KR20180074286A - PREPARATION METHOD OF Pd/C CATALYST HAVING IMPROVED DURABILITY AND Pd/C CATALYST PREPARATED USING THE METHOD - Google Patents

PREPARATION METHOD OF Pd/C CATALYST HAVING IMPROVED DURABILITY AND Pd/C CATALYST PREPARATED USING THE METHOD Download PDF

Info

Publication number
KR20180074286A
KR20180074286A KR1020160178227A KR20160178227A KR20180074286A KR 20180074286 A KR20180074286 A KR 20180074286A KR 1020160178227 A KR1020160178227 A KR 1020160178227A KR 20160178227 A KR20160178227 A KR 20160178227A KR 20180074286 A KR20180074286 A KR 20180074286A
Authority
KR
South Korea
Prior art keywords
palladium
catalyst
carbon
solution
acid
Prior art date
Application number
KR1020160178227A
Other languages
Korean (ko)
Inventor
조계성
이응준
박문수
양성필
박주현
Original Assignee
희성금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성금속 주식회사 filed Critical 희성금속 주식회사
Priority to KR1020160178227A priority Critical patent/KR20180074286A/en
Publication of KR20180074286A publication Critical patent/KR20180074286A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a method for preparing a palladium/carbon catalyst. According to an embodiment of the present invention, the method for preparing a palladium/carbon catalyst comprises: a first step of preparing a carbon carrier pretreated with acid; a second step of preparing a palladium precursor solution by dissolving a palladium precursor in an acid solution; a third step of generating palladium particles by injecting an oxidizer aqueous solution into the palladium precursor solution of the second step and by stirring the same; a fourth step of injecting the carbon carrier prepared in the first step into the palladium precursor aqueous solution into which the oxidizer aqueous solution is injected; and a fifth step of dipping the palladium particles in the injected carbon carrier.

Description

내구성이 향상된 팔라듐/탄소 촉매의 제조방법 및 이로부터 제조된 팔라듐/탄소 촉매{PREPARATION METHOD OF Pd/C CATALYST HAVING IMPROVED DURABILITY AND Pd/C CATALYST PREPARATED USING THE METHOD}TECHNICAL FIELD [0001] The present invention relates to a palladium / carbon catalyst having improved durability and a palladium / carbon catalyst prepared therefrom. BACKGROUND ART [0002] Pd /

본 발명은 탄소 담체에 담지된 팔라듐 촉매를 합성하는 방법으로서, 내구성을 향상시킨 팔라듐/탄소 촉매의 제조 방법에 관한 것이다.The present invention relates to a method for synthesizing a palladium catalyst supported on a carbon support, and a method for producing a palladium / carbon catalyst having improved durability.

팔라듐/탄소 불균일 촉매는 불포화 탄화수소의 감소, 니트로기 수소화, 벤질 수소화, 탄소-탄소 결합 및 가교 결합의 탈 보호 등 다양한 형태의 반응에 사용이 가능하다. 더욱이 팔라듐/탄소 촉매는 단순한 생산 공정, 높은 전환율, 높은 수율과 선택성, 반응 종료 후 촉매의 선택적 제거가 가능하다는 이점이 있다. 이에 따라, 많은 기업들이 선호를 하고 있으며, 석유화학, 정밀화학, 의약품 원료 생산 공정 등에서 다양하게 활용되고 있다.Palladium / carbon heterogeneous catalysts can be used for various types of reactions, such as reduction of unsaturated hydrocarbons, nitro hydrogenation, benzyl hydrogenation, carbon-carbon bonds and deprotection of cross-linking. Moreover, palladium / carbon catalysts have the advantage of being able to perform simple production processes, high conversion rates, high yield and selectivity, and selective removal of catalyst after reaction completion. As a result, many companies are favored, and they are widely used in petrochemical, fine chemical, and pharmaceutical raw material production processes.

팔라듐/탄소 촉매는 탄소 담체 표면에 팔라듐 입자 1-50% 중량을 통상적으로 포함한다. 팔라듐/탄소 촉매를 제조하기 위한 주요 고려 사항에는 팔라듐 입자의 크기, 탄소 표면에 증착되는 팔라듐 입자의 균일성, 분산도 및 팔라듐/탄소 촉매의 내구성이 있다.The palladium / carbon catalyst typically comprises 1-50% palladium particles on the surface of the carbon support. The main considerations for preparing palladium / carbon catalysts include the size of the palladium particles, the uniformity of the palladium particles deposited on the carbon surface, the degree of dispersion, and the durability of the palladium / carbon catalyst.

이 중 팔라듐/탄소 촉매의 내구성은 반응의 지속성 및 안정성을 확보하기 위하여 필요한 기술이며 팔라듐/탄소 촉매의 내구성을 높이기 위한 다양한 연구가 계속되고 있다.Among these, the durability of the palladium / carbon catalyst is a necessary technique for ensuring the sustainability and stability of the reaction, and various studies for increasing the durability of the palladium / carbon catalyst have been continued.

대한민국 공개특허 제10-2014-0065686호 (2014.05.30)Korean Patent Publication No. 10-2014-0065686 (2014.05.30)

본 발명은 전술한 문제점을 해결하기 위한 것으로서, 양산이 용이하고 보다 높은 내구성을 가진 팔라듐/탄소 수소화 촉매를 제조하는 방법 및 이로부터 제조된 팔라듐/탄소 수소화 촉매를 제시한다.DISCLOSURE Technical Problem The present invention provides a palladium / carbon hydrotreating catalyst which is easy to mass-produce and has higher durability, and a palladium / carbon hydride catalyst prepared therefrom.

그 외 본 발명의 세부적인 목적은 이하에 기재되는 구체적인 내용을 통하여 이 기술분야의 전문가나 연구자에게 자명하게 파악되고 이해될 것이다.Other objects and advantages of the present invention will become apparent to those skilled in the art from the following detailed description.

위 과제를 해결하기 위하여 본 발명은 실시예로, 산으로 전처리된 탄소 담체를 준비하는 제1단계, 팔라듐 전구체를 산 용액에 용해시켜 팔라듐 전구체 용액을 제조하는 제2단계, 상기 제2단계의 팔라듐 전구체 용액에 산화제 수용액을 투입하고 교반하여 팔라듐 입자를 생성하는 제3단계, 산화제 수용액이 투입된 상기 팔라듐 전구체 수용액에 상기 제1단계에서 준비한 탄소 담체를 투입하는 제4단계 및 투입된 상기 탄소 담체에 상기 팔라듐 입자를 담지시키는 제5단계를 포함하는 팔라듐/탄소 촉매의 제조방법을 제시한다.In order to solve the above problems, the present invention provides, as an embodiment, a method for producing a palladium precursor solution, comprising the steps of preparing a carbon carrier pretreated with an acid, a second step of dissolving the palladium precursor in an acid solution to prepare a palladium precursor solution, A third step of adding an oxidant aqueous solution to the precursor solution and stirring to produce palladium particles, a fourth step of injecting the carbon support prepared in the first step into the aqueous palladium precursor solution into which the oxidant aqueous solution is introduced, And a fifth step of supporting the particles.

여기에서, 상기 제1단계는, 산 용액에 탄소 담체를 주입하는 단계, 탄소 담체가 주입된 상기 산 용액을 30℃ 내지 100℃에서 30분 내지 24시간 동안 교반하는 단계, 교반한 상기 산 용액을 여과하고 세척하는 단계를 포함할 수 있다.Here, the first step includes the steps of: injecting a carbon carrier into an acid solution; stirring the acid solution into which the carbon carrier is injected at 30 ° C to 100 ° C for 30 minutes to 24 hours; Filtration and washing.

상기 제3단계에서, 상기 제2단계의 팔라듐 전구체 용액에 투입되는 산화제 수용액은 일정량을 일시에 투입하는 것일 수 있다.In the third step, the oxidant aqueous solution to be added to the palladium precursor solution in the second step may be a predetermined amount.

한편 위 과제를 해결하기 위하여 본 발명은 상술한 방법에 의해서 제조되고 1회 반응 후에 팔라듐 입자의 감소율이 1.5% 이내인 팔라듐/탄소 촉매를 제시한다.In order to solve the above problem, the present invention proposes a palladium / carbon catalyst produced by the above-mentioned method and having a reduction rate of palladium particles within 1.5% after a single reaction.

본 발명의 실시예에 따르면, 양산이 용이하고 담체와 팔라듐 입자 사이의 상호작용력이 증가되어 생산된 팔라듐/탄소 수소화 촉매의 내구성이 뛰어나다.According to the embodiment of the present invention, the mass production is easy and the interaction force between the carrier and the palladium particles is increased, so that the durability of the produced palladium / carbon hydride catalyst is excellent.

그 외 본 발명의 효과들은 이하에 기재되는 구체적인 내용을 통하여, 또는 본 발명을 실시하는 과정 중에 이 기술분야의 전문가나 연구자에게 자명하게 파악되고 이해될 것이다. The effects of the present invention will be clearly understood and understood by those skilled in the art, either through the specific details described below, or during the course of practicing the present invention.

도 1은 본 발명의 실시예에 따른 팔라듐/탄소 촉매의 제조공정을 나타내는 순서도.
도 2는 본 발명의 실시예와 비교예에 따른 팔라듐/탄소 촉매의 촉매 사용횟수에 따른 팔라듐/탄소 촉매의 활성 평가 결과를 나타내는 그래프.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart illustrating a process for preparing a palladium / carbon catalyst according to an embodiment of the present invention. FIG.
FIG. 2 is a graph showing the activity evaluation results of a palladium / carbon catalyst according to the number of times of use of a catalyst of the palladium / carbon catalyst according to Examples and Comparative Examples of the present invention. FIG.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세하게 설명하고자 한다.While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail.

그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다.It should be understood, however, that the invention is not intended to be limited to the particular embodiments, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention. The terminology used in this application is used only to describe a specific embodiment and is not intended to limit the invention.

단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함 한다. 본 출원에서의 용어는 명세서상에 기재된 특징, 숫자, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지 하나 또는 그 이상의 다른 특징들이나 숫자, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The singular expressions include plural expressions unless the context clearly dictates otherwise. It is to be understood that the terminology used herein is for the purpose of describing the invention, and is in no way intended to limit the invention to the precise form or scope of the invention, and not to limit the presence or addition of one or more other features, integers, Should not be excluded.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as being consistent with the meanings in the context of the relevant art and are not to be construed as ideal or overly formal meanings unless explicitly defined in the present application.

<팔라듐/탄소(Pd/C) 촉매의 제조방법><Production method of palladium / carbon (Pd / C) catalyst>

이하, 본 발명의 실시예에 따른 수소화 반응용 팔라듐/탄소(Pd/C) 촉매의 제조방법에 대해 설명한다. 그러나 하기 제조방법에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되어 수행될 수 있다.Hereinafter, a method for producing a palladium / carbon (Pd / C) catalyst for hydrogenation according to an embodiment of the present invention will be described. However, the present invention is not limited to the following production methods, and the steps of each process may be modified and performed as required.

본 발명의 실시예에 따른 팔라듐/탄소(Pd/C) 촉매의 제조방법은 본 발명은 팔라듐/탄소 촉매 제조방법으로 촉매의 내구성을 향상시키기 위한 방법이 포함된다. 실시예로 전처리된 탄소 담체를 준비하는 단계(S10), 팔라듐 전구체를 산 용액에 용해시켜 팔라듐 전구체 용액을 제조하는 단계(S20), 상기 팔라듐 전구체 용액에 pH를 높이기 위한 산화제를 투입하는 단계(S30), 산화제가 투입된 상기 팔라듐 전구체 용액에 탄소 담체를 투입하는 단계(S40), 상기 탄소 담체에 팔라듐을 담지하는 단계(S50)를 포함한다. The method for preparing a palladium / carbon (Pd / C) catalyst according to an embodiment of the present invention includes a method for improving the durability of a catalyst by a palladium / carbon catalyst preparation method. (S20) preparing a palladium precursor solution by dissolving a palladium precursor in an acid solution (S20), adding an oxidizing agent to increase the pH of the palladium precursor solution (S30 , A step (S40) of injecting a carbon support into the palladium precursor solution into which the oxidizing agent has been introduced, and a step (S50) of supporting palladium on the carbon support.

한편 필요에 따라, 상기 담지하는 단계 이후에, 팔라듐이 담지된 탄소 담체를 여과 및 세척하는 단계(S60)를 추가로 포함할 수 있다.
On the other hand, if necessary, after the carrying step, filtering and washing (S60) the palladium-supported carbon carrier may be further included.

도 1은 본 발명의 실시예에 따른 팔라듐/탄소 촉매의 제조공정을 나타내는 순서도이다. 이하, 도 1의 실시예를 참조하여 각 공정을 단계별로 나누어 설명하면 다음과 같다.1 is a flowchart showing a process for producing a palladium / carbon catalyst according to an embodiment of the present invention. Hereinafter, each step will be described step by step with reference to the embodiment of FIG.

(1) 전처리된 탄소 담체를 준비한다(이하 제1단계라고 함).(1) Prepare a pretreated carbon carrier (hereinafter referred to as the first step).

촉매의 내구성을 향상시키기 위한 방법으로 탄소 담체를 전처리(산처리)하는 방법을 사용한다.As a method for improving the durability of the catalyst, a method of pretreating the carbon carrier (acid treatment) is used.

탄소 담체를 산처리하는 이유는 탄소 담체 표면에 산소를 포함한 작용기를 증가시켜 팔라듐 금속 입자와의 상호작용을 증대시키기 위함이다. 이를 통해 팔라듐 입자의 이탈을 방지하여 촉매의 내구성을 향상시킬 수 있다.The acid treatment of the carbon support is to increase the functional groups containing oxygen on the surface of the carbon support to increase the interaction with the palladium metal particles. Thereby preventing separation of the palladium particles and improving the durability of the catalyst.

상세하게는 탄소 담체로서 활성탄을 채택하여 실온 이상의 온도에서 산으로 전처리한다. 여기에서 공정에 바람직한 산으로는 질산, 염산, 황산, 초산, 인산, 플로오르화수소산 중 하나이거나 혹은 둘의 조합을 사용할 수 있다.Specifically, activated carbon is adopted as a carbon carrier and is pre-treated with an acid at a temperature of room temperature or higher. As the acid preferred for the process, one of nitric acid, hydrochloric acid, sulfuric acid, acetic acid, phosphoric acid, hydrofluoric acid, or a combination of both can be used.

전처리 공정은 산 용액에 활성탄을 주입하여 실온 이상의 온도에서 바람직하게는 30도 내지 100도에서 0.5시간 내지 24시간 동안 교반한 후 여과하고 잔류하는 산을 제거하기 위해 증류수로 여러 번 세척하는 단계를 포함한다.In the pretreatment step, the activated carbon is injected into the acid solution, stirred at a temperature of room temperature or higher, preferably 30 to 100 degrees for 0.5 to 24 hours, filtered and washed several times with distilled water to remove residual acid do.

세척 후 활성탄은 50도 내지 120도 혹은 그보다 높은 온도에서 공기 중에서 약 1시간 내지 24시간 건조하여 전처리된 활성탄을 완성한다.After washing, the activated carbon is dried in air at a temperature of 50 to 120 degrees or higher for about 1 to 24 hours to complete the pretreated activated carbon.

(2) 팔라듐 전구체를 산 용액에 용해시켜 팔라듐 전구체 용액을 제조한다(이하 제2단계라고 함).(2) A palladium precursor solution is prepared by dissolving a palladium precursor in an acid solution (hereinafter referred to as the second step).

제2단계의 바람직한 일례를 들면, (1-1) 산 수용액을 제조하고, (1-2) 산 수용액에 팔라듐 전구체를 정해진 당량만큼 투입한 후 완전 용해시킨다.In a preferred example of the second step, (1-1) an acid aqueous solution is prepared, (1-2) a palladium precursor is added to the aqueous acid solution in an amount equivalent to the predetermined amount, and then completely dissolved.

본 발명에서, 산 용액은 당 분야에 알려진 통상적인 산(acid) 성분을 제한 없이 사용할 수 있다. 산 성분의 일례로는 염산, 황산, 질산, 아세트산 또는 이들의 1종 이상의 혼합물 등이 있다. 바람직하게는 산 용액으로 염산 수용액을 사용할 수 있다.In the present invention, the acid solution may be used without limitation in a conventional acid component known in the art. Examples of the acid component include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, or a mixture of at least one of these. Preferably, an aqueous hydrochloric acid solution can be used as the acid solution.

이때 염산 수용액의 농도는 일반적인 경우에는 공정에 큰 영향을 주지 않으나, 염산 수용액 농도에 따라 팔라듐 전구체의 용해 시간, 온도, 및 산화제의 투입량이 변화하게 된다.In this case, the concentration of the hydrochloric acid aqueous solution does not greatly affect the process in general, but the dissolution time, temperature, and the amount of the oxidizing agent are changed depending on the concentration of the hydrochloric acid aqueous solution.

팔라듐 전구체의 용해 시간, 온도 및 산화제의 투입량을 고려했을 때 염산 수용액은 5 내지 10 중량%인 것을 사용하는 것이 바람직하다. 염산 수용액이 5 중량% 미만인 경우에는 팔라듐 전구체의 용해가 너무 느리게 되고 10 중량%를 초과하는 경우에는 후 공정에서 산화제의 투입량이 많아져 공정 시간이 증가될 수 있다.Considering the dissolution time, the temperature of the palladium precursor, and the amount of the oxidizing agent, the aqueous hydrochloric acid solution is preferably used in an amount of 5 to 10% by weight. If the aqueous hydrochloric acid solution is less than 5% by weight, dissolution of the palladium precursor becomes too slow, and if it exceeds 10% by weight, the amount of the oxidizing agent may be increased in the subsequent step, which may increase the process time.

상술한 팔라듐 전구체는, 팔라듐(Pd)을 포함하고 산 용액 내에서 해리가 가능한 화합물로서, 당 분야에 알려진 통상적인 팔라듐 전구체를 제한 없이 사용할 수 있다. 일례로 염화팔라듐(PdCl2) 등을 사용할 수 있다.The above-described palladium precursor is a compound containing palladium (Pd) and capable of dissociation in an acid solution, and conventional palladium precursors known in the art can be used without limitation. For example, palladium chloride (PdCl 2 ) or the like can be used.

본 실시예에서, 팔라듐 전구체는 추후 투입되는 탄소 담체의 전체 중량대비 5 내지 15 중량% 범위인 것이 바람직하다. 팔라듐 전구체가 탄소 담체의 전체 중량 대비 5 중량% 미만인 경우에는 팔라듐의 양이 너무 적어 촉매의 활성이 떨어지고 15 중량%를 초과하는 경우에는 팔라듐 입자의 분산도가 낮아져 활성이 떨어질 수 있다.In this embodiment, the palladium precursor is preferably in the range of 5 to 15% by weight based on the total weight of the carbon support to be added at a later time. When the palladium precursor is less than 5 wt% based on the total weight of the carbon support, the activity of the catalyst is deteriorated because the amount of palladium is too small. When the palladium precursor is more than 15 wt%, the activity of the palladium particles may be lowered.

(3) 팔라듐 전구체 용액에 pH를 높이기 위한 산화제를 투입한다 (이하 제3단계라고 함).(3) An oxidizing agent is added to the palladium precursor solution to raise the pH (hereinafter referred to as the third step).

제2단계의 바람직한 일례를 들면, (2-1) 팔라듐 전구체 용액에 일정량의 산화제를 일시에 투입하고, (2-2) 산화제를 주입한 팔라듐 전구체 용액을 일정시간 교반한다.As a preferred example of the second step, (2-1) a predetermined amount of an oxidizing agent is introduced into the solution of the palladium precursor at a time, and (2-2) the solution of the palladium precursor injected with the oxidizing agent is stirred for a certain period of time.

산화제를 일시에 투입함으로써 탄소 담체에 담지되는 팔라듐 금속의 미세화 및 고분산 효과를 나타낼 수 있으며, 아울러 산화제 투입 이후 반응시간을 단축시킴으로써 생산성을 향상시킬 수 있고, 공업적 양산에 용이하다.By injecting the oxidizing agent at a time, the palladium metal supported on the carbon support can be miniaturized and highly dispersed. Further, productivity can be improved by shortening the reaction time after the introduction of the oxidizing agent, and industrial mass production is easy.

본 실시예에서, 산화제는 수산화나트륨(NaOH) 수용액을 사용하는 것이 바람직하다. 이때 수산화나트륨 수용액의 농도는 10~25 중량%인 것이 바람직하다. 수산화나트륨 수용액의 농도가 10 중량% 미만인 경우 물의 투입량이 많아져 정해진 용량의 반응조에서 생성되는 팔라듐/탄소 촉매의 양이 적어지고 25 중량% 초과인 경우에는 수산화나트륨이 충분히 용해되지 못하고 석출될 수 있다.In this embodiment, it is preferable to use an aqueous solution of sodium hydroxide (NaOH) as the oxidizing agent. The concentration of the sodium hydroxide aqueous solution is preferably 10 to 25% by weight. When the concentration of sodium hydroxide aqueous solution is less than 10% by weight, the amount of water supplied increases and the amount of the palladium / carbon catalyst produced in the reaction tank of a predetermined capacity decreases. If the concentration exceeds 25% by weight, sodium hydroxide may not sufficiently dissolve and may be precipitated .

이와 같이 산화제인 수산화나트륨 수용액 주입을 통해 팔라듐 전구체 용액의 pH가 증가되고 1종 이상의 팔라듐(Pd0, Pd2+)이 형성된다. pH가 증가되면 보다 작은 입자의 Pd(OH)2 입자가 생성되며 특정 반응에 있어서 촉매의 높은 활성을 갖게 하는 이점을 가진다.In this way, the pH of the solution of the palladium precursor is increased and at least one kind of palladium (Pd 0 , Pd 2+ ) is formed through the injection of an aqueous solution of sodium hydroxide as an oxidizing agent. As the pH is increased, smaller particles of Pd (OH) 2 are formed and the catalyst has a high activity in a specific reaction.

(4) 산화제가 투입된 팔라듐 전구체 용액에 탄소 담체를 투입한다 (이하 제4단계라고 함)(4) The carbon support is introduced into the palladium precursor solution into which the oxidizing agent is introduced (hereinafter referred to as the fourth step)

본 실시예에서, 탄소 담체는 전술한 제1단계에 따라 산으로 전처리된 탄소 담체를 사용한다.In this embodiment, the carbon carrier uses a carbon carrier pretreated with an acid according to the first step described above.

또한 탄소 담체의 평균 입경, 비표면적 및 형태 역시 특별히 제한되지 않으며, 당 분야에 알려진 통상적인 범위 내에서 적절히 조절할 수 있다.Also, the average particle diameter, specific surface area and form of the carbon carrier are not particularly limited, and can be appropriately adjusted within the conventional range known in the art.

이때 상기 탄소 담체는 팔라듐 전구체 용액 내에 단독 투입하거나 또는 탄소담체와 물을 혼합하여 투입할 수 있다. 탄소 담체 자체의 수분 함량이 많은 경우에는 물을 혼합하지 않고 투입할 수도 있고 탄소 담체 자체의 수분 함량이 적은 경우에는 물을 혼합하여 투입할 수 있다.At this time, the carbon carrier may be introduced into the palladium precursor solution alone or may be mixed with the carbon carrier and water. When the water content of the carbon carrier itself is large, the water may be added without mixing the water. In the case where the water content of the carbon carrier itself is small, water may be mixed and introduced.

(5) 탄소 담체에 팔라듐을 담지한다(이하 제5단계라고 함).(5) The palladium is supported on the carbon carrier (hereinafter referred to as the fifth step).

담지온도는 팔라듐이 탄소 담체에 담지될 수 있는 온도라면 특별히 제한되지 않지만, 70 내지 90℃로 유지하며 교반하는 것이 바람직하다. 70℃ 미만인 경우에는 팔라듐이 탄소 담체에 담지되는 시간이 늦어지거나 담지가 잘 되지 않고, 90℃를 초과하는 경우 팔라듐의 분산도가 떨어지게 된다.The supporting temperature is not particularly limited as long as palladium can be supported on the carbon support, but it is preferable that stirring is carried out while maintaining the temperature at 70 to 90 占 폚. When the temperature is lower than 70 ° C, palladium is carried on the carbon carrier at a slower rate or is not supported. When the temperature exceeds 90 ° C, the degree of dispersion of palladium decreases.

(6) 팔라듐이 담지된 탄소 담체를 여과 및 세척한다 (이하 제6단계라고 함).(6) The palladium-supported carbon support is filtered and washed (hereinafter referred to as step 6).

제6단계에서, 팔라듐/탄소 촉매를 여과 및 세척하는 방법은 당 업계에 공지된 통상적인 방법을 제한 없이 사용할 수 있다.In the sixth step, the palladium / carbon catalyst may be filtered and washed by any conventional method known in the art.

이와 같이, 본 발명의 실시예에 따르면, 팔라듐/탄소 촉매의 내구성을 향상시키면서 활성 역시 우수한 팔라듐/탄소(Pd/C) 촉매를 제조할 수 있다.As described above, according to the embodiment of the present invention, a palladium / carbon (Pd / C) catalyst having an improved activity while improving the durability of the palladium / carbon catalyst can be produced.

본 발명에서 제조된 팔라듐/탄소 촉매는 당 분야에 알려진 수소화반응의 촉매로 유용하게 사용될 수 있으며, 그 외 팔라듐 촉매가 요구되는 다양한 분야에 유용하게 적용될 수 있다.
The palladium / carbon catalyst prepared in the present invention may be usefully used as a catalyst for a hydrogenation reaction known in the art, and may be usefully applied to various fields where a palladium catalyst is required.

다음으로 본 발명의 일 실시예에 따른 팔라듐/탄소 촉매의 제조방법의 실시예 및 비교예에 대하여 상세하게 설명한다. 여기에서 하기 실시예는 본 발명의 한 형태를 예시하는 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예에 의해 제한되는 것은 아니다. 실시예 및 비교예의 팔라듐/탄소 촉매는 1리터의 실험용 반응조를 사용하여 제조하였다.Next, examples and comparative examples of a method for producing a palladium / carbon catalyst according to an embodiment of the present invention will be described in detail. Hereinafter, the present invention will be described by way of examples only, and the scope of the present invention is not limited by the following examples. The palladium / carbon catalysts of the Examples and Comparative Examples were prepared using a 1 liter laboratory reactor.

[실시예][Example]

<담지체 준비><Preparation of Carrier>

1) 1M 염산 수용액을 제조하여 활성탄 100g이 든 반응기에 투입하였다.1) A 1M hydrochloric acid aqueous solution was prepared and charged into a reactor containing 100 g of activated carbon.

2) 상기 1)번 용액의 온도를 80도로 상승하여 6시간 교반하였다.2) The temperature of solution 1) was raised to 80 ° C and stirred for 6 hours.

3) 상기 2번 용액을 여과하였다.3) The solution of No. 2 was filtered.

4) 산처리한 활성탄에 잔여 산이 남지 않을 때까지 증류수로 여러 번 반복하여 세척하였다.4) It was washed repeatedly with distilled water until no remaining acid was left on acid-treated activated carbon.

5) 세척한 활성탄을 120도 온도에서 6시간 건조하여 산 처리된 활성탄을 제조하였다.5) The washed activated carbon was dried at 120 ℃ for 6 hours to produce acid treated activated carbon.

<팔라듐/탄소 촉매의 제조>&Lt; Preparation of palladium / carbon catalyst >

1) 5 중량% 염산 수용액을 제조하였다. 이때 염산의 양은 팔라듐 전구체 대비 2당량 이상의 양을 투입하였다.1) A 5 wt% hydrochloric acid aqueous solution was prepared. At this time, the amount of hydrochloric acid was at least 2 equivalents based on the palladium precursor.

2) 상기 1)번 용액에 팔라듐 전구체(PdCl2 5.55g) 10 중량%(건조 기준 활성탄 대비)를 투입한 후 60℃로 가열하여 완전 용해시켰다. 용해가 완료되면 용액의 온도를 상온으로 낮추었다. 이때 수용액의 질량은 60.5g이였다.2) 10% by weight (based on dry standard activated carbon) of a palladium precursor (PdCl 2 5.55 g) was added to the solution of the above 1), and the solution was completely dissolved by heating to 60 ° C. When the dissolution was completed, the temperature of the solution was lowered to room temperature. At this time, the mass of the aqueous solution was 60.5 g.

3) 상기 2)번 용액에 10 중량% 수산화나트륨 수용액 44g을 한번에 주입하고 15분간 교반하였다.3) 44 g of a 10% by weight aqueous sodium hydroxide solution was poured into the solution of the above 2), and stirred for 15 minutes.

4) 상기 3)번 용액에 활성탄 담체와 증류수를 1:5 중량비로 혼합하여 주입하였다.4) The active carbon carrier and distilled water were mixed and injected in the above 3) solution at a weight ratio of 1: 5.

5) 상기 4번 용액을 72.5 ℃로 승온하여 30분간 교반하였다.5) The solution of No. 4 was heated to 72.5 캜 and stirred for 30 minutes.

6) 상기 5번 용액을 여과 및 세척하여 팔라듐/탄소 촉매를 얻었다.6) The solution of No. 5 was filtered and washed to obtain a palladium / carbon catalyst.

[비교예][Comparative Example]

수소화반응에 사용하는 상용촉매(10% Pd/C)를 구입하여 실시예 촉매와 활성 및 내구성을 비교하였다. 상용촉매로는 에보닉(Evonik)사의 E101 NE/W를 사용하였다.
A commercial catalyst (10% Pd / C) used in the hydrogenation reaction was purchased to compare the activity and durability with the catalyst of the example. As the commercial catalyst, E101 NE / W of Evonik Co. was used.

[평가예] 활성탄 전처리에 따른 산소작용기 [Evaluation example] The oxygen functional group according to the pretreatment of activated carbon

활성탄 표면에 산성 작용기를 확인하기 위하여 보엠(Boehm) 적정법을 사용하였다. 전처리 전과 후의 활성탄 시료 1g을 각각 50ml의 0.05M 수산화나트륨, 탄산나트륨, 중탄산나트륨 및 염산에 각각 투입하여 24시간 동안 교반하였다. 활성탄을 여과한 후에 용액의 5ml를 취하여 0.05M의 염산용액과 수산화나트륨 용액으로 적정하였다. 수산화나트륨은 카복시기, 페놀기, 락톤기를 중화시키고, 탄산나트륨은 카복시기와 락톤기를 중화시키며 중탄산나트륨은 락톤기를 중화시킨다고 가정하여 각각의 기능기를 계산하였다. 또한 활성탄 표면에 존재하는 염기성 작용기는 염산에 의하여 중화되는 양으로부터 계산하였다.The Boehm titration method was used to identify acidic functional groups on the surface of activated carbon. 1 g of the activated carbon sample before and after the pretreatment was added to 50 ml of 0.05 M sodium hydroxide, sodium carbonate, sodium bicarbonate and hydrochloric acid, respectively, and the mixture was stirred for 24 hours. After filtering the activated carbon, 5 ml of the solution was titrated with 0.05 M hydrochloric acid solution and sodium hydroxide solution. Each functional group was calculated assuming that sodium hydroxide neutralizes carboxy group, phenol group, lactone group, sodium carbonate neutralizes carboxy group and lactone group, and sodium bicarbonate neutralizes lactone group. The basic functional groups on the surface of activated carbon were calculated from the amount neutralized by hydrochloric acid.

  작용기 그룹 (mEq/g)Functional group (mEq / g) 카복시기Carboxy group 락톤기Rock tone 페놀기Phenol group 산성기능기Acid functional group 염기성기능기Basic functional group 전처리 전 활성탄Activated carbon before pretreatment 0.220.22 0.260.26 0.230.23 0.710.71 0.170.17 전처리 후 활성탄Activated carbon after pretreatment 0.740.74 0.610.61 0.520.52 1.871.87 0.130.13

위의 결과에서 확인할 수 있는 바와 같이 전처리 후 활성탄에는 카복시기, 락톤기, 페놀기 등의 산성기능기가 크게 증가하고 염기성기능기는 상대적으로 적게 감소하였다. 이에 따라 전처리된 활성탄과 팔라듐 입자 사이의 상호작용이 증가함을 기대할 수 있다.As can be seen from the above results, the acidic functional groups such as carboxy group, lactone group, and phenolic group were greatly increased and the basic functional groups were relatively decreased in the activated carbon after the pretreatment. It can be expected that the interaction between pretreated activated carbon and palladium particles increases.

[평가예] [Evaluation example] 촉매 재사용 횟수에 따른 팔라듐/탄소 촉매의 활성 평가Activity Evaluation of Palladium / Carbon Catalysts by Number of Catalyst Reuse Times

실시예와 비교예의 촉매에 대한 반응성 평가를 다음의 순서로 진행하였다.The reactivity of the catalysts of Examples and Comparative Examples was evaluated in the following order.

1) 벤질에테르(benzylether) 4g과 테트라하이드로퓨란(Tetrahydrofuran) 89g의 혼합용액에 팔라듐/탄소 촉매 0.2g을 분산시켰다.1) 0.2 g of a palladium / carbon catalyst was dispersed in a mixed solution of 4 g of benzyl ether and 89 g of tetrahydrofuran.

2) 상기 1)용액을 수소화반응기에 투입한 후 수소기체를 6bar로 충진하였다.2) The 1) solution was charged into a hydrogenation reactor and then hydrogen gas was charged to 6 bar.

3) 교반기를 1000rpm으로 작동시키며 수소화반응을 시작하였다.3) The hydrogenation reaction was started by operating the stirrer at 1000 rpm.

4) 수소화반응기에서 10분간 O-debenzylation 반응을 하며 소모된 수소소모량을 실시간으로 기록하였다.4) O-debenzylation reaction was carried out in the hydrogenation reactor for 10 minutes and the consumed hydrogen consumption was recorded in real time.

반응이 끝난 촉매는 원심분리기를 이용하여 촉매를 회수하였으며, 테트라하이드로퓨란 용액으로 3회 세척한 후 수소화반응에 재사용하였다.After the reaction, the catalyst was recovered by using a centrifuge, washed three times with tetrahydrofuran solution and reused for the hydrogenation reaction.

촉매 사용횟수에 따른 팔라듐/탄소 촉매의 활성 평가 결과를 도 2에 나타내었다.The results of the activity evaluation of the palladium / carbon catalyst according to the number of times of use of the catalyst are shown in FIG.

실험결과 반응횟수가 증가함에 따라 반응활성이 감소하는 것을 확인하였다. 실시예 촉매의 경우 비교예 촉매에 비해 반응횟수에 따른 반응활성 감소폭이 적음을 확인하였다. 이에 따라 실시예의 촉매가 비교예(상용촉매)의 촉매대비 우수한 활성 및 내구성을 가짐을 알 수 있다.As a result of the experiment, it was confirmed that the reaction activity decreased as the number of reactions increased. It was confirmed that the reduction of reaction activity was less in the case of the catalyst of the present invention than that of the catalyst of the comparative example. Thus, it can be seen that the catalyst of the example has superior activity and durability as compared with the catalyst of the comparative example (commercial catalyst).

한편 실시예와 비교예의 촉매에 대해 촉매 사용 횟수에 따른 팔라듐/탄소 촉매의 내구성을 확인하고자 반응 후 촉매를 회수하여 열분석을 통해 팔라듐 함량을 측정하였다. 이에 대한 결과를 표 2에 나타내었다.On the other hand, to confirm the durability of the palladium / carbon catalyst according to the number of times of use of the catalyst for the catalysts of Examples and Comparative Examples, the catalyst was recovered and the palladium content was measured by thermal analysis. The results are shown in Table 2.

실시예Example 비교예Comparative Example 반응횟수Number of reactions 1회1 time 2회Episode 2 3회3rd time 1회1 time 2회Episode 2 3회3rd time 팔라듐 함량 (wt%)Palladium content (wt%) 9.859.85 8.268.26 6.926.92 4.234.23 2.152.15 1.081.08

실험 결과, 실시예 촉매의 경우 반응횟수에 따라 반응 후 팔라듐 함량이 크게 감소하지 않았지만 비교예(상용촉매)의 경우 반응횟수가 증가함에 따라 팔라듐함량이 크게 감소함을 확인하였다. 구체적으로 팔라듐 함량이 1회 반응에 1.5%, 2회 반응에 17.4%, 3회 반응에 30.08% 감소하는 정도에 불과하였다.As a result of the experiment, it was confirmed that the palladium content of the catalyst of the present invention was not greatly decreased after the reaction according to the number of reactions, but that of the catalyst of the comparative example (commercial catalyst) was greatly decreased as the number of reactions increased. Specifically, the palladium content was only 1.5% in one reaction, 17.4% in two reactions, and 30.08% in three reactions.

이와 같이 실시예 촉매의 경우 탄소에 담지된 팔라듐이 반응 중에 적게 소실되어 촉매 내구성이 우수함을 확인하였다As described above, it was confirmed that the palladium supported on carbon in the case of the catalyst of the Example was little lost during the reaction,

상술한 본 발명의 특정한 설명은 당업자에 의하여 다양하게 실시될 가능성이 있는 것이 자명한 일이다.It is apparent that the specific description of the present invention described above is susceptible to various implementations by those skilled in the art.

이와 같이 변형된 실시예들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안되며, 이와 같이 변형된 실시예들은 본 발명의 특허청구범위 내에 속한다고 할 것이다.It will be appreciated that those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the present invention has been described in connection with what is presently considered to be practical and exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (4)

산으로 전처리된 탄소 담체를 준비하는 제1단계,
팔라듐 전구체를 산 용액에 용해시켜 팔라듐 전구체 용액을 제조하는 제2단계,
상기 제2단계의 팔라듐 전구체 용액에 산화제 수용액을 투입하고 교반하여 팔라듐 입자를 생성하는 제3단계,
산화제 수용액이 투입된 상기 팔라듐 전구체 수용액에 상기 제1단계에서 준비한 탄소 담체를 투입하는 제4단계 및
투입된 상기 탄소 담체에 상기 팔라듐 입자를 담지시키는 제5단계
를 포함하는 팔라듐/탄소 촉매의 제조방법.
A first step of preparing a carbon carrier pretreated with an acid,
A second step of dissolving the palladium precursor in an acid solution to prepare a palladium precursor solution,
A third step of adding an oxidizing agent aqueous solution to the palladium precursor solution in the second step and stirring to produce palladium particles,
A fourth step of injecting the carbon carrier prepared in the first step into the aqueous solution of the palladium precursor into which the aqueous solution of the oxidizing agent is introduced,
A fifth step of supporting the palladium particles on the inserted carbon carrier
&Lt; / RTI &gt;
제1항에 있어서,
상기 제1단계는,
산 용액에 탄소 담체를 주입하는 단계,
탄소 담체가 주입된 상기 산 용액을 30℃ 내지 100℃에서 30분 내지 24시간 동안 교반하는 단계,
교반한 상기 산 용액을 여과하고 세척하는 단계
를 포함하는 것을 특징으로 하는 팔라듐/탄소 촉매의 제조방법.
The method according to claim 1,
In the first step,
A step of injecting a carbon carrier into an acid solution,
Stirring the acid solution into which the carbon carrier has been introduced at 30 DEG C to 100 DEG C for 30 minutes to 24 hours,
Filtering and washing the stirred acid solution
/ RTI &gt; wherein the catalyst is a palladium / carbon catalyst.
제1항에 있어서,
상기 제3단계에서,
상기 제2단계의 팔라듐 전구체 용액에 투입되는 산화제 수용액은 일정량을 일시에 투입하는 것임을 특징으로 하는 팔라듐/탄소 촉매의 제조방법.
The method according to claim 1,
In the third step,
Wherein the oxidizing agent aqueous solution to be added to the palladium precursor solution in the second step is charged at a predetermined amount.
상기 제1항 내지 제3항 중 어느 한 항의 방법으로 제조되고 1회 반응 후에 팔라듐 입자의 감소율이 1.5% 이내인 팔라듐/탄소 촉매.A palladium / carbon catalyst prepared by the method of any one of claims 1 to 3 and having a reduction ratio of palladium particles within 1.5% after a single reaction.
KR1020160178227A 2016-12-23 2016-12-23 PREPARATION METHOD OF Pd/C CATALYST HAVING IMPROVED DURABILITY AND Pd/C CATALYST PREPARATED USING THE METHOD KR20180074286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160178227A KR20180074286A (en) 2016-12-23 2016-12-23 PREPARATION METHOD OF Pd/C CATALYST HAVING IMPROVED DURABILITY AND Pd/C CATALYST PREPARATED USING THE METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160178227A KR20180074286A (en) 2016-12-23 2016-12-23 PREPARATION METHOD OF Pd/C CATALYST HAVING IMPROVED DURABILITY AND Pd/C CATALYST PREPARATED USING THE METHOD

Publications (1)

Publication Number Publication Date
KR20180074286A true KR20180074286A (en) 2018-07-03

Family

ID=62917999

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160178227A KR20180074286A (en) 2016-12-23 2016-12-23 PREPARATION METHOD OF Pd/C CATALYST HAVING IMPROVED DURABILITY AND Pd/C CATALYST PREPARATED USING THE METHOD

Country Status (1)

Country Link
KR (1) KR20180074286A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050069180A (en) * 2003-12-31 2005-07-05 주식회사 효성 Pd/c hydrogenetion catalyst for purifying terephthalic acid
KR20090037949A (en) * 2006-08-11 2009-04-16 차이나 페트로리움 앤드 케미컬 코포레이션 Supported pd/c catalyst and the preparation method thereof
KR20100077788A (en) * 2008-12-29 2010-07-08 주식회사 효성 A catalyst for putifying 2,6-naphthalene dicarboxylic acid, a method for preparing thereof and purifying process using the catalyst
KR20110057976A (en) * 2009-11-25 2011-06-01 현대자동차주식회사 Synthesis methods of nano-sized nickel or palladium on a carbon support
KR101578071B1 (en) * 2015-05-20 2015-12-16 주식회사 디알액시온 Preparation method of high dispered novel metal catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050069180A (en) * 2003-12-31 2005-07-05 주식회사 효성 Pd/c hydrogenetion catalyst for purifying terephthalic acid
KR20090037949A (en) * 2006-08-11 2009-04-16 차이나 페트로리움 앤드 케미컬 코포레이션 Supported pd/c catalyst and the preparation method thereof
KR20100077788A (en) * 2008-12-29 2010-07-08 주식회사 효성 A catalyst for putifying 2,6-naphthalene dicarboxylic acid, a method for preparing thereof and purifying process using the catalyst
KR20110057976A (en) * 2009-11-25 2011-06-01 현대자동차주식회사 Synthesis methods of nano-sized nickel or palladium on a carbon support
KR101578071B1 (en) * 2015-05-20 2015-12-16 주식회사 디알액시온 Preparation method of high dispered novel metal catalyst

Similar Documents

Publication Publication Date Title
CN100428989C (en) Method for preparing loading type nano Pd/C catalyst from colloidal solution
KR20100045995A (en) Dehydrochlorination of hydrochlorofluorocarbons using pre-treated activated carbon catalysts
KR101578071B1 (en) Preparation method of high dispered novel metal catalyst
JP5928894B2 (en) Polyhydric alcohol hydrocracking catalyst, and method for producing 1,3-propanediol using the catalyst
CN114054061A (en) Nitrogen-doped carbon-supported palladium catalyst and preparation method and application thereof
CN113070101B (en) Catalyst for decomposing formaldehyde and preparation method and application thereof
CN112206801B (en) Nitrogen-doped palladium-carbon catalyst, preparation method thereof and application thereof in hydrodechlorination of CFC-113
CN113501761A (en) Method for continuously producing N, N-diethyl-1, 3-propane diamine by one-step method
CN111330595B (en) Iron oxide loaded monatomic Pd and Pt catalyst, preparation method thereof and application thereof in selective hydrogenation reaction
KR20180074286A (en) PREPARATION METHOD OF Pd/C CATALYST HAVING IMPROVED DURABILITY AND Pd/C CATALYST PREPARATED USING THE METHOD
KR20180035550A (en) PREPARATION METOD OF Pd/C CATALYST CAPABLE OF SCALE UP
KR20170103091A (en) PREPARATION METHOD OF Pd/C CATALYST FOR HYDROGENATION
KR101950902B1 (en) PARATION METOD OF Pd/C CATALYST CAPABLE OF IMPROVING REACTION VITALITY AND Pd/C CATALYST USING THE METHOD
CN112915998B (en) Preparation method of composite ruthenium catalyst
CN104971738A (en) Preparation method of magnetic nano palladium catalyst
CN105879864A (en) Preparation method and application of rhodium/resin carbon catalyst
KR20190070202A (en) PREPARATION METHOD OF Pd/C CATALYST AND Pd/C CATALYST PREPARATED USING THE METHOD
KR101750971B1 (en) PREPARATION METHOD OF Pd/C CATALYST FOR HYDROGENATION AND Pd/C CATALYST PREPARATED USING THE METHOD
RU2415707C2 (en) Method of producing platinum catalysts
CN110102335B (en) SBA-16-based CO selective methanation nickel-based catalyst and preparation method thereof
KR102055389B1 (en) Method for Preparing Catalyst Having Pt-Pd Deposited Polymer Electrolyte Multi-layer Treated with Sulfuric Acid
CN110116018B (en) Noble metal-coated silicon molecular sieve catalytic material and preparation method thereof
KR20200081851A (en) Preparation of Reduced Palladium on Activated Carbon without Reducing Agent
KR20180072422A (en) PREPARATION METHOD OF Pd/C CATALYST AND Pd/C CATALYST PREPARATEDUSING THE METHOD
KR100719239B1 (en) preparation of electrode catalysts for polymer-electrolyte membrane fuel cell and direct-methanol fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application