KR20180103794A - Transmitter and additional parity generating method thereof - Google Patents
Transmitter and additional parity generating method thereof Download PDFInfo
- Publication number
- KR20180103794A KR20180103794A KR1020180107324A KR20180107324A KR20180103794A KR 20180103794 A KR20180103794 A KR 20180103794A KR 1020180107324 A KR1020180107324 A KR 1020180107324A KR 20180107324 A KR20180107324 A KR 20180107324A KR 20180103794 A KR20180103794 A KR 20180103794A
- Authority
- KR
- South Korea
- Prior art keywords
- bits
- ldpc
- parity
- parity bits
- bit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 79
- 101100340610 Mus musculus Igdcc3 gene Proteins 0.000 claims description 101
- 230000011664 signaling Effects 0.000 description 280
- 239000011159 matrix material Substances 0.000 description 75
- 238000004904 shortening Methods 0.000 description 62
- 230000011218 segmentation Effects 0.000 description 27
- 230000005540 biological transmission Effects 0.000 description 23
- 230000008569 process Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 13
- 230000008030 elimination Effects 0.000 description 11
- 238000003379 elimination reaction Methods 0.000 description 11
- 238000007792 addition Methods 0.000 description 8
- 238000013507 mapping Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000009897 systematic effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000005347 demagnetization Effects 0.000 description 2
- 239000003471 mutagenic agent Substances 0.000 description 2
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
- H03M13/15—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
- H03M13/151—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
- H03M13/152—Bose-Chaudhuri-Hocquenghem [BCH] codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/63—Joint error correction and other techniques
- H03M13/635—Error control coding in combination with rate matching
- H03M13/6362—Error control coding in combination with rate matching by puncturing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0061—Error detection codes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mathematical Physics (AREA)
- Algebra (AREA)
- General Physics & Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Error Detection And Correction (AREA)
Abstract
Description
본 발명은 송신 장치 및 그의 부가 패리티 생성 방법에 관한 것으로, 더욱 상세하게는 부가 패리티 비트들을 생성하여 전송하는 본 발명은 송신 장치 및 그의 부가 패리티 생성 방법에 관한 것이다.BACKGROUND OF THE
21세기 정보화 사회에서 방송 통신 서비스는 본격적인 디지털화, 다채널화, 광대역화, 고품질화의 시대를 맞이하고 있다. 특히, 최근에 고화질 디지털 TV 및 휴대방송 기기 보급이 확대됨에 따라 디지털 방송 서비스도 다양한 수신방식 지원에 대한 요구가 증대되고 있다. In the information society of the 21st century, broadcasting and communication services are in the era of full-scale digitalization, multi-channelization, broadband and high-quality. Particularly, as the spread of high-definition digital TVs and mobile broadcast devices has recently expanded, demands for supporting various receiving methods of digital broadcasting services are also increasing.
이러한 요구에 따라 표준 그룹에서는 다양한 표준을 제정하여, 사용자의 니즈를 만족시킬 수 있는 다양한 서비스를 제공하고 있다. 이에 따라, 보다 우수한 성능을 통해 보다 나은 서비스를 사용자에게 제공하기 위한 방안의 모색이 요청된다. In response to these demands, the standard group sets various standards and provides various services that satisfy the needs of the users. Accordingly, there is a need to search for ways to provide better services to users through better performance.
본 발명은 상술한 필요성에 따른 것으로, 본 발명의 목적은 패리티 비트들을 이용하여 부가 패리티 비트들을 생성하여 전송하는 본 발명은 송신 장치 및 그의 부가 패리티 생성 방법에 관한 것이다.The present invention relates to the above-described needs, and it is an object of the present invention to provide a transmitting apparatus and a method for generating additional parity, in which additional parity bits are generated and transmitted using parity bits.
이상과 같은 목적을 달성하기 위한 본 발명의 일 실시 예에 따른 송신 장치는 아우터 인코딩된 비트들을 포함하는 입력 비트들을 인코딩하여 패리티 비트들을 생성하는 LDPC 인코더, 상기 패리티 비트들에서 일부 비트들을 펑처링하는 펑처링부 및 상기 패리티 비트들에서 적어도 일부의 비트들을 선택하여, 이전 프레임에서 전송되는 부가 패리티 비트들을 생성하는 부가 패리티 생성부를 포함하며, 상기 부가 패리티 비트들의 수는 현재 프레임에서 전송되는 아우터 인코딩된 비트들의 수 및 상기 펑처링 이후 남은 패리티 비트들의 수에 기초하여 결정된다.According to an aspect of the present invention, there is provided a transmission apparatus including an LDPC encoder for encoding input bits including outer-encoded bits to generate parity bits, a decoder for puncturing some bits in the parity bits, And a supplementary parity generator for selecting at least a part of bits in the parity bits and generating additional parity bits transmitted in a previous frame, wherein the number of additional parity bits is an outer encoded bit transmitted in a current frame, And the number of remaining parity bits after the puncturing.
여기에서, 상기 입력 비트들 및 상기 패리티 비트들로 구성된 LDPC 코드워드의 적어도 일부의 비트들이 상기 현재 프레임에서 리피티션되어 전송되도록, 상기 LDPC 코드워드의 적어도 일부의 비트들을 상기 LDPC 코드워드에서 리피티션하는 리피티션부를 더 포함할 수 있다.Wherein at least some bits of the LDPC codeword are arranged in the LDPC codeword so that at least some of the bits of the LDPC codeword comprised of the input bits and the parity bits are repetitively transmitted in the current frame, And may further include a repeating portion for defining a moving image.
그리고, 상기 부가 패리티 비트들의 수는 상기 리피티션이 수행되는 경우, 상기 현재 프레임에서 전송되는 아우터 인코딩된 비트들의 수, 상기 펑처링 이후 남은 패리티 비트들의 수 및 상기 현재 프레임에서 리피티션되는 비트들의 수에 기초하여 결정될 수 있다.When the repetition is performed, the number of additional parity bits may be determined based on the number of outer encoded bits transmitted in the current frame, the number of remaining parity bits after puncturing, As shown in FIG.
또한, 상기 부가 패리티 비트들의 수는 수학식 8에 기초하여 산출된 부가 패리티 비트들의 임시적인 수 NAP_temp에 기초하여 산출될 수 있다.Further, the number of additional parity bits may be calculated based on a temporary number N AP_temp of the additional parity bits calculated based on Equation (8).
여기에서, 상기 부가 패리티 비트들의 수는 수학식 10에 기초하여 산출될 수 있다.Here, the number of additional parity bits may be calculated based on Equation (10).
한편, 본 발명의 일 실시 예에 따른 송신 장치의 부가 패리티 생성 방법은 아우터 인코딩된 비트들을 포함하는 입력 비트들을 인코딩하여 패리티 비트들을 생성하는 단계, 상기 패리티 비트들에서 일부 비트들을 펑처링하는 단계 및 상기 패리티 비트들에서 적어도 일부의 비트들을 선택하여, 이전 프레임에서 전송되는 부가 패리티 비트들을 생성하는 단계를 포함하며, 상기 부가 패리티 비트들의 수는 현재 프레임에서 전송되는 아우터 인코딩된 비트들의 수 및 상기 펑처링 이후 남은 패리티 비트들의 수에 기초하여 결정된다.Meanwhile, a method for generating additional parity in a transmission apparatus according to an embodiment of the present invention includes generating parity bits by encoding input bits including outer-encoded bits, puncturing some bits in the parity bits, Selecting at least some bits in the parity bits to generate additional parity bits transmitted in a previous frame, wherein the number of additional parity bits is determined by the number of outer encoded bits transmitted in the current frame, Is determined based on the number of parity bits remaining after the chirping.
여기에서, 상기 입력 비트들 및 상기 패리티 비트들로 구성된 LDPC 코드워드의 적어도 일부의 비트들이 상기 현재 프레임에서 리피티션되어 전송되도록, 상기 LDPC 코드워드의 적어도 일부의 비트들을 상기 LDPC 코드워드에서 리피티션하는 단계를 더 포함할 수 있다.Wherein at least some bits of the LDPC codeword are arranged in the LDPC codeword so that at least some of the bits of the LDPC codeword comprised of the input bits and the parity bits are repetitively transmitted in the current frame, The method may further comprise the step of pacing.
또한, 상기 부가 패리티 비트들의 수는 상기 리피티션이 수행되는 경우, 상기 현재 프레임에서 전송되는 아우터 인코딩된 비트들의 수, 상기 펑처링 이후 남은 패리티 비트들의 수 및 상기 현재 프레임에서 리피티션되는 비트들의 수에 기초하여 결정될 수 있다.The number of additional parity bits may be determined based on the number of outer encoded bits transmitted in the current frame, the number of remaining parity bits after puncturing, and the number of bits to be repaired in the current frame, As shown in FIG.
한편, 상기 부가 패리티 비트들의 수는 수학식 8에 기초하여 산출된 부가 패리티 비트들의 임시적인 수 NAP_temp에 기초하여 산출될 수 있다.On the other hand, the number of additional parity bits can be calculated based on the temporary number N AP_temp of the additional parity bits calculated based on Equation (8).
여기에서, 상기 부가 패리티 비트들의 수는 하기의 수학식 10에 기초하여 산출될 수 있다.Here, the number of additional parity bits may be calculated based on Equation (10) below.
이상과 같은 본 발명의 다양한 실시 예에 따르면, 패리티 비트들 중 일부 비트들이 추가적으로 전송될 수 있어, 부호어 이득을 얻음과 동시에 다이버시티 이득도 얻을 수 있게 된다.According to various embodiments of the present invention as described above, some bits of the parity bits can be additionally transmitted, so that a diversity gain can be obtained while obtaining a codeword gain.
도 1은 본 발명의 일 실시 예에 따른 송신 장치의 구성을 설명하기 위한 블록도,
도 2 및 도 3은 본 발명의 일 실시 예에 따른 패리티 검사 행렬을 설명하기 위한 도면들,
도 4 내지 도 7은 본 발명의 일 실시 예에 따른 리피티션을 설명하기 위한 블록도,
도 8 내지 도 11은 본 발명의 일 실시 예에 따른 펑처링을 설명하기 위한 블록도,
도 12 내지 도 40은 본 발명의 일 실시 예에 따른 부가 패리티 비트들을 생성하는 방법을 설명하기 위한 도면들,
도 41은 본 발명의 일 실시 예에 따른 프레임 구조를 설명하기 위한 도면,
도 42 및 도 43은 본 발명의 일 실시 예에 따른 송신 장치의 세부 구성을 설명하기 위한 블록도들,
도 44 내지 도 57은 본 발명의 일 실시 예에 따라 시그널링을 처리하는 방법을 설명하기 위한 도면들,
도 58 및 도 59는 본 발명의 일 실시 예에 따른 수신 장치의 구성을 설명하기 위한 블록도,
도 60 및 도 61은 본 발명의 일 실시 예에 따른 수신 장치의 LLR 값을 컴바인하는 예를 설명하기 위한 도면들,
도 62는 본 발명의 일 실시 예에 따른 L1 시그널의 길이에 대한 정보가 제공되는 예를 나타낸 도면,
도 63은 본 발명의 일 실시 예에 따른 부가 패리티 생성 방법을 설명하기 위한 흐름도, 그리고
도 64는 본 발명의 일 실시 예에 따른 부가 패리티를 사용할 경우 얻을 수있는 부호 이득과 다이버시트 이득을 설명하기 위한 도면이다.1 is a block diagram illustrating a configuration of a transmitting apparatus according to an embodiment of the present invention;
2 and 3 are views for explaining a parity check matrix according to an embodiment of the present invention,
4 to 7 are block diagrams illustrating repetition according to an embodiment of the present invention.
8 to 11 are block diagrams for explaining puncturing according to an embodiment of the present invention;
12 to 40 are diagrams for explaining a method of generating additional parity bits according to an embodiment of the present invention,
41 is a view for explaining a frame structure according to an embodiment of the present invention,
42 and 43 are block diagrams for explaining a detailed configuration of a transmitting apparatus according to an embodiment of the present invention,
44 to 57 are diagrams for explaining a method of processing signaling according to an embodiment of the present invention,
58 and 59 are block diagrams illustrating a configuration of a receiving apparatus according to an embodiment of the present invention;
60 and 61 are diagrams for explaining an example of combining an LLR value of a receiving apparatus according to an embodiment of the present invention,
62 is a diagram illustrating an example in which information on the length of an L1 signal is provided according to an embodiment of the present invention;
63 is a flowchart for explaining a method of generating additional parity according to an embodiment of the present invention, and
64 is a view for explaining a code gain and a diversity gain that can be obtained when additional parity is used according to an embodiment of the present invention.
이하에서는 첨부된 도면을 참조하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시 예에 따른 송신 장치의 구성을 나타내는 블록도이다. 도 1을 참조하면, 송신 장치(100)는 LDPC 인코더(110), 리피티션부(120), 펑처링부(130) 및 부가 패리티 생성부(140)를 포함한다.1 is a block diagram showing a configuration of a transmitting apparatus according to an embodiment of the present invention. Referring to FIG. 1, a transmitting
LDPC 인코더(110)는 입력 비트들을 인코딩 즉, LDPC(Low density parity check) 인코딩하여 패리티 비트들 즉, LDPC 패리티 비트들을 생성한다.The
구체적으로, 입력 비트들은 LDPC 인코딩을 위한 LDPC 정보어 비트들로, 정보어 비트들(information bits) 및 정보어 비트들이 아우터 인코딩되어 생성된 패리티 비트들(또는, 패리티 체크 비트들)을 포함하는 아우터 인코딩된 비트들 및, 제로 비트들(zero bits)(즉, 0 값을 갖는 비트들)을 포함할 수 있다.Specifically, the input bits are LDPC information bits for LDPC encoding, and information bits and outer bits including parity bits (or parity check bits) generated by outer- Encoded bits, and zero bits (i.e., bits with a value of zero).
여기에서, 정보어 비트들은 시그널링(signaling)일 수 있다. 예를 들어, 정보어 비트들은 송신 장치(100)가 전송하는 데이터(예를 들어, 방송 데이터)를 처리하기 위해 요구되는 정보를 포함할 수 있다.Herein, the information bits may be signaling. For example, the information bits may include information required to process data (e.g., broadcast data) transmitted by the transmitting
또한, 아우터 코드(outer code)는 연접 코드(concatenated code)에서 이너 코드(inner code) 이전에 수행되는 코드로, BCH(Bose, Chaudhuri, Hocquenghem), CRC(cyclic redundancy check) 등 다양한 인코딩 방식이 이용될 수 있다. 이 경우, 이너 코드는 LDPC 코드가 될 수 있다.The outer code is a code that is performed before the inner code in the concatenated code. The outer code uses various encoding methods such as BCH (Bose, Chaudhuri, Hocquenghem) and CRC (cyclic redundancy check) . In this case, the inner code can be an LDPC code.
구체적으로, LDPC 코드의 경우, 코드 레이트(code rate) 및 코드 길이(code length)에 따라 일정한 수의 LDPC 정보어 비트들이 요구된다. 따라서, 정보어 비트들이 아우터 인코딩되어 생성된 아우터 인코딩된 비트들의 수가 요구되는 LDPC 정보어 비트들의 수보다 작은 경우, 요구되는 LDPC 정보어 비트들의 수를 맞추기 위해 적절한 수의 제로 비트들이 패딩된다. 이에 따라, 아우터 인코딩된 비트들 및 패딩된 제로 비트들이 LDPC 인코딩에 요구되는 비트 수만큼의 LDPC 정보어 비트들을 구성할 수 있다.Specifically, in the case of an LDPC code, a certain number of LDPC information bits are required according to a code rate and a code length. Therefore, if the number of outer encoded bits generated by outer encoding of the information bits is smaller than the number of required LDPC information bits, an appropriate number of zero bits are padded to match the number of required LDPC information word bits. Thus, the outer encoded bits and the padded zero bits may constitute as many LDPC information bits as the number of bits required for LDPC encoding.
한편, 패딩된 제로 비트들은 LDPC 인코딩을 위한 일정한 비트 수를 맞추는데만 필요한 비트들이므로, LDPC 인코딩된 이후 수신 장치(200)로 전송되지 않게 된다. 이와 같이, 제로 비트들을 패딩하는 절차 또는 제로 비트들을 패딩하고 LDPC 인코딩 후 수신 장치(200)로 전송하지 않는 절차를 쇼트닝이라 할 수 있다. 이 경우, 패딩된 제로 비트들을 쇼트닝 비트들(또는, 쇼트닝된 비트들(shortened bits))이라 할 수 있다.On the other hand, the padded zero bits are bits necessary for matching a certain number of bits for LDPC encoding, and are not transmitted to the receiving
예를 들어, 정보어 비트들의 수가 Ksig이고, 아우터 인코딩에 의해 Mouter 개의 패리티 비트들이 정보어 비트들에 부가된 경우의 비트들의 수 즉, 정보어 비트들 및 패리티 비트들을 포함하는 아우터 인코딩된 비트들의 수가 Nouter(=Ksig+Mouter)인 경우를 가정한다. For example, when the number of information word bits is Ksig , and the outer encoding causes the M outer parity bits to be added to the information word bits, i.e., the number of bits that are outer-encoded Assume that the number of bits is N outer (= K sig + M outer ).
이 경우, 아우터 인코딩된 비트들의 수 Nouter가 LDPC 정보어 비트들의 수 Kldpc보다 작은 경우, Kldpc-Nouter 개의 제로 비트들이 패딩되어, 아우터 인코딩된 비트들 및 패딩된 제로 비트들이 함께 LDPC 정보어 비트들을 구성할 수 있다.In this case, if the number of outer encoded bits N outer is smaller than the number of LDPC information word bits K ldpc , the K ldpc -N outer zero bits are padded so that the outer encoded bits and the padded zero bits together form LDPC information Bit bits.
한편, 상술한 예에서는 제로 비트들이 패딩되는 것으로 설명하였으나, 이는 일 예에 불과하다.In the above example, the zero bits are padded, but this is merely an example.
예를 들어, 정보어 비트들은 데이터에 대한 시그널링이라는 점에서, 데이터의 양에 따라 정보어 비트들의 길이는 가변적일 수 있다. 따라서, 정보어 비트들의 수가 LDPC 인코딩에 요구되는 LDPC 정보어 비트들의 수보다 큰 경우, 정보어 비트들은 일정한 값 이하로 세그먼테이션될 수 있다. For example, in the sense that the information bits are signaling to the data, the length of the information bits may vary depending on the amount of data. Thus, if the number of information bits is greater than the number of LDPC information bits required for LDPC encoding, the information bits can be segmented below a certain value.
이에 따라, 정보어 비트들 또는 세그먼트된 정보어 비트들의 수가 LDPC 정보어 비트들의 수에서 아우터 인코딩에 의해 생성되는 패리티 비트들의 수(즉, Mouter)를 뺀 수보다 작은 경우, LDPC 정보어 비트들의 수에서 아우터 인코딩된 비트들 수를 뺀 수만큼의 제로 비트들이 패딩되어, LDPC 정보어 비트들은 아우터 인코딩된 비트들 및 패딩된 제로 비트들로 구성될 수 있다.Thus, if the number of information bits or segmented information bits is less than the number of parity bits generated by outer encoding (i.e., M outer ) minus the number of LDPC information bits, the LDPC information bits The number of zero bits minus the number of outer encoded bits may be padded so that the LDPC information bits may consist of outer encoded bits and padded zero bits.
하지만, 정보어 비트들 또는 세그먼트된 정보어 비트들의 수가 LDPC 정보어 비트들의 수에서 아우터 인코딩에 의해 생성되는 패리티 비트들의 수를 뺀 수와 동일한 경우, LDPC 정보어 비트들은 패딩되는 제로 비트들이 없이 아우터 인코딩된 비트들만으로 구성될 수 있다.However, if the number of information bits or segmented information bits is equal to the number of LDPC information bits minus the number of parity bits generated by outer encoding, then the LDPC information bits may not be padded with zero bits Only the encoded bits can be constructed.
또한, 상술한 예에서는 정보어 비트들이 아우터 인코딩되는 것으로 설명하였으나 이는 일 예에 불과하다. 즉, 정보어 비트들은 아우터 인코딩되지 않으며, 정보어 비트들의 수에 따라 패딩된 제로 비트와 함께 LDPC 정보어 비트들을 구성하거나, 별도의 패딩 없이 정보어 비트들만으로 LDPC 정보어 비트들을 구성할 수도 있다.In the above example, the information bits are outer-encoded, but this is merely an example. That is, the information bits are not outer-encoded, and LDPC information bits may be configured with padded zero bits according to the number of information bits, or LDPC information bits may be formed with only information bits without additional padding.
한편, 이하에서는 설명의 편의를 위해, 아우터 인코딩은 BCH 코드에 의해 수행되는 것으로 상정하여 설명하도록 한다. In the following description, it is assumed that the outer encoding is performed by the BCH code for convenience of explanation.
구체적으로, 입력 비트들은 정보어 비트들 및 정보어 비트들이 BCH 인코딩되어 생성된 BCH 패리티 체크 비트들(BCH parity-check bits)(또는, BCH 패리티 비트들)을 포함하는 BCH 인코딩된 비트들 및, 제로 비트들(zero bits)을 포함하는 것으로 상정하여 설명하도록 한다. Specifically, the input bits include BCH encoded bits including BCH parity-check bits (or BCH parity bits) generated by BCH encoding of information bits and information bits, It will be assumed that it includes zero bits.
즉, 정보어 비트들의 수가 Ksig이고, BCH 인코딩에 의해 Mouter 개의 BCH 패리티 체크 비트들이 정보어 비트들에 부가된 경우의 비트들의 수 즉, 정보어 비트들 및 BCH 패리티 체크 비트들을 포함하는 BCH 인코딩된 비트들의 수가 Nouter(=Ksig+Mouter)인 경우를 상정하여 설명하도록 한다. 여기에서, Mouter=168이다.That is, when the number of information word bits is Ksig and the number of bits when M outer BCH parity check bits are added to the information word bits by the BCH encoding, that is, the BCH including the information word bits and the BCH parity check bits Assume that the number of encoded bits is N outer (= K sig + M outer ). Here, M outer = 168.
또한, 상술한 예에서는 쇼트닝을 위해 제로 비트들이 패딩되는 것으로 설명하였으나 이는 일 예에 불과하다. 즉, 쇼트닝은 LDPC 정보어 비트들 중 일부 비트들이 수신 장치(200)로 실질적으로 전송하고자 하는 정보를 포함하는 비트들(즉, 정보어 비트들)로 채워진 경우, 나머지 비트들은 실질적인 정보를 전송하지 않도록 하기 위해, 나머지 비트들에 송수신 장치 사이에 기설정된 비트 값을 채우는 것이라는 점에서, 쇼트닝을 위해 제로 비트 외에 송수신 장치에서 기설정된 값(예를 들어, 1)을 갖는 비트가 패딩될 수도 있다.Also, in the above example, zero bits are padded for shortening, but this is merely an example. That is, when shortening is performed such that some of the bits of the LDPC information bits are filled with bits (i.e., information word bits) containing information to be actually transmitted to the receiving
LDPC 인코더(110)는 LDPC 정보어 비트들을 시스테매틱하게(systematically) 인코딩하여 LDPC 패리티 비트들을 생성하고, LDPC 정보어 비트들과 LDPC 패리티 비트들로 구성된 LDPC 코드워드(또는, LDPC 인코딩된 비트들)를 출력할 수 있다. 즉, LDPC 코드는 시스테메틱 코드(systematic code)라는 점에서, LDPC 코드워드는 인코딩 전의 LDPC 정보어 비트들과 인코딩에 의해 생성된 LDPC 패리티 비트들로 구성될 수 있다.The
예를 들어, LDPC 인코더(110)는 Kldpc 개의 LDPC 정보어 비트들 I=(i0,i1,...,)을 LDPC 인코딩하여 Nldpc _parity 개의 LDPC 패리티 비트들 (p0,p1,...,)을 생성하고, Ninner(=Kldpc+Nldpc _parity) 개의 비트들로 구성된 LDPC 코드워드 Λ=(co,c1,...,)=(i0,i1,...,,p0,p1,...,)를 출력할 수 있다. For example, the
이 경우, LDPC 인코더(110)는 다양한 코드 레이트로 입력 비트들을 LDPC 인코딩하여, 일정한 길이를 갖는 LDPC 코드워드를 생성할 수 있다In this case, the
예를 들어, LDPC 인코더(110)는 3/15의 코드 레이트로 3240 개의 입력 비트들을 LDPC 인코딩하여 16200 개의 비트들로 구성된 LDPC 코드워드를 생성할 수 있다. 다른 예로, LDPC 인코더(110)는 6/15의 코드 레이트로 6480 개의 입력 비트들을 LDPC 인코딩하여 16200 개의 비트들로 구성된 LDPC 코드워드를 생성할 수 있다.For example, the
한편, LDPC 부호화를 수행하는 과정은 HㆍCT=0을 만족하도록 LDPC 코드워드를 생성하는 과정이라는 점에서, LDPC 인코더(110)는 패리티 검사 행렬(parity check matrix)을 이용하여 LDPC 인코딩을 수행할 수 있다. 여기에서, H는 패리티 검사 행렬을 나타내고, C는 LDPC 코드워드를 나타낸다.On the other hand, the process for performing LDPC encoding is in terms of generating a LDPC code words to satisfy the H and C T = 0,
이하에서는 첨부된 도면을 참조하여, 본 발명의 다양한 실시 예에 따른 패리티 검사 행렬의 구조에 대해 설명하도록 한다. 패리티 검사 행렬에서 1을 제외한 부분의 원소는 0이다.Hereinafter, a structure of a parity check matrix according to various embodiments of the present invention will be described with reference to the accompanying drawings. The elements of the parity check matrix except for 1 are 0.
일 예로, 본 발명의 일 실시 예에 따른 패리티 검사 행렬은 도 2와 같은 구조를 가질 수 있다.For example, the parity check matrix according to an embodiment of the present invention may have a structure as shown in FIG.
도 2를 참조하면, 패리티 검사 행렬(20)은 5 개의 행렬(A, B, C, Z, D)로 구성될 수 있으며, 이하에서는 패리티 검사 행렬(20)의 구조에 대해 설명하기 위해 각 행렬의 구조에 대해 설명하도록 한다.Referring to FIG. 2, the
행렬 A는 K 개의 열(column)과 g 개의 행(row)으로 구성되며, 행렬 C는 K+g 개의 열과 N-K-g 개의 행으로 구성된다. 여기에서, K(또는, Kldpc)는 LDPC 정보어 비트들의 길이이고, N(또는, Ninner)은 LDPC 코드워드의 길이이다.The matrix A consists of K columns and g rows, and the matrix C consists of K + g columns and NKg rows. Where K (or K ldpc ) is the length of the LDPC information bits and N (or N inner ) is the length of the LDPC codeword.
그리고, 행렬 A와 행렬 C에서 i 번째 열 그룹(column group)의 0 번째 열에서 1이 위치한 행의 인덱스들은 LDPC 코드워드의 길이가 16200이고, 코드 레이트가 3/15인 경우, 하기의 표 1에 기초하여 정의될 수 있다. 한편, 동일한 열 그룹에 속하는 열의 개수는 360이 될 수 있다.The indexes of the rows in which the 1 in the 0th column of the i-th column group in the matrix A and the column C in the matrix C are 16200 when the length of the LDPC code word is 1600 and the code rate is 3/15, . ≪ / RTI > On the other hand, the number of columns belonging to the same column group can be 360.
이하에서는, 표 1을 일 예로, 행렬 A와 행렬 C에서 1이 존재하는 행의 위치에 대해 구체적으로 설명하도록 한다.Hereinafter, the positions of the rows in which 1 exists in the matrix A and the matrix C will be described in detail with reference to Table 1 as an example.
한편, LDPC 코드워드의 길이가 16200이고, 코드 레이트가 3/15인 경우, 패리티 검사 행렬(200)에 기초한 코딩 파라미터 M1, M2, Q1, Q2는 각각 1080, 11880, 3, 33이다.On the other hand, when the LDPC codeword length is 16200 and the code rate is 3/15, the coding parameters M 1 , M 2 , Q 1 , and Q 2 based on the
여기에서, Q1은 행렬 A에서 동일한 열 그룹 내에 속한 열들이 시클릭 쉬프트(cyclic shift)되는 크기이고, Q2는 행렬 C에서 동일한 열 그룹 내에 속한 열들이 시클릭 쉬프트되는 크기이다. Here, Q 1 is the size by which the columns belonging to the same column group in the matrix A are cyclic-shifted, and Q 2 is the size by which the columns belonging to the same column group in the matrix C are cyclically shifted.
그리고, Q1=M1/L, Q2=M2/L, M1=g, M2=N-K-g이고, L은 행렬 A, C 각각에서 열의 패턴이 반복되는 간격 즉, 동일한 열 그룹에 속하는 열의 개수로 일 예로, 360이 될 수 있다. And, Q 1 = M 1 / L , and Q 2 = M 2 / L,
한편, 행렬 A, C 각각에서 1이 위치하는 행의 인덱스는 M1 값에 기초하여 결정될 수 있다.On the other hand, the index of a row in which 1 is located in each of the matrices A and C can be determined based on the value of M 1 .
예를 들어, 표 1의 경우 M1=1080이라는 점에서, 행렬 A에서 i 번째 열 그룹의 0 번째 열에서 1이 존재하는 행의 위치는 표 1의 인덱스 값들 중에서 1080 보다 작은 값들에 기초하여 결정될 수 있으며, 행렬 C에서 i 번째 열 그룹의 0 번째 열에서 1이 존재하는 행의 위치는 표 1의 인덱스 값들 중에서 1080 이상인 값들에 기초하여 결정될 수 있다.For example, in the case of Table 1, M 1 = in that it is 1080, the position of the
구체적으로, 표 1에서 0 번째 열 그룹에 대응되는 수열은 "8 372 841 4522 5253 7430 8542 9822 10550 11896 11988"이다. 따라서, 행렬 A의 0 번째 열 그룹의 0 번째 열의 경우, 8 번째 행, 372 번째 행, 841 번째 행에 각각 1이 위치할 수 있고, 행렬 C의 0 번째 열 그룹의 0 번째 열의 경우 4522 번째 행, 5253 번째 행, 7430 번째 행, 8542 번째 행, 9822 번째 행, 10550 번째 행, 11896 번째 행, 11988 번째 행에 각각 1이 위치할 수 있다.Specifically, the sequence corresponding to the 0th column group in Table 1 is " 8 372 841 4522 5253 7430 8542 9822 10550 11896 11988 ". Therefore, in the case of the 0th column of the 0th column group of the matrix A, 1 can be located in the 8th row, 372nd row, and 841st row, and in the 0th column of the 0th column group of the matrix C, , 5253th row, 7430th row, 8542th row, 9822th row, 10550th row, 11896th row, and 11988th row.
한편, 행렬 A의 경우 각 열 그룹의 0 번째 열에서 1의 위치가 정의되면 이를 Q1 만큼 시클릭 쉬프트하여 각 열 그룹의 다른 열에서 1이 존재하는 행의 위치가 정의될 수 있고, 행렬 C의 경우 각 열 그룹의 0 번째 열에서 1의 위치가 정의되면 이를 Q2 만큼 시클릭 쉬프트하여 각 열 그룹의 다른 열에서 1이 존재하는 행의 위치가 정의될 수 있다.On the other hand, in the case of the matrix A, if the position of 1 in the 0th column of each column group is defined, the position of the row in which 1 exists in the other columns of each column group can be defined by Q 1 , , If the position of 1 in the 0th column of each column group is defined, it can be cyclically shifted by Q 2 to define the position of the row in which 1 exists in the other columns of each column group.
상술한 예에서, 행렬 A의 0 번째 열 그룹의 0 번째 열의 경우, 8 번째 행, 372 번째 행, 841 번째 행에 1이 존재한다. 이 경우, Q1=3이므로, 0 번째 열 그룹의 1 번째 열에서 1이 위치한 행의 인덱스는 11(=8+3), 375(=372+3), 844(=841+3)이고, 0 번째 열 그룹의 2 번째 열에서 1이 위치한 행의 인덱스는 14(=11+3), 378(=375+3), 847(=844+3)이 될 수 있다.In the above example, in the 0th column of the 0th column group of the matrix A, 1 exists in the 8th row, the 372nd row, and the 841st row. In this case, since Q 1 = 3, the index of the row where 1 is located in the first column of the 0th column group is 11 (= 8 + 3), 375 (= 372 + 3), and 844 (= 841 + 3) The index of the row in which the 1 is located in the second column of the 0th column group may be 14 (= 11 + 3), 378 (= 375 + 3), and 847 (= 844 + 3).
한편, 행렬 C의 0 번째 열 그룹의 0 번째 열의 경우, 4522 번째 행, 5253 번째 행, 7430 번째 행, 8542 번째 행, 9822 번째 행, 10550 번째 행, 11896 번째 행, 11988 번째 행에 1이 존재한다. 이 경우, Q2=33이므로, 0 번째 열 그룹의 1 번째 열에서 1이 위치한 행의 인덱스는 4555(=4522+33), 5286(=5253+33), 7463(=7430+33), 8575(=8542+33), 9855(=9822+33) 10583(=10550+33), 11929(=11896+33), 12021(=11988+33)이고, 0 번째 열 그룹의 2 번째 열에서 1이 위치한 행의 인덱스는 4588(=4555+33), 5319(=5286+33), 7496(=7463+33), 8608(=8575+33), 9888(=9855+33), 10616(=10583+33), 11962(=11929+33), 12054(=12021+33)가 될 수 있다.On the other hand, in the 0th column of the 0th column group of the matrix C, 1 exists in the 4522th row, 5253th row, 7430th row, 8542th row, 9822th row, 10550th row, 11896th row and 11988th row do. In this case, since Q 2 = 33, the index of the row in which 1 is located in the first column of the 0th column group is 4555 (= 4522 + 33), 5286 (= 5253 + 33), 7463 (= 8542 + 33), 9855 (= 9822 + 33) 10583 (= 10550 + 33), 11929 The index of the row where the row is located is 4588 (= 4555 + 33), 5319 (= 5286 + 33), 7496 (= 7463 + 33), 8608 (= 8575 + 33), 9888 33), 11962 (= 11929 + 33), and 12054 (= 12021 + 33).
이와 같은 방식에 따라 행렬 A 및 행렬 C의 모든 열 그룹에서 1이 존재하는 행의 위치가 정의될 수 있다.According to this method, the positions of the rows in which 1 exists in all the column groups of the matrix A and the matrix C can be defined.
한편, 행렬 B는 이중 대각 행렬(dual diagonal matrix)이고, 행렬 D는 항등 행렬(identity matrix)이고, 행렬 Z는 영 행렬(zero matrix)이다.On the other hand, the matrix B is a dual diagonal matrix, the matrix D is an identity matrix, and the matrix Z is a zero matrix.
결국, 상술한 바와 같은 구조를 갖는 행렬 A, B, C, D, Z에 의해 도 2와 같은 패리티 검사 행렬(20)의 구조가 정의될 수 있게 된다.As a result, the structure of the
이하에서는 LDPC 인코더(110)가 도 2와 같은 패리티 검사 행렬(20)에 기초하여 LDPC 인코딩을 수행하는 방법에 대해 설명하도록 한다. Hereinafter, a method of performing LDPC encoding on the basis of the
LDPC 코드는 정보어 블록 S=(s0,s1,...,sK-1)을 인코딩하기 위해 이용될 수 있다. 이 경우, N=K+M1+M2의 길이를 갖는 LDPC 코드워드 Λ=(λ0,λ1,...,λN-1)를 생성하기 위해, 정보어 블록 S로부터 패리티 비트들 P=(p0,p1,...,)이 시스테메틱하게 인코딩될 수 있다.The LDPC code can be used to encode the information word block S = (s 0 , s 1 , ..., s K-1 ). In this case, in order to generate LDPC codewords Λ = (λ 0 , λ 1 , ..., λ N-1 ) having a length of N = K + M 1 + M 2 , parity bits P = (p 0 , p 1 , ..., ) Can be systematically encoded.
이에 따라, LDPC 코드워드는 Λ=(s0,s1,...,sK-1,p0,p1,...,)가 될 수 있다.Accordingly, the LDPC codeword is expressed as? = (S 0 , s 1 , ..., s K-1 , p 0 , p 1 , ).
여기에서, M1 및 M2 각각은 이중 대각 행렬 B 및 항등 행렬 D 각각에 대응되는 패리티 행렬의 사이즈를 나타내며, M1=g, M2=N-K-g가 될 수 있다. Here, each of M 1 and M 2 represents the size of the parity matrix corresponding to each of the diagonal diagonal matrix B and the identity matrix D, and M 1 = g and M 2 = NKg.
한편, 패리티 비트를 산출하는 과정은 다음과 같이 나타낼 수 있다. 이하에서는 설명의 편의를 위해, 패리티 검사 행렬(20)이 표 1과 같이 정의되는 경우를 일 예로 설명하도록 한다.Meanwhile, the process of calculating the parity bit can be expressed as follows. Hereinafter, for convenience of description, a case where the
단계 1) λi=si (i=0,1,...,K-1), pj=0 (j=0,1,...,M1+M2-1)로 초기화한다.Is initialized to the step 1) λ i = s i ( i = 0,1, ..., K-1), p j = 0 (j = 0,1, ...,
단계 2) 표 1의 첫 번째 행에서 정의되는 패리티 비트 어드레스에 첫 번째 정보어 비트 λ0을 누적한다. Step 2) The first information bit? 0 is accumulated in the parity bit address defined in the first row of Table 1.
단계 3) 다음 L-1 개의 정보어 비트 λm(m=1,2,...,L-1)에 대해, λm를 하기와 같은 수학식 1에 기초하여 산출되는 패리티 비트 어드레스에 누적한다.Step 3) For the next L-1 information bits? M (m = 1, 2, ..., L-1),? M is accumulated in the parity bit address calculated based on Equation do.
여기에서, x는 첫 번째 정보어 비트 λ0에 대응되는 패리티 비트 누적기의 어드레스이다. Here, x is the address of the parity bit accumulator corresponding to the first information bit? 0 .
그리고, Q1=M1/L, Q2=M2/L이다. 이 경우, LDPC 코드워드의 길이가 16200이고, 코드 레이트가 3/15이므로, M1=1080, M2=11880, Q1=3, Q2=33, L=360이 될 수 있다.Q 1 = M 1 / L and Q 2 = M 2 / L. In this case, M 1 = 1080, M 2 = 11880, Q 1 = 3, Q 2 = 33, and L = 360 can be obtained because the length of the LDPC codeword is 16200 and the code rate is 3/15.
단계 4) L 번째 정보어 비트 λL에 대해 표 1의 두 번째 행과 같은 패리티 비트의 어드레스가 주어진다는 점에서, 상술한 방식과 유사하게, 이후의 L-1 개 정보어 비트 λm (m=L+1,L+2,...,2L-1)에 대한 패리티 비트의 어드레스를 단계 3에서 설명한 방식을 이용하여 산출한다. 이 경우, x는 정보어 비트 λL에 대응되는 패리티 비트 누적기의 어드레스로, 표 1의 두 번째 행에 기초하여 얻어질 수 있다. Step 4) Similar to the above-described method, in order to give the address of the same parity bit as the second row of Table 1 for the Lth information bit? L , the following L-1 information bits? M (m = L + 1, L + 2, ..., 2L-1) is calculated using the method described in
단계 5) 각 그룹의 L 개의 새로운 정보어 비트들에 대해, 표 1의 새로운 행들을 패리티 비트 누적기의 어드레스로 하여 상술한 과정을 반복한다.Step 5) For the L new information bits of each group, the above-described process is repeated with the new rows of Table 1 as addresses of the parity bit accumulator.
단계 6) 코드워드 비트 λ0부터 λK-1까지 상술한 과정이 반복된 이후, i=1부터 순차적으로 하기의 수학식 2에 대한 값을 산출한다.Step 6) After the above - described process is repeated from the codeword bits? 0 to? K-1 , the values for the
단계 7) 이중 대각 행렬 B에 대응되는 패리티 비트 λK부터 까지를 하기의 수학식 3에 기초하여 산출한다. Step 7) from λ K parity bits corresponding to the dual-diagonal matrix B Is calculated based on the following expression (3).
단계 8) 각 그룹의 L 개의 새로운 코드워드 비트 λK부터 까지에 대한 패리티 비트 누적기의 어드레스는 표 1의 새로운 행 및 수학식 1에 기초하여 산출한다. Step 8) from L a new code word bits of each group K λ The address of the parity bit accumulator is calculated based on the new row and
단계 9) 코드워드 비트 λK부터 까지 적용된 이후, 대각 행렬 D에 대응되는 패리티 비트 부터 까지를 하기의 수학식 4에 기초하여 산출한다. Step 9) from the code word bits K λ , The parity bit corresponding to the diagonal matrix D from Is calculated based on the following expression (4).
결국, 이와 같은 방식에 따라 패리티 비트들을 산출할 수 있게 된다. 다만, 이는 일 예일 뿐이며, 도 2와 같은 패리티 검사 행렬에 기초하여 패리티 비트들을 산출하는 방식은 다양하게 정의될 수 있음은 물론이다.As a result, the parity bits can be calculated according to this method. However, this is merely an example, and it is needless to say that a method of calculating parity bits based on the parity check matrix shown in FIG. 2 may be variously defined.
이와 같이, LDPC 인코더(110)는 표 1에 기초하여 LDPC 인코딩을 수행하여, LDPC 코드워드를 생성할 수 있다. As such,
구체적으로, LDPC 인코더(110)는 표 1에 기초하여 3/15의 코드 레이트로 3240 개의 입력 비트들 즉, LDPC 정보어 비트들을 LDPC 인코딩하여 12960 개의 LDPC 패리티 비트들을 생성하고, LDPC 패리티 비트들 및 LDPC 패리티 비트들로 구성된 LDPC 코드워드를 출력할 수 있다. 이 경우, LDPC 코드워드는 16200 개의 비트들로 구성될 수 있다.Specifically, the
다른 예로, 본 발명의 일 실시 예에 따른 패리티 검사 행렬은 도 3과 같은 구조를 가질 수 있다.As another example, the parity check matrix according to an embodiment of the present invention may have a structure as shown in FIG.
도 3을 참조하면, 패리티 검사 행렬(30)은 정보어 비트들(즉, LDPC 정보어 비트들)에 대응되는 부분 행렬인 정보어 부분 행렬(31)과 패리티 비트들(즉, LDPC 패리티 비트들)에 대응되는 부분 행렬인 패리티 부분 행렬(32)로 구성된다.3, the parity check matrix 30 includes an information word sub-matrix 31 and parity bits (i.e., LDPC parity bits) corresponding to information word bits (i.e., LDPC information word bits) And a parity partial matrix 32, which is a partial matrix corresponding to the parity part matrix.
정보어 부분 행렬(31)은 Kldpc 개의 열을 포함하고, 패리티 부분 행렬(32)은 Nldpc_parity=Ninner-Kldpc 개의 열을 포함한다. 한편, 패리티 검사 행렬(30)의 행의 개수는 패리티 부분 행렬(32)의 열의 개수 Nldpc _parity=Ninner-Kldpc와 동일하다.Information word sub-matrix 31 is K ldpc including columns and a parity part matrix (32) comprises a single column N = N ldpc_parity inner -K ldpc. On the other hand, the number of rows in the parity check matrix (30) is equal to the number of columns of the parity matrix part (32) N = N ldpc _parity inner -K ldpc.
또한, 패리티 검사 행렬(30)에서 Ninner는 LDPC 코드워드의 길이, Kldpc는 정보어 비트들의 길이, Nldpc _parity=Ninner-Kldpc는 패리티 비트들의 길이를 나타낸다.In addition, N is the length of the inner LDPC codeword, K ldpc is the length of the information bits, N = N ldpc _parity inner -K ldpc parity check matrix in (30) indicates the length of the parity bits.
이하에서는 정보어 부분 행렬(31)과 패리티 부분 행렬(32)의 구조에 대해 살펴보도록 한다.Hereinafter, the structure of the information word partial matrix 31 and the parity partial matrix 32 will be described.
정보어 부분 행렬(31)은 Kldpc 개의 열(즉, 0 번째 열부터 Kldpc-1 번째 열)을 포함하는 행렬로, 다음과 같은 규칙을 따른다.The information word sub- matrix 31 is a matrix including K ldpc columns (i.e., the 0th column to the K ldpc -1th column), and follows the following rules.
첫째, 정보어 부분 행렬(31)을 구성하는 Kldpc 개의 열들은 M 개씩 동일한 그룹에 속하며, 총 Kldpc/M 개의 열 그룹들로 구분된다. 동일한 열 그룹 내에 속한 열들은 서로 Qldpc 만큼 시클릭 쉬프트된 관계를 가진다. 즉, Qldpc는 패리티 검사 행렬(30)을 구성하는 정보어 부분 행렬의 열 그룹 내에서 열들에 대한 시클릭 쉬프트 파라미터 값으로 볼 수 있다.First, the K ldpc columns constituting the information word submatrix 31 belong to the same group of M and are divided into a total of K ldpc / M column groups. The columns belonging to the same column group have a cyclic shifted relationship with each other by Q ldpc . That is, Q ldpc can be regarded as a cyclic shift parameter value for the columns in the column group of the information word sub- matrix constituting the parity check matrix 30. [
여기에서, M은 정보어 부분 행렬(31)에서 열의 패턴이 반복되는 간격(일 예로, M=360)이고, Qldpc는 정보어 부분 행렬(31)에서 각 열이 시클릭 쉬프트되는 크기이다. M은 Ninner와 Kldpc의 공약수(common divisor)이며, Qldpc=(Ninner-Kldpc)/M이 성립하도록 결정된다. 여기에서, M 및 Qldpc은 정수이고, Kldpc/M도 정수가 된다. 한편, M 및 Qldpc는 LDPC 코드워드의 길이와 코드 레이트에 따라 다양한 값을 가질 수 있다.Here, M is the interval at which the pattern of the column is repeated in the information word submatrix 31 (M = 360 for example), and Q ldpc is the size at which each column is cyclically shifted in the information word submatrix 31. M is a common divisor of N inner and K ldpc , and Q ldpc = (N inner- K ldpc ) / M is determined. Here, M and Q ldpc are integers, and K ldpc / M is an integer. On the other hand, M and Q ldpc can have various values depending on the length of the LDPC codeword and the code rate.
예를 들어, M=360이고 LDPC 부호어의 길이 Ninner가 16200이고, 코드 레이트가 6/15인 경우, Qldpc는 27이 될 수 있다.For example, if M = 360 and the length N inner of the LDPC codeword is 16200 and the code rate is 6/15, Q ldpc may be 27.
둘째, i 번째(i=0,1,..,Kldpc/M-1) 열 그룹의 0 번째 열의 차수(degree)(여기에서, 차수는 열에 존재하는 1 값의 개수로, 동일한 열 그룹에 속하는 모든 열들의 차수는 동일하다)를 Di라 하고, i 번째 열 그룹의 0 번째 열에서 1이 있는 각 행의 위치(또는, 인덱스)를 이라 하면, i 번째 열 그룹 내의 j 번째 열에서 k 번째 1이 위치한 행의 인덱스 는 하기의 수학식 5와 같이 결정된다.Second, the degree of the 0th column of the i-th (i = 0,1, .., K ldpc / M-1) column group (where the degree is the number of 1 values existing in the column, (Or the index of all the rows belonging to is the same) is denoted by D i , and the position (or index) of each row having 1 in the 0th column of the i-th column group is , The index of the row where the
여기에서, k=0,1,2,..,Di-1, i=0,1,..,Kldpc/M-1, j=1,2,...,M-1이다.Here, k = 0,1,2, ..., D i -1, i = 0,1, ..., K ldpc / M-1, j = 1,2, ..., M-1.
한편, 수학식 5는 하기의 수학식 6과 같이 동일하게 표현될 수 있다.Equation (5) can be similarly expressed as Equation (6) below.
여기에서, k=0,1,2,..,Di-1, i=0,1,..,Kldpc/M-1, j=1,2,...,M-1이다. 여기에서, j=1,2,...,M-1이기 때문에 (j mod M)은 j로 볼 수 있다.Here, k = 0,1,2, ..., D i -1, i = 0,1, ..., K ldpc / M-1, j = 1,2, ..., M-1. Here, since (j = 1, 2, ..., M-1), (j mod M) can be viewed as j.
이들 수학식에서, 는 i 번째 열 그룹 내의 j 번째 열에서 k 번째 1이 위치한 행의 인덱스, Ninner는 LDPC 부호어의 길이, Kldpc는 정보어 비트들의 길이, Di는 i 번째 열 그룹에 속하는 열들의 차수, M은 하나의 열 그룹에 속하는 열의 개수, Qldpc는 각 열이 시클릭 쉬프트되는 크기를 의미한다.In these equations, Where N inner is the length of the LDPC codeword, K ldpc is the length of the information bits, D i is the order of the columns belonging to the ith column group, M is the number of columns belonging to one column group, and Q ldpc is the size by which each column is cyclically shifted.
결국, 이들 수학식을 참조하면 값만을 알면 i 번째 열 그룹 내의 j 번째 열에서 k 번째 1이 있는 행의 인덱스 를 알 수 있게 된다. 그러므로, 각각의 열 그룹 내의 0 번째 열에서 k 번째 1이 있는 행의 인덱스 값을 저장하면, 도 3의 구조를 갖는 패리티 검사 행렬(30)(즉, 패리티 검사 행렬(30)의 정보어 부분 행렬(31))에서 1이 있는 열과 행의 위치가 파악될 수 있다.As a result, referring to these equations If the value is known only, the index of the row having the kth 1 in the jth column in the ith column group . Therefore, if the index value of the row in which the k < th > 1 is located in the 0th column in each column group is stored, the parity check matrix 30 (i.e., (31), the positions of the columns and rows in which 1 is located can be grasped.
상술한 규칙들에 따르면, i 번째 열 그룹에 속하는 열들의 차수는 모두 Di로 동일하다. 따라서, 상술한 규칙들에 따라 패리티 검사 행렬에 대한 정보를 저장하고 있는 LDPC 부호는 다음과 같이 간략하게 표현될 수 있다.According to the above rules, the orders of the columns belonging to the ith column group are all the same as D i . Accordingly, an LDPC code storing information on a parity check matrix according to the above rules can be briefly expressed as follows.
예를 들어, Ninner가 30, Kldpc가 15, Qldpc가 3인 경우, 3 개의 열 그룹의 0 번째 열에서 1이 위치한 행의 위치 정보는 하기의 수학식 7과 같은 수열들로 표현될 수 있으며, 이는 '무게-1 위치 수열(weight-1 position sequence)'이라 지칭될 수 있다.For example, when N inner is 30, K ldpc is 15, and Q ldpc is 3, the position information of a row in which 1 is located in the 0th column of three column groups is represented by the following mathematical formulas , Which may be referred to as a " weight-1 position sequence ".
여기에서, 는 i 번째 열 그룹 내의 j 번째 열에서 k 번째 1이 있는 행의 인덱스를 의미한다.From here, Denotes an index of a row having a kth 1 in the jth column in the ith column group.
각 열 그룹의 0 번째 열에서 1이 위치한 행의 인덱스를 나타내는 수학식 7과 같은 무게-1 위치 수열들은 보다 간략하게 하기의 표 2와 같이 표현될 수 있다.The weight-1 position sequences such as Equation (7) representing the index of the row where 1 is located in the 0th column of each column group can be expressed more simply as shown in Table 2 below.
표 2는 패리티 검사 행렬에서 1 값을 가지는 원소의 위치를 나타낸 것으로서, i 번째 무게-1 위치 수열은 i 번째 열 그룹에 속한 0 번째 열에서 1이 있는 행의 인덱스들로 표현된다.Table 2 shows the position of an element having a value of 1 in the parity check matrix. The i-th weight-1 position sequence is represented by indexes of a row having a 1 in the 0-th column belonging to the i-th column group.
상술한 내용에 기초하여 본 발명의 일 실시 예에 다른 패리티 검사 행렬의 정보어 부분 행렬(31)은 하기의 표 3에 의해 정의될 수 있다. Based on the above description, the information word partial matrix 31 of the parity check matrix according to an embodiment of the present invention can be defined by Table 3 below.
여기에서, 표 3은 정보어 부분 행렬(31)의 i 번째 열 그룹의 0 번째 열에서 1이 위치한 행의 인덱스들을 나타낸다. 즉, 정보어 부분 행렬(31)은 각각 M 개의 열을 포함하는 복수의 열 그룹으로 구성되며, 복수의 열 그룹 각각의 0 번째 열에서 1의 위치는 표 3에 의해 정의될 수 있다.Here, Table 3 shows the indexes of the row where 1 is located in the 0th column of the i-th column group of the information word submatrix 31. [ That is, the information word partial matrix 31 is composed of a plurality of column groups each including M columns, and the position of 1 in the 0th column of each of the plurality of column groups can be defined by Table 3. [
일 예로, LDPC 부호어의 길이 Ninner가 16200, 부호율이 6/15, M이 360인 경우, 정보어 부분 행렬(31)의 i 번째 열 그룹의 0 번째 열에서 1이 위치한 행의 인덱스들은 하기의 표 3과 같다.For example, when the length N inner of the LDPC codeword is 16200, the coding rate is 6/15, and M is 360, the indexes of the row where 1 is located in the 0th column of the i-th column group of the information word submatrix 31 Table 3 shows the results.
한편, 상술한 표 3에서 각 i 번째 열 그룹에 대응되는 수열 내의 숫자들의 순서가 바뀌어도 동일한 부호의 패리티 검사 행렬이라는 점에서, 표 3에서 각 i 번째 열 그룹에 대응되는 수열 내의 순서가 바뀐 경우도 본 발명에서 고려하는 부호의 한 가지 일 예가 될 수 있다. In Table 3, even if the order of the numbers in the sequence corresponding to each i-th column group is changed, the order in the sequence corresponding to each i-th column group in Table 3 is changed And may be one example of codes considered in the present invention.
또한, 표 3에서 각 열 그룹에 대응되는 수열들의 나열 순서가 바뀌어도 부호의 그래프 상의 사이클 특성 및 차수 분포 등의 대수적 특성이 바뀌지 않기 때문에, 표 3에 나타난 수열들의 나열 순서가 바뀐 경우도 한 가지 일 예가 될 수 있다. In addition, even if the order of the sequences corresponding to each column group is changed in Table 3, since the algebraic characteristics such as the cycle characteristic and the order distribution on the graph of the sign do not change, the order of the sequences shown in Table 3 may be changed It can be an example.
또한, 표 3에서 임의의 열 그룹에 대응되는 수열들에 대해 모두 동일하게 Qldpc의 배수를 더한 결과 또한 부호의 그래프 상의 사이클 특성이나 차수 분포 등의 대수적 특성이 바뀌지 않기 때문에, 표 3에 나타난 수열들에 대해 모두 동일하게 Qldpc의 배수를 더한 결과도 한 가지 일 예가 될 수 있다. 여기에서 주의해야 할 점은 주어진 수열에 Qldpc 배수만큼 더했을 경우 그 값이 (Ninner-Kldpc) 이상의 값이 나올 경우에는 그 값에 (Ninner-Kldpc)에 대한 모듈로(modulo) 연산을 적용한 값으로 바꾸어 적용해야 한다는 것이다.In addition, since the algebraic properties such as the cycle characteristic and the order distribution on the graph of the sign do not change as a result of adding a multiple of Q ldpc to all the sequences corresponding to arbitrary column groups in Table 3, The result of adding a multiple of Q ldpc to all of them is an example. The caveat here is if deohaeteul to the multiple Q ldpc a given sequence if this value out over the value (N -K inner ldpc) has a module for the value (N inner -K ldpc) (modulo ) operation To the value applied.
한편, 표 3과 같이 정보어 부분 행렬(31)의 i 번째 열 그룹의 0 번째 열에서 1이 존재하는 행의 위치가 정의되면, 이를 Qldpc만큼 시클릭 쉬프트하여 각 열 그룹의 다른 열에서 1이 존재하는 행의 위치가 정의될 수 있다.On the other hand, when the position of the row in which the 1 exists in the 0th column of the i-th column group of the information word partial matrix 31 is defined as shown in Table 3, it is cyclically shifted by Q ldpc , The position of the existing row can be defined.
예를 들어, 표 3의 경우, 정보어 부분 행렬(31)의 0 번째 열 그룹의 0 번째 열에 대응되는 시퀀스는 "27 430 519 828 1897 1943 2513 2600 2640 3310 3415 4266 5044 5100 5328 5483 5928 6204 6392 6416 6602 7019 7415 7623 8112 8485 8724 8994 9445 9667"이므로, 정보어 부분 행렬(31)의 0 번째 열 그룹의 0 번째 열의 경우, 27 번째 행, 430 번째 행, 519 번째 행,...에 1이 존재한다.For example, in the case of Table 3, the sequence corresponding to the 0th column of the 0th column group of the information word partial matrix 31 is "27 430 519 828 1897 1943 2513 2600 2640 3310 3415 4266 5044 5100 5328 5483 5928 6204 6392 6416 6602 7019 7415 7623 8112 8485 8724 8994 9445 9667 "Therefore, in the 0th column of the 0th column group of the information word
이 경우, Qldpc=(Ninner-Kldpc)/M=(16200-6480)/360=27이므로, 0 번째 열 그룹의 1 번째 열에서 1이 위치한 행의 인덱스는 54(=27+27), 457(=430+27), 546(=519+27),...이고, 81(=54+27), 484(=457+27), 573(=546+27),...이 될 수 있다.In this case, the index of the row in which 1 is located in the first column of the 0th column group is 54 (= 27 + 27), because Q ldpc = (N inner - Kldpc ) / M = (16200-6480) , 457 (= 430 + 27), 546 (= 519 + 27), ..., 81 (= 54 + 27), 484 (= 457 + 27), 573 .
이와 같은 방식에 의해, 각 열 그룹의 모든 행에서 1이 위치한 행의 인덱스가 정의될 수 있다.By such a method, an index of a row in which 1 is located in every row of each column group can be defined.
이하에서는 도 3과 같은 패리티 검사 행렬(30)에 기초하여 LDPC 인코딩을 수행하는 방법에 대해 설명하도록 한다. Hereinafter, a method of performing LDPC encoding based on the parity check matrix 30 as shown in FIG. 3 will be described.
먼저, 인코딩되는 정보어 비트들을 i0,i1,...,이라 하고, 산출되는 코드 비트들을 c0,c1,...,이라 한다. First, the information bits to be encoded are denoted by i 0 , i 1 , ..., And the calculated code bits are c 0 , c 1 , ..., Quot;
그리고, LDPC 코드가 시스테메틱하다는 점에서, k(0≤k<Kldpc-1)에 대해, ck를 ik로 설정한다. 한편, 나머지 코드 비트들의 경우, 로 설정한다.And, in that the LDPC code that systematic systematic, for k (0≤k <K ldpc -1) , sets a c k i to k. On the other hand, in the case of the remaining code bits, .
이하에서는 이러한 패리티 비트들 pk를 산출하는 방법에 대해 설명하도록 한다.Hereinafter, a method of calculating the parity bits p k will be described.
이하에서 q(i,j,0)는 표 3과 같은 인덱스들 리스트(indicies list)에서 i 번째 행(row)의 j 번째 엔트리(entry)를 나타내고, q(i,j,l)는 0<l<360에 대해 q(i,j,l)=q(i,j,0)+Qldpc×l (mod Ninner-Kldpc)라 한다. 한편, 모든 누적 연산(accumulation)은 GF(Galois Field)(2)에서의 덧셈 연산(additions)에 의해 실현될 수 있다. 그리고, 표 3의 경우 LDPC 코드워드의 길이가 16200이고, 코드 레이트가 6/15이므로, Qldpc는 27이다.Hereinafter, q (i, j, 0) represents the jth entry of the ith row in the index list as shown in Table 3, and q (i, j, (i, j, l) = q (i, j, 0) + Q ldpc xl (mod N inner - Kldpc ). On the other hand, all accumulation can be realized by additions in the GF (Galois Field) 2. In Table 3, since the length of the LDPC code word is 16200 and the code rate is 6/15, Q ldpc is 27.
한편, q(i,j,0) 및 q(i,j,l)이 상기와 같이 정의될 때, 패리티 비트를 산출하는 과정은 하기와 같다.On the other hand, when q (i, j, 0) and q (i, j, l) are defined as above, a process of calculating a parity bit is as follows.
단계 1) 패리티 비트들을 '0'으로 초기화한다. 즉, pk=0 for 0≤k<Ninner-Kldpc Step 1) Initialize parity bits to '0'. In other words, p k = 0 for 0≤k < N inner -K ldpc
단계 2) 0≤k<Kldpc의 모든 k 값에 대하여 i와 l을 , l:=k (mod 360)로 설정한다. 여기에서, 는 x 보다 크지 않는 최대 정수이다. Step 2) For all k values of 0 ≤ k <K ldpc , i and l , and l: = k (mod 360). From here, Is the largest integer not greater than x.
이후, 모든 l에 대해, ik를 pq (i,j,l)에 누적한다. 즉, pq(i,0,l)=pq(i,0,l)+ik,pq(i,1,l)=pq(i,1,l)+ik,pq(i,2,l)=pq(i,2,l)+ik,...,pq(i,w(i)-1,l)=pq(i,w(i)-1,l)+ik를 산출한다. Then, for all l, i k is accumulated in p q (i, j, l) . That is, p q (i, 0, l) = p q (i, 0, l) + i k, p q (i, 1, l) = p q (i, 1, l) + i k, p q (i, 2, l) = p q (i, 2, l) + i k, ..., p q (i, w (i) -1, l) = p q (i, w (i) - 1, l) + i k .
여기에서, w(i)는 표 3과 같은 인덱스들 리스트에서 i 번째 행의 값들(elements)의 개수이며, 패리티 검사 행렬에서 ik에 대응되는 열의 1의 개수를 의미한다. 또한, 표 3에서 i 번째 행의 j 번째 엔트리인 q(i,j,0)은 패리티 비트의 인덱스이며, 패리티 검사 행렬에서 ik에 대응되는 열에서 1이 존재하는 행의 위치를 나타낸다.Here, w (i) denotes the number of elements of the i-th row in the index list as shown in Table 3, and the number of 1s in the column corresponding to i k in the parity check matrix. In Table 3, the j-th entry q (i, j, 0) of the i-th row is an index of a parity bit and indicates the position of a row in which 1 exists in the column corresponding to i k in the parity check matrix.
구체적으로, 표 3에서 i 번째 행의 j 번째 엔트리인 q(i,j,0)은 LDPC 부호의 패리티 검사 행렬에서 i번째 열 그룹 내의 첫 번째(즉, 0 번째) 열에서 1이 존재하는 행의 위치를 나타낸다. Specifically, the j-th entry q (i, j, 0) of the i-th row in Table 3 is a row in which 1 exists in the first (i.e., 0th) column in the i-th column group in the LDPC code parity check matrix .
q(i,j,0)은 모든 l에 대해, ik를 pq(i,j,l)에 누적하는 방식을 실제 장치에서 구현(implementation)하는 방법에 따라 LDPC 부호화에 의해 생성되어야 할 패리티 비트의 인덱스로 간주될 수도 있고, 다른 부호화 방법을 구현할 경우에는 또 다른 형태의 인덱스로 간주될 수도 있다. 하지만, 이는 하나의 일 예일 뿐이며, 어떠한 부호화 방식을 적용하더라도 기본적으로는 표 3의 q(i,j,0) 값들에 기초하여 생성할 수 있는 LDPC 부호의 패리티 검사 행렬로부터 얻을 수 있는 LDPC 부호화 결과와 동일한(equivalent) 결과를 얻어야 함은 자명하다. the parity to be generated by the LDPC encoding according to the method of realizing the method of accumulating i k at q q (i, j, 0) May be regarded as an index of a bit, or may be regarded as another type of index when another encoding method is implemented. However, this is only one example. Even if any encoding scheme is applied, the LDPC encoding result obtained from the parity check matrix of the LDPC code that can be generated based on the values of q (i, j, 0) It is obvious that it is necessary to obtain an equivalent result.
단계 3) 0<k<Ninner-Kldpc를 만족하는 모든 k에 대해 pk=pk+pk- 1를 산출하여 패리티 비트 pk를 산출하게 된다.Step 3) For every k satisfying 0 <k <N inner- K ldpc , the parity bit p k is calculated by calculating p k = p k + p k- 1 .
이에 따라, 모든 코드 비트들 c0,c1,...,이 얻어질 수 있다.Thus, all the code bits c 0 , c 1 , ..., Can be obtained.
결국, 이와 같은 방식에 따라 패리티 비트들을 산출할 수 있게 된다. 다만, 이는 일 예일 뿐이며, 도 3과 같은 패리티 검사 행렬에 기초하여 패리티 비트들을 산출하는 방식은 다양하게 정의될 수 있음은 물론이다.As a result, the parity bits can be calculated according to this method. However, this is merely an example, and it is needless to say that the method of calculating the parity bits based on the parity check matrix shown in FIG. 3 may be variously defined.
이와 같이, LDPC 인코더(110)는 표 3에 기초하여 LDPC 인코딩을 수행하여, LDPC 코드워드를 생성할 수 있다. As such,
구체적으로, LDPC 인코더(110)는 표 3에 기초하여 6/15의 코드 레이트로 6480 개의 입력 비트들 즉, LDPC 정보어 비트들을 LDPC 인코딩하여 9720 개의 LDPC 패리티 비트들을 생성하고, LDPC 패리티 비트들 및 LDPC 패리티 비트들로 구성된 LDPC 코드워드를 출력할 수 있다. 이 경우, LDPC 코드워드는 16200 개의 비트들로 구성될 수 있다.Specifically, the
상술한 바와 같이, LDPC 인코더(110)는 다양한 코드 레이트로 입력 비트들을 인코딩하여 입력 비트들 및 LDPC 패리티 비트들로 구성된 LDPC 코드워드를 생성할 수 있다.As described above, the
리피티션부(120)는 입력 비트들 및 LDPC 패리티 비트들로 구성된 LDPC 코드워드의 적어도 일부 비트들이 현재 프레임에서 리피티션되어 전송되도록, LDPC 코드워드의 적어도 일부 비트들을 LDPC 코드워드에서 리피티션한다. 그리고, 리피티션부(120)는 리피티션된 LDPC 코드워드(즉, 리피티션된 비트들을 포함하는 LDPC 코드워드 비트들로, 리피티션 이후의 LDPC 코드워드(LDPC codeword with repetition)라 할 수도 있다)을 펑처링부(130)로 출력할 수 있다. 또한, 리피티션부(120)는 리피티션 이후의 LDPC 코드워드를 부가 패리티 생성부(140)로 출력하고, 리피티션 비트들에 대한 정보(가령, 리피티션 비트들의 개수 및 위치 등)를 부가 패리티 생성부(140)로 제공할 수 있다.The
구체적으로, 리피티션부(120)는 특정한 수의 LDPC 코드워드 비트들(예를 들어, Nrepeat 개의 LDPC 패리티 비트들)을 LDPC 코드워드 내에서 특정한 위치에 리피티션할 수 있다. 이 경우, 리피티션 비트들의 수는 시스템에 따라 다양한 값을 가질 수 있다.Specifically, the
예를 들어, 리피티션부(120)는 특정한 수의 LDPC 패리티 비트들을 LDPC 정보어 비트들 및 LDPC 패리티 비트들을 포함하는 LDPC 코드워드 내에서 LDPC 정보어 비트들 이후에 부가할 수 있다. 즉, 리피티션부(120)는 패리티 비트들의 적어도 일부 비트들을 입력 비트들 즉, LDPC 정보어 비트들 이후에 부가할 수 있다.For example, the
또한, 리피티션부(120)는 특정한 수의 LDPC 패리티 비트들을 LDPC 패리티 비트들 이후에 부가하거나, LDPC 정보어 비트들 사이의 특정한 위치에 부가하거나, LDPC 패리티 비트들 사이의 특정한 위치에 부가할 수도 있다.In addition, the
이에 따라, 리피티션 이후의 LDPC 코드워드 내에서 특정한 수의 LDPC 패리티 비트들은 반복되며, 수신 장치(200)로 추가적으로 전송될 수 있다는 점에서, 상술한 동작을 리피티션(repetition)이라 할 수 있다. 그리고, 리피티션 이후의 LDPC 코드워드에서 리피티션되는 비트들을 리피티션 비트들(repetition bits)(또는, 리피티션된 비트들(repeted bits))이라 할 수 있다.Accordingly, a predetermined number of LDPC parity bits in the LDPC codeword after the repetition are repeated and can be further transmitted to the receiving
이하에서는 도면을 참조하여, 본 발명의 다양한 실시 예에 따라 비트들이 리피티션되는 일 예를 설명하도록 한다.Hereinafter, an example in which bits are repeated according to various embodiments of the present invention will be described with reference to the drawings.
리피티션부(120)는 리피티션 비트들의 수 Nrepeat가 LDPC 패리티 비트들의 수보다 작거나 같은 경우, 첫 번째 LDPC 패리티 비트부터 Nrepeat 개의 비트들을 LDPC 정보어 비트들 이후에 부가할 수 있다.
예를 들어, Nrepeat이 Nldpc_parity 보다 작거나 같은 경우, 즉, Nrepeat≤Nldpc_parity인 경우, 리피티션부(120)는 도 4와 같이, LDPC 패리티 비트들 (p0,p1,...,)의 처음 Nrepeat 개의 비트들(p0,p1,...,)을 LDPC 정보어 비트들 (i0,i1,...,) 다음에 부가할 수 있다. For example, if N repeat is less than or equal to N ldpc_parity , that is, if N repeat ≤N ldpc_parity , the
이에 따라, LDPC 패리티 비트들 중 첫 번째 비트부터 Nrepeat 번째 비트는 LDPC 정보어 비트들 이후에 부가되며, (i0,i1,...,,p0,p1,...,,p0,p1,...,)와 같이 Nrepeat 개의 비트들은 LDPC 정보어 비트들과 LDPC 패리티 비트들 사이에 위치하게 된다.Accordingly, from the first bit of the LDPC parity bits, the N repeat bit is added after the LDPC information bits, and (i 0 , i 1 , ..., , p 0 , p 1 , ..., , p 0 , p 1 , ..., ), N repeat bits are located between LDPC information bits and LDPC parity bits.
한편, 리피티션부(120)는 리피티션 비트들의 수 Nrepeat가 LDPC 패리티 비트들의 수보다 큰 경우, LDPC 패리티 비트들 전체를 LDPC 정보어 비트들 이후에 부가하고, 첫 번째 LDPC 패리티 비트부터 리피티션 비트들의 수에서 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 먼저 부가된 LDPC 패리티 비트들 이후에 추가적으로 부가할 수 있다.If the number of repetition bits N repeat is greater than the number of LDPC parity bits, the
이 경우, 리피티션부(120)는 리피티션된 LDPC 패리티 비트들이 아닌, 기존의 LDPC 패리티 비트들 즉, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 첫 번째 비트부터 리피티션 비트들의 수에서 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 먼저 부가된 LDPC 패리티 비트들 이후에 추가적으로 부가할 수 있다. In this case, the
예를 들어, Nrepeat이 Nldpc_parity 보다 큰 경우, 즉, Nrepeat>Nldpc_parity인 경우, 리피티션부(120)는 도 5와 같이, Nldpc_parity 개의 LDPC 패리티 비트들 (p0,p1,...,)을 LDPC 정보어 비트들 (i0,i1,...,) 다음에 부가한다. 그리고, 리피티션부(120)는 LDPC 패리티 비트들의 처음 Nrepeat-Nldpc_parity 개의 비트들 (p0,p1,...,)을 먼저 부가된 Nldpc_parity 개의 LDPC 패리티 비트들 다음에 추가적으로 부가할 수 있다.For example, when N repeat is greater than N ldpc_parity , that is, when N repeat > N ldpc_parity , the
이에 따라, Nldpc_parity 개의 LDPC 패리티 비트들이 LDPC 정보어 비트들 이후에 부가되고, LDPC 패리티 비트들의 처음 Nrepeat-Nldpc_parity 개의 비트들이 먼저 부가된 Nldpc_parity 개의 LDPC 패리티 비트들 이후에 추가적으로 부가될 수 있다.Accordingly, N ldpc_parity LDPC parity bits are added after the LDPC information bits, and the first N repeat -N ldpc_parity bits of the LDPC parity bits may be additionally added after N ldpc_parity LDPC parity bits added first .
따라서, (i0,i1,...,,p0,p1,...,,p0,p1,...,,p0,p1,...,)와 같이 Nrepeat 개의 비트들은 LDPC 정보어 비트들과 LDPC 패리티 비트들 사이에 위치하게 된다.Therefore, (i 0 , i 1 , ..., , p 0 , p 1 , ..., , p 0 , p 1 , ..., , p 0 , p 1 , ..., ), N repeat bits are located between LDPC information bits and LDPC parity bits.
한편, 상술한 예에서는 리피티션 비트들이 LDPC 정보어 비트들 이후에 부가되는 것으로 설명하였으나, 이는 일 예에 불과하며, 리피티션부(120)는 리피티션 비트들을 LDPC 패리티 비트들 이후에 부가할 수도 있다.In the above example, the repetition bits are added after the LDPC information bits. However, this is merely an example, and the
예를 들어, Nrepeat이 Nldpc _parity 보다 작거나 같은 경우, 즉, Nrepeat≤Nldpc _parity인 경우, 리피티션부(120)는 도 6과 같이, LDPC 패리티 비트들 (p0,p1,...,)의 처음 Nrepeat 개의 비트들 (p0,p1,...,)을 LDPC 패리티 비트들 다음에 부가할 수 있다. For example, if N is less than the repeat is N ldpc _parity or equal to, that is, when the N repeat ≤N ldpc _parity, repetition syeonbu 120 s, LDPC parity bit as shown in Fig. 6 (p 0, p 1, ..., The first N repeat bits (p 0 , p 1 , ..., ) May be added after the LDPC parity bits.
이에 따라, LDPC 패리티 비트들 중 첫 번째 비트부터 Nrepeat 번째 비트는 LDPC 패리티 비트들 이후에 부가되며, (i0,i1,...,,p0,p1,...,,p0,p1,...,)와 같이 Nrepeat 개의 비트들은 LDPC 패리티 비트들 이후에 위치하게 된다.Accordingly, from the first bit of the LDPC parity bits, the N repeat bit is added after the LDPC parity bits, and (i 0 , i 1 , ..., , p 0 , p 1 , ..., , p 0 , p 1 , ..., ), N repeat bits are located after the LDPC parity bits.
그리고, Nrepeat이 Nldpc _parity 보다 큰 경우, 즉, Nrepeat>Nldpc _parity인 경우, 리피티션부(120)는 도 7과 같이, Nldpc _parity 개의 LDPC 패리티 비트들 (p0,p1,...,)을 LDPC 패리티 비트들 다음에 부가할 수 있다. 그리고, 리피티션부(120)는 LDPC 패리티 비트들의 처음 Nrepeat-Nldpc _parity 개의 비트들 (p0,p1,...,)을 먼저 부가된 Nldpc _parity 개의 LDPC 패리티 비트들 다음에 추가적으로 부가할 수 있다.And, N repeat is greater than N ldpc _parity, i.e., N repeat> N ldpc case _parity is, repetition syeonbu 120 as shown in Figure 7, the N ldpc _parity one LDPC parity bits (p 0, p 1, ..., ) May be added after the LDPC parity bits. Then, the error correcting
이에 따라, Nldpc _parity 개의 LDPC 패리티 비트들이 LDPC 패리티 비트들 이후에 부가되고, LDPC 패리티 비트들의 처음 Nrepeat-Nldpc _parity 개의 비트들이 먼저 부가된 Nldpc_parity 개의 LDPC 패리티 비트들 이후에 추가적으로 부가될 수 있다. Accordingly, N ldpc _parity one LDPC parity bits are added after the LDPC parity bits, the first N bits of the LDPC _parity repeat -N ldpc parity bits can be added after the addition of the first portion of the N ldpc_parity LDPC parity bit have.
따라서, (i0,i1,...,,p0,p1,...,,p0,p1,...,, p0,p1,...,)와 같이 Nrepeat 개의 비트들은 LDPC 패리티 비트들 이후에 위치하게 된다.Therefore, (i 0 , i 1 , ..., , p 0 , p 1 , ..., , p 0 , p 1 , ..., , p 0 , p 1 , ..., ), N repeat bits are located after the LDPC parity bits.
또한, 상술한 예에서는 앞 부분의 LDPC 패리티 비트들이 리피티션되는 것으로 설명하였으나, 이는 일 예에 불과하며, 리피티션부(120)는 LDPC 패리티 비트들의 뒤 부분 또는 중간 부분 등 다양한 위치에 존재하는 LDPC 패리티 비트들이 리피티션될 수도 있다.In the above example, the LDPC parity bits in the previous part are repetition, but this is merely an example. The
또한, 상술한 예에서는 LDPC 패리티 비트들이 리피티션되는 것으로 설명하였으나, 이는 일 예에 불과하며, LDPC 정보어 비트들 또는 LDPC 정보어 비트들의 일부 및 LDPC 패리티 비트들의 나머지 일부가 리피티션될 수도 있다.Also, although LDPC parity bits are described as being repetition in the above example, this is merely an example, and it is also possible that the LDPC information bits or a part of the LDPC information bits and the remaining part of the LDPC parity bits may be repaired have.
또한, 상술한 예에서는 리피티션이 수행되는 것으로 설명하였으나, 이는 일 예에 불과하며, 경우에 따라 리피티션은 생략될 수도 있다. 이 경우, LDPC 코드워드에 포함된 LDPC 패리티 비트들의 일부 비트들은 후술할 펑처링부(130)에 의해 펑처링될 수 있다. 한편, 리피티션 수행 여부는 시스템에 따라 기설정되어 있을 수 있다.In the above-described example, repetition is described. However, this is merely an example, and repetition may be omitted in some cases. In this case, some bits of the LDPC parity bits included in the LDPC codeword can be punctured by the
펑처링부(130)는 LDPC 패리티 비트들에서 일부 비트들을 펑처링할 수 있다. 그리고, 펑처링부(130)는 펑처링된 LDPC 코드워드(즉, 펑처링된 비트들을 제외한 나머지 LDPC 코드워드 비트들을 의미하며, 펑처링 이후의 LDPC 코드워드라 할 수도 있다)를 출력한다. 또한, 펑처링부(130)는 펑처링된 LDPC 패리티 비트들에 대한 정보(가령, 펑처링되는 비트들의 개수 및 위치 등)를 부가 패리티 생성부(140)로 제공할 수 있다.The
여기에서, 펑처링(puncturing)은 LDPC 패리티 비트들의 일부 비트들을 수신 장치(200)로 전송하지 않는 것을 의미한다. 이 경우, 펑처링부(130)는 펑처링되는 LDPC 패리티 비트들을 제거하거나, LDPC 코드워드에서 펑처링되는 LDPC 패리티 비트들을 제외하고 나머지 비트들만을 출력할 수 있다. Here, puncturing means that some bits of the LDPC parity bits are not transmitted to the receiving
구체적으로, 펑처링부(130)는 LDPC 패리티 비트들에서 특정한 수의 비트들(가령, Npunc 개의 비트들)을 펑처링할 수 있다. 여기에서, 펑처링되는 비트들의 수Npunc는 0 또는 양의 정수로, 시스템에 따라 다양한 값을 가질 수 있다. 한편, Npunc=0이라는 것은 펑처링이 수행되지 않는 것을 의미한다.In particular, the
이 경우, 펑처링부(130)는 LDPC 패리티 비트들의 뒷 부분에서 특정한 수의 비트들을 펑처링할 수 있다. 예를 들어, 펑처링부(130)는 마지막 LDPC 패리티 비트부터 Npunc 개의 LDPC 패리티 비트들을 펑처링할 수 있다. In this case, the
하지만, 이는 일 예일 뿐이며, LDPC 패리티 비트들에서 비트들이 펑처링되는 위치는 다양하게 변경될 수 있다. 예를 들어, 펑처링부(130)는 LDPC 패리티 비트들의 앞 부분 또는 중간 부분에서 Npunc 개의 LDPC 패리티 비트들을 펑처링하거나, LDPC 패리티 비트들에서 특정한 위치에 존재하는 Npunc 개의 LDPC 패리티 비트들을 펑처링할 수도 있다.However, this is merely an example, and the positions where the bits are punctured in the LDPC parity bits may be varied. For example, the
또한, 펑처링부(130)는 리피티션이 수행된 경우, 리피티션 비트들이 아닌, 인코딩에 의해 생성된 LDPC 패리티 비트에서 특정한 수의 비트들을 펑처링할 수 있다.In addition, when repetition is performed, the
예를 들어, 리피티션이 수행되어, Nrepeat 개의 LDPC 패리티 비트들이 LDPC 정보어 비트들 이후에 부가된 경우를 가정한다.For example, assume that repetition is performed so that N repeat LDPC parity bits are added after LDPC information word bits.
이 경우, 리피티션 이후의 LDPC 코드워드는 리피티션 비트들 및 인코딩에 의해 생성된 LDPC 패리티 비트들을 포함한다. 이때, 리피티션 비트들은 LDPC 정보어 비트들과 인코딩에 의해 생성된 LDPC 패리티 비트들 사이에 위치하게 되므로, 펑처링부(130)는 인코딩에 의해 생성된 LDPC 패리티 비트들 중 마지막 LDPC 패리티 비트부터 Npunc 개의 비트들을 펑처링할 수 있다.In this case, the LDPC codeword after the repetition includes the repetition bits and the LDPC parity bits generated by the encoding. At this time, since the repetition bits are located between the LDPC information bits and the LDPC parity bits generated by the encoding, the
이하에서는 첨부된 도 8 내지 도 11을 참조하여, 본 발명의 다양한 실시 예에 따라 펑처링 방법을 설명하도록 한다. 도 8 내지 도 11에서는 도 4 내지 도 8과 같이 리피티션이 수행된 경우의 펑처링 방법을 설명하기 위한 예들이다.Hereinafter, a puncturing method according to various embodiments of the present invention will be described with reference to FIGS. 8 to 11 attached hereto. FIGS. 8 to 11 are examples for explaining a puncturing method when repetition is performed as shown in FIGS. 4 to 8. FIG.
먼저, 도 4와 같이, 리피티션에 의해 Nrepeat 개의 LDPC 패리티 비트들이 LDPC 정보어 비트들 이후에 부가된 경우를 가정한다. First, as shown in FIG. 4, it is assumed that N repeat LDPC parity bits are added after LDPC information word bits by repetition.
이 경우, 도 8과 같이, 펑처링부(130)는 Nldpc _parity 개의 LDPC 패리티 비트들의 마지막 Npunc 개의 비트들을 펑처링할 수 있다 . In this case, as shown in Figure 8, the
이에 따라, 리피티션 및 펑처링 이후의 LDPC 코드워드(즉, 펑처링된 비트들을 제외하고, 리피티션된 비트들을 포함하는 LDPC 코드워드 비트들)에서 LDPC 패리티 비트들은 Nldpc _parity+Nrepeat-Npunc 개이고, (p0,p1,...,,p0,p1,...,)와 나타낼 수 있다.Thus, the repetition and puncturing after the LDPC codeword (excluding i.e., punctured bits, and error correcting capability of the LDPC code including an illustration bit word bits) in the LDPC parity bits N ldpc _parity + N repeat -N punc numbered, (p 0, p 1, ..., , p 0 , p 1 , ..., ).
다른 예로, 도 5와 같이, 리피티션에 의해 Nrepeat 개의 LDPC 패리티 비트들이 LDPC 정보어 비트들 이후에 부가된 경우를 가정한다. As another example, it is assumed that N repeat LDPC parity bits are added after LDPC information word bits by repetition, as in FIG.
이 경우, 도 9와 같이, 펑처링부(130)는 Nldpc _parity 개의 LDPC 패리티 비트들의 마지막 Npunc 개의 비트들을 펑처링할 수 있다. In this case, as shown in Figure 9, the
이에 따라, 리피티션 및 펑처링 이후의 LDPC 코드워드에서 LDPC 패리티 비트들은 Nldpc _parity+Nrepeat-Npunc 개이고, (p0,p1,...,,p0,p1,...,,p0,p1,...,)와 같이 나타낼 수 있다.In this way, repetition and popping from the LDPC codeword after the punctured LDPC parity bit are N + N ldpc _parity repeat -N punc numbered, (p 0, p 1, ..., , p 0 , p 1 , ..., , p 0 , p 1 , ..., ).
또 다른 예로, 도 6과 같이, 리피티션에 의해 Nrepeat 개의 LDPC 패리티 비트들이 LDPC 패리티 비트들 이후에 부가된 경우를 가정한다. As another example, it is assumed that N repeat LDPC parity bits are added after LDPC parity bits by repetition, as shown in FIG.
이 경우, 도 10과 같이, 펑처링부(130)는 Nldpc _parity 개의 LDPC 패리티 비트들의 마지막 Npunc 개의 비트들을 펑처링할 수 있다. In this case, as shown in FIG. 10, the
이에 따라, 리피티션 및 펑처링 이후의 LDPC 코드워드에서 LDPC 패리티 비트들은 Nldpc _parity+Nrepeat-Npunc 개이고, (p0,p1,...,,p0,p1,...,)와 같이 나타낼 수 있다.In this way, repetition and popping from the LDPC codeword after the punctured LDPC parity bit are N + N ldpc _parity repeat -N punc numbered, (p 0, p 1, ..., , p 0 , p 1 , ..., ).
또 다른 예로, 도 7과 같이, 리피티션에 의해 Nrepeat 개의 LDPC 패리티 비트들이 LDPC 패리티 비트들 이후에 부가된 경우를 가정한다. As another example, it is assumed that N repeat LDPC parity bits are added after LDPC parity bits by repetition, as shown in FIG.
이 경우, 도 11과 같이, 펑처링부(130)는 Nldpc _parity 개의 LDPC 패리티 비트들의 마지막 Npunc 개의 비트들을 펑처링할 수 있다. In this case, as shown in Figure 11, the
이에 따라, 리피티션 및 펑처링 이후의 LDPC 코드워드에서 LDPC 패리티 비트들은 Nldpc _parity+Nrepeat-Npunc 개이고, (p0,p1,...,,p0,p1,...,,p0,p1,...,)와 같이 나타낼 수 있다.In this way, repetition and popping from the LDPC codeword after the punctured LDPC parity bit are N + N ldpc _parity repeat -N punc numbered, (p 0, p 1, ..., , p 0 , p 1 , ..., , p 0 , p 1 , ..., ).
부가 패리티 생성부(140)는 패리티 비트들에서 적어도 일부의 비트들을 선택하여, 이전 프레임에서 전송되는 부가 패리티 비트들(additional parity bits)을 생성한다.The additional
이 경우, 부가 패리티 비트들은 현재 프레임에서 전송되는 정보어 비트들에 기초하여 생성된 LDPC 패리티 비트들 중에서 선택되어 현재 프레임 이전의 프레임 즉, 이전 프레임을 통해 수신 장치(200)로 전송될 수 있다. In this case, the additional parity bits may be selected from the LDPC parity bits generated based on the information bits transmitted in the current frame, and may be transmitted to the receiving
구체적으로, 정보어 비트들을 포함하는 입력 비트들은 LDPC 인코딩되고, LDPC 인코딩에 의해 생성된 LDPC 패리티 비트들이 입력 비트들에 부가되어 LDPC 코드워드를 구성한다. Specifically, input bits comprising information word bits are LDPC encoded and LDPC parity bits generated by LDPC encoding are added to the input bits to construct an LDPC codeword.
그리고, LDPC 코드워드에 대해 리피티션, 펑처링 및 쇼트닝이 수행되고, 리피티션, 펑처링 및 쇼트닝된 LDPC 코드워드(repeated/punctured/shortened LDPC codewrod)(즉, 펑처링된 비트들 및 쇼트닝된 비트들을 제외하고, 리피티션된 비트들을 포함하는 LDPC 코드워드 비트들로, 리피티션, 펑처링 및 쇼트닝 이후의 LDPC 코드워드라 할 수도 있다)은 프레임에 맵핑되어 수신 장치(200)로 전송될 수 있다. 다만, 리피티션이 수행되지 않는 경우, 펑처링 및 쇼트닝 이후의 LDPC 코드워드가 프레임에 맵핑되어 수신 장치(200)로 전송될 수 있다.Repetition, puncturing, and shortening are performed on the LDPC codeword, and repetition, puncturing and shortened LDPC codewords (i.e., punctured and shortened LDPC codewords) The LDPC codeword bits including repeated bits may be referred to as LDPC codewords after repetition, puncturing, and shortening), are mapped to a frame and transmitted to the receiving
이 경우, 각 프레임마다 그에 대응되는 정보어 비트들이 LDPC 패리티 비트들과 함께 각 프레임을 통해 수신 장치(200)로 전송될 수 있다. 예를 들어, i-1 번째 프레임에 대응되는 정보어 비트들을 포함하는 리피티션, 펑처링 및 쇼트닝 이후의 LDPC 코드워드는 i-1 번째 프레임에 맵핑되어 수신 장치(200)로 전송되고, i 번째 프레임에 대응되는 정보어 비트들을 포함하는 리피티션, 펑처링 및 쇼트닝 이후의 LDPC 코드워드는 i 번째 프레임에 맵핑되어 수신 장치(200)로 전송될 수 있다.In this case, the information bits corresponding to each frame may be transmitted to the
한편, 부가 패리티 생성부(140)는 i 번째 프레임에서 전송되는 정보어 비트들에 기초하여 생성된 LDPC 패리티 비트들에서 적어도 일부 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. Meanwhile, the additional
구체적으로, 정보어 비트들이 LDPC 인코딩되어 생성된 LDPC 패리티 비트들에서 일부 비트들은 펑처링되어 수신 장치(200)로 전송되지 않는다. 이 경우, 부가 패리티 생성부(140)는 i 번째 프레임에서 전송되는 정보어 비트들이 LDPC 인코딩되어 생성된 LDPC 패리티 비트들 중 펑처링된 LDPC 패리티 비트들에서 일부 또는 전체 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.Specifically, in the LDPC parity bits generated by LDPC-encoding the information bits, some bits are not punctured and not transmitted to the receiving
또한, 부가 패리티 생성부(140)는 i 번째 프레임을 통해 수신 장치(200)로 전송되는 LDPC 패리티 비트들에서 적어도 일부 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.The additional
구체적으로, i 번째 프레임에 맵핑되는 리피티션, 펑처링 및 쇼트닝 이후의 LDPC 코드워드에 포함된 LDPC 패리티 비트들은 인코딩에 의해 생성된 LDPC 패리티 비트들 및 리피티션된 LDPC 패리티 비트들로 구성될 수 있다.Specifically, the LDPC parity bits included in the LDPC codeword after repetition, puncturing and shortening mapped to the i < th > frame are composed of LDPC parity bits generated by encoding and repaired LDPC parity bits .
이 경우, 부가 패리티 생성부(140)는 i 번째 프레임에 맵핑되는 리피티션, 펑처링 및 쇼트닝 이후의 LDPC 코드워드에 포함된 LDPC 패리티 비트들에서 적어도 일부 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. 다만, 리피티션이 생략되는 경우, 부가 패리티 생성부(140)는 i 번째 프레임에 맵핑되는 펑처링 및 쇼트닝 이후의 LDPC 코드워드에 포함된 LDPC 패리티 비트들에서 적어도 일부 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. In this case, the additional
한편, 부가 패리티 비트들은 i 번째 프레임 이전의 프레임 즉, i-1 번째 프레임을 통해 수신 장치(200)로 전송될 수 있다. On the other hand, the additional parity bits may be transmitted to the receiving
즉, 송신 장치(100)는 i-1 번째 프레임에 대응되는 정보어 비트들을 포함하는 리피티션, 펑처링 및 쇼트닝 이후의 LDPC 코드워드뿐만 아니라, i 번째 프레임에서 전송되는 정보어 비트들에 기초하여 생성된 LDPC 패리티 비트들에서 선택되어 생성된 부가 패리티 비트들을 i-1 번째 프레임을 통해 수신 장치(200)로 전송할 수 있다. That is, the transmitting
한편, 상술한 예에서는 부가 패리티 비트들이 i-1 번째 프레임을 통해 수신 장치(200)로 전송되는 것으로 설명하였으나 이는 일 예일 뿐이며, 부가 패리티 비트들은 시간적으로 i 번째 프레임 이전에 전송되는 프레임을 통해 수신 장치(200)로 전송될 수도 있다.In the above example, the additional parity bits are transmitted to the receiving
이하에서는 LDPC 패리티 비트들에서 비트들을 선택하여 부가 패리티 비트들을 생성하는 방법에 대해 구체적으로 설명하도록 한다.Hereinafter, a method of generating additional parity bits by selecting bits from LDPC parity bits will be described in detail.
부가 패리티 생성부(140)는 LDPC 코드워드 비트들에서 부가 패리티 비트들의 수만큼을 선택하여 부가 패리티 비트들을 생성할 수 있다. The additional
구체적으로, 부가 패리티 생성부(140)는 펑처링된 LDPC 패리티 비트들의 수가 부가 패리티 비트들의 수보다 크거나 같은 경우, 펑처링된 LDPC 패리티 비트들 중 첫 비트부터 부가 패리티 비트들의 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.Specifically, when the number of punctured LDPC parity bits is equal to or greater than the number of additional parity bits, the
한편, 부가 패리티 생성부(140)는 펑처링된 LDPC 패리티 비트들의 수가 부가 패리티 비트들의 수보다 작은 경우, 펑처링된 모든 비트들을 먼저 선택하고, LDPC 코드워드에 포함된 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 추가적으로 선택하여 부가 패리티 비트들을 생성할 수 있다. If the number of punctured LDPC parity bits is smaller than the number of additional parity bits, the supplementary
구체적으로, 리피티션이 수행되지 않은 경우, LDPC 코드워드에 포함된 LDPC 패리티 비트들은 인코딩에 의해 생성된 LDPC 패리티 비트들이다.Specifically, when repetition is not performed, the LDPC parity bits included in the LDPC codeword are LDPC parity bits generated by encoding.
이 경우, 부가 패리티 생성부(140)는 펑처링된 모든 LDPC 패리티 비트들을 먼저 선택하고, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 추가적으로 선택하여 부가 패리티 비트들을 생성할 수 있다.In this case, the
여기에서, 인코딩에 의해 생성된 LDPC 패리티 비트들은 펑처링되지 않는 LDPC 패리티 비트들과 펑처링되는 LDPC 패리티 비트들로 구분된다. 따라서, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 마지막 비트부터 펑처링이 수행되는 경우, 부가 패리티 비트들을 위해, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 첫 번째 비트부터 비트들을 선택할 때, 펑처링되지 않는 LDPC 패리티 비트들 및 펑처링되는 LDPC 패리티 비트들 순으로 비트들이 선택될 수 있다. Here, the LDPC parity bits generated by encoding are divided into non-punctured LDPC parity bits and punctured LDPC parity bits. Thus, when puncturing is performed from the last one of the LDPC parity bits generated by encoding, for additional parity bits, when selecting bits from the first of the LDPC parity bits generated by encoding, they are not punctured The bits may be selected in order of non-LDPC parity bits and punctured LDPC parity bits.
한편, 리피티션이 수행된 경우, 부가 패리티 생성부(140)는 리피티션 이후의 LDPC 코드워드에서 적어도 일부 비트들을 선택하여, 부가 패리티 비트들을 생성할 수 있다.On the other hand, when repetition is performed, the additional
상술한 바와 같이, 리피티션 이후의 LDPC 코드워드의 LDPC 패리티 비트들은 리피티션된 비트들 및 인코딩에 의해 생성된 LDPC 패리티 비트들을 포함한다. 이 경우, 부가 패리티 생성부(140)는 펑처링된 모든 LDPC 패리티 비트들을 먼저 선택하고, 리피티션된 비트들 및 인코딩에 의해 생성된 LDPC 패리티 비트들 중 리피티션된 비트들의 첫 번째 비트부터 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 추가적으로 선택하여 부가 패리티 비트들을 생성할 수 있다.As described above, the LDPC parity bits of the LDPC codeword after the repetition include the repeated bits and the LDPC parity bits generated by the encoding. In this case, the additional
이에 따라, 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 추가적으로 선택할 때, 리피티션된 비트들이 먼저 선택되고, 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수가 리피티션 비트들의 수를 초과하는 경우 인코딩에 의해 생성된 LDPC 패리티 비트들에서 비트들이 추가로 선택될 수 있다. 이 경우, 인코딩에 의해 생성된 LDPC 패리티 비트들에서 추가로 선택되는 경우, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 첫 번째 비트부터 선택될 수 있다.Thus, when additionally selecting as many bits as the number of additional parity bits minus the number of punctured LDPC parity bits, the repeated bits are first selected and the number of punctured LDPC parity bits The number of bits in the LDPC parity bits generated by encoding can be further selected if the number of repetition bits exceeds the number of repetition bits. In this case, if further selection is made in the LDPC parity bits generated by the encoding, the first bit of the LDPC parity bits generated by encoding can be selected.
여기에서, 상술한 바와 같이 리피티션 비트들은 리피티션 이후의 LDPC 코드워드 내에서 다양한 위치에 위치할 수 있다.Here, as described above, the repetition bits may be located at various positions within the LDPC code word after repetition.
이하에서는, 리피티션된 LDPC 패리티 비트들은 LDPC 정보어 비트들 및 LDPC 패리티 비트들 사이에 위치하는 경우를 일 예로, 리피티션이 수행된 경우의 부가 패리티 생성 방법에 대해 보다 구체적으로 설명하도록 한다.Hereinafter, a case where the repeated LDPC parity bits are located between the LDPC information bits and the LDPC parity bits will be described in more detail as an additional parity generation method in the case where repetition is performed .
이 경우, 리피티션부(120)는 LDPC 패리티 비트들의 적어도 일부 비트들을 선택하여, LDPC 정보어 비트들 이후에 부가하고, 펑처링부(130)는 리피티션된 LDPC 패리티 비트들 및 인코딩에 의해 생성된 LDPC 패리티 비트들을 포함하는 LDPC 패리티 비트들 중 마지막 비트부터 펑처링을 수행하는 경우를 가정한다.In this case, the
이 경우, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수 및 펑처링된 LDPC 패리티 비트들의 수에 기초하여 입력 비트들 즉, LDPC 정보어 비트들 이후에 부가된 리피티션된 비트들에서 적어도 일부 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.In this case, the
구체적으로, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 펑처링된 LDPC 패리티 비트들의 수보다 큰 경우, 펑처링된 LDPC 패리티 비트들 전체를 선택하고, 리피티션된 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.Specifically, when the number of additional parity bits is greater than the number of punctured LDPC parity bits, the additional
여기에서, 부가 패리티 비트들을 위해, 리피티션된 LDPC 패리티 비트들 중 첫 번째 비트부터 비트들을 선택할 때, 리피티션 비트들 및 인코딩에 의해 생성된 LDPC 패리티 비트들 순으로 선택될 수 있다. 또한, 인코딩에 의해 생성된 LDPC 패리티 비트들 내에서는, 펑처링되지 않는 LDPC 패리티 비트들 및 펑처링되는 LDPC 패리티 비트들 순으로 비트들이 선택될 수 있다. Here, for the additional parity bits, when the bits are selected from the first one of the repaired LDPC parity bits, they can be selected in order of repetition bits and LDPC parity bits generated by encoding. Also, within the LDPC parity bits generated by encoding, bits can be selected in the order of non-punctured LDPC parity bits and punctured LDPC parity bits.
이와 같이, 특정한 수만큼의 부가 패리티 비트들을 생성할 때, 펑처링된 비트들을 가장 우선적으로 선택한다. 그리고, 펑처링된 비트들을 초과하는 개수만큼의 비트들을 선택하는 경우, 리피티션 수행 여부에 따라, LDPC 패리티 비트들 중에서 리피티션된 LDPC 패리티 비트들을 우선적으로 선택하게 된다.As such, when generating a specific number of additional parity bits, the punctured bits are selected most preferentially. When a number of bits exceeding the punctured bits are selected, the repaired LDPC parity bits are preferentially selected among the LDPC parity bits according to repetition.
이와 같이, 펑처링 비트들을 우선적으로 선택하여, 현재 프레임에서 전송되지 않는 패리티 비트들을 부가 패리티 비트들로서 전송한다는 점에서, 부호 이득을 얻을 수 있다. 그리고, 펑처링 비트들을 선택한 이후에는, 리피티션된 LDPC 패리티 비트들을 선택함으로써 LDPC 패리티 비트들 중에서 더 중요한 비트들을 선택하게 된다. 또한, LDPC 패리티 비트들은 펑처링 순서에 따라 정렬되어 있기 때문에, 패리티 비트들의 우선 순위에 따라 정렬되어 있는 것으로 생각할 수 있다. 한편, 펑처링 순서와 관려된 구체적인 내용은 후술하기로 한다.In this manner, puncturing bits are preferentially selected, and parity bits that are not transmitted in the current frame are transmitted as additional parity bits, thereby obtaining a code gain. Then, after selecting the puncturing bits, the more significant bits of the LDPC parity bits are selected by selecting the repeated LDPC parity bits. In addition, since the LDPC parity bits are arranged according to the puncturing order, it can be considered that the LDPC parity bits are arranged according to the priority of the parity bits. Meanwhile, the puncturing order and the concrete contents involved will be described later.
한편, 펑처링이 수행되지 않는 경우, 즉, 펑처링되는 비트들의 수가 0인 경우, 부가 패리티 생성부(140)는 리피티션 수행 여부에 따라 LDPC 코드워드 또는 리피티션 이후의 LDPC 코드워드에서 적어도 일부 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.On the other hand, when puncturing is not performed, that is, when the number of bits to be punctured is 0, the additional
먼저, 리피티션이 수행되지 않는 경우, 부가 패리티 생성부(140)는 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. 즉, 펑처링된 비트들의 수가 0이고, 리피티션된 비트들의 수가 0인 경우, 부가 패리티 생성부(140)는 인코딩에 의해 생성된 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. First, if repetition is not performed, the additional
한편, 리피티션이 수행된 경우, 부가 패리티 생성부(140)는 리피티션된 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. On the other hand, when repetition is performed, the additional
즉, 펑처링된 비트들의 수가 0이고, 리피티션된 비트들의 수가 1 이상인 경우, 부가 패리티 생성부(140)는 리피티션된 비트들 및 인코딩에 의해 생성된 LDPC 패리티 비트들 중 리피티션된 비트들의 첫 번째 비트부터 부가 패리티 비트들의 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. That is, when the number of punctured bits is 0 and the number of repeated bits is 1 or more, the additional
이에 따라, 리피티션된 비트들이 먼저 선택되고, 부가 패리티 비트들의 수에서 리피티션된 비트들의 수를 뺀 수가 리피티션 비트들의 수를 초과하는 경우 인코딩에 의해 생성된 LDPC 패리티 비트들에서 비트들이 추가로 선택될 수 있다. 이 경우, 인코딩에 의해 생성된 LDPC 패리티 비트들에서 추가로 선택되는 경우, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 첫 번째 비트부터 선택될 수 있다.Thus, if the repeated bits are first selected and the number of additional parity bits minus the number of repeated bits exceeds the number of repetition bits, then bits in the LDPC parity bits generated by encoding May be further selected. In this case, if further selection is made in the LDPC parity bits generated by the encoding, the first bit of the LDPC parity bits generated by encoding can be selected.
한편, 펑처링된 비트들의 의미는 정보어 비트들이 전송되는 프레임에서 전송될 펑처링된 LDPC 코드워드에 기반하여 비트들이 펑처링되었다는 것을 말한다.On the other hand, the meaning of the punctured bits means that the bits are punctured based on the punctured LDPC codeword to be transmitted in the frame in which the information bits are transmitted.
한편, 상술한 예에서 첫 번째 리피티션 비트부터 (NAP-Npunc) 개의 비트들을 추가적으로 선택하는 것으로 설명하였으나 이는 일 예에 불과하다. 즉, 부가 패리티 생성부(140)는 첫 번째 정보어 비트 또는 첫 번째 아우터 인코딩된 비트부터 (NAP-Npunc) 개의 비트들을 추가적으로 선택할 수도 있다.Meanwhile, in the above-described example, bits are additionally selected from the first repetition bit to (N AP -N punc ), but this is merely an example. That is, the additional
또한, LDPC 패리티 비트들이 펑처링되지 않는 경우, 부가 패리티 생성부(140)는 리피티션 비트들 중 첫 번째 비트부터 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수도 있다.In addition, when the LDPC parity bits are not punctured, the
이하에서는 부가 패리티 비트들의 수를 산출하는 방법에 대해 설명하도록 한다.Hereinafter, a method of calculating the number of additional parity bits will be described.
먼저, 부가 패리티 생성부(140)는 하기의 수학식 8에 기초하여 부가 패리티 비트들의 임시적인 수 NAP_temp를 산출한다.First, the additional
여기에서, 이다.From here, to be.
그리고, Nldpc_parity는 LDPC 패리티 비트들의 수, Npunc는 펑처링된 LDPC 패리티 비트들의 수이다. 그리고, Nouter는 아우터 인코딩된 비트들의 수이다. 여기에서, 아우터 인코딩이 BCH 코드에 의해 수행되는 경우, Nouter는 BCH 인코딩된 비트들의 수이다. 또한, Nrepeat는 리피티션 비트들의 수로, 리피티션이 수행되지 않는 경우 Nrepeat=0이다.N ldpc_parity is the number of LDPC parity bits, and N punc is the number of punctured LDPC parity bits. And N outer is the number of outer encoded bits. Here, when outer encoding is performed by the BCH code, N outer is the number of BCH encoded bits. Also, N repeat is the number of repetition bits, and N repeat = 0 if repetition is not performed.
이에 따라, Nldpc_parity-Npunc+Nrepeat는 정보어 비트들을 전송하는 현재 프레임에서 전송되는 LDPC 패리티 비트들의 총 수(즉, 리피티션, 펑처링 및 쇼트닝 이후의 LDPC 코드워드에 포함된 LDPC 패리티 비트들의 총 수)이고, Nouter+Nldpc_parity-Npunc+Nrepeat는 현재 프레임에서 전송되는 LDPC 코드워드 비트들의 총 수(즉, 리피티션, 펑처링 및 쇼트닝 이후의 LDPC 코드워드 비트들의 총 수)이다.Thus, N ldpc_parity -N punc + N repeat is the total number of LDPC parity bits transmitted in the current frame transmitting information bits (i.e., LDPC parity included in the LDPC codewords after repetition, puncturing, and shortening) N outer + N ldpc_parity -N punc + N repeat is the total number of LDPC codeword bits transmitted in the current frame (i.e., the total number of LDPC codeword bits after repetition, puncturing and shortening) Number).
또한, K는 리피티션, 펑처링 및 쇼트닝 이후의 LDPC 코드워드를 구성하는 비트들의 총 수의 절반에 대한 부가 패리티 비트들의 수의 비율(ratio)을 나타낸다. 여기에서, K=2인 경우, 부가 패리티 비트들의 수는 현재 프레임에서 전송되는 LDPC 코드워드 비트들의 총 수와 동일하게 된다. Also, K represents the ratio of the number of additional parity bits to half of the total number of bits constituting the LDPC codeword after repetition, puncturing and shortening. Here, when K = 2, the number of additional parity bits is equal to the total number of LDPC codeword bits transmitted in the current frame.
이와 같이, 부가 패리티 비트들의 수는 현재 프레임에서 전송되는 비트들의 총 수에 기초하여 결정될 수 있다. As such, the number of additional parity bits may be determined based on the total number of bits transmitted in the current frame.
한편, 수학식 12를 참조하면, 본 발명의 일 실시 예에서는 부가 패리티 비트들의 길이를 산출할 때, 성능과 복잡도를 모두 고려하여 펑처링 비트들, 리피티션 비트들 및 LDPC 패리티 비트들을 모두 선택한 이후에는 추가로 더 선택하지 않도록 한다. 즉, 도 12와 같이, 부가 패리티 비트들의 길이가 NAP_max(=Nldpc_parity+Npunc+Nrepeat) 보다 작거나 같아지도록 한다(즉, 부가 패리티 비트들의 길이가 NAP_max(=Nldpc_parity+Npunc+Nrepeat) 보다 크지 않도록 한다).Referring to Equation (12), when calculating the lengths of the additional parity bits, all of the puncturing bits, the repetition bits, and the LDPC parity bits are selected in consideration of both performance and complexity Do not select further afterwards. That is, as shown in FIG. 12, so that the length of the additional parity bits N AP_max (= N ldpc_parity + N punc + N repeat) less than or equal to (that is, the length of the additional parity bits N AP_max (= N ldpc_parity + N punc + N repeat ).
예를 들어, 펑처링되는 LDPC 패리티 비트들의 수는 3200이고, K=2인 경우 부가 패리티 비트들의 수는 13000(=Nouter+Nldpc_parity-Npunc=6480+9720-3200)인 경우를 가정한다. For example, assume that the number of LDPC parity bits to be punctured is 3200 and that the number of additional parity bits is 13000 (= N outer + N ldpc_parity -N punc = 6480 + 9720-3200) when K = 2 .
이 경우, 펑처링되는 LDPC 패리티 비트들의 수는 3200이므로, 부가 패리티 비트들을 위해 펑처링된 LDPC 패리티 비트들 전체를 선택하고 LDPC 패리티 비트들 전체를 선택하는 경우, 선택된 비트들의 수는 12920(=3200+9720)이 된다. 이에 따라, 별도의 제한이 없는 경우, 80 개의 비트들을 더 선택하여야 한다. 하지만, 수학식 12와 같이 부가 패리티 비트들의 최대 길이를 Nldpc_parity+Npunc+Nrepeat로 제한할 경우, 부가 패리티 비트들의 수는 12920로 제한되어 80 개의 비트들을 추가로 선택할 필요가 없게 된다.In this case, since the number of LDPC parity bits to be punctured is 3200, if all of the punctured LDPC parity bits are selected for the additional parity bits and the entire LDPC parity bits are selected, the number of selected bits is 12920 (= 3200 + 9720). Accordingly, if there are no other restrictions, 80 bits should be further selected. However, when the maximum length of the additional parity bits is limited to N ldpc_parity + N punc + N repeat as in Equation (12), the number of additional parity bits is limited to 12920 so that there is no need to further select 80 bits.
하지만, 이와 같이, 부가 패리티 비트들의 길이의 최대값을 제한하는 것은 일 예에 불과하며, 부가 패리티 비트들의 길이를 제한하지 않을 경우, 부가 패리티 비트들의 임시적인 NAP_temp는 하기의 수학식 9에 기초하여 산출될 수 있다.However, limiting the maximum value of the length of the added parity bits is only one example. If the length of the added parity bits is not limited, the temporary N AP_temp of the additional parity bits is calculated based on Equation .
이와 같이 부가 패리티 비트들의 길이를 제한하지 않을 경우, 부가 패리티 생성부(140)는 수학식 9에 기초하여 부가 패리티 비트들의 임시적인 NAP_temp를 산출할 수 있다.If the length of the added parity bits is not limited, the additional
한편, 부가 패리티 생성부(140)는 수학식 8 또는 수학식 9에 기초하여 산출된 부가 패리티 비트들의 임시적인 수 NAP_temp에 기초하여 부가 패리티 비트들의 수 NAP를 산출할 수 있다. Meanwhile, the additional
구체적으로, 부가 패리티 생성부(140)는 하기의 수학식 10에 기초하여 부가 패리티 비트들의 수 NAP를 산출할 수 있다. Specifically, the additional
이와 같이, 부가 패리티 비트들의 수는 수학식 8 또는 수학식 9에 기초하여 산출된 부가 패리티 비트들의 임시적인 수 NAP_temp에 기초하여 산출될 수 있으며, 구체적으로는, 하기의 수학식 10에 기초하여 산출될 수 있다.Thus, the number of additional parity bits can be calculated based on the temporary number N AP_temp of the additional parity bits calculated based on Equation 8 or
여기에서, ηMOD는 변조 차수이다. 일 예로, QPSK(Quadrature Phase Shift Keying), 16-QAM(quadrature amplitude modulation), 64-QAM 및 256-QAM의 경우, ηMOD는 2,4,6,8이 될 수 있다. Here, η MOD is the modulation order. For example, in the case of Quadrature Phase Shift Keying (QPSK), quadrature amplitude modulation (16-QAM), 64-QAM and 256-QAM, eta MOD can be 2, 4,
이에 따라, 부가 패리티 비트들의 수는 변조 차수의 배수가 될 수 있다. 즉, 부가 패리티 비트들은 정보어 비트들과 별개로 변조되어 성상도 심볼들에 맵핑된다는 점에서, 수학식 10과 같이 부가 패리티 비트들의 수는 변조 차수의 배수가 되도록 결정될 수 있다.Accordingly, the number of additional parity bits can be a multiple of the modulation order. That is, the number of additional parity bits may be determined to be a multiple of the modulation order, as shown in Equation (10), in that additional parity bits are modulated separately from information word bits and are mapped to constellation symbols.
이 경우, 수학식 8은 하기의 수학식 11과 같이 나타내어지고, 수학식 9는 하기의 수학식 12와 같이 나타내어질 수도 있다.In this case, Equation (8) may be expressed as Equation (11) below, and Equation (9) may be expressed as Equation (12) below.
이들 수학식에서 α=0.5일 수 있다.In these equations, alpha = 0.5.
이와 같이, 부가 패리티 비트들의 수는 현재 프레임에서 전송되는 아우터 인코딩된 비트들의 수 및 펑처링 이후 남은 패리티 비트들의 수에 기초하여 결정될 수 있다.As such, the number of additional parity bits may be determined based on the number of outer encoded bits transmitted in the current frame and the number of remaining parity bits after puncturing.
여기에서, 리피티션이 수행되는 경우, 부가 패리티 비트들의 수는 현재 프레임에서 전송되는 아우터 인코딩된 비트들의 수, 펑처링 이후 남은 패리티 비트들의 수 및 현재 프레임에서 리피티션되는 비트들의 수에 기초하여 결정될 수 있다.Here, when repetition is performed, the number of additional parity bits is calculated based on the number of outer encoded bits transmitted in the current frame, the number of parity bits remaining after puncturing, and the number of bits reprocessed in the current frame ≪ / RTI >
이하에서는, 부가 패리티 비트들을 사용함에 따라 변경되는 부호율에 대해 설명하고자 한다.Hereinafter, a coding rate that is changed by using additional parity bits will be described.
부가 패리티 비트들을 전송하지 않았을 경우의 부호율 R을 R=(k/n)이라고 하면, 부가 패리티 비트들을 전송할 경우의 부호율 Rap는 Rap=(k/(n+NAP))이고, NAP는 K 값에 따라 1/2×n 또는 n 값을 갖게 된다. 따라서, 부가 패리티 비트들을 전송할 경우의 부호율 Rap는 Rap=(k/(3/2×n))=2/3R 또는 Rap=(k/(2×n))=1/2R이므로, 부가 패리티 비트들을 전송하지 않았을 경우 대비 부호율은 2/3 또는 1/2로 낮아지게 되어, 부호어 이득을 얻을 수 있다. 또한, 부가 패리티 비트들을 제외한 부분들과 부가 패리티 비트들을 다른 프레임에서 전송함으로써 다이버시티 이득도 얻을 수 있게 된다. 이는 입력 길이 즉, 입력되는 정보어 비트들의 길이에 상관없이 상술한 바와 같이 부호율에 변경됨에 따라, 입력 길이에 따라 부호율을 변경하게 하는 특성을 유지할 수 있게 된다.The code rate R ap for transmitting the additional parity bits is R ap = (k / (n + N AP )), where R is a code rate R when no additional parity bits are transmitted, N AP has 1/2 × n or n depending on the value of K. Therefore, the code rate R ap when transmitting the additional parity bits is R ap = (k / ( 3/2 n)) = 2 / 3R or R ap = (k / (2 n)) = , And if the additional parity bits are not transmitted, the contrast coding rate is reduced to 2/3 or 1/2 so that a codeword gain can be obtained. In addition, diversity gain can be obtained by transmitting the additional parity bits and the portions excluding the additional parity bits in another frame. This is because the code rate is changed as described above regardless of the input length, that is, the length of the input information bits, so that the characteristic of changing the code rate according to the input length can be maintained.
이하에서는 LDPC 패리티 비트들에서 비트들을 선택하여 부가 패리티 비트들을 생성하는 방법을 도면을 참조하여 보다 구체적으로 설명하도록 한다.Hereinafter, a method for selecting bits from LDPC parity bits to generate additional parity bits will be described in more detail with reference to the drawings.
부가 패리티 생성부(140)는 LDPC 패리티 비트들에서 산출된 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.The additional
구체적으로, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 펑처링된 LDPC 패리티 비트들의 수보다 작거나 같은 경우, 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 산출된 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.Specifically, when the number of additional parity bits is less than or equal to the number of punctured LDPC parity bits, the additional
예를 들어, 리피티션에 의해 LDPC 패리티 비트들이 LDPC 정보어 비트들 이후에 부가되어, 리피티션 이후의 LDPC 코드워드가 LDPC 정보어 비트들, 리피티션된 LDPC 패리티 비트들 및 인코딩에 의해 생성된 LDPC 패리티 비트들 순으로 구성되는 경우를 가정한다. For example, if the LDPC parity bits are added after the LDPC information bits by repetition so that the LDPC codeword after the repetition is updated by the LDPC information bits, the rep- resented LDPC parity bits, and the encoding And the generated LDPC parity bits are arranged in that order.
이 경우, 리피티션 이후의 LDPC 코드워드 V=(v0,v1,...,)는 도 13과 같이 나타낼 수 있다.In this case, the LDPC code word V = (v 0 , v 1 , ..., ) Can be expressed as shown in FIG.
구체적으로, NAP가 Npunc보다 작거나 같은 경우, 즉, NAP≤Npunc인 경우, 부가 패리티 생성부(140)는 도 14 및 도 15와 같이, 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. Specifically, when N AP is less than or equal to N punc , that is, when N AP ≤N punc , the additional
이에 따라, 부가 패리티 비트들을 위해, (,,...,)가 선택될 수 있다.Thus, for the additional parity bits, ( , , ..., ) May be selected.
한편, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 펑처링된 LDPC 패리티 비트들의 수보다 큰 경우, 펑처링된 LDPC 패리티 비트들 전체를 선택하고, 리피티션 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.If the number of additional parity bits is greater than the number of punctured LDPC parity bits, the additional
예를 들어, NAP가 Npunc보다 큰 경우, 즉, NAP>Npunc인 경우, 부가 패리티 생성부(140)는 도 16 및 도 17과 같이, 먼저, 펑처링된 LDPC 패리티 비트들 전체를 선택할 수 있다. 이에 따라, 먼저 (, ,...,)이 선택될 수 있다.For example, when N AP is greater than N punc , that is, when N AP > N punc , the additional
그리고, 부가 패리티 생성부(140)는 리피티션된 LDPC 패리티 비트들과 인코딩에 의해 생성된 LDPC 패리티 비트들을 포함하는 LDPC 패리티 비트들 중 첫 번째 비트부터 (NAP-Npunc) 개의 비트들을 추가적으로 선택할 수 있다. The additional
이 경우, 리피티션에 의해 LDPC 패리티 비트들이 LDPC 정보어 비트들 이후에 부가되어, 리피티션된 LDPC 패리티 비트들과 인코딩에 의해 생성된 LDPC 패리티 비트들이 순차적으로 배열되어 LDPC 패리티 비트들을 구성할 수 있다.In this case, the LDPC parity bits are added after the LDPC information bits by repetition, and the repeated LDPC parity bits and the LDPC parity bits generated by the encoding are sequentially arranged to form the LDPC parity bits .
따라서, 부가 패리티 생성부(140)는 리피티션된 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들 즉, (NAP-Npunc) 개의 비트들을 추가적으로 선택하여 부가 패리티 비트들을 생성할 수 있다. 이 경우, 리피티션된 LDPC 패리티 비트들 중 첫 번째 비트부터 선택된다는 점에서, (NAP-Npunc)가 리피티션된 LDPC 패리티 비트들의 수 Nrepeat보다 큰 경우, 인코딩에 의해 생성된 LDPC 패리티 비트들의 적어도 일부가 부가 패리티 비트들로 선택될 수도 있다.Therefore, the additional
이에 따라, (, ,...,)이 추가적으로 선택될 수 있다.Accordingly, ( , , ..., ) Can be additionally selected.
결국, 부가 패리티 비트들을 위해 (, ,...,) 및 (, ,...,)이 선택될 수 있다.Finally, for the additional parity bits ( , , ..., ) And ( , , ..., ) Can be selected.
한편, 부가 패리티 생성부(140)는 상술한 방법 외에도 다양한 방법을 이용하여 부가 패리티 비트들을 생성할 수도 있다.Meanwhile, the additional
예를 들어, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 펑처링된 LDPC 패리티 비트들의 수보다 작거나 같은 경우, 펑처링된 LDPC 패리티 비트들에서 부가 패리티 비트들의 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.For example, when the number of additional parity bits is smaller than or equal to the number of punctured LDPC parity bits, the additional
즉, NAP≤Npunc인 경우, 부가 패리티 생성부(140)는 도 18과 같이, 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. 이에 따라, 부가 패리티 비트들을 위해 (,,...,)가 선택될 수 있다.That is, when N AP? N punc , the additional
그리고, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 펑처링된 LDPC 패리티 비트들의 수보다 크지만 (인코딩에 의해 생성된 LDPC 패리티 비트들의 수 + 펑처링된 LDPC 패리티 비트들의 수)보다 작거나 같은 경우, 펑처링된 LDPC 패리티 비트들 전체를 선택하고, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.Then, the additional
즉, Npunc<NAP≤Nldpc _parity+Npunc인 경우, 부가 패리티 생성부(140)는 도 19와 같이, 먼저 펑처링된 LDPC 패리티 비트들 전체를 선택할 수 있다. 이에 따라, 먼저 (, ,...,)이 선택될 수 있다.That is, N punc <N AP ≤N ldpc _parity + N punc if the
그리고, 부가 패리티 생성부(140)는 인코딩에 의해 생성된 Nldpc _parity 개의 LDPC 패리티 비트들 중 첫 번째 비트부터 (NAP-Npunc) 개의 비트들을 추가적으로 선택할 수 있다. 이에 따라, (, ,...,)이 추가적으로 선택될 수 있다.And, the
결국, 부가 패리티 비트들을 위해 (, ,...,) 및 (, ,...,)이 선택될 수 있다.Finally, for the additional parity bits ( , , ..., ) And ( , , ..., ) Can be selected.
또한, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 (인코딩에 의해 생성된 LDPC 패리티 비트들의 수 + 펑처링된 LDPC 패리티 비트들의 수)보다 큰 경우, 펑처링된 LDPC 패리티 비트들 전체 및 인코딩에 의해 생성된 LDPC 패리티 비트들 전체를 선택하고, 리피티션된 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수에서 인코딩에 의해 생성된 LDPC 패리티 비트들의 수와 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.In addition, the additional
즉, Nldpc _parity+Npunc<NAP인 경우, 부가 패리티 생성부(140)는 도 20과 같이, 먼저 펑처링된 LDPC 패리티 비트들 전체를 선택한다. 이에 따라, 먼저, (, ,...,)이 선택될 수 있다.That is, when the N ldpc _parity punc + N <N AP,
그리고, 부가 패리티 생성부(140)는 인코딩에 의해 생성된 Nldpc _parity 개의 LDPC 패리티 비트들 전체를 추가적으로 선택한다. 이에 따라, (,,...,)이 추가적으로 선택될 수 있다.And, the additional
그리고, 부가 패리티 생성부(140)는 리피티션된 LDPC 패리티 비트들 중 첫 번째 비트부터 (NAP-Nldpc _parity-Npunc) 개의 비트들을 추가적으로 선택할 수 있다. 이에 따라, (, ,...,)가 추가적으로 선택될 수 있다.And, the
결국, 부가 패리티 비트들을 위해 (, ,...,), (,,...,) 및 (, ,...,)가 선택될 수 있다.Finally, for the additional parity bits ( , , ..., ), ( , , ..., ) And ( , , ..., ) May be selected.
한편, 상술한 에서는 리피티션에 의해 리피티션 비트들이 LDPC 정보어 비트들 다음에 부가되는 경우를 가정하였다. On the other hand, it is assumed that the repetition bits are added after the LDPC information bits by the above-described repetition.
이하에서는 다른 예로, 리피티션에 의해 리피티션 비트들이 LDPC 패리티 비트들 다음에 부가되는 경우, 부가 패리티 비트들을 생성하는 방법에 대해 설명하도록 한다. 이 경우, 인코딩에 의해 생성된 LDPC 패리티 비트들과 리피티션된 LDPC 패리티 비트들은 순차적으로 배열되어 LDPC 패리티 비트들을 구성할 수 있다. Hereinafter, as another example, a description will be given of a method of generating additional parity bits when repetition bits are added after LDPC parity bits by repetition. In this case, the LDPC parity bits generated by encoding and the repeated LDPC parity bits may be arranged in order to configure LDPC parity bits.
한편, 리피티션 이후의 LDPC 코드워드는 V=(v0,v1,...,)와 같이 나타낼 수 있다.On the other hand, the LDPC codeword after the repetition is V = (v 0 , v 1 , ..., ).
먼저, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 (펑처링된 LDPC 패리티 비트들의 수 + 리피티션된 LDPC 패리티 비트들의 수)보다 작거나 같은 경우, 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.First, the additional
이 경우, 인코딩에 의해 생성된 LDPC 패리티 비트들과 리피티션된 LDPC 패리티 비트들이 순차적으로 배열된다는 점에서, 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 비트들을 선택하는 경우, 부가 패리티 비트들의 수에 따라 리피티션된 LDPC 패리티 비트들의 적어도 일부가 부가 패리티 비트들로 선택될 수도 있다.In this case, when the bits are selected from the first bit of the punctured LDPC parity bits in that the LDPC parity bits generated by the encoding and the repeated LDPC parity bits are arranged in order, Depending on the number, at least some of the repaired LDPC parity bits may be selected as additional parity bits.
즉, NAP≤Npunc+Nrep인 경우, 부가 패리티 생성부(140)는 도 21과 같이, 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 NAP 개의 비트들을 선택할 수 있다. 이에 따라, 부가 패리티 비트들 위해 (,,...,)가 선택될 수 있다.That is, when N AP? N punc + N rep , the additional
그리고, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 (펑처링된 LDPC 패리티 비트들의 수 + 리피티션된 LDPC 패리티 비트들의 수)보다 큰 경우, 펑처링된 LDPC 패리티 비트들 전체 및 리피티션된 LDPC 패리티 비트들 전체를 선택하고, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수 및 리피티션된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.When the number of additional parity bits is larger than the number of punctured LDPC parity bits + the number of repeated LDPC parity bits, the additional
즉, NAP>Npunc+Nrep인 경우, 부가 패리티 생성부(140)는 도 22와 같이, 먼저 펑처링된 LDPC 패리티 비트들 전체 및 리피티션된 LDPC 패리티 비트들 전체를 선택할 수 있다. 이에 따라, 먼저 (,,...,)가 선택될 수 있다.That is, in the case of N AP > N punc + N rep , the additional
그리고, 부가 패리티 생성부(140)는 인코딩에 의해 생성된 Nldpc _parity 개의 LDPC 패리티 비트들 중 첫 번째 비트부터 (NAP-Npunc) 개의 비트들을 추가적으로 선택할 수 있다. 이에 따라, (,,....)가 추가적으로 선택될 수 있다.And, the
결국, 부가 패리티 비트들을 위해 (,,...,) 및 (,,....)가 선택될 수 있다.Finally, for the additional parity bits ( , , ..., ) And ( , , .... ) May be selected.
다른 예로, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 펑처링된 LDPC 패리티 비트들의 수보다 작거나 같은 경우, 펑처링된 LDPC 패리티 비트들에서 부가 패리티 비트들의 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.As another example, if the number of additional parity bits is smaller than or equal to the number of punctured LDPC parity bits, the additional
즉, NAP≤Npunc인 경우, 부가 패리티 생성부(140)는 도 23과 같이, 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. 이에 따라, 부가 패리티 비트들을 위해 (,,...,)가 선택될 수 있다.That is, when N AP? N punc , the additional
그리고, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 펑처링된 LDPC 패리티 비트들의 수보다 큰 경우, 펑처링된 LDPC 패리티 비트들 전체를 선택하고, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.When the number of additional parity bits is greater than the number of punctured LDPC parity bits, the additional
즉, NAP>Npunc인 경우, 부가 패리티 생성부(130)는 도 24와 같이, 먼저 펑처링된 LDPC 패리티 비트들 전체를 선택할 수 있다. 이에 따라, 먼저 (, ,...,)가 선택될 수 있다.That is, N AP> If N punc the additional
그리고, 부가 패리티 생성부(140)는 인코딩에 의해 생성된 Nldpc _parity 개의 LDPC 패리티 비트들 중 첫 번째 비트부터 (NAP-Npunc) 개의 비트들을 추가적으로 선택할 수 있다. 이에 따라, (, ,...,)이 추가적으로 선택될 수 있다.And, the
결국, 부가 패리티 비트들을 위해 (, ,...,) 및 (, ,...,)이 선택될 수 있다.Finally, for the additional parity bits ( , , ..., ) And ( , , ..., ) Can be selected.
한편, 이하에서는 부가 패리티 비트들을 생성하는 다른 방법에 대해 설명하도록 한다.Hereinafter, another method of generating additional parity bits will be described.
일 예로, Npunc>0이고, Nrepeat=0인 경우를 가정한다.As an example, assume that N punc > 0 and N repeat = 0.
구체적으로, 부가 패리티 생성부(140)는 펑처링된 LDPC 패리티 비트들의 수가 부가 패리티 비트들의 수보다 크거나 같은 경우, 펑처링된 LDPC 패리티 비트들에서 적어도 일부를 선택하여 부가 패리티 비트들을 생성하고, 다른 경우, 펑처링된 LDPC 패리티 비트들 전체를 선택하고, 나머지 비트들을 LDPC 코드워드에서 순차적으로 선택하여 부가 패리티 비트들을 생성할 수 있다. Specifically, if the number of punctured LDPC parity bits is greater than or equal to the number of additional parity bits, the
예를 들어, Npunc>0이고, Nrepeat=0인 경우, LDPC 코드워드는 도 25와 같이 나타낼 수 있다. 한편, 도 25에서 LDPC 정보어 비트들의 수는 Nouter이다. 즉, 제로 비트들이 패딩되지 않고 아우터 인코딩된 비트들만으로 LDPC 정보어 비트들이 구성되는 경우이다.For example, when N punc > 0 and N repeat = 0, the LDPC codeword can be represented as shown in FIG. In FIG. 25, the number of LDPC information word bits is N outer . That is, LDPC information bits are configured with only outer-encoded bits without zero bits being padded.
먼저, NAP≤Npunc인 경우, 부가 패리티 생성부(140)는 도 26과 같이 펑처링된 LDPC 패리티 비트들에서 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.First, when N AP? N punc , the additional
그리고, NAP>Npunc인 경우, 부가 패리티 생성부(140)는 도 27과 같이 펑처링된 LDPC 패리티 비트들 전체를 선택하고, LDPC 패리티 비트들 중 첫 번째 비트부터 (NAP-Npunc) 개의 비트들을 추가적으로 선택하여 부가 패리티 비트들을 생성할 수 있다.And, N AP> N punc a case, the
한편, 상술한 예에서는 첫 번째 비트부터 (NAP-Npunc) 개의 비트들을 추가적으로 선택하는 것으로 설명하였으나, 이는 일 예에 불과하다. 즉, 부가 패리티 생성부(140)는 정보어 비트들 중 첫 번째 비트부터 (NAP-Npunc) 개의 비트들을 추가적으로 선택할 수도 있다.Meanwhile, in the above-described example, bits are additionally selected from the first bit to (N AP -N punc ), but this is merely an example. That is, the additional
다른 예로, NAP>Npunc인 경우, 부가 패리티 생성부(140)는 도 28과 같이 펑처링된 LDPC 패리티 비트들 전체를 선택하고, 기설정된 패턴에 기초하여 LDPC 패리티 비트들 중에서 (NAP-Npunc) 개의 비트들을 추가적으로 선택하여 부가 패리티 비트들을 생성할 수 있다. As another example, N AP> N case punc the additional parity generator 140 (N AP among the punctured LDPC parity bit to select the whole, and group based on the set pattern LDPC parity bit as shown in Figure 28 - N punc ) bits may be additionally selected to generate additional parity bits.
또 다른 예로, Npunc=0인 경우, 부가 패리티 생성부(140)는 도 29와 같이 첫 번째 LDPC 패리티 비트들부터 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. As another example, when N punc = 0, the additional
한편, 상술한 예에서는, 리피티션 이후의 LDPC 코드워드 내에서 비트들을 선택하여 부가 패리티 비트들을 생성하는 것으로 설명하였다. On the other hand, in the above-described example, bits are selected in the LDPC codeword after repetition to generate additional parity bits.
하지만, 본 발명의 일 실시 예에 따르면, 리피티션이 수행되기 전의 LDPC 코드워드 내에서 비트들을 선택하여 부가 패리티 비트들을 생성할 수도 있다. 이를 위해, LDPC 인코더(110)는 LDPC 코드워드를 부가 패리티 생성부(140)로 출력할 수 있다. However, according to an embodiment of the present invention, bits may be selected in the LDPC codeword before repetition is performed to generate additional parity bits. To this end, the
예를 들어, Nrepeat>0인 경우를 가정한다. 이하에서는, LDPC 정보어 비트들의 수가 Kldpc인 것으로 가정하도록 한다. For example, suppose N repeat > 0. Hereinafter, it is assumed that the number of LDPC information word bits is K ldpc .
부가 패리티 생성부(140)는 펑처링된 LDPC 패리티 비트들을 우선적으로 선택하여 부가 패리티 비트들을 생성하고, 펑처링된 LDPC 패리티 비트들의 수가 부가 패리티 비트들의 수보다 작은 경우에 한하여 LDPC 패리티 비트들 중 일부를 선택하여 부가 패리티 비트들을 생성할 수 있다. The supplementary
이 경우, LDPC 패리티 비트들은 인코딩에 의해 생성된 LDPC 패리티 비트만으로 구성될 수 있다.In this case, the LDPC parity bits may be composed of LDPC parity bits generated by encoding.
구체적으로, 부가 패리티 생성부(140)는 첫 번째 LDPC 패리티 비트부터 선택하여 부가 패리티 비트들을 생성할 수 있다.Specifically, the additional
예를 들어, Nrepeat<Nldpc _parity-Npunc인 경우를 가정한다.For example, assume a case where repeat N <N ldpc _parity -N punc.
이때, NAP≤Npunc인 경우, 부가 패리티 생성부(140)는 펑처링된 LDPC 패리티 비트들에서 선택하여 부가 패리티 비트들을 생성할 수 있다. At this time, if N AP? N punc , the additional
예를 들어, 부가 패리티 생성부(140)는 도 30과 같이 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. 이 경우, 리피티션부(120)는 도 30과 같이 LDPC 패리티 비트들 중 첫 번째 비트부터 Nrepeat 개의 비트들을 선택하여, LDPC 패리티 비트들 이후에 부가할 수 있고, 펑처링 이후, 리피티션 비트들은 펑처링되지 않은 LDPC 패리티 비트들 이후에 위치하게 된다.For example, the additional
한편, NAP>Npunc인 경우, 부가 패리티 생성부(140)는 도 31과 같이 펑처링된 LDPC 패리티 비트들 전체를 선택하고, 첫 번째 LDPC 패리티 비트부터 (NAP-Npunc) 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. On the other hand, the AP N> N punc a case, the
이 경우, 리피티션부(120)는 도 30과 같이 LDPC 패리티 비트들 중 첫 번째 비트부터 Nrepeat 개의 비트들을 선택하여, LDPC 패리티 비트들 이후에 부가할 수 있고, 펑처링 이후, 리피티션 비트들은 펑처링되지 않은 LDPC 패리티 비트들 이후에 위치하게 된다. 이에 따라, LDPC 패리티 비트들에서 부가 패리티 비트들로 선택된 비트들 중 적어도 일부가 리피티션 비트들로 선택될 수 있다.In this case, the
다른 예로, Nldpc _parity≥Nrepeat≥Nldpc _parity-Npunc인 경우를 가정한다.As another example, N ≥N ldpc _parity repeat ≥N ldpc it is assumed _parity of -N punc.
이때, NAP≤Npunc인 경우, 부가 패리티 생성부(140)는 도 32와 같이 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. 이 경우, 리피티션부(120)는 도 32와 같이 LDPC 패리티 비트들 중 첫 번째 비트부터 Nrepeat 개의 비트들을 선택하여, LDPC 패리티 비트들 이후에 부가할 수 있고, 펑처링 이후, 리피티션 비트들은 펑처링되지 않은 LDPC 패리티 비트들 이후에 위치하게 된다. At this time, when N AP? N punc , the additional
한편, NAP>Npunc인 경우, 부가 패리티 생성부(140)는 도 33과 같이 펑처링된 LDPC 패리티 비트들 전체를 선택하고, 첫 번째 LDPC 패리티 비트부터 (NAP-Npunc) 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. In the case of N AP > N punc , the additional
이 경우, 리피티션부(120)는 도 33과 같이 LDPC 패리티 비트들 중 첫 번째 비트부터 Nrepeat 개의 비트들을 선택하여, LDPC 패리티 비트들 이후에 부가할 수 있고, 펑처링 이후, 리피티션 비트들은 펑처링되지 않은 LDPC 패리티 비트들 이후에 위치하게 된다. 이에 따라, LDPC 패리티 비트들에서 부가 패리티 비트들로 선택된 비트들 중 적어도 일부가 리피티션 비트들로 선택될 수 있다.In this case, the
다른 예로, Nrepeat>Nldpc _parity인 경우를 가정한다.As another example, assume a case where N repeat> N ldpc _parity.
이때, NAP≤Npunc인 경우, 부가 패리티 생성부(140)는 도 34와 같이 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. At this time, when N AP? N punc , the additional
한편, NAP>Npunc인 경우, 부가 패리티 생성부(140)는 도 33과 같이 펑처링된 LDPC 패리티 비트들 전체를 선택하고, 첫 번째 LDPC 패리티 비트부터 (NAP-Npunc) 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. In the case of N AP > N punc , the additional
이들 경우, 리피티션부(120)는 도 33 및 도 34와 같이 LDPC 패리티 비트들 중 첫 번째 비트부터 Nrepeat 개의 비트들을 선택하여, LDPC 패리티 비트들 이후에 부가할 수 있고, 펑처링 이후, 리피티션 비트들은 펑처링되지 않은 LDPC 패리티 비트들 이후에 위치하게 된다. In this case, the
또한, Nrepeat가 Nldpc_parity 보다 큰 경우, 도 34 및 도 35와 같이, LDPC 패리티 비트들 전체는 리피티션되고, LDPC 패리티 비트들 중 적어도 일부는 추가로 리피티션될 수 있다. Further, when N repeat is larger than N ldpc_parity , as shown in FIGS. 34 and 35, the entire LDPC parity bits are repetitioned, and at least some of the LDPC parity bits can be further repaired.
한편, 부가 패리티 생성부(140)는 LDPC 패리티 비트들 중에서 리피티션되는 LDPC 패리티 비트들을 제외한 나머지 LDPC 패리티 비트들에서 특정한 수의 비트들을 선택할 수도 있다. Meanwhile, the additional
예를 들어, NAP≤Npunc인 경우, 부가 패리티 생성부(140)는 도 36과 같이 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.For example, in the case of N AP? N punc , the additional
그리고, NAP>Npunc인 경우, 부가 패리티 생성부(140)는 도 37과 같이 펑처링된 LDPC 패리티 비트들 전체를 선택하고, LDPC 패리티 비트들 중에서 리피티션되는 LDPC 패리티 비트들을 제외한 나머지 LDPC 패리티 비트들 중 첫 번째 비트부터 (NAP-Npunc) 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. And, N AP> N case punc the
이 경우, 부가 패리티 생성부(130)는 도 38과 같이 LDPC 패리티 비트들 중에서 리피티션되는 LDPC 패리티 비트들을 제외한 나머지 LDPC 패리티 비트들이 모두 선택되면, 나머지 비트들은 리피티션되는 LDPC 패리티 비트들에서 선택하여 부가 패리티 비트들을 생성할 수 있다. In this case, if all of the remaining LDPC parity bits except for the LDPC parity bits rep- resented in the LDPC parity bits are all selected as shown in FIG. 38, the additional
한편, 상술한 예에서는 LDPC 패리티 비트들에서 비트들을 선택하여 부가 패리티 비트들을 생성하는 것으로 설명하였으나 이는 일 예에 불과하고, 부가 패리티 생성부(140)는 LDPC 패리티 비트들의 수가 부가 패리티 비트들의 수보다 작은 경우 아우터 인코딩된 비트들 및 LDPC 패리티 비트들에서 비트들을 선택하여 부가 패리티 비트들을 생성할 수도 있다.However, the additional
이 경우, 부가 패리티 생성부(140)는 아우터 인코딩된 비트들 및 LDPC 패리티 비트들에서 비트들을 선택할 때, 이미 선택되었던 비트들을 제외하고 비트들을 선택할 수 있다. 이때, 중복하여 선택할 경우 선택된 횟수가 가장 작은 비트들부터 선택될 수 있다.In this case, when the bits are selected from the outer encoded bits and the LDPC parity bits, the additional
또한, 상술한 예에서는 리피티션이 수행된 이후, 리피티션 비트들을 고려하여 부가 패리티 비트들을 생성하는 것으로 설명하였으나 이는 일 예에 불과하다. 즉, 경우에 따라, 리피티션은 생략될 수도 있다.Further, in the above-described example, after repetition is performed, additional parity bits are generated in consideration of repetition bits, but this is merely an example. That is, in some cases, repetition may be omitted.
이 경우, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 펑처링된 LDPC 패리티 비트들보다 작거나 같은 경우, 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.In this case, when the number of additional parity bits is smaller than or equal to the number of punctured LDPC parity bits, the additional
또한, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 펑처링된 LDPC 패리티 비트들보다 큰 경우, 펑처링된 LDPC 패리티 비트들 전체를 선택하고, LDPC 패리티 비트들 즉, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 첫 번째 비트부터 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 값만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수도 있다.When the number of additional parity bits is larger than the punctured LDPC parity bits, the additional
또한, 상술한 예에서는 비트 단위로 LDPC 패리티 비트들을 선택하여 부가 패리티 비트들을 생성하는 것으로 설명하였으나 이는 일 예에 불과하고, 부가 패리티 생성부(140)는 비트 그룹 단위로 LDPC 패리티 비트들을 선택하여 부가 패리티 비트들을 생성할 수도 있다.In the above example, LDPC parity bits are selected on a bit-by-bit basis to generate additional parity bits. However, this is merely an example. The additional
예를 들어, LDPC 코드워드 (v0,v1,...,)가 Ngroup 개의 비트 그룹으로 구분되어, V=(Y0,Y1,...,)와 같이 나타내어지는 경우를 가정한다.For example, LDPC code words (v 0 , v 1 , ..., ) Are divided into N group bit groups so that V = (Y 0 , Y 1 , ..., ) Is assumed to be expressed as follows.
이 경우, 부가 패리티 생성부(140)는 하기와 같은 수학식 13에 기초하여 부가 패리티 비트들의 임시적인 수 NAP_temp를 산출할 수 있다.In this case, the additional
여기에서, Nldpc _parity는 LDPC 패리티 비트들의 수, Npunc는 펑처링된 LDPC 패리티 비트들의 수이다. 그리고, α=0.5, K=0,1,2가 될 수 있다. Here, N is the number of _parity ldpc LDPC parity bit, punc N is the number of the punctured LDPC parity bit. Then,? = 0.5 and K = 0, 1, 2 can be obtained.
그리고, 부가 패리티 생성부(140)는 하기의 수학식 14 또는 수학식 15에 기초하여 부가 패리티 비트들의 수 NAP를 산출할 수 있다. The additional
이들 수학식에서, 은 x보다 크거나 같은 최소 정수를 의미하고, 는 x 보다 크지 않는 최대 정수를 의미한다. 그리고, ηMOD는 변조 차수이다. 일 예로, QPSK, 16-QAM, 64-QAM 및 256-QAM의 경우, ηMOD는 2,4,6,8이 될 수 있다. In these equations, Means a minimum integer greater than or equal to x, Means the maximum integer not greater than x. And, η MOD is the modulation order. For example, for QPSK, 16-QAM, 64-QAM, and 256-QAM, the η MOD can be 2, 4,
이후, 부가 패리티 생성부(140)는 LDPC 패리티 비트들에서 산출된 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. The additional
구체적으로, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 펑처링된 LDPC 패리티 비트들의 수보다 작거나 같은 경우, 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 산출된 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.Specifically, when the number of additional parity bits is less than or equal to the number of punctured LDPC parity bits, the additional
즉, NAP≤Npunc인 경우, 부가 패리티 생성부(140)는 도 39와 같이, 펑처링된 LDPC 패리티 비트들 중 첫 번째 비트부터 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. 이에 따라, 부가 패리티 비트들을 위해 (, ,..., )가 선택될 수 있다.Namely, in the case of N AP? N punc , the additional
한편, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수가 펑처링된 LDPC 패리티 비트들의 수보다 큰 경우, 즉, NAP>Npunc인 경우, 먼저, 펑처링된 LDPC 패리티 비트들 전체를 선택할 수 있다. 이에 따라, (, ,..., )가 부가 패리티 비트들로 선택될 수 있다Meanwhile, when the number of additional parity bits is greater than the number of punctured LDPC parity bits, i.e., N AP > N punc , the additional
그리고, 부가 패리티 생성부(140)는 부가 패리티 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 비트 그룹 단위로 선택할 수 있다. Then, the additional
이를 위해, 부가 패리티 생성부(140)는 하기의 수학식 16에 기초하여 비트 그룹 내의 모든 비트들이 부가 패리티 비트들을 위해 선택되는 비트 그룹의 개수를 산출할 수 있다.To this end, the additional
그리고, 부가 패리티 생성부(140)는 부가 패리티 패턴에 기초하여, 복수의 비트 그룹 중 부가 패리티 비트들의 생성에 이용되는 비트 그룹을 판단하고, 판단된 비트 그룹 중 일부 비트 그룹 내의 모든 비트들 및 나머지 비트 그룹 내의 일부 비트들을 선택하여, 부가 패리티 비트들을 생성할 수 있다.The additional
이 경우, 부가 패리티 패턴은 LDPC 패리티 비트들을 구성하는 복수의 비트 그룹 중 부가 패리티 비트들로 선택되는 비트 그룹의 순서를 정의하는 패턴으로, 일 예로, πAP(j)(0≤j<Ngroup)에 대해, πAP(0)=x0, πAP(1)=x1,..., πAP(Ngroup-1)=과 같이 정의되어 있을 수 있다. In this case, the additional parity pattern is a pattern that defines the order of bit groups selected from the plurality of bit groups constituting the LDPC parity bits as additional parity bits. For example,? AP (j) (0? J <N group AP (0) = x 0 ,? AP (1) = x 1 , ..., AP (N group -1) = As shown in Fig.
여기에서, x0,x1,...,은 LDPC 패리티 비트들을 구성하는 복수의 비트 그룹의 인덱스이고, Ngroup은 LDPC 패리티 비트들을 구성하는 복수의 비트 그룹의 수이며, 하나의 비트 그룹은 360 개의 비트들로 구성되어 있을 수 있다.Here, x 0 , x 1 , ..., Is an index of a plurality of bit groups constituting LDPC parity bits, N group is a number of a plurality of bit groups constituting LDPC parity bits, and one bit group may be constituted by 360 bits.
구체적으로, 부가 패리티 생성부(140)는 부가 패리티 패턴에 기초하여 복수의 비트 그룹 중 πAP(0) 번째 비트 그룹, πAP(1) 번째 비트 그룹,..., πAP(NAP_groups-1) 번째 비트 그룹의 모든 비트들을 부가 패리티 비트들을 위해 선택할 수 있다. 즉, x0 번째 비트 그룹, x1 번째 비트 그룹,..., 번째 비트 그룹의 모든 비트들을 부가 패리티 비트들로 선택할 수 있다. Specifically, the
한편, 부가 패리티 생성부(140)는 NAP-Npunc 개의 비트들을 선택하여야 하지만, NAP_groups 개의 비트 그룹에서 선택된 비트들은 (360×NAP_groups)이므로, 부가 패리티 생성부(140)는 (NAP-Npunc-360× NAP_groups) 개의 비트들을 추가적으로 선택할 수 있다.On the other hand, the
이 경우, 부가 패리티 생성부(140)는 부가 패리티 패턴에 기초하여 추가적으로 선택되는 비트들을 포함하는 비트 그룹을 판단하고, 판단된 비트 그룹의 첫 번째 비트부터 (NAP-Npunc-360×NAP_groups) 개의 비트들을 추가적으로 선택할 수 있다.In this case, the additional
구체적으로, 부가 패리티 생성부(140)는 부가 패리티 패턴에 기초하여 πAP(NAP_groups) 번째 비트 그룹을 판단하고, πAP(NAP_groups) 번째 비트 그룹의 첫 번째 비트부터 (NAP-Npunc-360×NAP_groups) 개의 비트들을 부가 패리티 비트들을 위해 선택할 수 있다. 즉, 번째 비트 그룹의 트부터 (NAP-Npunc-360×NAP_groups) 개의 비트들을 부가 패리티 비트들로 추가적으로 선택할 수 있다.Specifically, the
결국, NAP>Npunc인 경우, 부가 패리티 생성부(140)는 도 40과 같이, 펑처링된 LDPC 패리티 비트들 전체를 선택하고, πAP(0) 번째 비트 그룹, πAP(1) 번째 비트 그룹,..., πAP(NAP_groups-1) 번째 비트 그룹의 모든 비트들 및 πAP(NAP_groups) 번째 비트 그룹의 첫 번째 비트부터 (NAP-Npunc-360×NAP_groups) 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.As a result, when N AP > N punc , the additional
한편, 리피티션이 소정의 패턴을 기반으로 선택될 경우, 부가 패리티 비트들을 선택할 때 소정의 리피티션 패턴을 우선으로 고려하여 사용할 수 있다. 즉, 리피티션 패턴에 기반하여 리피티션된 비트들 이후의 비트들부터 선택하여 부가 패리티로 선택하도록 한다. 리피티션 패턴으로 정의된 리피티션 비트들의 최대 개수에서 리피티션 비트의 개수를 제외한 개수가 부가 패리티 비트의 개수보다 클 경우, 리피티션 패턴과 부가 패리티 패턴 모두를 기반으로 하여, 부가 패리티 비트를 생성할 수 있다. 리피티션 패턴이라고 함은 주어진 LDPC 코드워드 중에서 추가로 전송할 때 성능이 우수한 그룹의 순서를 의미하므로 리피티션 패턴을 기반으로 부가 패리티를 생성하고, 부가 패리티 비트가 더 필요할 경우 부가 패리티 비트의 패턴을 기반하도록 한다. On the other hand, when the repetition is selected on the basis of a predetermined pattern, a predetermined repetition pattern can be used with priority in selecting additional parity bits. That is, based on the repetition pattern, bits after the repeated bits are selected and selected as additional parity. When the number of repetition bits defined by the repetition pattern is larger than the number of additional parity bits except for the number of repetition bits, Bit < / RTI > The repetition pattern refers to the order of a group having superior performance in addition to a given LDPC codeword, so that additional parity is generated based on the repetition pattern, and when additional parity bits are required, .
한편, 송신 장치(100)는 펑처링부(130)에서 출력되는 비트들 및 부가 패리티 생성부(140)에서 출력되는 비트들을 수신 장치(200)로 전송할 수 있다.The transmitting
이 경우, 송신 장치(100)는 펑처링부(130)에서 출력되는 리피티션 및 펑처링 이후의 LDPC 코드워드에서 패딩된 제로 비트들을 제외한 LDPC 코드워드 비트들 즉, 리피티션, 펑처링 및 쇼트닝 이후의 LDPC 코드워드를 수신 장치(200)로 전송할 수 있다. In this case, the transmitting
구체적으로, 송신 장치(100)는 리피티션, 펑처링 및 쇼트닝 이후의 LDPC 코드워드 비트들 및 부가 패리티 비트들을 각각 변조하여 성상도 심볼들에 맵핑하고, 이들을 프레임에 맵핑하여 수신 장치(200)로 전송할 수 있다. Specifically, the transmitting
다만, 리피티션이 생략되는 경우, 송신 장치(100)는 펑처링 이후의 LDPC 코드워드에서 패딩된 제로 비트들을 제외한 LDPC 코드워드 비트들 즉, 펑처링 및 쇼트닝 이후의 LDPC 코드워드를 수신 장치(200)로 전송할 수 있다. However, if repetition is omitted, the transmitting
이 경우, 송신 장치(100)는 QPSK, 16-QAM, 64-QAM 또는 256-QAM 등을 이용하여 변조할 수 있으며, 리피티션, 펑처링 및 쇼트닝 이후의 LDPC 코드워드 비트들(또는, 펑처링 및 쇼트닝 이후의 LDPC 코드워드) 및 부가 패리티 비트들을 동일한 변조 방식으로 이용하여 변조할 수 있다. In this case, the transmitting
한편, 송신 장치(100)는 현재 프레임에서 전송되는 정보어 비트들에 기초하여 생성된 부가 패리티 비트들을 해당 프레임 이전의 프레임에 맵핑할 수 있다.Meanwhile, the transmitting
즉, 송신 장치(100)는 i-1 번째 프레임에 대응되는 정보어 비트들을 포함하는 펑처링 및 쇼트닝 이후의 LDPC 코드워드는 i-1 번째 프레임에 맵핑하고, i 번째 프레임에 대응되는 정보어 비트들에 기초하여 생성된 부가 패리티 비트들을 i-1 번째 프레임에 추가로 맵핑하여 수신 장치(200)로 전송할 수 있다.That is, the transmitting
이에 따라, i-1 번째 프레임에는 i-1 번째 프레임에 대응되는 정보어 비트들 및 그에 기초하여 생성된 패리티 비트들뿐만 아니라, i 번째 프레임에 대응되는 정보어 비트들에 기초하여 생성된 부가 패리티 비트들이 맵핑될 수 있다.Accordingly, in the (i-1) th frame, not only the information bits corresponding to the (i-1) th frame and the parity bits generated based thereon, but also the additional parities generated based on the information bits corresponding to the i- The bits can be mapped.
한편, 상술한 바와 같이, 정보어 비트들은 데이터에 대한 시그널링 정보를 포함하는 시그널링이라는 점에서, 송신 장치(100)는 데이터를 해당 데이터를 처리하기 위한 시그널링과 함께 프레임에 맵핑하여 수신 장치(200)로 전송할 수 있다.As described above, the transmitting
구체적으로, 송신 장치(100)는 데이터를 일정한 방식으로 처리하여 성상도 심볼들을 생성하고, 이들을 각 프레임의 데이터 심볼에 맵핑할 수 있다. 그리고, 송신 장치(100)는 각 프레임에 맵핑된 데이터에 대한 시그널링을 해당 프레임의 프리앰블에 맵핑할 수 있다. 예를 들어, 송신 장치(100)는 i 번째 프레임에 맵핑된 데이터에 대한 시그널링 정보를 포함하는 시그널링을 i 번째 프레임에 맵핑할 수 있다. Specifically, the transmitting
이에 따라, 수신 장치(200)는 프레임으로부터 획득한 시그널링을 이용하여 해당 프레임으로부터 데이터를 획득하여 처리할 수 있게 된다.Accordingly, the receiving
한편, 본 발명의 일 실시 예에 따르면, 상술한 정보어 비트들은 L1 디테일 시그널링(L1-detail signaling)으로 구현될 수 있다. 이에 따라, 송신 장치(100)는 상술한 방법을 이용하여 L1 디테일 시그널링에 대한 부가 패리티 비트들을 생성하여 수신 장치(200)로 전송할 수 있다. Meanwhile, according to an embodiment of the present invention, the information bits may be implemented by L1 detail signaling (L1-detail signaling). Accordingly, the transmitting
여기에서, L1 디테일 시그널링은 ATSC(Advanced Television System Committee) 3.0 표준에서 정의된 시그널링일 수 있다.Here, the L1 detail signaling may be the signaling defined in the ATSC (Advanced Television System Committee) 3.0 standard.
구체적으로, L1 디테일 시그널일 처리하는 모드는 7 개로 구분되는데, 본 발명의 일 실시 예에 따른 송신 장치(100)는 7 개의 모드에 따라 L1 디테일 시그널링에 대한 부가 패리티 비트들을 생성할 수 있다.In detail, the mode for processing the L1 detail signal is divided into seven modes. The transmitting
한편, ATSC 3.0 표준에서는 L1 디테일 시그널링 외에도 L1 베이직 시그널링(L1-basic signaling)을 정의하고 있는데, 송신 장치(100)는 L1 베이직 시그널링 및 L1 디테일 시그널링을 특정 방식으로 처리하여 수신 장치(200)로 전송할 수 있다. Meanwhile, in the ATSC 3.0 standard, L1 basic signaling is defined in addition to L1 detail signaling, and the transmitting
한편, L1 베이직 시그널링 및 L1 디테일 시그널링을 처리하는 구체적인 방법은 후술하기로 한다.A specific method for processing the L1 basic signaling and the L1 detail signaling will be described later.
송신 장치(100)는 L1 베이직 시그널링 및 L1 디테일 시그널링을 프레임의 프리앰블에 맵핑하고, 데이터를 프레임의 데이터 심볼에 맵핑하여 수신 장치(200)로 전송할 수 있다. The transmitting
도 41을 참조하면, 프레임은 3 가지 파트 즉, 부트스트랩(bootsrtap) 파트, 프리앰블 파트 및 데이터 파트로 구성될 수 있다. Referring to Fig. 41, a frame may be composed of three parts: a bootstrap part, a preamble part, and a data part.
부트스트랩 파트는 초기 동기화(synchronization)를 위해 이용되며, 수신 장치(200)가 L1 시그널링을 디코딩하기 위한 기본적인 파라미터를 제공한다. 또한, 부트스트랩 파트는 송신 장치(100)가 L1 베이직 시그널링을 처리한 모드에 대한 정보 즉, 송신 장치(100)가 어떠한 모드로 L1 베이직 시그널링을 처리하였는지에 대한 정보를 포함할 수 있다.The bootstrap part is used for initial synchronization and the receiving
프리앰블 파트는 L1 시그널링을 포함하며, 2 개의 파트 즉, L1 베이직 시그널링 및 L1 디테일 시그널링으로 구성될 수 있다.The preamble part includes L1 signaling and can be composed of two parts: L1 basic signaling and L1 detail signaling.
여기에서, L1 베이직 시그널링은 L1 디테일 시그널링에 대한 정보를 포함하고, L1 디테일 시그널링은 데이터(여기에서, 데이터는 방송 서비스를 제공하기 위한 방송 데이터로, 하나 이상의 물리 계층 파이프(Physical Layer Pipes, PLPs)를 통해 전송될 수 있다)에 대한 정보를 포함할 수 있다.Herein, the L1 basic signaling includes information on L1 detail signaling, and the L1 detail signaling includes data (here, data is broadcast data for providing a broadcast service, one or more Physical Layer Pipes (PLPs) Which may be transmitted over a wireless network.
구체적으로, L1 베이직 시그널링은 수신 장치(200)가 L1 디테일 시그널링을 처리하기 위해 필요한 정보(예를 들어, 송신 장치(100)가 L1 디테일 시그널릴을 처리한 모드에 대한 정보(즉, 송신 장치(100)가 어떠한 모드로 L1 디테일 시그널링을 처리하였는지에 대한 정보), L1 디테일 시그널링의 길이에 대한 정보, 부가 패리티 모드에 대한 정보(즉, L1B_L1_Detail_additional_parity_mode로, 송신 장치(100)에서 부가 패리티 비트들을 생성하기 위해 이용한 K 값에 대한 정보(여기에서, L1B_L1_Detail_additional_parity_mode가 '00'으로 설정된 경우 K=0이며, 부가 패리티 비트들은 이용되지 않은 것이다) 및 total cells의 길이에 대한 정보)를 포함한다. 또한, L1 베이직 시그널링은 FFT(Fast Fourier Transform) 사이즈, 가드 인터벌 및 파일럿 패턴 등과 같은 시스템의 기본적인 시그널링 정보를 포함할 수도 있다. Specifically, the L1 basic signaling is a signal that indicates that the receiving
그리고, L1 디테일 시그널링은 수신 장치(200)가 PLPs를 디코딩하기 위해 필요한 정보(예를 들어, PLP 별로 데이터 심볼에 맵핑된 셀들의 시작 위치, PLP ID, PLP의 사이즈, 변조 방식 및 부호율 등)를 포함한다.The L1 detail signaling includes information necessary for the receiving
이에 따라, 수신 장치(200)는 프레임의 동기를 획득하고 프리앰블로부터 L1 베이직 시그널링 및 L1 디테일 시그널링을 획득하고, L1 디테일 시그널링을 이용하여 데이터 심볼로부터 사용자가 필요로 하는 방송 데이터를 수신할 수 있다.Accordingly, the receiving
한편, 이하에서는 첨부된 도면을 참조하여, L1 베이직 시그널링 및 L1 디테일 시그널링을 처리하는 방법에 대해 보다 구체적으로 설명하도록 한다.Hereinafter, a method for processing L1 basic signaling and L1 detail signaling will be described in more detail with reference to the accompanying drawings.
도 42 및 도 43은 본 발명의 일 실시 예에 따른 송신 장치의 세부 구성을 설명하기 위한 블록도이다. 42 and 43 are block diagrams for explaining the detailed configuration of a transmitting apparatus according to an embodiment of the present invention.
구체적으로, 도 42와 같이, 송신 장치(100)는 L1 베이직 시그널링을 처리하기 위해, 스크램블러(211), BCH 인코더(212), 제로 패딩부(213), LDPC 인코더(214), 패리티 퍼뮤테이션부(215), 리피티션부(216), 펑처링부(217), 제로 제거부(218), 비트 디먹스(219) 및 성상도 맵퍼(221)를 포함할 수 있다.42, the transmitting
또한, 도 43과 같이, 송신 장치(100)는 L1 디테일 시그널링을 처리하기 위해, 세그먼테이션부(311), 스크램블러(312), BCH 인코더(313), 제로 패딩부(314), LDPC 인코더(315), 패리티 퍼뮤테이션부(316), 리피티션부(317), 펑처링부(318), 부가 패리티 생성부(319), 제로 제거부(321), 비트 디먹스(322, 323) 및 성상도 맵퍼(324, 325)를 포함할 수 있다.43, the
여기에서, 도 42 및 도 43에 도시된 구성요소는, L1 베이직 시그널링 및 L1 디테일 시그널링에 대한 인코딩 및 변조(encoding and modulation)를 수행하는 구성요소로서, 이는 일 예일 뿐이며, 경우에 따라 도 42 및 도 43에 도시된 구성요소 중 일부는 생략 또는 변경될 수 있고, 다른 구성요소가 더 추가될 수도 있다.42 and 43 are components for performing encoding and modulation for L1 basic signaling and L1 detail signaling, which is only an example, and in some cases, Some of the constituent elements shown in Fig. 43 may be omitted or changed, and other constituent elements may be further added.
한편, 도 43에 도시된 LDPC 인코더(315), 리피티션부(317), 펑처링부(318) 및 부가 패리티 생성부(319)는 도 1에 도시된 LDPC 인코더(110), 리피티션부(120), 펑처링부(130) 및 부가 패리티 생성부(140)가 수행하는 동작을 수행할 수 있다.The
한편, 도 42 및 도 43을 설명함에 있어, 공통적인 기능을 수행하는 구성요소에 대해서는 편의상 함께 설명하도록 한다.42 and 43, components for performing a common function will be described together for the sake of convenience.
L1 베이직 시그널링 및 L1 디테일 시그널링은 BCH 아우터 코드(BCH outer code) 및 LDPC 이너 코드(LDPC inner code)의 연접(concatenation)에 의해 보호될 수 있다. 다만, 이는 일 예일 뿐이며, 연접 코드에서 이너 코드 이전에 수행되는 아우터 코드는 BCH 외의 CRC 등의 다른 코드가 이용될 수 있다. 또한, 아우터 코드 없이 LDPC 코드만으로 L1 베이직 시그널링 및 L1 디테일 시그널링이 보호될 수도 있다. The L1 basic signaling and the L1 detail signaling can be protected by concatenation of the BCH outer code and the LDPC inner code. However, this is merely an example, and other code such as a CRC other than the BCH may be used as the outer code performed before the inner code in the concatenated code. In addition, L1 basic signaling and L1 detail signaling may be protected with only LDPC code without outer code.
먼저, L1 베이직 시그널링 및 L1 디테일 시그널링은 스크램블링될 수 있다. 그리고, L1 베이직 시그널링 및 L1 디테일 시그널링이 BCH 인코딩되고, BCH 인코딩에 따라 생성된 L1 베이직 시그널링 및 L1 디테일 시그널링의 BCH 패리티 체크 비트들이 L1 베이직 시그널링 및 L1 디테일 시그널링 각각에 부가될 수 있다. 그리고, 연접된 시그널링과 BCH 패리티 체크 비트들은 쇼트닝 및 펑처링된 16K LDPC 코드에 의해 추가로 보호될 수 있다.First, the L1 basic signaling and the L1 detail signaling can be scrambled. Then, the L1 basic signaling and the L1 detail signaling are BCH encoded, and the BCH parity-check bits of L1 basic signaling and L1 detail signaling generated according to the BCH encoding can be added to L1 basic signaling and L1 detail signaling, respectively. The concatenated signaling and BCH parity check bits can be further protected by shortening and punctured 16K LDPC codes.
한편, 넓은 SNR 범위에 적합한, 다양한 강인함 레벨(robustness level)을 제공하기 위해, L1 베이직 시그널링 및 L1 디테일 시그널링의 보호 레벨(protection level)은 7 개의 모드로 구분될 수 있다. 즉, L1 베이직 시그널링 및 L1 디테일 시그널의 보호 레벨은 LDPC 코드, 변조 차수, 쇼트닝/펑처링 파라미터(즉, 쇼트닝되는 비트들의 수에 대한 펑처링되는 비트들의 수의 비율) 및 기본 펑처링 비트들의 수(즉, 쇼트닝되는 비트들의 수가 0일 때, 기본적으로 펑처링되는 비트들의 수)에 기초하여 7 개의 모드로 구분될 수 있다. 각 모드에서, LDPC 코드, 변조 차수, 성상도(constellation) 및 쇼트닝/펑처링 패턴 중 적어도 하나의 서로 다른 조합이 이용될 수 있다.On the other hand, in order to provide various robustness levels suitable for a wide SNR range, the protection level of L1 basic signaling and L1 detail signaling can be divided into seven modes. That is, the protection levels of the L1 basic signaling and the L1 detail signal are determined by the LDPC code, the modulation order, the shortening / puncturing parameter (i.e., the ratio of the number of punctured bits to the number of bits to be shortened) and the number of basic puncturing bits (I.e., the number of bits that are basically punctured when the number of bits to be shortened is zero). In each mode, different combinations of at least one of an LDPC code, modulation order, constellation, and a shortening / puncturing pattern may be used.
한편, 송신 장치(100)가 어떠한 모드로 시그널링을 처리할지는 시스템에 따라 미리 설정되어 있을 수 있다. 이에 따라, 송신 장치(100)는 설정된 모드에 따라 시그널링을 처리하기 위한 파라미터(가령, 각 모드에 대한 ModCod(modulation and code rate), BCH 인코딩을 위한 파라미터, 제로 패딩을 위한 파라미터, 쇼트닝 패턴, LDPC 코드의 코드 레이트/코드 길이, 그룹-와이즈 인터리빙 패턴, 리피티션을 위한 파라미터, 펑처링을 위한 파라미터 및 변조 방식 등)를 결정하고, 결정된 파라미터를 기초로 시그널링을 처리하여 수신 장치(200)로 전송할 수 있다. 이를 위해, 송신 장치(100)는 모드에 따라 시그널링을 처리하기 위한 파라미터를 기저장하고 있을 수 있다.On the other hand, the mode in which the
L1 베이직 시그널링을 처리하는 7 개의 모드 및 L1 디테일 시그널링을 처리하는 7 개의 모드에 대한 ModCod 구성(modulation and code rate configurations)은 하기의 표 4와 같다. 송신 장치(100)는 모드에 따라 표 4에서 정의된 ModCod 구성에 기초하여 시그널링을 인코딩 및 변조할 수 있다. 즉, 송신 장치(100)는 표 4에 기초하여 각 모드에서의 시그널링에 대한 인코딩 및 변조 방식을 결정하고, 결정된 방식에 따라 시그널링을 인코딩 및 변조할 수 있다. 이 경우, 송신 장치(100)는 동일한 변조 방식으로 L1 시그널링을 변조하는 경우에도, 서로 다른 성상도를 이용할 수도 있다.ModCod configurations (modulation and code rate configurations) for seven modes for processing L1 basic signaling and seven modes for processing L1 detail signaling are shown in Table 4 below. The transmitting
한편, 표 4에서 Ksig는 코딩된 블록(coded block)에 대한 정보어 비트들의 수를 의미한다. 즉, Ksig의 길이를 갖는 L1 시그널링 비트들이 인코딩되어 코딩된 블록이 생성된다는 점에서, 하나의 코딩된 블록에서 L1 시그널링의 길이는 Ksig가 된다. 따라서, Ksig의 사이즈를 갖는 L1 시그널링 비트들은 하나의 LDPC 코딩된 블록에 대응되는 것으로 볼 수 있다.In Table 4, K sig denotes the number of information bits for a coded block. That is, the L1 signaling bits are encoded with a length of K sig in that the coded block produced, the length of the L1 signaling in a coded block is of the K sig. Thus, the L1 signaling bits with a size of K sig can be seen to correspond to one LDPC coded block.
표 4를 참조하면, L1 베이직 시그널링에 대한 Ksig 값은 200으로 고정적이다. 하지만, L1 디테일 시그널링 비트들의 양은 가변적이라는 점에서, L1 디테일 시그널링에 대한 Ksig 값은 가변적이다. Referring to Table 4, the K sig value for L1 basic signaling is fixed to 200. However, since the amount of L1 detail signaling bits is variable, the K sig value for L1 detail signaling is variable.
구체적으로, L1 디테일 시그널링의 경우, L1 디테일 시그널링 비트들의 수가 가변적이라는 점에서, L1 디테일 시그널링 비트들의 수가 기설정된 값보다 큰 경우, L1 디테일 시그널링은 기설정된 값 이하의 길이를 갖도록 세그먼테이션될 수 있다.Specifically, in the case of L1 detail signaling, if the number of L1 detail signaling bits is variable, the number of L1 detail signaling bits is variable, then the L1 detail signaling can be segmented to have a length less than a predetermined value.
이 경우, 세그먼트된 L1 디테일 시그널링 블록(즉, L1 디테일 시그널링의 세그먼트(segment)) 각각의 사이즈는 표 4에서 정의되는 Ksig 값을 가질 수 있다. 그리고, Ksig의 사이즈를 갖는 세그먼트된 L1 디테일 시그널링 블록 각각은 하나의 LDPC 코딩된 블록에 대응될 수 있다. In this case, the size of each of the segmented L1 detail signaling blocks (i.e., the segments of the L1 detail signaling) may have a K sig value defined in Table 4. [ Then, the segments L1 signaling block detail each having a size of K sig may correspond to a single LDPC coded blocks.
다만, L1 디테일 시그널링 비트들의 수가 기설정된 값보다 작거나 같은 경우, L1 디테일 시그널링을 세그먼테이션되지 않는다. 이 경우, L1 디테일 시그널링의 사이즈는 표 4에서 정의되는 Ksig 값을 가질 수 있다. 그리고, Ksig의 사이즈를 갖는 L1 디테일 시그널링은 하나의 LDPC 코딩된 블록에 대응될 수 있다.However, if the number of L1 detail signaling bits is less than or equal to a preset value, the L1 detail signaling is not segmented. In this case, the size of the L1 detail signaling may have a K sig value defined in Table 4. And, the L1 detail signaling having the size of K sig can correspond to one LDPC coded block.
이하에서는 L1 디테일 시그널링을 세그먼테이션하는 방법에 대해 구체적으로 살펴보도록 한다.Hereinafter, a method of segmenting the L1 detail signaling will be described in detail.
세그먼테이션부(311)는 L1 디테일 시그널링을 세그먼테이션한다. 구체적으로, L1 디테일 시그널링의 길이는 가변적이라는 점에서, 세그먼테이션부(311)는 L1 디테일 시그널링의 길이가 기설정된 값보다 큰 경우, 기설정된 값 이하의 비트들을 갖도록 L1 디테일 시그널링을 세그먼테이션하고, 세그먼트된 L1 디테일 시그널링 각각을 스크램블러(312)로 출력할 수 있다. The
다만, 세그먼테이션부(311)는 L1 디테일 시그널링의 길이가 기설정된 값보다 작거나 같은 경우, 별도의 세그먼테이션 동작을 수행하지 않는다.However, if the length of the L1 detail signaling is less than or equal to a preset value, the segmenting
한편, 세그먼테이션부(311)가 L1 디테일 시그널링을 세그먼테이션하는 방법은 다음과 같다.On the other hand, a method of segmenting L1 detail signaling by the
L1 디테일 시그널링 비트들의 양은 가변적이며, 주로 PLPs의 수에 의존적이다. 이에 따라, 전체 L1 디테일 시그널링을 전송하기 위해서는 적어도 하나의 FEC(forward error correction) 프레임들이 요구된다. 여기에서, FEC 프레임은 L1 디테일 시그널링이 인코딩되어, L1 디테일 시그널링에 인코딩에 따른 패리티 비트들이 부가된 형태를 의미할 수 있다.The amount of L1 detail signaling bits is variable and is primarily dependent on the number of PLPs. Accordingly, at least one forward error correction (FEC) frames are required to transmit the entire L1 detail signaling. Here, the FEC frame may be a form in which L1 detail signaling is encoded, and parity bits according to encoding are added to L1 detail signaling.
구체적으로, L1 디테일 시그널링이 세그먼테이션되지 않는 경우에는 L1 디테일 시그널링이 BCH 인코딩 및 LDPC 인코딩되어 하나의 FEC 프레임이 생성되므로, L1 디테일 시그널링 전송을 위해 하나의 FEC 프레임이 요구된다. 반면, L1 디테일 시그널링이 적어도 두 개로 세그먼테이션되는 경우에는 세그먼트된 적어도 두 개의 L1 디테일 시그널링이 각각 BCH 인코딩 및 LDPC 인코딩되어 적어도 두 개의 FEC 프레임이 생성되므로, L1 디테일 시그널링 전송을 위해 적어도 두 개의 FEC 프레임이 요구된다.Specifically, if L1 detail signaling is not segmented, one FEC frame is required for L1 detail signaling transmission because L1 detail signaling is BCH encoded and LDPC encoded to generate one FEC frame. On the other hand, if the L1 detail signaling is segmented into at least two segments, at least two segmented L1 detail signaling are BCH encoded and LDPC encoded, respectively, so that at least two FEC frames are generated, so that at least two FEC frames for L1 detail signaling transmission Is required.
따라서, 세그먼테이션부(311)는 하기의 수학식 17에 기초하여 L1 디테일 시그널링을 위한 FEC 프레임의 수 NL1D_FECFRAME을 산출할 수 있다. 즉, L1 디테일 시그널링을 위한 FEC 프레임의 수 NL1D_FECFRAME는 하기의 수학식 17에 기초하여 결정될 수 있다.Therefore, the
여기에서, 은 x보다 크거나 같은 최소 정수를 의미한다.From here, Means a minimum integer greater than or equal to x.
그리고, KL1D_ex_pad는 도 44에 도시된 바와 같이 L1 패딩 비트들(L1 padding bits)을 제외한 L1 디테일 시그널링의 길이를 나타내며, L1 베이직 시그널링에 포함된 L1B_L1_Detail_size_bits 필드의 값에 의해 결정될 수 있다.As shown in FIG. 44, K L1D_ex_pad indicates the length of the L1 detail signaling excluding the L1 padding bits, and may be determined by the value of the L1B_L1_Detail_size_bits field included in the L1 basic signaling.
또한, Kseg는 LDPC 인코더(315)로 입력되는 정보어 비트들 즉, LDPC 정보어 비트들의 수 Kldpc에 기초하여 정의되는 세그먼테이션을 위한 임계값(threshold number)이다. 또한, Kseg는 BCH 코드의 BCH 패리티 체크 비트들의 수와 360의 배수 값에 기초하여 정의될 수 있다.Also, K seg is a threshold number for the segmentation which is defined based on the number of information bits input to the
한편, Kseg는 세그먼테이션 후, 코딩된 블록에서 정보어 비트들의 수 Ksig가 (Kldpc-Mouter)보다 작거나 같아지도록 한다. 구체적으로, Kseg에 기초하여 L1 디테일 시그널링을 세그먼테이션하는 경우, 세그먼트된 L1 디테일 시그널링의 길이는 Kseg를 초과하지 않게 된다는 점에서, Kseg를 하기의 표 5와 같이 설정하는 경우, 세그먼트된 L1 디테일 시그널링의 길이는 (Kldpc-Mouter)보다 작거나 같아지게 된다.On the other hand, K seg is such that less than or equal to the number of after segmentation, information bits from the coded block K sig (K -M outer ldpc). Specifically, K If the segmentation for L1 detail the signaling based on seg, the length of the segment L1 detail signaling if, in that do not exceed the K seg, set as shown in Table 5 below the K seg, the segments L1 The length of the detail signaling is less than or equal to (K ldpc - M outer ).
여기에서, Mouter 및 Kldpc는 표 6 및 표 7과 같다. 한편, 충분한 강인함(sufficient robustness)을 위해, L1 디테일 모드 1에 대한 Kseg 값은 (Kldpc-Mouter-720)으로 설정될 수 있다.Here, M outer and K ldpc are as shown in Tables 6 and 7. On the other hand, for sufficient robustness, the K seg value for
한편, L1 디테일 시그널링의 각 모드에 대한 Kseg는 하기의 표 5와 같이 정의될 수 있다. 이 경우, 세그먼테이션부(311)는 표 5에 기초하여 모드에 따른 Kseg를 결정할 수 있다.Meanwhile, K seg for each mode of L1 detail signaling can be defined as shown in Table 5 below. In this case, the
한편, 도 44와 같이, 전체 L1 디테일 시그널링은 L1 디테일 시그널링 및 L1 패딩 비트들로 구성될 수 있다. On the other hand, as shown in FIG. 44, the entire L1 detail signaling may be composed of L1 detail signaling and L1 padding bits.
이 경우, 세그먼테이션부(311)는 하기의 수학식 18에 기초하여 L1 디테일 시그널링에 대한 L1_PADDING 필드의 길이 즉, L1 패딩 비트들의 수 KL1D_PAD를 산출할 수 있다. In this case, the
하지만, 수학식 18에 기초하여 KL1D_PAD를 산출하는 것은 일 예일 뿐이다. 즉, 세그먼테이션부(311)는 KL1D_ex_pad 및 NL1D_FECFRAME 값을 기초로 L1 디테일 시그널링에 대한 L1_PADDING 필드의 길이 즉, L1 패딩 비트들의 수 KL1D_PAD를 산출할 수 있다. 일 예로, 하기 수학식 18에 기초하여 KL1D_PAD 값을 구할 수 있다. 즉, 수학식 18은 KL1D_PAD 값을 구하는 방법의 일 예일 뿐, 동일한 결과가 나오도록 KL1D_ex_pad 및 NL1D_FECFRAME 값을 기초하여 다른 방법을 통해 적용할 수도 있다. However, calculating K L1D_PAD based on the equation (18) is only an example. That is, the
그리고, 세그먼테이션부(311)는 L1_PADDING 파트에 KL1D_PAD 개의 제로 비트들(즉, 0 값을 갖는 비트들)을 채울 수 있다. 이에 따라, 도 44와 같이 KL1D_PAD 개의 제로 비트들이 L1_PADDING 파트에 채워질 수 있다.Then, the
이와 같이, L1_PADDING 필드의 길이를 산출하고 산출된 길이만큼의 제로 비트들을 L1_PADDING 파트에 패딩함으로써, L1 디테일 시그널링을 세그먼테이션할 때, L1 디테일 시그널링을 각각 동일한 수의 비트들로 구성된 복수의 블록으로 세그먼테이션할 수 있게 된다.In this manner, when segmenting the L1 detail signaling by calculating the length of the L1_PADDING field and padding the zero bits of the calculated length to the L1_PADDING part, the L1 detail signaling is segmented into a plurality of blocks each composed of the same number of bits .
이후, 세그먼테이션부(311)는 하기의 수학식 19에 기초하여 제로 패딩 비트들(zero padding bits)을 포함하는 전체 L1 디테일 시그널링의 최종 길이 KL1D를 산출할 수 있다.Thereafter, the
그리고, 세그먼테이션부(311)는 하기의 수학식 20에 기초하여 NL1D_FECFRAME 개의 블록 각각에서의 정보어 비트들의 수 Ksig를 산출할 수 있다.Then, the
이후, 세그먼테이션부(311)는 전체 L1 디테일 시그널링을 Ksig 개의 비트 수만큼씩 세그먼테이션할 수 있다.Thereafter, the
구체적으로, 도 44와 같이, 세그먼테이션부(311)는 NL1D_FECFRAME가 1 보다 큰 경우, 전체 L1 디테일 시그널링을 Ksig 개의 비트 수만큼씩 세그먼테이션하여, 전체 L1 디테일 시그널링을 NL1D_FECFRAME 개의 블록으로 세그먼테이션할 수 있다. More specifically, as shown in FIG. 44, when the N L1D_FECFRAME is greater than 1, the segmenting
이에 따라, L1 디테일 시그널링은 NL1D_FECFRAME 개의 블록으로 세그먼테이션되고, NL1D_FECFRAME 개의 블록 각각에서 L1 디테일 시그널링 비트들의 수는 Ksig가 될 수 있다. 또한, 세그먼트된 L1 디테일 시그널링 각각은 인코딩되어, 인코딩 결과로서 코딩된 블록 즉, FEC 프레임을 형성한다는 점에서, 결국, NL1D_FECFRAME 개의 코딩된 블록 각각에서 L1 디테일 시그널링 비트들의 수는 Ksig가 될 수 있다.Accordingly, details L1 signaling is L1D_FECFRAME segmentation into N blocks, each block in N L1D_FECFRAME of the number of L1 signaling bits detail may be a K sig. Also, in the segment L1 detail signaling each is encoded, that is, the coded block as the encoding result, in that they form an FEC frame, in the end, N L1D_FECFRAME of coding blocks each number of L1 detail the signaling bits can be K sig have.
다만, L1 디테일 시그널링이 세그먼테이션되지 않는 경우, Ksig=KL1D_ex_pad이다. However, if L1 detail signaling is not segmented, K sig = K L1D_ex_pad .
한편, 세그먼트된 L1 디테일 시그널링 블록은 하기와 같은 절차에 의해 인코딩될 수 있다.On the other hand, the segmented L1 detail signaling block can be encoded by the following procedure.
구체적으로, Ksig의 정보어 사이즈를 갖는 L1 디테일 시그널링 블록 각각의 모든 비트들은 스크램블링될 수 있다. 이후, 스크램블링된 L1 디테일 시그널링 블록 각각은 BCH 아우터 코드 및 LDPC 이너 코드의 연접에 의해 인코딩될 수 있다. Specifically, L1 signaling detail all the bits in the block information word, each having a size of K sig it can be scrambled. Each of the scrambled L1 detail signaling blocks may then be encoded by concatenation of the BCH outer code and the LDPC inner code.
구체적으로, L1 디테일 시그널링 블록 각각은 BCH 인코딩되어 Mouter(=168) 개의 BCH 패리티 체크 비트들이 각 블록의 Ksig 개의 L1 디테일 시그널링 비트들에 부가되고, 다음으로 각 블록의 L1 디테일 시그널링 비트들과 BCH 패리티 체크 비트들의 연접은 쇼트닝 및 펑처링된 16K LDPC 코드에 의해 인코딩될 수 있다. 한편, BCH 코드 및 LDPC 코드와 관련된 구체적인 내용은 후술하기로 한다. 다만, 본 발명에서는 Mouter=168인 경우에 대해서만 설명하지만, 시스템의 요구 사항에 따라 적절한 값으로 변경 가능함은 자명하다. Specifically, each of the L1 detail signaling blocks is BCH encoded so that M outer (= 168) BCH parity-check bits are added to the K sig L1 detail signaling bits of each block, and then the L1 detail signaling bits of each block The concatenation of the BCH parity-check bits may be encoded by shortening and punctured 16K LDPC codes. Concrete contents related to the BCH code and the LDPC code will be described later. However, in the present invention, only M outer = 168 is explained, but it is obvious that it can be changed to an appropriate value according to the requirements of the system.
스크램블러(211, 312)는 L1 베이직 시그널링 및 L1 디테일 시그널링을 스크램블링한다. 구체적으로, 스크램블러(211, 312)는 L1 베이직 시그널링 및 L1 디테일 시그널링을 랜덤화하고, 랜덤화된 L1 베이직 시그널링 및 L1 디테일 시그널링을 BCH 인코더(212, 313)로 출력할 수 있다.
이 경우, 스크램블러(211, 312)는 매(every) Ksig 개의 정보어 비트들을 스크램블링할 수 있다.In this case, the
즉, 각 프레임을 통해 수신 장치(200)로 전송되는 L1 베이직 시그널링 비트들의 수는 200이라는 점에서, 스크램블러(211)는 매 Ksig(=200) 개씩의 L1 베이직 시그널링 비트들을 스크램블링할 수 있다.That is, the
한편, 각 프레임을 통해 수신 장치(200)로 전송되는 L1 디테일 시그널링 비트들의 수는 가변적이라는 점에서, 경우에 따라, L1 디테일 시그널링은 세그먼테이션부(311)에 의해 세그먼테이션될 수 있다. 그리고, 세그먼테이션부(311)는 Ksig 개의 비트들로 구성된 L1 디테일 시그널링 또는 세그먼트된 L1 디테일 시그널링을 스크램블러(312)로 출력할 수 있다. 이에 따라, 스크램블러(312)는 세그먼테이션부(311)로부터 출력되는 매 Ksig 개의 L1 디테일 시그널링 비트들을 스크램블링할 수 있다.Meanwhile, the L1 detail signaling may be segmented by the
BCH 인코더(212, 313)는 L1 베이직 시그널링 및 L1 디테일 시그널링을 BCH 인코딩하여 BCH 패리티 체크 비트들을 생성한다.
구체적으로, BCH 인코더(212, 313)는 스크램블러(211, 313)에서 출력되는 L1 베이직 시그널링 및 L1 디테일 시그널링을 BCH 인코딩하여 BCH 패리티 체크 비트들을 생성하고, L1 베이직 시그널링 및 L1 디테일 시그널링 각각에 BCH 패리티 체크 비트들이 부가된 BCH 인코딩된 비트들을 제로 패딩부(213, 314)로 출력할 수 있다.Specifically, the
예를 들어, BCH 인코더(212, 313)는 입력되는 Ksig 개의 비트들을 BCH 인코딩하여(즉, Ksig=Kpayload) Mouter 개의 BCH 패리티 체크 비트들을 생성하고, Nouter(=Ksig+Mouter) 개의 비트들로 구성된 BCH 인코딩된 비트들을 제로 패딩부(213, 314)로 출력할 수 있다.For example, the
한편, BCH 인코딩에 대한 파라미터는 하기의 표 6과 같이 정의될 수 있다.Meanwhile, parameters for the BCH encoding can be defined as shown in Table 6 below.
한편, 도 42 및 도 43을 참조하면, LDPC 인코더(214, 315)는 BCH 인코더(212, 313) 이후에 배치됨을 알 수 있다.Referring to FIGS. 42 and 43, it can be seen that the
이에 따라, L1 베이직 시그널링 및 L1 디테일 시그널링은 BCH 아우터 코드 및 LDPC 이너 코드의 연접에 의해 보호될 수 있다. Accordingly, the L1 basic signaling and the L1 detail signaling can be protected by the concatenation of the BCH outer code and the LDPC inner code.
구체적으로, L1 베이직 시그널링 및 L1 디테일 시그널링은 BCH 인코딩되어, L1 베이직 시그널링에 대한 BCH 패리티 체크 비트들이 L1 베이직 시그널링에 부가되고, L1 디테일 시그널링에 대한 BCH 패리티 체크 비트들이 L1 디테일 시그널링에 부가된다. 그리고, 연접된 L1 베이직 시그널링과 BCH 패리티 체크 비트들은 LDPC 코드에 의해 추가로 보호되고, 연접된 L1 디테일 시그널링과 BCH 패리티 체크 비트들은 LDPC 코드에 의해 추가로 보호될 수 있다. Specifically, the L1 basic signaling and the L1 detail signaling are BCH encoded so that the BCH parity-check bits for the L1 basic signaling are added to the L1 basic signaling and the BCH parity-check bits for the L1 detail signaling are added to the L1 detail signaling. The concatenated L1 basic signaling and BCH parity check bits are additionally protected by the LDPC code, and the concatenated L1 detail signaling and BCH parity check bits can be further protected by the LDPC code.
여기에서, LDPC 코드는 16K LDPC 코드라는 점에서, BCH 인코더(212, 313)에서는 Ninner=16200(즉, 16K LDPC 코드의 코드 길이는 16200으로, LDPC 인코딩에 의해 생성된 LDPC 코드워드는 16200 개의 비트들로 구성될 수 있다)을 위한 시스테매틱 BCH 코드가 L1 베이직 시그널링 및 L1 디테일 시그널링의 아우터 인코딩을 위해 이용될 수 있다. Here, in the
제로 패딩부(213, 314)는 제로 비트들을 패딩한다. 구체적으로, LDPC 코드의 경우, 코드 레이트 및 코드 길이에 따라 정해진 특정 수의 LDPC 정보어 비트들이 요구된다는 점에서, 제로 패딩부(213, 314)는 BCH 인코딩된 비트들의 수가 LDPC 정보어 비트들의 수보다 작은 경우, LDPC 인코딩을 위해 제로 비트들을 패딩하여, BCH 인코딩된 비트들 및 제로 비트들로 구성된 특정 수의 LDPC 정보어 비트들을 생성하고, 이를 LDPC 인코더(214, 315)로 출력할 수 있다. 한편, BCH 인코딩된 비트들의 수가 LDPC 정보어 비트들의 수와 동일한 경우, 제로 비트들은 패딩되지 않는다.The zero
여기에서, 제로 패딩부(213, 314)에 의해 패딩된 제로 비트들은 LDPC 인코딩을 위해 패딩된 것이므로, 쇼트닝에 따라 패딩된 제로 비트들은 수신 장치(200)로 전송되지 않는다.Here, since the zero bits padded by the zero
예를 들어, 16K LDPC 코드의 LDPC 정보어 비트들의 수가 Kldpc인 경우, Kldpc 개의 LDPC 정보어 비트들을 채우기 위해, LDPC 정보어 비트들의 일부에는 제로 비트들이 패딩될 수 있다.For example, if the number of LDPC information bits in the 16K LDPC code is K ldpc , some of the LDPC information word bits may be padded with zero bits to fill the K ldpc LDPC information word bits.
구체적으로, BCH 인코딩된 비트들의 수가 Nouter이고 16K LDPC 코드의 LDPC 정보어 비트들의 수가 Kldpc이고, Nouter<Kldpc인 경우, 제로 패딩부(213, 314)는 LDPC 정보어 비트들의 일부에 Kldpc-Nouter 개의 제로 비트들을 패딩하고, Nouter 개의 BCH 인코딩된 비트들을 LDPC 정보어 비트들의 나머지 부분으로 사용하여, Kldpc 개의 비트들로 구성된 LDPC 정보어 비트들을 생성할 수 있다. 다만, Nouter=Kldpc인 경우, 제로 비트들은 패딩되지 않는다.Specifically, when the number of BCH encoded bits is N outer , the number of LDPC information word bits of a 16K LDPC code is K ldpc , and N outer < K ldpc , the zero
이를 위해, 제로 패딩부(213, 314)는 LDPC 정보어 비트들을 복수의 비트 그룹으로 구분할 수 있다.To this end, the zero
예를 들어, 제로 패딩부(213, 314)는 하기의 수학식 21 또는 수학식 22에 기초하여, Kldpc 개의 LDPC 정보어 비트들 (i0,i1,...,)을 Ninfo_group(=Kldpc/360) 개의 비트 그룹으로 나눌 수 있다. 즉, 제로 패딩부(213, 314)는 각 비트 그룹에 포함된 비트들의 수가 360이 되도록, LDPC 정보어 비트들을 복수의 비트 그룹으로 나눌 수 있다. For example, the zero
여기에서, Zj는 j 번째 비트 그룹을 나타낸다. Here, Z j represents the j-th bit group.
한편, L1 베이직 시그널링 및 L1 디테일 시그널링에 대한 제로 패딩을 위한 파라미터 (Nouter, Kldpc, Ninfo_group)은 하기의 표 7과 같이 정의될 수 있다. 이 경우, 제로 패딩부(213, 314)는 표 7에 기초하여 모드에 따라 제로 패딩을 위한 파라미터를 결정할 수 있다. On the other hand, L1 parameters for zero padding for basic signaling and the L1 signaling detail (N outer, K ldpc, N info_group) can be defined is as shown in Table 7 below. In this case, the zero
또한, 0≤j<Ninfo_group에 대해, 도 45와 같이 각 비트 그룹 Zj는 360 개의 비트들로 구성될 수 있다.Further, for 0? J <N info_group , as shown in FIG. 45, each bit group Z j may be composed of 360 bits.
구체적으로, 도 45는 L1 베이직 시그널링 및 L1 디테일 시그널링 각각이 LDPC 인코딩된 후의 데이터 포맷을 나타낸다. 도 45에서 Kldpc 개의 LDPC 정보어 비트들에 부가된 LDPC FEC는 LDPC 인코딩에 의해 생성된 LDPC 패리티 비트들을 나타낸다.Specifically, FIG. 45 shows the data format after each of the L1 basic signaling and the L1 detail signaling is LDPC encoded. The LDPC FEC added to the K ldpc LDPC information bits in FIG. 45 represents the LDPC parity bits generated by the LDPC encoding.
도 45를 참조하면, Kldpc 개의 LDPC 정보어 비트들은 Ninfo_group 개의 비트 그룹으로 구분되며, 각 비트 그룹은 360 개의 비트들로 구성될 수 있다.Referring to Figure 45, K ldpc of LDPC information word bits are divided into N groups info_group bits, each bit group can be made up of 360 bits.
한편, L1 베이직 시그널링 및 L1 디테일 시그널링에 대한 BCH 인코딩된 비트들의 수 Nouter(=Ksig+Mouter)가 Kldpc보다 작은 경우, 즉, Nouter(=Ksig+Mouter)<Kldpc인 경우, LDPC 인코딩을 위해, Kldpc 개의 LDPC 정보어 비트들은 Nouter 개의 BCH 인코딩된 비트들과 (Kldpc-Nouter) 개의 제로 패딩 비트들(zero-padded bits)로 채워질 수 있다. 이 경우, 패딩된 제로 비트들은 수신 장치(200)로 전송되지 않게 된다. On the other hand, when the number of BCH encoded bits N outer (= K sig + M outer ) for L1 basic signaling and L1 detail signaling is smaller than K ldpc , i.e., N outer (= K sig + M outer ) < K ldpc For LDPC encoding, K LDPC LDPC information bits may be filled with N outer BCH encoded bits and (K ldpc -N outer ) zero-padded bits. In this case, the padded zero bits are not transmitted to the receiving
이하에서는 제로 패딩부(213, 314)에서 수행되는 쇼트닝 절차를 보다 구체적으로 설명하도록 한다.Hereinafter, the shortening procedure performed by the zero
제로 패딩부(213, 314)는 패딩되는 제로 비트들의 수를 산출할 수 있다. 즉, 제로 패딩부(213, 314)는 LDPC 인코딩을 위해 요구되는 비트 수를 맞추기 위해, 패딩되어야 할 제로 비트들의 수를 산출할 수 있다.The zero
구체적으로, 제로 패딩부(213, 314)는 LDPC 정보어 비트들의 수와 BCH 인코딩된 비트들의 수의 차이만큼의 비트 수를 패딩되는 제로 비트들의 수로 산출할 수 있다. 즉, 제로 패딩부(213, 314)는 주어진 Nouter에 대해, 제로 패딩 비트들의 수를 (Kldpc-Nouter)로 산출할 수 있다. Specifically, the zero
그리고, 제로 패딩부(213, 314)는 모든 비트들이 패딩되는 비트 그룹의 수를 산출할 수 있다. 즉, 제로 패딩부(213, 314)는 비트 그룹 내의 모든 비트들이 제로 비트들로 패딩되는 비트 그룹의 수를 산출할 수 있다.The zero
구체적으로, 제로 패딩부(213, 314)는 하기의 수학식 23 또는 수학식 24에 기초하여 모든 비트들이 패딩되는 그룹의 수 Npad를 산출할 수 있다.Specifically, the zero
이후, 제로 패딩부(213, 314)는 쇼트닝 패턴에 기초하여, 복수의 그룹 중 제로 비트들이 패딩되는 비트 그룹을 판단하고, 판단된 비트 그룹 중 일부 비트 그룹 내의 모든 비트들 및 나머지 비트 그룹 내의 일부 비트들에 제로 비트들을 패딩할 수 있다.Then, the zero
이 경우, 패딩되는 비트 그룹의 쇼트닝 패턴은 하기의 표 8과 같이 정의될 수 있다. 이 경우, 제로 패딩부(213, 314)는 표 8에 기초하여 모드에 따라 쇼트닝 패턴을 결정할 수 있다.In this case, the shortening pattern of the bit group to be padded can be defined as shown in Table 8 below. In this case, the zero
여기에서, πs(j)는 j 번째로 패딩되는 비트 그룹의 인덱스이다. 즉, πs(j)는 j 번째가 되는 비트 그룹의 쇼트닝 패턴 오더(shortening pattern order)를 나타낸다. 그리고, Ninfo_group은 LDPC 정보어 비트들을 구성하는 복수의 비트 그룹의 수이다.Here,? S (j) is an index of a jth padded bit group. That is, π s (j) represents the shortening pattern order of the j-th bit group. N info_group is the number of a plurality of bit groups constituting LDPC information bits.
구체적으로, 제로 패딩부(213, 314)는 쇼트닝 패턴에 기초하여 , ,..., 을 비트 그룹 내의 모든 비트들이 제로 비트들로 패딩되는 비트 그룹으로 판단하고, 해당 비트 그룹의 모든 비트들에 제로 비트들을 패딩할 수 있다. 즉, 제로 패딩부(213, 314)는 쇼트닝 패턴에 기초하여 복수의 비트 그룹 중 πs(0) 번째 비트 그룹, πs(1) 번째 비트 그룹,..., πs(Npad-1) 번째 비트 그룹의 모든 비트들에 제로 비트들을 패딩할 수 있다.Specifically, the zero
이와 같이, Npad가 0이 아닌 경우, 제로 패딩부(213, 314)는 표 8에 기초하여 Npad 개의 비트 그룹의 리스트 즉, , ,..., 을 판단하고, 판단된 비트 그룹 내의 모든 LDPC 정보어 비트들에 제로들을 패딩할 수 있다In this way, when N pad is not 0, the zero
다만, Npad가 0인 경우, 상술한 절차는 생략될 수 있다.However, when N pad is 0, the above procedure can be omitted.
한편, 패딩되는 전체 제로 비트들의 수가 (Kldpc-Nouter)이고 Npad 개의 비트 그룹에 패딩된 제로 비트들의 수는 (360×Npad)라는 점에서, 제로 패딩부(213, 314)는 (Kldpc-Nouter-360×Npad) 개의 LDPC 정보어 비트들에 제로 비트들을 추가적으로 패딩할 수 있다. On the other hand, the number of zero bits padded (K ldpc -N outer ) and the number of zero bits padded to N pad groups of bits is (360 x N pad ), the zero
이 경우, 제로 패딩부(213, 314)는 쇼트닝 패턴에 기초하여 제로 비트들이 추가적으로 패딩되는 비트 그룹을 판단하고, 판단된 비트 그룹의 앞 부분부터 제로 비트들을 추가적으로 패딩할 수 있다.In this case, the zero
구체적으로, 제로 패딩부(213, 314)는 쇼트닝 패턴에 기초하여 를 제로 비트들이 추가적으로 패딩되는 비트 그룹인 것으로 판단하고, 의 앞 부분에 위치하는 (Kldpc-Nouter-360×Npad) 개의 비트들에 제로 비트들을 추가적으로 패딩할 수 있다. 이에 따라, πs(Npad) 번째 비트 그룹의 첫 번째 비트부터 (Kldpc-Nouter-360×Npad) 개의 제로 비트들이 패딩될 수 있다. Specifically, the zero
결국, 의 경우, 의 처음 부분에 위치한 (Kldpc-Nbch-360×Npad) 개의 LDPC 정보어 비트들에 제로들이 추가적으로 패딩될 수 있다.finally, In the case of, Zeros may be additionally padded to the ( LDPC - Nbch -360 x N pad ) LDPC information bits located at the beginning of the LDPC information bits.
한편, 상술한 예에서는 의 첫 번째 비트부터 (Kldpc-Nouter-360×Npad) 개의 제로 비트들이 패딩되는 것으로 설명하였으나 이는 일 예에 불과하며, 에서 제로 비트들이 패딩되는 위치는 변경될 수 있다. 예를 들어, (Kldpc-Nouter-360×Npad) 개의 제로 비트들은 의 중간 부분 또는 마지막 부분에 패딩되거나, 의 임의 위치에 패딩될 수도 있다.On the other hand, in the above example (K ldpc -N outer -360 x N pad ) zeroth bits are padded from the first bit of the first bit, but this is merely an example, The positions where the zeroth bits are padded may be changed. For example, (K ldpc -N outer -360 x N pad ) zeros bits Lt; / RTI > is padded at the middle or last portion of the < As shown in FIG.
이후, 제로 패딩부(213, 314)는 LDPC 정보어 비트들 중에서 패딩되지 않은 비트 위치에 BCH 인코딩된 비트들을 맵핑하여, LDPC 정보어 비트들을 구성할 수 있다.Thereafter, the zero
이에 따라, Nouter 개의 BCH 인코딩된 비트들이 Kldpc 개의 LDPC 정보어 비트들 (i0,i1,...,)에서 제로 비트들이 패딩되지 않은 비트 위치에 순차적으로 맵핑되어, Nouter 개의 BCH 인코딩된 비트들 및 (Kldpc-Nouter) 개의 정보어 비트들에 의해 Kldpc 개의 LDPC 정보어 비트들이 구성될 수 있다.Accordingly, N outer BCH encoded bits are divided into K ldpc LDPC information word bits (i 0 , i 1 , , Zero bits are sequentially mapped to non-padded bit positions so that K ldpc LDPC information bits can be constructed by N outer BCH encoded bits and (K ldpc -N outer ) have.
한편, 패딩된 제로 비트들은 수신 장치(200)로 전송되지 않는다. 이와 같이, 제로 비트들을 패딩하는 절차 또는 제로 비트들을 패딩하고 LDPC 인코딩 후 수신 장치(200)로 전송하지 않는 절차를 쇼트닝이라 할 수 있다. On the other hand, the padded zero bits are not transmitted to the receiving
LDPC 인코더(214, 315)는 L1 베이직 시그널링 및 L1 디테일 시그널링을 LDPC 인코딩한다.
구체적으로, LDPC 인코더(214, 315)는 제로 패딩부(213, 314)에서 출력되는 LDPC 정보어 비트들을 LDPC 인코딩하여 LDPC 패리티 비트들을 생성하고, LDPC 정보어 비트들 및 LDPC 패리티 비트들로 구성된 LDPC 코드워드를 패리티 퍼뮤테이션부(215, 316)로 출력할 수 있다.Specifically, the
즉, 제로 패딩부(213)로부터 출력되는 Kldpc 개의 비트들은 Ksig 개의 L1 베이직 시그널링 비트들, Mouter(=Nouter-Ksig) 개의 BCH 패리티 체크 비트들 및 (Kldpc-Nouter) 개의 제로 패딩 비트들을 포함할 수 있으며, 이는 LDPC 인코더(214)를 위한 Kldpc 개의 LDPC 정보어 비트들 I=(i0,i1,...,)을 구성할 수 있다. That is, the K ldpc bits output from the zero
또한, 제로 패딩부(314)로부터 출력되는 Kldpc 개의 비트들은 Ksig 개의 L1 디테일 시그널링 비트들, Mouter(=Nouter-Ksig) 개의 BCH 패리티 체크 비트들 및 (Kldpc-Nouter) 개의 제로 패딩 비트들을 포함할 수 있으며, 이는 LDPC 인코더(316)를 위한 Kldpc 개의 LDPC 정보어 비트들 I=(i0,i1,...,)을 구성할 수 있다. The K ldpc bits output from the zero
이 경우, LDPC 인코더(214, 315)는 Kldpc 개의 LDPC 정보어 비트들을 시스테매틱하게 LDPC 인코딩하여, Ninner 개의 비트들로 구성된 LDPC 코드워드 Λ=(c0,c1,...,)=(i0,i1,...,,p0,p1,...,)를 생성할 수 있다.In this case, LDPC encoder (214, 315) of K ldpc LDPC information bits in the systematic LDPC encoding by the schematic, N inner bits of the LDPC codeword Λ = consisting of (c 0, c 1, ... , ) = (i 0 , i 1 , ..., , p 0 , p 1 , ..., Can be generated.
한편, LDPC 인코더(214, 315)는 L1 베이직 모드들 및 L1 디테일 모드 1 및 2의 경우, L1 베이직 시그널링 및 L1 디테일 시그널링을 3/15의 코드 레이트로 인코딩하여 16200 개의 LDPC 코드워드 비트들을 생성할 수 있다. 이 경우, LDPC 인코더(214, 315)는 표 1에 기초하여 인코딩을 수행할 수 있다.Meanwhile, the
또한, LDPC 인코더(315)는 L1 디테일 모드 3,4,5,6 및 7의 경우, L1 디테일 시그널링을 6/15의 코드 레이트로 인코딩하여 16200 개의 LDPC 코드워드 비트들을 생성할 수 있다. 이 경우, LDPC 인코더(315)는 표 3에 기초하여 인코딩을 수행할 수 있다.In addition, the
한편, L1 베이직 시그널링 및 L1 디테일 시그널링에 대한 코드 레이트 및 코드 길이는 표 4와 같고, LDPC 정보어 비트들의 수는 표 7과 같다.Table 4 shows the code rates and code lengths for L1 basic signaling and L1 detail signaling, and Table 7 shows the number of LDPC information word bits.
패리티 퍼뮤테이션부(215, 316)는 패리티 퍼뮤테이션(parity permutation)을 수행한다. 즉, 패리티 퍼뮤테이션부(215, 316)는 LDPC 정보어 비트들을 제외하고, LDPC 패리티 비트들에 대해서만 퍼뮤테이션을 수행할 수 있다.The
구체적으로, 패리티 퍼뮤테이션부(215, 316)는 LDPC 인코더(214, 315)로부터 출력되는 LDPC 코드워드 중에서 LDPC 패리티 비트들에 대해서만 퍼뮤테이션을 수행하고, 패리티 퍼뮤테이션된 LDPC 코드워드를 리피티션부(216, 317)로 출력할 수 있다. 한편, 패리티 퍼뮤테이션부(316)는 패리티 퍼뮤테이션된 LDPC 코드워드를 부가 패리티 생성부(319)로 출력할 수도 있다. 이 경우, 부가 패리티 생성부(319)는 패리티 퍼뮤테이션부(316)에서 출력되는 패리티 퍼뮤테이션된 LDPC 코드워드를 이용하여 부가 패리티 비트들을 생성할 수 있다.Specifically, the
이를 위해, 패리티 퍼뮤테이션부(215, 316)는 패리티 인터리버(미도시) 및 그룹-와이즈(group-wise) 인터리버(미도시)를 포함할 수 있다.To this end, the
먼저, 패리티 인터리버(미도시)는 LDPC 코드워드를 구성하는 LDPC 정보어 비트들 및 LDPC 패리티 비트들 중에서 LDPC 패리티 비트들만을 인터리빙할 수 있다. 다만, 패리티 인터리버(미도시)는 L1 디테일 모드 3,4,5,6 및 7인 경우에만 패리티 인터리빙을 수행할 수 있다. 즉, L1 베이직 모드들 및 L1 디테일 모드 1, 2의 경우, LDPC 인코딩 과정의 일부로서 패리티 인터리빙이 포함되어 있다는 점에서, L1 베이직 모드들 및 L1 디테일 모드 1, 2인 경우, 패리티 인터리버(미도시)는 패리티 인터리빙을 수행하지 않을 수 있다.First, a parity interleaver (not shown) can interleave only LDPC parity bits among LDPC information bits and LDPC parity bits constituting an LDPC codeword. However, the parity interleaver (not shown) can perform parity interleaving only in the
한편, 패리티 인터리빙을 수행하는 모드의 경우, 패리티 인터리버(미도시)는 하기의 수학식 25에 기초하여 LDPC 패리티 비트들을 인터리빙할 수 있다.Meanwhile, in the mode for performing parity interleaving, a parity interleaver (not shown) may interleave LDPC parity bits based on Equation (25).
구체적으로, 수학식 25에 따르면, LDPC 코드워드 (c0,c1,...,)는 패리티 인터리버(미도시)에 의해 패리티 인터리빙되며, 패리티 인터리버(미도시)의 출력은 U=(u0,u1,...,)로 나타내어질 수 있다. Specifically, according to Equation 25, LDPC codeword (c 0, c 1, ... , ) Is parity interleaved by a parity interleaver (not shown), and the output of the parity interleaver (not shown) is U = (u 0 , u 1 , ..., ). ≪ / RTI >
한편, L1 베이직 모드들 및 L1 디테일 모드 1,2의 경우, 패리티 인터리버(미도시)는 이용되지 않는다는 점에서, 패리티 인터리버(미도시)의 출력 U=(u0,u1,...,)은 하기의 수학식 26과 같이 나타내어질 수 있다.On the other hand, in the case of the L1 basic modes and the
한편, 그룹-와이즈 인터리버(미도시)는 패리티 인터리버(미도시)의 출력을 그룹-와이즈 인터리빙할 수 있다. Meanwhile, a group-wise interleaver (not shown) can group-wise interleave the output of a parity interleaver (not shown).
여기에서, 상술한 바와 같이, 패리티 인터리버(미도시)의 출력은 패리티 인터리버(미도시)에 의해 패리티 인터리빙된 LDPC 코드워드이거나, 패리티 인터리버(미도시)에 의해 패리티 인터리빙이 되지 않은 LDPC 코드워드가 될 수 있다. Here, as described above, the output of the parity interleaver (not shown) is an LDPC codeword parity-interleaved by a parity interleaver (not shown) or an LDPC codeword that is not parity interleaved by a parity interleaver .
이에 따라, 패리티 인터리빙이 수행된 경우, 그룹-와이즈 인터리버(미도시)는 패리티 인터리빙된 LDPC 코드워드를 그룹-와이즈 인터리빙하고, 패리티 인터리빙이 수행되지 않은 경우, 그룹-와이즈 인터리버(미도시)는 LDPC 코드워드를 그룹-와이즈 인터리빙할 수 있다.Accordingly, when the parity interleaving is performed, the group-wise interleaver (not shown) performs group-wise interleaving of the parity-interleaved LDPC codewords, and when the parity interleaving is not performed, Code words can be group-wise interleaved.
구체적으로, 그룹-와이즈 인터리버(미도시)는 패리티 인터리버(미도시)의 출력을 비트 그룹 단위로 인터리빙할 수 있다.Specifically, the group-wise interleaver (not shown) can interleave the output of the parity interleaver (not shown) in units of bit groups.
이를 위해, 그룹 와이즈 인터리버(미도시)는 패리티 인터리버(미도시)에서 출력되는 LDPC 코드워드를 복수의 비트 그룹으로 구분할 수 있다. 이에 따라, 패리티 인터리버(미도시)에서 출력되는 LDPC 패리티 비트들은 복수의 비트 그룹으로 구분될 수 있다.To this end, the group-wise interleaver (not shown) may divide the LDPC codeword output from the parity interleaver (not shown) into a plurality of bit groups. Accordingly, the LDPC parity bits output from the parity interleaver (not shown) can be divided into a plurality of bit groups.
구체적으로, 그룹-와이즈 인터리버(미도시)는 하기의 수학식 27에 기초하여 패리티 인터리버(미도시)에서 출력되는 LDPC 인코딩된 비트들 (u0,u1,...,)을 Ngroup(=Ninner/360) 개의 비트 그룹으로 나눌 수 있다. Specifically, the group-wise interleaver (not shown) converts the LDPC encoded bits u 0 , u 1 , ..., u 0 output from the parity interleaver (not shown) ) Can be divided into N groups (= N inner / 360) bit groups.
여기에서, Xj는 j 번째 비트 그룹을 나타낸다. Here, X j represents the j-th bit group.
도 46은 패리티 인터리버(미도시)에서 출력되는 LDPC 코드워드를 복수의 비트 그룹으로 구분하는 일 예를 나타낸다.46 shows an example of dividing an LDPC code word output from a parity interleaver (not shown) into a plurality of bit groups.
도 46을 참조하면, LDPC 코드워드는 Ngroup(=Ninner/360) 개의 비트 그룹으로 구분되며, 0≤j<Ngroup에 대해 각 비트 그룹 Xj는 360 개의 비트들로 구성된다. Referring to FIG. 46, the LDPC code word is divided into N groups (= N inner / 360) bit groups, and each bit group X j consists of 360 bits for 0? J <N group .
이에 따라, Kldpc 개의 비트들로 구성된 LDPC 정보어 비트들은 (Kldpc/360) 개의 비트 그룹으로 구분되고, Ninner-Kldpc 개의 비트들로 구성된 LDPC 패리티 비트들은 (Ninner-Kldpc)/360 개의 비트 그룹으로 구분될 수 있다. Accordingly, LDPC information bits consisting of K ldpc bits are (K ldpc / 360) is divided into two bit groups, N -K inner ldpc bits of LDPC parity bits are comprised of (N inner -K ldpc) / It can be divided into 360 bit groups.
그리고, 그룹-와이즈 인터리버(미도시)는 패리티 인터리버(미도시)에서 출력되는 LDPC 코드워드를 그룹-와이즈 인터리빙한다.The group-wise interleaver (not shown) performs group-wise interleaving of the LDPC code words output from the parity interleaver (not shown).
이 경우, 그룹-와이즈 인터리버(미도시)는 LDPC 정보어 비트들에 대해서는 인터리빙을 수행하지 않고 LDPC 패리티 비트들에 대해서만 인터리빙을 수행하여, LDPC 패리티 비트들을 구성하는 복수의 비트 그룹의 순서를 변경할 수 있다.In this case, the group-wise interleaver (not shown) interleaves only the LDPC parity bits without interleaving the LDPC information bits, thereby changing the order of the plurality of bit groups constituting the LDPC parity bits have.
이에 따라, LDPC 비트들 중 LDPC 정보어 비트들은 그룹-와이즈 인터리버(미도시)에 의해 인터리빙되지 않지만, LDPC 비트들 중 LDPC 패리티 비트들은 그룹-와이즈 인터리버(미도시)에 의해 인터리빙될 수 있다. 이 경우, LDPC 패리티 비트들은 그룹 단위로 인터리빙될 수 있다. Accordingly, the LDPC information bits of the LDPC bits are not interleaved by the group-wise interleaver (not shown), but the LDPC parity bits of the LDPC bits can be interleaved by the group-wise interleaver (not shown). In this case, the LDPC parity bits may be interleaved on a group basis.
구체적으로, 그룹-와이즈 인터리버(미도시)는 하기의 수학식 28에 기초하여 패리티 인터리버(미도시)에서 출력되는 LDPC 코드워드를 그룹-와이즈 인터리빙할 수 있다.Specifically, the group-wise interleaver (not shown) can group-wise interleave the LDPC codewords output from the parity interleaver (not shown) based on Equation (28) below.
여기에서, Xj는 LDPC 코드워드를 구성하는 복수의 비트 그룹 중 j 번째 비트 그룹 즉, 그룹-와이즈 인터리빙 전의 j 번째 비트 그룹을 나타내고, Yj는 그룹-와이즈 인터리빙된 j 번째 비트 그룹을 나타낸다. 그리고, πp(j)는 그룹-와이즈 인터리빙을 위한 퍼뮤테이션 오더(permutation order)를 나타낸다. Here, X j denotes a j-th bit group among a plurality of bit groups constituting the LDPC codeword, that is, a j-th bit group before group-wise interleaving, and Y j denotes a group-wise interleaved j-th bit group. And? P (j) represents a permutation order for group-wise interleaving.
한편, 퍼뮤테이션 오더는 하기의 표 9 및 표 10에 기초하여 정의될 수 있다. 여기에서, 표 9는 L1 베이직 모드들 및 L1 디테일 모드 1, 2에 대한 패리티 부분의 그룹-와이즈 인터리빙 패턴을 나타내고, 표 10은 L1 디테일 모드 3,4,5,6,7에 대한 패리티 부분의 그룹-와이즈 인터리빙 패턴을 나타낸다. On the other hand, permutation orders can be defined based on Tables 9 and 10 below. Table 9 shows the group-wise interleaving patterns of the parity parts for the L1 basic modes and the
이 경우, 그룹-와이즈 인터리버(미도시)는 표 9 및 표 10에 기초하여 모드에 따라 그룹-와이즈 인터리빙 패턴을 결정할 수 있다. In this case, the group-wise interleaver (not shown) can determine the group-wise interleaving pattern according to the mode based on Table 9 and Table 10. [
이하에서는 L1 디테일 모드 2에 대한 그룹-와이즈 인터리빙 패턴을 일 예로, 그룹-와이즈 인터리버(미도시)의 동작에 대해 설명하도록 한다.Hereinafter, the operation of the group-wise interleaver (not shown) will be described as an example of the group-wise interleaving pattern for the
L1 디테일 모드 2의 경우, LDPC 인코더(315)는 3/15의 코드 레이트로 3240 개의 LDPC 정보어 비트들을 LDPC 인코딩하여 12960 개의 LDPC 패리티 비트들을 생성한다. 이 경우, LDPC 코드워드는 16200 개의 비트들로 구성될 수 있다.In the
한편, 각 비트 그룹은 360 개의 비트들로 구성되므로, 16200 개의 비트들로 구성된 LDPC 코드워드는 45 개의 비트 그룹으로 구분된다. Since each bit group is composed of 360 bits, an LDPC codeword composed of 16200 bits is divided into 45 bit groups.
여기에서, LDPC 정보어 비트들은 3240 개이고, LDPC 패리티 비트들은 12960 개이므로, 0 번째 비트 그룹부터 8 번째 비트 그룹은 LDPC 정보어 비트들에 해당하고, 9 번째 비트 그룹부터 44 번째 비트 그룹은 LDPC 패리티 비트들에 해당한다.Here, since the LDPC information bits are 3240 and the LDPC parity bits are 12960, the 0th to 8th bit groups correspond to LDPC information bits, the 9th to 44th bit groups correspond to LDPC parity Bits.
이 경우, 패리티 인터리버(미도시)는 패리티 인터리빙을 수행하지 않고, 그룹-와이즈 인터리버(미도시)는 수학식 28 및 표 9에 기초하여, LDPC 정보어 비트들을 구성하는 비트 그룹 즉, 0 번째 비트 그룹부터 8 번째 비트 그룹은 인터리빙하지 않고, LDPC 패리티 비트들을 구성하는 비트 그룹 즉, 9 번째 비트 그룹부터 44 번째 비트 그룹에 대해서는 그룹 단위로 인터리빙하여, 9 번째 비트 그룹부터 44 번째 비트 그룹의 순서를 변경할 수 있다.In this case, the parity interleaver (not shown) does not perform the parity interleaving, and the group-wise interleaver (not shown) calculates the bit group constituting the LDPC information bits, that is, The 8th bit group is not interleaved and the bit groups constituting the LDPC parity bits are interleaved for the 44th bit group from the 9th bit group to the 9th bit group to the 44th bit group, Can be changed.
구체적으로, 표 9에서 L1 디테일 모드 2의 경우, 경우, 수학식 28은 Y0=X0, Y1=X1,..., Y7=X7, Y8=X8, Y9=Xπp(9)=X9, Y10=Xπp(10)=X31, Y11=Xπp(11)=X23,...,Y42=Xπp(42)=X28, Y43=Xπp(43)=X39, Y44=Xπp(44)=X42와 같이 나타낼 수 있다.Specifically, in the case of
이에 따라, 그룹-와이즈 인터리버(미도시)는 LDPC 정보어 비트들을 포함하는 0 번째 비트 그룹부터 8 번째 비트 그룹의 순서를 변경하지 않지만, LDPC 패리티 비트들을 포함하는 9 번째 비트 그룹부터 44 번째 비트 그룹의 순서를 변경할 수 있다.Accordingly, the group-wise interleaver (not shown) does not change the order of the 0-th bit group to the 8-th bit group including the LDPC information bits, but the ninth bit group including the LDPC parity bits, Can be changed.
구체적으로, 그룹-와이즈 인터리버(미도시)는 9 번째 비트 그룹이 9 번째, 31 번째 비트 그룹이 10 번째, 23 번째 비트 그룹이 11 번째,..., 28 번째 비트 그룹이 42 번째, 39 번째 비트 그룹이 43 번째, 42 번째 비트 그룹이 44 번째가 되도록, 9 번째 비트 그룹부터 44 번째 비트 그룹까지 비트 그룹의 순서를 변경할 수 있다.Specifically, in the group-wise interleaver (not shown), the ninth bit group is ninth, the 31st bit group is 10th, the 23rd bit group is 11th, ..., the 28th bit group is 42th, The order of the bit groups from the ninth bit group to the 44th bit group can be changed so that the bit group is the 43rd bit and the 42nd bit group is the 44th bit.
한편, 후술하는 바와 같이, 펑처링부(217, 318)는 마지막 패리티 비트부터 펑처링하기 때문에, 패리티 비트 그룹들은 패리티 퍼뮤테이션에 의해 펑처링 패턴의 역순으로 배열될 수 있다. 즉, 가장 먼저 펑처링되는 비트 그룹이 가장 마지막 비트 그룹에 위치하게 된다.Meanwhile, as described later, since the puncturing
한편, 상술한 예에서는 패리티 비트들만을 인터리빙하는 것으로 설명하였으나 이는 일 예에 불과하다. 즉, 패리티 퍼뮤테이션부(215, 316)는 LDPC 정보어 비트들을 인터리빙할 수도 있다. 이 경우, 패리티 퍼뮤테이션부(215, 316)는 LDPC 정보어 비트들의 순서가 변경되지 않도록, identity로 LDPC 정보어 비트들을 인터리빙하고, 인터리빙 전과 동일한 순서를 갖는 LDPC 정보어 비트들을 출력할 수 있다. In the above example, only the parity bits are interleaved, but this is merely an example. That is, the
리피티션부(216, 317)는 패리티 퍼뮤테이션된 LDPC 코드워드의 적어도 일부 비트들을 LDPC 정보어 비트들 다음 위치에 리피티션하고, 리피티션된 LDPC 코드워드(즉, 리피티션된 비트들을 포함하는 LDPC 코드워드 비트들을 의미하며, 리피티션 이후의 LDPC 코드워드라 할 수도 있다)를 펑처링부(217, 318)로 출력할 수 있다. 한편, 리피티션부(317)는 리피티션 이후의 LDPC 코드워드를 부가 패리티 생성부(319)로 출력할 수도 있다. 이 경우, 부가 패리티 생성부(319)는 리피티션 이후의 LDPC 코드워드를 이용하여 부가 패리티 비트들을 생성할 수 있다.The
구체적으로, 리피티션부(216, 317)는 특정 수의 LDPC 패리티 비트들을 LDPC 정보어 비트들 이후에 리피티션할 수 있다. 즉, 리피티션부(216, 317)는 특정 수의 LDPC 패리티 비트들을 LDPC 정보어 비트들 이후에 부가할 수 있다. 이에 따라, 리피티션 비트들은 LDPC 코드워드 내에서 LDPC 정보어 비트들과 LDPC 패리티 비트들 사이에 위치하게 된다. Specifically, the
이에 따라, 리피티션 이후의 LDPC 코드워드 내에서 특정 수의 비트들은 반복되며, 수신 장치(200)로 추가적으로 전송될 수 있다는 점에서, 상술한 동작을 리피티션(repetition)이라 할 수 있다. 그리고, 리피티션 이후의 LDPC 코드워드에서 리피티션되는 비트들 즉, 리피티션에 따라 LDPC 정보어 비트들 이후에 부가되는 비트들을 리피티션 비트들(repetition bits)(또는, 리피티션된 비트들(repeted bits))이라 할 수 있다.Accordingly, the above-described operation can be referred to as repetition in that a certain number of bits in the LDPC code word after repetition are repeated and can be further transmitted to the receiving
한편, 부가라는 것은 비트들이 반복되도록, LDPC 정보어 비트들과 LDPC 패리티 비트들 사이에 리피티션 비트들을 덧붙이는 것을 의미한다. On the other hand, addition means adding repetition bits between LDPC information bits and LDPC parity bits so that the bits are repeated.
리피티션은 L1 베이직 모드 1 및 L1 디테일 모드 1에 대해서만 수행될 수 있으며, 다른 모드에 대해서는 수행되지 않을 수 있다. 이 경우, 리피티션부(216, 317)는 리피티션을 수행하지 않고, 패리티 퍼뮤테이션된 LDPC 코드워드를 펑처링부(217, 318)로 출력할 수 있다. Repetition may be performed only for L1
이하에서는 리피티션을 수행하는 방법에 대해 보다 구체적으로 설명하도록 한다.Hereinafter, a method of performing repetition will be described in more detail.
리피티션부(216, 317)는 하기의 수학식 29에 기초하여 LDPC 코드워드 당 추가적으로 전송되는 비트들의 수 Nrepeat를 산출할 수 있다. The
여기에서, C는 고정된 값(fixed number)을 가지며, D는 짝수(even integer)일 수 있다. 수학식 29를 참조하면, 리피티션되는 비트들의 수는 주어진 Nouter에 대해 C가 곱해지고 D가 더해짐에 따라 산출됨을 알 수 있다.Here, C has a fixed number, and D can be even integer. Referring to Equation 29, it can be seen that the number of repetition bits is calculated as C is multiplied and D is added for a given N outer .
한편, 리피티션을 위한 파라미터 C, D는 하기의 표 11에 따라 선택될 수 있다. 즉, 리피티션부(216, 317)는 표 11에 기초하여, 모드에 따라 C, D를 결정할 수 있다.On the other hand, the parameters C and D for repetition can be selected in accordance with Table 11 below. That is, the
그리고, 리피티션부(216, 317)는 Nrepeat 개의 LDPC 패리티 비트들을 리피티션할 수 있다.The
구체적으로, 리피티션부(216, 317)는 Nrepeat≤Nldpc_parity인 경우, 도 47과 같이 패리티 퍼뮤테이션된 LDPC 패리티 비트들의 처음 Nrepeat 개의 비트들을 LDPC 정보어 비트들에 부가할 수 있다. 즉, 리피티션부(216, 317)는 패리티 퍼뮤테이션된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트부터 Nrepeat 번째 LDPC 패리티 비트를 LDPC 정보어 비트들 이후에 부가할 수 있다.Specifically, the
한편, 리피티션부(216, 317)는 Nrepeat>Nldpc_parity인 경우, 도 48과 같이 패리티 퍼뮤테이션된 Nldpc_parity 개의 LDPC 패리티 비트들을 LDPC 정보어 비트들에 부가하고, 패리티 퍼뮤테이션된 LDPC 패리티 비트들의 처음 Nrepeat-Nldpc_parity 개를 먼저 부가된 Nldpc_parity 개의 LDPC 패리티 비트들에 추가적으로 부가할 수 있다. 즉, 리피티션부(216, 317)는 패리티 퍼뮤테이션된 LDPC 패리티 비트들 전체를 LDPC 정보어 비트들 이후에 부가하고, 패리티 퍼뮤테이션된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트부터 Nrepeat-Nldpc_parity 번째 LDPC 패리티 비트를 먼저 부가된 LDPC 패리티 비트들 이후에 추가적으로 부가할 수 있다.In the case of N repeat > N ldpc_parity , the
이에 따라, L1 베이직 모드 1 및 L1 디테일 모드 1의 경우, 추가적인 Nrepeat 개의 비트들이 LDPC 코드워드 내에서 선택되어 전송될 수 있다.Thus, for L1
펑처링부(217, 318)는 리피티션부(216, 317)에서 출력되는 LDPC 코드워드에 포함된 LDPC 패리티 비트들에서 일부 비트들을 펑처링하고, 펑처링된 LDPC 코드워드(즉, 펑처링된 비트들을 제외한 나머지 LDPC 코드워드 비트들로, 펑처링 이후의 LDPC 코드워드라 할 수도 있다)를 제로 제거부(218, 321)로 출력할 수 있다. 한편, 펑처링부(318)는 펑처링되는 LDPC 패리티 비트들에 대한 정보(가령, 펑처링되는 비트들의 개수 및 위치 등)를 부가 패리티 생성부(319)로 제공할 수 있다. 이 경우, 부가 패리티 생성부(319)는 이에 기초하여 부가 패리티 비트들을 생성할 수 있다.The puncturing
이에 따라, 패리티 퍼뮤테이션 후, 일부 LDPC 패리티 비트들은 펑처링될 수 있다. Thus, after parity permutation, some LDPC parity bits may be punctured.
이 경우, 펑처링된 LDPC 패리티 비트들은 L1 시그널링 비트들을 전송하는 프레임에서 전송되지 않는다. 구체적으로, 펑처링된 LDPC 패리티 비트들은 L1 시그널링 비트들을 전송하는 현재 프레임에서 전송되지 않고, 경우에 따라, 현재 프레임 이전의 프레임에서 전송될 수 있으며, 이는 부가 패리티 생성부(319)와 관련하여 후술하기로 한다.In this case, the punctured LDPC parity bits are not transmitted in the frame transmitting the L1 signaling bits. Specifically, the punctured LDPC parity bits are not transmitted in the current frame that transmits the L1 signaling bits, and may be transmitted in the frame before the current frame, as the case may be, .
이를 위해, 펑처링부(217, 318)는 LDPC 코드워드 당 펑처링되는 LDPC 패리티 비트들의 수 및 하나의 코딩된 블록의 사이즈를 판단할 수 있다. For this purpose, the puncturing
구체적으로, 펑처링부(217, 318)는 하기의 수학식 30에 기초하여 펑처링되는 LDPC 패리티 비트들의 임시적인 수 Npunc_temp를 산출할 수 있다. 즉, 펑처링부(217, 318)는 주어진 Nouter에 대해, 하기의 수학식 30에 기초하여 펑처링되는 LDPC 패리티 비트들의 임시적인 수 Npunc_temp를 산출할 수 있다. Specifically, the puncturing
수학식 30을 참조하면, 모드에 따라, 펑처링 비트들의 임시적인 사이즈는 쇼트닝 길이(shortening length)(즉, Kldpc-Nouter)에 기설정된 상수 A 값을 곱한 결과로부터 구한 정수에 정수형 상수(constant integer) B를 더함으로써 산출될 수 있다. 본 발명에서는 상수 A의 값은 쇼트닝되는 비트들의 수에 대한 펑처링되는 비트들의 수의 비율로 설정하였으나, 시스템의 요구 사항에 따라 다양하게 설정될 수 있음은 자명하다.Referring to Equation (30), depending on the mode, the temporary size of the puncturing bits may be an integral constant (i.e., a constant) obtained by multiplying the shortening length (i.e., K ldpc -N outer ) constant integer). In the present invention, the value of the constant A is set as a ratio of the number of bits to be punctured to the number of bits to be shortened, but it is obvious that the value can be variously set according to the requirements of the system.
여기에서, B 값은 쇼트닝 길이가 0인 경우에도 펑처링하는 길이를 의미하는 값으로, 펑처링 비트들의 최소 값을 나타낸다. 또한, A 및 B 값은 실제 전송되는 부호율을 조절하는 역할을 한다. 즉, A 및 B 값은 정보어 비트들의 길이 즉, L1 시그널링의 길이가 짧을 경우 또는 L1 시그널링의 길이가 길 경우를 대비하여, 실제 전송되는 부호율을 낮출 수 있도록 조절하는 역할을 한다.Here, the B value is a value indicating the length of puncturing even if the shortening length is 0, and represents the minimum value of the puncturing bits. Also, the A and B values control the code rate to be actually transmitted. That is, the A and B values control the rate of the actual information bits to be lowered in comparison with the length of the information bits, that is, when the length of the L1 signaling is short or when the length of the L1 signaling is long.
한편, Kldpc, A 및 B는 하기의 표 12와 같다. 표 12는 펑처링을 위한 파라미터들을 나타낸다. 이에 따라, 펑처링부(217, 318)는 표 12에 기초하여, 모드에 따라 펑처링을 위한 파라미터를 결정할 수 있다.On the other hand, K ldpc , A and B are shown in Table 12 below. Table 12 shows parameters for puncturing. Accordingly, the puncturing
한편, 펑처링부(217, 318)는 하기의 수학식 31에 기초하여 하나의 코딩된 블록의 임시적인 사이즈 NFEC_temp를 산출할 수 있다. 여기에서, 모드에 따른 LDPC 패리티 비트들의 수 Nldpc_parity는 표 12와 같다.On the other hand, the puncturing
그리고, 펑처링부(217, 318)는 하기의 수학식 32에 기초하여 하나의 코딩된 블록의 사이즈 NFEC를 산출할 수 있다. Then, the puncturing
여기에서, ηMOD는 변조 차수이다. 일 예로, 모드에 따라 L1 베이직 시그널링 및 L1 디테일 시그널링이 QPSK, 16-QAM, 64-QAM 및 256-QAM으로 변조되는 경우, 표 12와 같이 ηMOD는 2,4,6,8이 될 수 있다. 한편, 수학식 32에 따르면, NFEC는 변조 차수의 정수 배가 될 수 있다.Here, η MOD is the modulation order. For example, if the L1 basic signaling and the L1 detail signaling are modulated to QPSK, 16-QAM, 64-QAM and 256-QAM depending on the mode, the eta MOD may be 2, 4, . On the other hand, according to Equation (32), N FEC can be an integral multiple of the modulation order.
그리고, 펑처링부(217, 318)는 하기의 수학식 33에 기초하여 펑처링되는 LDPC 패리티 비트들의 수 Npunc를 산출할 수 있다.The puncturing
여기에서, Npunc는 0 또는 양의 정수이다. 그리고, NFEC는 각 정보어 블록 즉, Ksig 개의 정보어 비트들이 BCH 및 LDPC에 의해 인코딩된 후 얻어진 Nouter+Nldpc_parity 개의 비트들 중에서 Npunc 개의 펑처링되는 비트들을 제외한 수이다. 즉, NFEC는 리피티션 비트들을 제외하고 실제 전송되는 나머지 비트들의 수로 쇼트닝 및 펑처링이 적용된 LDPC 코드워드 비트들의 수라고 할 수 있다.Here, N punc is 0 or a positive integer. N FEC is a number excluding N punc punctured bits among N outer + N ldpc_parity bits obtained after B information bits and K sig information words are encoded by BCH and LDPC, respectively. That is, the N FEC is the number of the remaining bits transmitted actually, excluding the repetition bits, and the number of the LDPC codeword bits to which shortening and puncturing are applied.
상술한 과정을 살펴보면, 펑처링부(217, 318)는 패딩되는 제로 비트들의 수 즉, 쇼트닝 길이에 A를 곱하고, 그 결과에 B를 더해 펑처링되는 LDPC 패리티 비트들의 임시적인 수 Npunc_temp를 산출하게 된다.The puncturing
그리고, 펑처링부(217, 318)는 Npunc_temp에 기초하여 펑처링 및 쇼트닝 이후의 LDPC 코드워드 비트들의 임시적인 수 NFEC_temp를 산출하게 된다.Then, the puncturing units 217 and 318 calculate the temporary number N FEC_temp of LDPC codeword bits after puncturing and shortening based on N punc_temp .
구체적으로, LDPC 정보어 비트들은 LDPC 인코딩되고, LDPC 인코딩에 의해 생성된 LDPC 패리티 비트들이 LDPC 정보어 비트들에 부가되어 LDPC 코드워드를 구성한다. 여기에서, LDPC 정보어 비트들은 L1 베이직 시그널링 및 L1 디테일 시그널링이 BCH 인코딩된 BCH 인코딩된 비트들을 포함하며, 경우에 따라 패딩된 제로 비트들을 더 포함할 수 있다.Specifically, the LDPC information bits are LDPC encoded and the LDPC parity bits generated by the LDPC encoding are added to the LDPC information bits to construct an LDPC codeword. Here, the LDPC information bits include BCH encoded BCH encoded bits for L1 basic signaling and L1 detail signaling, and may further include padded zero bits, as the case may be.
이 경우, 패딩된 제로 비트들은 LDPC 인코딩 후 수신 장치(200)로 전송되지 않는다는 점에서, 쇼트닝된 LDPC 코드워드 즉, 패딩된 제로 비트들을 제외한 LDPC 코드워드(즉, 쇼트닝 이후의 LDPC 코드워드)는 BCH 인코딩된 비트들 및 LDPC 패리티 비트들로 구성될 수 있다. In this case, the LDPC codeword (i.e., the LDPC codeword after shortening) excluding the shortened LDPC codeword, i.e., the padded zero bits, in the sense that the padded zero bits are not transmitted to the receiving
따라서, 펑처링부(217, 318)는 BCH 인코딩된 비트들의 수 및 LDPC 패리티 비트들의 수를 합한 값에 펑처링되는 LDPC 패리티 비트들의 임시적인 수를 빼서, NFEC_temp를 산출하게 된다.Accordingly, the puncturing
한편, 펑처링 및 쇼트닝된 LDPC 코드워드(즉, 펑처링된 비트들 및 쇼트닝된 비트들을 제외한 나머지 LDPC 코드워드 비트들로, 펑처링 및 쇼트닝 이후의 LDPC 코드워드라 할 수 있다)는 모드에 따라 QPSK, 16-QAM, 64-QAM, 및 256-QAM 등의 다양한 변조 방식을 통해 성상도 심볼들에 맵핑되고, 성상도 심볼들은 프레임을 통해 수신 장치(200)로 전송될 수 있다.On the other hand, puncturing and shortened LDPC codewords (i.e., the remaining LDPC codeword bits, excluding punctured bits and shortened bits, may be referred to as LDPC codewords after puncturing and shortening) QPSK, 16-QAM, 64-QAM, and 256-QAM, and the constellation symbols can be transmitted to the receiving
이에 따라, 펑처링부(217, 318)는 NFEC_temp에 기초하여 변조 차수의 정수 배가 되는 펑처링 및 쇼트닝 이후의 LDPC 코드워드 비트들의 수 NFEC를 결정하고, NFEC이 되기 위해 쇼트닝 이후의 LDPC 코드워드 비트들에서 펑처링되어야 하는 비트들의 수 Npunc를 결정하게 된다.Accordingly, the puncture ring portion (217, 318) are N Pow on the basis of the FEC_temp that is an integral multiple of the modulation order puncturing and the number of shortening after the LDPC codeword bits determine the N FEC and, N FEC LDPC code after shortening, to be a The number N punc of bits to be punctured in the word bits is determined.
한편, 제로 비트들이 패딩되지 않는 경우, LDPC 코드워드는 BCH 인코딩된 비트들 및 LDPC 패리티 비트들로 구성되며, 쇼트닝은 생략될 수 있다.On the other hand, when the zero bits are not padded, the LDPC codeword is composed of BCH encoded bits and LDPC parity bits, and shortening may be omitted.
또한, L1 베이직 모드 1 및 L1 디테일 모드 1의 경우, 리피티션이 수행되어, 쇼트닝 및 펑처링 이후의 LDPC 코드워드 비트들의 수는 NFEC+Nrepeat과 같다.Also, for L1
한편, 펑처링부(217, 318)는 산출된 수만큼의 LDPC 패리티 비트들을 펑처링할 수 있다. Meanwhile, the puncturing
이 경우, 펑처링부(217, 318)는 전체 LDPC 코드워드의 마지막 Npunc 개의 비트들을 펑처링할 수 있다. 즉, 펑처링부(217, 318)는 마지막 LDPC 패리티 비트부터 Npunc 개의 비트들을 펑처링할 수 있다. In this case, the puncturing
구체적으로, 리피티션이 수행되지 않은 경우, 패리티 퍼뮤테이션된 LDPC 코드워드는 인코딩에 의해 생성된 LDPC 패리티 비트들만을 포함하게 된다. Specifically, if repetition is not performed, the parity-permutated LDPC codeword will contain only the LDPC parity bits generated by the encoding.
이 경우, 펑처링부(217, 318)는 패리티 퍼뮤테이션된 전체 LDPC 코드워드의 마지막 Npunc 개의 비트들을 펑처링할 수 있다. 이에 따라, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 마지막 LDPC 패리티 비트부터 Npunc 개의 비트들이 펑처링될 수 있다.In this case, the puncturing
한편, 리피티션이 수행된 경우, 패리티 퍼뮤테이션 및 리피티션 이후의 LDPC 코드워드는 리피티션된 LDPC 패리티 비트들 및 인코딩에 의해 생성된 LDPC 패리티 비트들을 포함하게 된다. On the other hand, when repetition is performed, the LDPC codeword after the parity permutation and repetition includes the repaired LDPC parity bits and the LDPC parity bits generated by the encoding.
이 경우, 펑처링부(217, 318)는 도 49 및 도 50과 같이 패리티 퍼뮤테이션 및 리피티션이 수행된 전체 LDPC 코드워드의 마지막 Npunc 개의 비트들을 펑처링할 수 있다. In this case, the puncturing
구체적으로, 리피티션된 LDPC 패리티 비트들은 LDPC 정보어 비트들과 인코딩에 의해 생성된 LDPC 패리티 비트들 사이에 위치하므로, 펑처링부(217, 318)는 인코딩에 의해 생성된 LDPC 패리티 비트들 중 마지막 LDPC 패리티 비트부터 Npunc 개의 비트들을 펑처링할 수 있다.Specifically, since the repaired LDPC parity bits are located between the LDPC information bits and the LDPC parity bits generated by the encoding, the puncturing
이와 같이, 펑처링부(217, 318)는 마지막 LDPC 패리티 비트들부터 Npunc 개의 비트들을 펑처링할 수 있다.In this manner, the puncturing
한편, Npunc는 0 또는 양의 정수이고, 리피티션은 L1 베이직 모드 1 및 L1 디테일 모드 1에 대해서만 적용될 수 있다.On the other hand, N punc is 0 or a positive integer, and the repetition can be applied only to the L1
한편, 상술한 예에서는 리피티션이 수행된 후 펑처링이 수행되는 것으로 설명하였으나, 이는 일 예에 불과하다. 경우에 따라, 펑처링이 수행된 후 리피티션이 수행될 수도 있다.In the above example, puncturing is performed after repetition is performed, but this is merely an example. In some cases, repetition may be performed after puncturing is performed.
부가 패리티 생성부(319)는 LDPC 패리티 비트들에서 비트들을 선택하여 부가 패리티 비트들(additional parity(AP) bits)을 생성한다. The additional
이 경우, 부가 패리티 비트들은 현재 프레임에서 전송되는 L1 디테일 시그널링에 기초하여 생성된 LDPC 패리티 비트들 중에서 선택되어 현재 프레임 이전의 프레임 즉, 이전 프레임을 통해 수신 장치(200)로 전송될 수 있다. In this case, the additional parity bits may be selected from the LDPC parity bits generated based on the L1 detail signaling transmitted in the current frame, and transmitted to the receiving
구체적으로, L1 디테일 시그널링은 LDPC 인코딩되고, LDPC 인코딩에 의해 생성된 LDPC 패리티 비트들이 L1 디테일 시그널링에 부가되어 LDPC 코드워드를 구성한다. Specifically, the L1 detail signaling is LDPC encoded and the LDPC parity bits generated by the LDPC encoding are added to the L1 detail signaling to construct the LDPC codeword.
그리고, LDPC 코드워드에 대해 펑처링 및 쇼트닝이 수행되고, 펑처링 및 쇼트닝 이후의 LDPC 코드워드는 프레임에 맵핑되어 수신 장치(200)로 전송될 수 있다. 여기에서, 모드에 따라 리피티션이 수행된 경우, 펑처링 및 쇼트닝 이후의 LDPC 코드워드는 리피티션된 LDPC 패리티 비트들을 포함할 수 있다.Then, puncturing and shortening are performed on the LDPC codeword, and LDPC codewords after puncturing and shortening are mapped to the frame and transmitted to the receiving
이 경우, 각 프레임마다 그에 대응되는 L1 디테일 시그널링이 LDPC 패리티 비트들과 함께 각 프레임을 통해 수신 장치(200)로 전송될 수 있다. 예를 들어, i-1 번째 프레임에 대응되는 L1 디테일 시그널링을 포함하는 펑처링 및 쇼트닝 이후의 LDPC 코드워드는 i-1 번째 프레임에 맵핑되어 수신 장치(200)로 전송되고, i 번째 프레임에 대응되는 L1 디테일 시그널링을 포함하는 펑처링 및 쇼트닝 이후의 LDPC 코드워드는 i 번째 프레임에 맵핑되어 수신 장치(200)로 전송될 수 있다.In this case, the L1 detail signaling corresponding to each frame may be transmitted to the
한편, 부가 패리티 생성부(319)는 i 번째 프레임에서 전송되는 L1 디테일 시그널링에 기초하여 생성된 LDPC 패리티 비트들에서 적어도 일부 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. Meanwhile, the additional
구체적으로, L1 디테일 시그널링이 LDPC 인코딩되어 생성된 LDPC 패리티 비트들에서 일부 비트들은 펑처링되어 수신 장치(200)로 전송되지 않는다. 이 경우, 부가 패리티 생성부(319)는 i 번째 프레임에서 전송되는 L1 디테일 시그널링이 LDPC 인코딩되어 생성된 LDPC 패리티 비트들 중 펑처링되는 LDPC 패리티 비트들에서 적어도 일부 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.Specifically, in the LDPC parity bits generated by the L1 detail signaling being LDPC-encoded, some bits are punctured and not transmitted to the receiving
또한, 부가 패리티 생성부(319)는 i 번째 프레임을 통해 수신 장치(200)로 전송되는 LDPC 패리티 비트들에서 적어도 일부 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.The additional
구체적으로, i 번째 프레임에 맵핑되는 펑처링 및 쇼트닝 이후의 LDPC 코드워드에 포함된 LDPC 패리티 비트들은 모드에 따라 인코딩에 의해 생성된 LDPC 패리티 비트들만으로 구성되거나, 인코딩에 의해 생성된 LDPC 패리티 비트들 및 리피티션된 LDPC 패리티 비트들로 구성될 수 있다.Specifically, the LDPC parity bits included in the LDPC codeword after the puncturing and shortening mapped to the i-th frame are configured only by the LDPC parity bits generated by encoding according to the mode, or by the LDPC parity bits generated by the encoding and And may be composed of repeated LDPC parity bits.
이 경우, 부가 패리티 생성부(319)는 i 번째 프레임에 맵핑되는 펑처링 및 쇼트닝 이후의 LDPC 코드워드에 포함된 LDPC 패리티 비트들에서 적어도 일부 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.In this case, the additional
한편, 부가 패리티 비트들은 i 번째 프레임 이전의 프레임 즉, i-1 번째 프레임을 통해 수신 장치(200)로 전송될 수 있다. On the other hand, the additional parity bits may be transmitted to the receiving
즉, 송신 장치(100)는 i-1 번째 프레임에 대응되는 L1 디테일 시그널링을 포함하는 펑처링 및 쇼트닝 이후의 LDPC 코드워드뿐만 아니라, i 번째 프레임에서 전송되는 L1 디테일 시그널링에 기초하여 생성된 부가 패리티 비트들을 i-1 번째 프레임을 통해 수신 장치(200)로 전송할 수 있다. That is, the transmitting
이 경우, 부가 패리티 비트들이 전송되는 프레임은 현재 프레임 이전의 프레임들 중 시간적으로 가장 근접한 이전 프레임이 될 수 있다. In this case, the frame to which the additional parity bits are transmitted may be the closest temporally previous frame among the frames before the current frame.
예를 들어, 부가 패리티 비트들은 현재 프레임 이전의 프레임들 중 현재 프레임과 동일한 부트스트랩 메이저/마이너(major/minor) 버전을 가지며, 시간적으로 가장 근접한 이전 프레임에서 전송될 수 있다.For example, the additional parity bits may have the same bootstrap major / minor version as the current frame of the frames before the current frame, and may be transmitted in the closest previous frame in time.
한편, 경우에 따라, 부가 패리티 생성부(319)는 부가 패리티 비트들을 생성하지 않을 수도 있다.In some cases, the additional
이 경우, 송신 장치(100)는 다음 프레임의 L1 디테일 시그널링에 대한 부가 패리티 비트들이 현재 프레임을 통해 전송되는지에 대한 정보를 현재 프레임을 통해 전송되는 L1 베이직 시그널링을 이용하여 수신 장치(200)로 전송할 수 있다.In this case, the transmitting
예를 들어, 현재 프레임과 동일한 부트스트랩 메이저/마이너 버전을 갖는 다음 프레임의 L1 디테일 시그널링에 대한 부가 패리티 비트들의 사용은 현재 프레임의 L1 베이직 파라미터의 필드 L1B_L1_Detail_additional_parity_mode를 통해 시널링될 수 있다. 구체적으로, 현재 프레임의 L1 베이직 파라미터에서 L1B_L1_Detail_additional_parity_mode가 '00'으로 설정된 경우, 다음 프레임의 L1 디테일 시그널링에 대한 부가 패리티 비트들은 현재 프레임에서 전송되지 않는다.For example, the use of additional parity bits for the L1 detail signaling of the next frame with the same bootstrap major / minor version as the current frame can be serialized through the field L1B_L1_Detail_additional_parity_mode of the L1 basic parameter of the current frame. Specifically, when L1B_L1_Detail_additional_parity_mode is set to '00' in the L1 basic parameter of the current frame, the additional parity bits for the L1 detail signaling of the next frame are not transmitted in the current frame.
이와 같이, L1 디테일 시그널링의 추가적인 강인함(robustness)을 증가시키기 위해, 부가 패리티 비트들은 현재 프레임의 L1 디테일 시그널링을 전송하는 현재 프레임 이전의 프레임에서 전송될 수 있다. Thus, in order to increase the additional robustness of the L1 detail signaling, the additional parity bits may be transmitted in the frame before the current frame transmitting the L1 detail signaling of the current frame.
도 51은 i 번째 프레임의 L1 디테일 시그널링을 위한 부가 패리티 비트들이 i-1 번째 프레임의 프리앰블에서 전송되는 예를 나타낸다.51 shows an example in which additional parity bits for L1 detail signaling of an i-th frame are transmitted in a preamble of an (i-1) th frame.
도 51의 경우, i 번째 프레임을 통해 전송되는 L1 디테일 시그널링이 세그먼테이션에 의해 M 개의 블록으로 세그먼트되고, 세그먼트된 각 블록이 FEC 인코딩된 경우를 나타낸다.In FIG. 51, the L1 detail signaling transmitted through the i-th frame is segmented into M blocks by segmentation, and each segmented block is FEC-encoded.
이에 따라, M 개의 LDPC 코드워드들 즉, LDPC 정보어 비트들 L1-D(i)_1 및 그에 대한 패리티 비트들(parity for L1-D(i)_1)을 포함하는 LDPC 코드워드,..., LDPC 정보어 비트들 L1-D(i)_M 및 그에 대한 패리티 비트들(parity for L1-D(i)_M)을 포함하는 LDPC 코드워드가 i 번째 프레임에 맵핑되어 수신 장치(200)로 전송된다.Thus, an LDPC codeword comprising M LDPC codewords, i.e. LDPC information bits L1-D (i) _1 and parity bits for it (parity for L1-D (i) _1), ... , LDPC codewords including LDPC information bits L1-D (i) _M and parity bits for them (L1-D (i) _M) are mapped to the i-th frame and transmitted to the receiving
이 경우, i 번째 프레임에서 전송되는 L1 디테일 시그널링에 기초하여 생성된 부가 패리티 비트들이 i-1 번째 프레임을 통해 수신 장치(200)로 전송될 수 있다. In this case, the additional parity bits generated based on the L1 detail signaling transmitted in the i-th frame may be transmitted to the receiving
구체적으로, i 번째 프레임에서 전송되는 L1 디테일 시그널링에 기초하여 생성된 부가 패리티 비트들 즉, AP for L1-D(i)_1,...AP for L1-D(i)_M이 i-1 번째 프레임의 프리앰블에 맵핑되어 수신 장치(200)로 전송될 수 있다. 이와 같은 부가 패리티 비트들의 사용 결과, L1 시그널링에 대한 다이버시티 게인(diversity gain)을 얻을 수 있게 된다. .., AP for L1-D (i) _M are generated in the (i-1) -th frame, based on the L1 detail signaling transmitted in the i- Mapped to the preamble of the frame and can be transmitted to the receiving
이하에서는 부가 패리티 비트들을 생성하는 방법에 대해 설명하도록 한다.Hereinafter, a method of generating additional parity bits will be described.
부가 패리티 생성부(319)는 하기의 수학식 34에 기초하여 부가 패리티 비트들의 임시적인 수 NAP_temp를 산출한다.The additional
여기에서, 이다.From here, to be.
그리고, K는 전송되는 코딩된 L1 디테일 시그널링 블록의 비트들(즉, 리피티션, 펑처링 및 제로 비트들이 제거된(즉, 쇼트닝된) 이후의 L1 디테일 시그널링 블록을 구성하는 비트들)의 총 수의 절반에 대한 부가 패리티 비트들의 수의 비율을 나타낸다. And K is the total number of bits of the coded L1 detail signaling block to be transmitted (i. E., Bits constituting the L1 detail signaling block after repetition, puncturing and zero bits have been removed Represents the ratio of the number of additional parity bits to half the number.
이 경우, K는 L1 베이직 시그널링의 필드 L1B_L1_Detail_additional_parity_mode 필드에 대응된다. 여기에서, i 번째 프레임(즉, frame (#i))의 L1 디테일 시그널링과 관련된 L1B_L1_Detail_additional_parity_mode의 값은 i-1 번째 프레임(즉, frame (#i-1)에서 전송될 수 있다. In this case, K corresponds to the field L1B_L1_Detail_additional_parity_mode field of L1 basic signaling. Here, the value of L1B_L1_Detail_additional_parity_mode associated with the L1 detail signaling of the i-th frame (i.e., frame (#i)) may be transmitted in the (i-1) th frame (i.e., frame (#i-1)).
한편, 상술한 바와 같이, L1 디테일 모드 2,3,4,5,6 및 7의 경우, 리피티션이 수행되지 않는다는 점에서, 수학식 34에서 Nrepeat는 0이다.On the other hand, as described above, in the case of the
그리고, 부가 패리티 생성부(319)는 하기의 수학식 35에 기초하여 부가 패리티 비트들의 수 NAP를 산출한다. 이에 따라, 부가 패리티 비트들의 수 NAP는 변조 차수의 정수 배가 될 수 있다.The additional
여기에서, 는 x 보다 작거나 같은 최대 정수이다. 그리고, ηMOD는 변조 차수이다. 일 예로, 모드에 따라 L1 디테일 시그널링이 QPSK, 16-QAM, 64-QAM 및 256-QAM으로 변조되는 경우, ηMOD는 2,4,6,8이 될 수 있다. From here, Is the largest integer less than or equal to x. And, η MOD is the modulation order. For example, if the L1 detail signaling is modulated to QPSK, 16-QAM, 64-QAM, and 256-QAM depending on the mode, the eta MOD can be 2, 4,
이와 같이, 부가 패리티 비트들의 수는 현재 프레임에서 전송되는 비트들의 총 수에 기초하여 결정될 수 있다.As such, the number of additional parity bits may be determined based on the total number of bits transmitted in the current frame.
이후, 부가 패리티 생성부(319)는 LDPC 패리티 비트들에서 산출된 비트 수만큼을 선택하여 부가 패리티 비트들을 생성할 수 있다. Then, the additional
구체적으로, 부가 패리티 생성부(319)는 펑처링된 LDPC 패리티 비트들의 수가 부가 패리티 비트들의 수보다 크거나 같은 경우, 펑처링된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트부터 산출된 수만큼의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다.Specifically, when the number of punctured LDPC parity bits is equal to or greater than the number of additional parity bits, the additional
한편, 부가 패리티 생성부(319)는 펑처링된 LDPC 패리티 비트들의 수가 부가 패리티 비트들의 수보다 작은 경우, 펑처링된 모든 LDPC 패리티 비트들을 먼저 선택하고, LDPC 코드워드에 포함된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트부터 산출된 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 추가적으로 선택하여 부가 패리티 비트들을 생성할 수 있다. If the number of punctured LDPC parity bits is smaller than the number of additional parity bits, the supplementary
구체적으로, 리피티션이 수행되지 않은 경우, 리피티션 이후의 LDPC 코드워드에 포함된 LDPC 패리티 비트들은 인코딩에 의해 생성된 LDPC 패리티 비트들이다.Specifically, when repetition is not performed, the LDPC parity bits included in the LDPC codeword after repetition are LDPC parity bits generated by encoding.
이 경우, 부가 패리티 생성부(319)는 펑처링된 모든 LDPC 패리티 비트들을 먼저 선택하고, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트부터 산출된 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 추가적으로 선택하여 부가 패리티 비트들을 생성할 수 있다.In this case, the additional
여기에서, 인코딩에 의해 생성된 LDPC 패리티 비트들은 펑처링되지 않는 LDPC 패리티 비트들 및 펑처링되는 LDPC 패리티 비트들로 구분된다. 이에 따라, 인코딩에 의해 생성된 LDPC 패리티 비트들 중 첫 번째 비트부터 비트들을 선택하는 경우, 펑처링되지 않는 LDPC 패리티 비트들 및 펑처링되는 LDPC 패리티 비트들 순으로 선택될 수 있다. Here, the LDPC parity bits generated by the encoding are divided into non-punctured LDPC parity bits and punctured LDPC parity bits. Accordingly, when bits are selected from the first bit among the LDPC parity bits generated by encoding, they can be selected in the order of non-punctured LDPC parity bits and punctured LDPC parity bits.
한편, 리피티션이 수행된 경우, 리피티션 이후의 LDPC 코드워드에 포함된 LDPC 패리티 비트들은 리피티션된 LDPC 패리티 비트들 및 인코딩에 의해 생성된 LDPC 패리티 비트들이다. 여기에서, 리피티션된 LDPC 패리티 비트들은 LDPC 정보어 비트들 및 인코딩에 의해 생성된 LDPC 패리티 비트들 사이에 위치하게 된다.On the other hand, if repetition is performed, the LDPC parity bits included in the LDPC codeword after the repetition are the repeated LDPC parity bits and the LDPC parity bits generated by the encoding. Here, the repaired LDPC parity bits are located between the LDPC information bits and the LDPC parity bits generated by the encoding.
이 경우, 부가 패리티 생성부(319)는 펑처링된 모든 LDPC 패리티 비트들을 먼저 선택하고, 리피티션된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트부터 산출된 비트들의 수에서 펑처링된 LDPC 패리티 비트들의 수를 뺀 수만큼의 비트들을 추가적으로 선택하여 부가 패리티 비트들을 생성할 수 있다.In this case, the additional
여기에서, 리피티션된 LDPC 패리티 비트들 중 첫 번째 비트부터 비트들을 선택할 때, 리피티션 비트들 및 인코딩에 의해 생성된 LDPC 패리티 비트들 순으로 선택될 수 있다. 또한, 인코딩에 의해 생성된 LDPC 패리티 비트들 내에서는, 펑처링되지 않는 LDPC 패리티 비트들 및 펑처링되는 LDPC 패리티 비트들 순으로 비트들이 선택될 수 있다. Here, when bits are selected from the first bit of the repeated LDPC parity bits, they can be selected in order of repetition bits and LDPC parity bits generated by encoding. Also, within the LDPC parity bits generated by encoding, bits can be selected in the order of non-punctured LDPC parity bits and punctured LDPC parity bits.
이하에서는 본 발명의 일 실시 예에 따른 부가 패리티 비트들을 생성하는 방법을 도 52 내지 도 54를 참조하여 보다 구체적으로 설명하도록 한다.Hereinafter, a method of generating additional parity bits according to an embodiment of the present invention will be described in more detail with reference to FIG. 52 to FIG.
도 52 내지 도 54는 본 발명의 일 실시 예에 따라 리피티션이 수행된 경우 부가 패리티 비트들을 생성하는 방법을 설명하기 위한 도면들이다. 이 경우, 리피티션 이후의 LDPC 코드워드 V=(v0,v1,...,)는 도 52와 같이 나타낼 수 있다.52 to 54 are diagrams for explaining a method of generating additional parity bits when repetition is performed according to an embodiment of the present invention. In this case, the LDPC code word V = (v 0 , v 1 , ..., ) Can be expressed as shown in Fig.
먼저, NAP≤Npunc인 경우, 도 53과 같이, 부가 패리티 생성부(319)는 펑처링된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트부터 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. First, when N AP? N punc , the additional
이에 따라, 부가 패리티 비트들을 위해, 펑처링된 LDPC 패리티 비트들 (, ,...,)이 선택될 수 있다. 즉, 부가 패리티 생성부(319)는 펑처링된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트부터 NAP 개의 비트들을 선택하여 부가 패리티 비트들을 생성할 수 있다. Thus, for the additional parity bits, the punctured LDPC parity bits ( , , ..., ) Can be selected. That is, the additional
한편, NAP>Npunc인 경우, 도 54와 같이, 부가 패리티 생성부(319)는 모든 펑처링된 LDPC 패리티 비트들을 선택한다. On the other hand if, N AP> N punc, as shown in Figure 54, an additional
이에 따라, 부가 패리티 비트들을 위해, 모든 펑처링된 LDPC 패리티 비트들 (, ,...,)이 선택될 수 있다.Thus, for the additional parity bits, all punctured LDPC parity bits ( , , ..., ) Can be selected.
그리고, 부가 패리티 생성부(319)는 리피티션된 LDPC 패리티 비트들과 인코딩에 의해 생성된 LDPC 패리티 비트들을 포함하는 LDPC 패리티 비트들에서 처음 (NAP-Npunc) 개의 비트들을 추가적으로 선택할 수 있다. The additional
즉, 리피티션된 LDPC 패리티 비트들과 인코딩에 의해 생성된 LDPC 패리티 비트들이 순차적으로 배열된다는 점에서, 부가 패리티 생성부(319)는 리티피션된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트부터 (NAP-Npunc) 개의 패리티 비트들을 추가적으로 선택할 수 있다. That is, in order that the repeated LDPC parity bits and the LDPC parity bits generated by the encoding are sequentially arranged, the additional
이에 따라, 부가 패리티 비트들을 위해, LDPC 패리티 비트들 (, ,...,)이 추가적으로 선택될 수 있다.Thus, for additional parity bits, LDPC parity bits ( , , ..., ) Can be additionally selected.
이 경우, 부가 패리티 생성부(319)는 추가적으로 선택된 비트들을 이전에 선택된 비트들에 부가하여 부가 패리티 비트들을 생성할 수 있다. 즉, 도 54와 같이, 부가 패리티 생성부(319)는 추가적으로 선택된 LDPC 패리티 비트들을 펑처링된 LDPC 패리티 비트들에 부가하여 부가 패리티 비트들을 생성할 수 있다. In this case, the additional
결국, 부가 패리티 비트들을 위해, (, ,...,,,,...,)가 선택될 수 있다.As a result, for the additional parity bits, ( , , ..., , , , ..., ) May be selected.
이와 같이, 펑처링된 비트들의 수가 부가 패리티 비트들의 수보다 크거나 같은 경우, 부가 패리티 비트들은 펑처링 오더에 기초하여 펑처링된 비트들 중에서 비트들을 선택함에 의해 생성될 수 있다. 반면, 그 외의 경우, 부가 패리티 비트들은 펑처링된 모든 비트들과 (NAP-Npunc) 개의 패리티 비트들을 선택함에 의해 생성될 수 있다.As such, if the number of punctured bits is greater than or equal to the number of additional parity bits, the additional parity bits may be generated by selecting bits from the punctured bits based on the puncturing order. Otherwise, the additional parity bits may be generated by selecting all of the punctured bits and (N AP -N punc ) parity bits.
한편, 리피티션이 수행되지 않는 경우 Nrepeat=0이라는 점에서, 리피티션이 수행되지 않는 경우에서 부가 패리티 비트들을 생성하는 방법은 도 52 내지 도 54에서 Nrepeat=0인 경우와 동일하다.On the other hand, in the case where repetition is not performed, the method of generating additional parity bits in the case where N repeat = 0 is not performed is the same as the case of N repeat = 0 in FIGS. 52 to 54 .
한편, 부가 패리티 비트들은 비트 인터리빙되고, 성상도에 맵핑될 수 있다. 이 경우, 부가 패리티 비트들에 대한 성상도는 현재 프레임에서 전송되는 리피티션, 펑처링 및 제로 비트들이 제거된 이후의 L1 디테일 시그널링 비트들에 대한 성상도와 동일한 방식으로 생성될 수 있다. 그리고, 도 51과 같이, 성상도에 맵핑된 이후, 부가 패리티 비트들은 현재 프레임의 L1 디테일 시그널링을 전송하는 현재 프레임 이전의 프레임에서 L1 디테일 시그널링 블록에 이후에 부가될 수 있다. On the other hand, the additional parity bits are bit interleaved and can be mapped to constellation. In this case, the constellation for the additional parity bits may be generated in the same manner as the constellation for L1 detail signaling bits after the repetition, puncturing and zero bits transmitted in the current frame are removed. Then, as shown in FIG. 51, after being mapped to the constellation, the additional parity bits can be added to the L1 detail signaling block later in the frame before the current frame transmitting the L1 detail signaling of the current frame.
한편, 부가 패리티 생성부(319)는 부가 패리티 비트들을 비트 디먹스(323)로 출력할 수 있다.Meanwhile, the additional
한편, 퍼뮤테이션 오더를 정의하는 그룹-와이즈 인터리빙 패턴은 제1 패턴과 제2 패턴으로 구성될 수 있다. On the other hand, the group-wise interleaving pattern defining the permutation order may be composed of the first pattern and the second pattern.
구체적으로, 수학식 30의 B 값은 펑처링되는 LDPC 패리티 비트들의 최소 값을 나타낸다는 점에서, B 값에 따라 특정한 개수의 비트들은 입력 시그널링의 길이에 상관없이 항상 펑처링될 수 있다. 예를 들어, L1 디테일 모드 2의 경우, B=6036이고, 비트 그룹은 360 개의 비트들로 구성된다는 점에서, 쇼트닝 길이가 0인 경우에도 최소 개의 비트 그룹은 항상 펑처링된다.Specifically, the B value of Equation (30) represents the minimum value of the LDPC parity bits to be punctured. Depending on the value B, a certain number of bits can always be punctured irrespective of the length of the input signaling. For example, in the
이 경우, 펑처링은 마지막 LDPC 패리티 비트부터 수행된다는 점에서, 그룹-와이즈 인터리빙 후, LDPC 패리티 비트들을 구성하는 복수의 비트 그룹 중 마지막 비트 그룹부터 특정한 개수의 비트 그룹은 쇼트닝 길이에 상관없이 항상 펑처링될 수 있다.In this case, since the puncturing is performed from the last LDPC parity bit, after the group-wise interleaving, a certain number of bit groups from the last bit group among the plurality of bit groups constituting the LDPC parity bits are always set to be the same regardless of the shortening length, .
예를 들어, L1 디테일 모드 2의 경우, 그룹-와이즈 인터리빙 후, LDPC 패리티 비트들을 구성하는 36 개의 비트 그룹 중에서 마지막 16 개의 비트 그룹은 항상 펑처링될 수 있다.For example, in the
이에 따라, 퍼뮤테이션 오더를 정의하는 그룹-와이즈 인터리빙 패턴에서 일부 패턴은 항상 펑처링되는 비트 그룹을 나타내게 되므로, 그룹-와이즈 인터리빙 패턴은 두 개의 패턴으로 구분될 수 있다. 구체적으로, 그룹-인터리빙 패턴에서 항상 펑처링되는 비트 그룹을 제외한 나머지 비트 그룹을 정의하는 패턴을 제1 패턴이라하고, 항상 펑처링되는 비트 그룹을 정의하는 패턴을 제2 패턴이라 할 수 있다.Accordingly, in the group-wise interleaving pattern defining the permutation order, some patterns always represent bit groups that are punctured, so that the group-wise interleaving pattern can be divided into two patterns. Specifically, a pattern that defines the remaining bit groups excluding the bit group that is always punctured in the group-interleaving pattern is referred to as a first pattern, and a pattern that defines a bit group that is always punctured may be referred to as a second pattern.
예를 들어, L1 디테일 모드 2의 경우 그룹-와이즈 인터리빙 패턴은 표 10과 같이 정의되므로, 그룹-와이즈 인터리빙 후 9 번째 비트 그룹부터 28 번째 비트 그룹에 위치하게 되는 그룹-와이즈 인터리빙 전의 비트 그룹의 인덱스를 나타내는 패턴 즉, Y9=Xπp(9)=X9, Y10=Xπp(10)=X31, Y11=Xπp(11)=X23,...,Y26=Xπp(26)=X17, Y27=Xπp(27)=X35, Y28=Xπp(28)=X21는 제1 패턴이 되고, 그룹-와이즈 인터리빙 후 29 번째 비트 그룹부터 44 번째 비트 그룹에 위치하게 되는 그룹-와이즈 인터리빙 전의 비트 그룹의 인덱스를 나타내는 패턴 즉, Y29=Xπp(29)=X20, Y30=Xπp(30)=X24, Y31=Xπp(31)=X44,...,Y42=Xπp(42)=X28, Y43=Xπp(43)=X39, Y44=Xπp(44)=X42는 제2 패턴이 될 수 있다.For example, in the
한편, 상술한 바와 같이 제2 패턴은 현재 프레임에서 쇼트닝 길이에 상관없이 항상 펑처링되는 비트 그룹을 정의하고, 제1 패턴은 쇼트닝 길이가 길어짐에 따라 추가적으로 펑처링되는 비트 그룹을 정의하기 때문에, 결과적으로, 제1 패턴은 펑처링 이후 현재 프레임에서 전송되는 LDPC 패리티 비트들을 결정하기 위해 이용될 수 있다. Meanwhile, as described above, the second pattern defines a bit group that is always punctured regardless of the shortening length in the current frame, and the first pattern defines a bit group that is additionally punctured as the shortening length becomes longer, , The first pattern may be used to determine the LDPC parity bits transmitted in the current frame after puncturing.
구체적으로, 펑처링되는 LDPC 패리티 비트들의 수에 따라, 항상 펑처링되는 LDPC 패리티 비트들에 추가로 더 많은 LDPC 패리티 비트들이 펑처링될 수 있다.Specifically, depending on the number of LDPC parity bits being punctured, more LDPC parity bits may be punctured in addition to the always punctured LDPC parity bits.
예를 들어, L1 디테일 모드 2의 경우, 펑처링되는 LDPC 패리티 비트들의 수가 7200인 경우, 20 개의 비트 그룹이 펑처링되어야 하므로, 항상 펑처링되는 16 개의 비트 그룹에 추가로 4 개의 비트 그룹이 더 펑처링되어야 한다. For example, in the
이 경우, 추가로 펑처링되는 4 개의 비트 그룹은 그룹-와이즈 인터리빙 후 25 번째부터 28 번째에 위치하는 비트 그룹에 해당하며, 이들 비트 그룹은 제1 패턴에 따라 결정된다는 점에서 즉, 제1 패턴에 속하기 때문에, 제1 패턴은 펑처링되는 비트 그룹을 결정하는데 이용될 수 있다.In this case, the four further punctured bit groups correspond to the 25th to 28th bit groups after the group-wise interleaving, and these bit groups are determined according to the first pattern, that is, , The first pattern can be used to determine the group of bits to be punctured.
즉, 펑처링되는 LDPC 패리티 비트들의 최소 값 이상으로 LDPC 패리티 비트들이 펑처링되는 경우, 추가적으로 어떠한 비트 그룹이 펑처링되는지는 항상 펑처링되는 비트 그룹 다음에 어떠한 비트 그룹이 위치하느냐에 따라 결정된다. 이에 따라, 펑처링되는 방향을 기준으로, 항상 펑처링되는 비트 그룹 다음에 위치되는 비트 그룹을 정의하는 제1 패턴이 펑처링되는 비트 그룹을 결정하는 것으로 볼 수 있다.That is, when LDPC parity bits are punctured beyond the minimum value of the LDPC parity bits to be punctured, what bit group is additionally punctured is always determined by which bit group is located after the punctured bit group. Accordingly, it can be seen that, based on the direction of puncturing, a first pattern defining a bit group positioned after the bit group always punctured is determined to determine the bit group to be punctured.
즉, 상술한 예에서, 펑처링되는 LDPC 패리티 비트들의 수가 7200인 경우, 항상 펑처링되는 16 개의 비트 그룹에, 추가로 4 개의 비트 그룹 즉, 그룹-와이즈 인터리빙 후 28 번째, 27 번째, 26 번째 및 25 번째에 위치하는 비트 그룹이 더 펑처링된다. 여기에서, 그룹-와이즈 인터리빙 후 25 번째부터 28 번째에 위치되는 비트 그룹은 제1 패턴에 따라 결정된다.That is, in the above example, when the number of LDPC parity bits to be punctured is 7200, 16 bits groups that are always punctured, and four groups of bits, that is, 28th, 27th, And the 25th bit group are further punctured. Here, the bit group located from the 25th to the 28th position after the group-Wise interleaving is determined according to the first pattern.
결국, 제1 패턴은 펑처링되는 비트 그룹을 결정하는데 이용되는 것으로 볼 수 있다. 또한, 펑처링되는 LDPC 패리티 비트들을 제외한 나머지 LDPC 패리티 비트들이 현재 프레임을 통해 전송되므로, 제1 패턴은 현재 프레임에서 전송되는 비트 그룹을 결정하는데 이용되는 것으로 볼 수 있다.Consequently, it can be seen that the first pattern is used to determine the bit group to be punctured. In addition, since the remaining LDPC parity bits except the punctured LDPC parity bits are transmitted through the current frame, the first pattern is used to determine a bit group transmitted in the current frame.
한편, 제2 패턴은 이전 프레임에서 전송되는 부가 패리티 비트들을 결정하기 위해서만 이용될 수 있다.On the other hand, the second pattern can be used only to determine the additional parity bits transmitted in the previous frame.
구체적으로, 항상 펑처링되는 비트 그룹으로 결정된 비트 그룹은 항상 펑처링되어 현재 프레임에서 전송되지 않기 때문에 항상 펑처링되는 비트 그룹의 위치로 그룹-와이즈 인터리빙되기만 하면 되고, 항상 펑처링되는 비트 그룹들 내에서 어디에 위치하는지는 중요하지 않다.Specifically, since a bit group determined to be always punctured is always punctured and not transmitted in the current frame, it is only required to be group-wise interleaved to the position of the bit group always punctured, It does not matter where you are located in.
예를 들어, L1 디테일 모드 2의 경우, 그룹-와이즈 인터리빙 전 20 번째, 24 번째, 44 번째,..., 28 번째, 39 번째 및 42 번째에 위치하는 비트 그룹들은 그룹-와이즈 인터리빙 후 29 번째 비트 그룹부터 44 번째 비트 그룹에 위치하기만 하면 되고, 해당 비트 그룹들 내에서 어디에 위치하는지는 중요하지 않다.For example, in the
이와 같이, 펑처링 측면에서 보면, 항상 펑처링되는 비트 그룹들을 정의하는제2 패턴은 펑처링되는 비트 그룹을 식별하는데만 이용되게 된다. 이에 따라, 제2 패턴에서 비트 그룹 간 순서를 정의한 것은 펑처링 측면에서 무의미하므로, 결과적으로, 항상 펑처링되는 비트 그룹을 정의하는 제2 패턴은 펑처링에 이용되지 않는 것으로 볼 수 있다.Thus, in terms of puncturing, the second pattern, which always defines the groups of bits to be punctured, is only used to identify the group of bits to be punctured. As a result, the definition of the order between bit groups in the second pattern is meaningless in terms of puncturing, and consequently, it can be seen that the second pattern defining the bit group always punctured is not used for puncturing.
하지만, 부가 패리티 비트들 측면에서 보면, 항상 펑처링되는 비트 그룹으로 결정된 비트 그룹이 항상 펑처링되는 비트 그룹들 내에서 어디에 위치하는지가 중요하다.However, in terms of additional parity bits, it is important where the bit groups always determined to be punctured are located within the bit groups that are always punctured.
구체적으로, 부가 패리티 비트들은 펑처링되는 LDPC 패리티 비트들 중 첫 번째 비트부터 특정한 수만큼의 비트들이 선택되어 생성된다는 점에서, 펑처링되는 LDPC 패리티 비트들의 수 및 부가 패리티 비트들의 수에 따라 항상 펑처링되는 비트 그룹들 중에서 적어도 일부 비트 그룹에 포함된 비트들이 부가 패리티 비트들로 선택될 수 있다. Specifically, the additional parity bits are always generated by selecting a predetermined number of bits from the first bit of the LDPC parity bits to be punctured. Therefore, the additional parity bits are always generated according to the number of LDPC parity bits and the number of additional parity bits to be punctured. Bits included in at least some bit groups among the bit groups to be processed can be selected as additional parity bits.
즉, 부가 패리티 비트들이 제1 패턴에 따라 정의된 비트 그룹을 초과하여 선택되는 경우, 제2 패턴의 시작 부분부터 차례로 부가 패리티 비트들이 선택된다는 점에서, 제2 패턴에 속하는 비트 그룹들의 순서는 부가 패리티 선택 측면에서 중요한 의미를 갖게 된다. 이에 따라 항상 펑처링되는 비트 그룹을 정의하는 제2 패턴은 부가 패리티 비트들을 결정하는데 이용되는 것으로 볼 수 있다.That is, in the case where the additional parity bits are selected in excess of the bit group defined according to the first pattern, the order of the bit groups belonging to the second pattern is the order This is important in terms of parity selection. Accordingly, it can be seen that the second pattern that defines the bit group that is always punctured is used to determine the additional parity bits.
예를 들어, L1 디테일 모드 2의 경우, 전체 LDPC 패리티 비트들의 수는 12960이고, 항상 펑처링되는 비트 그룹의 개수는 16 개이다.For example, in
이 경우, 전체 LDPC 패리티 비트들에서 펑처링되는 LDPC 패리티 비트들의 수를 빼고 부가 패리티 비트들의 수를 합한 값이 7200을 초과하는지에 따라 부가 패리티 생성을 위해 제2 패턴이 이용될 수 있다. 여기에서, 7200은 LDPC 패리티 비트들을 구성하는 비트 그룹들 중에서 항상 펑처링되는 비트 그룹들을 제외한 나머지 비트 그룹들에 포함된 LDPC 패리티 비트들의 수이다. 즉, 7200=(36-16)×360이다.In this case, the second pattern may be used for additional parity generation depending on whether the sum of the number of LDPC parity bits that are punctured in all the LDPC parity bits and the sum of the number of additional parity bits exceeds 7200. Here, 7200 is the number of LDPC parity bits included in the remaining bit groups excluding the bit groups always punctured among the bit groups constituting the LDPC parity bits. That is, 7200 = (36-16) x 360.
구체적으로, 전체 LDPC 패리티 비트들에서 펑처링되는 LDPC 패리티 비트들의 수를 빼고 부가 패리티 비트들의 수를 합한 값이 7200 이하인 경우, 즉, 12960-Npunc+NAP≤7200인 경우, 부가 패리티 비트들은 제1 패턴에 기초하여 생성될 수 있다.Specifically, if the total number of LDPC parity bits minus the number of LDPC parity bits to be punctured in all the LDPC parity bits and the sum of the number of additional parity bits is 7200 or less, that is, 12960-N punc + N AP? 7200, May be generated based on the first pattern.
하지만, 전체 LDPC 패리티 비트들에서 펑처링되는 LDPC 패리티 비트들의 수를 빼고 부가 패리티 비트들의 수를 합한 값이 7200을 초과하는 경우, 즉, 12960-Npunc+NAP>7200인 경우, 부가 패리티 비트들은 제1 패턴 및 제2 패턴에 기초하여 생성될 수 있다. However, if the value subtracts the number of LDPC parity bit popping in full LDPC parity bit puncturing plus the number of additional parity bits exceeds 7200, i.e., 12960-N punc + N AP> If the 7200, the additional parity bits May be generated based on the first pattern and the second pattern.
구체적으로, 12960-Npunc+NAP>7200인 경우, 부가 패리티 비트들을 위해, 펑처링된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트부터 28 번째에 위치하는 비트 그룹에 포함된 LDPC 패리티 비트들이 선택되고, 29 번째부터 특정한 위치에 위치하는 비트 그룹에 포함된 비트들이 선택될 수 있다. Specifically, in the case of 12960-N punc + N AP > 7200, LDPC parity bits included in the bit group located at the 28th from the first LDPC parity bit among the punctured LDPC parity bits for the additional parity bits are selected And the bits included in the bit group located at a specific position from the 29th bit can be selected.
여기에서, 펑처링된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트가 속하는 비트 그룹 및 특정한 위치의 비트 그룹(즉, 펑처링된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트부터 순차적으로 선택하였을 때 마지막으로 선택되는 LDPC 패리티 비트들이 속하는 비트 그룹)은 펑처링되는 LDPC 패리티 비트들의 수 및 부가 패리티 비트들의 수에 따라 결정될 수 있다.Here, the bit group to which the first LDPC parity bit belongs and the bit group of the specific position among the punctured LDPC parity bits (that is, the last one when sequentially selected from the first LDPC parity bit among the punctured LDPC parity bits) The bit group to which the selected LDPC parity bits belong) can be determined according to the number of LDPC parity bits and the number of additional parity bits to be punctured.
이 경우, 펑처링된 LDPC 패리티 비트들 중 첫 번째 LDPC 패리티 비트부터 28 번째에 위치하는 비트 그룹은 제1 패턴에 따라 결정되고, 29 번째부터 특정한 위치에 위치하는 비트 그룹은 제2 패턴에 따라 결정된다. In this case, the bit group located at the 28th position from the first LDPC parity bit among the punctured LDPC parity bits is determined according to the first pattern, and the bit group located at the specific position from the 29th position is determined according to the second pattern do.
이에 따라, 부가 패리티 비트들은 제1 패턴 및 제2 패턴에 따라 결정된다.Accordingly, the additional parity bits are determined according to the first pattern and the second pattern.
이와 같이, 제1 패턴은 펑처링되는 LDPC 패리티 비트들뿐만 아니라 부가 패리티 비트들을 결정하는데 이용되지만, 제2 패턴은 오직 부가 패리티 비트들을 결정하는데만 이용될 수 있다.As such, the first pattern is used to determine additional parity bits as well as LDPC parity bits to be punctured, but the second pattern can only be used to determine additional parity bits.
한편, 상술한 예에서는 그룹-와이즈 인터리빙 패턴이 제1 패턴과 제2 패턴을 포함하는 것으로 설명하였으나, 이는 펑처링 및 부가 패리티 관점에서 설명의 편의를 위한 것일 뿐이다. 즉, 그룹-와이즈 인터리빙 패턴은 제1 패턴 및 제2 패턴으로 구분없이 하나의 패턴으로 볼 수도 있으며, 이 경우, 펑처링 및 부가 패리티 모두를 위해 하나의 패턴으로 그룹-와이즈 인터리빙이 수행되는 것으로 볼 수 있다.In the above example, the group-wise interleaving pattern includes the first pattern and the second pattern. However, this is merely for convenience of description in terms of puncturing and additional parity. That is, the group-wise interleaving pattern may be regarded as one pattern without discrimination between the first pattern and the second pattern. In this case, group-wise interleaving is performed in one pattern for both puncturing and additional parity. .
한편, 상술한 예에서, 펑처링되는 LDPC 패리티 비트들의 수로 예로 든 값은 설명의 편의를 위한 일 예에 불과하다.On the other hand, in the above-described example, the exemplified values as the number of LDPC parity bits to be punctured are merely illustrative examples.
제로 제거부(218, 321)는 펑처링부(217, 318)에서 출력되는 LDPC 코드워드에서 제로 패딩부(213, 314)에 의해 패딩된 제로 비트들을 제거하고, 나머지 비트들을 비트 디먹스(219, 322)로 출력할 수 있다. The zero
여기에서, 제거는 패딩된 제로 비트들을 제거하는 것뿐만 아니라, 패딩된 제로 비트들을 제거하지는 않지만 LDPC 코드워드에서 패딩된 제로 비트들을 제외하고 나머지 비트들만을 출력하는 것을 포함할 수 있다.Here, the elimination may include not only removing padded zero bits, but also removing the padded zero bits, but outputting the remaining bits except for padded zero bits in the LDPC codeword.
구체적으로, 제로 제거부(218, 321)는 제로 패딩부(213, 314)에 의해 패딩된 Kldpc-Nouter 개의 제로 비트들을 제거할 수 있다. 이에 따라, Kldpc-Nouter 개의 제로 패딩 비트들은 제거되고, 수신 장치(200)로 전송되지 않을 수 있다.Specifically, the zero
예를 들어, 도 55와 같이, LDPC 코드워드를 구성하는 복수의 비트 그룹 중 1 번째 비트 그룹, 4 번째 비트 그룹, 5 번째 비트 그룹, 7 번째 비트 그룹 및 8 번째 비트 그룹의 모든 비트들이 제로 비트들로 패딩되고, 2 번째 비트 그룹의 일부 비트들이 제로 비트들로 패딩된 경우를 가정한다.For example, as shown in FIG. 55, when all the bits of the first bit group, the fourth bit group, the fifth bit group, the seventh bit group, and the eighth bit group of the plurality of bit groups constituting the LDPC codeword are zero bits , And some bits of the second bit group are padded with zero bits.
이 경우, 제로 제거부(218, 321)는 1 번째 비트 그룹, 2 번째 비트 그룹, 4 번째 비트 그룹, 5 번째 비트 그룹, 7 번째 비트 그룹 및 8 번째 비트 그룹에 패딩된 제로 비트들을 제거할 수 있다.In this case, the zero
이와 같이 제로 비트들이 제거되면, 도 55와 같이 Ksig 개의 정보어 비트들(즉, Ksig 개의 L1 베이직 시그널링 비트들 및 Ksig 개의 L1 디테일 시그널링 비트들), 168 개의 BCH 패리티 체크 비트들(즉, BCH FEC) 및 (Ninner-Kldpc-Npunc) 또는 (Ninner-Kldpc-Npunc+Npereat) 개의 패리티 비트들로 구성된 워드(word)가 남을 수 있다. When the zero bits are removed, K sig information word bits (i.e., K sig L1 basic signaling bits and K sig L1 detail signaling bits), 168 BCH parity check bits (i.e., , it may be left in the BCH FEC) and (N -K inner ldpc -N punc) or (N -K inner ldpc -N punc pereat + N) of the parity-bit word (word) composed of.
즉, 리피티션이 수행된 경우, 전체 LDPC 코드워드의 길이는 (NFEC+Nrepeat)가 된다. 여기에서, NFEC=Nouter+Nldpc_parity-Npunc이다. 다만, 리피티션이 수행되지 않는 모드의 경우, 전체 LDPC 코드워드의 길이는 NFEC가 된다.That is, when repetition is performed, the length of the entire LDPC code word is (N FEC + N repeat ). Here, N FEC = N outer + N ldpc_parity -N punc . However, in the case where the repetition is not performed, the length of the entire LDPC codeword is N FEC .
비트 디먹스(219, 322)는 제로 제거부(218, 321)에서 출력되는 비트들을 인터리빙하고 인터리빙된 비트들을 디멀티플렉싱한 후, 이를 성상도 맵퍼(221, 324)로 출력할 수 있다.The bit demuxs 219 and 322 can interleave the bits output from the zero
이를 위해, 비트 디먹스(219, 322)는 블록 인터리버(미도시) 및 디멀티플렉서(미도시)를 포함할 수 있다.To this end, the bit demuxs 219 and 322 may include a block interleaver (not shown) and a demultiplexer (not shown).
먼저, 블록 인터리버(미도시)에서 수행되는 블록 인터리빙 스킴(scheme)은 도 56과 같다.First, a block interleaving scheme performed in a block interleaver (not shown) is shown in FIG.
구체적으로, 제로 비트들이 제거된 이후의 NFEC 또는 (NFEC+Nrepeat) 길이의 비트들은 블록 인터리버(미도시)에 컬럼 와이즈하게 연속적으로(serially) 라이트될 수 있다. 여기에서, 블록 인터리버(미도시)의 컬럼의 수는 변조 차수와 동일하고, 로우의 수는 NFEC/ηMOD 또는 (NFEC+Nrepeat)/ηMOD이다.Specifically, the N FEC or N FEC + N repeat length bits after the zero bits are removed can be serially written to the block interleaver (not shown) in a column-wise manner. Here, the number of columns of the block interleaver (not shown) is equal to the modulation order, and the number of rows is N FEC /? MOD or (N FEC + N repeat ) /? MOD .
그리고, 리드 동작에서, 하나의 성상도 심볼(constellation symbol)에 대한 비트들이 로우 와이즈하게 순차적으로(sequentially) 리드되어 디멀티플렉서(미도시)로 입력될 수 있다. 이러한 동작은 컬럼의 마지막 로우까지 계속될 수 있다.In the read operation, bits for one constellation symbol may be sequentially read out in a row and input to a demultiplexer (not shown). This action can continue to the last row of the column.
즉, NFEC 또는 (NFEC+Nrepeat) 개의 비트들은 첫 번째 컬럼의 첫 번째 로우부터 컬럼 방향으로 복수의 컬럼에 라이트되고, 복수의 컬럼에 라이트된 비트들은 복수의 컬럼의 첫 번째 로우부터 마지막 로우까지 로우 방향으로 순차적으로 리드될 수 있다. 이때, 동일한 로우에서 리드된 비트들이 하나의 변조 심볼을 구성할 수 있다.That is, N FEC or (N FEC + N repeat ) bits are written to a plurality of columns in the column direction from the first row of the first column, and the bits written to the plurality of columns are shifted from the first row to the And can be sequentially led to the row in the row direction. At this time, the bits read in the same row can constitute one modulation symbol.
한편, 디멀티플렉서(미도시)는 블록 인터리버(미도시)에서 출력되는 비트들에 대한 디멀티플렉싱을 할 수 있다. Meanwhile, the demultiplexer (not shown) may demultiplex the bits output from the block interleaver (not shown).
구체적으로, 디멀티플렉서(미도시)는 블록 인터리빙된 각 비트 그룹 즉, 블록 인터리버(미도시)의 동일한 로우에서 리드되어 출력되는 비트들을 성상도 맵핑 이전에 비트 그룹 내에서 비트-바이-비트(bit-by-bit)로 디멀티플렉싱할 수 있다.Specifically, the demultiplexer (not shown) converts the bits that are read out in the same row of the block interleaved block, that is, the block interleaver (not shown), into a bit-by- by-bit. < / RTI >
이 경우, 변조 차수에 따라 2 개의 맵핑 룰이 존재할 수 있다.In this case, there are two mapping rules depending on the modulation order.
구체적으로, QPSK의 경우, 성상도 심볼 내의 비트들의 신뢰도(reliability)가 동일하다는 점에서, 디멀티플렉서(미도시)는 비트 그룹에 대해 디멀티플렉싱 동작을 수행하지 않는다. 이에 따라, 블록 인터리버(미도시)로부터 리드되어 출력되는 비트 그룹은 디멀티플렉싱 동작 없이 QPSK 심볼에 맵핑될 수 있다. Specifically, in the case of QPSK, the demultiplexer (not shown) does not perform a demultiplexing operation on the bit group, in that the reliability of the bits in the constellation symbol is the same. Accordingly, the bit groups read out from the block interleaver (not shown) can be mapped to QPSK symbols without a demultiplexing operation.
하지만, 고차 변조(high order modulation)의 경우, 디멀티플렉서(미도시)는 하기의 수학식 36에 기초하여 블록 인터리버(미도시)로부터 리드되어 출력되는 비트 그룹에 대해 디멀티플렉싱을 수행할 수 있다. 즉, 비트 그룹은 하기의 수학식 36에 따라 QAM 심볼에 맵핑될 수 있다.However, in the case of high order modulation, the demultiplexer (not shown) may perform demultiplexing on the group of bits that are read out and output from the block interleaver (not shown) based on Equation (36) below. That is, the bit group may be mapped to a QAM symbol according to Equation (36) below.
여기에서, %는 모듈로 연산이고, ηMOD는 변조 차수이다.Where% is a modulo operation and η MOD is a modulation order.
그리고, i는 블록 인터리버(미도시)의 로우 인덱스에 대응되는 비트 그룹 인덱스이다. 즉, QAM 심볼 각각에 맵핑되는 출력 비트 그룹 Sdemux_out(i)는 비트 그룹 인덱스 i에 따라 Sdemux_in(i)에서 시클릭 쉬프트될 수 있다. And i is a bit group index corresponding to the row index of the block interleaver (not shown). That is, the output bit group S demux_out (i) mapped to each of the QAM symbols may be cyclically shifted in S demux_in (i) according to the bit group index i.
한편, 도 57은 16-NUC(non uniform constellation) 즉, NUC 16-QAM 에 대한 비트 디멀플렉싱의 일 예를 나타낸다. 이러한 동작은 모든 비트 그룹들이 블록 인터리버(미도시)에서 리드될 때까지 계속될 수 있다.On the other hand, FIG. 57 shows an example of bit demultiplexing for 16-NUC (non-uniform constellation), that is, NUC 16-QAM. This operation can be continued until all the bit groups are read in the block interleaver (not shown).
한편, 비트 디먹스(323)는 부가 패리티 생성부(319)에서 출력되는 부가 패리티 비트들에 대해 비트 디먹스(219, 322)에서 수행한 동작과 동일한 동작을 수행하고, 블록 인터리빙 및 디멀플렉싱된 비트들을 성상도 맵퍼(325)로 출력할 수 있다.Meanwhile, the bit demux 323 performs the same operation as that performed by the bit demuxs 219 and 322 on the additional parity bits output from the add
성상도 맵퍼(221, 324, 325)는 비트 디먹스(219, 322, 323)에서 출력되는 비트들을 성상도 심볼들에 맵핑할 수 있다.The constellation mapers 221, 324, and 325 can map the bits output from the
즉, 성상도 맵퍼(221, 324, 325)는 모드에 따라 Sdemux_out(i)을 성상도를 이용하여 셀 워드(cell word)에 맵핑할 수 있다. 여기에서, Sdemux_out(i)는 변조 차수와 동일한 수의 비트들로 구성될 수 있다.That is, the
구체적으로, 성상도 맵퍼(221, 324, 325)는 비트 디먹스(219, 322, 323)에서 출력되는 비트들을 모드에 따라 QPSK, 16-QAM, 64-QAM 및 256-QAM 등의 변조 방식을 이용하여 성상도 심볼들에 맵핑할 수 있다. Specifically, the
이 경우, 성상도 맵퍼(221, 324, 325)는 NUC을 이용할 수 있다. 즉, 성상도 맵퍼(221, 324, 325)는 NUC 16-QAM, NUC 64-QAM 및 NUC 256-QAM을 이용할 수 있다. 한편, 모드에 따라 L1 베이직 시그널링 및 L1 디테일 시그널링에 적용되는 변조 방식은 표 4와 같다.In this case, the
한편, 송신 장치(100)는 성상도 심볼들을 프레임에 맵핑하여 수신 장치(200)로 전송할 수 있다.Meanwhile, the transmitting
구체적으로, 송신 장치(100)는 성상도 맵퍼(221, 324)에서 출력되는 L1 베이직 시그널링 및 L1 디테일 시그널링 각각에 대응되는 성상도 심볼들 및 성상도 맵퍼(325)에서 출력되는 부가 패리티 비트들에 대응되는 성상도 심볼들을 프레임의 프리앰블 심볼에 맵핑할 수 있다. Specifically, the transmitting
이 경우, 송신 장치(100)는 현재 프레임에서 전송되는 L1 디테일 시그널링에 기초하여 생성된 부가 패리티 비트들을 해당 프레임 이전의 프레임에 맵핑할 수 있다.In this case, the transmitting
즉, 송신 장치(100)는 i-1 번째 프레임에 대응되는 L1 베이직 시그널링을 포함하는 LDPC 코드워드 비트들을 i-1 번째 프레임에 맵핑하고, i-1 번째 프레임에 대응되는 L1 디테일 시그널링을 포함하는 LDPC 코드워드 비트들을 i-1 번째 프레임에 맵핑하고, i 번째 프레임에 대응되는 L1 디테일 시그널링에 기초하여 생성된 LDPC 패리티 비트들에서 선택되어 생성된 부가 패리티 비트들을 i-1 번째 프레임에 추가로 맵핑하여 수신 장치(200)로 전송할 수 있다.That is, the transmitting
뿐만 아니라, 송신 장치(100)는 L1 시그널링 외에도 데이터를 프레임의 데이터 심볼에 맵핑하고, L1 시그널링 및 데이터를 포함하는 프레임을 수신 장치(200)로 전송할 수 있다. In addition, the transmitting
이 경우, L1 시그널링들은 데이터에 대한 시그널링 정보를 포함한다는 점에서, 각 데이터에 맵핑된 데이터에 대한 시그널링을 해당 프레임의 프리앰블에 맵핑할 수 있다. 예를 들어, 송신 장치(100)는 i 번째 프레임에 맵핑된 데이터에 대한 시그널링 정보를 포함하는 L1 시그널링을 i 번째 프레임에 맵핑할 수 있다. In this case, the signaling for the data mapped to each data may be mapped to the preamble of the frame in that the L1 signaling includes signaling information for the data. For example, the transmitting
이에 따라, 수신 장치(200)는 프레임으로부터 획득한 시그널링을 이용하여 해당 프레임으로부터 데이터를 획득하여 처리할 수 있게 된다.Accordingly, the receiving
도 58 및 도 59는 본 발명의 일 실시 예에 따른 수신 장치의 구성을 설명하기 위한 블록도들이다.FIGS. 58 and 59 are block diagrams illustrating a configuration of a receiving apparatus according to an embodiment of the present invention.
구체적으로, 도 58과 같이, 수신 장치(200)는 L1 베이직 시그널링을 처리하기 위해, 성상도 디맵퍼(2510), 먹스(2520), LLR 인서터(2530), LLR 컴바이너(2540), 패리티 디퍼뮤테이션부(2550), LDPC 디코더(2560), 제로 제거부(2570), BCH 디코더(2580) 및 디스크램블러(2590)를 포함할 수 있다.58, the receiving
또한, 도 59와 같이, 수신 장치(200)는 L1 디테일 시그널링을 처리하기 위해, 성상도 디맵퍼(2611, 2612), 먹스(2621, 2622), LLR 인서터(2630), LLR 컴바이너(2640), 패리티 디퍼뮤테이션부(2650), LDPC 디코더(2660), 제로 제거부(2670), BCH 디코더(2680), 디스크램블러(2690) 및 디세그먼테이션부(2695)를 포함할 수 있다.59, the receiving
여기에서, 도 58 및 도 59에 도시된 구성요소는, 도 42 및 도 43에 도시된 구성요소에 대응되는 기능을 수행하는 구성요소로서, 이는 일 예일 뿐이고 경우에 따라 일부는 생략 또는 변경될 수 있고, 다른 구성요소가 더 추가될 수도 있다.Here, the components shown in Figs. 58 and 59 are components that perform the functions corresponding to the components shown in Figs. 42 and 43, which are merely examples, and some of them may be omitted or changed And other components may be added.
수신 장치(200)는 프레임의 부트스트랩을 이용하여 프레임의 동기를 획득하고, 부트스트랩에 포함된 L1 베이직 시그널링을 처리하기 위한 정보를 이용하여 프레임의 프리앰블로부터 L1 베이직 시그널링을 수신할 수 있다.The receiving
그리고, 수신 장치(200)는 L1 베이직 시그널링에 포함된 L1 디테일 시그널링을 처리하기 위한 정보를 이용하여 프리앰블로부터 L1 디테일 시그널링을 수신하고, L1 디테일 시그널링을 이용하여 프레임의 데이터 심볼로부터 사용자가 필요로 하는 방송 데이터를 수신할 수 있다.The receiving
이에 따라, 수신 장치(200)는 송신 장치(100)에서 L1 베이직 시그널링 및 L1 디테일 시그널링을 처리한 모드를 판단하고, 판단된 모드에 따라 송신 장치(100)로부터 수신된 신호를 처리하여 L1 베이직 시그널링 및 L1 디테일 시그널링을 수신할 수 있다. 이를 위해, 수신 장치(200)는 송신 장치(100)가 모드에 따라 시그널링을 처리하기 위해 이용한 파리미터에 대한 정보를 기저장하고 있을 수 있다.Accordingly, the
이와 같이, 프리앰블로부터 L1 베이직 시그널링 및 L1 디테일 시그널링을 순차적으로 획득하나, 도 58 및 도 59를 설명함에 있어, 설명의 편의를 위해 공통적인 기능을 수행하는 구성요소에 대해서는 함께 설명하도록 한다.In this manner, the L1 basic signaling and the L1 detail signaling are sequentially acquired from the preamble, but in the description of FIG. 58 and FIG. 59, components for performing a common function will be described together for convenience of explanation.
성상도 디맵퍼(2510, 2611, 2612)는 송신 장치(100)로부터 수신된 신호를 복조한다. The
구체적으로, 성상도 디맵퍼(2510, 2611, 2612)는 송신 장치(100)의 성상도 맵퍼(221, 324, 325)에 대응되는 구성요소로, 송신 장치(100)로부터 수신된 신호를 복조하여, 송신 장치(100)에서 전송한 비트들에 대응되는 값들을 생성할 수 있다.Specifically, the
즉, 상술한 바와 같이, 송신 장치(100)는 프레임의 프리앰블에 L1 베이직 시그널링을 포함하는 LDPC 코드워드 및 L1 디테일 시그널링을 포함하는 LDPC 코드워드를 맵핑하여 수신 장치(200)로 전송한다. 또한, 경우에 따라, 송신 장치(100)는 프레임의 프리앰블에 부가 패리티 비트들을 맵핑하여 수신 장치(200)로 전송할 수 있다.That is, as described above, the transmitting
이에 따라, 성상도 디맵퍼(2510, 2611)는 L1 베이직 시그널링을 포함하는 LDPC 코드워드 비트들 및 L1 디테일 시그널링을 포함하는 LDPC 코드워드 비트들에 대응되는 값들을 생성할 수 있다. 그리고, 성상도 디맵퍼(2612)는 부가 패리티 비트들에 대응되는 값들을 생성할 수 있다.Accordingly, constellation demappers 2510 and 2611 can generate values corresponding to LDPC codeword bits including L1 basic signaling and LDPC codeword bits including L1 detail signaling. The
이를 위해, 수신 장치(200)는 송신 장치(100)에서 모드에 따라 L1 베이직 시그널링, L1 디테일 시그널링 및 부가 패리티 비트들을 변조한 변조 방식에 대한 정보를 기저장할 수 있다. 이에 따라, 성상도 디맵퍼(2510, 2611, 2612)는 모드에 따라 송신 장치(100)로부터 수신된 신호를 복조하여, LDPC 코드워드 비트들 및 부가 패리티 비트들에 대응되는 값들을 생성할 수 있다.To this end, the receiving
한편, 송신 장치(100)에서 전송한 비트들에 대응되는 값은 통상적으로 수신된 비트가 0일 확률과 1일 확률에 기초하여 계산되는 값으로서 각각의 확률 자체를 각 비트에 대응되는 값으로 사용할 수도 있으며, 다른 일 예로서 LR (Likelihood Ratio) LLR(Log Likelihood Ratio) 값일 수도 있다.On the other hand, the value corresponding to the bits transmitted from the transmitting
구체적으로, LR 값은 송신 장치(100)에서 전송한 비트가 0일 확률과 1일 확률의 비율을 의미하며, LLR 값은 송신 장치(100)에서 전송한 비트가 0일 확률과 1일 확률의 비율에 Log를 취한 값으로 나타낼 수 있다.Specifically, the LR value is a ratio of a probability that a bit transmitted from the transmitting
한편, 상술한 예에서는 LR 값 또는 LLR 값을 이용하는 것으로 설명하였으나, 이는 일 예이고, 수신된 신호 자체를 이용할 수도 있다.In the above example, the LR value or the LLR value is used. However, this is an example, and the received signal itself may be used.
먹스(2520, 2621, 2622)는 성상도 디맵퍼(2510, 2611, 2612)로부터 출력되는 LLR 값에 대한 멀티플렉싱을 수행한다. The
구체적으로, 먹스(2520, 2621, 2622)는 송신 장치(100)의 비트 디먹스(219, 322, 323)에 대응되는 구성요소로, 비트 디먹스(219, 322, 323)에 대응되는 동작을 수행할 수 있다.Specifically, the
이를 위해, 수신 장치(200)는 송신 장치(100)가 디멀티플렉싱 및 블록 인터리빙을 위해 이용하였던 파라미터에 대한 정보를 기저장하고 있을 수 있다. 이에 따라, 먹스(2520, 2621, 2622)는 셀 워드에 대응되는 LLR 값에 대해 비트 디먹스(219, 322, 323)에서 수행된 디멀티플렉싱 및 블록 인터리빙 동작을 역으로 수행하여, 셀 워드에 대응되는 LLR 값을 비트 단위로 멀티플렉싱할 수 있다.To this end, the receiving
LLR 인서터(2530, 2630)는 먹스(2520, 2621)로부터 출력되는 LLR 값에 펑처링 및 쇼트닝 비트에 대한 LLR 값을 삽입할 수 있다. 이 경우, LLR 인서터(2530, 2630)는 먹스(2520, 2621)로부터 출력되는 LLR 값들의 사이 또는 맨 앞 또는 맨 뒤에 미리 약속된 LLR 값들을 삽입할 수 있다.
구체적으로, LLR 인서터(2530, 2630)는 송신 장치(100)의 제로 제거부(218, 321) 및 펑처링부(217, 318)에 대응되는 구성요소로, 제로 제거부(218, 321) 및 펑처링부(217, 318)에 대응되는 동작을 수행할 수 있다.Specifically, the
먼저, LLR 인서터(2530, 2630)는 LDPC 코드워드에서 제로 비트들이 패딩되었던 위치에 제로 비트들에 대응되는 LLR 값을 삽입할 수 있다. 이 경우, 패딩되었던 제로 비트들 즉, 쇼트닝된 제로 비트들에 대응되는 LLR 값은 ∞ 또는 -∞가 될 수 있다. 하지만, ∞ 또는 -∞는 이론적인 값이며, 실질적으로는 수신 장치(200)에서 이용되는 LLR 값의 최대 값 또는 최소 값이 될 수 있다.First, the
이를 위해, 수신 장치(200)는 송신 장치(100)가 모드에 따라 제로 비트들을 패딩하기 위해 이용하였던 파라미터 및/또는 패턴에 대한 정보를 기저장하고 있을 수 있다. 이에 따라, LLR 인서터(2530, 2630)는 모드에 따라 LDPC 코드워드에서 제로 비트들이 패딩되었던 위치를 판단하고, 해당 위치에 쇼트닝된 제로 비트들에 대응되는 LLR 값을 삽입할 수 있다.To this end, the receiving
또한, LLR 인서터(2530, 2630)는 LDPC 코드워드에서 펑처링된 비트들의 위치에 펑처링된 비트들에 대응되는 LLR 값을 삽입할 수 있다. 이 경우, 펑처링된 비트들에 대응되는 LLR 값은 0이 될 수 있다. In addition, the
이를 위해, 수신 장치(200)는 송신 장치(100)에서 모드에 따라 펑처링을 위해 이용한 파라미터 및/또는 패턴에 대한 정보를 기저장할 수 있다. 이에 따라, LLR 인서터(2530, 2630)는 모드에 따라 펑처링된 LDPC 패리티 비트들의 길이를 판단하고, LDPC 패리티 비트들이 펑처링된 위치에 그에 대응되는 LLR 값을 삽입할 수 있다.To this end, the receiving
한편, 부가 패리티 비트들 중 펑처링 비트들에서 선택된 부가 패리티 비트들의 경우, LLR 인서터(2630)는 펑처링된 비트에 대한 LLR 값 '0'이 아닌 수신된 부가 패리티 비트들에 대응되는 LLR 값을 펑처링된 비트들의 위치에 인서트할 수 있다.On the other hand, in the case of the additional parity bits selected in the puncturing bits among the additional parity bits, the
LLR 컴바이너(2540, 2640)는 LLR 인서터(2530, 2630) 및 먹스(2622)에서 출력되는 LLR 값을 컴바인 즉, 합산할 수 있다. 다만, LLR 컴바이너(2540, 2640)는 특정 비트들에 대해 LLR 값을 보다 좋은 값으로 갱신해 주는 역할을 하지만, LLR 컴바이너(2540, 2640)가 없이 수신된 LLR 값들로부터 복호가 가능할 수도 있기 때문에 경우에 따라서는 생략도 가능하다.The
구체적으로, LLR 컴바이너(2540)는 송신 장치(100)의 리피티션부(216)에 대응되는 구성요소로, 리피티션부(216)에 대응되는 동작을 수행할 수 있다. 또는, LLR 컴바이너(2640)는 송신 장치(100)의 리피티션부(317) 및 부가 패리티 생성부(319)에 대응되는 구성요소로, 리피티션부(317) 및 부가 패리티 생성부(319)에 대응되는 동작을 수행할 수 있다.Specifically, the
먼저, LLR 컴바이너(2540, 2640)는 리피티션된 비트들에 대응되는 LLR 값을 다른 LLR 값과 컴바인할 수 있다. 여기에서, 다른 LLR 값은 송신 장치(100)에서 리피티션된 비트들 생성에 기초가 된 비트들 즉, 리피티션 대상으로 선택되었던 LDPC 패리티 비트들에 대한 LLR 값일 수 있다.First, the
즉, 상술한 바와 같이, 송신 장치(100)는 LDPC 패리티 비트들에서 비트들을 선택하고, 이들을 LDPC 정보어 비트들 및 LDPC 패리티 비트들 사이에서 리피티션시켜 수신 장치(200)로 전송하게 된다.That is, as described above, the transmitting
이에 따라, LDPC 패리티 비트들에 대한 LLR 값은 리피티션된 LDPC 패리티 비트들에 대한 LLR 값 및 리피티션되지 않은 LDPC 패리티 비트들 즉, 인코딩에 의해 생성된 LDPC 패리티 비트들에 대한 LLR 값으로 구성될 수 있다. 따라서, LLR 컴바이너(2540, 2640)는 동일한 LDPC 패리티 비트들에 LLR 값들을 컴바인할 수 있다.Accordingly, the LLR value for the LDPC parity bits is the LLR value for the repaired LDPC parity bits and the LLR value for the unreputed LDPC parity bits, i.e., the LDPC parity bits generated by the encoding Lt; / RTI > Thus, the
이를 위해, 수신 장치(200)는 송신 장치(100)에서 모드에 따라 리피티션을 위해 이용한 파라미터에 대한 정보를 기저장할 수 있다. 이에 따라, LLR 컴바이너(2540, 2640)는 리피티션된 LDPC 패리티 비트들의 길이를 판단하고, 리피티션의 기초가 된 비트들의 위치를 판단하고, 리피티션된 LDPC 패리티 비트들에 대한 LLR 값을 리피티션의 기초가 된 LDPC 패리티 비트들에 대한 LLR 값과 컴바인할 수 있다.To this end, the receiving
예를 들어, 도 60 및 도 61과 같이, LLR 컴바이너(2540, 2640)는 리피티션된 LDPC 패리티 비트들에 대한 LLR 값을 리피티션의 기초가 된 LDPC 패리티 비트들에 대한 LLR 값과 컴바인할 수 있다. For example, as shown in FIG. 60 and FIG. 61, the
한편, LLR 컴바이너(2540, 2640)는 LDPC 패리티 비트들이 n 번 리피티션된 경우, 동일한 위치의 비트들에 대한 LLR 값을 n 번 이하로 컴바인할 수 있다. Meanwhile, the
예를 들어, 도 60은 펑처링된 비트들을 제외하고 LDPC 패리티 비트들의 일부가 1 번 리피티션된 경우이다. 이 경우, LLR 컴바이너(2540, 2640)는 리피티션된 LDPC 패리티 비트들에 대한 LLR 값을 LDPC 패리티 비트들에 대한 LLR 값에 컴바인하여 출력하거나, 이들을 컴바인하지 않고 수신된 리피티션된 LDPC 패리티 비트들에 대한 LLR 값 또는 수신된 LDPC 패리티 비트들에 대한 LLR 값을 출력할 수 있다.For example, FIG. 60 shows a case where part of the LDPC parity bits except for punctured bits is repetition-1. In this case, the
다른 예로, 도 61은 펑처링되지 않고 전송된 LDPC 패리티 비트들 중 일부가 2 번 리피티션되고, 나머지 부분이 1 번 리피티션되고, 펑처링된 LDPC 패리티 비트들이 1 번 리피티션된 경우이다.In another example, FIG. 61 shows a case where some of the LDPC parity bits transmitted without being punctured are repetition-2, the remaining part is repetition-1, and the punctured LDPC parity bits are repetition-1 to be.
이 경우, LLR 컴바이너(2540, 2640)는 1 번 리피티션된 경우는 상술한 바와 동일한 방식으로 처리할 수 있다. 다만, LLR 컴바이너(2540, 2640)는 2 번 리피티션된 부분에 대해서는 다음과 처리할 수 있다. 이 경우, 2 번 리피티션된 LDPC 패리티 비트들 중 하나를 제1 리피티션된 LDPC 패리티 비트들이라 하고, 나머지 하나를 제1 리피티션된 LDPC 패리티 비트들이라 한다.In this case, the
구체적으로, LLR 컴바이너(2540, 2640)는 제1 리피티션된 LDPC 패리티 비트들 및 제2 리피티션된 LDPC 패리티 비트들 각각에 대한 LLR 값을 LDPC 패리티 비트들에 대한 LLR 값과 컴바인하여 출력할 수 있다. 또는, LLR 컴바이너(2540, 2640)는 제1 리피티션된 LDPC 패리티 비트들에 대한 LLR 값을 LDPC 패리티 비트들에 대한 LLR 값과 컴바인하여 출력하거나, 제2 리피티션된 LDPC 패리티 비트들에 대한 LLR 값을 LDPC 패리티 비트들에 대한 LLR 값과 컴바인하여 출력하거나, 제1 리피티션된 LDPC 패리티 비트들에 대한 LLR 값을 제2 리피티션된 LDPC 패리티 비트들에 대한 LLR 값을 컴바인하여 출력할 수 있다. 또는, LLR 컴바이너(2540, 2640)는 별도의 컴바인 없이, 제1 리피티션된 LDPC 패리티 비트들에 대한 LLR 값, 제2 리피티션된 LDPC 패리티 비트들 또는 LDPC 패리티 비트들을 출력할 수 있다.Specifically, the
또한, LLR 컴바이너(2640)는 부가 패리티 비트들에 대응되는 LLR 값을 다른 LLR 값과 컴바인할 수 있다. 여기에서, 다른 LLR 값은 송신 장치(100)에서 부가 패리티 비트들 생성에 기초가 된 LDPC 패리티 비트들 즉, 부가 패리티 비트들 생성을 위해 선택되었던 LDPC 패리티 비트들에 대한 LLR 값일 수 있다.The
즉, 상술한 바와 같이, 송신 장치(100)는 현재 프레임에서 전송되는 L1 디테일 시그널링에 대한 부가 패리티 비트들을 이전 프레임에 맵핑하여 수신 장치(200)로 전송할 수 있다. That is, as described above, the transmitting
이 경우, 부가 패리티 비트들은 펑처링되어 현재 프레임에서 전송되지 않는 LDPC 패리티 비트들을 포함하고, 경우에 따라, 현재 프레임에서 전송되는 LDPC 패리티 비트들을 더 포함할 수 있다.In this case, the additional parity bits may be punctured to include LDPC parity bits that are not transmitted in the current frame, and may further include LDPC parity bits transmitted in the current frame, as the case may be.
이에 따라, LLR 컴바이너(2640)는 현재 프레임을 통해 수신된 부가 패리티 비트들에 대한 LLR 값을 다음 프레임을 통해 수신되는 LDPC 코드워드에서 펑처링된 LDPC 패리티 비트들의 위치에 삽입된 LLR 값 및 다음 프레임을 통해 수신되는 LDPC 패리티 비트들에 대한 LLR 값과 컴바인할 수 있다.Accordingly, the
이를 위해, 수신 장치(200)는 송신 장치(100)에서 모드에 따라 부가 패리티 비트들 생성을 위해 이용한 파라미터 및/또는 패턴에 대한 정보를 기저장할 수 있다. 이에 따라, LLR 컴바이너(2640)는 부가 패리티 비트들의 길이를 판단하고, 부가 패리티 비트들 생성에 기초가 된 LDPC 패리티 비트들의 위치를 판단하고, 부가 패리티 비트들에 대한 LLR 값을 부가 패리티 비트들의 생성에 기초가 된 LDPC 패리티 비트들에 대한 LLR 값과 컴바인할 수 있다.To this end, the receiving
패리티 디퍼뮤테이션부(2550, 2650)는 LLR 컴바이너(2540, 2640)에서 출력되는 LLR 값을 디퍼뮤테이션할 수 있다.The parity defer
구체적으로, 패리티 디퍼뮤테이션부(2550, 2650)는 송신 장치(100)의 패리티 퍼뮤테이션부(215, 316)에 대응되는 구성요소로, 패리티 퍼뮤테이션부(215, 316)에 대응되는 동작을 수행할 수 있다.Specifically, the parity defer
이를 위해, 수신 장치(200)는 송신 장치(100)가 모드에 따라 그룹-와이즈 인터리빙 및 패리티 인터리빙을 위해 이용하였던 파라미터 및/또는 패턴에 대한 정보를 기저장하고 있을 수 있다. 이에 따라, 패리티 디퍼뮤테이션부(2550, 2650)는 LDPC 코드워드 비트들에 대응되는 LLR 값에 대해 패리티 퍼뮤테이션부(215, 316)에서 수행된 그룹-와이즈 인터리빙 및 패리티 인터리빙 동작을 역으로 수행하여 즉, 그룹-와이즈 디인터리빙 및 패리티 디인터리빙 동작을 수행하여, LDPC 코드워드 비트들에 대응되는 LLR 값을 패리티 디퍼뮤테이션할 수 있다. To this end, the receiving
LDPC 디코더(2560, 2660)는 패리티 디퍼뮤테이션부(2550, 2650)에서 출력되는 LLR 값에 기초하여 LDPC 디코딩을 수행할 수 있다.The
구체적으로, LDPC 디코더(2560, 2660)는 송신 장치(100)의 LDPC 인코더(214, 315)에 대응되는 구성요소로, LDPC 인코더(214, 315)에 대응되는 동작을 수행할 수 있다.Specifically, the
이를 위해, 수신 장치(200)는 송신 장치(100)에서 모드에 따라 LDPC 인코딩을 수행하기 위해 이용하였던 파라미터에 대한 정보를 기저장하고 있을 수 있다. 이에 따라, LDPC 디코더(2560, 2660)는 모드에 따라 패리티 디퍼뮤테이션부(2550, 2650)에서 출력되는 LLR 값에 기초하여 LDPC 디코딩을 수행할 수 있다.To this end, the receiving
예를 들어, LDPC 디코더(2560, 2660)는 합곱 알고리즘(sum-product algorithm)에 기반한 반복 복호 방식(iterative decoding)에 기초하여 패리티 디퍼뮤테이션부(2550, 2650)에서 출력되는 LLR 값에 기초하여 LDPC 디코딩을 수행하고, LDPC 디코딩에 따라 에러가 정정된 비트들을 출력할 수 있다.For example, the
제로 제거부(2570, 2670)는 LDPC 디코더(2560, 2660)에서 출력되는 비트들에서 제로 비트들을 제거할 수 있다.The zero
구체적으로, 제로 제거부(2570, 2670)는 송신 장치(100)의 제로 패딩부(213, 314)에 대응되는 구성요소로, 제로 패딩부(213, 314)에 대응되는 동작을 수행할 수 있다.Specifically, the zero
이를 위해, 수신 장치(200)는 송신 장치(100)에서 모드에 따라 제로 비트들을 패딩하기 위해 이용하였던 파라미터 및/또는 패턴에 대한 정보를 기저장하고 있을 수 있다. 이에 따라, 제로 제거부(2570, 2670)는 LDPC 디코더(2560, 2660)에서 출력되는 비트들에서 제로 패딩부(213, 314)에서 패딩되었던 제로 비트들을 제거할 수 있다.To this end, the receiving
BCH 디코더(2580, 2680)는 제로 제거부(2570, 2670)에서 출력되는 비트들을 BCH 디코딩할 수 있다.The
구체적으로, BCH 디코더(2580, 2680)는 송신 장치(100)의 BCH 인코더(212, 313)에 대응되는 구성요소로, BCH 인코더(212, 313)에 대응되는 동작을 수행할 수 있다.Specifically, the
이를 위해, 수신 장치(200)는 BCH 인코딩을 수행하기 위해 이용하였던 파라미터에 대한 정보를 기저장하고 있을 수 있다. 이에 따라, BCH 디코더(2580, 2680)는 제로 제거부(2570, 2670)에서 출력되는 비트들을 BCH 디코딩하여 에러를 정정하고, 에러가 정정된 비트들을 출력할 수 있다.To this end, the receiving
디스크램블러(2590, 2690)는 BCH 디코더(2580, 2680)에서 출력되는 비트들을 디스크램블링할 수 있다.The
구체적으로, 디스크램블러(2590, 2690)는 송신 장치(100)의 스크램블러(211, 312)에 대응되는 구성요소로, 스크램블러(211, 312)에 대응되는 동작을 수행할 수 있다.Specifically, the
이를 위해, 수신 장치(200)는 송신 장치(100)가 스크램블링을 위해 이용하였던 파라미터에 대한 정보를 기저장하고 있을 수 있다. 이에 따라, 디스크램블러(2590, 2690)는 BCH 디코더(2580, 2680)에서 출력되는 비트들을 디스크램블하여 출력할 수 있다. For this purpose, the receiving
이에 따라, 송신 장치(100)에서 전송하였던 L1 베이직 시그널링이 복원될 수 있다. 그리고, 송신 장치(100)에서 L1 디테일 시그널링에 대한 세그먼테이션이 수행되지 않는 경우, 송신 장치(100)에서 전송하였던 L1 디테일 시그널링 또한 복원될 수 있다.Accordingly, the L1 basic signaling transmitted from the transmitting
다만, 송신 장치(100)에서 L1 디테일 시그널링에 대한 세그먼테이션을 수행한 경우, 디세그먼테이션부(2695)는 디스크램블러(2690)에서 출력되는 비트들을 디세그먼테이션할 수 있다.However, when the
구체적으로, 디세그먼테이션부(2695)는 송신 장치(100)의 세그먼테이션부(311)에 대응되는 구성요소로, 세그먼테이션부(311)에 대응되는 동작을 수행할 수 있다.Specifically, the
이를 위해, 수신 장치(200)는 송신 장치(100)가 세그먼테이션을 위해 이용하였던 파라미터에 대한 정보를 기저장하고 있을 수 있다. 이에 따라, 디세그먼테이션부(2695)는 디스크램블러(2690)에서 출력되는 비트들 즉, L1 디테일 시그널링에 대한 세그먼트들을 결합하여, 세그먼테이션 전의 L1 디테일 시그널링을 복원할 수 있다.To this end, the receiving
한편, L1 시그널링의 길이에 대한 정보는 도 62와 같이 제공된다. 이에 따라, 수신 장치(200)는 L1 디테일 시그널링에 대한 길이 및 부가 패리티에 대한 길이를 산출할 수 있다.On the other hand, information on the length of the L1 signaling is provided as shown in FIG. Accordingly, the receiving
도 62를 참조하면, L1 베이직 시그널링은 L1 Detail total cells의 정보를 제공한다는 점에서, 수신 장치(200)는 L1 디테일 시그널링에 대한 길이 및 부가 패리티 비트들의 길이를 산출해야 한다.Referring to FIG. 62, the receiving
구체적으로, L1 베이직 시그널링의 L1B_L1_Detail_additional_parity_mode가 0이 아닐 경우, 주어진 L1B_L1_Detail_total_cells의 정보는 total cell 길이(=NL1_detail_total_cells)를 나타내므로, 수신 장치(200)는 하기의 수학식 37 내지 40에 기초하여 L1 디테일 시그널링에 대한 길이 NL1_detail_cells 및 부가 패리티에 대한 길이 NAP_total_cells를 산출할 수 있다.Specifically, when the L1B_L1_Detail_additional_parity_mode of the L1 basic signaling is not 0, the information of the given L1B_L1_Detail_total_cells indicates the total cell length (= NL1_detail_total_cells ), so that the receiving
이 경우, 수학식 37 내지 수학식 39에 기초하여, L1 베이직 시그널링의 L1B_L1_Detail_total_cells의 정보로부터 얻을 수 있는 NL1_detail_total_cells 값과 NFEC, NL1D_FECFRAME 및 변조 차수(ηMOD)에 기초하여 NAP_total_cells 값을 구할 수 있다. 그 일 예로서 다음과 같은 수학식 40을 통해 NAP_total_cells 을 계산할 수 있다.In this case, the NAP_total_cells value can be obtained based on the N L1_detail_total_cells value obtained from the information of L1B_L1_Detail_total_cells of L1 basic signaling and the N FEC , N L1D_FECFRAME, and the modulation order (η MOD ) based on Expressions ( 37 ) have. As an example, N AP_total_cells can be calculated by the following Equation (40).
한편, L1 베이직 시그널링 필드의 syntax 및 field semantics는 하기의 표 13과 같다. The syntax and field semantics of the L1 basic signaling field are shown in Table 13 below.
그러므로, 수신 장치(200)는 수신된 L1 디테일 셀들 중에서 NAP_total_cells 셀로 전송되는 부가 패리티 비트들을 기반으로 다음 프레임에서 부가 패리티 비트들에 대한 수신기 동작을 수행할 수 있다.Therefore, the receiving
도 63은 본 발명의 일 실시 예에 따른 부가 패리티 생성 방법을 설명하기 위한 흐름도이다.63 is a flowchart illustrating a method of generating additional parity according to an embodiment of the present invention.
먼저, 아우터 인코딩된 비트들을 포함하는 입력 비트들을 인코딩하여 패리티 비트들을 생성하고(S6210), 패리티 비트들에서 일부 비트들을 펑처링한다(S6220).First, parity bits are generated by encoding input bits including outer-encoded bits (S6210), and then some bits are punctured in parity bits (S6220).
그리고, 패리티 비트들에서 적어도 일부의 비트들을 선택하여, 이전 프레임에서 전송되는 부가 패리티 비트들을 생성한다(S6230).Then, at least some bits are selected from the parity bits to generate additional parity bits transmitted in the previous frame (S6230).
이 경우, 부가 패리티 비트들의 수는 현재 프레임에서 전송되는 아우터 인코딩된 비트들의 수 및 펑처링 이후 남은 패리티 비트들의 수에 기초하여 결정된다.In this case, the number of additional parity bits is determined based on the number of outer encoded bits transmitted in the current frame and the number of remaining parity bits after puncturing.
한편, 입력 비트들 및 상기 패리티 비트들로 구성된 LDPC 코드워드의 적어도 일부의 비트들이 현재 프레임에서 리피티션되어 전송되도록, LDPC 코드워드의 적어도 일부의 비트들을 LDPC 코드워드에서 리피티션하는 단계를 더 포함할 수 있다.On the other hand, the step of repatriating at least some bits of the LDPC codeword in the LDPC codeword so that at least some bits of the LDPC codeword composed of the input bits and the parity bits are repetitively transmitted in the current frame .
이 경우, 부가 패리티 비트들의 수는 리피티션이 수행되는 경우, 현재 프레임에서 전송되는 아우터 인코딩된 비트들의 수, 펑처링 이후 남은 패리티 비트들의 수 및 현재 프레임에서 리피티션되는 비트들의 수에 기초하여 결정될 수 있다.In this case, the number of additional parity bits is determined based on the number of outer encoded bits transmitted in the current frame, the number of remaining parity bits after puncturing, and the number of bits reprocessed in the current frame, if repetition is performed ≪ / RTI >
또한, 부가 패리티 비트들의 수는 수학식 8에 기초하여 산출된 부가 패리티 비트들의 임시적인 수 NAP_temp에 기초하여 산출되며, 구체적으로는, 수학식 10에 기초하여 산출될 수 있다.Further, the number of additional parity bits is calculated based on the temporary number N AP_temp of the additional parity bits calculated based on Equation (8), and specifically, it can be calculated based on Equation (10).
한편, 부가 패리티를 생성하는 구체적인 방법에 대해서는 상술한 바 있다.On the other hand, a specific method of generating additional parity has been described above.
도 64는 본 발명의 일 실시 예에 따라 부가 패리티 비트들을 사용할 경우와 사용하지 않을 경우에 대한 성능을 나타낸 도면이다.64 is a diagram illustrating performance of using and not using additional parity bits according to an embodiment of the present invention.
도 64에서는, L1 디테일 시그널링의 길이가 각각 2000, 3000, 4000인 경우, 부가 패리티 비트를 사용하지 않았을 경우(dot line)와 부가 패리티 비트를 사용할 경우(solid line)에 대한 FER(Frame Error Rate)를 나타내며, 부가 패리티 비트를 사용할 경우 부호 이득과 다이버시티 이득(기울기)을 얻을 수 있음을 알 수 있다.64, when the length of the L1 detail signaling is 2000, 3000 and 4000, the frame error rate (FER) for the case where the add parity bit is not used (dot line) and the case where the additional parity bit is used (solid line) And a code gain and a diversity gain (slope) can be obtained when using an additional parity bit.
한편, 본 발명에 따른 부가 패리티 생성 방법을 순차적으로 수행하는 프로그램이 저장된 비일시적 판독 가능 매체(non-transitory computer readable medium)가 제공될 수 있다. Meanwhile, a non-transitory computer readable medium having a program for sequentially performing the additional parity generation method according to the present invention may be provided.
비일시적 판독 가능 매체란 레지스터, 캐쉬, 메모리 등과 같이 짧은 순간 동안 데이터를 저장하는 매체가 아니라 반영구적으로 데이터를 저장하며, 기기에 의해 판독(reading)이 가능한 매체를 의미한다. 구체적으로는, 상술한 다양한 어플리케이션 또는 프로그램들은 CD, DVD, 하드 디스크, 블루레이 디스크, USB, 메모리카드, ROM 등과 같은 비일시적 판독 가능 매체에 저장되어 제공될 수 있다.A non-transitory readable medium is a medium that stores data for a short period of time, such as a register, cache, memory, etc., but semi-permanently stores data and is readable by the apparatus. In particular, the various applications or programs described above may be stored on non-volatile readable media such as CD, DVD, hard disk, Blu-ray disk, USB, memory card, ROM,
또한, 송신 장치 및 수신 장치에 대해 도시한 상술한 블록도에서는 버스(bus)를 미도시하였으나, 송신 장치 및 수신 장치에서 각 구성요소 간의 통신은 버스를 통해 이루어질 수도 있다. 또한, 각 장치에는 상술한 다양한 동작을 수행하는 CPU, 마이크로 프로세서 등과 같은 프로세서가 더 포함될 수도 있으며, 각 장치에는 상술한 다양한 동작을 수행하기 위한 메모리가 더 포함될 수도 있다.Although the buses are not shown in the above-described block diagrams for the transmitting apparatus and the receiving apparatus, the communication between the respective elements in the transmitting apparatus and the receiving apparatus may be performed via the bus. In addition, each device may further include a processor such as a CPU, a microprocessor, or the like that performs the various operations described above, and each device may further include a memory for performing the various operations described above.
또한, 본 발명의 실시 예에서 "모듈", "유닛", "부(part)" 등과 같은 용어는 적어도 하나의 기능이나 동작을 수행하는 구성요소를 지칭하기 위한 용어이며, 이러한 구성요소는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, 복수의 "모듈", "유닛", "부(part)" 등은 각각이 개별적인 특정한 하드웨어로 구현될 필요가 있는 경우를 제외하고는, 적어도 하나의 모듈이나 칩으로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다.Also, in the embodiment of the present invention, terms such as "module", "unit", "part", and the like are terms for referring to components performing at least one function or operation, May be implemented in software or a combination of hardware and software. It should also be understood that a plurality of " modules ", " units ", " parts ", etc. may be integrated into at least one module or chip, (Not shown).
또한, 이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the present invention.
100 : 송신 장치
110 : LDPC 인코더
120 : 리피티션부
130 : 펑처링부
140 : 부가 패리티 생성부100: transmitting apparatus 110: LDPC encoder
120: repeating section 130: puncturing section
140: additional parity generation unit
Claims (4)
입력 비트들을 포함하는 정보어 비트들을 인코딩함에 의해 생성된 패리티 비트들 중 하나 또는 그 이상의 비트들을 상기 정보어 비트들 및 상기 패리티 비트들 사이에 부가(append)하는 리피티션부; 및
상기 패리티 비트들 중 하나 또는 그 이상의 비트들을 펑처링하는 펑처링부; 및
추가 패리티 비트들의 수를 산출하고, 상기 산출된 수에 기초하여 추가 패리티 비트들을 생성하는 추가 패리티 생성부;를 포함하며,
상기 부가된 하나 또는 그 이상의 비트들의 수는, 상기 입력 비트들의 수에 기초하여 결정되고,
상기 추가 패리티 비트들의 수는,
상기 입력 비트들의 수, 상기 펑처링된 하나 또는 그 이상의 비트들의 수 및 상기 부가된 하나 또는 그 이상의 비트들의 수에 기초하여 얻어지며,
상기 추가 패리티 비트들은, 제1 프레임에서 전송되고,
상기 부가된 하나 또는 그 이상의 비트들은, 제2 프레임에서 전송되고,
상기 제1 프레임은, 상기 제2 프레임 이전에 전송되는, 송신 장치.In the transmitting apparatus,
A repetition unit for appending one or more bits of parity bits generated by encoding information bits including input bits between the information bits and the parity bits; And
A puncturing unit for puncturing one or more bits of the parity bits; And
And an additional parity generator for calculating the number of additional parity bits and generating additional parity bits based on the calculated number,
The number of the one or more bits added is determined based on the number of input bits,
Wherein the number of additional parity bits is <
The number of bits input, the number of input bits, the number of one or more bits punctured and the number of bits added,
Wherein the additional parity bits are transmitted in a first frame,
The added one or more bits are transmitted in a second frame,
Wherein the first frame is transmitted before the second frame.
변조 차수에 기초하여 상기 추가 패리티 비트들을 변조하는 맵퍼;를 더 포함하는 것을 특징으로 하는 송신 장치.The method according to claim 1,
And a mapper for modulating the additional parity bits based on the modulation order.
상기 추가 패리티 비트들의 수는,
하기의 수학식에 기초하여 산출되는 것을 특징으로 하는 추가 패리티 생성 방법:
여기에서, NAP는 상기 추가 패리티 비트들의 수이고, NAP_temp는 상기 추가 패리티 비트들의 임시적인 수이고, ηMOD는 변조 차수이다.3. The method of claim 2,
Wherein the number of additional parity bits is <
Wherein the parity is calculated based on the following equation:
Where N AP is the number of said additional parity bits, N AP_temp is a temporary number of said additional parity bits, and? MOD is a modulation order.
상기 추가 패리티 비트들의 임시적인 수는,
하기의 수학식에 기초하여 산출되는 것을 특징으로 하는 추가 패리티 생성 방법:
여기에서, NAP_temp는 상기 추가 패리티 비트들의 임시적인 수이고,이고, Nldpc _parity는 상기 패리티 비트들의 수, Npunc는 상기 펑처링된 하나 또는 그 이상의 비트들의 수, Nouter는 상기 입력 비트들의 수, Nrepeat는 상기 부가된 하나 또는 그 이상의 비트들의 수이다.The method of claim 3,
Wherein the temporary number of the additional parity bits is a number &
Wherein the parity is calculated based on the following equation:
Where N AP_temp is a temporary number of said additional parity bits, And, N ldpc _parity is the number of the parity bits, N punc is the number of the puncturing one or more bits, N outer can of input bits, N repeat is the number of the added one or more bits .
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562115810P | 2015-02-13 | 2015-02-13 | |
US62/115,810 | 2015-02-13 | ||
US201562120543P | 2015-02-25 | 2015-02-25 | |
US62/120,543 | 2015-02-25 | ||
US201562202304P | 2015-08-07 | 2015-08-07 | |
US62/202,304 | 2015-08-07 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170153169A Division KR101898697B1 (en) | 2015-02-13 | 2017-11-16 | Transmitter and additional parity generating method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190043969A Division KR102114481B1 (en) | 2015-02-13 | 2019-04-15 | Transmitter and additional parity generating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180103794A true KR20180103794A (en) | 2018-09-19 |
KR101970825B1 KR101970825B1 (en) | 2019-04-19 |
Family
ID=56875537
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150137191A KR101800423B1 (en) | 2015-02-13 | 2015-09-27 | Transmitter and additional parity generating method thereof |
KR1020170153169A KR101898697B1 (en) | 2015-02-13 | 2017-11-16 | Transmitter and additional parity generating method thereof |
KR1020180107324A KR101970825B1 (en) | 2015-02-13 | 2018-09-07 | Transmitter and additional parity generating method thereof |
KR1020190043969A KR102114481B1 (en) | 2015-02-13 | 2019-04-15 | Transmitter and additional parity generating method thereof |
KR1020200059390A KR102227537B1 (en) | 2015-02-13 | 2020-05-18 | Transmitter and additional parity generating method thereof |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150137191A KR101800423B1 (en) | 2015-02-13 | 2015-09-27 | Transmitter and additional parity generating method thereof |
KR1020170153169A KR101898697B1 (en) | 2015-02-13 | 2017-11-16 | Transmitter and additional parity generating method thereof |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190043969A KR102114481B1 (en) | 2015-02-13 | 2019-04-15 | Transmitter and additional parity generating method thereof |
KR1020200059390A KR102227537B1 (en) | 2015-02-13 | 2020-05-18 | Transmitter and additional parity generating method thereof |
Country Status (5)
Country | Link |
---|---|
KR (5) | KR101800423B1 (en) |
CN (1) | CN107251464B (en) |
BR (1) | BR112017016116B1 (en) |
CA (2) | CA3085277C (en) |
MX (1) | MX2017010344A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120096154A (en) * | 2011-02-22 | 2012-08-30 | 삼성전자주식회사 | Method and apparatus for transmitting signaling information in digital broadcasting system |
KR20130024704A (en) * | 2011-08-30 | 2013-03-08 | 삼성전자주식회사 | Method and apparatus transmitting and receiving information in broadcasting/communication system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050020526A (en) * | 2003-08-23 | 2005-03-04 | 삼성전자주식회사 | Apparatus and method for bit interleaving in mobile communication system |
RU2323520C2 (en) * | 2006-03-21 | 2008-04-27 | Самсунг Электроникс Ко., Лтд. | Method for voice data transfer in digital radio communication system and method for interleaving code character sequence (alternatives) |
KR101503058B1 (en) * | 2008-02-26 | 2015-03-18 | 삼성전자주식회사 | Apparatus and method for channel encoding and decoding in communication system using low-density parity-check codes |
KR20110055410A (en) * | 2009-11-18 | 2011-05-25 | 삼성전자주식회사 | Method and apparatus for transmitting and receiving data in communication system |
WO2013032156A1 (en) * | 2011-08-30 | 2013-03-07 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving information in a broadcasting/communication system |
CN105453553B (en) * | 2013-08-01 | 2018-08-28 | Lg 电子株式会社 | The equipment for sending broadcast singal, the equipment for receiving broadcast singal, the method for sending broadcast singal and the method for receiving broadcast singal |
-
2015
- 2015-09-27 KR KR1020150137191A patent/KR101800423B1/en active IP Right Grant
-
2016
- 2016-02-15 CA CA3085277A patent/CA3085277C/en active Active
- 2016-02-15 BR BR112017016116-8A patent/BR112017016116B1/en active IP Right Grant
- 2016-02-15 CN CN201680011134.0A patent/CN107251464B/en active Active
- 2016-02-15 CA CA2975077A patent/CA2975077C/en active Active
- 2016-02-15 MX MX2017010344A patent/MX2017010344A/en active IP Right Grant
-
2017
- 2017-11-16 KR KR1020170153169A patent/KR101898697B1/en active IP Right Grant
-
2018
- 2018-09-07 KR KR1020180107324A patent/KR101970825B1/en active IP Right Grant
-
2019
- 2019-04-15 KR KR1020190043969A patent/KR102114481B1/en active IP Right Grant
-
2020
- 2020-05-18 KR KR1020200059390A patent/KR102227537B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120096154A (en) * | 2011-02-22 | 2012-08-30 | 삼성전자주식회사 | Method and apparatus for transmitting signaling information in digital broadcasting system |
KR20130024704A (en) * | 2011-08-30 | 2013-03-08 | 삼성전자주식회사 | Method and apparatus transmitting and receiving information in broadcasting/communication system |
Also Published As
Publication number | Publication date |
---|---|
KR20200058345A (en) | 2020-05-27 |
KR20160100198A (en) | 2016-08-23 |
BR112017016116B1 (en) | 2023-10-31 |
CA3085277A1 (en) | 2016-08-18 |
KR20170130321A (en) | 2017-11-28 |
KR101970825B1 (en) | 2019-04-19 |
CA2975077C (en) | 2020-09-01 |
MX2017010344A (en) | 2018-01-23 |
BR112017016116A2 (en) | 2018-03-27 |
KR101898697B1 (en) | 2018-09-13 |
CA3085277C (en) | 2023-06-20 |
KR102227537B1 (en) | 2021-03-12 |
CN107251464B (en) | 2020-08-07 |
KR101800423B1 (en) | 2017-11-23 |
KR102114481B1 (en) | 2020-05-22 |
CA2975077A1 (en) | 2016-08-18 |
KR20190042521A (en) | 2019-04-24 |
CN107251464A (en) | 2017-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101776273B1 (en) | Transmitter and method for generating additional parity thereof | |
KR101970803B1 (en) | Transmitter and parity permutation method thereof | |
KR101970812B1 (en) | Transmitter and additional parity generating method thereof | |
KR20160103907A (en) | Transmitter and method for generating additional parity thereof | |
KR20160106472A (en) | Transmitter and shortening method thereof | |
KR20160106473A (en) | Transmitter and shortening method thereof | |
KR20170104133A (en) | Transmitter and repetition method thereof | |
KR20160103906A (en) | Transmitter and method for generating additional parity thereof | |
KR101970824B1 (en) | Transmitter and segmentation method thereof | |
KR20160106471A (en) | Transmitter and parity permutation method thereof | |
KR101970825B1 (en) | Transmitter and additional parity generating method thereof | |
KR101970776B1 (en) | Transmitter and puncturing method thereof | |
KR101970749B1 (en) | Transmitter and shortening method thereof | |
KR20160106476A (en) | Transmitter and parity permutation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
A107 | Divisional application of patent | ||
GRNT | Written decision to grant |