KR20180082860A - Manufacturing method for Cricket(Gryllus bimaculatus) Chitosan and anti-fungi agent using it - Google Patents

Manufacturing method for Cricket(Gryllus bimaculatus) Chitosan and anti-fungi agent using it Download PDF

Info

Publication number
KR20180082860A
KR20180082860A KR1020170004275A KR20170004275A KR20180082860A KR 20180082860 A KR20180082860 A KR 20180082860A KR 1020170004275 A KR1020170004275 A KR 1020170004275A KR 20170004275 A KR20170004275 A KR 20170004275A KR 20180082860 A KR20180082860 A KR 20180082860A
Authority
KR
South Korea
Prior art keywords
cricket
chitosan
residue
washing
protein
Prior art date
Application number
KR1020170004275A
Other languages
Korean (ko)
Inventor
신원선
채교성
Original Assignee
신원선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신원선 filed Critical 신원선
Priority to KR1020170004275A priority Critical patent/KR20180082860A/en
Publication of KR20180082860A publication Critical patent/KR20180082860A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3481Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/10Preserving against microbes

Abstract

The present invention is to produce a cricket chitosan having excellent antibacterial properties from a dried cricket at a high yield, and to provide a natural antibacterial agent using the same. A method for producing a cricket chitosan of the present invention comprises: a step of generating cricket powder by pulverizing a dried cricket into fine powder, and washing and drying the same; a cricket protein removal step of removing cricket protein by mixing and stirring the dried cricket powder with sodium hydroxide; a color removal step of removing a color by mixing, stirring, and immersing the residue having the cricket protein removed therefrom in an APS solution, and washing the same; a desalination step of immersing the residue having the color removed therefrom while stirring the same, and then washing, drying, and desalting the same; and a step of mixing the desalted residue in a sodium hydroxide solution, and filtering, washing, and drying the same for deacetylation.

Description

크리켓 키토산의 제조방법 및 크리켓 키토산을 이용한 천연항균제{Manufacturing method for Cricket(Gryllus bimaculatus) Chitosan and anti-fungi agent using it}{Manufacturing method for Cricket (Gryllus bimaculatus) Chitosan and anti-fungi agent using it}

본 발명은 건조 귀뚜라미(Gryllus bimaculatus;이하 크리켓이라 함)로부터 우수한 항균성을 갖는 키토산을 높은 수율로 생산하고, 이를 이용한 천연항균제를 제공하는 것이다.The present invention provides chitosan having excellent antimicrobial activity from a dried cricket (Gryllus bimaculatus; hereinafter referred to as cricket) at a high yield and to provide a natural antimicrobial agent using the chitosan.

키토산은 D-글루코사민과 N-아세틸-D-글루코사민이 β-1,4 결합된 키틴의 부분적 탈아세틸화에 의해 얻어진 선형 폴리사카라이드이다.Chitosan is a linear polysaccharide obtained by partial deacetylation of chitin with D-glucosamine and N-acetyl-D-glucosamine bonded to? -1,4 linked.

이러한 키토산은 곰팡이와 새우 또는 곤충의 껍질과 같은 절지동물의 외골격 세포에 많이 포함되어 있다. Such chitosan is found in many exoskeleton cells of arthropods such as fungi and shells of shrimp or insects.

키토산은 천연 항산화제, 항균제, 저콜레스테롤 혈증 및 면역 자극과 같은 현저한 생물학적 특성으로 인해 폐수처리, 식품 및 음료, 화장품, 농약, 세포 배양, 섬유 및 의료 기기와 같은 다양한 분야에서 광범위하게 사용된다.Chitosan is widely used in a variety of fields such as wastewater treatment, food and beverage, cosmetic, pesticide, cell culture, textile and medical devices due to the remarkable biological properties such as natural antioxidants, antibacterial agents, hypocholesterolemia and immunostimulation.

최근, 특히 일부 곤충에 존재하는 키틴이 집중되어 왔고, 이들 유기체를 새로운 양자 키틴 원료로 사용하는 것이 제안되었다. 곤충 키틴과 키토산은 일반적으로 새우 키토산과 매우 유사합니다. 키틴은 알파 형태로 발생하며 비슷한 물리 화학적 성질을 갖는 것으로 알려져 있다. 그러나 한 가지 차이점은 새우 키토산에 비해 곤충 키토산의 일반적으로 낮은 분자량 인 것으로 보인다. 곤충 키토산은 콜로라도 감자 딱정벌레의 경우 2.6 kDa에서 쉬파리 키토산의 경우 501 kDa까지 낮은 분자량을 갖는다.Recently, chitin present in some insects has been concentrated, and it has been proposed to use these organisms as new quantum chitin raw materials. Insect chitin and chitosan are generally very similar to shrimp chitosan. Chitin occurs in alpha form and is known to have similar physico-chemical properties. However, one difference appears to be the generally low molecular weight of insect chitosan compared to shrimp chitosan. Insect chitosan has a low molecular weight from 2.6 kDa for Colorado potato beetle to 501 kDa for sulfhydryl chitosan.

처리 중에 생체 활성의 안정성을 증가시키기 위해 캡슐화 시스템이 민감한 생리 활성 화합물을 빛, 습기, 산소 및 열과 같은 환경 요인으로부터 보호하기 위해 사용된다. 이러한 노력 중 하나 인 캡슐화는 생체 이용률 및 방출 조절을 보존하고 악취 및 맛을 가리는 것으로 잘 알려져 있다. 마이크로캡슐, 비드 및 마이크로 유제와 같은 화합물의 캡슐화는 일반적으로 식품 및 제약 산업에서 사용되며 나노 캡슐화 시스템은 전달 시스템에서 운송 업체로 점점 더 많이 사용되고 있다. To increase the stability of bioactivity during processing, encapsulation systems are used to protect sensitive physiologically active compounds from environmental factors such as light, moisture, oxygen and heat. Encapsulation, one of these efforts, is well known for preserving bioavailability and release control and for blocking offensive odors and tastes. Encapsulation of compounds such as microcapsules, beads and microemulsions is commonly used in the food and pharmaceutical industries, and nanocapsulation systems are increasingly used as delivery vehicles in delivery systems.

본 발명이 해결하고자 하는 과제는 건조 귀뚜라미로부터 우수한 항균성을 갖는 키토산을 높은 수율로 생산하고, 이를 이용하여 식품의 첨가시에 항균성을 높이는 식품 보존제 및 식품의 포장시에 항균성을 갖는 천연항균제를 제공하는 것이다.A problem to be solved by the present invention is to provide a food preserving agent which produces chitosan having excellent antibacterial activity from dried crickets in high yield and increases the antimicrobial activity when food is added and a natural antimicrobial agent having antimicrobial activity in packaging food will be.

본 발명에 따른 크리켓 키토산 제조방법은 건조된 귀뚜라미(이하, 크리켓이라 한다)를 미세 분말로 분쇄하고 세척한 후 건조시켜 크리켓 분말 생성단계와; 건조된 크리켓 분말을 수산화나트륨에 혼합 교반하여 크리켓 단백질을 제거하는 크리켓 단백질 제거단계와; 크리켓 단백질이 제거된 잔류물을 APS 용액에 혼합 교반하여 침시키고 세척하여 색상을 제거하는 색상 제거단계와; 색상이 제거된 잔류물을 교반하면서 침지시키고 세척한 후 건조시켜 탈염하는 탈염단계와; 수산화나트륨 용액에 탈염된 잔류물을 혼합하고 여과 및 세척한 후 건조시켜 탈아세트화하는 단계를 포함하는 것을 특징으로 한다.The method for producing cricket chitosan according to the present invention comprises crushing dried crickets (hereinafter referred to as cricket) with fine powder, washing and drying the resulting crickets to produce cricket powder; A cricket protein removal step of mixing the dried cricket powder with sodium hydroxide and stirring to remove the cricket protein; Removing the cricket protein-free residue from the APS solution by mixing and stirring the mixture; A desalting step of immersing the color-removed residue in water while agitating, washing, and then desiccating to desalinate; Mixing the desalted residue with a sodium hydroxide solution, filtering and washing the solution, and drying and deacetifying the desalted residue.

바람직하게, 크리켓 단백질 제거단계는 건조된 귀뚜라미를 이용하여 생성된 건조 크리켓 분말을 수산화나트륨(NaOH)에 첨가한 후에 크리켓에 포함된 단백질을 제거하고, 반응 혼합물을 여과하고, 잔류물을 pH 5.5가 될 때까지 증류수로 세척하여 단백질이 제거된 잔류물을 생성하고, 색상 제거단계는 크리켓 단백질이 제거된 잔류물을 APS 용액에 첨가한 후 교반하고, 여과후의 잔류물을 pH 5.5가 될 때까지 증류수로 세척하여 색상을 제거하며, 탈염단계는 색상이 제거된 잔류물을 실온에서 옥살산 용액에 교반하면서 침지시키고 여과후의 잔류물을 pH 5.5가 될 때까지 증류수로 세척한 후 건조시키며, 탈아세트화 단계는 탈염된 잔류물을 50-67중량%의 농도를 갖는 수산화나트륨 용액에 침지시키고 교반하여 키틴 탈아세틸화하고, pH 5.5가 될 때까지 증류수로 세척한 후 건조시키는 것을 특징으로 한다.Preferably, the cricket protein removal step is performed by adding dry cricket powder produced using dried crickets to sodium hydroxide (NaOH), removing proteins contained in the cricket, filtering the reaction mixture, and washing the residue with a pH of 5.5 The residue after removing the cricket protein was added to the APS solution and stirred. After the filtration, the filtrate was washed with distilled water , And the desalting step is carried out by immersing the colorless residue in the oxalic acid solution at room temperature while stirring the residue, washing the residue after filtration with distilled water to a pH of 5.5, drying it, Is prepared by immersing the demineralized residue in a sodium hydroxide solution having a concentration of 50-67% by weight and chitin-deacetylating with stirring, and stirring the mixture with distilled water Followed by pretreating and drying.

본 발명은 건조 귀뚜라미로부터 우수한 새우에서 추출한 키토산보다 우수한 항균성을 갖는 크리켓 키토산을 높은 수율로 생산할 수 있는 장점이 있다.The present invention has the advantage of producing cricket chitosan having high antimicrobial activity from dry crickets superior to chitosan extracted from excellent shrimp with high yield.

또한, 본 발명의 크리켓 키토산은 식품을 첨가하면 새우에서 추출한 키토산보다 미생물의 발생을 최소화시켜 식품의 보존기간을 높일 수 있는 식품 첨가제로 사용할 수 있는 효과가 있다.In addition, the cricket chitosan of the present invention can be used as a food additive which can increase the preservation period of food by minimizing the occurrence of microorganisms as compared with chitosan extracted from shrimp by adding food.

또한, 본 발명의 크리켓 키토산은 즉석식품의 포장재에 도포하면 일반 키토산을 도포한 포장재보다 식품의 미생물 발생이 억제하여 즉석식품의 신선도를 증가시킬 수 있는 천연항균제로 사용할 수 있는 장점이 있다.In addition, the cricket chitosan of the present invention has an advantage that it can be used as a natural antimicrobial agent which can increase the freshness of instant food by suppressing microbial generation of food than the packaging material coated with ordinary chitosan when it is applied to the packaging material of instant food.

도 1은 본 발명에 따른 크리켓 키토산 제조방법의 공정도
도 2는 본 발명에 따른 크리켓 키토산과 상업용 키토산의 FT-IR 그래프.
도 3은 본 발명에 따른 크리켓 키토산과 상업용 키토산의 XRD 패턴 그래프.
도 4는 본 발명에 따른 크리켓 키토산과 상업용 키토산의 전자현미경 사진.
도 5는 본 발명에 따른 크리켓 키토산의 분자량 그래프.
도 6은 본 발명에 따른 크리켓 키토산과 상업용 키토산이 점적된 포장재로 생새우를 포장한 사진.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a process diagram of a method for producing cricket chitosan according to the present invention
2 is a FT-IR graph of cricket chitosan and commercial chitosan according to the present invention.
3 is an XRD pattern graph of cricket chitosan and commercial chitosan according to the present invention.
4 is an electron micrograph of cricket chitosan and commercial chitosan according to the present invention.
Figure 5 is a molecular weight graph of cricket chitosan according to the present invention.
Fig. 6 is a photograph of fresh shrimp packed with cricket-chitosan and commercial chitosan-impregnated packaging material according to the present invention.

이하 첨부된 도면을 참조하여 본 발명을 자세히 살펴본다.BRIEF DESCRIPTION OF THE DRAWINGS FIG.

도 1에 도시된 바와 같이, 본 발명에 따른 크리켓 키토산 제조방법은 크리켓 분말 생성단계(S01), 크리켓 단백질 제거단계(S02), 색상 제거단계(S03), 탈염단계(S04), 탈아세트화 단계(S05)로 이루어진다.1, the cricket chitosan manufacturing method according to the present invention includes a cricket powder producing step S01, a cricket protein removing step S02, a color removing step S03, a desalting step S04, (S05).

크리켓 분말 생성단계(S01)는 건조된 귀뚜라미를 분쇄기에서 미세 분말로 분쇄하고, 분쇄된 미세 분말을 증류수로 세척하여 이물질을 제거하며, 미세 분말을 약 60℃로 가열하여 건조시켜 크리켓 분말을 생성한다.In the cricket powder producing step S01, crushed dried crickets are pulverized into fine powder in a pulverizer, and the pulverized pulverized powder is washed with distilled water to remove impurities. The pulverized powder is heated to about 60 ° C and dried to produce cricket powder .

크리켓 단백질 제거단계(S02)는 건조된 귀뚜라미를 이용하여 생성된 건조 크리켓 분말을 수산화나트륨(NaOH)에 첨가한 후에 약 95℃에서 약 130rpm으로 약 6시간 동안 교반하여 크리켓에 포함된 단백질을 제거한다. 그리고, 반응 혼합물을 100 메쉬체로 여과하고, 잔류물을 pH 5.5가 될 때까지 증류수로 세척하여 단백질이 제거된 잔류물을 생성한다.In the cricket protein removal step (SO2), the dried cricket powder produced using the dried crickets is added to sodium hydroxide (NaOH), and then the cricket protein is removed by stirring at about 95 DEG C and about 130 rpm for about 6 hours . The reaction mixture is then filtered through a 100-mesh sieve and the residue is washed with distilled water to a pH of 5.5 to produce a protein-free residue.

색상 제거단계(S03)는 크리켓 단백질이 제거된 잔류물을 APS 용액에 첨가한 후 약 50℃ 및 약 130rpm에서 약 6시간 동안 진탕 수조에서 교반하고, 100메쉬체를 통해 여과하고, 잔류물을 pH 5.5가 될 때까지 증류수로 세척하여 단백질이 제거된 잔류물에서 색상을 제거한다. 이때, APS 용액은 증류수와 APS를 1:1중량비로 혼합하고 약 50℃에서 30분 동안 용해시켜 생성된 APS 용액(50% (w/v))인 것이 바람직하다.The color removal step (SO3) is performed by adding the residue from which the cricket protein has been removed to the APS solution, stirring in a shaking water bath at about 50 DEG C and about 130 rpm for about 6 hours, filtering through a 100 mesh sieve, Wash with distilled water until it is 5.5 to remove color from the protein-free residue. At this time, the APS solution is preferably an APS solution (50% (w / v)) produced by mixing distilled water and APS at a weight ratio of 1: 1 and dissolving at about 50 ° C for 30 minutes.

탈염단계(S04)는 색상이 제거된 잔류물을 실온에서 옥살산 용액에 약 3시간 동안 교반하면서 침지시키고 100 메쉬체를 통해 여과하고, 잔류물을 pH 5.5가 될 때까지 증류수로 세척한 후 약 50℃ 건조시켜 탈염한다.The desalted step (SO4) was carried out by immersing the colorless residue in a solution of oxalic acid at room temperature with stirring for about 3 hours, filtering through a 100-mesh sieve, washing the residue with distilled water to a pH of 5.5, Deg.] C and desalted.

탈아세트화 단계(S05)는 탈염된 잔류물을 95℃에서 고농도의 수산화나트륨 용액(50%-67%)에 침지시키고 130rpm으로 교반하여 키틴 탈아세틸화하고, pH 5.5가 될 때까지 증류수로 세척한 후 약 60℃ 건조시킨다.The deacetylation step (SO5) was carried out by immersing the desalted residue at 95 DEG C in a high concentration of sodium hydroxide solution (50% -67%), chitin deacetylating by stirring at 130 rpm, washing with distilled water And then dried at about 60 ° C.

또한, 본 발명의 크리켓 키토산의 제조방법으로 제조된 크리켓 키토산은 높은 항균성을 갖으며, 즉석식품의 포장재에 도포되는 천연항균제로 사용하여 식품의 보존기간을 연장할 수 있게 된다.In addition, the cricket chitosan produced by the method of the present invention has high antimicrobial activity and can be used as a natural antimicrobial agent applied to the packaging material of instant food, thereby extending the shelf life of the food.

이하, 본 발명의 실시예를 자세히 살펴본다.Hereinafter, embodiments of the present invention will be described in detail.

<크리켓 키토산의 추출><Extraction of cricket chitosan>

전술한 바와 같은 크리켓 키토산 추출방법에 따라서 건조된 Gryllus bimaculatus를 분쇄하고 크리켓 분말 40g을 1M NaOH 400mL에 담지하고 95 ℃에서 130rpm으로 6시간 동안 교반한 후에 반응 혼합물을 100 메쉬체로 여과하고, 잔류물을 pH 5.5가 될 때까지 증류수로 세척하여 크리켓 단백질을 제거하였다. Gryllus bimaculatus was pulverized according to the above-mentioned cricket chitosan extraction method, and 40 g of cricket powder was carried in 400 mL of 1M NaOH. After stirring for 6 hours at 95 rpm at 130 rpm, the reaction mixture was filtered with a 100-mesh sieve, The cricket protein was removed by washing with distilled water until the pH reached 5.5.

그리고, 400g의 증류수에 400g의 APS를 50℃에서 30분 동안 용해시켜 APS 용액(50%(w/v))을 새롭게 제작한 후에 진탕 수조에서 크리켓 단백질이 제거된 잔류물을 침지시키고 50℃ 및 130rpm에서 6시간 동안 교반 한 후에 100 메쉬체를 통해 여과하고, pH 5.5가 될 때까지 증류수로 세척하여 색상을 제거하였다.The APS solution (50% (w / v)) was newly prepared by dissolving 400 g of APS in 400 g of distilled water at 50 캜 for 30 minutes. Subsequently, the residue in which the cricket protein was removed was immersed in a shaking water bath, After stirring at 130 rpm for 6 hours, the mixture was filtered through a 100-mesh sieve and washed with distilled water until the pH reached 5.5 to remove the color.

또한, 색상이 제거된 잔류물을 옥살산 용액에 침지시키고 실온에서 3시간 동안 교반하고 100 메쉬체로 걸러 내고, 크리켓 키틴을 증류수로 pH 5.5로 세척하고, 공기 오븐에서 60 ℃에서 밤새 건조시켜 탈염하였다. Further, the decolorized residue was immersed in a solution of oxalic acid, stirred at room temperature for 3 hours, filtered with a 100-mesh sieve, washed with distilled water to pH 5.5, and desiccated by drying overnight at 60 ° C in an air oven.

마지막으로 95℃에서 고농도의 수산화나트륨 용액(50-67%의 농도)을 사용하여 키틴 탈아세틸화하여 시간이 경과되면서 물을 흔들어 주면서 130rpm으로 흔들어 주면서 얻었다. 크리켓 키토산을 여과하고, 증류수로 pH 5.5로 세척하고, 공기를 60 ℃에서 밤새 오븐 건조시켜 키토산을 생성하였다.Finally, chitin deacetylation was carried out at 95 ° C with a high concentration of sodium hydroxide solution (concentration of 50-67%), and the reaction was shaken at 130 rpm while shaking the water over time. The cricket chitosan was filtered, washed with distilled water to pH 5.5, and the air was oven-dried overnight at 60 ° C to produce chitosan.

표 1에 도시된 바와 같이, 이와 같은 과정으로 생성된 크리켓 키틴은 40g의 크리켓 분말로부터 약 4.01g이 추출되어 건조 중량의 약 10.11%를 차지하는 것을 확인할 수 있었으며, 키토산은 약 2.20g이 추출되어 수율은 55.0%였다. 키토산의 수율은 매미에서 15%, 누에 번데기에서 20% 등보다 현저하게 높은 것을 확인할 수 있었다.As shown in Table 1, about 4.01 g of cricket chitin produced from the cricket powder of 40 g was extracted to account for about 10.11% of the dry weight, and about 2.20 g of chitosan was extracted, Was 55.0%. The yield of chitosan was found to be significantly higher than that of 15% in cicada and 20% in silkworm pupa.

Figure pat00001
Figure pat00001

<FT-IR 분석>&Lt; FT-IR analysis >

FT-IR은 화합물 내 특정 작용기를 확인하는 데 널리 사용되는 분석방법이다. 제조된 크리켓(Gryllus bimaculatus) 키토산과 상업용 키토산(새우에서 추출된 키토산)을 각각 0.01 g의 사용하여 키토산 특유의 IR 밴드를 갖는 것을 Nicolet iS50 FT-IR 및 Nicolet iS50 ATR 분광기(Thermo Fisher Scientific Inc., USA)를 사용하여 FT-IR를 확인하여 도 2의 그래프로 나타내었다.FT-IR is a widely used analytical method for identifying specific functional groups in a compound. Using 0.01 g each of the prepared cricket (Gryllus bimaculatus) chitosan and commercial chitosan (shrimp extracted chitosan), the Nicolet iS50 FT-IR and Nicolet iS50 ATR spectrometer (Thermo Fisher Scientific Inc., USA) was used to confirm the FT-IR and is shown in the graph of FIG.

도 2의 그래프에서 확인할 수 있듯이 크리켓 키토산과 상업용 키토산의 FT-IR 스펙트럼은 파장과 투과율의 세기면에서 매우 유사한 것을 확인할 수 있었다. 또한, 크리켓 키토산은 OH의 신축 진동과 NH의 신진 진동에 해당하는 3355cm-1 및 3292cm-1의 강한 밴드를 나타냈으며, 상업용 키토산은 3354cm-1 및 3290cm-1에서 강한 밴드를 나타내었으며, 크리켓 키토산과 상업용 키토산의 FT-IR 스펙트럼은 CH2OH 그룹의 (CH2) 진동에 해당하는 2872cm-1 및 2871cm-1의 밴드를 나타내었다. 또한, NHCOCH3 그룹(아미드 I 밴드)의 1652cm-1(C=O)에서의 밴드의 명확한 약화가 관찰되어 성공적인 탈아세틸화를 나타내었다. 또한, NHCOCH3 그룹(아미드 II 밴드)의 특징적인 NH 굽힘 진동이 1591cm-1에서 검출되었다. As can be seen from the graph of FIG. 2, the FT-IR spectra of cricket chitosan and commercial chitosan are very similar in wavelength and transmittance. Also, cricket chitosan showed a strong band of 3355cm -1 and 3292cm -1 corresponding to the stretching vibrations of the budding of the OH and NH, commercial chitosan showed a strong band at 3354cm -1 and 3290cm -1, Cricket chitosan and FT-IR spectrum of a commercial chitosan showed a band of 2872cm -1 and 2871cm -1 corresponding to the (CH 2) vibration of the CH 2 OH group. In addition, a clear attenuation of the band at 1652 cm -1 (C = O) of the NHCOCH 3 group (amide I band) was observed, indicating successful deacetylation. In addition, characteristic NH bending vibrations of the NHCOCH 3 group (amide II band) were detected at 1591 cm -1 .

이와 같이 크리켓 키토산과 상업용 키토산의 FT-IR 스펙트럼은 상당한 유사성을 갖는 것을 확인할 수 있었다.Thus, it was confirmed that the FT-IR spectra of cricket chitosan and commercial chitosan have considerable similarities.

<탈아세틸화 확인><Confirmation of deacetylation>

크리켓 키토산의 탈아세틸화를 확인하기 위하여 반응 시간과 NaOH 농도(%)의 함수로서의 키토산의 DA를 표 2에 나타내었다.Table 2 shows the DA of chitosan as a function of reaction time and NaOH concentration (%) to confirm deacetylation of cricket chitosan.

표 2에 나타난 바와 같이, 추출된 크리켓 키토산이 NaOH 용액의 50 %에서 9 시간 동안 반응 할 때, 그것은 66.54 %까지 탈아세틸화되었다. 그러나, NaOH 용액을 55 % 처리 한 결과, DA는 각각 9시간 및 12시간 후에 75.18 % 및 77.63 %로 급격히 증가했다. 또한, 9 시간 동안 67% NaOH로 처리하면 크리켓 키토산이 최대 84.98%까지 탈아세틸화된 것을 확인할 수 있었다.As shown in Table 2, when the extracted cricket chitosan reacted in 50% of the NaOH solution for 9 hours, it was deacetylated to 66.54%. However, as a result of treating 55% NaOH solution, the DA increased sharply to 75.18% and 77.63% after 9 hours and 12 hours, respectively. Also, treatment with 67% NaOH for 9 hours showed deacetylation of cricket chitosan up to 84.98%.

Figure pat00002
Figure pat00002

<X선 회절 분석(XRD)>&Lt; X-ray diffraction analysis (XRD) >

크리켓 키토산의 결정성은 XRD에 의해 결정된다. 크리켓 키토산의 XRD 패턴은 상업용 키토산과 비교하였다. XRD 패턴은 DAVINCI 시스템을 갖춘 D8 ADVANCE를 이용하여 5°와 45° 사이의 스캔 각도로 수집하였으며, 도 3의 그래프로 나타내었다.Crystallinity of cricket chitosan is determined by XRD. The XRD pattern of cricket chitosan was compared with commercial chitosan. The XRD patterns were collected at scan angles between 5 and 45 using D8 ADVANCE equipped with DAVINCI system and are shown in the graph of FIG.

도 3에 도시된 바와 같이 크리켓 키토산의 XRD 피크는 10.50°와 20.07°에서 관찰되었고, 상업용 키토산의 XRD 피크는 10.33°와 19.90°에서 관찰되어 서로 유사한 패턴임을 확인할 수 있었다.As shown in FIG. 3, the XRD peaks of the cricket chitosan were observed at 10.50 ° and 20.07 °, and the XRD peaks of the commercial chitosan were observed at 10.33 ° and 19.90 °, respectively.

<주사전자 현미경 분석><Scanning Electron Microscope Analysis>

크리켓 키틴과 키토산의 표면 형태를 SEM으로 관찰하고 상업용 키토산과 비교하였다. 현미경으로 검사하기 전에 크리켓 키틴과 키토산을 철저하게 갈아서 이온 스퍼터(S-2380, HITACHI, Japan)를 사용하여 진공 하에서 금으로 덮었다. SEM은 Bio-SEM(E-1010, HITACHI, Japan)을 사용하여 수행되었다. 샘플을 1000 배와 10000 배의 배율로 촬영하여 도 4에 나타내었다.Surface morphology of cricket chitin and chitosan was observed by SEM and compared with commercial chitosan. Prior to microscopic examination, cricket chitin and chitosan were thoroughly ground and covered with gold under vacuum using an ion sputter (S-2380, HITACHI, Japan). SEM was performed using Bio-SEM (E-1010, HITACHI, Japan). The sample was photographed at a magnification of 1000 times and 10000 times and is shown in Fig.

도 4의 사진에서 확인할 수 있듯이 크리켓 키토산과 상업용 키토산의 표면은 매우 유사함을 확인할 수 있었다.As can be seen from the photograph of FIG. 4, the surface of cricket chitosan and commercial chitosan are very similar.

<키토산의 질량 분석><Mass analysis of chitosan>

크리켓 키토산의 분자량을 AXIMA 질량 분석기(SHIMADZU-Biotech Co., Tokyo, Japan)를 사용하여 측정하였으며 도 5에 나타내었다. The molecular weight of cricket chitosan was measured using an AXIMA mass spectrometer (SHIMADZU-Biotech Co., Tokyo, Japan) and is shown in Fig.

도 5에 나타난 바와 같이, 본 발명의 크리켓 키토산의 Mw는 8,302Da 이하인 것으로 밝혀졌다. 강한 신호는 550-1500의 범위에서 관찰되었고, 약한 신호가 8302까지 검출되었다. 강한 피크는 생성물이 주로 2.8의 중합도를 갖는 키토 올리고 사카라이드로 구성되었음을 나타냈다. 약한 피크는 키토산 중합체의 분자량을 나타낸다. 크리켓 키토산의 Mw는 상업용 키토산의 50-190 kDa보다 낮았다. 이는 고분자량(HMw) 키토산과 비교할 때, 저분자량(LMw) 키토산(평균 분자량 5000-10000 Da 범위)은 강력한 살균 및 우수한 생물학적 활성을 갖는 것으로 연구되었는바 본 발명의 크로켓 키토산도 우수한 살균 및 생물학적 활성을 갖는 것으로 예측할 수 있다.As shown in FIG. 5, the Mw of the cricket chitosan of the present invention was found to be 8,302 Da or less. Strong signals were observed in the range of 550-1500 and weak signals were detected up to 8302. The strong peak indicated that the product was composed of chitooligosaccharides with a degree of polymerization of 2.8. The weak peak indicates the molecular weight of the chitosan polymer. The Mw of cricket chitosan was lower than that of commercial chitosan of 50-190 kDa. It has been studied that low molecular weight (LMw) chitosan (average molecular weight in the range of 5000-10000 Da) has strong sterilization and excellent biological activity when compared to high molecular weight (HMw) chitosan. The inventive croquet chitosan also has excellent sterilization and biological activity . &Lt; / RTI &gt;

<색상 측정, 제타 전위 및 pH값 분석><Color measurement, zeta potential and pH value analysis>

색상 측정을 위해 0.5 g의 크리켓 키토산과 상업용 키토산을 투명 페트리 접시에 넣었다. 샘플의 색은 교정용 백색판(L* = 96.04, a* = 0.20, b* = 2.01)으로 표준화된 비색계(Minolta CR-400)를 사용하여 측정하였다. 각 샘플을 개별적으로 3회 측정하고 매개 변수를 L*, a* 및 b*로 기록하여 표 3에 나타내었고, 또한, pH 값 및 제타 전위를 측정하기 위하여, 상업 및 크리켓 (Gryllus bimaculatus) 키토산 10 mL를 0.2 % 아세트산 수용액에 2.0 mg/mL의 농도로 용해시켰다. 제타 전위는 다중 좁은 모드로 25±1℃에서 작동하는 Zetasizer Nano ZS를 사용하여 측정하였으며 표 3에 함께 나타내었다.For color measurement, 0.5 g of cricket chitosan and commercial chitosan were placed in a transparent Petri dish. The color of the sample was measured using a colorimeter (Minolta CR-400) standardized as an orthodontic white plate (L * = 96.04, a * = 0.20, b * = 2.01). Each sample was measured three times individually and the parameters were recorded as L * , a * and b * and shown in Table 3. In addition, to measure the pH value and zeta potential, commercial and cricket (Gryllus bimaculatus) chitosan 10 mL was dissolved in a 0.2% acetic acid aqueous solution at a concentration of 2.0 mg / mL. Zeta potentials were measured using a Zetasizer Nano ZS operating at 25 ± 1 ° C in multiple narrow modes and are shown in Table 3.

Figure pat00003
Figure pat00003

표 3에 나타난 바와 같이, 크리켓 키토산 및 상업용 키토산의 L*, a* 및 b*값은 각각 72.16±0.12, 1.96±0.06, 11.83±0.04 및 77.92±0.51, 0.51±0.06, 13.06±0.05 로 나타났다. 2개의 키토산 샘플은 상이한 결과를 나타냈다. 크리켓 키토산의 L* 및 b* 값은 상업용 키토산의 L* 및 b* 값보다 현저히 낮았다. 대조적으로, 크리켓 키토산의 a* 값은 상업용 키토산의 값보다 높았다. 이때, L* 값은(밝기에서 어둡기), a* 값은 (녹색에서 적색) 및 b*값은 (청색에서 황색)을 의미한다.As shown in Table 3, the L * , a * and b * values of cricket chitosan and commercial chitosan were 72.16 ± 0.12, 1.96 ± 0.06, 11.83 ± 0.04 and 77.92 ± 0.51, 0.51 ± 0.06 and 13.06 ± 0.05, respectively. The two chitosan samples showed different results. L * and b * values of cricket chitosan was significantly lower than the L * and b * values of commercial chitosan. In contrast, the a * value of cricket chitosan was higher than that of commercial chitosan. At this time, the L * value (darkness at brightness), the a * value (green to red), and the b * value (blue to yellow).

그리고, 크리켓 키토산의 pH 값은 약 3.84로 상업용 키토산의 pH 값인 약 3.88와 유사함을 확인할 수 있었다.The pH value of cricket chitosan was about 3.84, which was similar to the pH value of commercial chitosan of about 3.88.

또한 크리켓 키토산 및 상업용 키토산의 제타전위도 두 개의 키토산은 강한 양이온 전하를 나타내었고 제타 전위는 매우 유사했다. The zeta potential of cricket chitosan and commercial chitosan also showed strong cationic charge and the zeta potential was very similar.

<크리켓 키토산의 나노 캡슐화><Nano encapsulation of cricket chitosan>

크리켓 키토산 NP는 크리켓 키토산과 TPP(tripolyphosphate)를 사용하는 이온성 겔화 기술로 제조되었습니다. 크리켓 키토산 및 상업용 키토산을 0.2% 아세트산 수용액에 1.44 mg/mL의 농도로 용해시켰다. 불용성 입자의 잔류물을 제거하기 위해 원심분리(5,000 rpm, 4℃, 15분)를 사용하였다. 실온에서 자기 교반(800 rpm) 하에 TPP 수용액 2, 4 및 6 mL를 파스퇴르 피펫을 사용하여 1 mL/분 유속으로 키토산 용액 10 mL에 첨가하였다. 반응은 10분 동안 수행되었다. 크리켓 키토산 및 상업용 키토산의 입자 크기, 제타 전위 및 PDI를 동적 광산란 (DLS) 분석을 사용하여 측정하여 표 4에 나타내었다.  Cricket Chitosan NP is made from ionic gelation technology using cricket chitosan and TPP (tripolyphosphate). Cricket chitosan and commercial chitosan were dissolved in a 0.2% acetic acid aqueous solution at a concentration of 1.44 mg / mL. Centrifugation (5,000 rpm, 4 ° C, 15 min) was used to remove residues of insoluble particles. 2, 4 and 6 mL of aqueous TPP solution were added to 10 mL of chitosan solution at a flow rate of 1 mL / min using a Pasteur pipette under magnetic stirring (800 rpm) at room temperature. The reaction was carried out for 10 minutes. The particle size, zeta potential and PDI of cricket chitosan and commercial chitosan were measured using dynamic light scattering (DLS) analysis and are shown in Table 4.

Figure pat00004
Figure pat00004

표 4에 나타난 바와 같이, 크리켓 키토산(A)과 상업용 키토산(B) NP의 나노입자(NP)의 물리적 특성을 보여 주었다. 상업용 키토산과 비교하여 크리켓 키토산은 입자 크기가 더 작은 것을 확인할 수 있었다. 또한, TPP 부피가 증가함에 따라, 크리켓 키토산 및 상업용 키토산 NP의 입자 크기가 증가하였다. 2개의 키토산 NP의 크기는 각각 174 내지 245 nm 및 196 내지 331 nm의 범위였다. 2개의 키토산의 제타 전위는 강한 양이온성 전하를 나타내며, 각각 30.02 내지 36.12 mV 및 33.46 내지 38.14 mV 범위였다. PDI 값은 0에서 1까지 그리고 0에서 0.3까지의 범위에서 균일한 나노 현탁액을 나타내었다. 이때, PDI이 높은 값은 입자 크기 분포가 덜 균일한 것과 관련이 있다. 이에 따라 크리켓 키토산의 NP는 상업용 키토산 NP보다 더 안정한 입도 분포와 안정한 NP을 갖는 것을 확인할 수 있었다.As shown in Table 4, the physical properties of nanoparticles (NP) of cricketed chitosan (A) and commercial chitosan (B) NP were shown. Compared with commercial chitosan, the particle size of cricket chitosan was smaller than that of commercial chitosan. In addition, as the TPP volume increased, the particle size of cricket chitosan and commercial chitosan NP increased. The sizes of the two chitosan NPs ranged from 174 to 245 nm and 196 to 331 nm, respectively. The zeta potentials of the two chitosans exhibit strong cationic charge, ranging from 30.02 to 36.12 mV and 33.46 to 38.14 mV, respectively. The PDI values ranged from 0 to 1 and from 0 to 0.3, indicating a uniform nanosuspension. At this time, a higher value of PDI is associated with less uniform particle size distribution. As a result, it was confirmed that the NP of cricket chitosan had a more stable particle size distribution and stable NP than the commercial chitosan NP.

이와 같이 본 발명의 크리켓 키토산의 분자량은 시판중인 키토산보다 낮았으며, 분자 질량이 8,032Da 이하이며 주로 550-1,500Da의 범위에서 분포한다는 것을 보여 주었다. 탈아세틸화, FT-IR 스펙트럼, XRD 패턴 및 SEM 이미지의 정도는 상업용 키토산의 그것과 매우 유사했다. 크리켓 키토산은 상업용 키토산과 비교하여 크리켓 키토산 NP는 입자 크기와 PDI 값이 더 작고 입자 크기 분포가보다 균질했다. 따라서 크리켓 키토산은 식품, 화장품 및 제약 산업을 위한 키토산원으로 사용할 수 있음을 알 수 있다.As described above, the molecular weight of cricket chitosan of the present invention was lower than that of commercially available chitosan, and showed that the molecular mass was less than 8,032 Da and mainly distributed in the range of 550-1,500 Da. The degree of deacetylation, FT-IR spectrum, XRD pattern and SEM image were very similar to that of commercial chitosan. Cricket Chitosan has a smaller particle size and PDI value and more homogeneous particle size distribution compared to commercial chitosan. Thus, cricket chitosan can be used as a chitosan source for the food, cosmetic and pharmaceutical industries.

<크리켓 키토산의 항균성 실험><Antibacterial activity of cricket chitosan>

<시료 준비><Sample Preparation>

쌀을 불린 후, 사용 해야 하는 무게를 잰 후, 키토산 넣고 버무린 후(키토산이 골고루 밥에 묻어 항균성을 나타내기 위해서 불린 후의 쌀을 이용한다.) 물 넣고, 수비드 팩킹 후, 조리하여 찰밥으로 조리하였다.After weighing the rice, weigh the weights to be used, add chitosan, and mix (chitosan is evenly poured on the rice to make it look like antimicrobial rice). Water is added, the beads are packed, cooked and cooked with rice bran .

또한, 돼지갈비의 핏물 제거 후, 사용할 양념에 마리네이드 후, 건더기만 건져서 무게를 잰 후, 키토산을 넣고 버무린다. (양념자체에 키토산을 넣게 되면 너무 많이 들어가고, 양을 정확히 알 수 없으므로, 양념에 재운 후, 돼지고기양만 계산하여 키토산을 넣고 버무린 후, 수비드 팩킹후, 조리한다.)Also, after removing the blood of the pork ribs, marinate in the spices to be used, weigh only the chili and then weigh the chitosan. (If you add chitosan to the spice itself, you can not know exactly how much it is.) After the fortune is seasoned, only the amount of pork is calculated and chitosan is added.

키토산은 샘플 무게 30 g , 키토산 함량( w/v ) 1%인 1.5g을 사용하였다.Chitosan was prepared by weighing 30 g of sample and 1.5 g of chitosan content (w / v) of 1%.

<실험결과><Experimental Results>

크리켓 키토산이 첨가된 쌀밥, 돼지고기찜을 즉석 섭취 및 편의 식품으로 사용되는 수비드 조리방법으로 조리온도 85 ℃ 에서 1시간 30분간 조리 후, 기간별로 균수와 pH를 각각 측정하였다. 대조군으로 상업용 키토산을 첨가하거나 또는 아무것도 첨가하지 않고 동일한 방법으로 조리하였다. 균수 측정은 일반세균, 대장균군(Bacillus cereus), 황색포도상구균(Staphylococcus aureus)의 상업용 3M 배지를 사용하여 일정한 환경에서 측정하였다. 또한, 기간별 pH의 변화를 측정하여 표 5에 나타내었다.Cooked rice cooked with cricket chitosan and steamed pork were cooked at a cooking temperature of 85 ° C for 1 hour and 30 minutes, and bacterial counts and pH were measured for each period. Commercial chitosan was added as a control or cooked in the same manner without any addition. The bacterial count was measured in a constant environment using commercial 3M medium of common bacteria, Bacillus cereus, Staphylococcus aureus . The change in pH by period was measured and shown in Table 5.

<항균성 결과><Antimicrobial Results>

측정결과 각 품목별 검출 균수에 따라 평균을 비교해 본 결과 아무 처리 하지 않은 대조군, 상업용 키토산 첨가군, 크리켓 키토산 첨가군 에서 크리켓 키토산의 항균활성이 뚜렷하게 나타났다. 수비드 조리 전 쌀밥 2.69±0.01 log CFU/g , 돼지고기찜 4.08±0.08 log CFU/g으로 유의하게 나타났다(p<0.05). 높은 온도와 가열 시간에 의해 조리 후 30일 전까지 균수는 측정되지 않았고, 35일부터 균수가 측정되었다. As a result of the measurement, the antimicrobial activity of cricket chitosan was apparent in the untreated control group, the commercial chitosan added group, and the cricket chitosan added group. (2.69 ± 0.01 log CFU / g) and steamed pork (4.08 ± 0.08 log CFU / g, respectively) before cooking (p <0.05). The number of bacteria was not measured until 30 days after cooking by high temperature and heating time, and the number of bacteria was measured from the 35th day.

일반세균은 저장기간 35일차 대조군 쌀밥 6.20±0.00 log CFU/g, 돼지고기찜 6.28±0.01 log CFU/g 에서 유의적으로 나타났고, 40일차 대조군 쌀밥 6.42±0.10 log CFU/g, 돼지고기찜 TNTC(무한대)로 나타났다. 식품공전에 따른 표준평판법에 의해 유효 세균 수를 30~300의 기준에 따라 유효적 세균으로 측정은 안되지만 상업용 키토산군에서 30개 이하로 균수가 측정이 된 반면 키토산 무첨가군에서 세균수 측정이 되지 않았다.The average bacterial counts were 6.20 ± 0.00 log CFU / g, 6.28 ± 0.01 log CFU / g, 6.42 ± 0.10 log CFU / g, and 6.40 ± 0.10 log CFU / g, respectively, on the 35th day of the storage period. (Infinity). The number of bacteria was not measured in the chitosan-free group but the number of effective bacteria in the commercial chitosan group was less than 30, while the number of effective bacteria in the commercial chitosan group was not measured by the standard plate method according to the food circulation .

대장균군(Bacillus cereus)은 35일과 40일차에 유효수치로 측정은 되지 않았고, 대조군과 상업용 키토산군의 쌀밥과 돼지고기찜에서 에서 10~15개 이하로 측정이 되었다.Bacillus cereus (Bacillus cereus) was not measured as an effective value on days 35 and 40, and was measured to be 10-15 or less in rice and pork steamed in the control and commercial chitosan groups.

황색포도상구균(Staphylococcus aureus)은 저장기간 35일차 대조군 쌀밥 3.04±0.01 log CFU/g 에서 유의적으로 나타났고, 40일차 대조군 쌀밥 3.60±0.35 log CFU/g 나타났다. 황색포도상구균 또한 유효 수치로 적용은 되지 않지만, 대조군과 상업용 키토산군, 크리켓 키토산 군에서 쌀밥과 돼지고기찜에서도 균이 나타났다. 그러나 대조군은 쌀밥과 돼지고기찜에서 20개 이하, 상업용 키토산군에서 쌀밥과 돼지고기찜에서 10~15개 이하로 나타난 반면 크리켓 키토산군에서는 쌀밥은 8개 이하, 돼지갈비찜에서는 5개 이하로 나타났고, 다른 균보다 황색포도상구균에 대한 항균 활성이 높은 것으로 판단되었다. Staphylococcus aureus was significantly increased at 3.04 ± 0.01 log CFU / g of rice in the control group on the 35th day of storage and 3.60 ± 0.35 log CFU / g in the control group. Staphylococcus aureus was also not effective, but bacteria were also found in rice and pork steamed in the control, commercial chitosan and cricket chitosan groups. However, the control group showed less than 20 rice and pork steamed rice and 10-15 rice and pork steamed commercial chitosan group, while the cricket chitosan group had less than 8 rice and 5 pork chopped rice. , The antimicrobial activity against Staphylococcus aureus was higher than that of other strains.

<pH 결과><pH result>

Figure pat00005
Figure pat00005

표 5에 도시된 바와 같이 쌀밥 대조군에서 30일차부터 pH 변화가 나타나기 시작하였고, 키토산 두 군은 꾸준히 pH가 감소하였다. 돼지고기찜은 유의적인 pH변화가 없었다.As shown in Table 5, the pH change started to appear from the 30th day in the rice control group, and the pH of the chitosan group was steadily decreased. There was no significant pH change in the steamed pork.

이로써 즉석편이 식품으로 적용 될 수 있는 쌀밥과 돼지고기찜에 크리켓 키토산의 항균활성이 상업용 키토산보다 높다는 것을 확인할 수 있었다.As a result, it was confirmed that the antimicrobial activity of cricket chitosan was higher than that of commercial chitosan in rice and pork steamed which could be applied as instant food.

<포장재 항균성 확인><Confirmation of antimicrobial properties of packaging materials>

크리켓 키토산과 상업용 키토산을 각각 점적한 dot 포장재를 모델링하고 도 6과 같이 생새우를 포장한 후에 ATP 생물발광법으로 포장재 항균성을 확인하여 표 6에 평균값으로 나타내었다. 도 6의 a, a'는 상업용 키토산로 점적한 포장재로서 a는 생새우의 머리부분이 왼쪽방향인 것이고, a'는 머리부분이 오른쪽방향이다. 또한, b, b'는 크리켓 키토산로 점적한 포장재로서 a는 생새우의 머리부분이 왼쪽방향인 것이고, a'는 머리부분이 오른쪽방향이다. The dot packing materials dotted with cricket chitosan and commercial chitosan were modeled, and the packaging material was antimicrobially confirmed by ATP bioluminescence after packaging the raw shrimp as shown in FIG. 6, a and a 'are packaging materials filled with commercial chitosan, where a is the head of the raw shrimp to the left, and a' is the head to the right. In addition, 'b' and 'b' are packed with cricket chitosan, where a is the head of the raw shrimp to the left, and a 'is the head to the right.

Figure pat00006
Figure pat00006

표 6에 나타난 바와 같이 상업용 키토산은 1일차 14.553에서 5일차 513,940 RLU, 크리켓 키토산은 1일차 16,097에서 5일차 236,838 RLU로 나타나 2배 이상의 현저한 항균효과를 확인할 수 있었다. As shown in Table 6, the commercial chitosan showed a RLU of 513,940 on the 5th day from 14.553 on the 1st day, and 236,838 RLU on the 5th day from 16,097 on the day of cricket chitosan.

이에 따라, 크리켓 키토산의 식품적용의 항균가능성이 있고, 식품에 첨가하여 미생물의 발생을 감소시키는 식품첨가제 및 포장재 등의 식품산업에 적용성할 수 있다. Accordingly, there is a possibility that the application of cricket chitosan is antimicrobial to foods, and it can be applied to food industries such as food additives and packaging materials which reduce the occurrence of microorganisms added to foods.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 양한 수정 및 변형이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that within the scope of the appended claims, various changes and modifications may be made.

Claims (6)

건조된 귀뚜라미(이하, 크리켓이라 한다)를 미세 분말로 분쇄하고 세척한 후 건조시켜 크리켓 분말 생성단계;
건조된 크리켓 분말을 수산화나트륨에 혼합 교반하여 크리켓 단백질을 제거하는 크리켓 단백질 제거단계;
크리켓 단백질이 제거된 잔류물을 APS 용액에 혼합 교반하여 침시키고 세척하여 색상을 제거하는 색상 제거단계;
색상이 제거된 잔류물을 교반하면서 침지시키고 세척한 후 건조시켜 탈염하는 탈염단계;
수산화나트륨 용액에 탈염된 잔류물을 혼합하고 여과 및 세척한 후 건조시켜 탈아세트화하는 단계를 포함하는 것을 특징으로 하는 크리켓 키토산의 제조방법.
Crushing dried crickets (hereinafter referred to as cricket) with fine powder, washing and drying the resulting cricket powder;
A cricket protein removing step of mixing the dried cricket powder with sodium hydroxide and stirring to remove the cricket protein;
Removing the cricket protein-free residue by mixing and agitating the APS solution, washing and washing to remove color;
A desalting step of immersing the color-removed residue in water while agitating, washing, desiccating and desalting;
Comprising the steps of: mixing a desalted residue with a sodium hydroxide solution, filtering, washing and drying to deacetate.
청구항 1에 있어서, 크리켓 단백질 제거단계는 건조된 귀뚜라미를 이용하여 생성된 건조 크리켓 분말을 수산화나트륨(NaOH)에 첨가한 후에 크리켓에 포함된 단백질을 제거하고, 반응 혼합물을 여과하고, 잔류물을 pH 5.5가 될 때까지 증류수로 세척하여 단백질이 제거된 잔류물을 생성하고,
색상 제거단계는 크리켓 단백질이 제거된 잔류물을 APS 용액에 첨가한 후 교반하고, 여과후의 잔류물을 pH 5.5가 될 때까지 증류수로 세척하여 색상을 제거하며,
탈염단계는 색상이 제거된 잔류물을 실온에서 옥살산 용액에 교반하면서 침지시키고 여과후의 잔류물을 pH 5.5가 될 때까지 증류수로 세척한 후 건조시키며,
탈아세트화 단계는 탈염된 잔류물을 50-67중량%의 농도를 갖는 수산화나트륨 용액에 침지시키고 교반하여 키틴 탈아세틸화하고, pH 5.5가 될 때까지 증류수로 세척한 후 건조시키는 것을 특징으로 하는 크리켓 키토산의 제조방법.
The method of claim 1, wherein the cricket protein removal step comprises: adding dry cricket powder produced using dried crickets to sodium hydroxide (NaOH), removing proteins contained in the cricket, filtering the reaction mixture, Lt; / RTI &gt; to 5.5, to yield a protein-free residue,
In the color removal step, the cricket protein-free residue is added to the APS solution and stirred, and the residue after filtration is washed with distilled water until the pH is 5.5 to remove color,
The desalting step is carried out by immersing the decolorized residue in a solution of oxalic acid in a solution of oxalic acid at room temperature, washing the residue after filtration with distilled water to a pH of 5.5,
The deacetylation step comprises immersing the demineralized residue in a sodium hydroxide solution having a concentration of 50-67% by weight, stirring, chitin deacetylating, washing with distilled water until a pH of 5.5 is reached, and drying Process for the production of cricket chitosan.
청구항 1에 있어서, 색상 제거단계의 APS 용액은 증류수와 APS를 1:1중량비로 혼합하고 약 50℃에서 30분 동안 용해시켜 생성된 APS 용액(50% (w/v))인 것을 특징으로 하는 크리켓 키토산의 제조방법.The APS solution according to claim 1, wherein the APS solution in the color removal step is an APS solution (50% (w / v)) produced by mixing distilled water and APS at a weight ratio of 1: 1 and dissolving at about 50 ° C for 30 minutes Process for the production of cricket chitosan. 청구항 1 내지 청구항 3 중의 어느 한 항의 제조방법으로 제조된 크리켓 키토산을 유효성분으로 포함하는 식품첨가제.A food additive comprising cricket chitosan prepared by the method of any one of claims 1 to 3 as an active ingredient. 청구항 1 내지 청구항 3 중의 어느 한 항의 제조방법으로 제조된 크리켓 키토산을 유효성분으로 포함하는 천연항균제.A natural antimicrobial agent comprising cricket chitosan prepared by the method of any one of claims 1 to 3 as an active ingredient. 청구항 5에 있어서, 천연항균제는 즉석식품의 포장재에 도포되는 것을 특징으로 하는 천연항균제.The natural antimicrobial agent according to claim 5, wherein the natural antimicrobial agent is applied to a packaging material of an instant food.
KR1020170004275A 2017-01-11 2017-01-11 Manufacturing method for Cricket(Gryllus bimaculatus) Chitosan and anti-fungi agent using it KR20180082860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170004275A KR20180082860A (en) 2017-01-11 2017-01-11 Manufacturing method for Cricket(Gryllus bimaculatus) Chitosan and anti-fungi agent using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170004275A KR20180082860A (en) 2017-01-11 2017-01-11 Manufacturing method for Cricket(Gryllus bimaculatus) Chitosan and anti-fungi agent using it

Publications (1)

Publication Number Publication Date
KR20180082860A true KR20180082860A (en) 2018-07-19

Family

ID=63058570

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170004275A KR20180082860A (en) 2017-01-11 2017-01-11 Manufacturing method for Cricket(Gryllus bimaculatus) Chitosan and anti-fungi agent using it

Country Status (1)

Country Link
KR (1) KR20180082860A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101120161B1 (en) * 2009-05-29 2012-03-23 김광윤 A antibacterial composition comprising chitosan
KR20140065847A (en) * 2012-11-22 2014-05-30 대구가톨릭대학교산학협력단 Method for producing chitosan with improved antioxidant activity and antibacterial activity
KR101428683B1 (en) * 2012-06-29 2014-08-11 대구가톨릭대학교산학협력단 Food reservative containing chitosan and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101120161B1 (en) * 2009-05-29 2012-03-23 김광윤 A antibacterial composition comprising chitosan
KR101428683B1 (en) * 2012-06-29 2014-08-11 대구가톨릭대학교산학협력단 Food reservative containing chitosan and manufacturing method thereof
KR20140065847A (en) * 2012-11-22 2014-05-30 대구가톨릭대학교산학협력단 Method for producing chitosan with improved antioxidant activity and antibacterial activity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
문헌번호1 *

Similar Documents

Publication Publication Date Title
Li et al. Applications and properties of chitosan
Anand et al. Synthesis of chitosan nanoparticles by TPP and their potential mosquito larvicidal application
Chen et al. Application of functionalized chitosan in food: A review
Rout Physicochemical, functional and spectroscopic analysis of crawfish chitin and chitosan as affected by process modification
Ahmed et al. Chitosan: a natural antimicrobial agent-a review
Barikani et al. Preparation and application of chitin and its derivatives: a review
Homayounpour et al. Development of nanochitosan‐based active packaging films containing free and nanoliposome caraway (Carum carvi. L) seed extract
Kardas et al. Chitin and chitosan as functional biopolymers for industrial applications
KR100470753B1 (en) A water soluble natural film and its preparing method
CN107595878A (en) A kind of chitosan sodium phytate nano particle and preparation method thereof and bacteriostatic agent
Hu et al. Chitosan nanoparticles as edible surface coating agent to preserve the fresh-cut bell pepper (Capsicum annuum L. var. grossum (L.) Sendt)
Aranaz et al. Role of physicochemical properties of chitin and chitosan on their functionality
US6294183B1 (en) Antimicrobial resin composition and antimicrobial resin molded article comprising same
Anand et al. Extraction and characterization of chitosan from marine crab and squilla collected from the Gulf of Mannar Region, South India
Pirak et al. Characterisation of physical, chemical and antimicrobial properties of allicin–chitosan complexes
EP1312262B1 (en) Process for the preparation of powders having contact biocidal properties
JP2015511214A (en) Composition, preparation and use of high density chitosan membrane material
Oyatogun et al. Chitin, chitosan, marine to market
Walke et al. Physicochemical and functional characterization of chitosan prepared from shrimp shells and investigation of its antibacterial, antioxidant and tetanus toxoid entrapment efficiency
Hari et al. Development and characterization of chitosan-based antimicrobial films incorporated with streptomycin loaded starch nanoparticles
Jurić et al. Tailoring alginate/chitosan microparticles loaded with chemical and biological agents for agricultural application and production of value-added foods
CN111171348B (en) Preparation method of astaxanthin-containing biological antibacterial composite membrane for inhibiting putrefying bacteria of penaeus vannamei
Patiño-Ruiz et al. Ionotropic gelation synthesis of chitosan-alginate nanodisks for delivery system and in vitro assessment of prostate cancer cytotoxicity
Silva-Castro et al. Eco-friendly nanocomposites of chitosan with natural extracts, antimicrobial agents, and nanometals
KR20180082860A (en) Manufacturing method for Cricket(Gryllus bimaculatus) Chitosan and anti-fungi agent using it

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application