KR20180083480A - The method of water quality forecasting based on IoT (Internet of Things) - Google Patents

The method of water quality forecasting based on IoT (Internet of Things) Download PDF

Info

Publication number
KR20180083480A
KR20180083480A KR1020170005774A KR20170005774A KR20180083480A KR 20180083480 A KR20180083480 A KR 20180083480A KR 1020170005774 A KR1020170005774 A KR 1020170005774A KR 20170005774 A KR20170005774 A KR 20170005774A KR 20180083480 A KR20180083480 A KR 20180083480A
Authority
KR
South Korea
Prior art keywords
water supply
water
service
data
pipe network
Prior art date
Application number
KR1020170005774A
Other languages
Korean (ko)
Inventor
이재극
원동찬
김민한
Original Assignee
(주) 팬지아이십일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 팬지아이십일 filed Critical (주) 팬지아이십일
Priority to KR1020170005774A priority Critical patent/KR20180083480A/en
Publication of KR20180083480A publication Critical patent/KR20180083480A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/08Payment architectures
    • G06Q20/14Payment architectures specially adapted for billing systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Abstract

The present invention provides a service for predicting water supply quality to analyze a pipe network of water supply by applying an internet of things (loT) technique for a cloud service. The service for predicting water supply quality receives flow rate and water quality data from a water purification center, a water supply office, inspection, and measurement and provides a result by hydraulically analyzing the flow rate and velocity, pressure, and residual chlorine in the pipe network of supplied tap water. The service for predicting water supply quality provides a simulation function of tracing a route and the like when a pollutant flows inside and analyzing the high and low concentration areas of the residual chlorine. Therefore, the service for predicting water supply quality enables rapid handling in an emergency situation and enables operation of a systematic and scientific water supply pipe network in an inefficient part and an unsystematic part on the operation of existing water purification facilities and water supply facilities. The service for predicting water supply quality can obtain economic feasibility and work efficiency and comprises an existing pipe network analysis data collection unit, a real-time measurement data collection unit, a water supply facility data collection unit, a data correction unit, and a water quality estimation unit.

Description

IoT 기반의 상수도 수질 예측 기법 {The method of water quality forecasting based on IoT (Internet of Things)}IoT-based water quality prediction method based on water quality forecasting based on IoT (Internet of Things)

본 발명은 클라우드 서비스를 위하여 IoT (Internet of Things) 기술을 적용하여 상수도 관망해석을 위하여 수질 예측서비스를 제공하는 기술이다. 정수센터 및 수도사업소, 검침 및 계량 등으로부터의 유량 및 수질 데이터를 제공받아 공급되는 수돗물의 관망 내 유량, 유속, 압력, 잔류염소 등을 수리학적으로 해석하여 결과를 제공하는 기술로써, 수질 상태를 분석하고 비상상황 등에 대한 대비를 할 수 있도록 지원하는 등, 효율적이고 체계적인 상수도 수질 관리를 위한 기술이다. The present invention provides a water quality prediction service for analyzing a water supply pipe network by applying IoT (Internet of Things) technology for a cloud service. It is a technology to provide hydraulic analysis of flow rate, flow velocity, pressure and residual chlorine in the network of tap water supplied with water quality and flow data from water purification center, water service establishment, meter reading and weighing. Analysis, and preparation for emergencies. It is an efficient and systematic technology for water quality management of waterworks.

수돗물이 수용가로 공급되기까지는 취수원에서 물을 공급받아 정수 공정을 거쳐 수돗물을 생산하고, 배수지, 가압장 등을 거쳐 상수 관망을 통해 수용가로 공급되는 과정을 거친다. 취수에서 정수까지는 많은 연구가 이루어졌고 다양한 공법과 효율적인 운영 방법이 적용되고 있으나, 상수도 관망은 땅 속에 매립되어 있어서 운영 및 유지관리 면에서 어려운 측면이 있고, 유량계, 압력계 등 관련 계측장비가 부족하며, 사고가 발생이 된 후에야 사고를 감지할 수 있는 특성이 있다. 따라서 효율적이고 신속한 상수도 관망을 위해서는 관망 내 압력, 유속, 수질 등 상태 확인, 누수량 감지 등이 필요하고, 이를 통해 효율적인 수질 관리가 될 수 있도록 한다. Before tap water is supplied to the customer, water is supplied from the water supply plant, and the tap water is produced through the water purification process. The tap water is supplied to the customer through the water pipe, the pumping station, and the water pipe network. Although many studies have been conducted from water intake to water purification and various methods and efficient operation methods have been applied, the water supply pipe network is buried in the ground, which is difficult in terms of operation and maintenance, and there is a lack of related measuring equipment such as a flow meter and a pressure gauge, There is a characteristic that an accident can be detected only after an accident occurs. Therefore, for efficient and fast water supply network, it is necessary to check the state of pressure, flow rate and water quality in the pipe network, and to detect the amount of water leakage.

상기의 문제점을 해결하기 위해 본 발명에서는 수도관을 통해 공급되는 물의 유량, 유속, 압력, 잔류염소 등을 해석하여 결과를 제공하고자 한다. 또한 잔류염소의 고농도 및 저농도 현황 분석 및 모의 기능을 제공하며, 오염물질 주입시 경로를 추적하는 시뮬레이션 기능 등을 제공함으로써 현재 상수도 관망 내의 수질 상태를 분석하고, 비상상황 등에 대한 대비를 할 수 있도록 지원한다. In order to solve the above problems, the present invention provides a result of analyzing the flow rate, flow rate, pressure, residual chlorine, etc. of water supplied through the water pipe. In addition, it provides analysis and simulation of high concentration and low concentration of residual chlorine and provides simulation function to track the route when injecting pollutants, so that it can analyze the water quality in the current water supply network and prepare for emergencies. do.

상기의 목적을 달성하기 위해 기존의 관망해석 데이터를 수집하고 관리하는 기존 관망해석 데이터 수집부, 실시간 계측 데이터를 수집하는 실시간 계측 데이터 수집부, 상수도 시설물의 지번도와 관로 현황 등을 관리하는 상수도시설 데이터 수집부, 수집된 데이터를 분석하고 보정하는 데이터 보정부, 정체수구간 분석, 잔류염소 고농도지역 분석, 잔류염소 저농도지역 분석, 오염물질 경로추적 등의 수질 예측을 수행하는 수질 예측부로 구성함으로써 그 목적을 달성한다. In order to achieve the above object, there is provided an existing pipe network analysis data collection unit for collecting and managing existing pipe network analysis data, a real-time measurement data collection unit for collecting real-time measurement data, waterworks facility data for managing lot numbers of waterworks facilities, A water quality prediction unit for predicting water quality such as a data collection unit, a data correction unit for analyzing and correcting the collected data, a stagnation water analysis, a residual chlorine high concentration area analysis, a residual chlorine low concentration area analysis, .

본 발명을 통해 상수도 관망 시설에서의 상태 감시, 수질 예측 및 정체수 분석 등 효율적인 운영 관리를 지원한다. 압력, 유량, 수위 등 실시간 계측 데이터와 관망 해석 데이터 등의 보정을 통해 보다 정확한 데이터를 확보할 수 있을 뿐만 아니라, 수돗물이 공급되는 관로에서의 정체수 구간을 분석하거나 오염물질 주입시의 경로를 추적할 수 있음으로써 비상상황시 신속한 대처가 가능할 수 있도록 한다. 또한 기존 정수시설 및 상수도 시설에서의 운영 상상 비효율적인 부분과 체계적이지 못한 부분에 있어 계획적이고 과학적인 상수관망을 운영이 가능할 것으로 예상되며, 업무의 효율성 및 경제성 확보가 가능할 것이다. Through the present invention, efficient operation management such as state monitoring, water quality prediction, and congestion count analysis in a water supply network facility is supported. It is possible to obtain more accurate data through correction of real-time measurement data such as pressure, flow rate, water level, and pipe network analysis data, and also to analyze the stagnant water section in the pipeline in which tap water is supplied, So that it is possible to take prompt action in an emergency situation. In addition, it is expected that it will be possible to operate a planned and scientific water supply network in the ineffective and unstructured parts of existing water facilities and waterworks facilities.

이하 본 발명인 수질 예측 및 관망 관리 기법에 대해서 자세히 설명하도록 한다. Hereinafter, the water quality prediction and network management techniques of the present invention will be described in detail.

본 발명은 실시간 계측 데이터를 수집하는 실시간 계측 데이터 수집부, 상수도 시설물의 지번도와 관로 현황 등을 관리하는 상수도시설 데이터 수집부, 기존의 관망해석 데이터를 수집하고 관리하는 기존 관망해석 데이터 수집부, 수집된 데이터를 분석하고 보정하는 데이터 보정부, 정체수구간 분석, 잔류염소 고농도지역 분석, 잔류염소 저농도지역 분석, 오염물질 경로추적 등의 수질 예측을 수행하는 수질 예측부로 구성한다.The present invention relates to a real-time measurement data collection unit for collecting real-time measurement data, a waterworks facility data collection unit for managing lot numbers and pipeline status of waterworks facilities, an existing pipe network analysis data collection unit for collecting and managing existing pipe analysis data, And a water quality prediction unit for predicting water quality such as data correction unit for analyzing and correcting the data, stagnation water analysis, residual chlorine high concentration area analysis, residual chlorine low concentration area analysis, and pollutant path trace.

계측 데이터 수집부에서는 관로의 유량, 압력, 수질 데이터를 실시간으로 수집하고 저장 및 관리하고, 데이터 이력을 조회한다. The measurement data collection unit collects, stores and manages the flow rate, pressure, and water quality data of the pipeline in real time, and inquires the data history.

상수도시설 데이터 수집부에서는 블록 설정 정보, 계측기 현황, 지번도, 상수관로, 밸브 정보 등의 GIS 데이터를 저장 및 관리한다. The water facility data collection unit stores and manages GIS data such as block setting information, meter status, lot number, water pipe, and valve information.

관망해석 데이터 수집부에서는 상수도시설 데이터 수집부에서의 GIS 데이터를 관망해석을 위한 INP 형식의 파일로 변환하고, 관로 정보, 절점 정보, 수요량 등을 포함하여 데이터를 저장 및 관리한다. The network analysis data collection unit converts the GIS data from the waterworks facility data collection unit into INP format files for pipe network analysis, and stores and manages data including pipeline information, node information, and demand amount.

데이터 보정부에서는 센서 값을 받을 때에 발생할 수 있는 잡음 등의 부정확학 측정값을 판단하여 정확한 측정값을 입력받도록 하기 위하여 데이터 보정을 실시한다. 데이터 보정 방식에는 데이터 보정을 온라인으로 처리하기 위해서 Data classification 작업을 수행한다. 데이터 보정 문제에 unobservable한 변수가 존재하게 되면 Singularity 문제가 생기기 때문에 제대로 문제를 풀기가 힘들며, 따라서 Projection Matrix 법을 이용한 Redundant하고 Observable한 변수들로만 데이터 보정 문제가 구성되도록 데이터 Classification 작업을 수행한다. Data classification을 통하여 unobservable한 변수를 제거한 후, 총계 오차를 제거하는 단계를 거치는 작업 등의 총계오차판별기법 등을 이용하여 데이터 보정을 수행한다. 이러한 방법을 통해 이상치를 제거하여 비정상적인 데이터를 보정함으로써 이후 단계에서의 분석 및 예측의 신뢰성을 높이게 된다. The data correction unit judges the inaccuracy measurement values such as the noise that may occur when the sensor value is received, and performs data correction so as to receive an accurate measurement value. The data correction method performs a data classification operation to process data correction on-line. If there is an unobservable variable in the data correction problem, it is difficult to solve the problem because the singularity problem occurs. Therefore, the data classification is performed so that the data correction problem is constituted only by the redundant and observable variables using the projection matrix method. Data correction is performed by using a total error discrimination technique such as a task of eliminating unobservable variables through data classification and eliminating the total error. In this way, abnormal data is corrected by correcting the abnormal data, thereby improving the reliability of the analysis and prediction at a later stage.

수질 예측부에서는 실시간 계측 데이터를 바탕으로 블록별로 고압력 구간, 저압력 구간, 고유속 구간, 저유속 구간 등을 분석하여 결과로 나타낸다. 또한, 잔류염소의 고농도 지역과 저농도지역을 수리학적으로 해석하여 분석하고, 정체수 구간을 분석하고 기능을 제공한다. 임의 지점 및 배수지에 오염물질 발생시 오염물질의 확산 경로 및 농도를 추적하고 시간에 따른 오염물질의 확산 정도 및 절점별 도달시간을 산정하고, 피해 예상 수용가 규모를 파악하고 설비 조작에 따른 피해정도의 변화를 모의할 수 있는 기능을 제공한다. The water quality prediction section analyzes the high pressure section, the low pressure section, the high velocity section, and the low velocity section for each block based on the real time measurement data. In addition, the high concentration area and the low concentration area of residual chlorine are analyzed hydraulically and analyzed, and the stagnant water section is analyzed and functions are provided. It is necessary to track the diffusion path and concentration of pollutants in the event of pollutants at arbitrary sites and reservoirs, to calculate the degree of diffusion of contaminants and time to arrive at the points by time, As shown in FIG.

Claims (3)

상수 관로에서의 압력, 유량, 수질 및 관망해석 데이터 등의 부정확한 측정값을 판단하여 정확한 측정값을 입력받도록 하기 위한 단계로, 온라인으로 보정 작업을 수행하기 위해 Data classification, 총계오차판별기법 등에 의한 데이터를 보정하는 데이터 보정부 It is a step to judge incorrect measurement value such as pressure, flow rate, water quality, and pipe network analysis data in a water pipe to receive accurate measurement value. It is classified by data classification and total error discrimination technique A data correction unit 제 1항에서의 결과물인 데이터 보정부에서의 데이터 보정값을 바탕으로 블록 구역별 고압력/저압력, 고유속/저유속, 잔류염소 고농도/저농도 지역 및 정체수 구간을 분석하는 수질 예측부, A water quality predicting unit for analyzing high pressure / low pressure, intrinsic / low flow rate, residual chlorine high concentration / low concentration area and stagnation water interval for each block area based on the data correction value obtained by the data correction unit, 제 1항에서의 결과물인 보정부에서의 데이터 보정값을 바탕으로 임의 지점 및 배수지에 수질 오염이 발생시 오염물질의 이동 경로를 추적하는 것으로써, 시간에 따른 오염물질의 확산 정도를 파악하고 절점별 도달시간 및 피해 예상 수용가 규모를 파악할 수 있도록 모의하는 수질 예측부Based on the data correction value obtained from the correction in the above item 1, when the water pollution occurs at any point and the reservoir, the movement path of the pollutant is tracked, The water quality forecasting unit, which simulates the arrival time and the expected size of the damage,
KR1020170005774A 2017-01-13 2017-01-13 The method of water quality forecasting based on IoT (Internet of Things) KR20180083480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170005774A KR20180083480A (en) 2017-01-13 2017-01-13 The method of water quality forecasting based on IoT (Internet of Things)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170005774A KR20180083480A (en) 2017-01-13 2017-01-13 The method of water quality forecasting based on IoT (Internet of Things)

Publications (1)

Publication Number Publication Date
KR20180083480A true KR20180083480A (en) 2018-07-23

Family

ID=63102876

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170005774A KR20180083480A (en) 2017-01-13 2017-01-13 The method of water quality forecasting based on IoT (Internet of Things)

Country Status (1)

Country Link
KR (1) KR20180083480A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164737A (en) * 2018-09-06 2019-01-08 深圳市云传物联技术有限公司 A kind of Internet of Things big data platform applied to environmental protection
CN111044697A (en) * 2019-12-31 2020-04-21 深圳市快鱼环保技术有限公司 Water quality monitoring and early warning system based on Internet of things and control method thereof
CN111882473A (en) * 2020-07-23 2020-11-03 南京财经大学 Zero-direct-emission tracing method for rain and sewage pipe network

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164737A (en) * 2018-09-06 2019-01-08 深圳市云传物联技术有限公司 A kind of Internet of Things big data platform applied to environmental protection
CN111044697A (en) * 2019-12-31 2020-04-21 深圳市快鱼环保技术有限公司 Water quality monitoring and early warning system based on Internet of things and control method thereof
CN111882473A (en) * 2020-07-23 2020-11-03 南京财经大学 Zero-direct-emission tracing method for rain and sewage pipe network

Similar Documents

Publication Publication Date Title
KR101875885B1 (en) Water supply integrated management operating system using water network analysis
Perez et al. Leak localization in water networks: A model-based methodology using pressure sensors applied to a real network in Barcelona [applications of control]
JP4314038B2 (en) Method for estimating anomalous locations in fluid transport pipe networks
CN108278491B (en) A kind of method and system that discovery drainage pipeline networks is operating abnormally
KR101283828B1 (en) System for diagnosing performance of water supply network
CN110646867A (en) Urban drainage monitoring and early warning method and system
CN111625988A (en) Bridge health management analysis and prediction system and method based on deep learning
KR20180083480A (en) The method of water quality forecasting based on IoT (Internet of Things)
CN114528929B (en) Multi-source data platform region measuring system and method
CN110929359A (en) Pipe network siltation risk prediction modeling method based on PNN neural network and SWMM technology
WO2020153903A1 (en) Method and system for monitoring a gas distribution network operating at low pressure
KR20040056718A (en) Total sewer operation and management system based on web and control method thereof
CN103389360B (en) Based on the debutanizing tower butane content soft measuring method of probability principal component regression model
Okeya et al. Locating pipe bursts in a district metered area via online hydraulic modelling
CN109101734A (en) A kind of prediction technique of Continuous Rigid-Frame Bridge downwarp risk
KR20210081136A (en) A diagnosis and monitoring system based on geographic information system for the large-scale water supply pipes
Mounce et al. Water quality event detection and customer complaint clustering analysis in distribution systems
CN112097125B (en) Water supply pipe network pipe burst detection and positioning method based on self-adaptive checking
Haider et al. Effect of frequency of pavement condition data collection on performance prediction
Widhalm et al. Identifying faulty traffic detectors with Floating Car Data
Christodoulou et al. Urban water distribution networks: assessing systems vulnerabilities, failures, and risks
Machell et al. Online data processing for proactive UK water distribution network operation
Alves et al. Leak detection in water distribution networks based on water demand analysis
EP3640751A1 (en) Apparatus for gas analysis and emission prediction
Armstrong et al. Opportunities for using the industrial assessment center database for industrial water use analysis