KR20180079644A - method of Failed Feul Location Monitoring - Google Patents

method of Failed Feul Location Monitoring Download PDF

Info

Publication number
KR20180079644A
KR20180079644A KR1020170000048A KR20170000048A KR20180079644A KR 20180079644 A KR20180079644 A KR 20180079644A KR 1020170000048 A KR1020170000048 A KR 1020170000048A KR 20170000048 A KR20170000048 A KR 20170000048A KR 20180079644 A KR20180079644 A KR 20180079644A
Authority
KR
South Korea
Prior art keywords
fuel
defective
channels
channel
measurement
Prior art date
Application number
KR1020170000048A
Other languages
Korean (ko)
Other versions
KR101926956B1 (en
Inventor
김성민
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to KR1020170000048A priority Critical patent/KR101926956B1/en
Publication of KR20180079644A publication Critical patent/KR20180079644A/en
Application granted granted Critical
Publication of KR101926956B1 publication Critical patent/KR101926956B1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/06Devices or arrangements for monitoring or testing fuel or fuel elements outside the reactor core, e.g. for burn-up, for contamination
    • G21Y2002/104
    • G21Y2004/20
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

The present invention relates to a method for detecting the position of a defective fuel in a heavy-water reactor (CANDU-600), which is performed by 12 BF3 meters and more accurately detects a defective fuel by determining a fuel as a detective fuel when HR is 1.05 or greater by using a formula, HR(i, j, k) = DR(i, j, k) / {HR(i, j, k) + 2*σ(i, j, k)}. Accordingly, the reliability is improved.

Description

결함연료 위치 탐지방법{method of Failed Feul Location Monitoring}Method of Failed Feel Location Monitoring [

본 발명은 중수로(CANDU-600) 결함 핵연료의 위치를 탐지하는 방법이며, 12 개의 BF3 계측기로 수행하며, HR(i,j,k) = DR(i,j,k)/{HR(i,j,k) + 2*σ(i,j,k)} 수식을 이용하여 HR이 설정된 값 1.05 이상일 때 결함연료로 판단하여 보다 정확하게 결함연료를 검출하여 신뢰성을 향상시키는데 있다.HR (i, j, k) = DR (i, j, k) / {HR (i, j, k)) is a method for detecting the position of a CAUGU- j, k) + 2 * σ (i, j, k)}, HR is determined to be a defective fuel when the HR is equal to or higher than the set value 1.05.

중수로(CANDU-600) 결함연료 위치 탐지계통은 한번에 12개 계측기로 결함연료 발생을 알려주는 동위원소의 중성자수를 측정하여 결함확인을 수행한다.The CANDU-600 Defective Fuel Location Detection System performs defect identification by measuring the number of neutrons in the isotope indicating the occurrence of defective fuel by 12 instruments at a time.

통상 매월 1, 2회 결함연료 위치탐지 계통을 운용하나 결함이 발생되었다고 확인되면 위치를 파악하고 조기에 결함연료를 방출하여 냉각재계통을 깨끗하게 유지하여야 하므로 신뢰가 확보된 방법으로 결함연료 위치 확인이 요구된다.Usually, once or twice a month, it operates the defective fuel position detection system. If it is confirmed that the defects have occurred, it is necessary to identify the location and to release the defective fuel early to keep the coolant system clean. do.

결함이 발생되면 우라늄이 냉각재에 침전(Tramp Uranium)과 결함연료에 방출되는 I-131의 과다문제로 정기예방점검시 작업착수 지연(종사자 피폭을 예방) 및 원자로를 정지시켜야 한다.If a fault occurs, uranium must be suspended from the reactor (Tramp Uranium) and the I-131 will be released into the defective fuel.

계측기는 BF3 이며, 2개 방(R-303, R-304)에 12개가 설치되어 있다. 3 개는 상부에, 3개는 하부에 위치한 시료샘플라인에 계측기를 인입하여 중성자 반응을 100초간 측정한다. 2 개의 방에 12 채널 씩[도 1, 2] Loop#1의 Position #1, #3, #5, 순으로 16번 측정하고 Loop #2 를 측정하여 총 32번, 380개 채널별 시료를 측정한다.The instrument is BF3 and 12 units are installed in two rooms (R-303, R-304). Three are placed on the top and three are placed on the bottom of the sample line to measure the neutron response for 100 seconds. 12 channels in two rooms [Figures 1 and 2] Measurement of 16 samples in the order # 1, # 3, and # 5 of Loop # 1 and Loop # do.

설계지침서에서는 결함연료 판별을 아래와 같은 수식[1]에 의해 1.3 이상인 것으로 판별한다.
In the design guide, it is determined that the defect fuel discrimination is 1.3 or more by the following equation [1].

판별비 : 개별 검출기 계수율 ÷ 12개 계측기 평균 계수율 ------- [수식 1]
Discrimination ratio: individual detector counting rate ÷ 12 counting average counting rate ------- [Equation 1]

[도 2]의 동시 측정 12개 채널의 출력은 [도 3]과 같이 비슷하지 않아 결함판별에 문제가 있다. 즉 단순히 [식 1]을 사용하여 평가시 출력이 많이 나오는 채널에서는 계수가 많이 나와 항상 판별비가 높게 나오는 문제점이 있다.The outputs of the twelve channels for simultaneous measurement of FIG. 2 are not similar to each other as in FIG. 3, and thus there is a problem in defect discrimination. That is, there is a problem that the coefficient is large and the discrimination ratio is always high in a channel where a large output is output by using [Equation 1] simply.

관련된 한국공개특허공보 제10-2011-0008662호에는 자체 진단기능을 가진 결함연료 위치탐지계통장치, 그 테스트 방법 및 그 방법을 실행하기 위한 프로그램을 저장하는 컴퓨터 판독 가능한 기록매체가 개시되어 있고, 일본특허공보 특허 제4063895호에는 핵연료 노심 주위 환경에서 완만한 누설 연료에 의해 생성된 연료 집합 체내의 흔적 량의 Kr-85의 방출을 검출하여 연료 집합체의 결함 연료봉을 검출하는 시스템이 개시되어 있으나, 이와 대비되는 본 발명은 12 개의 BF3 계측기로 수행하며, σ 수식을 이용하여 HR이 1.05 이상일 때 결함연료를 판단하여 보다 정확하게 결함연료를 검출하는 기술적 구성으로 결함 연료 검출의 신뢰성을 향상시키는 상승된 효과가 있다.Korean Patent Laid-Open Publication No. 10-2011-0008662 discloses a defective fuel position detection system having a self-diagnosis function, a method for testing the same, and a computer-readable recording medium storing a program for executing the method, Patent Publication No. 4063895 discloses a system for detecting defective fuel rods of a fuel assembly by detecting the release of a trace amount of Kr-85 in the fuel assembly generated by the gentle leakage fuel in the nuclear reactor core environment, The present invention contemplates an elevated effect of improving the reliability of faulty fuel detection in a technical configuration that is performed with 12 BF3 meters and uses a sigma formula to determine defective fuels when the HR is 1.05 or higher and more accurately detect defective fuels have.

본 발명이 해결하고자 하는 과제는 금번 측정 해당 루프(Loop)의 16개 채널 계측값을 기준으로 평가하므로 해당 계측기 특성을 고려하게 되고, 금번 측정 값만 사용하는 것이 아니고 과거 자료를 활용하여 평가하므로써 신뢰성을 향상시키는데 있다.The problem to be solved by the present invention is to evaluate the characteristics of the measuring instrument based on the measurement values of the 16 channels of the corresponding loops of this measurement and to evaluate the reliability by using past data instead of only using the measured values .

본 발명이 해결하고자 하는 또 다른 과제는 신연료 장전, 연료채널내 침전에 따른 불량 우라늄(Tramp Uranium)에 의한 중성자계측수 증가 또는 연료연소에 의한 효과로 중성자수 감소 등의 불확실성(σ)을 고려하여 평가하게 되므로 결함연료 판별의 신뢰성을 향상시키는데 있다. Another problem to be solved by the present invention is to consider the uncertainty (σ) such as the increase of the number of neutrons measured by the bad uranium (Tramp Uranium) due to the deposition of new fuel, the precipitation in the fuel channel, And the reliability of the defect fuel discrimination is improved.

본 발명 과제의 해결 수단은 중수로(CANDU-600) 결함연료 위치 탐지 방법에 있어서, 결함연료 위치 탐지는 12 개의 BF3 계측기로 수행하며, The method of the present invention is a CANDU-600 deficient fuel position detection method, wherein defective fuel position detection is performed with twelve BF3 meters,

HR(i,j,k) = DR(i,j,k)/{HR(i,j,k) + 2*σ(i,j,k)} (I, j, k) = HR (i, j, k) = DR

수식을 이용하여 HR의 설정 값을 1.05로 하고, 설정된 값 이상일 때 결함연료로 판단하는 중수로 결함연료 위치 탐지 방법을 제공하는데 있다. Wherein the HR is set to 1.05 by using the equation and the fuel is determined to be defective fuel when the HR is equal to or greater than the set value.

{ 상기 수식에서 {In the above formula

Figure pat00001
Figure pat00001

이고, ego,

(해당 채널 계측값을 해당 루프(Loop) 16개 채널의 계측값 평균기준으로 산출한 값)(A value obtained by calculating the measured value of the corresponding channel based on the measurement value average of the corresponding 16 loops)

여기서, i : Detector 번호 (i = 1~12)I: Detector number (i = 1 to 12)

j : Position 번호 (j = 1~16)j: Position number (j = 1 to 16)

k : Loop 번호 (k = 1, 2)k: Loop number (k = 1, 2)

jj : 제외되지 않은 채널의 Position 번호jj: Position number of channel not excluded

n : 제외되지 않은 채널 개수 (최대 16개까지 가능)n: Number of channels that are not excluded (up to 16)

h : 이력 번호(DN scan에 대한 일련 번호)h: history number (serial number for DN scan)

계산에 사용하는 이력 횟수 N : (n2 - n1 + 1, 보통 20회를 사용)Number of hits used for calculation N: (n2 - n1 + 1, usually 20 times)

σ : 불확실도 임}σ: uncertainty}

본 발명은 금번 측정 해당 루프(Loop)의 16개 채널 계측값을 기준으로 평가하므로 해당 계측기 특성을 고려하게 되고, 금번 측정값만 사용하는 것이 아니고 과거 자료를 활용하여 평가하므로써 신뢰성이 향상되는 상승된 효과가 있다.Since the present invention evaluates the measured values of the sixteen channels of the corresponding loop, it takes into account the characteristics of the corresponding measuring instrument. It is effective.

또한 본 발명은 신연료 장전, 연료채널내 침전에 따른 불량 우라늄(Tramp Uranium)에 의한 중성자계측수 증가 또는 연료 연소에 의한 효과로 중성자 수가 감소 등의 불확실성(σ)을 고려하여 평가하게 되므로 결함연료 판별의 신뢰성을 향상시키는 상승된 효과가 있다.Further, since the present invention is evaluated in consideration of uncertainty (?) Such as reduction of neutron number due to increase of neutron count due to new fuel loading, precipitation of neutrons due to bad uranium (Tramp Uranium) due to sedimentation in a fuel channel or fuel combustion, There is an increased effect of improving the reliability of the discrimination.

도 1은 결함연료위치탐지계통 1회 측정 12채널 측정 결과를 나타낸 것이다.
도 2는 결함연료위치탐지계통 측정순서 및 채널 위치를 나타낸 것이다.
FIG. 1 shows the result of a single measurement 12-channel measurement of the defective fuel position detection system.
Figure 2 shows the fault fuel position detection system measurement sequence and channel location.

본 발명을 실시하기 위한 구체적인 내용을 살펴본다.Hereinafter, the present invention will be described in detail.

도 3과 같이 12개 측정 채널의 식 1 을 적용하는 방식은 현재 12개 채널 결과만을 이용하여 결함판별을 수행하므로 신뢰성이 떨어진다.
As shown in FIG. 3, in the method of applying Equation 1 of 12 measurement channels, reliability is deteriorated because defect determination is performed using only 12 channel results at present.

판별비 = 개별 검출기 계수율 ÷ 12개 계측기 평균 계수율 ------- (수식 1 )
Discrimination ratio = individual detector counting rate ÷ 12 counting average counting rate ------- (Equation 1)

시간경과에 따라 해당 채널의 과거 측정값을 이용하여 평가에 활용할 필요가 있다. 과거 자료를 활용하여 (수식 2)에 의해 HR(Historical Ratio)이 설정 값 인 1.05 이상 시 결함연료로 판단한다. It is necessary to utilize past measurement values of the corresponding channels according to the passage of time. Based on the past data (Formula 2), HR (Historical Ratio) is judged as defective fuel when the set value is 1.05 or more.

이와 같이 (수식 2)를 이용하여 연료 결함을 판단할 경우에 신뢰성이 향상됨을 알 수 있었다.
Thus, it was found that the reliability is improved when the fuel defect is judged by using (Equation 2).

HR(i,j,k) = DR(i,j,k)/{HR(i,j,k) + 2*σ(i,j,k)} --------- (식 2)
HR (i, j, k) = DR (i, j, k) 2)

여기서, here,

Figure pat00002
Figure pat00002

이다.
to be.

(해당채널 계측값을 해당 루프(Loop) 16개 채널의 계측값 평균기준으로 산출한 값)(A value obtained by calculating the measured value of the corresponding channel based on the measurement value average of the corresponding 16 loops)

여기서, i : Detector 번호 (i = 1~12)I: Detector number (i = 1 to 12)

j : Position 번호 (j = 1~16)j: Position number (j = 1 to 16)

k : Loop 번호 (k = 1, 2)k: Loop number (k = 1, 2)

jj : 제외되지 않은 채널의 Position 번호jj: Position number of channel not excluded

n : 제외되지 않은 채널 개수 (최대 16개까지 가능)n: Number of channels that are not excluded (up to 16)

h : 이력 번호(DN scan에 대한 일련 번호)h: history number (serial number for DN scan)

계산에 사용하는 이력 횟수 N : (n2 - n1 + 1, 보통 20회를 사용)Number of hits used for calculation N: (n2 - n1 + 1, usually 20 times)

σ : 불확실도
σ: uncertainty

본 발명은 중수로(CANDU-600) 결함연료 위치 탐지 방법이며, 12 개의 BF3 계측기로 수행하며, HR(i,j,k) = DR(i,j,k)/{HR(i,j,k) + 2*σ(i,j,k)} 수식을 이용하여 HR 이 설정된 값 1.05 이상일 때 결함연료로 판단하여 보다 정확하게 결함연료를 검출하여 신뢰성을 향상시킬 수 있으므로 산업상 이용 가능성이 매우 높다.(I, j, k) = HR (i, j, k) = HR (i, j, k) ) + 2 * σ (i, j, k)}, HR is determined to be a defective fuel when the HR is equal to or higher than the set value 1.05, so that the reliability can be improved by detecting the defective fuel more accurately.

Claims (2)

중수로(CANDU-600) 결함연료 위치 탐지 방법에 있어서,
12 개의 BF3 계측기로 수행하며,
HR(i,j,k) = DR(i,j,k)/{HR(i,j,k) + 2*σ(i,j,k)} -- (수식2)
수식(2)을 이용하여 HR이 설정된 값 이상일 때 결함연료로 판단하는 중수로 결함연료 위치 탐지 방법.
(수식에서
Figure pat00003

이고,
(해당 채널 계측값을 해당 Loop 16개 채널의 계측값 평균기준으로 산출한 값)
여기서, i : Detector 번호 (i = 1~12)
j : Position 번호 (j = 1~16)
k : Loop 번호 (k = 1, 2)
jj : 제외되지 않은 채널의 Position 번호
n : 제외되지 않은 채널 개수 (최대 16개까지 가능)
h : 이력 번호(DN scan에 대한 일련 번호)
계산에 사용하는 이력 횟수 N : (n2 - n1 + 1, 보통 20회를 사용)
σ : 불확실도 임}
In the CANDU-600 deficient fuel location detection method,
Performed with 12 BF3 instruments,
HR (i, j, k) = DR (i, j, k)
A method for detecting a heavy fuel deficient fuel position using the equation (2), wherein HR is determined to be defective fuel when the HR is equal to or greater than a predetermined value.
(In the formula
Figure pat00003

ego,
(A value obtained by calculating the measurement value of the corresponding channel based on the measurement value average of the 16 channels of the corresponding loop)
I: Detector number (i = 1 to 12)
j: Position number (j = 1 to 16)
k: Loop number (k = 1, 2)
jj: Position number of channel not excluded
n: Number of channels that are not excluded (up to 16)
h: history number (serial number for DN scan)
Number of hits used for calculation N: (n2 - n1 + 1, usually 20 times)
σ: uncertainty}
제1항에 있어서,
HR의 설정된 값은 1.05 임을 특징으로 하는 중수로 결함연료 위치탐지방법.
The method according to claim 1,
Wherein the set value of HR is 1.05.
KR1020170000048A 2017-01-02 2017-01-02 method of Failed Feul Location Monitoring KR101926956B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170000048A KR101926956B1 (en) 2017-01-02 2017-01-02 method of Failed Feul Location Monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170000048A KR101926956B1 (en) 2017-01-02 2017-01-02 method of Failed Feul Location Monitoring

Publications (2)

Publication Number Publication Date
KR20180079644A true KR20180079644A (en) 2018-07-11
KR101926956B1 KR101926956B1 (en) 2018-12-07

Family

ID=62917790

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170000048A KR101926956B1 (en) 2017-01-02 2017-01-02 method of Failed Feul Location Monitoring

Country Status (1)

Country Link
KR (1) KR101926956B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289495A (en) * 1991-03-18 1992-10-14 Hitachi Ltd Monitor for reactor neutron detector
KR20100032669A (en) * 2008-09-18 2010-03-26 한국전력공사 Acoustic leak detector for fuel channels in heavy water reactor
KR20140093633A (en) * 2013-01-18 2014-07-28 캔두 에너지 인코포레이티드 Systems and methods for detecting a leaking fuel channel in a nuclear reactor
KR20150080811A (en) * 2014-01-02 2015-07-10 한국수력원자력 주식회사 BF3 neutron detection system with self-diagnosis function, and its method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289495A (en) * 1991-03-18 1992-10-14 Hitachi Ltd Monitor for reactor neutron detector
KR20100032669A (en) * 2008-09-18 2010-03-26 한국전력공사 Acoustic leak detector for fuel channels in heavy water reactor
KR20140093633A (en) * 2013-01-18 2014-07-28 캔두 에너지 인코포레이티드 Systems and methods for detecting a leaking fuel channel in a nuclear reactor
KR20150080811A (en) * 2014-01-02 2015-07-10 한국수력원자력 주식회사 BF3 neutron detection system with self-diagnosis function, and its method

Also Published As

Publication number Publication date
KR101926956B1 (en) 2018-12-07

Similar Documents

Publication Publication Date Title
US7405558B2 (en) Steam generator mapping with reflections of eddy current signal
CN108630330B (en) Pressurized water reactor nuclear power station instrument system detector test processing method, device and system
US8804893B2 (en) Method of and an apparatus for monitoring the operation of a nuclear reactor
CN106024078B (en) A kind of method of diagnostic reaction pile neutron detector failure
KR101926956B1 (en) method of Failed Feul Location Monitoring
Ramuhalli et al. Prognostics health management and life beyond 60 for nuclear power plants
KR101736230B1 (en) System and method for quantifying the fault detection rate
CN111157938B (en) Method and system for evaluating metering process capability of automatic verification system
KR20090119163A (en) Fixed in-core detectors in pwrs
JP2022534959A (en) System and method for determining reactivity
CN115083636B (en) High-temperature gas cooled reactor ball passing counter measuring method and device
KR102619779B1 (en) A threshold voltage level determining device using multichannel analysis and a method thereof
Kima et al. A study of Sensitivity of Partial Defect Detection Capability Using Scintillator-photodiode Detector with 17x17 Spent Fuel Assemblies
Bae et al. Assessment of the implementation of a neutron measurement system during the commissioning of the jordan research and training reactor
CN111312417A (en) Method for measuring reactivity
US11398318B2 (en) Apparatus and method of evaluating response time of nuclear plant protection system
JPS5857719B2 (en) Abnormality detection device for neutron measurement equipment
Orlenkov et al. Radiochemical monitoring in life tests of fuel for new reactor cores
CN110990783A (en) Method for calculating relative content of Pu-242 nuclide
CN115376962A (en) Substrate processing apparatus and data change determination method
JPS58100786A (en) Method of diagnosing abnormality of reactor plant
Gunning et al. FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY
KR100597726B1 (en) Determination method of failed fuel discrimination ratio by applying the correction factors compensated for the flow rate differences among the coolant sampling lines
JPS5857720B2 (en) Insulation resistance abnormality test device for neutron measurement equipment
MATAHRI et al. ICONE15-10749 SAFETY PERFORMANCE INDICATORS (SPI): METHODOLOGY AND USE FOR THE SAFETY ASSESSMENT

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant