KR20180071879A - Mushroom-garlic Extract for Hemocytopoiesis Function Enhancement and Radiation Protection - Google Patents

Mushroom-garlic Extract for Hemocytopoiesis Function Enhancement and Radiation Protection Download PDF

Info

Publication number
KR20180071879A
KR20180071879A KR1020160174995A KR20160174995A KR20180071879A KR 20180071879 A KR20180071879 A KR 20180071879A KR 1020160174995 A KR1020160174995 A KR 1020160174995A KR 20160174995 A KR20160174995 A KR 20160174995A KR 20180071879 A KR20180071879 A KR 20180071879A
Authority
KR
South Korea
Prior art keywords
mushroom
extract
cells
radiation
garlic
Prior art date
Application number
KR1020160174995A
Other languages
Korean (ko)
Inventor
손정선
김숭평
조병욱
Original Assignee
조선대학교산학협력단
청운바이오 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조선대학교산학협력단, 청운바이오 주식회사 filed Critical 조선대학교산학협력단
Priority to KR1020160174995A priority Critical patent/KR20180071879A/en
Publication of KR20180071879A publication Critical patent/KR20180071879A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/06Fungi, e.g. yeasts
    • A61K36/07Basidiomycota, e.g. Cryptococcus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/896Liliaceae (Lily family), e.g. daylily, plantain lily, Hyacinth or narcissus
    • A61K36/8962Allium, e.g. garden onion, leek, garlic or chives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/208Fungi extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • A23V2250/212Garlic

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Botany (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nutrition Science (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

The present invention relates to a composite composition having ingredients with reduction and removal of harmful active oxygen in a body and a protection effect of a living body by radiation and an immune activation enhancement effect in an extract obtained from mushroom-garlic as main ingredients, and a manufacturing method thereof and, more specifically, to a composite composition manufactured by mixing schizophyllan extracted from a culture medium of Schizophyllum commune and cycloalliin and allicin which are hot water extracts of garlic in optimal concentrations, a manufacturing method thereof, and a use thereof. The composite composition is made of natural materials selected from innoxuous plant materials to have less side effects and toxicity and better safety than conventional biochemical immunity-boosting medicines or body protection chemicals, suppresses oxidative body damage by chemicals and radiation, and enhances immune activation to be usefully used as radiation protection food, an anti-cancer therapeutic aid, or health supplement food.

Description

조혈기능 증진 및 방사선 방호용 버섯-마늘 추출물{Mushroom-garlic Extract for Hemocytopoiesis Function Enhancement and Radiation Protection}Mushroom-garlic Extract for Hemocytopoiesis Function Enhancement and Radiation Protection "

본 발명은 조혈기능 증진 및 방사선 방호용 버섯-마늘 추출물에 관련된다. The present invention relates to a mushroom-garlic extract for enhancing hematopoietic function and radiation protection.

방사선은 여러 분야에서 사용이 증가하고 있으며, 이용에 따른 방사선 종사자들의 피폭에 의한 장해의 리스크를 극복할 수 있는 방사선 피폭방어제의 개발을 위한 연구는 사회적 중요한 과제가 되고 있다. 각종 전리방사선은 생체를 구성하는 물질을 투과, 흡수하는 과정에서 물질과 상호작용을 일으키며 그 물질을 구성하는 분자나 원자에 불안정한 활성을 일으켜 물리, 화학적 및 화합물의 조성변화로 인해 세포나 조직에 이상을 가져와 결국은 생물학적인 장해를 초래하게 된다. Radiation has been increasingly used in various fields, and research for the development of a radiation exposure prevention system that can overcome the risks of radiation damage caused by radiation workers has become an important social issue. Various ionizing radiation interacts with a substance in the process of permeating and absorbing the substance that constitutes the living body, causing unstable activity to the molecule or atom constituting the substance, resulting in abnormalities in cells or tissues due to changes in physical, And ultimately leads to biological barriers.

방사선을 이용한 진단과 치료시, 또는 방사선 관련 업종 종사자에게 생체 내에서 일어나는 생리적 변화에 의한 장애방어는 중요한 문제점으로 대두되고 있다. 일반적으로 방사선 방호제의 필수조건은 정상조직에 대한 작용은 없거나 무시할 정도로 미미하고 종양조직에 대한 방호효과는 강력하여 치료 또는 증진효과가 분명하여야 한다. In physiological changes that occur in the living body during diagnosis and treatment using radiation, or in radiation workers, it is becoming a serious problem. In general, the essential condition of the radioprotective agent is that there is no action on normal tissues or negligibly small, and the protective effect on the tumor tissue is strong, so that the therapeutic or promoting effect should be clear.

실제 가장 주목을 받고 있는 방사선 방호제로는 amifostin이 있는데 이는 미 육군에서 개발 (Yuhas JM and storer JB(1969): differentiae chemoprotection of normal and malignet tissue J natl cencer Inst 42 : 331-335) 한 것으로 조성물의 주 성분은 S-2(3-aminoprophlamino)ethylphosphorothioic acid(이하: WR-2721)이다. WR-2721의 방사선 방어효과가 Mouse 정상조직에 대해서는 골수사를 지표로 했을 때 선량감효율(does reduction factor:DRF)이 2.7이고 종양조직에 대해서는 % transplantability를 지표로 했을 때 DRF가 1.15라고 보고한 이래 cysteamine의 thio인산염 유도체인 WR-2721이 방사선 방어제로서 독성이 적고 임상응용이 가능하다고 발표한 이래 많은 후속 연구가 있어 선택적 방호를 나타내는 방호제에 주목하게 되었다.In fact, the most important radiation protection agent is amifostin, which was developed in the US Army (Yuhas JM and Storer JB (1969): differentiae chemoprotection of normal and malignant tissue Jnatl cencer Inst 42: 331-335) The component is S-2 (3-aminoprophlamino) ethylphosphorothioic acid (hereinafter: WR-2721). The radiation protection effect of WR-2721 reported a DRR of 1.15 in the normal tissues of mice, with a 2.7% reduction factor (DRF) when using bone marrow as an index and a% transplantability as an index Since then, it has been noted that WR-2721, a thio-phosphate derivative of cysteamine, has low toxicity as a radiation-inhibiting agent and its clinical application is possible.

실제로 이들 방사선방호제는 대개 방사선조사 의해 인체 내에 생긴 불안정한 산소유도체(ROS)가 세포(주로 DNA)에 손상을 유발하기 전에 제거하는 유리기 제거제(free radical scavenger), 또는 항산화제(antioxidant)등의 형태로 연구가 있어왔고, 동물실험들에서 고용량 WR-2721이 현재까지 가장 뛰어난 방호효과를 지닌 방호제로 알려져 있으나 약물 자체의 부작용들(오심, 구토, 졸음, 저혈압, 저칼슘혈증, 활동도 저하 등)로 안전성의 문제에서 실용상의 일반화에는 많은 문제점이 노출되어 왔다. 다만 임상적으로 두경부암 환자나 폐암 환자의 국소 방사선치료 시 방사선으로 인한 구강건조증, 식도염, 폐렴 등의 빈도를 줄이기 위해 저용량으로 사용되고 있다. 피폭 후 사용가능한 후처치제 형태의 방어제들은 주로 골수세포 증식 및 면역강화 작용 등의 기전을 이용하였으나 아직까지 효과적인 방어제는 개발되지 못하고 있으며, 최근에 방어효과는 향상시키며 부작용들을 줄이고자 전처치제와 후처치제를 복합 사용한 연구들이 있었다. 방사선 방호물질의 개발 초기에는 아미포스틴(amifostin) 같은 티올기 함유 물질의 합성에 초점이 맞추어졌었다. 이 물질은 사망률을 줄일 수 있는 이점이 있는 반면 약물독성 등의 부정적 부분도 만만치 않다. 따라서 독성이 없으면서 항산화효과 및 면역증진효과를 보일 수 있는 천연물의 활용은 대단히 큰 관심을 불러 왔다 (Drug Discovery Today.Volume 12, Numbers 19/20.October 2007). 특히 전통 조혈작용이 있는 것으로 알려진 한약제의 추출조성물 (KR 10-0519720, KR 10-0449655, KR 10-0440863) 및 레드비트 추출물 (출원번호 10-2014-0068468) 등이 있다. 이외에 식물유래 추출물 중 면역증강 및 항암치료에 사용하기 위해 상업화되어 있는 것으로는 schizophyllan(치마버섯 배양액)과 lentinan(표고버섯 추출물), grifolan, krestin ( polysaccharide-peptide complex, 구름버섯 배양액), mesima(상황버섯 균사체), β-Immunan(영지버섯)이 상업화되어 있다. In fact, these radioprotective agents are usually in the form of free radical scavengers, or antioxidants, that remove unstable oxygen derivatives (ROS) generated in the body by irradiation, before they cause damage to the cells (WR-2721) has been reported to be the most effective anti-inflammatory agent in the animal studies. However, the adverse effects of the drug itself (nausea, vomiting, drowsiness, hypotension, hypocalcemia, , There have been many problems in practical generalization in terms of safety. However, it has been used clinically for low dose to reduce the incidence of dry mouth, esophagitis and pneumonia due to radiation in local radiation therapy of head and neck cancer patients or lung cancer patients. The use of post-exposure post-treatment type of prophylactic agents mainly used a mechanism such as bone marrow cell proliferation and immunity-enhancing action, but effective inhibitors have not been developed yet. Recently, to improve the defense effect and to reduce the side effects, There have been several studies using a combination of post-treatment and post-treatment. In the early days of development of radiation protection materials, the synthesis of thiol group-containing materials such as amifostin was focused. While this substance has the advantage of reducing the mortality rate, there are also some negative aspects such as drug toxicity. Therefore, the use of natural products that can exhibit antioxidant and immune enhancing effects without toxicity has attracted great interest (Drug Discovery Today. Volume 12, Numbers 19 / 20.October 2007). (KR 10-0519720, KR 10-0449655, KR 10-0440863) and Red Bit extract (Application No. 10-2014-0068468), which are known to have a traditional hematopoiesis. Among the plant-derived extracts, commercialized for use in the immunological enhancement and chemotherapy include schizophyllan, lentinan, grifolan, krestin (polysaccharide-peptide complex), mesima Mushroom mycelium), and β-Immunan (gingival mushroom) have been commercialized.

본 발명자들은 더 효과적인 새로운 면역증강 및 방사선 방호기능을 갖는 마늘 버섯 추출 조성물을 분리 정제하여 다양한 무게 비율로 혼합하여 기존의 생물화학적 면역 및 방사선 방호제들 보다 안전성이 높고, 현저한 면역 및 방호기능 증진 효과를 보이며, 또한 뛰어난 방사선 방호효과를 나타내는 것을 확인하여 방사선에 의한 조혈계 및 재생조직의 원줄기세포 등의 장해를 종합적으로 방호할 수 있음을 확인함으로써 본 발명을 완성하였다. The present inventors isolated and purified a garlic mushroom extract composition having a more effective new immunity enhancement and radiation protection function and mixed them at various weight ratios to provide a higher safety than conventional biochemical immunity and radiation protection agents, And confirmed that it exhibits excellent radioprotective effect, thereby confirming that it is possible to comprehensively protect the main stem cells of the hematopoietic system and the regenerated tissue from radiation, etc. Thus, the present invention has been completed.

본 발명의 목적은 조혈기능 및 면역기능 증진에 광범위하게 활용될 수 있으며 방사선 장해의 예방 및 극복에 유용하게 이용될 수 있는 무독성 식품추출물을 제공하는 것이다.It is an object of the present invention to provide a non-toxic food extract which can be widely used for enhancing hematopoiesis and immune function, and which can be usefully used for preventing and overcoming radiation damage.

도 1은 본 발명의 일 구현 예에 따른, Raw264.7에서 MTT assay를 통한 버섯, 마늘, 혼합 추출물의 독성시험 결과를 도시한다.
도 2는 본 발명의 일 구현 예에 따른, Raw264.7에서 각 추출물에 의한 NO 생성량 측정 결과를 도시한다.
도 3은 본 발명의 일 구현 예에 따른, PEC(복강침출세포)의 B cell 활성 확인 결과를 도시한다.
도 4는 본 발명의 일 구현 예에 따른, 실험 계획표를 도시한다.
도 5는 본 발명의 일 구현 예에 따른, γ-irradiation 마우스 모델에서 SF-051의 면역증강효능 실험 스케줄 및 실험군을 도시한다.
도 6은 본 발명의 일 구현 예에 따른, γ-irradiation 마우스 모델에서 SF-051에 의한 WBC의 수 및 immunoglobulin들의 level 변화 확인 결과를 도시한다.
도 7은 본 발명의 일 구현 예에 따른, γ-irradiation 마우스 모델의 Thymus와 PEC에서 면역세포들의 활성 및 population 변화 확인 결과를 도시한다.
도 8은 본 발명의 일 구현 예에 따른, γ-irradiation 마우스 모델의 Spleen에서 면역세포들의 활성 및 population 변화 확인 결과를 도시한다.
도 9는 본 발명의 일 구현 예에 따른, γ-irradiation 마우스 모델의 LN에서 면역세포들의 활성 및 population 변화 확인 결과를 도시한다.
도 10은 본 발명의 일 구현 예에 따른, γ-irradiation 마우스 모델의 MLN에서 면역세포들의 활성 및 population 변화 확인 결과를 도시한다.
도 11은 본 발명의 일 구현 예에 따른, γ-irradiation 마우스 모델의 Spleen에서 면역세포들의 세포사멸 및 세포주기 변화 확인 결과를 도시한다.
도 12는 본 발명의 일 구현 예에 따른, γ-irradiation 마우스 모델의 Spleen에서 다양한 사이토카인들의 유전자 발현변화 확인 결과를 도시한다.
FIG. 1 shows the toxicity test results of mushroom, garlic, and mixed extracts through MTT assay in Raw 264.7 according to an embodiment of the present invention.
FIG. 2 shows the results of measurement of NO production by each extract in Raw 264.7 according to an embodiment of the present invention.
FIG. 3 shows the results of B cell activity confirmation of PEC (peritoneal leukocyte) according to an embodiment of the present invention.
Figure 4 shows an experimental schedule according to one embodiment of the present invention.
Figure 5 shows an experimental schedule and an experimental set of immunoenhancing effects of SF-051 in a gamma-irradiation mouse model, according to one embodiment of the present invention.
FIG. 6 shows the results of checking the number of WBCs and the level of immunoglobulins by SF-051 in a γ-irradiation mouse model according to an embodiment of the present invention.
Figure 7 shows the results of confirming the activity and population change of immune cells in Thymus and PEC of the y-irradiation mouse model according to one embodiment of the present invention.
Figure 8 shows the results of confirming the activity and population change of immune cells in the Spleen of the y-irradiation mouse model according to one embodiment of the present invention.
FIG. 9 shows the results of confirming the activity and population change of immune cells in the LN of the γ-irradiation mouse model according to one embodiment of the present invention.
FIG. 10 shows the results of confirming the activity and population change of immune cells in the MLN of the γ-irradiation mouse model according to one embodiment of the present invention.
Figure 11 shows the results of cell death and cell cycle change of immune cells in Spleen of a y-irradiation mouse model according to one embodiment of the present invention.
Fig. 12 shows the results of confirming gene expression changes of various cytokines in Spleen of a y-irradiation mouse model according to an embodiment of the present invention.

시료는 동결건조 후 분쇄하여 용매에 의한 가압수 추출을 하였다. 추출시간 10분과 70분에서 회수율은 각각 80.5%에서 88.8%로 변화하였고 70분 이상에서는 회수율의 변화는 없었다. 추출압력은 15.2 MPa 까지는 압력이 높을수록 회수율은 높아졌다. 시조필란 분리의 최적조건은 30℃에서 10.1 MPa, 70 min 이었다. 95~100℃에서 적외선 추출기를 사용한 열수 추출도 진행하였다. 추출시간은 버섯마다 달리하였다. 또 다른 방법으로 초음파출력 350W에서 시료양의 5배의 증류수를 넣고 90℃에서 30분 추출하는 초음파추출도 병행하는 등 다양한 방법으로 시도하였다. 추출물은 메탄올 추출과정을 거쳤다. 프로틴은 20% w/v TFA로 침전시켜 제거하였고 프로틴 제거 후 메탄올을 2:1 (v/v) 비율로 가하여 침전을 얻고 농축된 NaCl용액을 추가로 가해주면서 더 용이하게 침전을 얻을 수 있었다. 침전물은 아세톤 등으로 세척하였다. 버섯원물과 처리된 추출물의 사진을 아래에 나타내었다.The samples were lyophilized, pulverized and extracted with a solvent. The recoveries were changed from 80.5% to 88.8% at 10 min and 70 min, respectively. The extraction pressure increased to 15.2 MPa as the pressure increased. Optimum conditions for the separation of the zyphophyll were 10.1 MPa, 70 min at 30 ℃. Hot water extraction using an infrared extractor was also performed at 95-100 ° C. The extraction time was different for each mushroom. In another method, ultrasonic extraction was performed by adding ultrasonic wave output of 350W at 5 ℃ of distilled water and extraction at 90 ℃ for 30 minutes. The extract was subjected to methanol extraction. Protein was removed by precipitation with 20% w / v TFA. After removal of the protein, methanol was added at a ratio of 2: 1 (v / v) to obtain a precipitate, and a concentrated NaCl solution was further added to precipitate the precipitate more easily. The precipitate was washed with acetone or the like. Photographs of mushroom raw materials and treated extracts are shown below.

베타-글루칸 함량 조사는 total glucan을 구한 후 α-glucan 량을 빼서 β-glucan 정량하였다. 먼저 total glucan은 100 메시 체로 거른 분쇄 시료 100 mg 을 tube에 넣어 37% HCl 1.5 mL을 가한 후 45분간 30℃ 수조에 넣어 분해하였다. 그 후 증류수 10 mL을 넣어 vortex하고, 100℃에서 2시간 incubation 시켰다. 그 후 실온에서 식히면서 2 N KOH를 10 mL씩 가하고 200 mM sodium acetate buffer로 100 mL 정용 후 충분히 mixing 하였다. 상등액 0.1 mL 에 200 mM sodium acetate buffer에 녹인 exo-1,3-β-glucanase plus β-glucosidase 0.1 mL을 넣고, reagent blank로는 acetate buffer 0.2 mL을, D-glucose standard로는 D-glucose standard 0.1 mL과 acetate buffer 0.1 mL을 사용하여 mixing 후 40℃에서 60분 동안 incubation 한다. Glucose oxidase/peroxidase mixture(GOPOD) 3 mL을 첨가하여 40℃에서 20분 동안 incubation 한 후, 510 nm에서 흡광도를 측정하였다. α-Glucan은 100 메시 체로 거른 분쇄 시료 100 mg 을 tube에 넣고 2 M KOH 2 mL씩 가한 후 20분간 mixing 하였다. 1.2 M sodium acetate buffer 8 mL을 첨가하여 섞은 후 amyloglucosidase plus invertase 0.2 mL을 넣고, 잘 섞어서 40℃ water bath에서 30분간 incubation 하였다. 상등액 0.1 mL에 200 mM sodium acetate buffer 0.1 mL, GOPOD 3 mL을 넣고 40℃에서 20분간 incubation 한 후, 510nm 흡광도에서 측정하였다. The content of β-glucan was determined by subtracting α-glucan from total glucan. First, 100 mg of pulverized sample, which was filtered through 100 mesh sieve, was added to 1.5 ml of 37% HCl in a tube, and then decomposed in a 30 ° C water bath for 45 minutes. Then, 10 mL of distilled water was added and vortexed and incubated at 100 ° C for 2 hours. Then, 10 mL of 2 N KOH was added while cooling at room temperature, and 100 mL of the solution was mixed with 200 mM sodium acetate buffer. To 0.1 mL of the supernatant, add 0.1 mL of exo-1,3-β-glucanase plus β-glucosidase dissolved in 200 mM sodium acetate buffer, 0.2 mL of acetate buffer as a reagent blank, 0.1 mL of D- 0.1 mL of acetate buffer and incubate at 40 ° C for 60 minutes. 3 mL of glucose oxidase / peroxidase mixture (GOPOD) was added, incubated at 40 ° C for 20 minutes, and absorbance was measured at 510 nm. α-Glucan was prepared by mixing 100 mg of the pulverized sample with 100 mesh sieve, adding 2 mL of 2 M KOH, and mixing for 20 minutes. Add 8 mL of 1.2 M sodium acetate buffer and mix. Add 0.2 mL of amyloglucosidase plus invertase, mix well and incubate in a water bath at 40 ° C for 30 minutes. To 0.1 mL of the supernatant, 0.1 mL of 200 mM sodium acetate buffer and 3 mL of GOPOD were added, incubated at 40 ° C for 20 minutes, and then measured at 510 nm absorbance.

버섯에 대한 시조필란은 AOAC 방법에 따라 분석하였다. 수분은 시료 0.5 g을 각각 칭량접시에 담고 105℃ dry oven에서 항량이 될 때까지 건조시켜 무게를 측정하여 구하였다. 조회분은 시료 0.5 g을 250℃에서 예비 회화한 후 600℃에서 직접 회화법으로, 조단백질의 함량은 Kjeldahl법으로 측정된 질소량에 질소계수 6.25를 곱하여 산출하였으며, 조지방의 함량은 Soxhlet 추출법으로, 조섬유는 Henneberg Stohmann 개량법으로 구하였다. 그리고 가용성 무질소물의 함량은 총량에서 수분, 조회분, 조단백질, 조지방 및 조섬유의 함량을 뺀 값으로 산출하였다. The mushrooms were analyzed according to the AOAC method. Moisture was determined by weighing 0.5 g of each sample in a weighing dish and drying it at 105 ° C in a dry oven until the weight became constant. The crude protein content was calculated by multiplying the nitrogen content measured by Kjeldahl method by the nitrogen factor of 6.25. The crude fat content was determined by Soxhlet extraction method, and crude fiber Were obtained by the Henneberg Stohmann modification method. The contents of soluble nitrogen - free water were calculated by subtracting contents of moisture, crude ash, crude protein, crude fat and crude fiber in the total amount.

마늘 시료의 알리인 분석은 포름산을 이용하여 pH 3.0으로 조절한 80% 메탄올 용액을 사용하여 초음파로 추출한 후 액체크로마토그래피 및 자외선 흡광광도 검출기를 사용하여 208 nm에서 정량 분석하였다. 이때 컬럼온도는 30℃로 하였으며 이동상은 인산이수소나트륨과 헵탄설폰산나트륨용액(50:80)과 아세토니트릴용액을 gradient 조건으로 하였다. 평균적인 알리인 함량은 15.84의 값을 얻었다.Aliquots of garlic samples were analyzed by liquid chromatography and ultraviolet spectrophotometry at 208 nm using 80% methanol solution adjusted to pH 3.0 with formic acid. At this time, the column temperature was 30 ° C, and the mobile phase was gradient solution of sodium dihydrogenphosphate and sodium heptanesulfonate (50:80) and acetonitrile solution. The average allyl content was found to be 15.84.

또한, 유용성분에 대한 기능성 검사를 통하여 유용성분들의 효과를 아래와 같은 방법으로 조사하였다.In addition, the effectiveness of the beneficial ingredients was investigated through the functional test of the useful ingredients as follows.

-. 세포 독성 테스트를 이용한 추출물의 in vitro 처리-. In vitro treatment of extracts using cytotoxicity test

-. 소재조합 추출물의 in vivo 처리-. In vivo treatment of combination extracts

-. ROS(Reactive oxygen species) 및 NO 측정-. Reactive oxygen species (ROS) and NO measurements

-. 세포독성능 분석(51Cr release assay)-. The cytotoxicity assay (51Cr release assay)

-. 유전자 발현 분석-. Gene expression analysis

-. 유세포 분석 (flow cytometry analysis)-. Flow cytometry analysis

-. 세포주기 및 apoptosis 변화 관찰-. Observation of cell cycle and apoptosis changes

다음은 추진된 다양한 기능성 검사 결과들 중 대표적인 결과에 대한 고찰이다. 먼저, 버섯, 마늘, 혼합 추출물의 독성을 확인하고 적정 처리 농도를 확립하기 위하여 Raw264.7에 각 추출물을 농도별로 처리한 후 48시간 후에 MTT assay를 수행하였다. 그 결과 마늘을 제외한 버섯, 혼합 추출물에서 50μg/ml에서 독성을 나타내어 각 추출물 처리 농도를 EC50: 12.5μg/ml로 고정하여 실험을 진행하였다. (도 1). Raw264.7에서 버섯, 마늘, 혼합 추출물에 의한 염증 반응 지표 물질의 감소 효과를 확인하기 위하여 Raw264.7에 각 추출물을 농도별로 처리하고 ROS(Reactive oxygen species)와 NO의 생성을 촉진 시키는 LPS(500ng/ml)를 처리하여 ROS와 NO의 양을 측정하였다. LPS에 의해 증가된 ROS의 양이 버섯1, 버섯2, 마늘, 혼합2를 처리한 군에서 다소 감소한 것을 확인하였고, NO의 양은 대조군과 비교하여 추출물 모두에서 유의적으로 감소하는 것을 확인하였다 (도 2).The following is a review of representative results of the various functional test results. In order to confirm the toxicity of mushroom, garlic, and mixed extracts and to establish the optimum treatment concentration, MTT assay was performed 48 hours after treatment of each extract with concentration in Raw264.7. As a result, mushroom and mixed extracts except garlic showed toxicity at 50 μg / ml, and the concentration of each extract was fixed to EC50: 12.5 μg / ml. (Fig. 1). In Raw264.7, extracts of Raw264.7 were treated at different concentration and ROS (Reactive oxygen species) and LPS (500ng), which stimulates the production of NO, were investigated in order to confirm the reduction effect of inflammatory markers by mushroom, garlic, / ml) to measure the amount of ROS and NO. It was confirmed that the amount of ROS increased by LPS was slightly decreased in the group treated with mushroom 1, mushroom 2, garlic, and mixed 2, and the amount of NO was significantly decreased in all the extracts compared with the control group 2).

in-vivo 실험계획은 아래와 같이 버섯1, 버섯2, 마늘, 혼합1, 혼합2 추출물을 3주간 이틀에 한번 마우스 당 20μg, 100μg, 500μg씩 경구 투여하면서 진행하였다. 3주간 실험마우스의 무게 변화를 측정한 결과, 모든 그룹에서 추출물 경구 투여에 의한 독성은 보이지 않았음을 확인할 수 있었다(도 4). 3주 후 마우스를 희생하여 장기(lung, liver, kidney, stomach, heart, large intestine)를 분리하여 무게 및 길이를 측정하여 독성이 없는 것을 확인하고 실험을 진행하였다. The in-vivo experimental design was carried out by oral administration of mushroom 1, mushroom 2, garlic, mixed 1, and mixed extract 2 at 20 μg, 100 μg and 500 μg per mouse every two weeks for 3 weeks. As a result of measuring the weight change of experimental mice for 3 weeks, it was confirmed that the toxicity by oral administration of the extract was not observed in all groups (Fig. 4). After 3 weeks, the mice were sacrificed and the organs (lung, liver, kidney, stomach, heart, large intestine) were separated and the weight and length were measured.

다음으로, 각 추출물을 경구 투여한 마우스 모델의 주요 장기에서의 면역 세포의 활성을 실험하였다. 각 추출물을 경구 투여한 마우스에서 주요 면역기관인 spleen, LN, MLN을 분리하여 세포를 얻은 후 CD4 (CD4 T cell marker), CD8 (CD8 T cell maker), CD11b (macrophage marker), CD69 (activation marker) 항체로 형광 염색하여 flow cytometry로 분석하였다. 그 결과 spleen에서 버섯1, 버섯2, 혼합2 추출물에 의해 CD4 T cell의 수가 증가하였고, 버섯2, 마늘, 혼합2에 의한 CD8 T cell의 수가 증가한 것을 확인하였으며, 모든 추출물에 의해 macrophage의 수가 증가된 것을 확인할 수 있었다. LN에서 모든 추출물에 의해 CD4 T cell과 macrophage의 수가 증가된 결과를 보여주었다. 또한 MLN에서 버섯1, 버섯2, 혼합1 추출물에 의해 CD4 T cell의 수가 증가된 것을 확인하였고, 버섯2에 의한 CD8 T cell의 수가 증가된 것을 확인할 수 있었다. 각 추출물을 경구 투여한 마우스 모델에서 PEC를 추출하여 B220 (B cell marker)과 CD69 (activation marker) 항체로 형광 염색하여 flow cytometry로 분석하였다. 도 3은 이에 대한 결과를 보여준다. 모든 추출물에 의해 B cell의 수가 증가된 것을 확인할 수 있다.Next, the activity of the immune cells in the major organs of the mouse model in which each extract was orally administered was examined. CD4 (CD4 T cell marker), CD8 (CD8 T cell maker), CD11b (macrophage marker), CD69 (activation marker), and the like were obtained by isolating spleen, LN and MLN, And analyzed by flow cytometry. As a result, the number of CD4 T cells was increased by the extract of mushroom 1, mushroom 2 and mixed 2 in spleen, and the number of CD8 T cells was increased by mushroom 2, garlic and mixed 2. . All extracts from LN showed increased numbers of CD4 T cells and macrophages. It was also confirmed that the number of CD4 T cells was increased by mushroom 1, mushroom 2 and mixed 1 extract in MLN, and that the number of CD8 T cells by mushroom 2 was increased. PEC was extracted from the mouse model of each extract, and analyzed by flow cytometry using fluorescence staining with B220 (B cell marker) and CD69 (activation marker) antibody. Fig. 3 shows the results thereof. The number of B cells was increased by all the extracts.

방사선조사에 따른 면역력 감소에서 각 추출물들의 효능을 알아보기 위하여 다음과 같은 마우스 모델을 제작하여 실험을 진행하였다. 조사 후 추출물 경구 투여 마우스 모델의 혈액에서 백혈구(WBC) 수의 변화, 혈장에서의 IgG생성량, spleen에서의 면역세포 활성, LN에서의 면역세포 활성, MLN에서의 면역세포 활성, spleen에서의 세포사멸 변화, spleen에서의 세포주기 변화 등에 대한 실험을 추가적으로 진행하였다. 또한, 조사 후 후보 추출물을 경구 투여한 마우스를 희생하여 spleen을 분리한 후 염증과 관련된 유전자들의 발현 평가에서도 기대할 만한 결과를 확인하였다.To investigate the efficacy of each extract in reducing immunity following irradiation, the following mouse models were prepared and tested. Changes in the number of white blood cells (WBC) in blood, IgG production in plasma, immune cell activity in spleen, immune cell activity in LN, immune cell activity in MLN, cell death in spleen And cell cycle changes in spleen. In addition, spleen was isolated at the sacrifice of mice administered with the candidate extract after oral administration, and the results of evaluation of expression of genes related to inflammation were confirmed.

γ-irradiation 마우스 모델에서 SF-051에 의한 면역증강효능 확인 Identification of immunity enhancement by SF-051 in γ-irradiation mouse model

- SF-051에 의한 면역증강 효능을 확인하기 위해 γ-irradiation 마우스 모델을 제작하여 SF-051을 3주간 전 처리한 후 γ-irradiation을 조사하였다. 이후 1주간 SF-051을 추가 처리한 후 마우스를 희생하여 면역증강 효능을 확인하였다(도 5). - γ-Irradiation mouse model was prepared and SF-051 was pretreated for 3 weeks before γ-irradiation in order to confirm immunostimulating effect by SF-051. After further treatment with SF-051 for 1 week, the mice were sacrificed and immunostimulating effect was confirmed (FIG. 5).

- γ-irradiation 마우스 모델에서 SF-051의 처리에 의한 마우스 몸무게의 변화를 확인한 결과 γ-irradiation 대조군보다 SF-051을 처리한 그룹에서 γ-irradiation 조사 후 조금 더 빠른 회복률을 보인다(도 6A). 이후 마우스를 희생하여 혈액내의 WBC (White blood cells)의 수를 분석한 결과 대조군과 비교하여 γ-irradiation을 조사한 마우스 그룹에서 WBC의 수가 급격히 감소되었으며, 감소된 WBC를 SF-051에 의해 증가시킴을 확인하였으나 대조군과 차이를 보이지 않았다(도 6B). 하지만 혈액 내의 IgG level을 확인한 결과, γ-irradiation에 의해 감소된 IgG level이 SF-051에 의해 유의적으로 크게 증가됨을 확인할 수 있었다(도 6D). 또한 점막내의 IgA의 level의 변화를 확인한 결과, SF-051에 의한 IgA의 level은 효과를 확인할 수 없었다(도 6C). 이 결과를 통해 SF-051이 점막면역에는 효과를 주지 못하나 γ-irradiation에 의해 감소된 면역세포의 활성능력을 증가시킬 수 있을 것으로 여겨진다.- In the γ-irradiation mouse model, the change in the body weight of the mice treated with SF-051 showed a slightly faster recovery rate after the γ-irradiation in the group treated with SF-051 than the γ-irradiated control group (FIG. 6A). The number of white blood cells (WBCs) in the blood after sacrifice of mice was then analyzed. As a result, the number of WBCs in the group irradiated with γ-irradiation was drastically decreased, and the decreased WBC was increased by SF-051 But did not differ from the control group (Fig. 6B). However, as a result of confirming the IgG level in blood, it was confirmed that the IgG level reduced by γ-irradiation was significantly increased by SF-051 (FIG. 6D). Further, as a result of checking the level of IgA in the mucosa, the level of IgA by SF-051 could not be confirmed (Fig. 6C). These results suggest that SF-051 does not affect mucosal immunity but may increase the activity of immune cells reduced by γ-irradiation.

- γ-irradiation 마우스 모델에서 SF-051에 의한 면역세포의 분화에 미치는 영향을 확인하기 위해 T cell 및 B cell의 분화에 중요하게 작용하는 Thymus 및 PEC (Peritoneal excudate cells)의 세포를 분리한 후 유세포 분석기를 이용하여 면역세포의 population을 확인하였다. 그 결과, γ-irradiation 마우스 모델에서 SF-051이 CD8+ T cells의 분화를 증가시키고 CD4+ T cells의 분화는 γ-irradiation 대조군보다 정상적인 수준으로 회복되도록 영향을 주는 것을 확인하였다(도 7A). PEC에서는 γ-irradiation에 의해 감소된 B cell의 population이 SF-051에 의해 회복되는 것은 확인할 수 없었다(도 7B). 이러한 결과에서 γ-irradiation에 의해 감소된 면역세포의 수가 SF-051에 의해 Thymus를 통해 회복될 가능성이 있음을 확인하였다.In order to confirm the effect of SF-051 on the differentiation of immune cells in the γ-irradiation mouse model, cells of Thymus and PEC (peritoneal excudate cells), which are important for T cell and B cell differentiation, The population of immune cells was confirmed using an analyzer. As a result, it was confirmed that in the γ-irradiation mouse model, SF-051 increased the differentiation of CD8 + T cells and that the differentiation of CD4 + T cells was restored to a normal level than the γ-irradiation control (FIG. 7A). In PEC, it was not confirmed that the population of B cells reduced by γ-irradiation was restored by SF-051 (FIG. 7B). These results indicate that the number of immune cells reduced by γ-irradiation is likely to be recovered by Thymus by SF-051.

- γ-irradiation 마우스 모델에서 SF-051에 의해 면역세포들의 활성에 미치는 영향을 확인하기 위해 주요 면역기관인 Spleen, Lymph node(LN), Mesenteric lymph node(MLN)의 세포를 분리한 후 유세포 분석기를 이용하여 면역세포들의 활성 및 population을 확인하였다. 그 결과, Spleen에서 CD4+ T cells, CD8+ T cells, Dendritic cells의 population이 SF-051에 의해 γ-irradiation 대조군보다 증가하였으며 NK cells의 활성이 증가함을 확인하였다. 하지만 대식세포에서는 차이를 볼 수 없었다(도 8). LN에서 면역세포들의 활성 및 population을 확인한 결과, SF-051에 의해 NK cells의 수가 증가되었지만, 활성에는 큰 차이를 보이지 않았다. 그리고 나머지 면역세포들에서는 차이를 볼 수 없었다(도 9). MLN에서는 CD4+ T cells, NK cells의 활성이 증가되었지만, CD8+ T cells, 대식세포, Dendritic cells에서는 영향을 볼 수 없었다(도 10). 이 결과를 통해 SF-051이 NK cells의 수와 활성에 주로 영향을 미치고 T cells에도 조금 영향을 주는 것을 확인하였지만 나머지 대식세포와 Dendritic cells에는 영향을 주지 못하는 것을 확인하였다. In order to confirm the effect of SF-051 on the activity of immune cells in the γ-irradiation mouse model, cells of Spleen, Lymph node (LN), Mesenteric lymph node (MLN) And the activity and population of immune cells were confirmed. As a result, the population of CD4 + T cells, CD8 + T cells, and dendritic cells in Spleen was increased by SF-051 compared to γ-irradiated control, and the activity of NK cells was increased. However, there was no difference in macrophages (Fig. 8). As a result of confirming the activity and population of immune cells in LN, the number of NK cells was increased by SF-051, but there was no significant difference in activity. And no difference in the remaining immune cells (FIG. 9). In MLN, the activity of CD4 + T cells and NK cells was increased, but CD8 + T cells, macrophages and dendritic cells were not affected (FIG. 10). These results indicate that SF-051 mainly affects the number and activity of NK cells and also affects T cells. However, SF-051 does not affect other macrophages and dendritic cells.

- γ-irradiation 마우스 모델에서 SF-051에 의해 T cells 및 NK cells의 population이 증가됨을 확인하였다. 이에 γ-irradiation 마우스 모델의 spleen으로부터 세포를 분리하여 세포사멸 및 세포주기의 변화를 유세포 분석기를 이용하여 확인하였다. 그 결과, γ-irradiation에 의해 면역세포의 세포사멸이 증가되었으며, 증가된 세포사멸이 SF-051에 의해 감소되는 결과를 관찰하였다(도 11A). 또한 세포주기를 분석한 결과, γ-irradiation만 한 그룹과 비교하여 SF-051을 처리한 그룹에서 S-phase가 증가되는 결과를 확인하였다(도 11B). 또한 γ-irradiation 마우스 모델의 spleen으로부터 세포를 분리하여 다양한 사이토카인 유전자의 발현변화를 Real-time PCR을 통해 분석하였다(도 12). γ-irradiation 마우스 모델에서 SF-051에 의한 면역세포의 활성 및 population 변화가 염증 사이토카인들의 변화에 미치는 영향을 확인하기 위해 IL-1β, IL-2, IL-4, IL-6, TGF-β와 같은 염증유발 사이토카인의 유전자 발현을 RT-PCR을 이용하여 확인하였다. 그 결과 대조군과 비교하여 SF-051을 처리한 마우스 그룹에서 염증유발 사이토카인들의 발현이 감소됨을 확인하였다. NK cells에서 분비되고는 항바이러스, 항암, 면역조절과 관련있는 사이토카인인 IFN-γ를 확인한 결과, γ-irradiation 조사로 인해 감소된 IFN-γ가 SF-051에 의해 증가되었음을 확인하였다. 또한 T cells의 증식을 촉진하는 IL-17이 γ-irradiation 대조군보다 SF-051 그룹에서 증가되고 면역반응을 억제하는 IL-10이 감소됨을 확인하였다. 이 결과는 유세포 분석에서 NK cells의 population과 activation이 증가된 것과 일치하는 결과이다. 이 결과를 통해 SF-051에 의해 면역세포의 세포사멸 및 세포주기가 조절됨을 알 수 있으며 염증유발 사이토카인의 발현이 조절됨으로써 염증반응을 감소시킬 수 있는 가능성이 있음을 확인하였다.In the γ-irradiation mouse model, the population of T cells and NK cells was increased by SF-051. Cells were isolated from the spleen of γ-irradiation mouse model, and cell death and cell cycle changes were confirmed by flow cytometry. As a result, the cell death of the immune cells was increased by γ-irradiation, and the increased cell death was observed to be reduced by SF-051 (FIG. 11A). In addition, the cell cycle analysis revealed that the S-phase was increased in the group treated with SF-051 (Fig. 11B) compared with the group treated with only γ-irradiation. Cells were separated from the spleen of the γ-irradiation mouse model and the expression of various cytokine genes was analyzed by Real-time PCR (FIG. 12). IL-2, IL-4, IL-6, and TGF-β to determine the effects of SF-051 on immune cell activity and population changes in inflammatory cytokines in γ- And the expression of inflammatory cytokines such as TNF-α was confirmed by RT-PCR. As a result, it was confirmed that the expression of inflammatory cytokines was reduced in the SF-051-treated mouse group as compared with the control group. IFN-γ, a cytokine secreted by NK cells and associated with antiviral, anti-cancer, and immunomodulation, was confirmed to be increased by SF-051 due to γ-irradiation. IL-17, which promotes the proliferation of T cells, is increased in the SF-051 group and IL-10, which suppresses the immune response, than the γ-irradiation control group. These results are consistent with increased population and activation of NK cells in flow cytometry. These results indicate that the cell death and cell cycle of immune cells are regulated by SF-051, and the expression of inflammatory cytokines is regulated, thereby reducing the inflammatory response.

Claims (7)

버섯 추출물 및 마늘 추출물을 포함하는 조혈기능 증진 및 방사선 방호용 조성물.
A composition for promoting hematopoietic function and radiation protection comprising mushroom extract and garlic extract.
청구항 제1항에 있어서,
상기 버섯 추출물은 영지버섯, 표고버섯, 동충하초, 백목이버섯에서 선택되는 하나 이상의 버섯으로부터 추출된 것을 특징으로 하는, 조혈기능 증진 및 방사선 방호용 조성물.
The method according to claim 1,
Wherein the mushroom extract is extracted from at least one mushroom selected from the group consisting of Ganoderma lucidum, Shiitake mushroom, Cordyceps mushroom, and White mushroom.
청구항 제1항에 있어서,
상기 버섯 추출물의 추출 방법은 가압수 추출 방법, 열수 추출 방법, 초음파 추출 방법에서 선택되는 하나 이상의 추출 방법임을 특징으로 하는, 조혈기능 증진 및 방사선 방호용 조성물.
The method according to claim 1,
Wherein the method for extracting mushroom extract is at least one extraction method selected from a pressurized water extraction method, a hot water extraction method, and an ultrasonic extraction method.
청구항 제3항에 있어서,
상기 버섯 추출물의 추출 방법을 통해, 버섯으로부터 시조필란을 분리하는 것을 특징으로 하는, 조혈기능 증진 및 방사선 방호용 조성물.
The method of claim 3,
A composition for promoting hematopoietic function and radiation protection, which comprises separating a mushroom from a mushroom through an extraction method of the mushroom extract.
청구항 제4항에 있어서,
상기 가압수 추출 방법은 25 내지 35 ℃의 온도, 8 내지 12 MPa의 압력, 60 내지 70분의 추출 시간 조건 하에서 버섯으로부터 시조필란을 분리하는 것을 특징으로 하는, 조혈기능 증진 및 방사선 방호용 조성물.
The method according to claim 4,
Wherein the pressurized water extracting method comprises separating the mizorium from the mushroom under the condition of a temperature of 25 to 35 DEG C, a pressure of 8 to 12 MPa, and an extraction time of 60 to 70 minutes.
청구항 제1항 내지 제5항 중 어느 한 항에 있어서,
상기 마늘 추출물은 알리인을 10 내지 20 mg/g 함량 포함하고 있는 것을 특징으로 하는, 조혈기능 증진 및 방사선 방호용 조성물.
The method according to any one of claims 1 to 5,
Wherein the garlic extract comprises 10 to 20 mg / g of an alginate.
버섯 추출물 및 마늘 추출물을 포함하는 조혈기능 증진 및 방사선 방호용 조성물을 제조하는 방법으로서,
버섯 추출물은 가압수 추출 방법으로 추출되며, 25 내지 35 ℃의 온도, 8 내지 12 MPa의 압력, 60 내지 70분의 추출 시간 조건 하에서 버섯으로부터 시조필란을 분리하는 것을 특징으로 하는, 조혈기능 증진 및 방사선 방호용 조성물을 제조하는 방법.
A method of preparing a composition for promoting hematopoietic function and radiation protection comprising mushroom extract and garlic extract,
Characterized in that the mushroom extract is extracted by a pressurized water extraction method and is separated from the mushroom under conditions of a temperature of 25 to 35 DEG C, a pressure of 8 to 12 MPa, an extraction time of 60 to 70 minutes, A method for preparing a radioprotective composition.
KR1020160174995A 2016-12-20 2016-12-20 Mushroom-garlic Extract for Hemocytopoiesis Function Enhancement and Radiation Protection KR20180071879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160174995A KR20180071879A (en) 2016-12-20 2016-12-20 Mushroom-garlic Extract for Hemocytopoiesis Function Enhancement and Radiation Protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160174995A KR20180071879A (en) 2016-12-20 2016-12-20 Mushroom-garlic Extract for Hemocytopoiesis Function Enhancement and Radiation Protection

Publications (1)

Publication Number Publication Date
KR20180071879A true KR20180071879A (en) 2018-06-28

Family

ID=62780603

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160174995A KR20180071879A (en) 2016-12-20 2016-12-20 Mushroom-garlic Extract for Hemocytopoiesis Function Enhancement and Radiation Protection

Country Status (1)

Country Link
KR (1) KR20180071879A (en)

Similar Documents

Publication Publication Date Title
Mizuno Medicinal properties and clinical effects of culinary-medicinal mushroom Agaricus blazei Murrill (Agaricomycetideae)
KR100605292B1 (en) Active fraction having anti-cancer and anti-metastasis isolated from acanthopanax species and fruits
Wachtel-Galor et al. Ganoderma lucidum (Lingzhi or Reishi): a medicinal mushroom
Jiang et al. Immunoregulatory actions of polysaccharides from Chinese herbal medicine
CN107822948B (en) Composition with after-sun repair, oxidation resistance and whitening effects and preparation method thereof
EP3287471A1 (en) Polysaccharide suitable to modulate immune response
CN109276576B (en) Application of ganoderma leucocontextum polysaccharide in preparation of antitumor drugs
JP3797930B2 (en) Polysaccharides isolated from ginseng, with hematopoietic, myeloprotective, anti-tumor immunity and radiosensitization
JP2023533971A (en) Aloe-based compositions for regulation of immune homeostasis containing polysaccharides and polyphenols
CN105641000A (en) Antitumor composition containing grifola frondosus extract and preparation method thereof
KR20130077802A (en) The preparing method of immune improving agents
KR20140091674A (en) Use of foti to enhance stem cell mobilization and proliferation
WO2020093510A1 (en) Separation and purification method for polysaccharide in ganoderma lucidum spores
Bellan et al. Green does not always mean go: A sulfated galactan from Codium isthmocladum green seaweed reduces melanoma metastasis through direct regulation of malignancy features
US20040197427A1 (en) Herbal composition for improving anticancer activity, immune response and hematopoiesis of the body, and protecting the body from oxidative damage, and the method of preparing the same
Su et al. Structure elucidation, immunomodulatory activity, antitumor activity and its molecular mechanism of a novel polysaccharide from Boletus reticulatus Schaeff
KR20160021182A (en) Methods and compositions for enhancing stem cell mobilization
JP2015513395A (en) Compositions and methods for quenching free radicals and modulating inflammation
CN107722131B (en) Total ganoderma lucidum spore powder refined polysaccharide with significant auxiliary antitumor activity and preparation method and application thereof
CN105902562A (en) Application of glucomannan in preparation of leucocytopenia prevention and treatment drugs
CN105796587B (en) Caulis bambusae in taenian polysaccharide immunological regulation, it is antitumor in application
KR20180071879A (en) Mushroom-garlic Extract for Hemocytopoiesis Function Enhancement and Radiation Protection
JP7469336B2 (en) β-glucan composition and uses thereof
CN109294984B (en) Lentinan capsule for efficiently amplifying NK cells in vivo and preparation method thereof
Chen et al. Heterogalactan WPEP-Nb from Pleurotus eryngii enhances immunity in immunocompromised mice