KR20180085614A - 전반사 기반 편광 분리 광도파로 소자 및 이의 제조방법 - Google Patents

전반사 기반 편광 분리 광도파로 소자 및 이의 제조방법 Download PDF

Info

Publication number
KR20180085614A
KR20180085614A KR1020170009387A KR20170009387A KR20180085614A KR 20180085614 A KR20180085614 A KR 20180085614A KR 1020170009387 A KR1020170009387 A KR 1020170009387A KR 20170009387 A KR20170009387 A KR 20170009387A KR 20180085614 A KR20180085614 A KR 20180085614A
Authority
KR
South Korea
Prior art keywords
optical waveguide
polarization
birefringent polymer
interface
forming
Prior art date
Application number
KR1020170009387A
Other languages
English (en)
Inventor
오민철
황광호
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020170009387A priority Critical patent/KR20180085614A/ko
Publication of KR20180085614A publication Critical patent/KR20180085614A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2766Manipulating the plane of polarisation from one input polarisation to another output polarisation, e.g. polarisation rotators, linear to circular polarisation converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2773Polarisation splitting or combining

Abstract

본 발명은 편광이 서로 다른 광신호를 서로 합쳐 주거나 분리하기 위하여 사용되는 편광분리기에 관한 것으로, 광통신 시스템에서 서로 다른 편광을 이용하여 다양한 형태의 광신호처리를 수행할 수 있는 소형으로 집적화된 전반사 기반 편광 분리 광도파로 소자 및 이의 제조방법에 관한 것이다.
본 발명에 따른 전반사 기반 편광 분리 광도파로 소자는 입력단 및 출력단 부위에 형성되는 편광 무의존 광도파로(CO-polymer waveguide)와, 상기 편광 무의존 광도파로 내부에 위치되어 소자의 특정 위치에서 계면(Interface)을 형성하며, 입사광을 확대시켜 상기 계면에 일정각도로 입사되도록 하는 복굴절 폴리머 광도파로를 포함하며, 상기 계면(Interface)에서는 TE/TM 편광에 따른 반사율이 서로 다르게 나타나는 것을 특징으로 한다.
이와 같은 본 발명에 따르면, 우수한 편광분리 특성과 제작공정에서 넓은 허용 오차를 가지게 되므로 다양한 기능의 광도파로 소자들과 함께 집적하여 제작하기 용이하며, 이로 인해 양자통신 시스템에도 적용 가능한 이점이 있다.

Description

전반사 기반 편광 분리 광도파로 소자 및 이의 제조방법{ Integrated optic polarization splitter based on the total internal reflection and manufacturing method of the same }
본 발명은 편광이 서로 다른 광신호를 서로 합쳐 주거나 분리하기 위하여 사용되는 편광분리기에 관한 것으로, 광통신 시스템에서 서로 다른 편광을 이용하여 다양한 형태의 광신호처리를 수행할 수 있는 소형으로 집적화된 전반사 기반 편광 분리 광도파로 소자 및 이의 제조방법에 관한 것이다.
나날이 증가 되어가는 통신용량과 인터넷 서비스의 다양화 추세에 부합하여 데이터 암호화의 필요성이 대두 되면서 최근에는 양자통신 관련 기술들이 주목받고 있다.
이와 관련하여 선행기술문헌 중 비 특허문헌 [1] 및 [2]에는 양자통신 기술에 있어서 암호화된 키를 생성하기 위하여 빛의 편광상태를 조절하는 방식이 게시되어 있으며, 이와 같은 방식은 암호화 기술에서 이미 널리 이용되고 있다.
그리고, 암호화를 위해 이용되는 특정편광상태(orthogonal Bell state polarization)를 검출하기 위해서는 편광분리기를 비롯한 몇 가지 광 부품들이 요구된다.
이와 관련하여 비 특허문헌 [3] 및 [4]에는 광 부품들을 집적화시킨 광집적회로의 개발을 위한 기술의 첫 번째 단계로 편광분리 효율이 높고 제작이 간단하며 재현성이 뛰어난 편광분리기가 제안되고 있다.
한편, 편광분리기와 관련한 연구들은 지금까지 실리콘, 실리카, 폴리머와 같은 여러 가지 광 소재들을 바탕으로 연구가 진행되어 왔다.
일 예로 실리콘 광도파로 방향성 결합기를 이용한 편광분리기에서는 실리콘 광도파로의 구조를 변화시켜 편광에 따른 유효굴절률 차이를 증가하는 방법을 이용하고 있다.(비 특허문헌 [5] 및 [6] 참조)
하지만, 이와 같은 경우 광도파로의 단면구조가 조금만 변할 경우에도 편광분리특성에 아주 큰 영향을 미치게 되며, 공정 허용오차의 범위가 좁은 단점을 가진다.
그리고, 비 특허문헌 [7]을 참조하면 스트레스광학효과를 이용한 실리카 평면광도파로 편광분리기에서는 마흐젠더 구조의 한쪽 경로에 비정질 실리콘필름을 증착함으로써 광도파로에 스트레스를 인가하는 경우 편광에 따른 굴절률변화가 다르게 나타나는 것을 확인할 수 있다.
하지만, 이와 같은 경우에도 TE와 TM 편광간의 위상차이가 정확히 180°를 형성하도록 레이저를 이용한 트리밍처리가 필요하며, 공적이 복잡해지는 단점을 가진다.
한편, 폴리머 재료의 경우 굴절률 조절이 쉽고 스핀코팅과 같은 간단한 공정으로 다양한 기판 위에 여러 가지 형태의 광도파로 제작이 가능한 장점이 있다.
폴리머 재료의 복굴절은 유기분자의 구조와 연관성이 있으며, 특정 방향으로 분자를 배향시키게 되면 높은 복굴절을 얻을 수 있다.
따라서, 이와 같은 특성을 이용하여 비 특허문헌 [8] 및 [9]에는 복굴절 폴리머를 이용하여 비대칭형 Y-분배광도파로를 형성하여 편광분리기를 제조하는 기술이 게시되어 있다.
그리고, 비 특허문헌[10]에는 복굴절 폴리머를 이용한 소자의 경우 작은 삽입손실과 높은 편광분리비를 확인할 수 있으며, 가장 최근의 연구에서 실제 광통신시스템에 적용하였으나 장시간 사용 시 가는 선으로 제작된 복굴절 폴리머의 복굴절 특성이 줄어들게 되어 소자의 성능이 저하되는 것이 관찰되었다.
JP 1998-260329 A JP 1999-237517 A KR 1998-0010466 A
[1] C. H. Bennett, and D. P. DiVincenzo, "Quantum information and computation," Nature, Vol. 404, 247-255 (2000) [2] J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. OBrien,"Manipulation of multiphoton entanglement in waveguide quantum circuits," Nat. Photonics, Vol 3, 346 - 350 (2009) [3] A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli,"A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength," New J. Phys., Vol.12 (2010) [4] Y.-H. Kim, S. P. Kulik, and Y. Shih, "Quantum teleportation of a polarization state with a complete bell state measurement," Phys. Rev. Lett., Vol. 86, 1370 (2001) [5] I. Kiyat, A. Aydinli, and N. Dagli "A compact silicon-on-insulator polarization splitter," IEEE Photonics Technol. Lett., Vol. 17, No. 1 (2005) [6] H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express, Vol. 14, No. 25 (2006) [7] M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, "Birefringence control of silica waveguides on si and its application to a polarization-beam splitted/switch," J. Lightwave Technol., Vol. 12, No. 4 (1994) [8] M.-C. Oh, S.-S. Lee, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, "Polymeric waveguide polarization splitter based on poling-induced birefringence,"Electron. Lett., Vol. 32, No. 4 (1996) [9] M.-C. Oh, M.-H. Lee, and H.-J. Lee, "Polymeric waveguide polarization splitter with a buried birefringent polymer," IEEE Photonics Technol. Lett., Vol. 11, No. 9 (1999) [10] J.-W. Kim, K.-J. Kim, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, "Polarization-splitting waveguide devices incorporating perfluorinated birefringent polymers," J. Lightwave Technol., Vol. 29, No. 12 (2011) [11] H. Thiem, P. Strohrieg, M. Shkunov, and I. McCulloch, "Photopolymerization of Reactive Mesogens, " J. Lightwave Technol., Vol. 29, No. 12 (2011)
본 발명의 목적은 양자통신 기술에 적용 가능하도록 소자의 편광분리 특성을 확보하면서 낮은 삽입손실과 장시간 동작 안정성이 보장되는 전반사 기반 편광 분리 광도파로 소자를 제공하는 것이다.
본 발명의 다른 목적은 반응성 메조겐(Reactive Mesogen)을 이용한 복굴절 폴리머와 복굴절이 낮은 폴러머 간의 경계면에서 편광성분에 따라 반사율이 다르게 나타나는 전반사 기반 편광 분리 광도파로 소자를 제공하는 것이다.
본 발명의 또 다른 목적은, 다양한 기능의 광도파로 소자들과 함께 집적하여 제작될 수 있도록 상대적으로 넓은 허용 오차범위를 가지는 전반사 기반 편광 분리 광도파로 소자를 제공하는 것이다.
본 발명의 또 다른 목적은 상기와 같은 특성의 전반사 기반 편광 분리 광도파로 소자의 제조방법을 제공하는 것이다.
본 발명에 따른 전반사 기반 편광 분리 광도파로 소자는 입력단 및 출력단 부위에 형성되는 편광 무의존 광도파로(CO-polymer waveguide)와, 상기 편광 무의존 광도파로 내부에 위치되어 소자의 특정 위치에서 계면(Interface)을 형성하며, 입사광을 확대시켜 상기 계면에 일정각도로 입사되도록 하는 복굴절 폴리머 광도파로를 포함하며, 상기 계면(Interface)에서는 TE/TM 편광에 따른 반사율이 서로 다르게 나타나는 것을 특징으로 한다.
상기 복굴절 폴리머 광도파로에는 편광 무의존 광도파로와 커플링을 위한 테이퍼부와, 상기 테이퍼부를 통과한 도파광의 폭을 확장시키기 위한 모드 확장부가 더 포함되는 것을 특징으로 한다.
다른 측면에서 본 발명에 따른 전반사 기반 편광 분리 광도파로 소자의 제조방법은, 기판에 하부 클래딩층을 형성하는 단계와, 상기 하부 클래딩층의 상측에 제1코어층을 형성하는 단계와, 상기 제1코어층의 상측에 복굴절 폴리머 용액을 코팅하고 경화하여 복굴절 폴리머층을 형성하는 단계와, 상기 복굴절 폴리머층에 마스킹을 수행한 이후 식각하여 복굴절 폴리머 광도파로를 형성하는 단계와, 상기 복굴절 폴리머 광도파로가 형성된 제1코어층의 상측에 제2코어층을 형성하는 단계와, 상기 제2코어층에 마스킹을 수행한 이후 식각하여 상기 복굴절 폴리머 광도파로를 수용하여 복굴절 폴리머 광도파로와 계면(Interface)이 형성되는 편광 무의존 광도파로를 형성하는 단계 및 상기 편광 무의존 광도파로의 상측에 상부 클래딩층을 형성하는 단계를 포함하는 것을 특징으로 한다.
본 발명에 따른 광도파로 소자는 편광에 따라 반사율의 차이가 큰 계면(Interface)에 의해 우수한 편광분리 특성을 가진다.
또한, 상기 계면으로 입사되는 도파광은 복굴절 폴리머 광도파로에 형성되는 테이퍼와 모드 확장부에 의해 일정각도로 입사됨에 따라 제작공정에서 넓은 허용 오차 범위를 가질 수 있다.
따라서, 다양한 기능의 광도파로 소자들과 함께 집적하여 제작하기 용이하며, 이로 인해 양자통신 시스템에도 적용 가능한 이점이 있다.
도 1 은 본 발명에 따른 전반사 편광 분리 광도파로 소자의 일실시 예를 보인 도면.
도 2 는 본 발명에 따른 전반사 편광 분리 광도파로 소자의 제조과정을 설명하기 위한 도면.
도 3 은 본 발명의 요부구성인 복굴절 폴리머 광도파로에서 모드 확장부의 길이 Le에 따른 모드 성분의 분석 결과를 보이기 위한 도면.
도 4 는 본 발명에 따른 전반사 편광 분리 광도파로 소자에 TE 편광을 입사하였을 때 계산되는 반사율을 보이기 위한 도면.
도 5 는 본 발명의 요부구성인 복굴절 폴리머 광도파로에서 테이퍼부의 길이에 따라 편광무의존 광도파로(CO-polymer waveguide)와 복굴절 폴리머 광도파로 사이의 결합손실을 계산한 결과를 보이기 위한 도면.
도 6 은 도 2에 따른 제작과정에서 광도파로를 촬영한 사진으로, (a)는 SEM 장비를 이용하여 촬영한 복굴절 폴리머 광도파로 사진이고, (b)는 코어층 아래의 전반사 계면(TIR interface) 사진.
도 7 은 본 발명에 따른 전반사 편광 분리 광도파로 소자를 거쳐 출력단으로 나온 모드별 CCD 사진으로, (a)는 TE 편광입력 사진이고, (b)는 TM 편광입력 사진.
도 8 은 실험에서 나타난 TM 편광에 대한 복굴절 폴리머의 굴절률과 측정값 사이의 차이를 계산하기 위한 BPM 설계 결과를 보인 도면.
이하에서는 도면을 참조하여, 본 발명의 구체적인 실시 예를 설명한다. 다만, 본 발명의 사상은 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 실시 예를 용이하게 제안할 수 있을 것이다.
도 1 에는 본 발명에 따른 전반사 편광 분리 광도파로 소자의 일실시 예를 보인 도면이 도시되어 있고, 도 2 에는 본 발명에 따른 전반사 편광 분리 광도파로 소자의 제조과정을 설명하기 위한 도면이 도시되어 있다.
그리고, 도 3 에는 본 발명의 요부구성인 복굴절 폴리머 광도파로에서 모드 확장부의 길이 Le에 따른 모드 성분의 분석 결과를 보이기 위한 도면이 도시되어 있고, 도 4 에는 본 발명에 따른 전반사 편광 분리 광도파로 소자에 TE 편광을 입사하였을 때 계산되는 반사율을 보이기 위한 도면이 도시되어 있다.
또한, 도 5 에는 본 발명의 요부구성인 복굴절 폴리머 광도파로에서 테이퍼부의 길이에 따라 편광무의존 광도파로(CO-polymer waveguide)와 복굴절 폴리머 광도파로 사이의 결합손실을 계산한 결과를 보이기 위한 도면이 도시되어 있고, 도 6 에는 도 2에 따른 제작과정에서 광도파로를 촬영한 사진으로, (a)는 SEM 장비를 이용하여 촬영한 복굴절 폴리머 광도파로 사진이고, (b)는 코어층 아래의 전반사 계면(TIR interface) 사진이 도시되어 있다.
이들 도면을 참조하면, 본 발명에 따른 전반사 편광 분리 광도파로 소자(이하‘ 편광 분리 소자’라 함)는 편광 무의존 광도파로(CO-polymer waveguide, 800)와, 상기 편광 무의존 광도파로(800)와 복굴절 폴리머 광도파로(600)에 의해 형성되는 계면(Interface, 660)에서 TE/TM 편광에 따른 반사율이 다르게 나타나는 것을 이용하여 편광분리가 이루어진다.
이를 위해 본 발명에 따른 편광 분리 소자는 아래와 같은 과정으로 제조된다.
설명에 앞서 본 실시 예에서는 편광 분리 소자의 제조를 위해 TE, TM 굴절률이 1.6457, 1.5205인 반응성 메조겐(Reactive Mesogen, RM) 재료와 함께 켐옵틱스사에서 제작된 복굴절이 1×10-4 정도의 작은 값을 가지는 CO-polymer series가 사용되었다.
우선, 실리콘 웨이퍼 등의 기판(100)에 소정 두께로 소정의 굴절률을 가지는 폴리머를 스핀 코팅한 후 UV 경화를 진행하여 하부 클래딩층(200)을 형성하는 하부 클래딩층 형성 단계가 수행된다.
상기 하부 클래딩층 형성 단계에서는 실리콘 웨이퍼의 상측에 8㎛ 두께로 CO-polymer 클래딩층을 코팅한 후 UV 경화를 진행한다.
상기 하부 클래딩층 형성 단계가 수행된 이후에는 하부 클래딩층(200)의 상측에 다른 굴절률의 폴리머를 스핀 코팅하여 제1코어층(300)을 형성하는 제1코어층 형성 단계가 수행된다.
상기 제1코어층 형성 단계에서는 상기 하부 클래딩층(200)의 상측에 2.1㎛ 두께로 폴리머를 스핀코팅한 이후 UV 경화를 진행한다.
상기 제1코어층 형성 단계가 수행된 이후에는 상기 제1코어층(300)의 상측에 복굴절 폴리머 용액을 코팅하고 경화하여 복굴절 폴리머층을 형성하는 단계가 수행된다.
상기 복굴절 폴리머층을 형성하는 단계에서는, 상기 제1코어층(300)의 상측에 폴리이미드 배향막(400)을 코팅하고, 벨벳 롤러(420)를 이용하여 러빙(Rubbing) 하는 배향막 형성 과정이 포함된다.
상기 배향막 형성 과정에서는 복굴절 폴리머 재료의 복굴절이 액정의 배향으로 나타나게 되므로, 배향막(400)을 소정 두께로 코팅한 이후 벨벳 롤러(420)를 이용한 얼라인(Aline)을 수행한다.
그리고, 상기와 같은 과정을 통해 형성되는 배향막(400)에는 복굴절 폴리머 용액을 스핀코팅하여 복굴절 폴리머층(500)을 형성함으로써 복굴절 폴리머층 형성 단계가 이루어진다.
한편, 전술한 바와 같이 본 실시 예에서는 상기 복굴절 폴리머층(500)을 형성하기 위하여 반응성 메조겐 용액이 사용되었으며, 상기 배향막 형성 과정에 의해 메조겐 분자들이 러빙방향을 따라 표면방향으로 배향된 이후 UV 경화를 수행하여 복굴절 폴리머층(500)을 형성하게 된다. 이와 같이 형성되는 복굴절 폴리머층(500)은 TE 편광에 대해 더 높은 굴절률을 지니게 되지만, 배향과정이 최적화되지 못하면 반응성 메조겐의 복굴절이 작아지는 현상이 발생될 수 있다.
한편, 배향이 완료된 복굴절 폴리머층(500)의 상측에는 마스킹 후 식각하여 복굴절 폴리머 광도파로를 형성하는 복굴절 폴리머 광도파로 형성 단계가 수행된다.
상기 복굴절 폴리머 광도파로 형성 단계에서는 배향이 완료된 복굴절 폴리머층(500)에 포토레지스트를 코팅하고 포토리소그래피를 이용하여 복굴절 광도파로 패턴을 제작한 이후 산소플라즈마 식각 장치를 이용하여 테이퍼부(620)와 모드 확장부(640)를 포함하는 복굴절 폴리머 광도파로(600)를 형성한다.
상기 복굴절 폴리머 광도파로 형성 단계 이후에는 상기 복굴절 폴리머 광도파로(600)가 형성된 제1코어층(300)의 상측에 제2코어층(700)을 형성하는 제2코어층 형성 단계가 수행된다.
상기 제2코어층 형성 단계 이후에는 크롬(Cr) 금속을 에칭마스크로 식각을 수행함으로써 편광 무의존 광도파로(800)를 형성하는 편광 무의존 광도파로 형성 단계가 수행된다.
상기 편광 무의존 광도파로 형성 단계에서는 편광 무의존 광도파로(800)의 일부분에 상기 복굴절 폴리머 광도파로(600)가 수용되는 형태로 마스킹 및 이에 따른 식각이 이루어지며, 이와 같은 과정을 통해 상기 복굴절 폴리머 광도파로(600)와 편광 무의존 광도파로(800) 사이에 계면(660)이 형성된다.
상기 편광 무의존 광도파로 형성 단계가 수행된 이후에는 상부 클래딩층(900)을 형성하는 상부 클래딩층 형성 단계가 수행되며, 소자의 입출력부를 다이싱하여 편광 분리 소자의 제조가 완료된다.
한편, 본 실시 예에서는 상기 복굴절 폴리머 광도파로 형성단계에서 모드 확장부(640)의 설계를 위해 TE 편광에 대하여 복굴절 폴리머 광도파로(600)의 두께를 가변시켜 가면서 광도파모드의 유효굴절률을 계산하고, 이값을 이용하여 2차원 Beam Propagation Method 설계를 수행하였다.
도 3 을 참조하면, 입력도파로의 폭이 6㎛이고, 출력도파로의 폭이 30㎛일 때 모드 확장부(640)의 길이 변화에 따른 출력 파동의 모드 파워를 계산한 결과를 확인할 수 있다.
도 3 에서는 모드 확장부(640)의 길이가 길어질수록 입력 기본모드 성분이 고차모드로 넘어가지 않고, 단열공정(adiabatic transition)이 효과적으로 일어나게 되어 2nd고차모드로 변환되는 파워가 -20dB 이하로 줄어드는 것을 확인할 수 있다. 복굴절 폴리머 광도파로(600)의 두께 변화로 인한 소자특성변화는 크지 않았으며, Le가 600㎛ 이상이 되면 모드변환손실이 0.1dB 정도에 불과하게 된다.
한편, 확장된 도파모드가 전반사 경계(660)에 도달하게 되면 TE편광인 경우에는 반사가 일어나고 TM 편광인 경우에는 투과가 일어난다. 이와 같은 현상도 유효굴절률을 구한 후 2차원 BPM 설계를 통하여 살펴보면 도 4와 같은 결과를 얻을 수 있다.
도 4에서는 편광 무의존 광도파로(800)의 굴절률은 1.520이며, 입사각도 θ가 점점 커질수록 전반사에 의해 TE 편광의 반사율이 높아지는 것을 확인할 수 있다. 또한, 복굴절 폴리머 광도파로(600)의 두께가 0.8㎛ 이상이 되면 유효굴절률 차이가 충분히 커지게 되며 입사각이 80°이상일 때 반사손실은 0.05dB 미만이 되는 것을 확인할 수 있다.
한편, 전반사를 겪게 되는 TE 편광은 입력부의 테이퍼부(620)에서 일차적으로 복굴절 폴리머 광도파로(600)로 모여지며 들어가게 되는데, 이 과정에서 손실을 최소화하기 위한 테이퍼 구조의 설계가 필요하다.
따라서, 본 실시 예에서는 테이퍼 구조의 최적화를 위하여 3차원 BPM 시뮬레이션을 진행하였고, 도 5와 같은 결과를 확인할 수 있었다.
도 5 에서는 편광 무의존 광도파로(800) 코어, 클래딩의 굴절률은 1.520, 1.500이다. 입력부의 광도파로는 6×5.1㎛2 구조이며, 복굴절 폴리머 광도파로(600) 코어의 크기는 6×1.3㎛2이며, 두 광도파로 구조에 대한 도파모드를 계산하여 보이고 있다.
도 5 를 참조하면, 복굴절 폴리머 광도파로(600) 층이 얇을수록 도파모드의 evanescant field 가 깊게 형성되어 모드가 커지는 현상이 나타나며 이로 인해 편광 무의존 광도파로(800)와의 결합손실이 줄어든다.
하지만, 도 4에 도시된 바와 같이 복굴절 폴리머 광도파로(600)가 너무 얇아지면 전반사 효율이 떨어지게 되므로 본 실시 예에서는 1㎛ 정도의 두께와 400㎛ 이상의 테이퍼부(620) 길이를 가지도록 형성하여 0.2dB 이하의 결합손실을 확인할 수 있었다. 그리고, SEM 장비를 이용하여 촬영한 복굴절 폴리머 광도파로(600)의 테이퍼부(620)는 도 6의 (a)와 같이 확인되었고, 복굴절 폴리머 재료의 유무에 따른 경계(660) 부분은 도 6의 (b)와 같이 확인되었다.
한편, 본 발명의 편광 분리 특성을 확인하기 위하여 입사각이 76°에서 84°까지 5종류의 편광 분리 소자를 제작하였으며, 중심파장이 1550㎚인 DFB 레이저와 편광조절기를 이용하여 TE/TM 편광을 선택적으로 입력하였다.
본 발명에 따른 편광 분리 소자를 거쳐 출력단으로 나온 빛은 CCD를 통해 확인하였으며, 도 7을 통해 확인할 수 있다.
도 7에서는 TE 모드를 입력하였을 때 경계(660)에서 반사를 일으키고, port 1로 출력된 CCD화면이 (a)와 같이 나타났으며, TM 모드를 입력하였을 경우에는 경계(660)에서 그대로 투과되어 port 2로 출력된 CCD 화면이 (b)와 같이 확인되었다.
그리고, 실험결과와 설계내용을 비교하기 위하여 입사각도가 서로 다른 각각의 편광 분리 소자 특성을 측정한 결과는 도 8과 같이 확인되었다.
도 8 에서는 두 번의 소자 제작공정을 통하여 얻어진 결과를 함께 도시하고 있으며, 전반적인 특성이 유사함을 확인할 수 있다.
상세히, 입사각이 76°일 때 편광 분리 특성이 가장 뚜렷이 나타났고, TE 모드를 입력시 전반사되는 출력과의 삽입 손실은 7.6dB이고, 투과되어 나타나는 누화성분은 -41.5dB로 매우 작게 나타났다. 그리고, TM 모드를 입력하였을 때 삽입 손실은 7.5dB이고, 누화성분은 -37.6dB로 나타났다. 이로부터 편광 분리 효율은 30dB 이상이 됨을 확인할 수 있다.
입사각도가 커짐에 따라 TE 편광의 전반사 특성은 크게 변하지 않으나, TM 편광의 경우 원하지 않는 반사가 커지게 되어 누화가 증대되고 투과되는 빛도 약해지는 것이 확인되었다. 이는 TM 편광도 경계(660)에서 부분적인 반사를 일으키기 때문인 것으로 예상된다.
따라서, 이와 같은 현상의 원인으로 TM 편광에 대한 복굴절 폴리머의 굴절률이 측정한 값과 다르게 되어 CO-polymer와 굴절률 차이가 발생할 것을 고려하여 BPM 설계를 수행하였다.
수행 결과 도 8의 (b)에 도시된 바와 같이 TM 편광의 삽입손실 및 누화특성은 복굴절 폴리머의 굴절률에 따라 크게 영향을 받게 되는 것을 확인할 수 있다.
복굴절 폴리머의 굴절률이 CO-polymer와 같은 1.520이 되면 반사는 -30dB 이하로 줄어드는 반면, 굴절률이 커지게 되면 파워가 증가한다. 특히, 복굴절 폴리머의 굴절률이 1.536인 경우 실험치와 유사한 경향성을 보이는 것이 확인되었다. 이로부터, 복굴절 폴리머 재료의 TM 편광 굴절률은 1.5205로 측정되었으나 편광분리 광도파로 소자에서 나타난 값은 1.536 정도가 된다는 것을 확인할 수 있었다.
이는, 복굴절 폴리머 재료의 복굴절은 전술한 바와 같이 액정의 배향 정도에 따라 결정되는데 소자제작 공정 중에 폴리머 박막 위에 제작된 복굴절 폴리머는 배향상태가 단일 박막으로 제작된 경우보다 떨어지기 때문인 것으로 예상된다.
따라서, 본 발명에서는 반복된 실험을 통하여 확인되는 정확도가 향상된 복굴절 폴리머의 굴절률을 바탕으로 입사각을 보다 줄일 수 있는 편광 분리 소자를 제작할 경우 보다 적은 누화특성을 가지는 편광 분리 소자를 구현할 수 있다.
100........ 기판 200........ 하부 클래딩층
300........ 제1코어층 400........ 배향막
420........ 벨벳 롤러 500........ 복굴절 폴리머층
600........ 복굴절 폴리머 광도파로 620........ 테이퍼부
640........ 모드 확장부 660........ 계면
700........ 제2코어층 800........ 편광 무의존 광도파로
900........ 상부 클래딩층

Claims (3)

  1. 입력단 및 출력단 부위에 형성되는 편광 무의존 광도파로(CO-polymer waveguide);
    상기 편광 무의존 광도파로 내부에 위치되어 소자의 특정 위치에서 계면(Interface)을 형성하며, 입사광을 확대시켜 상기 계면에 일정각도로 입사되도록 하는 복굴절 폴리머 광도파로;를 포함하며,
    상기 계면(Interface)에서는 TE/TM 편광에 따른 반사율이 서로 다르게 나타나는 것을 특징으로 하는 전반사 기반 편광 분리 광도파로 소자.
  2. 제 1 항에 있어서, 상기 복굴절 폴리머 광도파로에는,
    편광 무의존 광도파로와 커플링을 위한 테이퍼부와,
    상기 테이퍼부를 통과한 도파광의 폭을 확장시키기 위한 모드 확장부가 더 포함되는 것을 특징으로 하는 전반사 기반 편광 분리 광도파로 소자.
  3. 기판에 하부 클래딩층을 형성하는 단계;
    상기 하부 클래딩층의 상측에 제1코어층을 형성하는 단계;
    상기 제1코어층의 상측에 복굴절 폴리머 용액을 코팅하고 경화하여 복굴절 폴리머층을 형성하는 단계;
    상기 복굴절 폴리머층에 마스킹을 수행한 이후 식각하여 복굴절 폴리머 광도파로를 형성하는 단계;
    상기 복굴절 폴리머 광도파로가 형성된 제1코어층의 상측에 제2코어층을 형성하는 단계;
    상기 제2코어층에 마스킹을 수행한 이후 식각하여 상기 복굴절 폴리머 광도파로를 수용하여 복굴절 폴리머 광도파로와 계면(Interface)이 형성되는 편광 무의존 광도파로를 형성하는 단계; 및
    상기 편광 무의존 광도파로의 상측에 상부 클래딩층을 형성하는 단계;를 포함하는 것을 특징으로 하는 전반사 기반 편광 분리 광도파로 소자의 제조방법.
KR1020170009387A 2017-01-19 2017-01-19 전반사 기반 편광 분리 광도파로 소자 및 이의 제조방법 KR20180085614A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170009387A KR20180085614A (ko) 2017-01-19 2017-01-19 전반사 기반 편광 분리 광도파로 소자 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170009387A KR20180085614A (ko) 2017-01-19 2017-01-19 전반사 기반 편광 분리 광도파로 소자 및 이의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020190005484A Division KR102018368B1 (ko) 2019-01-16 2019-01-16 전반사 기반 편광 분리 광도파로 소자 및 이의 제조방법

Publications (1)

Publication Number Publication Date
KR20180085614A true KR20180085614A (ko) 2018-07-27

Family

ID=63078492

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170009387A KR20180085614A (ko) 2017-01-19 2017-01-19 전반사 기반 편광 분리 광도파로 소자 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR20180085614A (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980010466U (ko) 1996-08-07 1998-05-15 박중흠 공기흡입공을 갖는 액체용기(liquid can wlth air inhalation hole)
JPH10260329A (ja) 1997-03-19 1998-09-29 Nippon Telegr & Teleph Corp <Ntt> 光導波路型偏波ビームスプリッタ
JPH11237517A (ja) 1998-02-23 1999-08-31 Fujitsu Ltd 光導波路素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980010466U (ko) 1996-08-07 1998-05-15 박중흠 공기흡입공을 갖는 액체용기(liquid can wlth air inhalation hole)
JPH10260329A (ja) 1997-03-19 1998-09-29 Nippon Telegr & Teleph Corp <Ntt> 光導波路型偏波ビームスプリッタ
JPH11237517A (ja) 1998-02-23 1999-08-31 Fujitsu Ltd 光導波路素子

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
[1] C. H. Bennett, and D. P. DiVincenzo, "Quantum information and computation," Nature, Vol. 404, 247-255 (2000)
[10] J.-W. Kim, K.-J. Kim, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, "Polarization-splitting waveguide devices incorporating perfluorinated birefringent polymers," J. Lightwave Technol., Vol. 29, No. 12 (2011)
[11] H. Thiem, P. Strohrieg, M. Shkunov, and I. McCulloch, "Photopolymerization of Reactive Mesogens, " J. Lightwave Technol., Vol. 29, No. 12 (2011)
[2] J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. OBrien,"Manipulation of multiphoton entanglement in waveguide quantum circuits," Nat. Photonics, Vol 3, 346 - 350 (2009)
[3] A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli,"A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength," New J. Phys., Vol.12 (2010)
[4] Y.-H. Kim, S. P. Kulik, and Y. Shih, "Quantum teleportation of a polarization state with a complete bell state measurement," Phys. Rev. Lett., Vol. 86, 1370 (2001)
[5] I. Kiyat, A. Aydinli, and N. Dagli "A compact silicon-on-insulator polarization splitter," IEEE Photonics Technol. Lett., Vol. 17, No. 1 (2005)
[6] H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, "Ultrasmall polarization splitter based on silicon wire waveguides," Opt. Express, Vol. 14, No. 25 (2006)
[7] M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, "Birefringence control of silica waveguides on si and its application to a polarization-beam splitted/switch," J. Lightwave Technol., Vol. 12, No. 4 (1994)
[8] M.-C. Oh, S.-S. Lee, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, "Polymeric waveguide polarization splitter based on poling-induced birefringence,"Electron. Lett., Vol. 32, No. 4 (1996)
[9] M.-C. Oh, M.-H. Lee, and H.-J. Lee, "Polymeric waveguide polarization splitter with a buried birefringent polymer," IEEE Photonics Technol. Lett., Vol. 11, No. 9 (1999)

Similar Documents

Publication Publication Date Title
Garner et al. Three-dimensional integrated optics using polymers
Majumder et al. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials
Sheng et al. A compact and low-loss MMI coupler fabricated with CMOS technology
US7565041B2 (en) Symmetric optical circuit with integrated polarization rotator
Zgraggen et al. Laser direct writing of single-mode polysiloxane optical waveguides and devices
US10877208B2 (en) Photonic apparatus for controlling polarization
Luque-González et al. Polarization splitting directional coupler using tilted subwavelength gratings
Cherchi et al. Unconstrained splitting ratios in compact double-MMI couplers
Liu et al. Adiabatic and ultracompact waveguide tapers based on digital metamaterials
CN209928057U (zh) 横电偏振器
Rabus et al. Photonic integrated circuits by DUV-induced modification of polymers
Huang et al. Broadband integrated optic polarization splitters by incorporating polarization mode extracting waveguide
KR101923956B1 (ko) 편광 모드 추출 구조를 적용한 광대역 편광 분리 광도파로 소자 및 이의 제조방법
Wang et al. Broadband and compact polarization beam splitter based on an asymmetrical directional coupler with extra optimizing designs
Debevc et al. High extinction ratio and an ultra-broadband polarization beam splitter in silicon integrated photonics by employing an all-dielectric metamaterial cladding
Samanta et al. A 1× 2 polarization-independent power splitter using three-coupled silicon rib waveguides
Xie et al. High-performance ultra-compact polarization splitter-rotators based on dual-etching and tapered asymmetrical directional coupler
KR102018368B1 (ko) 전반사 기반 편광 분리 광도파로 소자 및 이의 제조방법
TW588167B (en) Polarization-insensitive planar lightwave circuits and method for fabricating the same
US7526151B1 (en) Highly symmetric optical structures
JP2001272561A (ja) 偏波無依存導波路型光回路
KR20180085614A (ko) 전반사 기반 편광 분리 광도파로 소자 및 이의 제조방법
Lai et al. Submicron-scale broadband polarization beam splitter using CMOS-compatible materials
Le et al. The design of multimode interference couplers with arbitrary power splitting ratios on an SOI platform
JP2015215578A (ja) 光導波路素子およびそれを用いた偏波分離器

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
A107 Divisional application of patent