KR20180097998A - 주변 영상 모니터링 장치 및 방법 - Google Patents

주변 영상 모니터링 장치 및 방법 Download PDF

Info

Publication number
KR20180097998A
KR20180097998A KR1020170024894A KR20170024894A KR20180097998A KR 20180097998 A KR20180097998 A KR 20180097998A KR 1020170024894 A KR1020170024894 A KR 1020170024894A KR 20170024894 A KR20170024894 A KR 20170024894A KR 20180097998 A KR20180097998 A KR 20180097998A
Authority
KR
South Korea
Prior art keywords
helmet
image
pattern
area
unit
Prior art date
Application number
KR1020170024894A
Other languages
English (en)
Inventor
송현석
Original Assignee
에스엘 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스엘 주식회사 filed Critical 에스엘 주식회사
Priority to KR1020170024894A priority Critical patent/KR20180097998A/ko
Publication of KR20180097998A publication Critical patent/KR20180097998A/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06K9/00805
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/277Analysis of motion involving stochastic approaches, e.g. using Kalman filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

상기 과제를 해결하기 위한 본 발명의 실시예에 따른 주변 영상 모니터링 장치는 차량에 부착되어 상기 차량의 주변에 대한 영상을 촬영하는 복수의 카메라; 상기 영상의 화질 개선을 위한 영상 처리를 하는 영상 처리부; 상기 영상 상에서 안전모가 표시된 것으로 추측되는 안전모 후보 영역을 검출하는 안전모 후보 영역 검출부; 상기 안전모 후보 영역 중에서 상기 안전모에 형성된 패턴을 검출하는 패턴 검출부; 상기 검출된 패턴을 통해 안전모 영역을 판단하는 안전모 영역 판단부를 포함한다.

Description

주변 영상 모니터링 장치 및 방법{The Apparatus And The Method For Around View Monitoring}
본 발명은 주변 영상 모니터링 장치 및 방법에 관한 것으로서, 보다 상세하게는 공사장에서 중장비에 설치되는 AVM 기술을 적용하기 위한 카메라를 이용하여, 주변의 공사장 인부들을 용이하게 식별할 수 있는 주변 영상 모니터링 장치 및 방법에 관한 것이다.
일반적으로 주차공간에 차량을 주차하기 위해서는, 현재 차량의 위치, 주변의 장애물이나 다른 차량의 위치 및 거리, 조향 각도, 차량의 예상 진로 등을 운전자가 자신의 감각 및 경험에 의존하여 판단해야 한다. 그러나 초보 운전자들은 이러한 감각 및 경험이 부족하여 주차할 때 상당한 어려움을 겪는다. 특히, 좁은 공간 또는 사각지대가 많은 장소에서 차량을 주차할 경우에는, 운전자의 위치 판단 실수나 조작의 실수로 인해 다른 차량이나 장애물과 충돌을 일으킬 가능성이 매우 높다.
이러한 문제를 해결하기 위해 차량의 전방 및 후방에 카메라를 설치하여 해당 방향의 영상을 촬영하고, 차량 실내에 설치된 디스플레이 장치를 통해 상기 영상을 디스플레이 함으로써 운전자가 현재 진행 중인 주차과정을 용이하게 인지할 수 있도록 하는 기술들이 제시되었다. 나아가, 최근에는 차량의 전방, 후방, 좌측방, 우측방에 각각 카메라를 설치하여 영상을 촬영하고, 이를 변환 및 합성하여 탑 뷰(Top View: 위에서 차량을 수직으로 내려다보는 영상)를 생성하는 AVM(Around View Monitoring) 기술이 소개되었다. 이러한 AVM 기술에 의해 운전자의 차량 운전에 편의가 증대되고 차량 주변 상황을 용이하게 인지할 수 있어 사고 예방에 큰 도움이 되었다. 이에 따라 현재 AVM 기술을 기반으로 하는 주차 보조 시스템이 더욱 활발히 개발되고 있다.
도 1은 일반적인 AVM 기술을 수행하기 위해 차량의 사방을 촬영한 복수의 영상을 합성하는 방법을 나타낸 개략도이다.
AVM(Around View Monitoring) 기술을 수행하기 위해서는, 차량의 사방을 촬영한 복수의 영상을 정확하게 변환 및 합성하는 것이 중요하다. 따라서 일반적으로 차량을 출시하기 전에 미리 공장에서 복수의 영상의 변환 및 합성을 수행한다. 도 1에 도시된 바와 같이 패턴 도면들이 평탄한 지면에 일정한 간격으로 위치되고, 상기 패턴 도면들이 차량의 사방에 설치된 복수의 카메라(10a, 10b, 10c, 10d)로 모두 촬영될 수 있도록 차량을 위치시킨다. 그리고 상기 복수의 카메라(10a, 10b, 10c, 10d)로 영상을 촬영하여 탑 뷰(Top View)를 생성하도록 영상을 자동으로 변환한다. 그리고 변환을 한 뒤에는 상기 패턴이 실제 위치된 간격 및 모양으로 영상에서 보여지도록, 영상들을 회전 및 이동시켜 각 카메라의 영상들을 자연스럽게 합성한다.
산 속에서 공사 작업을 하는 굴삭기, 덤프 트럭과 같은 중장비의 경우에는, 작업자가 작업을 하는 도중에 주변을 신경 쓰지 못하여 사람이나 물건을 치거나, 큰 구덩이에 빠지게 되는 문제가 발생하였다. 그런데 일반적으로 중장비는, 일반 차량보다 무게도 무겁고 크기도 매우 커서, 상기의 문제가 발생하면 일반 차량보다 더 큰 대형 사고로 이어지는 경우가 많았다. 따라서 이런 문제를 미연에 방지하기 위해, 최근에는 이러한 중장비에도 AVM 기술을 적용하는 사례가 증가하게 되었다.
한편, 중장비도 도로를 주행하거나 주차된 사이에 사고가 발생하기도 한다. 이러한 경우에도 운전자 간에 잘잘못을 가리기 위해, 사고 현장에 대한 영상 등의 증거 확보가 중요하다. 이에 최근에는 중장비에도 블랙박스를 설치하는 경우가 증가하게 되었다. 그리고, 이러한 블랙박스에는 영상으로부터 사람의 얼굴을 인식함으로써, 주변의 사람을 인식하는 기술이 많이 제안되고 있다. 그런데, AVM 기술을 적용하기 위한 카메라와, 주변의 사람을 인식하는 카메라를 별도로 설치하는 경우에는 차량에 카메라가 과도하게 많이 설치된다. 따라서 구조가 매우 복잡하게 되고, 비용도 상당히 많이 소모되는 문제가 발생하였다.
AVM 기술을 적용하기 위한 카메라만을 설치하고, 그로부터 주변의 사람을 인식하는 기술을 함께 수행하도록 할 수도 있다. 그러나, 탑 뷰를 생성하기 위해서 ECU와 같은 프로세서 유닛에 많은 부하가 걸리게 된다. 그런데, 하나의 프로세서 유닛이 사람까지 인식하는 기술을 수행하기 위해서는 많은 알고리즘이 필요하므로, 프로세서 유닛에 더욱 많은 부하가 걸리게 된다. 따라서, 탑 뷰를 생성하거나, 사람을 인식하는데 까지 많은 시간이 소요된다.
한국공개공보 제2017-0003300호
본 발명이 해결하고자 하는 과제는, 공사장에서 중장비에 설치되는 AVM 기술을 적용하기 위한 카메라를 이용하여, 주변의 공사장 인부들을 용이하게 식별할 수 있는 주변 영상 모니터링 장치 및 방법을 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 주변 영상 모니터링 장치는 차량에 부착되어 상기 차량의 주변에 대한 영상을 촬영하는 복수의 카메라; 상기 영상의 화질 개선을 위한 영상 처리를 하는 영상 처리부; 상기 영상 상에서 안전모가 표시된 것으로 추측되는 안전모 후보 영역을 검출하는 안전모 후보 영역 검출부; 상기 안전모 후보 영역 중에서 상기 안전모에 형성된 패턴을 검출하는 패턴 검출부; 상기 검출된 패턴을 통해 안전모 영역을 판단하는 안전모 영역 판단부를 포함한다.
또한, 상기 복수의 카메라에 의해 획득된 영상을 이용하여 합성 탑 뷰를 생성하는 탑 뷰 생성부를 더 포함한다.
또한, 상기 탑 뷰 생성부는, 상기 안전모 영역에 대한 좌표를 변환하여, 상기 생성된 합성 탑 뷰에 상기 안전모 영역을 표시한다.
또한, 상기 안전모에는, 하나의 특정 모양의 패턴이 복수로, 균일하게 분포되어 형성된다.
또한, 상기 안전모 영역 판단부는, 상기 패턴 검출부가 하나의 특정 모양의 상기 패턴을 적어도 3개 반복하여 검출하면, 안전모 영역으로 판단한다.
또한, 상기 안전모에는, 다양한 모양의 패턴이 특정한 규칙성을 가지며 일정하게 반복되어 형성된다.
또한, 상기 안전모 영역 판단부는, 상기 패턴 검출부가 특정한 규칙성을 가지는 모양의 상기 패턴을 검출하면, 안전모 영역으로 판단한다.
또한, 상기 안전모 후보 영역 검출부는, 외형 기반 객체 검출 방법을 사용하여, 상기 안전모 후보 영역을 검출한다.
또한, 상기 패턴 검출부는, 블록 매칭 알고리즘을 사용하여, 상기 안전모에 형성된 패턴을 검출한다.
또한, 상기 판단된 안전모 영역이 시간에 따라 이동하더라도, 상기 안전모 영역을 추적하는 안전모 추적부를 더 포함한다.
또한, 상기 안전모 추적부는, 칼만 필터를 사용하여, 상기 안전모 영역을 추적한다.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 주변 영상 모니터링 방법은 카메라가 차량의 주변에 대한 영상을 촬영하는 단계; 상기 영상의 화질을 개선하는 단계; 상기 영상 상에서 안전모가 표시된 것으로 추측되는 안전모의 후보 영역을 결정하는 단계; 상기 안전모 후보 영역 중에서 상기 안전모에 형성된 패턴을 검출하는 단계; 상기 검출된 패턴을 통해 안전모 영역을 판단하는 단계; 및 상기 판단된 안전모 영역이 시간에 따라 이동하더라도, 상기 안전모 영역을 추적하는 단계를 포함한다.
또한, 상기 안전모의 위치를 추적하는 단계에 있어서, 상기 영상을 이용하여 탑 뷰를 생성하는 단계를 더 포함한다.
또한, 상기 안전모 영역에 대한 좌표를 변환하여, 상기 생성된 합성 탑 뷰에 상기 안전모 영역을 표시하는 단계를 더 포함한다.
또한, 상기 안전모에는, 하나의 특정 모양의 패턴이 복수로, 균일하게 분포되어 형성된다.
또한, 상기 안전모 영역을 판단하는 단계에 있어서, 하나의 특정 모양의 상기 패턴이 적어도 3개 반복하여 검출되면, 안전모 영역으로 판단한다.
또한, 상기 안전모에는, 다양한 모양의 패턴이 특정한 규칙성을 가지며 일정하게 반복되어 형성된다.
또한, 상기 안전모 영역 판단부는, 특정한 규칙성을 가지는 모양의 상기 패턴이 검출되면, 안전모 영역으로 판단한다.
또한, 상기 안전모 후보 영역을 검출하는 단계에 있어서, 외형 기반 객체 검출 방법을 사용한다.
또한, 상기 안전모에 형성된 패턴을 검출하는 단계에 있어서, 블록 매칭 알고리즘을 사용한다.
또한, 상기 안전모 영역을 추적하는 단계에 있어서, 칼만 필터를 사용한다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.
프로세서 유닛에 가해지는 부하가 감소하여 저렴하고 적은 용량을 가진 프로세서 유닛을 이용하더라도 빠르고 용이하게 주변의 공사장 인부들을 식별할 수 있다.
또한, 중장비에 설치되는 AVM 기술을 적용하기 위한 카메라를 이용하므로, 공사장 인부들을 식별하기 위한 별도의 카메라를 설치할 필요가 없어, 차량에 설치되는 카메라의 개수를 감소시켜 구조가 단순해지고, 카메라를 설치하는데 소비되는 비용을 절감할 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 일반적인 AVM 기술을 수행하기 위해 차량의 사방을 촬영한 복수의 영상을 합성하는 방법을 나타낸 개략도이다.
도 2는 본 발명의 일 실시예에 따른 주변 영상 모니터링 장치(1)의 블록도이다.
도 3은 본 발명의 일 실시예에 따른 전자 제어 유닛(ECU, 20)의 자세한 구성을 나타낸 블록도이다.
도 4는 본 발명의 일 실시예에 따른 주변 영상 모니터링 방법을 수행하기 위한 흐름도이다.
도 5는 본 발명의 일 실시예에 따른 카메라(10)가 공사장의 인부들을 촬영한 영상을 나타낸 도면이다.
도 6은 본 발명의 일 실시예에 따른 주변 영상 모니터링 장치(1)가 검출하는 안전모(2)에 특정 모양의 패턴이 복수로 분포되어 형성된 모습을 나타낸 도면이다.
도 7은 본 발명의 일 실시예에 따른 패턴 검출부(22)가 안전모(2)에 형성된 패턴을 검출하는 과정을 나타낸 개념도이다.
도 8은 본 발명의 다른 실시예에 따른 주변 영상 모니터링 장치(1)가 검출하는 안전모(2)에 다양한 모양의 패턴이 일정하게 반복되어 형성된 모습을 나타낸 도면이다.
도 9는 본 발명의 일 실시예에 따른 안전모 영역(231)의 좌표를 변환시켜 탑 뷰 생성부(30)가 생성한 탑 뷰에 표시하는 모습을 나타낸 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 2는 본 발명의 일 실시예에 따른 주변 영상 모니터링 장치(1)의 블록도이다.
본 발명의 일 실시예에 따른 주변 영상 모니터링 장치(1)는 적은 용량을 가진 프로세서 유닛을 이용하더라도 빠르게 주변의 공사장 인부들을 식별하기 위해, 사람의 얼굴 자체를 인식하는 것이 아니라 공사장 인부들의 안전모(2)를 식별한다. 사람의 얼굴은 사람마다 각양각색으로 다르기 때문에, 이를 식별하는 것은 상당히 복잡하고 무거운 알고리즘을 사용하게 된다. 그러나, 같은 공사장에 존재하는 안전모(2)는 모두 동일한 형상 및 크기를 가진다. 또한, 공사장의 인부라면 안전 규칙상 누구나 안전모(2)를 착용해야 한다. 따라서, 안전모(2)를 식별하는 것은 상대적으로 가벼운 알고리즘을 사용하므로, 안전모(2)를 식별하는 것 만으로도 공사장의 인부를 빠르게 식별해 낼 수 있다. 그리고, 별도의 카메라를 설치할 필요가 없이, AVM 기술을 적용하기 위한 카메라(10)만을 설치하더라도 공사장의 인부를 용이하게 식별할 수 있다.
이를 위해, 본 발명의 일 실시예에 따른 주변 영상 모니터링 장치(1)는 차량의 주변 영상을 촬영하는 복수의 카메라(10a, 10b, 10c, 10d), 차량의 구동을 전체적으로 제어하는 전자 제어 유닛(ECU, 20), 복수의 카메라(10a, 10b, 10c, 10d)로부터 촬영되어 인코딩된 압축 영상을 전송받아 영상 처리를 하는 영상 처리부(31), 상기 복수의 영상들을 각각 개별 탑 뷰(Top View)로 변환시키는 영상 변환부(32), 상기 각각의 개별 탑 뷰(Top View)를 합성을 하여 하나의 합성 탑 뷰(Top View)를 생성하는 영상 합성부(33), 상기 탑 뷰(Top View)를 디스플레이 하는 디스플레이 장치(40)를 포함한다.
차량의 주변에는 복수의 카메라(10a, 10b, 10c, 10d)가 각각 설치되어 차량의 외부를 촬영한다. 일반적으로 차량의 전방, 후방, 좌측방, 우측방에 하나씩 4대의 카메라(10a, 10b, 10c, 10d)가 설치될 수 있으나, 이에 제한되지 않고 다양한 개수의 카메라(10)가 차량에 설치될 수 있다. 이러한 카메라(10)는 큰 화각을 갖는 광각렌즈가 주로 사용되며, 180° 이상의 화각을 갖는 초광각 렌즈인 어안 렌즈(Fish-Eye Lens)가 사용되기도 한다. 카메라(10)로부터 촬영된 영상은 차량 내부에 설치된 디스플레이 장치(40)를 통해 디스플레이 된다. 운전자는 상기 출력되는 영상을 통해 시야를 확보하여 외부의 상황을 용이하게 파악하고 장애물을 회피하는 등 안전성을 확보할 수 있다. 카메라(10)는 일반적으로 CCD(Charge Coupled Device)나 CIS(CMOS Image Sensor) 등의 촬상 소자를 이용한다. 본 발명의 일 실시예에 따른 카메라(10)는 매초 15~30프레임의 2차원 화상을 촬영하여 디지털 변환함으로써 동영상 데이터를 출력하는 디지털카메라인 것이 바람직하나, 이에 제한되지 않는다. 카메라(10)가 디지털카메라가 아니라면 촬영한 영상은 RGB 아날로그 영상 신호이므로 ADC컨버터가 별도로 구비되어야 하나, 본 발명의 일 실시예에 따른 카메라(10)가 디지털카메라라면 ADC컨버터가 필요하지 않다. 또한 카메라(10) 자체에서 영상을 인코딩하는 기능이 탑재되어 있으므로, 카메라(10)가 영상을 촬영하면 곧바로 인코딩되어 압축 영상 데이터가 생성된다.
최근에는 초고해상도 영상인 UHD(Ultra High Definition)의 관심으로 UHD 영상 인코딩을 위한 HEVC(High Efficiency Video Coding)의 표준화가 완료되며 H.264/MPEG-4 AVC보다 2배 이상의 인코딩 효율을 향상시켰다. 상기 영상을 인코딩하기 위한 코덱으로는, 최근 주로 사용되는 MPEG4 또는 H.264/MPEG-4 AVC, 상기 소개한 HEVC 등을 사용하는 것이 바람직하나, 이에 제한되지 않고 다양한 종류의 코덱이 사용될 수 있다.
전자 제어 유닛(ECU, 20)은 차량에 탑재된 각종 센서의 입력을 수신하고, 차량의 구동을 전체적으로 제어한다. 복수의 카메라(10a, 10b, 10c, 10d)로부터 상기 복수의 압축 영상이 출력되면, 영상 처리부(31), 영상 변환부(32), 영상 합성부(33)를 거치며 디코딩 및 영성 처리와 하나의 탑 뷰(Top View)로 변환 및 합성하는 과정을 거친다. 이 때, 전자 제어 유닛(ECU, 20)에는 상기 압축 영상이 영상 처리부(31)로 입력된다는 신호가 인가된다. 본 발명의 일 실시예에 따른 전자 제어 유닛(ECU, 20)은 상기 신호가 인가되면, 영상 처리부(31)에서 디코딩 및 디코딩된 영상을 처리하여 해상도(Resolution), 프레임율(Frame-Rate) 또는 화질(Bit-Depth)을 변경하는 영상 처리 과정의 전반적인 제어를 수행한다. 예를 들면, 주야 판단을 하여 영상의 밝기를 조절할 수 있다. 구체적으로 설명하면, 별도로 차량에 탑재된 조도센서(54) 등과 같은 센서가 전자 제어 유닛(ECU, 20)에 신호를 인가한다. 전자 제어 유닛(ECU, 20)은 센서의 신호를 받으면, 야외의 주간, 야간 여부를 판단하고 영상의 밝기 조절을 명령한다. 상기 밝기 조절 명령은 영상 처리부(31)에 영상의 디코딩을 비롯한 영상 처리 과정에서 화소의 밝기를 조절하도록 명령할 수 있다. 또는 전자 제어 유닛(ECU, 20)이 직접 디스플레이 패널(41)에 백라이트(Backlight)의 밝기를 조절하도록 명령할 수 있다. 야외가 주간이라면 출력되는 영상의 밝기를 대략 500cd/m2 이상으로 밝게 하고, 야외가 야간이라면 출력되는 영상의 밝기를 대략 100cd/m2 이하로 어둡게 할 수 있으나, 상기 수치는 예시적인 것으로 이에 제한되지 않고 다양한 범위로 설정될 수 있다. 뿐만 아니라 전자 제어 유닛(ECU, 20)은, 하기 기술할 바 영상 변환부(32) 및 영상 합성부(33)에서 영상을 합성하는 과정에 있어서도 전반적인 제어를 수행한다.
전자 제어 유닛(ECU, 20)은 차량에 설치된 카메라(10) 등을 제어할 수 있는 차체 제어 모듈(BCM; Body Control Module)이 사용되며, 최근에는 운전자 통합 정보 시스템 모듈(DIS; Driver Information System)도 사용되고 있다. 여기서 운전자 통합 정보 시스템이란, 멀티미디어, 내비게이션(Navigation), 차량 공조시스템, 차량의 각종 설정 등 차량의 모든 정보를 8인치 대형 모니터를 통해 운전자에게 알려주고 운전자는 터치스크린과 뒷좌석 햅틱(Haptic) 컨트롤러, 음성명령을 통해 쉽고 빠르게 차량의 각부를 통합 제어할 수 있는 시스템을 말한다.
상기의 기능 외에도 전자 제어 유닛(ECU, 20)은 각종 설정된 내용들을 구현하거나 내부의 신호들을 제어한다. 상기 설정된 내용은 사용자가 자신에게 적합하도록 인터페이스를 설정한 내용뿐만 아니라 자체 소프트웨어의 업데이트 등의 내용을 포함한다. 그리고 상기 인터페이스의 설정 내용은 화면의 줌, 해상도, 밝기, 색도, 채도를 포함하고, 회전, 흑백, 스타일, 뷰 모드 등 사용자가 원하는 영상이 출력될 수 있도록 설정할 수 있는 모든 내용들을 포함한다. 따라서, 사용자가 원하면 화면의 줌 인 및 줌 아웃을 하여 화면의 확대 및 축소가 가능하고, 화면의 밝기 또한 조절할 수 있다. 또한, 카메라(10)가 촬영한 영상 중에서 디스플레이 되지 않는 부분을 볼 수 있도록 뷰 모드를 조정할 수 있고, 카메라(10)를 회전 및 이동시켜 사용자가 원하는 부분을 촬영하도록 할 수 있다.
본 발명의 일 실시예에 따른 전자 제어 유닛(ECU, 20)은 저장부(미도시)를 포함할 수 있다. 저장부(미도시)는 상기 인코딩된 영상을 저장하거나, 상기 각종 설정된 최종 내용들을 저장한다. 전자 제어 유닛(ECU, 20)을 소형화 하기 위해 저장부(미도시)는 부피가 크지 않은 비휘발성 메모리인 플래시 메모리를 사용하는 것이 바람직하나, 이에 제한되지 않고 다양한 메모리 장치가 사용될 수 있다.
카메라(10)로부터 촬영된 복수의 영상은 영상 처리부(31)로 전송된다. 영상 처리부(31)는 상기 복수의 압축 영상이 동시에 입력되면 디코딩 및 렌더링 등의 영상 처리를 각각 독립적으로 동시에 수행할 수 있다. 영상 처리부(31)는 상기 압축 영상을 전송받아 디코딩하는 디코더(미도시), 버퍼 저장부(미도시), 그래픽 렌더러(미도시)를 포함할 수 있다.
디코더는 카메라(10)로부터 인코딩된 압축 영상을 전송받아 디코딩하여 복원 영상을 생성한다. 상기 인코딩된 영상을 디코딩하기 위한 코덱 또한 상기 기술한 인코딩에서와 마찬가지로 다양한 종류가 사용될 수 있으나, 인코딩에 사용된 코덱과 동일한 종류이어야 동일한 표준에 의한 것이므로 정확히 영상이 복원된다.
만약 디스플레이 패널(41)에서 영상의 디스플레이 지체 현상이 발생한다면, 카메라(10)에서 촬영하여 전송되는 영상의 프레임들이 내부에서 대기하여야 한다. 버퍼 저장부는 상기 대기하는 영상의 프레임 데이터를 임시로 저장한다. 영상이 디스플레이 패널(41)을 통해 디스플레이 되면 이어서 다음 프레임에 해당하는 영상 데이터를 보냄으로써 영상이 자연스럽게 재생될 수 있도록 한다. 그래픽 렌더러는 상기 영상의 렌더링(Rendering) 작업을 수행한다. 렌더링이란 2차원의 영상이 더욱 실감나고 현실감이 있도록, 광원, 위치, 색상 등의 외부 정보를 고려하여 3차원 영상을 만들어내는 방법이다. 렌더링의 방법으로는 물체의 모서리만을 그려주는 와이어프레임(Wireframe) 렌더링, 광선의 굴절 및 반사를 계산하여 발광부까지의 경로를 역추적함으로써 각 픽셀의 색상을 결정하는 레이트레이싱(Raytracing) 렌더링 등이 있다.
상기 탑 뷰 생성부(30)는 상기 입력된 영상을 위에서 차량을 내려보는 영상인 하나의 탑 뷰(Top View)로 변환 및 합성을 한다. 이를 위해, 탑 뷰 생성부(30)는 영상 처리부(31), 영상 변환부(32) 및 영상 합성부(33)을 포함할 수 있다. 상기 영상 처리부(31)에서 디코딩 및 기타 영상 처리된 영상이 출력된다. 특히, 영상 처리부(31)는 영상의 노이즈(Noise)를 제거하고, 히스토그램 평활화(Histogram Equalization)을 수행할 수 있다. 히스토그램 평활화란, 입력된 영상의 모든 픽셀에 대한 히스토그램을 분석하여, 영상의 픽셀값들이 균일한 빈도를 보이는 히스토그램이 되도록 변환하는 것이다. 영상 변환부(32) 및 영상 합성부(33)는 상기 복원 영상을 상기와 같은 과정을 통해 보정 및 변환을 하고, 오버레이 방식으로 합성 처리하여 차량의 주변 360°를 한 눈에 볼 수 있는 하나의 탑 뷰(Top View) 영상을 생성한다.
영상 변환부(32)는 영상 처리된 복수의 영상을 전송받아 룩 업 테이블(Look Up Table)을 통해 영상을 변환하며, 상기 복수의 영상에 대한 각각의 탑 뷰(Top View)를 생성한다. 룩 업 테이블은 왜곡 보정 알고리즘, 아핀(Affine) 변환 알고리즘, 시점 변환 알고리즘을 적용하여 생성될 수 있다. 왜곡 보정 알고리즘은 카메라(10) 렌즈에 의하여 발생하는 기하학적 왜곡을 보정하는 알고리즘이다. 실제 렌즈는 일반적으로 비구면으로 형성되므로, 방사상 왜곡이나 접선 방향 왜곡이 발생할 수 있어 이를 보정하는 것이다. 여기서 왜곡 보정 알고리즘은 보정 파라미터와 왜곡 상수에 관한 함수로 나타낼 수 있다. 아핀(Affine) 변환은 2차원 공간이 1차식으로 나타나는 점 대응을 의미하며, 회전(R), 이동(T), 스케일(S) 변환을 거친다. 시점 변환 알고리즘은 복수의 카메라(10a, 10b, 10c, 10d)를 통해 촬영된 각각의 영상들을 위에서 내려다 보이는 탑 뷰(Top View) 영상으로 시점을 변환한다. 이러한 변환들은 이미 공지되어 있는 여러 가지 기술들을 사용함으로써 구현될 수 있다.
영상 합성부(33)는 상기 변환된 복수의 개별 탑 뷰(Top View)를 겹치는 오버레이(Overlay) 방식으로 합성 처리하여 하나의 합성 탑 뷰(Top View)를 생성한다. 여기서, 영상 합성부(33)는 마스크 영상을 이용하여 오버레이 합성 처리를 하는데, 마스크 영상은 각 카메라(10)에서 촬영되는 영상마다 보정 및 변환 영상을 구성하는 픽셀들에 대한 가중치(Weight) 정보를 가진다. 전자 제어 유닛(ECU, 20)은 보정 및 변환 영상들 사이에 중복되는 영역에 포함되는 픽셀들의 가중치를 조절하여 복수의 영상이 합성될 때 중복되는 영역을 더욱 자연스럽게 디스플레이 되도록 한다. 또한 각각의 영상은 영상 합성을 위해, 영상의 회전 및 이동을 한 정도를 나타내는 영상 제어 파라미터를 가진다.
본 발명의 일 실시예에서는 영상 변환부(32)에서 복수의 영상에 대한 각각의 탑 뷰(Top View)를 생성한 후, 영상 합성부(33)에서 하나의 탑 뷰(Top View)를 합성하는 것으로 설명하였다. 그러나 이에 제한되지 않고, 복수의 영상을 먼저 합성한 후에 이를 하나의 탑 뷰(Top View)로 변환할 수도 있으며, 하나의 탑 뷰(Top View)를 생성하기 위한 다양한 방식이 사용될 수 있다.
디스플레이 장치(40)는 상기 복원 영상 및 상기 합성 탑 뷰(Top View) 영상을 디스플레이 할 수 있는 디스플레이 패널(41)을 포함할 수 있다.
디스플레이 패널(41)은 전자 제어 유닛(ECU, 20)의 제어에 따라, 디코딩 및 영상 처리되어 복원된 영상과, 영상 변환 및 합성되어 생성된 탑 뷰(Top View)를 시각적으로 디스플레이함으로써 사용자가 감시할 수 있도록 한다. 디스플레이 패널(41)은 LCD, LED, OLED 등 다양한 방식이 사용될 수 있으며, 나아가 터치가 가능한 터치패널의 기능을 가질 수도 있다.
전자 제어 유닛(ECU, 20)은 네트워크 통신(50)을 통해 차량에 탑재된 센서 및 시스템과 연결될 수 있다. 상기 차량의 센서 및 시스템은 액셀레이터 센서(51), 브레이크 시스템(52), 휠 스피드 센서(53), 조도 센서(54), 램프 조절 시스템(55) 등을 포함한다.
액셀레이터 센서(51)는 엔진의 RPM을 조절하도록 액셀레이터 페달이 받는 압력을 측정하는 센서이며, 휠 스피드 센서(53)는 차량의 바퀴의 회전량 또는 단위시간 당 회전수를 검출하는 센서로써 홀(Hall) 소자 등을 사용하여 구성된다. 브레이크 센서(522)는 브레이크 페달의 조작량을 검출하는 센서이다. 브레이크 센서(522)는 브레이크 시스템(52)을 통해 네트워크 통신에 접속된다. 변속 레버 스위치(56)은 변속 레버의 위치를 검출하는 센서 또는 스위치이며, 변위 센서 등을 이용하여 구성된다. 조도 센서(54)는 차량의 외부에 탑재되어 수광량을 측정함으로써 주야를 판단하는 센서로, 광전지 또는 광전관을 사용하여 구성된다.
브레이크 시스템(52)은 구동부(521)를 이용하여 제동력을 증강시키는 브레이크 어시스트(Brake Assist), 브레이크의 락을 억제하는 ABS(Anti-lock Braking System) 등을 가진 전동 브레이크 시스템이다. 램프 조절 시스템(55)은 상기 조도 센서(54) 또는 사용자의 제어 입력에 따라 차량의 램프 발광량을 조절하는 시스템이다. 외부 시스템(58)은 차량의 생산, 점검 및 정비 시에 사용되는 검사 시스템이나 조정 시스템을 외부에서 접속 커넥터 등을 통해 접속하는 옵션 시스템으로, 차량에 항상 탑재되는 것이 아니라 탈부착이 가능하다. 사용자가 상기 합성된 탑 뷰(Top View)를 디스플레이 장치(40)을 통해 확인 시 부정합이 발생하면, 이를 보정하기 위한 명령을 입력부(34)를 통해 입력할 수 있다. 이러한 입력부(34)는 직접 사용자의 명령 신호를 탑 뷰 생성부(30)에 전달하도록 별도로 형성될 수도 있으나, 상기 외부 시스템(58)을 통해 별도의 모듈, 즉 스마트폰, 노트북, 태블릿 등이 차량과 연결되어 합성 탑 뷰(Top View)의 보정 명령 신호를 인가받을 수 있다.
파워 스티어링 시스템(57)은 토크 센서(Torque Sensor)(572)를 이용해 현재 스티어링 휠에 작용하는 토크를 측정하고, 스티어링 구동부(571)를 통해 스티어링 휠에 어시스트 토크(Assist Torque)를 부가하여 사용자의 편의를 제공하는 전동 파워 스티어링(Electric Power Steering, EPS) 시스템일 수 있다.
상기 기술한 센서 및 시스템은 예시적인 것이며, 그 연결 형태 또한 예시적인 것이다. 따라서 이에 제한되지 않고 다양한 구성 또는 연결 형태로 형성될 수 있다.
본 발명의 일 실시예에 따르면, 상기 네트워크 통신(50)의 연결 방식은 최근에 주로 사용되는 캔통신(Controller Area Network: CAN)을 사용하는 것이 바람직하나, 이에 제한되지 않고 린통신(Local Interconnect Network: LIN) 등 다양한 네트워크 방식을 사용할 수 있다.
도 3은 본 발명의 일 실시예에 따른 전자 제어 유닛(ECU, 20)의 자세한 구성을 나타낸 블록도이다.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전자 제어 유닛(ECU, 20)은 안전모 후보 영역 검출부(21), 패턴 검출부(22), 안전모 영역 판단부, 안전모 추적부(24)를 포함한다.
안전모 후보 영역 검출부(21)는 영상 처리된 복수의 영상을 전송받아 영상에 존재하는 안전모(2)의 후보 영역(211)을 검출한다. 안전모 후보 영역(211)은, 영상 상에서 안전모(2)가 표시된 것으로 추측되는 후보 영역(211)을 말한다. 이 때 본 발명의 일 실시예에 따르면, 단순한 알고리즘을 사용하여 단순한 형상인 안전모(2)의 후보 영역(211)을 빠르게 검출해야 한다. 따라서, 안전모 후보 영역 검출부(21)는 외형 기반 객체 검출(Shape-Based Object Detection) 방법을 사용하여 안전모 후보 영역(211)을 검출하는 것이 바람직하다.
패턴 검출부(22)는 상기 안전모 후보 영역(211)들 중에서 안전모(2)에 형성된 패턴을 검출한다. 본 발명의 일 실시예에 따른 안전모(2)는 동일한 모양의 패턴이 일정하게 반복되는 무늬를 가진다. 그리고, 그 모양은 다양하게 형성될 수 있으나, 주변의 공사장 환경과 구별될 수 있는 모양인 것이 바람직하다. 안전모(2)에 형성되는 패턴에 대한 자세한 설명은 후술한다.
안전모 영역 판단부는, 상기 안전모(2)의 후보 영역(211)들 중에서 안전모 영역(231)을 판단한다. 이 때, 안전모 영역 판단부는, 상기 패턴 검출부(22)에서 검출한 패턴을 통해 안전모 영역(231)을 판단한다.
안전모 추적부(24)는 상기 판단한 안전모 영역(231)이 시간에 따라 이동하더라도 이를 추적한다. 안전모(2)를 추정하는 방법에 대한 자세한 설명은 후술한다.
지금까지 기술한 주변 영상 모니터링 장치(1)의 각 구성요소들은 메모리 상의 소정 영역에서 수행되는 태스크, 클래스, 서브 루틴, 프로세스, 오브젝트, 실행 쓰레드, 프로그램과 같은 소프트웨어(Software)나, FPGA(Field-Programmable Gate Array)나 ASIC(Application-Specific Integrated Circuit)과 같은 하드웨어(Hardware)로 구현될 수 있으며, 또한 상기 소프트웨어 및 하드웨어의 조합으로 이루어질 수도 있다. 상기 구성요소들은 컴퓨터로 판독 가능한 저장 매체에 포함되어 있을 수도 있고, 복수의 컴퓨터에 그 일부가 분산되어 분포될 수도 있다.
또한, 각 블록(221)은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행예들에서는 블록(221)들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능하다. 예컨대, 잇달아 도시되어 있는 두 개의 블록(221)들은 사실 실질적으로 동시에 수행되는 것도 가능하고 그 블록(221)들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
도 4는 본 발명의 일 실시예에 따른 주변 영상 모니터링 방법을 수행하기 위한 흐름도이다.
본 발명의 일 실시예에 따른 주변 영상 모니터링 장치(1)를 이용하는 방법을 수행하면, 프로세서 유닛에 가해지는 부하가 감소하여 저렴하고 적은 용량을 가진 프로세서 유닛을 이용하더라도 빠르고 용이하게 주변의 공사장 인부들을 용이하게 식별할 수 있다.
도 4에 도시된 본 발명의 일 실시예에 따른 주변 영상 모니터링 방법에 대한 자세한 설명을, 이하 도 5 내지 도 9를 참조하여 함께 설명한다.
도 5는 본 발명의 일 실시예에 따른 카메라(10)가 공사장의 인부들을 촬영한 영상을 나타낸 도면이다.
복수의 카메라(10a, 10b, 10c, 10d)가 도 5에 도시된 바와 같이, 각각 차량 주변의 영상을 촬영하면, 먼저 영상 처리부(31)가 노이즈 제거 및 히스토그램 평활화 등 화질 개선을 위한 영상 처리를 수행한다(S401). 그리고, 안전모 후보 영역 검출부(21)는 영상 처리된 복수의 영상을 전송받아 영상에 존재하는 안전모(2)의 후보 영역(211)을 검출한다(S402). 일반적으로 사람 얼굴 등 객체를 인식하는 방법으로는, 사람 또는 물체에 대한 사전지식으로부터 유추된 요소간의 규칙을 이용하여 사람 또는 물체를 검출하는 지식 기반(Knowledge-Based) 방법, 사람의 포즈, 관찰시점이나 조명의 변화에도 무관한 사람 또는 물체의 형태의 구조적인 특징(Features)을 사전에 추출하고 입력영상에 존재하는 특징을 검색 및 분류하여 작업을 통해 얼굴을 검출하는 불변 특징 접근법(Feature Invariant Approach), 사람을 형성하는 표준 패턴을 기술한 후 입력 영상과의 상관관계를 추출하여 이용한 템플릿 정합(Template Matching) 방법, 및 여러 개의 사람 또는 물체 형태의 학습 영상으로부터 사람 또는 물체 형태의 표현 방식을 추출하여 이용한 외형 기반(Shape-Based) 방법 등과 같이 다양한 기법들이 존재하고 있다. 본 발명의 일 실시예에 따르면, 프로세서 유닛에 가해지는 부하가 감소하므로, 복잡하지 않고 단순한 방법을 사용해야 한다. 따라서 이 가운데, 본 발명의 일 실시예에 따른 안전모 후보 영역 검출부(21)가 안전모(2)의 후보 영역(211)을 검출하기 위해서, 외형 기반 객체 검출(Shape-Based Object Detection) 방법을 사용하는 것이 바람직하다.
안전모 후보 영역 검출부(21)는 안전모 영역(231)이 될 후보 영역(211)을 검출하는 것이므로, 실제 안전모(2)의 개수보다 더 많은 개수의 영역을 검출할 수 있다. 도 5에 도시된 경우를 예로 들면, 공사장의 인부들은 모두 동일한 형상 및 크기의 안전모(2)를 착용하고 있다. 그런데, 주변의 건물들에 형성된 창문들 중에 이러한 안전모(2)와 유사한 형상 및 크기의 창문을 가질 수도 있다. 따라서, 안전모 후보 영역 검출부(21)는, 안전모(2)로 추측되는 모든 영역을 안전모 후보 영역(211)으로 검출한다.
도 6은 본 발명의 일 실시예에 따른 주변 영상 모니터링 장치(1)가 검출하는 안전모(2)에 특정 모양의 패턴이 복수로 분포되어 형성된 모습을 나타낸 도면이다.
영상에서 안전모 후보 영역(211)을 모두 검출한 후에는, 패턴 검출부(22)가 상기 검출한 안전모 후보 영역(211)들 중에서 안전모(2)에 형성된 패턴을 검출한다(S403). 본 발명의 일 실시예에 따른 주변 영상 모니터링 장치(1)가 안전모(2)를 검출하기 위해서, 도 6에 도시된 바와 같이 안전모(2)에는 특정 모양의 패턴이 복수로 일정하게 형성될 수 있다. 예를 들면, + 모양, 원 모양, 사선 모양 등 다양한 모양일 수 있다. 영상에서 안전모(2)를 검출할 때, 안전모(2)를 쓰고 있는 사람이 향하는 방향이나 자세에 따라서 안전모(2)에 형성된 패턴의 모양이 변하거나 가려질 수 있다. 따라서, 하나의 안전모(2)에는 하나의 특정 모양의 패턴이 복수로, 균일하게 분포되어 형성되는 것이 바람직하다. 그리고, 이러한 패턴은 빨간색, 파란색 등의 색상을 가질 수도 있다. 즉, 영상에서 패턴 검출부(22)가 안전모(2)에 형성된 패턴을 용이하게 검출할 수 있다면, 패턴은 다양한 모양 및 색상을 가질 수 있다.
다만, 공사장의 주변에서 흔히 보여지는 모양 및 색상은 제외하는 것이 바람직하다. 예를 들면, 공사장의 주변에 건물이 많은 경우, 건물의 창문 모양과 유사한 사각형의 모양은 제외한다. 또는, 공사장 주변에 풀숲이 많은 경우, 초록색의 색상은 제외한다.
도 7은 본 발명의 일 실시예에 따른 패턴 검출부(22)가 안전모(2)에 형성된 패턴을 검출하는 과정을 나타낸 개념도이다.
패턴 검출부(22)가 이러한 안전모(2)에 형성된 패턴을 검출하기 위해서, 블록 매칭 알고리즘(Block Matching Algorithm)을 사용할 수 있다. 블록 매칭 알고리즘(Block Matching Algorithm)은 영상 상에 블록(221)을 슬라이딩(Sliding) 하면서 영상을 탐색하여, 이미 저장된 이미지와 매칭되는 부분을 검출하는 알고리즘이다. 안전모 후보 영역 검출부(21)가 안전모 후보 영역(211)을 모두 검출하면, 상기 검출된 안전모 후보 영역(211)들에 대하여 블록(221)을 슬라이딩하며 영상을 탐색한다. 예를 들어, 안전모(2)에 원 모양의 패턴이 복수로 일정하게 분포되어 형성된다면, 블록(221)은 상기 원 모양의 패턴 하나의 크기와 유사한 크기로 형성된다. 그리고 블록(221)이 영상 상에서 일정 간격으로 슬라이딩하면서 영상을 탐색한다. 나아가, 이러한 블록(221)의 크기 및 영상 탐색 간격은 안전모 후보 영역(211)의 크기에 따라 상이할 수 있다. 도 7에 도시된 바와 같이, 안전모 후보 영역(211)의 크기가 크다면, 공사장의 인부가 매우 가까이 위치한 것이며, 원 모양의 패턴 또한 크기가 클 것이다. 그러나, 안전모 후보 영역(211)의 크기가 작다면, 공사장의 인부가 매우 멀리 위치한 것이며, 원 모양의 패턴 또한 크기가 작을 것이다. 예를 들어, 안전모 후보 영역(211)의 크기가 30×30 픽셀이라면, 블록(221)의 크기는 5×5 픽셀이고, 탐색 간격은 4 픽셀이다. 그런데 안전모 후보 영역(211)의 크기가 20×20 픽셀이라면, 블록(221)의 크기는 3×3 픽셀이고, 탐색 간격은 2 픽셀이다. 패턴 검출부(22)는 이와 같은 방법으로 패턴을 검출한다. 다만 이에 제한되지 않고 패턴 검출부(22)가 패턴을 빠르게 검출할 수 있다면 다양한 방법을 사용할 수 있다.
안전모 영역 판단부는, 상기 안전모 후보 영역(211)들 중에서 상기 패턴 검출부(22)에서 검출한 패턴을 통해 안전모 영역(231)으로 판단한다(S404). 이 때, 상기 안전모(2)에는 하나의 특정 모양의 패턴이 복수로, 균일하게 분포되어 형성되므로, 안전모 영역 판단부는, 패턴 검출부(22)가 동일한 모양의 패턴을 적어도 3개 반복하여 검출하면 안전모 영역(231)으로 판단한다.
도 8은 본 발명의 다른 실시예에 따른 주변 영상 모니터링 장치(1)가 검출하는 안전모(2)에 다양한 모양의 패턴이 일정하게 반복되어 형성된 모습을 나타낸 도면이다.
도 8에 도시된 바와 같이, 안전모(2)에는 다양한 모양의 패턴이 특정한 규칙성을 가지며 일정하게 반복되어 형성될 수도 있다. 예를 들면, 직선이 일측 방향으로 나아가다가 타방으로 절곡되어 나아간 후, 다시 상기 일측 방향으로 나아가는 모습을 반복하는 지그재그 모양이, 일정한 간격을 가지며 복수로 형성되고, 상기 지그재그 모양 사이의 공간에 2가지 종류의 특정 무늬들이 교대로 반복되어 형성될 수 있다. 또는, 4가지 종류의 무늬가 일정한 순서를 가지고 교대로 반복되어 형성될 수도 있다. 이러한 경우에는 안전모(2)를 쓰고 있는 사람이 향하는 방향이나 자세가 변하더라도, 패턴 검출부(22)가 상기 특정한 규칙성을 가지는 패턴을 찾음으로써 안전모(2)의 패턴을 검출할 수 있다.
안전모 영역 판단부는, 상기 안전모 후보 영역(211)들 중에서 상기 패턴 검출부(22)에서 검출한 패턴을 통해 안전모 영역(231)으로 판단한다(S404). 이 때, 상기 안전모(2)에는 다양한 모양의 패턴이 특정한 규칙성을 가지며 일정하게 반복되어 형성되므로, 안전모 영역 판단부는, 패턴 검출부(22)가 특정한 규칙성을 가지는 모양의 패턴을 검출하면 안전모 영역(231)으로 판단한다.
안전모 추적부(24)는 상기 판단한 안전모 영역(231)이 시간에 따라 이동하더라도 이를 추적한다(S405). 안전모 추적부(24)가 안전모 영역(231)을 추적하기 위해서는 칼만 필터(Kalman Filter)를 사용한다. 칼만 필터(Kalman Filter)란, 불규칙 외난을 포함하는 동적 시스템(Dynamic System)에 적용되는 최적 상태 추정과정(Optimal State Estimation Process)으로서, 이산 실시간격(Discrete Real Time Interval)마다 측정되는 잡음(Noise)이 실린 데이터로부터 동적 시스템의 미지의 상태변수를 최적으로 추정하기 위한 선형, 불편(Unbiased), 최소오차분산(Minimum Error Variance)의 반복적 알고리즘(Recursive Algorithm)이다. 즉, 부정확한 측정 값으로부터 오차를 최소화 하는 추정치를 반복적으로 추정하는 방법이다. 안전모 추적부(24)는 이를 통해 영상으로부터 안전모(2)를 용이하게 추적할 수 있다.
도 9는 본 발명의 일 실시예에 따른 안전모 영역(231)의 좌표를 변환시켜 탑 뷰 생성부(30)가 생성한 탑 뷰에 표시하는 모습을 나타낸 도면이다.
안전모 영역(231)을 모두 판단하고, 안전모(2)를 추적할 수 있다면, 상기 검출된 안전모 영역(231)의 좌표를 변환시켜, AVM 기술을 사용하여 생성한 탑 뷰에 표시한다(S406). 이 때, 안전모 영역(231)의 좌표를 변환하기 위해서, 탑 뷰 생성부(30)가 탑 뷰를 생성하기 위해 사용하는 룩 업 테이블을 생성할 때 사용한 알고리즘을 그대로 사용할 수 있다. 상기의 예를 들면, 왜곡 보정 알고리즘, 아핀(Affine) 변환 알고리즘, 시점 변환 알고리즘을 그대로 사용할 수 있다. 다만, 이에 제한되지 않고 안전모 영역(231)의 좌표를 변환시켜 탑 뷰에 표시할 수 있다면 다양한 방법을 사용할 수 있다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
1: 주변 영상 모니터링 장치 2: 안전모
10: 카메라 20: 전자 제어 유닛
21: 안전모 후보 영역 검출부 22: 패턴 검출부
23: 안전모 영역 판단부 24: 안전모 추적부
30: 탑 뷰 생성부 31: 영상 처리부
32: 영상 변환부 33: 영상 합성부
40: 디스플레이 장치 41: 디스플레이 패널
50: 네트워크 통신 51: 엑셀레이터 센서
52: 브레이크 시스템 53: 휠 스피드 센서
54: 조도 센서 55: 램프 조절 시스템
56: 변속 레버 스위치 57: 파워 스티어링 시스템
58: 외부 시스템 211: 안전모 후보 영역
221: 블록 231: 안전모 영역
521: 브레이크 구동부 522: 브레이크 센서
571: 스티어링 구동부 572: 토크 센서

Claims (21)

  1. 차량에 부착되어 상기 차량의 주변에 대한 영상을 촬영하는 복수의 카메라;
    상기 영상의 화질 개선을 위한 영상 처리를 하는 영상 처리부;
    상기 영상 상에서 안전모가 표시된 것으로 추측되는 안전모 후보 영역을 검출하는 안전모 후보 영역 검출부;
    상기 안전모 후보 영역 중에서 상기 안전모에 형성된 패턴을 검출하는 패턴 검출부;
    상기 검출된 패턴을 통해 안전모 영역을 판단하는 안전모 영역 판단부를 포함하는 주변 영상 모니터링 장치.
  2. 제1항에 있어서,
    상기 복수의 카메라에 의해 획득된 영상을 이용하여 합성 탑 뷰를 생성하는 탑 뷰 생성부를 더 포함하는, 주변 영상 모니터링 장치.
  3. 제2항에 있어서,
    상기 탑 뷰 생성부는,
    상기 안전모 영역에 대한 좌표를 변환하여, 상기 생성된 합성 탑 뷰에 상기 안전모 영역을 표시하는, 주변 영상 모니터링 장치.
  4. 제1항에 있어서,
    상기 안전모에는, 하나의 특정 모양의 패턴이 복수로, 균일하게 분포되어 형성되는, 주변 영상 모니터링 장치.
  5. 제4항에 있어서,
    상기 안전모 영역 판단부는,
    상기 패턴 검출부가 하나의 특정 모양의 상기 패턴을 적어도 3개 반복하여 검출하면, 안전모 영역으로 판단하는, 주변 영상 모니터링 장치.
  6. 제1항에 있어서,
    상기 안전모에는, 다양한 모양의 패턴이 특정한 규칙성을 가지며 일정하게 반복되어 형성되는, 주변 영상 모니터링 장치.
  7. 제6항에 있어서,
    상기 안전모 영역 판단부는,
    상기 패턴 검출부가 특정한 규칙성을 가지는 모양의 상기 패턴을 검출하면, 안전모 영역으로 판단하는, 주변 영상 모니터링 장치.
  8. 제1항에 있어서,
    상기 안전모 후보 영역 검출부는,
    외형 기반 객체 검출 방법을 사용하여, 상기 안전모 후보 영역을 검출하는, 주변 영상 모니터링 장치.
  9. 제1항에 있어서,
    상기 패턴 검출부는,
    블록 매칭 알고리즘을 사용하여, 상기 안전모에 형성된 패턴을 검출하는, 주변 영상 모니터링 장치.
  10. 제1항에 있어서,
    상기 판단된 안전모 영역이 시간에 따라 이동하더라도, 상기 안전모 영역을 추적하는 안전모 추적부를 더 포함하는 주변 영상 모니터링 장치.
  11. 제10항에 있어서,
    상기 안전모 추적부는,
    칼만 필터를 사용하여, 상기 안전모 영역을 추적하는, 주변 영상 모니터링 장치.
  12. 카메라가 차량의 주변에 대한 영상을 촬영하는 단계;
    상기 영상의 화질을 개선하는 단계;
    상기 영상 상에서 안전모가 표시된 것으로 추측되는 안전모의 후보 영역을 결정하는 단계;
    상기 안전모 후보 영역 중에서 상기 안전모에 형성된 패턴을 검출하는 단계;
    상기 검출된 패턴을 통해 안전모 영역을 판단하는 단계; 및
    상기 판단된 안전모 영역이 시간에 따라 이동하더라도, 상기 안전모 영역을 추적하는 단계를 포함하는 주변 영상 모니터링 방법.
  13. 제12항에 있어서,
    상기 안전모의 위치를 추적하는 단계에 있어서,
    상기 영상을 이용하여 탑 뷰를 생성하는 단계를 더 포함하는, 주변 영상 모니터링 방법.
  14. 제13항에 있어서,
    상기 안전모 영역에 대한 좌표를 변환하여, 상기 생성된 합성 탑 뷰에 상기 안전모 영역을 표시하는 단계를 더 포함하는, 주변 영상 모니터링 방법.
  15. 제12항에 있어서,
    상기 안전모에는, 하나의 특정 모양의 패턴이 복수로, 균일하게 분포되어 형성되는, 주변 영상 모니터링 방법.
  16. 제15항에 있어서,
    상기 안전모 영역을 판단하는 단계에 있어서,
    하나의 특정 모양의 상기 패턴이 적어도 3개 반복하여 검출되면, 안전모 영역으로 판단하는, 주변 영상 모니터링 방법.
  17. 제12항에 있어서,
    상기 안전모에는, 다양한 모양의 패턴이 특정한 규칙성을 가지며 일정하게 반복되어 형성되는, 주변 영상 모니터링 방법.
  18. 제17항에 있어서,
    상기 안전모 영역 판단부는,
    특정한 규칙성을 가지는 모양의 상기 패턴이 검출되면, 안전모 영역으로 판단하는, 주변 영상 모니터링 방법.
  19. 제12항에 있어서,
    상기 안전모 후보 영역을 검출하는 단계에 있어서,
    외형 기반 객체 검출 방법을 사용하는, 주변 영상 모니터링 방법.
  20. 제12항에 있어서,
    상기 안전모에 형성된 패턴을 검출하는 단계에 있어서,
    블록 매칭 알고리즘을 사용하는, 주변 영상 모니터링 방법.
  21. 제12항에 있어서,
    상기 안전모 영역을 추적하는 단계에 있어서,
    칼만 필터를 사용하는, 주변 영상 모니터링 방법.
KR1020170024894A 2017-02-24 2017-02-24 주변 영상 모니터링 장치 및 방법 KR20180097998A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170024894A KR20180097998A (ko) 2017-02-24 2017-02-24 주변 영상 모니터링 장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170024894A KR20180097998A (ko) 2017-02-24 2017-02-24 주변 영상 모니터링 장치 및 방법

Publications (1)

Publication Number Publication Date
KR20180097998A true KR20180097998A (ko) 2018-09-03

Family

ID=63600958

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170024894A KR20180097998A (ko) 2017-02-24 2017-02-24 주변 영상 모니터링 장치 및 방법

Country Status (1)

Country Link
KR (1) KR20180097998A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112016777A (zh) * 2019-05-30 2020-12-01 上海若泰工程建设管理技术有限公司 铁路建设工程质量安全管理系统及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170003300A (ko) 2015-06-30 2017-01-09 주식회사 스카이 일렉트론 중장비용 안전 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170003300A (ko) 2015-06-30 2017-01-09 주식회사 스카이 일렉트론 중장비용 안전 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112016777A (zh) * 2019-05-30 2020-12-01 上海若泰工程建设管理技术有限公司 铁路建设工程质量安全管理系统及方法

Similar Documents

Publication Publication Date Title
JP6937443B2 (ja) 撮像装置及び撮像装置の制御方法
US11833966B2 (en) Switchable display during parking maneuvers
US11970156B1 (en) Parking assistance using a stereo camera and an added light source
US9842261B2 (en) Vehicle monitoring device and method of monitoring vehicle
JP6602009B2 (ja) 画像処理装置、画像処理方法、及びプログラム
KR100939761B1 (ko) 차량 장착용 카메라 유닛, 차량 외부 디스플레이 방법 및 드라이빙 코리더 마커 생성 시스템
JP4892965B2 (ja) 移動体判定システム、移動体判定方法、及びコンピュータプログラム
US11161456B1 (en) Using the image from a rear view camera in a three-camera electronic mirror system to provide early detection of on-coming cyclists in a bike lane
US11308641B1 (en) Oncoming car detection using lateral emirror cameras
US11586843B1 (en) Generating training data for speed bump detection
US11659154B1 (en) Virtual horizontal stereo camera
CN113542529A (zh) 用于dms和oms的940nm led闪光同步
JP2009101718A (ja) 映像表示装置及び映像表示方法
KR102153581B1 (ko) 주변 영상 모니터링 장치
JP2004312402A (ja) 道路監視システム,道路監視装置
KR20180097998A (ko) 주변 영상 모니터링 장치 및 방법
US20230379445A1 (en) Image processing device, moving apparatus, image processing method, and storage medium
KR20130053605A (ko) 차량의 주변영상 표시 장치 및 그 방법
KR101757201B1 (ko) 주변 영상 모니터링 장치 및 방법
KR20180097976A (ko) 주변 영상 모니터링 장치 및 방법
KR101672923B1 (ko) 주변 영상 모니터링 장치 및 방법
JP2011065280A (ja) 画像処理装置、周辺監視システム、及び操作支援システム
KR20170074128A (ko) 차량용 감시 장치 및 차량용 이동 객체 감지 방법
JP2005196423A (ja) 画像表示方法、画像表示システム、及び画像処理装置
US12037001B1 (en) Dynamic actuation map using a neural network fed by visual odometry