccg acttcttgca 360 gtgggcggag cccatcgtgg tgaggcttaa ggaggtccga ctgcagaggg acgacttcga 420 gattctgaag gtgatcggac gcggggcgtt cagcgaggta gcggtagtga agatgaagca 480 gacgggccag gtgtatgcca tgaagatcat gaacaagtgg gacatgctga agaggggcga 540 ggtgtcgtgc ttccgtgagg agagggacgt gttggtgaat ggggaccggc ggtggatcac 600 gcagctgcac ttcgccttcc aggatgagaa ctacctgtac ctggtcatgg agtattacgt 660 gggcggggac ctgctgacac tgctgagcaa gtttggggag cggattccgg ccgagatggc 720 gcgcttctac ctggcggaga ttgtcatggc catagactcg gtgcaccggc ttggctacgt 780 gcacagggac atcaaacccg acaacatcct gctggaccgc tgtggccaca tccgcctggc 840 cgacttcggc tcttgcctca agctgcgggc agatggaacg gtgcggtcgc tggtggctgt 900 gggcacccca gactacctgt cccccgagat cctgcaggct gtgggcggtg ggcctgggac 960 aggcagctac gggcccgagt gtgactggtg ggcgctgggt gtattcgcct atgaaatgtt 1020 ctatgggcag acgcccttct acgcggattc cacggcggag acctatggca agatcgtcca 1080 ctacaaggag cacctctctc tgccgctggt ggacgaaggg gtccctgagg aggctcgaga 1140 cttcattcag cggttgctgt gtcccccgga gacacggctg ggccggggtg gagcaggcga 1200 cttccggaca catcccttct tctttggcct cgactgggat ggtctccggg acagcgtgcc 1260 cccctttaca ccggatttcg aaggtgccac cgacacatgc aacttcgact tggtggagga 1320 cgggctcact gccatggaga cactgtcgga cattcgggaa ggtgcgccgc taggggtcca 1380 cctgcctttt gtgggctact cctactcctg catggccctc agggacagtg aggtcccagg 1440 ccccacaccc atggaactgg aggccgagca gctgcttgag ccacacgtgc aagcgcccag 1500 cctggagccc tcggtgtccc cacaggatga aacagctgaa gtggcagttc cagcggctgt 1560 ccctgcggca gaggctgagg ccgaggtgac gctgcgggag ctccaggaag ccctggagga 1620 ggaggtgctc acccggcaga gcctgagccg ggagatggag gccatccgca cggacaacca 1680 gaacttcgcc agtcaactac gcgaggcaga ggctcggaac cgggacctag aggcacacgt 1740 ccggcagttg caggagcgga tggagttgct gcaggcagag ggagccacag ctgtcacggg 1800 ggtccccagt ccccgggcca cggatccacc ttcccatatg gccccccggc cgtggctgtg 1860 ggccagtgcc cgctggtggg gccaggcccc atgcaccgcc gccacctgct gctccctgcc 1920 agggtcccta ggcctggcct atcggaggcg ctttccctgc tcctgttcgc cgttgttctg 1980 tctcgtgccg ccgccctggg ctgcattggg ttggtggccc acgccggcca actcaccgca 2040 gtctggcgcc gcccaggagc cgcccgcgct ccctgaaccc tagaactgtc ttcgactccg 2100 gggccccgtt ggaagactga gtgcccgggg cacggcacag aagccgcgcc caccgcctgc 2160 cagttcacaa ccgctccgag cgtgggtctc cgcccagctc cagtcctgtg atccgggccc 2220 gccccctagc ggccggggag ggaggggccg ggtccgcggc cggcgaacgg ggctcgaagg 2280 gtccttgtag ccgggaatgc tgctgctgct gctgctgctg ctgctgctgc tgctgctgct 2340 gctgctgctg ctgctgctgg ggggatcaca gaccatttct ttctttcggc caggctgagg 2400 ccctgacgtg gatgggcaaa ctgcaggcct gggaaggcag caagccgggc cgtccgtgtt 2460 ccatcctcca cgcaccccca cctatcgttg gttcgcaaag tgcaaagctt tcttgtgcat 2520 gacgccctgc tctggggagc gtctggcgcg atctctgcct gcttactcgg gaaatttgct 2580 tttgccaaac ccgctttttc ggggatcccg cgcccccctc ctcacttgcg ctgctctcgg 2640 agccccagcc ggctccgccc gcttcggcgg tttggatatt tattgacctc gtcctccgac 2700 tcgctgacag gctacaggac ccccaacaac cccaatccac gttttggatg cactgagacc 2760 ccgacattcc tcggtattta ttgtctgtcc ccacctagga cccccacccc cgaccctcgc 2820 gaataaaagg ccctccatct gcccaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 2873 <210> 801 <211> 1509 <212> DNA <213> Homo sapiens <400> 801 ccaccgcagc ggacagcgcc aagtgaagcc tcgcttcccc tccgcggcga ccagggcccg 60 agccgagagt agcagttgta gctacccgcc cagaaactag acacaatgtg cgacgaagac 120 gagaccaccg ccctcgtgtg cgacaatggc tccggcctgg tgaaagccgg cttcgccggg 180 gatgacgccc ctagggccgt gttcccgtcc atcgtgggcc gcccccgaca ccagggcgtc 240 atggtcggta tgggtcagaa agattcctac gtgggcgacg aggctcagag caagagaggt 300 atcctgaccc tgaagtaccc tatcgagcac ggcatcatca ccaactggga tgacatggag 360 aagatctggc accacacctt ctacaacgag cttcgcgtgg ctcccgagga gcaccccacc 420 ctgctcaccg aggcccccct caatcccaag gccaaccgcg agaagatgac ccagatcatg 480 tttgagacct tcaacgtgcc cgccatgtac gtggccatcc aggccgtgct gtccctctac 540 gcctccggca ggaccaccgg catcgtgctg gactccggcg acggcgtcac ccacaacgtg 600 cccatttatg agggctacgc gctgccgcac gccatcatgc gcctggacct ggcgggccgc 660 gatctcaccg actacctgat gaagatcctc actgagcgtg gctactcctt cgtgaccaca 720 gctgagcgcg agatcgtgcg cgacatcaag gagaagctgt gctacgtggc cctggacttc 780 gagaacgaga tggcgacggc cgcctcctcc tcctccctgg aaaagagcta cgagctgcca 840 gacgggcagg tcatcaccat cggcaacgag cgcttccgct gcccggagac gctcttccag 900 ccctccttca tcggtatgga gtcggcgggc attcacgaga ccacctacaa cagcatcatg 960 aagtgtgaca tcgacatcag gaaggacctg tatgccaaca acgtcatgtc ggggggcacc 1020 acgatgtacc ctgggatcgc tgaccgcatg cagaaagaga tcaccgcgct ggcacccagc 1080 accatgaaga tcaagatcat cgccccgccg gagcgcaaat actcggtgtg gatcggcggc 1140 tccatcctgg cctcgctgtc caccttccag cagatgtgga tcaccaagca ggagtacgac 1200 gaggccggcc cttccatcgt ccaccgcaaa tgcttctaga cacactccac ctccagcacg 1260 cgacttctca ggacgacgaa tcttctcaat gggggggcgg ctgagctcca gccaccccgc 1320 agtcactttc tttgtaacaa cttccgttgc tgccatcgta aactgacaca gtgtttataa 1380 cgtgtacata cattaactta ttacctcatt ttgttatttt tcgaaacaaa gccctgtgga 1440 agaaaatgga aaacttgaag aagcattaaa gtcattctgt taagctgcgt aaaaaaaaaa 1500 aaaaaaaaa 1509 <210> 802 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 802 gcagcagcag cagcagcag 19 <210> 803 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 803 gcagcagcag cagcagcag 19 <210> 804 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 804 agcagcagca gcagcagcag 20 <210> 805 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 805 gcagcagcag cagcagca 18 <210> 806 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 806 agcagcagca gcagcagca 19 <210> 807 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 807 agcagcagca gcagca 16 <210> 808 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 808 ctcccgacaa gctcca 16 <210> 809 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 809 tcccgacaag ctcc 14 <210> 810 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 810 gcttgcacgt gtggct 16 <210> 811 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 811 cttgcacgtg tggc 14 <210> 812 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 812 ggttgtgaac tggcag 16 <210> 813 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 813 gttgtgaact ggca 14 <210> 814 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 814 gagcggttgt gaactg 16 <210> 815 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 815 agcggttgtg aact 14 <210> 816 <211> 16 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 816 gctgccttcc caggcc 16 <210> 817 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 817 ctgccttccc aggc 14 <210> 818 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 818 gcactttgcg aaccaa 16 <210> 819 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 819 cactttgcga acca 14 <210> 820 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 820 gaaagctttg cacttt 16 <210> 821 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 821 aaagctttgc actt 14 <210> 822 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 822 cggaggacga ggtcaa 16 <210> 823 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 823 ggaggacgag gtca 14 <210> 824 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 824 agcctgtcag cgagtc 16 <210> 825 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 825 gcctgtcagc gagt 14 <210> 826 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 826 tcctgtagcc tgtcag 16 <210> 827 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 827 cctgtagcct gtca 14 <210> 828 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 828 gaagcgaggc ttcact 16 <210> 829 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 829 aagcgaggct tcac 14 <210> 830 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 830 acctgcccgt ctggca 16 <210> 831 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 831 cctgcccgtc tggc 14 <210> 832 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 832 ggtcagcgat cccagg 16 <210> 833 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 833 gtcagcgatc ccag 14 <210> 834 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 834 attttcttcc acaggg 16 <210> 835 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 835 ttttcttcca cagg 14 <210> 836 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 836 gaatgacttt aatgct 16 <210> 837 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide <400> 837 aatgacttta atgc 14

Claims (1)

타입 1 근육긴장성 이영양증을 지닌 동물을 치료하는 방법으로서,
a. 타입 1 근육긴장성 이영양증을 지닌 동물을 확인하는 단계; 및
b. DMPK를 표적으로 하는 10 내지 30개의 결합된 뉴클레오사이드 길이의 변형된 올리고뉴클레오타이드를 포함하는 치료적 유효량의 화합물을 상기 동물에게 투여하는 단계를 포함하되,
상기 타입 1 근육긴장성 이영양증을 지닌 동물이 치료되는 것인 방법.
CLAIMS 1. A method of treating an animal having type 1 muscle tension dystrophy,
a. Identifying an animal having type 1 muscle tension dystrophy; And
b. Comprising administering to said animal a therapeutically effective amount of a compound comprising a modified oligonucleotide of 10 to 30 linked nucleoside lengths targeting DMPK,
Wherein said animal having said type 1 muscular tonic dystrophy is treated.
KR1020187026597A 2010-07-19 2011-07-19 Modulation of dystrophia myotonica-protein kinase (dmpk) expression KR20180105730A (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US36576210P 2010-07-19 2010-07-19
US36577510P 2010-07-19 2010-07-19
US61/365,762 2010-07-19
US61/365,775 2010-07-19
US201161478021P 2011-04-21 2011-04-21
US61/478,021 2011-04-21
PCT/US2011/044555 WO2012012443A2 (en) 2010-07-19 2011-07-19 Modulation of dystrophia myotonica-protein kinase (dmpk) expression

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020137003953A Division KR101900770B1 (en) 2010-07-19 2011-07-19 Modulation of dystrophia myotonica-protein kinase (dmpk) expression

Publications (1)

Publication Number Publication Date
KR20180105730A true KR20180105730A (en) 2018-09-28

Family

ID=45497419

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020137003953A KR101900770B1 (en) 2010-07-19 2011-07-19 Modulation of dystrophia myotonica-protein kinase (dmpk) expression
KR1020187026597A KR20180105730A (en) 2010-07-19 2011-07-19 Modulation of dystrophia myotonica-protein kinase (dmpk) expression

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020137003953A KR101900770B1 (en) 2010-07-19 2011-07-19 Modulation of dystrophia myotonica-protein kinase (dmpk) expression

Country Status (13)

Country Link
US (7) US20130225659A1 (en)
EP (5) EP2595663A4 (en)
JP (5) JP5981428B2 (en)
KR (2) KR101900770B1 (en)
CN (2) CN103167883B (en)
AU (6) AU2011282243B2 (en)
CA (2) CA2805791A1 (en)
DK (1) DK3031920T3 (en)
ES (1) ES2756326T3 (en)
HR (1) HRP20191753T1 (en)
IL (2) IL223962B (en)
PL (1) PL3031920T3 (en)
WO (2) WO2012012467A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063570A1 (en) * 2022-09-23 2024-03-28 주식회사 셀리버리 Antisense oligonucleotide fused with cell-penetrating peptide that targets myotonic dystrophy protein kinase and use thereof

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2049664T3 (en) 2006-08-11 2012-01-02 Prosensa Technologies Bv Single-stranded oligonucleotides, complementary to repetitive elements, for the treatment of DNA repetitive instability-associated disorders
EP2203173B1 (en) 2007-10-26 2015-12-23 Academisch Ziekenhuis Leiden Means and methods for counteracting muscle disorders
WO2012012467A2 (en) * 2010-07-19 2012-01-26 Isis Pharmaceuticals, Inc. Modulation of nuclear-retained rna
US9920317B2 (en) 2010-11-12 2018-03-20 The General Hospital Corporation Polycomb-associated non-coding RNAs
AU2011325956B2 (en) 2010-11-12 2016-07-14 The General Hospital Corporation Polycomb-associated non-coding RNAs
EP2751269B1 (en) 2011-08-29 2016-03-23 Ionis Pharmaceuticals, Inc. Methods and compounds useful in conditions related to repeat expansion
CA2848753C (en) 2011-09-14 2022-07-26 Rana Therapeutics, Inc. Multimeric oligonucleotide compounds
AU2012358238B2 (en) * 2011-12-22 2017-12-07 C. Frank Bennett Methods for modulating Metastasis-Associated-in-Lung-Adenocarcinoma-Transcript-1(MALAT-1) expression
CN104203289B (en) 2012-01-27 2020-11-03 比奥马林技术公司 RNA-regulatory oligonucleotides with improved properties for the treatment of duchenne muscular dystrophy and becker muscular dystrophy
RS56319B1 (en) 2012-04-23 2017-12-29 Biomarin Tech Bv Rna modulating oligonucleotides with improved characteristics for the treatment of neuromuscular disorders
US10837014B2 (en) 2012-05-16 2020-11-17 Translate Bio Ma, Inc. Compositions and methods for modulating SMN gene family expression
JP2015518713A (en) 2012-05-16 2015-07-06 ラナ セラピューティクス インコーポレイテッド Compositions and methods for modulating UTRN expression
CA2873794A1 (en) 2012-05-16 2013-11-21 Rana Therapeutics Inc. Compositions and methods for modulating smn gene family expression
EP2850188A4 (en) 2012-05-16 2016-01-20 Rana Therapeutics Inc Compositions and methods for modulating hemoglobin gene family expression
CN104583398A (en) 2012-05-16 2015-04-29 Rana医疗有限公司 Compositions and methods for modulating gene expression
EA201492116A1 (en) 2012-05-16 2015-05-29 Рана Терапьютикс, Инк. COMPOSITIONS AND METHODS FOR MODULATING THE EXPRESSION OF MECP2
WO2013173598A1 (en) 2012-05-16 2013-11-21 Rana Therapeutics, Inc. Compositions and methods for modulating atp2a2 expression
ES2688831T3 (en) * 2012-06-25 2018-11-07 Ionis Pharmaceuticals, Inc. UBE3A-ATS expression modulation
US20150307937A1 (en) * 2012-08-22 2015-10-29 Wayne State University Activity-dependent gene pairs as therapeutic targets and methods and devices to identify the same
CA2884608A1 (en) 2012-09-14 2014-03-20 Rana Therapeutics, Inc. Multimeric oligonucleotide compounds
US9175291B2 (en) * 2012-10-11 2015-11-03 Isis Pharmaceuticals Inc. Modulation of androgen receptor expression
CA2888486A1 (en) * 2012-10-15 2014-04-24 Isis Pharmaceuticals, Inc. Compositions for modulating c9orf72 expression
WO2014062686A1 (en) 2012-10-15 2014-04-24 Isis Pharmaceuticals, Inc. Methods for modulating c9orf72 expression
WO2014062736A1 (en) 2012-10-15 2014-04-24 Isis Pharmaceuticals, Inc. Methods for monitoring c9orf72 expression
KR101507505B1 (en) * 2013-04-18 2015-04-07 사회복지법인 삼성생명공익재단 A Method for Diagnosing Myotonic Dystrophy Type 1
EP3027617A4 (en) * 2013-07-31 2017-04-12 Ionis Pharmaceuticals, Inc. Methods and compounds useful in conditions related to repeat expansion
TW201536329A (en) 2013-08-09 2015-10-01 Isis Pharmaceuticals Inc Compounds and methods for modulation of dystrophia myotonica-protein kinase (DMPK) expression
EP3033114A4 (en) * 2013-08-16 2017-04-05 Rana Therapeutics Inc. Heterochromatin forming non-coding rnas
JP2016531570A (en) 2013-08-16 2016-10-13 ラナ セラピューティクス インコーポレイテッド Oligonucleotides targeting the euchromatin region
PE20190354A1 (en) * 2013-09-13 2019-03-07 Ionis Pharmaceuticals Inc COMPLEMENT B FACTOR MODULATORS
US10017765B2 (en) 2013-09-25 2018-07-10 The University Of Chicago Inhibitors of CACNA1A/ALPHA1A subunit internal ribosomal entry site (IRES) and methods of treating spinocerebellar ataxia type 6
JP2016534035A (en) 2013-10-04 2016-11-04 ラナ セラピューティクス インコーポレイテッド Compositions and methods for treating amyotrophic lateral sclerosis
SG11201602597YA (en) 2013-10-11 2016-05-30 Ionis Pharmaceuticals Inc Compositions for modulating c9orf72 expression
US11162096B2 (en) 2013-10-14 2021-11-02 Ionis Pharmaceuticals, Inc Methods for modulating expression of C9ORF72 antisense transcript
WO2015118156A1 (en) * 2014-02-07 2015-08-13 Vib Vzw Inhibition of neat1 for treatment of solid tumors
US10006027B2 (en) 2014-03-19 2018-06-26 Ionis Pharmaceuticals, Inc. Methods for modulating Ataxin 2 expression
DK3119888T3 (en) 2014-03-19 2021-09-06 Ionis Pharmaceuticals Inc COMPOSITIONS FOR MODULATING ATAXIN-2 EXPRESSION
WO2015161189A1 (en) * 2014-04-17 2015-10-22 Cornell University Neat1 as a prognostic marker and therapeutic target for prostate cancer
CA2966044A1 (en) 2014-10-30 2016-05-06 The General Hospital Corporation Methods for modulating atrx-dependent gene repression
US10400243B2 (en) 2014-11-25 2019-09-03 Ionis Pharmaceuticals, Inc. Modulation of UBE3A-ATS expression
WO2016130943A1 (en) 2015-02-13 2016-08-18 Rana Therapeutics, Inc. Hybrid oligonucleotides and uses thereof
US10900036B2 (en) 2015-03-17 2021-01-26 The General Hospital Corporation RNA interactome of polycomb repressive complex 1 (PRC1)
PL3283080T3 (en) * 2015-04-16 2020-07-27 Ionis Pharmaceuticals, Inc. Compositions for modulating c9orf72 expression
CN105586399A (en) * 2015-09-07 2016-05-18 张国新 Kit for serum/plasma lncRNA marker related to stomach cancer
WO2017053999A1 (en) 2015-09-25 2017-03-30 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
WO2017053781A1 (en) 2015-09-25 2017-03-30 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating ataxin 3 expression
CA3002744A1 (en) * 2015-10-19 2017-04-27 Rxi Pharmaceuticals Corporation Reduced size self-delivering nucleic acid compounds targeting long non-coding rna
US11260073B2 (en) 2015-11-02 2022-03-01 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating C90RF72
ES2852998T3 (en) 2015-11-12 2021-09-14 Hoffmann La Roche Oligonucleotides to induce expression of paternal UBE3A
CN105331720A (en) * 2015-11-27 2016-02-17 首都医科大学宣武医院 Method, primers and kit for detecting DM (Myotonic Dystrophy) pathogenic gene mutation
LT3386511T (en) 2015-12-10 2021-08-25 Ptc Therapeutics, Inc. Methods for treating huntington`s disease
MA45328A (en) 2016-04-01 2019-02-06 Avidity Biosciences Llc NUCLEIC ACID-POLYPEPTIDE COMPOSITIONS AND USES THEREOF
US11198867B2 (en) 2016-06-16 2021-12-14 Ionis Pharmaceuticals, Inc. Combinations for the modulation of SMN expression
US11427838B2 (en) * 2016-06-29 2022-08-30 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of myotonic dystrophy type 1 (DM1) and other related disorders
CA3027177A1 (en) * 2016-07-15 2018-01-18 Ionis Pharmaceuticals, Inc. Compounds and methods for modulation of transcript processing
LT3484524T (en) * 2016-07-15 2022-12-27 Ionis Pharmaceuticals, Inc. Compounds and methods for modulation of smn2
EP3485015A4 (en) * 2016-07-15 2020-07-29 Ionis Pharmaceuticals, Inc. Compounds and methods for modulation of dystrophin transcript
ES2659845B1 (en) 2016-09-19 2019-01-04 Univ Valencia Modulation of microRNAs against myotonic dystrophy type 1 and antagonists of microRNAs for this
JOP20190104A1 (en) * 2016-11-10 2019-05-07 Ionis Pharmaceuticals Inc Compounds and methods for reducing atxn3 expression
CA3043768A1 (en) 2016-11-29 2018-06-07 PureTech Health LLC Exosomes for delivery of therapeutic agents
MX2019008199A (en) 2017-01-06 2019-11-25 Avidity Biosciences Llc Nucleic acid-polypeptide compositions and methods of inducing exon skipping.
EP3592365A4 (en) 2017-03-10 2021-01-13 The Board Of Regents Of The University Of Texas System Treatment of fuchs' endothelial corneal dystrophy
WO2018191153A1 (en) * 2017-04-09 2018-10-18 The Cleveland Clinic Foundation Cancer treatment by malat1 inhibition
EP3634953B1 (en) 2017-06-05 2024-01-03 PTC Therapeutics, Inc. Compounds for treating huntington's disease
EP3599844A4 (en) * 2017-06-07 2021-01-13 University of Massachusetts Anti-adam33 oligonucleotides and related methods
CN111182898B (en) 2017-06-28 2024-04-16 Ptc医疗公司 Methods for treating huntington's disease
EP3645121A4 (en) 2017-06-28 2021-03-17 PTC Therapeutics, Inc. Methods for treating huntington's disease
CN107446012B (en) * 2017-07-10 2020-06-05 浙江大学 Tumor fluorescent imaging agent, preparation and application thereof
GB201711809D0 (en) 2017-07-21 2017-09-06 Governors Of The Univ Of Alberta Antisense oligonucleotide
MX2020005860A (en) 2017-12-06 2020-09-09 Avidity Biosciences Inc Compositions and methods of treating muscle atrophy and myotonic dystrophy.
US20210009590A1 (en) 2018-03-27 2021-01-14 Ptc Therapeutics, Inc. Compounds for treating huntington's disease
KR20210008497A (en) 2018-05-09 2021-01-22 아이오니스 파마수티컬즈, 인코포레이티드 Compounds and methods for reducing ATXN3 expression
CN112912500A (en) 2018-06-05 2021-06-04 豪夫迈·罗氏有限公司 Oligonucleotides for modulating expression of ATXN2
EP3814357B1 (en) 2018-06-27 2024-05-01 PTC Therapeutics, Inc. Heterocyclic and heteroaryl compounds for treating huntington's disease
EP3826645A4 (en) 2018-07-25 2023-05-17 Ionis Pharmaceuticals, Inc. Compounds and methods for reducing atxn2 expression
US11911484B2 (en) 2018-08-02 2024-02-27 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating myotonic dystrophy
WO2020028864A1 (en) 2018-08-02 2020-02-06 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating facioscapulohumeral muscular dystrophy
EP3841209A4 (en) * 2018-08-22 2023-01-04 Research Institute at Nationwide Children's Hospital Recombinant virus products and methods for inhibiting expression of dystrophia myotonica protein kinase and/or interfering with a trinucleotide repeat expansion in the 3' untranslated region of the dmpk gene
WO2020104295A1 (en) * 2018-11-19 2020-05-28 Uniqure Ip B.V. Rnai induced reduction of ataxin-3 for the treatment of spinocerebellar ataxia type 3
IL297818A (en) 2018-12-21 2023-01-01 Avidity Biosciences Inc Anti-transferrin receptor antibodies and uses thereof
EP3931328A4 (en) 2019-02-27 2023-09-13 Ionis Pharmaceuticals, Inc. Modulators of malat1 expression
AU2020253821A1 (en) 2019-03-29 2021-10-28 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating UBE3A-ATS
US11286485B2 (en) 2019-04-04 2022-03-29 Hoffmann-La Roche Inc. Oligonucleotides for modulating ATXN2 expression
CN111826432A (en) * 2019-04-18 2020-10-27 南京大学 Molecular marker detection and regulation method for cell deservation state
AU2020283372A1 (en) * 2019-05-28 2021-11-18 Modalis Therapeutics Corporation Method for treating muscular dystrophy by targeting DMPK gene
EP3956450A4 (en) * 2019-07-26 2022-11-16 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating gfap
WO2021035128A1 (en) * 2019-08-21 2021-02-25 H. Lee Moffitt Cancer Center And Research Institute Inc. Compositions and methods for treating chronic myelomonocytic leukemia
KR20220093335A (en) 2019-11-01 2022-07-05 노파르티스 아게 Use of a splicing modulator for the treatment of slowing the progression of Huntington's disease
CN110876752B (en) * 2019-11-18 2021-04-30 暨南大学 Application of long-chain non-coding RNA NRON functional motif in preparation of medicines for inhibiting bone resorption and preventing and treating osteoporosis
US20220064638A1 (en) 2020-02-28 2022-03-03 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating smn2
JP2023537798A (en) 2020-03-19 2023-09-06 アビディティー バイオサイエンシーズ,インク. Compositions and methods for treating facioscapulohumeral muscular dystrophy
WO2021195469A1 (en) 2020-03-27 2021-09-30 Avidity Biosciences, Inc. Compositions and methods of treating muscle dystrophy
IL297435A (en) 2020-05-01 2022-12-01 Ionis Pharmaceuticals Inc Compounds and methods for modulating atxn1
CN114075598B (en) * 2020-08-12 2023-09-19 复旦大学附属华山医院 PCR detection kit for atrophic myotonic protein kinase gene CTG region and application thereof
JP2024511954A (en) * 2021-03-12 2024-03-18 ペプゲン インコーポレイテッド. Treatment of myotonic dystrophy type 1 using peptide-oligonucleotide complexes
TW202304446A (en) 2021-03-29 2023-02-01 瑞士商諾華公司 The use of a splicing modulator for a treatment slowing progression of huntington’s disease
US11638761B2 (en) 2021-07-09 2023-05-02 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating Facioscapulohumeral muscular dystrophy
US11633498B2 (en) 2021-07-09 2023-04-25 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating myotonic dystrophy
US11833221B2 (en) 2021-09-01 2023-12-05 Ionis Pharmaceuticals, Inc. Oligomeric compounds for reducing DMPK expression
AU2022345098A1 (en) 2021-09-16 2024-04-04 Avidity Biosciences, Inc. Compositions and methods of treating facioscapulohumeral muscular dystrophy
WO2023122800A1 (en) * 2021-12-23 2023-06-29 University Of Massachusetts Therapeutic treatment for fragile x-associated disorder
US11931421B2 (en) 2022-04-15 2024-03-19 Dyne Therapeutics, Inc. Muscle targeting complexes and formulations for treating myotonic dystrophy

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2699808A (en) 1944-10-06 1955-01-18 Mark W Lowe Apparatus for peeling tomatoes
US2699805A (en) 1951-10-23 1955-01-18 Richter Albert Guiding attachment for hand planes
US2699508A (en) 1951-12-21 1955-01-11 Selectronics Inc Method of mounting and construction of mounting for low frequency piezoelectric crystals
US2699504A (en) 1952-06-28 1955-01-11 Itt Automatic tuning device
US3687808A (en) 1969-08-14 1972-08-29 Univ Leland Stanford Junior Synthetic polynucleotides
US5118800A (en) 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
FR2567892B1 (en) 1984-07-19 1989-02-17 Centre Nat Rech Scient NOVEL OLIGONUCLEOTIDES, THEIR PREPARATION PROCESS AND THEIR APPLICATIONS AS MEDIATORS IN DEVELOPING THE EFFECTS OF INTERFERONS
US5367066A (en) 1984-10-16 1994-11-22 Chiron Corporation Oligonucleotides with selectably cleavable and/or abasic sites
FR2575751B1 (en) 1985-01-08 1987-04-03 Pasteur Institut NOVEL ADENOSINE DERIVATIVE NUCLEOSIDES, THEIR PREPARATION AND THEIR BIOLOGICAL APPLICATIONS
JP2828642B2 (en) 1987-06-24 1998-11-25 ハワード フローレイ インスティテュト オブ イクスペリメンタル フィジオロジー アンド メディシン Nucleoside derivative
US5175273A (en) 1988-07-01 1992-12-29 Genentech, Inc. Nucleic acid intercalating agents
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
US5591722A (en) 1989-09-15 1997-01-07 Southern Research Institute 2'-deoxy-4'-thioribonucleosides and their antiviral activity
EP0942000B1 (en) 1989-10-24 2004-06-23 Isis Pharmaceuticals, Inc. 2'-Modified oligonucleotides
US5130302A (en) 1989-12-20 1992-07-14 Boron Bilogicals, Inc. Boronated nucleoside, nucleotide and oligonucleotide compounds, compositions and methods for using same
US5646265A (en) 1990-01-11 1997-07-08 Isis Pharmceuticals, Inc. Process for the preparation of 2'-O-alkyl purine phosphoramidites
US5670633A (en) 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5459255A (en) 1990-01-11 1995-10-17 Isis Pharmaceuticals, Inc. N-2 substituted purines
US5681941A (en) 1990-01-11 1997-10-28 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US5587470A (en) 1990-01-11 1996-12-24 Isis Pharmaceuticals, Inc. 3-deazapurines
GB9009980D0 (en) 1990-05-03 1990-06-27 Amersham Int Plc Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides
ES2116977T3 (en) 1990-05-11 1998-08-01 Microprobe Corp SOLID SUPPORTS FOR NUCLEIC ACID HYBRIDIZATION TESTS AND METHODS TO IMMOBILIZE OLIGONUCLEOTIDES IN A COVALENT WAY.
BR9106702A (en) 1990-07-27 1993-06-08 Isis Pharmaceuticals Inc ANALOG OF OLIGONUCLEOTIDEOS AND PROCESSES TO MODULATE THE PRODUCTION OF A PROTEIN BY AN ORGANISM AND TO TREAT AN ORGANISM
US5432272A (en) 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
US6582908B2 (en) 1990-12-06 2003-06-24 Affymetrix, Inc. Oligonucleotides
DE59208572D1 (en) 1991-10-17 1997-07-10 Ciba Geigy Ag Bicyclic nucleosides, oligonucleotides, processes for their preparation and intermediates
US5594121A (en) 1991-11-07 1997-01-14 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
JP3739785B2 (en) 1991-11-26 2006-01-25 アイシス ファーマシューティカルズ,インコーポレイティド Enhanced triple and double helix shaping using oligomers containing modified pyrimidines
TW393513B (en) 1991-11-26 2000-06-11 Isis Pharmaceuticals Inc Enhanced triple-helix and double-helix formation with oligomers containing modified pyrimidines
US5484908A (en) 1991-11-26 1996-01-16 Gilead Sciences, Inc. Oligonucleotides containing 5-propynyl pyrimidines
US5359044A (en) 1991-12-13 1994-10-25 Isis Pharmaceuticals Cyclobutyl oligonucleotide surrogates
FR2687679B1 (en) 1992-02-05 1994-10-28 Centre Nat Rech Scient OLIGOTHIONUCLEOTIDES.
US5955265A (en) * 1992-02-06 1999-09-21 Massachusetts Institute Of Technology DNA sequence encoding the myotonic dystrophy gene and uses thereof
US5434257A (en) 1992-06-01 1995-07-18 Gilead Sciences, Inc. Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
EP0577558A2 (en) 1992-07-01 1994-01-05 Ciba-Geigy Ag Carbocyclic nucleosides having bicyclic rings, oligonucleotides therefrom, process for their preparation, their use and intermediates
EP0673559A1 (en) 1992-12-14 1995-09-27 Honeywell Inc. Motor system with individually controlled redundant windings
US5552282A (en) 1993-02-19 1996-09-03 Baylor College Of Medicine Diagnosis of myotonic muscular dystrophy
CA2159631A1 (en) 1993-03-30 1994-10-13 Sanofi Acyclic nucleoside analogs and oligonucleotide sequences containing them
US5502177A (en) 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US5801154A (en) 1993-10-18 1998-09-01 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of multidrug resistance-associated protein
US5457187A (en) 1993-12-08 1995-10-10 Board Of Regents University Of Nebraska Oligonucleotides containing 5-fluorouracil
US5446137B1 (en) 1993-12-09 1998-10-06 Behringwerke Ag Oligonucleotides containing 4'-substituted nucleotides
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
JP3345700B2 (en) 1994-01-11 2002-11-18 株式会社リコー Electrophotographic photoreceptor
US5596091A (en) 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5627053A (en) 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
US5646269A (en) 1994-04-28 1997-07-08 Gilead Sciences, Inc. Method for oligonucleotide analog synthesis
US5525711A (en) 1994-05-18 1996-06-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pteridine nucleotide analogs as fluorescent DNA probes
US5597909A (en) 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US5656408A (en) 1996-04-29 1997-08-12 Xerox Corporation Coated carrier particles
US9096636B2 (en) 1996-06-06 2015-08-04 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds and their use in gene modulation
US7875733B2 (en) 2003-09-18 2011-01-25 Isis Pharmaceuticals, Inc. Oligomeric compounds comprising 4′-thionucleosides for use in gene modulation
JP3756313B2 (en) 1997-03-07 2006-03-15 武 今西 Novel bicyclonucleosides and oligonucleotide analogues
USRE44779E1 (en) 1997-03-07 2014-02-25 Santaris Pharma A/S Bicyclonucleoside and oligonucleotide analogues
US6770748B2 (en) 1997-03-07 2004-08-03 Takeshi Imanishi Bicyclonucleoside and oligonucleotide analogue
US6329501B1 (en) * 1997-05-29 2001-12-11 Auburn University Methods and compositions for targeting compounds to muscle
US6794499B2 (en) 1997-09-12 2004-09-21 Exiqon A/S Oligonucleotide analogues
IL135000A0 (en) 1997-09-12 2001-05-20 Exiqon As Bi- and tri-cyclic nucleoside, nucleotide and oligonucleotide analogues
US6007992A (en) 1997-11-10 1999-12-28 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US6028183A (en) 1997-11-07 2000-02-22 Gilead Sciences, Inc. Pyrimidine derivatives and oligonucleotides containing same
US20030228597A1 (en) 1998-04-13 2003-12-11 Cowsert Lex M. Identification of genetic targets for modulation by oligonucleotides and generation of oligonucleotides for gene modulation
US6043352A (en) 1998-08-07 2000-03-28 Isis Pharmaceuticals, Inc. 2'-O-Dimethylaminoethyloxyethyl-modified oligonucleotides
US6107092A (en) * 1999-03-29 2000-08-22 Isis Pharmaceuticals Inc. Antisense modulation of SRA expression
KR100782896B1 (en) 1999-05-04 2007-12-06 엑시콘 에이/에스 L-Ribo-LNA analogues
US6525191B1 (en) 1999-05-11 2003-02-25 Kanda S. Ramasamy Conformationally constrained L-nucleosides
EP1296643A4 (en) 1999-09-17 2005-07-27 Isis Pharmaceuticals Inc Antisense modulation of transforming growth factor-beta expression
AU2698301A (en) 1999-12-30 2001-07-16 K.U. Leuven Research And Development Cyclohexene nucleic acids
WO2001077384A2 (en) 2000-04-07 2001-10-18 Epigenomics Ag Detection of single nucleotide polymorphisms (snp's) and cytosine-methylations
AU2001268737A1 (en) * 2000-06-30 2002-01-14 Brown University Research Foundation Methods to screen for antibiotic agents and their use in treatment of opportunistic infections
JP2004528851A (en) * 2001-05-07 2004-09-24 ハイブリドン・インコーポレイテッド Epidermal growth factor receptor antisense oligonucleotides
US20030207804A1 (en) 2001-05-25 2003-11-06 Muthiah Manoharan Modified peptide nucleic acids
WO2003004602A2 (en) 2001-07-03 2003-01-16 Isis Pharmaceuticals, Inc. Nuclease resistant chimeric oligonucleotides
US20030158403A1 (en) 2001-07-03 2003-08-21 Isis Pharmaceuticals, Inc. Nuclease resistant chimeric oligonucleotides
US7407943B2 (en) * 2001-08-01 2008-08-05 Isis Pharmaceuticals, Inc. Antisense modulation of apolipoprotein B expression
WO2003013437A2 (en) 2001-08-07 2003-02-20 University Of Delaware Compositions and methods for the prevention and treatment of huntington's disease
US20060009409A1 (en) 2002-02-01 2006-01-12 Woolf Tod M Double-stranded oligonucleotides
JP2006500066A (en) * 2002-09-25 2006-01-05 ファルマシア・コーポレーション Antisense regulation of microsomal prostaglandin E2 synthase expression
WO2004044139A2 (en) 2002-11-05 2004-05-27 Isis Parmaceuticals, Inc. Modified oligonucleotides for use in rna interference
AU2003291753B2 (en) 2002-11-05 2010-07-08 Isis Pharmaceuticals, Inc. Polycyclic sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation
JP2006507841A (en) 2002-11-14 2006-03-09 ダーマコン, インコーポレイテッド Functional and ultrafunctional siRNA
US7598227B2 (en) * 2003-04-16 2009-10-06 Isis Pharmaceuticals Inc. Modulation of apolipoprotein C-III expression
US7589189B2 (en) 2003-05-14 2009-09-15 Japan Science And Technology Agency Inhibition of the expression of huntingtin gene
WO2004106356A1 (en) 2003-05-27 2004-12-09 Syddansk Universitet Functionalized nucleotide derivatives
ES2382807T3 (en) 2003-08-28 2012-06-13 Takeshi Imanishi New artificial nucleic acids of the N-O link type with cross-linking
WO2005063983A1 (en) 2003-12-29 2005-07-14 Galapagos Genomics N.V. Modulators of bone homeostasis identified in a high-throughput screen
US7374927B2 (en) * 2004-05-03 2008-05-20 Affymetrix, Inc. Methods of analysis of degraded nucleic acid samples
AU2005252662B2 (en) 2004-06-03 2011-08-18 Isis Pharmaceuticals, Inc. Double strand compositions comprising differentially modified strands for use in gene modulation
AU2004320622B2 (en) 2004-06-03 2012-06-14 Isis Pharmaceuticals, Inc. Chimeric gapped oligomeric compositions
US7919472B2 (en) * 2004-09-17 2011-04-05 Isis Pharmaceuticals, Inc. Enhanced antisense oligonucleotides
US20080261905A1 (en) 2004-11-08 2008-10-23 K.U. Leuven Research And Development Modified Nucleosides for Rna Interference
EP3210633B1 (en) 2006-01-26 2019-06-19 Ionis Pharmaceuticals, Inc. Compositions and their uses directed to huntingtin
KR20130042043A (en) 2006-01-27 2013-04-25 아이시스 파마수티컬즈 인코포레이티드 6-modified bicyclic nucleic acid analogs
US8178503B2 (en) * 2006-03-03 2012-05-15 International Business Machines Corporation Ribonucleic acid interference molecules and binding sites derived by analyzing intergenic and intronic regions of genomes
US7901882B2 (en) * 2006-03-31 2011-03-08 Affymetrix, Inc. Analysis of methylation using nucleic acid arrays
WO2007121272A2 (en) * 2006-04-11 2007-10-25 The Board Of Regents Of The University Of Texas System Methods and compositions involving nucleotide repeat disorders
DK2066684T3 (en) 2006-05-11 2012-10-22 Isis Pharmaceuticals Inc 5'-Modified Bicyclic Nucleic Acid Analogs
DK2049664T3 (en) * 2006-08-11 2012-01-02 Prosensa Technologies Bv Single-stranded oligonucleotides, complementary to repetitive elements, for the treatment of DNA repetitive instability-associated disorders
CN101501193B (en) * 2006-08-11 2013-07-03 普罗森那技术公司 Methods and means for treating DNA repeat instability associated genetic disorders
JP5926475B2 (en) 2006-09-21 2016-05-25 ユニバーシティー オブ ロチェスター Compositions and methods for protein replacement therapy for myotonic dystrophy
EP2410053B2 (en) 2006-10-18 2020-07-15 Ionis Pharmaceuticals, Inc. Antisense compounds
AU2007347689B2 (en) * 2006-12-20 2013-08-15 Novarx Universal tumor cell vaccine for anti cancer therapeutic and prophylactic utilization
WO2008101157A1 (en) 2007-02-15 2008-08-21 Isis Pharmaceuticals, Inc. 5'-substituted-2'-f modified nucleosides and oligomeric compounds prepared therefrom
WO2008150729A2 (en) 2007-05-30 2008-12-11 Isis Pharmaceuticals, Inc. N-substituted-aminomethylene bridged bicyclic nucleic acid analogs
WO2008154401A2 (en) 2007-06-08 2008-12-18 Isis Pharmaceuticals, Inc. Carbocyclic bicyclic nucleic acid analogs
ES2694726T3 (en) * 2007-06-29 2018-12-26 Sarepta Therapeutics, Inc. Tissue specific peptide conjugates and methods
US20100016215A1 (en) * 2007-06-29 2010-01-21 Avi Biopharma, Inc. Compound and method for treating myotonic dystrophy
WO2009006478A2 (en) 2007-07-05 2009-01-08 Isis Pharmaceuticals, Inc. 6-disubstituted bicyclic nucleic acid analogs
US9434997B2 (en) * 2007-08-24 2016-09-06 Lawrence Livermore National Security, Llc Methods, compounds and systems for detecting a microorganism in a sample
US8546556B2 (en) 2007-11-21 2013-10-01 Isis Pharmaceuticals, Inc Carbocyclic alpha-L-bicyclic nucleic acid analogs
WO2009098197A1 (en) * 2008-02-04 2009-08-13 Biofocus Dpi B.V. Target sequences and methods to identify the same, useful in treatment of neurodegenerative diseases
WO2009099326A1 (en) * 2008-02-08 2009-08-13 Prosensa Holding Bv Methods and means for treating dna repeat instability associated genetic disorders
US8901095B2 (en) * 2008-07-29 2014-12-02 The Board Of Regents Of The University Of Texas System Selective inhibition of polyglutamine protein expression
GB0816778D0 (en) * 2008-09-12 2008-10-22 Isis Innovation Gene silencing
US8604192B2 (en) 2008-09-24 2013-12-10 Isis Pharmaceuticals, Inc. Cyclohexenyl nucleic acids analogs
WO2010036698A1 (en) 2008-09-24 2010-04-01 Isis Pharmaceuticals, Inc. Substituted alpha-l-bicyclic nucleosides
AT507215B1 (en) 2009-01-14 2010-03-15 Boehler Edelstahl Gmbh & Co Kg WEAR-RESISTANT MATERIAL
US8623107B2 (en) 2009-02-17 2014-01-07 Mcalister Technologies, Llc Gas hydrate conversion system for harvesting hydrocarbon hydrate deposits
JP2012523225A (en) * 2009-04-10 2012-10-04 アソシアシオン・アンスティテュ・ドゥ・ミオロジー Tricyclo-DNA antisense oligonucleotides, compositions and methods for treatment of disease
US9012421B2 (en) 2009-08-06 2015-04-21 Isis Pharmaceuticals, Inc. Bicyclic cyclohexose nucleic acid analogs
WO2011097388A1 (en) 2010-02-03 2011-08-11 Alnylam Pharmaceuticals, Inc. Selective inhibition of polyglutamine protein expression
US20130059902A1 (en) * 2010-02-08 2013-03-07 Isis Pharmaceuticals, Inc. Methods and compositions useful in treatment of diseases or conditions related to repeat expansion
WO2012012467A2 (en) 2010-07-19 2012-01-26 Isis Pharmaceuticals, Inc. Modulation of nuclear-retained rna
US9984408B1 (en) 2012-05-30 2018-05-29 Amazon Technologies, Inc. Method, medium, and system for live video cooperative shopping
TW201536329A (en) 2013-08-09 2015-10-01 Isis Pharmaceuticals Inc Compounds and methods for modulation of dystrophia myotonica-protein kinase (DMPK) expression
US9778708B1 (en) 2016-07-18 2017-10-03 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Dual sided latching retainer for computer modules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063570A1 (en) * 2022-09-23 2024-03-28 주식회사 셀리버리 Antisense oligonucleotide fused with cell-penetrating peptide that targets myotonic dystrophy protein kinase and use thereof

Also Published As

Publication number Publication date
JP6343308B2 (en) 2018-06-13
IL257936A (en) 2018-05-31
US20230174987A1 (en) 2023-06-08
EP3489360A3 (en) 2019-08-28
AU2011282217A1 (en) 2013-02-21
CN103167883B (en) 2016-08-03
WO2012012443A3 (en) 2013-05-23
WO2012012467A2 (en) 2012-01-26
EP3489360A2 (en) 2019-05-29
EP3031920A1 (en) 2016-06-15
AU2016269447B2 (en) 2018-12-13
US20180127758A1 (en) 2018-05-10
US9765338B2 (en) 2017-09-19
EP3633038A2 (en) 2020-04-08
US20180163209A1 (en) 2018-06-14
US20200362353A1 (en) 2020-11-19
US20130237585A1 (en) 2013-09-12
AU2016269447A1 (en) 2017-01-05
HRP20191753T1 (en) 2019-12-27
AU2011282217B2 (en) 2015-12-03
ES2756326T3 (en) 2020-04-27
KR20130106811A (en) 2013-09-30
US20130225659A1 (en) 2013-08-29
JP6698740B2 (en) 2020-05-27
AU2011282243B2 (en) 2016-09-22
EP2595664B1 (en) 2018-10-17
JP5981428B2 (en) 2016-08-31
EP3633038A3 (en) 2020-07-29
AU2011282243A1 (en) 2013-02-21
JP2018150344A (en) 2018-09-27
WO2012012443A2 (en) 2012-01-26
AU2016269447C1 (en) 2019-06-20
EP2595664A2 (en) 2013-05-29
US10526604B2 (en) 2020-01-07
JP2017014235A (en) 2017-01-19
US20160068845A1 (en) 2016-03-10
CA2805791A1 (en) 2012-01-26
EP3031920B1 (en) 2019-08-21
JP2013538560A (en) 2013-10-17
AU2011282217A9 (en) 2015-12-03
EP2595664A4 (en) 2014-09-17
JP2020183379A (en) 2020-11-12
DK3031920T3 (en) 2019-10-14
EP2595663A2 (en) 2013-05-29
KR101900770B1 (en) 2018-09-20
PL3031920T3 (en) 2020-01-31
JP2013538561A (en) 2013-10-17
AU2018200825A1 (en) 2018-02-22
AU2011282243A2 (en) 2013-10-10
IL223962B (en) 2018-03-29
AU2016201288A1 (en) 2016-03-31
WO2012012467A3 (en) 2012-04-26
AU2020202315A1 (en) 2020-04-23
CA2805765A1 (en) 2012-01-26
JP6059141B2 (en) 2017-01-11
EP2595663A4 (en) 2014-03-05
CN103167883A (en) 2013-06-19
CN106434648A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
KR101900770B1 (en) Modulation of dystrophia myotonica-protein kinase (dmpk) expression
KR102589140B1 (en) Compounds and methods for modulation of dystrophia myotonica-protein kinase (dmpk) expression
KR102285629B1 (en) Compositions for modulating sod-1 expression
KR102539587B1 (en) Compounds and methods for modulating TMPRSS6 expression
JP6395058B2 (en) Composition and use thereof for huntingtin
JP6684707B2 (en) Compositions for modulating tau expression
JP6902869B2 (en) Composition for regulating the expression of ataxin 2
KR102640776B1 (en) Diacylglycerol acyltransferase 2 (DGAT2) regulator
KR101840512B1 (en) Antisense modulation of gcgr expression
US20110237646A1 (en) Modulation of transthyretin expression for the treatment of cns related disorders
KR20090103894A (en) Methods for treating hypercholesterolemia
HUE031909T2 (en) Modulation of transthyretin expression
KR101839177B1 (en) Antisense modulation of ptpib expression
AU2017234678A1 (en) Methods of modulating KEAP1
EP1888083B1 (en) Compositions and their uses directed to lmw-ptpase
KR20210033004A (en) Oligonucleotides for regulating the expression of RTEL1

Legal Events

Date Code Title Description
A107 Divisional application of patent