KR20180094176A - 하폐수 처리 장치 및 방법 - Google Patents

하폐수 처리 장치 및 방법 Download PDF

Info

Publication number
KR20180094176A
KR20180094176A KR1020170019521A KR20170019521A KR20180094176A KR 20180094176 A KR20180094176 A KR 20180094176A KR 1020170019521 A KR1020170019521 A KR 1020170019521A KR 20170019521 A KR20170019521 A KR 20170019521A KR 20180094176 A KR20180094176 A KR 20180094176A
Authority
KR
South Korea
Prior art keywords
tank
sludge
nitrate nitrogen
anoxic
anoxic tank
Prior art date
Application number
KR1020170019521A
Other languages
English (en)
Other versions
KR102052163B1 (ko
Inventor
박민석
배시열
Original Assignee
바이오메카 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바이오메카 주식회사 filed Critical 바이오메카 주식회사
Priority to KR1020170019521A priority Critical patent/KR102052163B1/ko
Priority to PCT/KR2018/001881 priority patent/WO2018147709A1/ko
Publication of KR20180094176A publication Critical patent/KR20180094176A/ko
Application granted granted Critical
Publication of KR102052163B1 publication Critical patent/KR102052163B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/303Nitrification and denitrification treatment characterised by the nitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/15N03-N
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명은 하폐수 처리장치(1) 및 하폐수 처리 방법에 대한 것이다.

Description

하폐수 처리 장치 및 방법{WASTEWATER TREATMENT APPARATUS AND METHOD}
본 발명은 하폐수 처리 장치 및 방법에 대한 것이다.
급속한 산업발전과 함께 인구의 증가 및 집중화로 인해 우리 나라의 환경오염은 빠르게 진행되었고, 생활환경 개선과 수질보전을 위하여 1979년 최초의 도시하수처리장이 건설된 이래 전국에 많은 하폐수처리장이 건설되어 운영되고 있다. 기존의 하폐수처리장과 신설되는 하폐수처리장의 대부분은 유기물과 부유물질의 제거와 더불어 질소·인 등의 영양염류 제거를 토대로 설계되었고, 국내의 많은 연구자들에 의해 생물학적인 영양소 제거 방법에 대한 연구가 이루어지고 있으나(한국공개특허 KR 10-2014-0097963호) 안정적인 처리 장치 및 방법이 제시되고 있지 못한 실정이다.
본 발명의 목적은 효율이 우수하며 안정적인 하폐수 처리 장치 및 처리 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명은
하수 또는 폐수인 유입수의 유량과 농도를 균등하게 하는 유량 조정조 (2);
상기 유량 조정조 (2)로부터 유입된 유입수 내 유기물을 이용하여 최종 침전조 (7)로부터 반송되는 침전 슬러지 내 포함되어 있는 인을 방출하고 질산성 질소를 탈질시키는 제1무산소조 (3);
교반용 혼합기를 포함하며, 탈질 미생물에 의하여 상기 제1무산소조 (3)로부터 유입되는 슬러지와 포기조 (6)로부터 반송되는 활성 슬러지 내 포함된 아질산성 질소 및 질산성 질소의 탈질반응이 일어나고, 또한 상기 탈질 미생물에 의하여 인의 방출이 일어나는 제2무산소조 (4);
상기 제2무산소조 (4)로부터 유입되는 슬러지 내 유기물의 산화 반응, 암모니아성 질소의 아질산성 질소 또는 질산성 질소로의 질산화 반응 및 미생물에 의한 인의 흡수가 일어나는 미생물활성조정 포기조 (5);
상기 미생물활성조정 포기조 (5)로부터 유입되는 활성 슬러지 내 유기물 및 암모니아성 질소를 산화시키고, 질산성 질소가 포함된 슬러지를 상기 제2무산소조 (4)로 반송하는 포기조 (6);
상기 포기조 (6)로부터 유입되는 슬러지를 침전 슬러지와 상등수로 분리하여 상기 침전 슬러지는 상기 제1무산소조 (3)로 반송하는 최종 침전조 (7);
상기 최종 침전조 (7)로부터 유입되는 상등수로부터 상등수 내 부유물질 및 총인(TP)를 제거하는 물리화학적 후처리장치 (8);
상기 물리화학적 후처리장치 (8)로부터 유입되는 상등수를 소독하는 소독 처리장치 (9);
상기 최종 침전조 (7)로부터 상기 제1무산소조 (3)로 상기 침전 슬러지를 반송하는 반송라인(11);
상기 최종 침전조 (7)로부터 상기 유량 조정조 (2)로 상기 침전 슬러지를 반송하는 반송라인(12);
상기 포기조 (6)로부터 상기 제2무산소조 (4)로 질산성 질소가 포함된 활성 슬러지를 반송하는 반송라인(13);
상기 물리화학적 후처리장치 (8)로부터 상기 유량 조정조 (2)로 상기 고형물을 반송하는 반송라인(16);
상기 포기조 (6)로부터 상기 제2무산소조 (4)로 활성 슬러지를 반송하는 반송라인(13) 내 슬러지의 질산성 질소의 농도를 측정하는 질산성 질소 측정장치 (19);
상기 질산성 질소 측정장치 (19)로 측정된 질산성 질소의 농도에 따라 상기 제2무산소조 (4)에 선택적으로 탄소를 공급하는 외부탄소 주입장치 (20);
상기 질산성 질소 측정장치 (19)로 측정된 질산성 질소의 농도에 따라 상기 제2무산소조 (4)에 간헐적으로 공기를 공급하는송풍기 (18);및
상기 미생물활성조정 포기조 (5) 내 위치하며, 기탁번호: KFCC-11402P로 기탁된 바실러스 메가테리움(Bacillus megaterium) DSM3인 토양 미생물을 미생물활성조정 포기조 (5) 및 포기조 (6)으로 공급하는 미생물 제제를 포함하는,
하폐수 처리장치(1)를 제공한다.
또한 본 발명은
하수 또는 폐수인 유입수의 유량과 농도를 균등하게 하는 유량 조정조 (2) 단계;
상기 유량 조정조 (2)로부터 유입된 유입수 내 유기물을 이용하여 최종 침전조 (7)로부터 반송되는 침전 슬러지 내 포함되어 있는 인을 방출하고 질산성 질소를 탈질시키는 제1무산소조 (3) 단계;
탈질 미생물에 의하여 상기 제1무산소조 (3)로부터 유입되는 슬러지와 포기조 (6)로부터 반송되는 활성 슬러지 내 포함된 아질산성 질소 및 질산성 질소를 탈질시키고, 또한 상기 탈질 미생물에 의하여 인의 방출이 일어나는 제2무산소조 (4) 단계;
상기 제2무산소조 (4)로부터 유입되는 슬러지 내 유기물을 산화시키고 암모니아성 질소를 아질산성 질소 또는 질산성 질소로 질산화시키며, 미생물에 의한 인의 흡수가 일어나고, 기탁번호: KFCC-11402P로 기탁된 바실러스 메가테리움(Bacillus megaterium) DSM3인 토양 미생물이 상기 슬러지로 공급되는 미생물활성조정 포기조 (5) 단계;
상기 미생물활성조정 포기조 (5)로부터 유입되는 활성 슬러지 내 유기물 및 암모니아성 질소를 산화시키고, 질산성 질소가 포함된 슬러지를 상기 제2무산소조 (4)로 반송하는 포기조 (6) 단계;
상기 포기조 (6)로부터 유입되는 슬러지를 침전 슬러지와 상등수로 분리하여 상기 침전 슬러지는 상기 제1무산소조 (3)로 반송하는 최종 침전조 (7) 단계;
상기 최종 침전조 (7)로부터 유입되는 상등수로부터 상등수 내 부유물질 및 총인(TP)를 제거하고, 상기 유량 조정조 (2)로 고형물을 반송하는 물리화학적 후처리장치 (8) 단계;및
상기 물리화학적 후처리장치 (8)로부터 유입되는 상등수를 소독하는 소독 처리장치 (9) 단계를 포함하며,
이 때, 상기 포기조 (6)로부터 상기 제2무산소조 (4)로 반송되는 활성 슬러지의 질산성 질소 농도를 측정하여, 상기 질산성 질소 측정장치 (19)로 측정된 질산성 질소의 농도에 따라 상기 제2무산소조 (4)에 선택적으로 탄소 또는 공기를 공급하는,
하폐수 처리 방법을 제공한다.
본 발명의 하폐수 처리장치(1) 및 하폐수 처리 방법은 하폐수의 유기물을 안정적, 효율적으로 제거할 수 있다. 또한 본 발명의 하폐수 처리장치(1) 및 하폐수 처리 방법은 하폐수 내 질소 및 인을 하폐수처리장 방류수질 기준 이하로 조절할 수 있으며, 초기 강우 등 일시적 고농도의 하폐수 유입 시에도 유량 조정조 (2)에서의 생물학적 분해를 가능하게 함으로써 유입수의 일시적이며 급작스러운 농도 변화에도 안정적, 연속적인 처리가 가능하다.
도 1은 본 발명의 하폐수 처리장치(1)의 구조를 보여준다.
본 발명은
하수 또는 폐수인 유입수의 유량과 농도를 균등하게 하는 유량 조정조 (2);
상기 유량 조정조 (2)로부터 유입된 유입수 내 유기물을 이용하여 최종 침전조 (7)로부터 반송되는 침전 슬러지 내 포함되어 있는 인을 방출하고 질산성 질소를 탈질시키는 제1무산소조 (3);
교반용 혼합기를 포함하며, 탈질 미생물에 의하여 상기 제1무산소조 (3)로부터 유입되는 슬러지와 포기조 (6)로부터 반송되는 활성 슬러지 내 포함된 아질산성 질소 및 질산성 질소의 탈질반응이 일어나고, 또한 상기 탈질 미생물에 의하여 인의 방출이 일어나는 제2무산소조 (4);
상기 제2무산소조 (4)로부터 유입되는 슬러지 내 유기물의 산화 반응, 암모니아성 질소의 아질산성 질소 또는 질산성 질소로의 질산화 반응 및 미생물에 의한 인의 흡수가 일어나는 미생물활성조정 포기조 (5);
상기 미생물활성조정 포기조 (5)로부터 유입되는 활성 슬러지 내 유기물 및 암모니아성 질소를 산화시키고, 질산성 질소가 포함된 슬러지를 상기 제2무산소조 (4)로 반송하는 포기조 (6);
상기 포기조 (6)로부터 유입되는 슬러지를 침전 슬러지와 상등수로 분리하여 상기 침전 슬러지는 상기 제1무산소조 (3)로 반송하는 최종 침전조 (7);
상기 최종 침전조 (7)로부터 유입되는 상등수로부터 상등수 내 부유물질 및 총인(TP)를 제거하는 물리화학적 후처리장치 (8);
상기 물리화학적 후처리장치 (8)로부터 유입되는 상등수를 소독하는 소독 처리장치 (9);
상기 최종 침전조 (7)로부터 상기 제1무산소조 (3)로 상기 침전 슬러지를 반송하는 반송라인(11);
상기 최종 침전조 (7)로부터 상기 유량 조정조 (2)로 상기 침전 슬러지를 반송하는 반송라인(12);
상기 포기조 (6)로부터 상기 제2무산소조 (4)로 질산성 질소가 포함된 활성 슬러지를 반송하는 반송라인(13);
상기 물리화학적 후처리장치 (8)로부터 상기 유량 조정조 (2)로 상기 고형물을 반송하는 반송라인(16);
상기 포기조 (6)로부터 상기 제2무산소조 (4)로 활성 슬러지를 반송하는 반송라인(13) 내 슬러지의 질산성 질소의 농도를 측정하는 질산성 질소 측정장치 (19);
상기 질산성 질소의 농도에 따라 상기 제2무산소조 (4)에 선택적으로 탄소를 공급하는 외부탄소 주입장치 (20);
상기 질산성 질소의 농도에 따라 상기 제2무산소조 (4)에 간헐적으로 폭기를 일으키는 송풍기 (18);및
상기 미생물활성조정 포기조 (5) 내 위치하며, 기탁번호: KFCC-11402P로 기탁된 바실러스 메가테리움(Bacillus megaterium) DSM3인 토양 미생물 및 무기 물질을 포함하는 미생물 제제를 포함하고,
상기 질산성 질소의 농도가 10mg/L 이상인 경우 상기 제2무산소조 (4)에서 교반이 이루어지며, 상기 외부탄소 주입장치 (20)로부터 상기 제2무산소조 (4)에 탄소가 공급되고,
상기 질산성 질소의 농도가 10mg/L 미만인 경우, 상기 제2무산소조 (4)에서 교반이 이루어지며, 또한 상기 송풍기 (18)로부터 상기 제2무산소조 (4)로 간헐적으로 공기가 공급되어 폭기가 수행되는,
하폐수 처리장치(1)에 대한 것이다.
또한 본 발명은
하수 또는 폐수인 유입수의 유량과 농도를 균등하게 하는 유량 조정조 (2) 단계;
상기 유량 조정조 (2)로부터 유입된 유입수 내 유기물을 이용하여 최종 침전조 (7)로부터 반송되는 침전 슬러지 내 포함되어 있는 인을 방출하고 질산성 질소를 탈질시키는 제1무산소조 (3) 단계;
상기 제1무산소조 (3)로부터 유입되는 슬러지와 포기조 (6)로부터 반송되는 활성 슬러지 내 포함된 아질산성 질소 및 질산성 질소를 탈질시키는 제2무산소조 (4) 단계;
기탁번호: KFCC-11402P로 기탁된 바실러스 메가테리움(Bacillus megaterium) DSM3인 토양 미생물 및 무기 물질을 포함하는 미생물 제제를 이용하여 상기 제2무산소조 (4)로부터 유입되는 슬러지 내 유기물을 산화시키고 암모니아성 질소를 아질산성 질소 또는 질산성 질소로 질산화시켜 상기 슬러지 내 우점종을 활성화시키는 미생물활성조정 포기조 (5) 단계;
상기 미생물활성조정 포기조 (5)로부터 유입되는 슬러지 내 유기물 및 암모니아성 질소를 산화시키고, 질산성 질소가 포함된 활성 슬러지를 상기 제2무산소조 (4)로 반송하는 포기조 (6) 단계;
상기 포기조 (6)로부터 유입되는 슬러지를 침전 슬러지와 상등수로 분리하여 상기 침전 슬러지는 상기 제1무산소조 (3)로 반송하는 최종 침전조 (7) 단계;
상기 최종 침전조 (7)로부터 유입되는 상등수 내 부유물질 및 총인(TP)를 제거하는 물리화학적 후처리장치 (8) 단계;및
상기 물리화학적 후처리장치 (8)로부터 유입되는 상등수를 소독하는 소독 처리장치 (9) 단계를 포함하며,
이 때, 상기 포기조 (6)로부터 상기 제2무산소조 (4)로 반송되는 활성 슬러지의 질산성 질소 농도를 측정하여,
상기 질산성 질소의 농도가 10mg/L 이상인 경우 상기 제2무산소조 (4)에서 교반을 수행하고, 또한 상기 외부탄소 주입장치 (20)로부터 상기 제2무산소조 (4)로 탄소를 공급하여, 제2무산소조 (4) 내 탈질 및 인 방출을 촉진시키며,
상기 질산성 질소의 농도가 10mg/L 미만인 경우, 상기 제2무산소조 (4)에서 교반을 수행하고, 또한 상기 송풍기 (18)로부터 상기 제2무산소조 (4)로 간헐적으로 공기를 공급하여 폭기를 수행하여, 상기 미생물활성 조정 포기조 (5)에서 질산화 및 인 흡수가 촉진시키는,
하폐수 처리 방법에 대한 것이다
이하, 본 발명을 자세히 설명한다. 그러나, 본 발명은 이하에서 개시되는 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 하기 예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
하폐수 처리장치(1)
본 발명의 하폐수 처리장치(1)는 공장, 가정 도시 생활 등에서 발생되는 하폐수를 처리하는 장치이다. 본 발명의 하폐수 처리장치(1)는 유입된 하폐수 내 유기물, 질소, 인 등의 영양염류, 부유물질 및 총인(TP)을 제거하여 소정의 허용한계수질(수질오염 방지법)을 만족하는 유출수로 배출하는 장치이다.
본 발명의 하폐수 처리장치(1)는 복수 개의 반응조들을 포함하는데, 구체적으로는 도 1과 같이 유량 조정조 (2), 제1무산소조 (3), 제2무산소조 (4), 미생물활성조정 포기조 (5), 포기조 (6), 최종 침전조 (7), 물리화학적 후처리장치 (8) 및 소독 처리장치 (9)를 순차적으로 포함하며, 각 반응조는 하폐수라인, 반송라인, 공기공급라인 및/또는 약품라인과 같은 라인(송수관)에 의하여 연결되어 있다. 상기 라인을 통하여 하폐수, 슬러지, 공기, 약품 등이 이송된다. 이하, 도 1을 참조하여, 본 발명의 하폐수 처리장치(1)를 설명한다.
유량 조정조 (2)
유량 조정조 (2)에는 처리 대상인 하수 및/또는 폐수(유입수)가 유입된다. 또한 유량 조정조 (2)에는 반송라인(16)을 통하여 물리화학적 후처리장치 (8)로부터 반송된 고형물 및/또는 반송라인(12)을 통하여 최종 침전조 (7)로부터 반송된 침전 슬러지가 유입될 수 있다.
공장 또는 가정 등에서 발생되는 생활 하폐수는 그 특성상 발생량과 농도에 있어 계절 등의 시간대에 따른 변화가 심하다. 유량 조정조 (2)는 유량 조정조 (2)로 유입되는 유입수, 즉, 하수 및/또는 폐수(이하, “하폐수”라 함)의 부유물을 침전시키고 하폐수의 양과 농도를 균등하게 하여, 일정한 범위의 유량과 농도의 유입수를 제1무산소조 (3)로 내보낸다. 이로써 유량 조정조 (2)는 제1무산소조 (3), 제2무산소조 (4) 등으로 이어지는 후속 공정이 원활히 진행되도록 한다. 유량 조정조 (2)에는 반송라인(12)를 통하여 최종 침전조 (7)로부터 침전 슬러지가 유입되는데, 상기 유입된 침전 슬러지에 포함된 미생물에 의하여 고농도의 하폐수가 일시적으로 유입 시(예컨대, 초기 강우 시 지표면에 산재되어 있는 비점 오염 물질이 일시적으로 유입되는 경우 등) 유량 조정조 (2)에서 생물학적 분해가 가능하다.
이러한 유량 조정조 (2)의 조정 방식은 유입되는 하폐수의 변동 형태, 송수량, 송수 방식, 제어 방식 등을 고려하여, 당업계에 알려져 있는 방식(예컨대, 직렬(in-line) 방식 또는 병렬(off-line) 방식 등)을 적절히 사용하면 되고, 특별히 제한되지는 않는다.
유량 조정조 (2)의 역할은 하수처리장의 규모에 따라 그 역할에 차이가 있을 수 있다. 즉, 대규모 하수처리장의 경우 유하 거리가 길어 유입되는 하폐수의 양과 농도의 변화가 크지 않기 때문에, 하폐수의 양 및 농도의 균등화보다는 부유물 침전 기능의 비중이 크게 된다. 반면, 소규모 하수처리장의 경우 유하 거리가 짧아 유입되는 하폐수의 양과 농도의 변화가 크므로, 하폐수의 양과 농도의 균등화 공정의 비중이 크다.
제1무산소조 (3)
유량 조정조 (2)를 거친 유입수는 제1무산소조 (3)로 유입된다. 최종 침전조 (7)로부터 반송된 침전 슬러지 역시 반송라인(11)을 통하여 제1무산소조 (3)로 유입된다.
제1무산소조 (3) 내에는 교반용 혼합기(mixer)(17)이 위치한다. 최종 침전조 (7)로부터 반송된 침전 슬러지 내에는 탈질 미생물이 있는데, 상기 교반용 혼합기는 유량 조정조 (2)로부터 유입되는 유입수 및 상기 침전 슬러지를 탈질 미생물과 함께 교반하여 혼합시킨다. 이로써 상기 침전 슬러지가 제1무산소조(3) 내에서 침전되는 것을 방지한다.
상기 최종 침전조 (7)로부터 반송된 침전 슬러지는 또한 유기물 및 질산성 질소(NO3)를 포함하고 있는데, 상기 혼합에 의하여, 탈질 미생물(denitrifiers)이 상기 질산성 질소를 환원, 즉 탈질 시키게 된다. 탈질 미생물은 상기 유량 조정조 (2)로부터 유입되는 유입수 내 포함된 유기물을 탄소원으로 이용하여, 하기 <식 1>의 단계로 탈질 반응을 수행한다. 상기 질산성 질소는 상기 탈질 반응에 의하여 질소 가스(N2)로 환원되며, 환원된 N2는 대기 중으로 배기되어 제거된다.
<식 1>
NO3 → NO2 → NO → N2O → N2
제2무산소조 (4)
제1무산소조 (3)를 거친 슬러지는 제2무산소조 (4)로 유입된다. 상기 슬러지 내에는 잔여 유기물들, 아질산성 질소(NO2-N) 및 질산성 질소(NO3)가 포함되어 있는데, 이들은 제1무산소조 (3)에서 탈질로 소모되지 않은 잔여물들이다.
한편, 포기조 (6)로부터 반송된 활성 슬러지 역시 반송라인(13)을 통하여 제2무산소조 (4)로 유입된다. 상기 활성 슬러지 내에도 잔여 유기물들, 아질산성 질소(NO2-N) 및 질산성 질소(NO3)가 포함되어 있는데, 이들 역시 그 전 공정들에서 탈질되지 않고 남은 것들이다.
또한 외부탄소 주입장치 (20)로부터 탄소가 메탄올 등의 형태로 제2무산소조 (4)로 공급된다. 상기 외부탄소 주입장치 (20)는 저장탱크 및 주입펌프가 포함된 별도의 장치로, 본 하폐수 처리 장치에 유입되는 하수 또는 폐수 내 유기물 농도가 낮아, 탈질 시 필요한 유기물이 부족한 경우 탈질을 위하여 유기물을 추가로 주입한다.
제2무산소조 (4) 내에는 교반용 혼합기(mixer)(17)이 위치한다. 제1무산소조 (3)으로부터 유입된 슬러지 및 포기조 (6)으로부터 반송된 활성 슬러지 내에는 탈질 미생물이 포함되어 있는데, 상기 교반용 혼합기는 제1무산소조 (3)로부터 유입되는 슬러지 및 포기조 (6)로부터 반송된 활성 슬러지를 탈질 미생물과 함께 교반하여 혼합시킨다. 이로써,탈질 등 반응이 촉진되어, 제2무산소조 (4) 내에서 2차 탈질 반응이 일어나게 되며, 슬러지가 침강되는 것이 방지된다. 상기 2차 탈질 반응에서는 상기 제1무산소조 (3)으로부터 유입되는 슬러지 및 포기조 (6)로부터 반송된 활성 슬러지 내 아질산성 질소(NO2-N) 및 질산성 질소(NO3)가 탈질 미생물에 의하여 탈질된다. 상기 탈질 미생물은 유입되는 유입수 내 포함된 유기물 및 외부탄소 주입장치 (20)로 부터 주입된 유기물을 탄소원으로 탈질을 수행한다.
한편, 제2무산소조 (4) 내에서 상기 질산성 질소가 짧은 시간 내에 2차 탈질됨과 동시에 포기조에서 생장을 위하여 인을 흡수한 미생물에 의하여 인의 방출이 일어나게 된다. 상기 인 방출은 제2무산소조 (4) 내에서 일어나는 바 혐기성 상태에서 탄소원 접촉으로 인한 인 방출로, 이로써 상기 제2무산소조 (4)는 혐기조의 역할도 하게 된다. 이러한 인 방출은 제1무산소조 (3) 및 제2무산소조 (4)에서 일어나게 된다.
제2무산소조 (4)에는 공기 공급라인(15)을 통하여 송풍기 (18)로부터 공기가 공급될 수 있다. 이 때 상기 공기는 타이머에 의하여 간헐 폭기 방식으로 운전되어 공급될 수 있다. 예컨대, 포기조 (6)로부터 제2무산소조 (4)로 반송라인(13)을 통하여 반송되는 활성 슬러지 내 질산성 질소(NO3)의 농도가 낮은 경우(즉, 10mg/L 미만이어서, 질산화가 더 필요한 경우), 제2무산소조 (4)에서 간헐 폭기 및 교반이 함께 수행되어, 잔여 질산화 및 탈질 공정이 일어나게 된다.
외부탄소 주입장치 (20)
외부탄소 주입장치 (20)로부터 제2무산소조 (4)에 탄소가 공급된다. 질산성 질소 측정장치 (19)를 이용하여 측정된 질산성 질소의 농도가 높은 경우(즉, 10mg/L 이상인 경우) 외부탄소 주입장치 (20)가 작동하여 제2무산소조 (4)로 탄소를 공급하게 된다. 반면, 질산성 질소 측정장치 (19)를 이용하여 측정된 질산성 질소의 농도가 낮거나 정상 범위인 경우 외부탄소 주입장치 (20)는 작동하지 않으며, 제2무산소조 (4)로의 탄소 공급이 중단된다.
질산성 질소 측정장치 (19)
질산성 질소 측정장치 (19)는 포기조 (6)로부터 제2무산소조 (4)로 반송라인(13)을 통하여 반송되는 활성 슬러지 내 질산성 질소(NO3)의 농도를 연속적으로 측정한다. 이렇게 측정된 질산성 질소의 농도에 따라 제2무산소조 (4), 포기조 (6) 및 외부탄소 주입장치 (20)의 작동을 조절하게 되는데, 질산성 질소 농도가 높은 경우 이는 과도한 질산화를 의미하므로 무산소 상태에서 탈질 및 인 방출 반응을 촉진하기 위하여 제2무산소조 (4)에서는 교반만을 수행한다. 반면, 질산성 질소 농도가 낮은 경우 미생물활성 조정 포기조 (5)에서 미진했던 질산화 및 인 흡수를 촉진하기 위하여 반송라인 (13)을 통하여 반송되는 활성 슬러지를 제2무산소조 (4)에서 간헐 폭기(폭기 및 휴지를 번갈아가며 운전하는 것을 의미함. 폭기 시에는 질산화 및 인 흡수가 일어나고, 휴지 시에는 탈질 및 인 방출이 일어남)와 함께 교반을 수행한다. 즉, 질산성 질소 농도가 낮은 경우에는 제2무산소조 (4)에서 간헐 폭기 중 휴지 시에만 교반을 한다.
예컨대, 반송되는 활성 슬러지 내 질산성 질소(NO3)가 10mg/L 이상인 경우, 포기조 (6) 내에서 질산화가 정상적으로 이루어진 것으로 판단한다. 그러므로 이 경우, 제2무산소조 (4)에서는 교반만 수행하여 탈질 및 인 방출을 유도한다.
한편, 반송되는 활성 슬러지 내 질산성 질소(NO3)가 10mg/L 미만인 경우, 제2무산소조 (4)에서 간헐 폭기 및 교반을 함께 수행하여 질산화 및 인 흡수 공정을 유도함으로써 질산화 및 인 흡수 공정과 탈질 및 인 방출 공정이 교대로 일어나게 한다(표 1).
구분 제2무산소조 (4) 포기조 (6) 외부탄소 주입장치 (20)
NO3 고(20 mg/L 이상) 교반 폭기량 감소시킴 작동
정상범위
(10 mg/L 이상 20 mg/L 미만)
교반 폭기 정지
저(10 mg/L 미만) 간헐폭기+교반 폭기량 증가시킴 정지
미생물활성조정 포기조 (5)
제2무산소조 (4)를 거친 슬러지는 미생물활성조정 포기조 (5)로 유입된다. 상기 미생물활성조정 포기조 (5) 내에는 미생물 조정조 (10)가 존재하는데, 주로 최종 침전조 (7)에서 반송되는 외부 반송 슬러지 양에 의하여 미생물활성조정 포기조 (5) 내 미생물 농도가 유지된다. 미생물활성조정 포기조 (5) 내에는 토양 미생물, 토양 미생물이 아닌 일반 호기성 미생물 및 질산화 미생물(nitrifiers)이 다량 존재한다.
상기 미생물들은 송풍기 (18)로부터 공기공급라인(14)을 통하여 공급되는 공기를 이용하여 슬러지 내 유기물들을 이용하여 성장 및 증식, 질산화 미생물의 질산화를 수행한다. 이 때, 상기 공기는 연속적으로 공급되는 것이 바람직하다.
호기성 미생물이 배출한 체외효소에 의하여 분자량이 큰 유기물이 분자량이 작은 유기물로 분해되고, 분자량이 작은 유기물은 산화되어 미생물의 유지, 성장 및 증식에 사용된다. 이러한 미생물의 성장 및 증식 반응은 하기 식 2 및 식 3에 의하여 나타낼 수 있다.
<식 2>
CHONS (유기물) + O2 + 미생물 → CO2 + NH3 + 다른 생성물 + 에너지
<식 3>
CHONS (유기물) + O2 + 미생물 + 에너지 → C5H7O2N (새로운 미생물 세포)
질산화 미생물은 미생물활성조정 포기조 (5) 내 암모니아성 질소(NH4 +)를 아질산성 질소(NO2-N)로, 그리고 아질산성 질소를 다시 질산성 질소(NO3)로 질산화시킨다. 이러한 질산화 반응(식 4)에 의하여 H+ 가 생성되어 알칼리도를 소모하는데, 1g의 암모니아성 질소 당 CaCO3 7.14g에 해당하는 알칼리도가 소모된다. 이러한 알칼리도 소모로 인하여 미생물활성조정 포기조 (5) 내 pH가 감소하게 된다.
<식 4>
NH4+ + 2O2 → NO3 - + 2H+ + H2O
또한 미생물활성조정 포기조 (5) 내에는 미생물 조정조 (10)가 있는데, 상기 미생물 조정조 (10)에는 자연상태에서 채취한 몇 가지 물질로 이루어진 미생물 제제가 포함되어 있다. 상기 미생물 제제는 바실러스(Bacillus) 종을 비롯한 특정 토양 미생물(예컨대, 바실러스 메가테리움(Bacillus megaterium) DSM3, 기탁번호: KFCC-11402P)을 분리·대량배양시켜 바이오클로드에 접종한 것으로, 상기 토양 미생물들 및 Ca2 +, Mg2 + 등의 무기물질을 풍부하게 함유하고 있다. 미생물활성조정 포기조 (5) 내 슬러지가 미생물 조정조 (10)로 유입되며, 상기 슬러지에 의하여 미생물의 성장과 증식을 위한 유기물 및 영양소가 미생물 조정조 (10)에 공급된다. 또한 미생물 조정조 (10) 내에는 바이오클로드에서 용출된 토양 미생물과 일반 미생물이 공존하고 있는데, 시간이 경과함에 따라 일반 미생물에 비하여 토양 미생물이 우점화된다.
또한 미생물활성조정 포기조 (5)에서는 상기 제2무산소조 (4)에서 미생물에 의해 방출되었던 인의 흡수가 일어난다. 상기 인의 흡수는 질산화 미생물 및 토양 미생물을 포함하는 호기성 미생물의 생장 및 증식 과정에서 이루어지게 되는데, 혐기성 상태에서의 인의 방출에 이은 호기성 상태에서의 인의 흡수는 미생물의 세포구조에 필요한 양보다 훨씬 많은 양의 인을 흡수하게 되므로 이를 “과잉섭취(luxury uptake)”라 부른다.
포기조 (6)
미생물활성조정 포기조 (5)를 거친 슬러지는 포기조 (6)로 유입된다. 한편, 포기조 (6)에는 송풍기 (18)로부터 공기공급라인(14)을 통하여 공기가 공급되며, 이를 이용하여 포기조 (6) 내에서 미생물이 성장 및 증식하게 된다. 미생물은 미생물 성장 및 증식 과정에서 포기조 (6) 내 유기물들을 분해 및 제거하고, 미생물활성조정 포기조 (5)에서 산화되지 못한 암모니아성 질소를 아질산성 질소 및 질산성 질소로 완전하게 산화시킨다. 또한 미생물 조정조 (10)에서 미생물 제제에 의해 토양 미생물이 활성화 되어 지속적으로 미생물활성조정 포기조 (5) 및 포기조 (6)로 토양 미생물이 공급됨으로써 유입 하폐수의 충격부하에 대처할 수 있는 완충작용을 한다.
최종 침전조 (7)
포기조로부터 배출된 슬러지는 수로를 통하여 최종 침전조 (7)에 유입된다. 포기조 (6)로부터 최종 침전조 (7)로 연결되는 수로에는 최종 침전조 무기응집제 주입장치 (21)가 직간접적으로 연결된다. 상기 최종 침전조 무기응집제 주입장치 (21)는 포기조 (6)로부터 최종 침전조 (7)로 이송되는 슬러지에 무기응집제를 주입한다.
최종 침전조 (7)로 유입된 슬러지는 중력에 의하여 고형물(침전 슬러지)과 액상(상등수)으로 분리되는데, 상기 무기응집제 주입에 의하여 분리 효율이 증진된다. 최종 침전조 (7)에서 분리된 고형물인 침전 슬러지는 반송라인(11)을 통하여 제1무산소조 (3)로 반송되거나, 반송라인(12)를 통하여 유량 조정조 (2)로 반송된다. 상기 반송은 선택적으로 일어나거나 동시에 일어날 수 있다. 한편, 액상인 상등수는 수로를 통하여 물리화학적 후처리장치 (8)로 이송된다.
물리화학적 후처리장치 (8)
최종 침전조 (7)로부터 배출된 상등수는 수로를 통하여 물리화학적 후처리장치 (8)로 유입된다. 최종 침전조 (7)로부터 물리화학적 후처리장치 (8)로 연결되는 수로에는 물리화학적 처리를 위한 무기응집제 주입장치(22)가 직간접적으로 연결된다. 상기 물리화학적 처리를 위한 무기응집제 주입장치(22)는 최종 침전조 (7)로부터 물리화학적 후처리장치 (8)로 이송되는 상등수에 무기응집제를 주입한다. 무기응집제가 주입된 상등수는 물리화학적 후처리장치 (8) 내에서 부상분리 또는 여과에 의하여 고형물과 액체로 분리된다. 상기 고형물은 반송라인(16)을 통하여 유량 조정조 (2)로 이송되고 SS(Suspended Solids, 부유물질)와 TP(Total Phosphate, 총인)가 제거된 액체는 소독 처리장치 (9)를 거쳐 소독된 후 최종 방류된다.
소독 처리장치 (9)
소독 처리장치 (9)에서는 물리화학적 후처리장치 (8)로부터 유입된 액체를 UV 등으로 처리하여 소독한다. 상기 액체는 소독 처리를 거친 후 최종 유출수로서 최종적으로 방류된다.
<실험예 1>
<실시예 1>
도 1의 구조를 갖는 하폐수 처리장치(1)를 실험실 규모로 제작하였다. 각 반응조는 내부가 보이는 투명한 아크릴로 제작하였으며, 하수처리장으로 유입되는 하수를 직접 채취하여 실험에 사용하였다. 구체적인 반응조 규격은 표 2와 같으며, 토양 미생물로는 바실러스 메가테리움(Bacillus megaterium) DSM3(기탁번호: KFCC-11402P)을 사용하였다. 그리고 시료인 하수를 유입시키고, 유입수, 종침 유출수 및 최종 유출수의 BOD, T-N 및 T-P를 측정하였다. 그리고 운전 기간 동안의 평균 농도로 측정 결과를 계산하였다.
이 때, 시료로 사용한 하수의 양은 1일 30 L였으며, 유입되는 폐수는 정확성을 기하기 위해 정량펌프와 타이머를 이용하여 공급하였다. 각 반응조에서의 피처리물(즉, 하폐수, 슬러지 등) 이송은 위치에너지를 이용한 자연유하 방식으로 설치하였고, 슬러지의 반송은 정량펌프와 타이머를 이용하여 정확한 양을 반송하도록 하였다.
반응조 규격 (체류시간) 비고
유량 조정조 (2) 8L (HRT = 6시간(hour)) 원통형
제1무산소조 (3) 0.63L (HRT = 0.5 시간) 원통형 (하수슬러지 식종)
제2무산소조 (4) 1.88L (HRT = 1.5 시간) 원통형 (하수슬러지 식종)
미생물활성조정 포기조 (5) 3.00L (HRT = 2.4 시간) 장방형 (하수슬러지 식종)
포기조 (6) 1.50L (HRT = 1.2 시간) 장방형 (하수슬러지 식종)
최종 침전조 (7) 4.00L (HRT = 3.4 시간) 원통형 (호퍼각은 60 °)
미생물 조정조 (10) 0.50L 원통형 (하수슬러지 식종)
필터 0.50L 원통형 (모래여재)
최종 침전조 (7) 응집제 주입 6ppm 17% PAC
필터 응집제 주입 15ppm 17% PAC
HRT: 반응조의 수리학적 체류 시간(Hydraulic Retention Time)
PAC: 폴리염화 알루미늄 응집제
<비교예 1>
미생물 조정조 (10)가 없이도 1과 같은 하폐수 처리장치를 설치하고, 동일한 방법으로 실험을 수행하였다.
<비교예 2> 질산성 질소 측정장치 (19)가 없이도 1과 같은 하폐수 처리장치를 설치하고, 동일한 방법으로 실험을 수행하였다.
그 결과, 실시예 1의 유입수(하폐수 처리장치(1)에 유입된 하수)는 BOD 151.1mg/L, T-N 34.6mg/L, T-P 4.3mg/L이었으며, 이를 본 발명의 하폐수 처리장치(1)로 처리한 결과 최종 유출수는 BOD, T-N, T-P의 하수처리장 방류수 기준인 5, 10, 0.2mg/L를 충분히 만족하는 BOD 1.7mg/L, T-N 11.4mg/L, T-P 0.15mg/L로 매우 우수한 결과를 나타냈다(표 3).
BOD T-N T-P
농도(mg/L) 제거율(%) 농도(mg/L) 제거율(%) 농도(mg/L) 제거율(%)
유입수 151.1 - 34.6 - 4.3 -
최종침전조유출수 3.6 97.6 12.9 63.6 1.1 74.4
필터유출수 1.7 52.8 11.4 11.6 0.15 86.4
실시예 1의 결과
BOD T-N T-P
농도(mg/L) 제거율(%) 농도(mg/L) 제거율(%) 농도(mg/L) 제거율(%)
유입수 155.4 - 35.4 - 4.4 -
최종침전조유출수 6.0 96.1 15.2 57.1 1.5 65.9
필터유출수 2.9 44.9 14.7 3.3 0.32 78.7
비교예 1의 결과
BOD T-N T-P
농도(mg/L) 제거율(%) 농도(mg/L) 제거율(%) 농도(mg/L) 제거율(%)
유입수 153.7 - 35.5 - 4.3 -
최종침전조유출수 4.0 97.4 14.1 60.3 1.3 69.8
필터유출수 2.0 50.0 13.1 7.1 0.23 82.3
비교예 2의 결과
1: 하폐수 처리 장치
2: 유량 조정조
3: 제1무산소조
4: 제2 무산소조
5 : 미생물활성조정 포기조
6: 포기조
7: 최종 침전조
8: 물리화학적 후처리장치
9: 소독 처리장치
10: 미생물 조정조
11 내지 12: 침전 슬러지 반송라인(외부반송:생물반응조 외부인 최종침전지에서 반송)
13: 활성 슬러지 반송라인(내부반송:생물반응조 내부인 포기조에서 무산소조2로 에서 반송)
14: 활성 슬러지조 공기공급라인(미생물활성조정 포기조 (5) 및 포기조 (6)에 주로 공기를 공급하고 상황에 따라 제2무산소조 (4)에 공기를 공급하는 송풍기와 연결된 배관)
15: 제2무산소조 공기공급라인
16: 물리화학적처리 반송라인
17: 교반용 혼합기
18: 송풍기
19: 질산성 질소 측정장치
20: 외부탄소 주입장치
21: 최종 침전조 무기응집제 주입장치
22: 물리화학적 처리 무기응집제 주입장치

Claims (2)

  1. 하수 또는 폐수인 유입수의 유량과 농도를 균등하게 하는 유량 조정조 (2);
    상기 유량 조정조 (2)로부터 유입된 유입수 내 유기물을 이용하여 최종 침전조 (7)로부터 반송되는 침전 슬러지 내 포함되어 있는 인을 방출하고 질산성 질소를 탈질시키는 제1무산소조 (3);
    교반용 혼합기를 포함하며, 탈질 미생물에 의하여 상기 제1무산소조 (3)로부터 유입되는 슬러지와 포기조 (6)로부터 반송되는 활성 슬러지 내 포함된 아질산성 질소 및 질산성 질소의 탈질반응이 일어나고, 또한 상기 탈질 미생물에 의하여 인의 방출이 일어나는 제2무산소조 (4);
    상기 제2무산소조 (4)로부터 유입되는 슬러지 내 유기물의 산화 반응, 암모니아성 질소의 아질산성 질소 또는 질산성 질소로의 질산화 반응 및 미생물에 의한 인의 흡수가 일어나는 미생물활성조정 포기조 (5);
    상기 미생물활성조정 포기조 (5)로부터 유입되는 활성 슬러지 내 유기물 및 암모니아성 질소를 산화시키고, 질산성 질소가 포함된 슬러지를 상기 제2무산소조 (4)로 반송하는 포기조 (6);
    상기 포기조 (6)로부터 유입되는 슬러지를 침전 슬러지와 상등수로 분리하여 상기 침전 슬러지는 상기 제1무산소조 (3)로 반송하는 최종 침전조 (7);
    상기 최종 침전조 (7)로부터 유입되는 상등수로부터 상등수 내 부유물질 및 총인(TP)를 제거하는 물리화학적 후처리장치 (8);
    상기 물리화학적 후처리장치 (8)로부터 유입되는 상등수를 소독하는 소독 처리장치 (9);
    상기 최종 침전조 (7)로부터 상기 제1무산소조 (3)로 상기 침전 슬러지를 반송하는 반송라인(11);
    상기 최종 침전조 (7)로부터 상기 유량 조정조 (2)로 상기 침전 슬러지를 반송하는 반송라인(12);
    상기 포기조 (6)로부터 상기 제2무산소조 (4)로 질산성 질소가 포함된 활성 슬러지를 반송하는 반송라인(13);
    상기 물리화학적 후처리장치 (8)로부터 상기 유량 조정조 (2)로 상기 고형물을 반송하는 반송라인(16);
    상기 포기조 (6)로부터 상기 제2무산소조 (4)로 활성 슬러지를 반송하는 반송라인(13) 내 슬러지의 질산성 질소의 농도를 측정하는 질산성 질소 측정장치 (19);
    상기 질산성 질소 측정장치 (19)로 측정된 질산성 질소의 농도에 따라 상기 제2무산소조 (4)에 선택적으로 탄소를 공급하는 외부탄소 주입장치 (20);
    상기 질산성 질소 측정장치 (19)로 측정된 질산성 질소의 농도에 따라 상기 제2무산소조 (4)에 간헐적으로 공기를 공급하는송풍기 (18);및
    상기 미생물활성조정 포기조 (5) 내 위치하며, 기탁번호: KFCC-11402P로 기탁된 바실러스 메가테리움(Bacillus megaterium) DSM3인 토양 미생물을 미생물활성조정 포기조 (5) 및 포기조 (6)으로 공급하는 미생물 제제를 포함하는,
    하폐수 처리장치(1).
  2. 하수 또는 폐수인 유입수의 유량과 농도를 균등하게 하는 유량 조정조 (2) 단계;
    상기 유량 조정조 (2)로부터 유입된 유입수 내 유기물을 이용하여 최종 침전조 (7)로부터 반송되는 침전 슬러지 내 포함되어 있는 인을 방출하고 질산성 질소를 탈질시키는 제1무산소조 (3) 단계;
    탈질 미생물에 의하여 상기 제1무산소조 (3)로부터 유입되는 슬러지와 포기조 (6)로부터 반송되는 활성 슬러지 내 포함된 아질산성 질소 및 질산성 질소를 탈질시키고, 또한 상기 탈질 미생물에 의하여 인의 방출이 일어나는 제2무산소조 (4) 단계;
    상기 제2무산소조 (4)로부터 유입되는 슬러지 내 유기물을 산화시키고 암모니아성 질소를 아질산성 질소 또는 질산성 질소로 질산화시키며, 미생물에 의한 인의 흡수가 일어나고, 기탁번호: KFCC-11402P로 기탁된 바실러스 메가테리움(Bacillus megaterium) DSM3인 토양 미생물이 상기 슬러지로 공급되는 미생물활성조정 포기조 (5) 단계;
    상기 미생물활성조정 포기조 (5)로부터 유입되는 활성 슬러지 내 유기물 및 암모니아성 질소를 산화시키고, 질산성 질소가 포함된 슬러지를 상기 제2무산소조 (4)로 반송하는 포기조 (6) 단계;
    상기 포기조 (6)로부터 유입되는 슬러지를 침전 슬러지와 상등수로 분리하여 상기 침전 슬러지는 상기 제1무산소조 (3)로 반송하는 최종 침전조 (7) 단계;
    상기 최종 침전조 (7)로부터 유입되는 상등수로부터 상등수 내 부유물질 및 총인(TP)를 제거하고, 상기 유량 조정조 (2)로 고형물을 반송하는 물리화학적 후처리장치 (8) 단계;및
    상기 물리화학적 후처리장치 (8)로부터 유입되는 상등수를 소독하는 소독 처리장치 (9) 단계를 포함하며,
    이 때, 상기 포기조 (6)로부터 상기 제2무산소조 (4)로 반송되는 활성 슬러지의 질산성 질소 농도를 측정하여, 상기 질산성 질소 측정장치 (19)로 측정된 질산성 질소의 농도에 따라 상기 제2무산소조 (4)에 선택적으로 탄소 또는 공기를 공급하는,
    하폐수 처리 방법.
KR1020170019521A 2017-02-13 2017-02-13 하폐수 처리 장치 및 방법 KR102052163B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170019521A KR102052163B1 (ko) 2017-02-13 2017-02-13 하폐수 처리 장치 및 방법
PCT/KR2018/001881 WO2018147709A1 (ko) 2017-02-13 2018-02-13 하폐수 처리 장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170019521A KR102052163B1 (ko) 2017-02-13 2017-02-13 하폐수 처리 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20180094176A true KR20180094176A (ko) 2018-08-23
KR102052163B1 KR102052163B1 (ko) 2020-01-09

Family

ID=63107656

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170019521A KR102052163B1 (ko) 2017-02-13 2017-02-13 하폐수 처리 장치 및 방법

Country Status (2)

Country Link
KR (1) KR102052163B1 (ko)
WO (1) WO2018147709A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109721128A (zh) * 2019-01-04 2019-05-07 南京林业大学 一种基于硝酸根/亚硝酸根的光催化降解水中有机物的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517095B1 (ko) * 2003-09-24 2005-09-27 한국과학기술연구원 하수의 처리 장치 및 방법
KR100784933B1 (ko) * 2006-12-08 2007-12-11 주식회사 바이오엔텍 고농도 유기성 폐수의 유기물 및 질소 처리 장치
KR100945458B1 (ko) * 2007-09-20 2010-03-05 (주)범한엔지니어링 종합건축사 사무소 하/폐수처리장의 질소 및 인 고율 제거장치
KR101050165B1 (ko) * 2008-09-19 2011-07-19 한국과학기술연구원 하수처리장 슬러지의 악취 제거를 위하여 토종미생물을 이용한 탈취장치
KR101237447B1 (ko) * 2010-06-28 2013-02-26 부산대학교 산학협력단 하폐수 처리 공정의 규칙기반 실시간 제어 방법 및 시스템
KR101617274B1 (ko) * 2014-12-12 2016-05-03 한라오엠에스 주식회사 가변운전형 침지식 막분리 활성슬러지 처리 방법 및 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109721128A (zh) * 2019-01-04 2019-05-07 南京林业大学 一种基于硝酸根/亚硝酸根的光催化降解水中有机物的方法

Also Published As

Publication number Publication date
KR102052163B1 (ko) 2020-01-09
WO2018147709A1 (ko) 2018-08-16

Similar Documents

Publication Publication Date Title
Jenicek et al. Factors affecting nitrogen removal by nitritation/denitritation
Suryawan et al. Nh3-n and cod reduction in endek (Balinese textile) wastewater by activated sludge under different do condition with ozone pretreatment
KR100436186B1 (ko) 연속주입 간헐 폭기식 하수 처리 장치 및 방법
KR20170132429A (ko) 폐수 내 질소 제거 방법
AU2012316304B2 (en) Use of primary sludge for carbon source in an aerated-anoxic bioreactor system
US20070102354A1 (en) System for treating wastewater and a media usable therein
KR20160147560A (ko) 하,폐수의 질소,인 제거 장치
KR20080019975A (ko) 생물학적 활성조 및 전극시스템이 결합된 하이브리드형생물―전기화학적 생물막 연속회분식 반응기를 이용한오폐수 처리장치
KR100942053B1 (ko) 회분식 생물반응조에 의한 하폐수 고도처리방법 및 처리장치
Mulder et al. Full-scale experience with the SHARON process through the eyes of the operators
KR100430382B1 (ko) 고농도 유기물, 질소, 인 함유 축산폐수의 처리 방법 및 그에 사용되는 처리 시스템
Khan et al. Effect of carbon dosing on denitrification in an aerated horizontal subsurface flow constructed wetland used for effluent polishing
KR100461919B1 (ko) 연속 회분식 단일 반응조와 접촉 폭기조를 조합한 하수처리 장치 및 이를 이용한 하수의 처리 방법
CN105984991B (zh) 一种污水深度处理工艺
KR100331898B1 (ko) 생물·화학적 고도 하수처리 방법
KR102052163B1 (ko) 하폐수 처리 장치 및 방법
KR100403864B1 (ko) 유기물의 부식화에 의한 폐수의 처리방법
KR100517095B1 (ko) 하수의 처리 장치 및 방법
KR100420647B1 (ko) 연속 유입 회분식 오폐수 처리방법
KR20030035019A (ko) 오.폐수 및 하수의 질소, 인 제거를 위한 고도 처리장치및 고도처리방법
KR101129292B1 (ko) 하폐수 처리수 재이용 장치 및 방법
Do et al. Wastewater treatment by Sequencing Batch Reactor (SBR) without releasing excess sludge
KR20050024524A (ko) 오ㆍ폐수 고도처리 시스템 및 오ㆍ폐수 고도처리 방법
KR100416693B1 (ko) 2단 폭기방식을 이용한 하수의 영양소 제거 방법 및 장치
KR20000061356A (ko) 하폐수의 생물학적 탈질,탈인방법 및 그 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant