KR20180066686A - Plain bearing, and rotating anode type X-ray tube - Google Patents

Plain bearing, and rotating anode type X-ray tube Download PDF

Info

Publication number
KR20180066686A
KR20180066686A KR1020160167808A KR20160167808A KR20180066686A KR 20180066686 A KR20180066686 A KR 20180066686A KR 1020160167808 A KR1020160167808 A KR 1020160167808A KR 20160167808 A KR20160167808 A KR 20160167808A KR 20180066686 A KR20180066686 A KR 20180066686A
Authority
KR
South Korea
Prior art keywords
bearing member
silicon carbide
particle receiving
shaft
outer bearing
Prior art date
Application number
KR1020160167808A
Other languages
Korean (ko)
Other versions
KR101948303B1 (en
Inventor
채영훈
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020160167808A priority Critical patent/KR101948303B1/en
Publication of KR20180066686A publication Critical patent/KR20180066686A/en
Application granted granted Critical
Publication of KR101948303B1 publication Critical patent/KR101948303B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • H01J35/1017Bearings for rotating anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/10Drive means for anode (target) substrate
    • H01J2235/1046Bearings and bearing contact surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

Disclosed are a plain bearing for rotatably supporting a shaft with respect to a shaft support, and an anode rotating type X-ray tube including the same. The plain bearing includes a tubular inner bearing member fixed to the outer circumferential surface of the shaft and a tubular outer bearing member surrounding the inner bearing member and fixed to the shaft support. The outer circumferential surface of the inner bearing member and the inner circumferential surface of the outer bearing member rub against each other by directly facing each other. One of the outer circumferential surface of the inner bearing member and the inner circumferential surface of the outer bearing member is a graphite surface made of graphite and the other is a silicon carbide surface made of silicon carbide (SiC). Accordingly, the present invention can increase durability.

Description

플레인 베어링, 및 이를 구비한 양극 회전형 엑스선관{Plain bearing, and rotating anode type X-ray tube}[0001] The present invention relates to a plain bearing and a rotating anode type X-ray tube having the same,

본 발명은 고온, 고진공과 같은 특수 환경에서 고속 회전하는 샤프트를 지지하는 플레인 베어링(plain bearing)과, 이를 구비한 양극 회전형 엑스선관에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plain bearing for supporting a shaft rotating at a high speed in a special environment such as high temperature and high vacuum, and a positive rotation type X-ray tube having the plain bearing.

전자가 고속으로 타겟(target)에 충돌하면 엑스선(X-ray)이 방출되는데, 엑스선관(X-ray tube)이 이러한 원리를 이용하여 의도적으로 엑스선을 방출시키는데 사용된다. 엑스선관을 내부에 포함하는 것으로, 방출되는 엑스선을 이용하여 예컨대, 인체 내부를 관찰하는 의료용 영상 기기로 사용되는 장치를 엑스선관 장치라고 한다. When an electron collides with a target at high speed, an X-ray is emitted. An X-ray tube is used to intentionally emit an X-ray using this principle. By including the x-ray tube therein, a device used as a medical imaging apparatus for observing the inside of the human body, for example, using the x-rays emitted is referred to as an x-ray tube apparatus.

엑스선관은 양극(anode), 즉 타겟(target)과 음극(cathode)의 전위차에 의해 전자가 가속되어 타겟에 충돌하며, 이때 엑스선이 방출된다. 양극과 음극 간 전위차를 형성하기 위해 입력되는 전력(electric power)의 99% 이상이 열로 전환되기 때문에 상기 타겟에서 고열이 발생하게 되고, 이 때문에 엑스선관에 입력되는 전력에 제한이 있게 된다. 양극 회전형 엑스선관은, 이와 같이 제한된 전력 조건하에서 엑스선 방출량을 높이기 위한 엑스선관으로서, 타겟을 고속으로 회전시킴으로써 전자와 상기 타겟을 고속으로 충돌시키는 구성을 구비한다. The X-ray tube accelerates the electrons by the potential difference between the anode and the cathode, and collides with the target, and the X-rays are emitted. Since more than 99% of electric power inputted to form a potential difference between the anode and the cathode is converted into heat, a high temperature is generated in the target, so that power input to the X-ray tube is limited. The anode rotation type X-ray tube is an X-ray tube for raising the X-ray emission amount under such limited electric power conditions, and has a configuration for rapidly colliding electrons and the target by rotating the target at a high speed.

통상적으로 양극 회전형 엑스선관은 타겟의 고속 회전을 지지하기 위하여 볼 베어링 또는 롤러 베어링을 구비한다. 상기 타겟은 전자와의 충돌로 인해 고온으로 발열하게 되는데, 그 열이 상기 타겟의 회전을 지지하는 베어링에 전달되어 볼(ball) 또는 롤러(roller) 형태의 베어링 회전체 및 상기 베어링 회전체와 접촉되는 베어링 레이스(bearing race)의 변형 또는 마모가 촉진된다. 이로 인해, 타겟이 고속 회전할 때 소음이 커지고, 베어링의 내구성이 저하되고, 타겟의 고속 회전이 어려워지게 되며, 결국에 타겟이 손상되게 된다.Normally, a positive-polarity X-ray tube has a ball bearing or a roller bearing to support high-speed rotation of the target. The target is heated to a high temperature due to collision with electrons. The heat is transmitted to the bearing supporting the rotation of the target, so that the bearing rotates in the form of a ball or a roller, The deformation or wear of the bearing race is promoted. As a result, when the target rotates at a high speed, noise is increased, durability of the bearing is lowered, and high-speed rotation of the target becomes difficult, resulting in damage to the target.

대한민국 등록특허공보 제10-1512620호Korean Patent Publication No. 10-1512620

본 발명은, 고온, 고진공과 같은 특수 환경에서 적용 가능한 베어링으로서, 볼, 롤러와 같은 베어링 회전체 없이 미끄럼(sliding) 면 접촉으로 고속 회전하는 샤프트를 지지하는 플레인 베어링(plain bearing), 및 이를 구비한 양극 회전형 엑스선관을 제공한다.The present invention relates to a plain bearing which supports a shaft rotating at a high speed in sliding contact with a bearing without rotation of a bearing such as a ball or a roller and is applicable to special environments such as high temperature and high vacuum, Thereby providing a positive rotation type X-ray tube.

본 발명은, 샤프트(shaft)를 샤프트 지지체에 대해 회전 가능하게 지지하는 것으로, 상기 샤프트의 외주면에 고정된 관(管)형의 내측 베어링 부재, 및 상기 내측 베어링 부재를 에워싸며 상기 샤프트 지지체에 고정된 관형의 외측 베어링 부재를 구비하고, 상기 내측 베어링 부재의 외주면과 상기 외측 베어링 부재의 내주면은 직접 대면(對面)하여 마찰하고, 상기 내측 베어링 부재의 외주면 및 상기 외측 베어링 부재의 내주면 중 하나는 흑연(graphite)으로 이루어진 흑연면이고, 나머지 하나는 탄화규소(SiC)로 이루어진 탄화규소면인 플레인 베어링(plain bearing)을 제공한다. The present invention relates to an internal bearing member in the form of a tube which is rotatably supported on a shaft support by a shaft and which is fixed to the outer peripheral surface of the shaft and a bearing member which surrounds the internal bearing member and is fixed to the shaft support Wherein an outer circumferential surface of the inner bearing member and an inner circumferential surface of the outer bearing member directly rub against each other and one of an inner circumferential surface of the inner bearing member and an inner circumferential surface of the outer bearing member is made of graphite graphite surface of graphite and the other providing a plain bearing which is a silicon carbide surface of silicon carbide (SiC).

상기 내측 베어링 부재와 상기 외측 베어링 부재 중에서 상기 흑연면을 갖는 베어링 부재는 전체가 흑연으로 이루어지고, 상기 탄화규소면을 갖는 베어링 부재는 전체가 탄화규소로 이루어질 수 있다. The bearing member having the graphite surface among the inner bearing member and the outer bearing member may be entirely made of graphite, and the bearing member having the silicon carbide surface may be entirely made of silicon carbide.

상기 내측 베어링 부재와 상기 외측 베어링 부재 중에서 상기 흑연면을 갖는 베어링 부재는 전체가 흑연으로 이루어지고, 상기 탄화규소면을 갖는 베어링 부재는 금속으로 된 모재(母材)와, 상기 모재에 코팅(coating)된, 탄화규소로 이루어진 탄화규소층을 구비할 수 있다. Wherein the bearing member having the graphite surface among the inner bearing member and the outer bearing member is made entirely of graphite and the bearing member having the silicon carbide surface is made of a metal base material, ), And a silicon carbide layer made of silicon carbide.

상기 외측 베어링 부재의 내주면에 상기 내측 베어링 부재와 상기 외측 베어링 부재의 마찰로 발생하는 파티클(particle)이 수용되는 복수의 파티클 수용 홈(groove)이 형성되고, 상기 복수의 파티클 수용 홈은 규칙적인 패턴(pattern)을 형성하며 상기 외측 베어링 부재의 내주면에 분포될 수 있다. Wherein a plurality of particle receiving grooves are formed in an inner peripheral surface of the outer bearing member to accommodate particles generated by friction between the inner bearing member and the outer bearing member, and may be distributed on the inner circumferential surface of the outer bearing member.

상기 파티클 수용 홈은 상기 샤프트의 길이 방향에 대해 기울어진 사선(斜線) 방향으로 연장되고, 그 길이 방향 말단은 폐쇄될 수 있다. The particle receiving groove extends in a slanting direction (oblique direction) inclined with respect to the longitudinal direction of the shaft, and the longitudinal direction end thereof can be closed.

상기 파티클 수용 홈의 폭은 1 내지 3mm 이고, 상기 파티클 수용 홈의 깊이는 0.5 내지 1mm 이며, 상기 외측 베어링 부재의 내주면의 표면적에서 상기 복수의 파티클 수용 홈에 의해 점유된 표면적의 비율은 5 내지 30% 일 수 있다. Wherein the particle receiving groove has a width of 1 to 3 mm, a depth of the particle receiving groove is 0.5 to 1 mm, and a ratio of a surface area occupied by the plurality of particle receiving grooves in a surface area of the inner peripheral surface of the outer bearing member is 5 to 30 %. ≪ / RTI >

상기 내측 베어링 부재의 외주면에 상기 내측 베어링 부재와 상기 외측 베어링 부재의 마찰로 발생하는 파티클(particle)이 수용되는 복수의 파티클 수용 홈(groove)이 더 형성될 수 있다. A plurality of particle receiving grooves may be further formed on the outer circumferential surface of the inner bearing member to receive particles generated by friction between the inner bearing member and the outer bearing member.

또한 본 발명은, 샤프트(shaft)를 샤프트 지지체에 대해 회전 가능하게 지지하는 것으로, 상기 샤프트의 외주면에 코팅(coating)된, 탄화규소(SiC)로 이루어진 탄화규소층, 및 상기 샤프트의 외주면을 에워싸고 상기 샤프트 지지체에 고정된 관(管)형의 부재로서, 흑연(graphite)으로 이루어진 외측 베어링 부재를 구비하고, 상기 탄화규소층의 외주면과 상기 외측 베어링 부재의 내주면은 직접 대면(對面)하여 마찰하는 플레인 베어링을 제공한다. The present invention also provides a method of manufacturing a silicon carbide substrate, comprising: a silicon carbide layer made of silicon carbide (SiC) coated on an outer circumferential surface of the shaft, the shaft being rotatably supported on a shaft support; And an outer bearing member made of graphite. The outer peripheral surface of the silicon carbide layer and the inner peripheral surface of the outer bearing member are in direct contact with each other to form a frictional As shown in FIG.

상기 외측 베어링 부재의 내주면에 상기 탄화규소층과 상기 외측 베어링 부재의 마찰로 발생하는 파티클(particle)이 수용되는 복수의 파티클 수용 홈(groove)이 형성되고, 상기 복수의 파티클 수용 홈은 규칙적인 패턴(pattern)을 형성하며 상기 외측 베어링 부재의 내주면에 분포될 수 있다. Wherein a plurality of particle receiving grooves are formed on an inner circumferential surface of the outer bearing member to accommodate particles generated by friction between the silicon carbide layer and the outer bearing member, and may be distributed on the inner circumferential surface of the outer bearing member.

상기 파티클 수용 홈은 상기 샤프트의 길이 방향에 대해 기울어진 사선(斜線) 방향으로 연장되고, 그 길이 방향 말단은 폐쇄될 수 있다. The particle receiving groove extends in a slanting direction (oblique direction) inclined with respect to the longitudinal direction of the shaft, and the longitudinal direction end thereof can be closed.

상기 파티클 수용 홈의 폭은 1 내지 3mm 이고, 상기 파티클 수용 홈의 깊이는 0.5 내지 1mm 이며, 상기 외측 베어링 부재의 내주면의 표면적에서 상기 복수의 파티클 수용 홈에 의해 점유된 표면적의 비율은 5 내지 30% 일 수 있다. Wherein the particle receiving groove has a width of 1 to 3 mm, a depth of the particle receiving groove is 0.5 to 1 mm, and a ratio of a surface area occupied by the plurality of particle receiving grooves in a surface area of the inner peripheral surface of the outer bearing member is 5 to 30 %. ≪ / RTI >

또한 본 발명은, 내부 공간이 진공 상태인 진공 튜브(vacuum tube), 상기 진공 튜브 내부로 전자(electron)를 투사하는 음극(cathode), 상기 진공 튜브 내부에 배치되고, 상기 음극에서 투사된 전자(electron)가 충돌하여 엑스선(X-ray)이 방출되는 양극(anode), 상기 양극에 고정된 샤프트(shaft), 상기 진공 튜브에 고정된 샤프트 지지체, 및 상기 샤프트를 상기 샤프트 지지체에 대해 회전 가능하게 지지하는, 상기 플레인 베어링을 구비하는 양극 회전형 엑스선관을 제공한다.According to another aspect of the present invention, there is provided a vacuum tube comprising a vacuum tube having an internal space in a vacuum state, a cathode for projecting electrons into the vacuum tube, an electron source disposed inside the vacuum tube, a shaft fixed to the anode, a shaft support fixed to the vacuum tube, and a shaft rotatably supported on the shaft support so as to be rotatable relative to the shaft support. The present invention provides a positive rotation type X-ray tube having the above-mentioned plain bearing.

본 발명의 플레인 베어링은, 고온에서 파손 염려가 있는 볼, 롤러와 같은 베어링 회전체가 없으며, 녹는점이 매우 높은 흑연막과 탄화규소막이 직접 면접촉하여 미끄럼 회전하므로, 내구성이 향상되고 소음과 진동 발생이 억제된다. 그러므로, 상기 플레인 베어링을 구비한 양극 회전형 엑스선관의 내구성도 향상된다. The plain bearing of the present invention is free from bearing rotations such as balls and rollers which may be broken at high temperatures, and the graphite film having a very high melting point and the silicon carbide film are in direct surface contact sliding contact with each other. Thus, durability is improved, . Therefore, the durability of the positive rotation type X-ray tube provided with the plain bearing is also improved.

대면하는 접촉면에 파티클 수용 홈이 형성된 본 발명의 바람직한 실시예에 따르면, 마찰로 인해 발생되는 파티클, 특히 흑연의 파티클이 파티클 수용 홈에 수용되고 플레인 베어링 외부로 확산되지 않으므로, 면접촉되는 한 쌍의 면 사이의 윤활이 더욱 원활해지고 마찰 저항이 더욱 저감된다. 한편, 상기 플레인 베어링을 구비한 엑스선관의 경우에는 상기 파티클이 진공 튜브 내부로 배출되지 않으므로 엑스선 방출 성능 저하가 억제되어, 엑스선관의 성능 신뢰성과 내구성이 향상된다.According to the preferred embodiment of the present invention in which the particle receiving grooves are formed on the facing surfaces, the particles generated by the friction, particularly the graphite particles, are received in the particle receiving grooves and do not diffuse out of the plane bearing, The lubrication between the surfaces becomes more smooth and the frictional resistance is further reduced. On the other hand, in the case of the X-ray tube having the plain bearing, since the particles are not discharged into the vacuum tube, deterioration of the X-ray emission performance is suppressed, and the reliability and durability of the X-ray tube are improved.

도 1은 본 발명의 제1 실시예에 따른 양극 회전형 엑스선관의 단면도이다.
도 2는 도 1의 외측 실린더의 내주면에 형성된 패턴을 도시한 평면도이다.
도 3은 도 2을 III-III 에 따라 절개하여 도시한 단면도이다.
도 4는 본 발명의 제2 실시예에 따른 양극 회전형 엑스선관의 단면도이다.
1 is a sectional view of a positive rotation type X-ray tube according to a first embodiment of the present invention.
Fig. 2 is a plan view showing a pattern formed on the inner peripheral surface of the outer cylinder of Fig. 1. Fig.
FIG. 3 is a cross-sectional view cut along the line III-III of FIG. 2. FIG.
4 is a cross-sectional view of a positive rotation type X-ray tube according to a second embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 플레인 베어링 및 이를 구비한 양극 회전형 엑스선관을 상세하게 설명한다. 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자 또는 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a planar bearing according to an embodiment of the present invention and a positive rotation type X-ray tube having the same will be described in detail with reference to the accompanying drawings. The terminology used herein is a term used to properly express the preferred embodiment of the present invention, which may vary depending on the intention of the user or operator or the custom in the field to which the present invention belongs. Therefore, the definitions of these terms should be based on the contents throughout this specification.

도 1은 본 발명의 제1 실시예에 따른 양극 회전형 엑스선관의 단면도이고, 도 2는 도 1의 외측 실린더의 내주면에 형성된 패턴을 도시한 평면도이며, 도 3은 도 2을 III-III 에 따라 절개하여 도시한 단면도이다. 도 1을 참조하면, 본 발명의 제1 실시예에 따른 양극 회전형 엑스선관(10A)은 예컨대, 전산화 단층 영상(CT; computed tomography) 촬영 기기와 같은 의료용 영상 기기에 포함되는 엑스선관 장치(미도시)의 내부에 삽입 장착되어 엑스선(X-ray)을 생성 방출하는 것으로, 진공 튜브(vacuum tube)(11), 음극(cathode)(16), 양극(anode)(20), 회전 샤프트 부재(25), 샤프트 지지체(17), 플레인 베어링(plain bearing)(35), 로터(rotor)(30), 및 스테이터(stator)(미도시)를 구비한다. 2 is a plan view showing a pattern formed on the inner circumferential surface of the outer cylinder of FIG. 1, and FIG. 3 is a cross-sectional view taken along the line III-III of FIG. Fig. Referring to FIG. 1, the anode rotation type X-ray tube 10A according to the first embodiment of the present invention includes an X-ray tube apparatus (not shown) included in a medical imaging apparatus such as a computed tomography (CT) X-rays are generated and released by being inserted into the interior of the vacuum tube 11, the cathode 16, the anode 20, the rotating shaft member 25, a shaft support 17, a plain bearing 35, a rotor 30, and a stator (not shown).

진공 튜브(11)는 외형이 종(bell)과 유사하여 소위 벨캔(bellcan)으로 불리우기도 한다. 진공 튜브(11)는 상대적으로 직경이 큰 대직경부(13)와, 대직경부(13)에서 이어져 대직경부(13) 아래에 배치되며, 상기 대직경부(13)보다 직경이 작은 소직경부(14)을 구비한다. 진공 튜브(11)는 밀봉되고, 진공 튜브(11)의 내부 공간은 고진공 상태로 유지된다. The vacuum tube 11 is similar in shape to a bell and is also called a bellcan. The vacuum tube 11 includes a large diameter portion 13 having a relatively large diameter and a small diameter portion 14 disposed below the large diameter portion 13 and extending from the large diameter portion 13 and having a smaller diameter than the large diameter portion 13, Respectively. The vacuum tube 11 is sealed, and the inner space of the vacuum tube 11 is maintained in a high vacuum state.

음극(16)는 진공 튜브(11)의 상측에 고정되며, 상기 양극(20)과의 사이에 대략 150V(volt)의 전위차를 형성한다. 음극(16)에서 생성된 전자(electron)는 상기 전위차에 의해 가속되어 상기 양극(20)으로 투사된다. 상기 양극(20)에 전자가 투사되어 충돌하므로, 상기 양극(20)을 엑스선관 타겟(target)이라고도 한다. The cathode 16 is fixed on the upper side of the vacuum tube 11 and forms a potential difference of about 150 V (volt) with the anode 20. Electrons generated in the cathode 16 are accelerated by the potential difference and projected onto the anode 20. Since the electrons are projected and collided with the anode 20, the anode 20 is also referred to as an X-ray tube target.

양극(20)은 디스크(disk) 형태의 부재로서, 몰리브덴(Mo)을 포함하는 금속, 즉 순수 몰리브덴이나 몰리브덴을 주재료로 포함하는 몰리브덴 합금으로 이루어진 베이스층(base layer)(21)과, 베이스층(21)의 상측면 외주부에 텅스텐(W)을 포함하는 금속, 즉 순수 텅스텐(W)이나 텅스텐을 주재료로 포함하는 텅스텐 합금이 적층된 전자 충돌층(22)을 구비한다. 상기 전자 충돌층(22)에 상기 음극(16)에서 고속 투사된 전자가 충돌하여 엑스선이 방출된다. 도 1에 도시되진 않았으나, 양극(20)은 방열 촉진을 위하여 상기 베이스층(21) 아래에 흑연(graphite)이나 C-C 복합체(Carbon-Carbon composite)로 된 방열층을 더 구비할 수도 있다. The anode 20 is a member in the form of a disk and is composed of a base layer 21 made of a metal containing molybdenum (Mo), that is, a molybdenum alloy containing pure molybdenum or molybdenum as a main material, (22) in which a metal containing tungsten (W), that is, a tungsten alloy containing pure tungsten (W) or tungsten as a main material, is laminated on the outer circumferential portion of the upper surface of the upper layer (21). The electron beam is collided with the electron impact layer 22 at a high speed and projected from the cathode 16 to release the X-ray. Although not shown in FIG. 1, the anode 20 may further include a heat-radiating layer made of graphite or a C-C composite (carbon-carbon composite) under the base layer 21 for promoting heat radiation.

회전 샤프트(25)는 진공 튜브(11) 내에서 양극(20)이 회전 축선(RC)을 중심으로 회전하도록 지지하는 것으로, 상향 연장된 상부 샤프트부(26)와, 하향 연장된 하부 샤프트부(28)와, 상부 샤프트부(26) 및 하부 샤프트부(28) 사이에 직경이 커지도록 방사 방향으로 확장된 플랜지부(flange portion)(27)를 구비한다. 상부 샤프트부(26)는 양극(20)의 중심을 상하 방향으로 관통하는 관통공(미도시)에 끼워지고, 고정 캡(cap)(29)에 의해 조여져서 양극(20)에 고정 결합된다. The rotary shaft 25 supports the anode 20 to rotate about the rotation axis RC in the vacuum tube 11 and includes an upwardly extending upper shaft portion 26 and a downwardly extending lower shaft portion 26 28 and a flange portion 27 extending radially between the upper shaft portion 26 and the lower shaft portion 28 so as to have a larger diameter. The upper shaft portion 26 is fitted in a through hole (not shown) penetrating the center of the anode 20 in the up and down direction and tightened by the fixed cap 29 to be fixedly coupled to the anode 20.

샤프트 지지체(17)는 진공 튜브(11)의 하단이 밀봉되도록 상기 진공 튜브(11)의 하단에 고정 결합되고, 상기 하부 샤프트부(28)는 회전 축선(RC)을 따라 상기 샤프트 지지체(17)의 내부로 연장된다. 플레인 베어링(35)은 상기 회전 샤프트(25)의 하부 샤프트부(28)와 상기 샤프트 지지체(17) 사이에 개재되어 상기 회전 샤프트(25)와 이에 고정된 양극(20)을 회전 축선(RC)을 중심으로 고속 회전 가능하게 지지한다. The shaft support 17 is fixedly connected to the lower end of the vacuum tube 11 so that the lower end of the vacuum tube 11 is sealed and the lower shaft portion 28 is fixed to the shaft support 17 along the rotation axis RC. As shown in FIG. The plain bearing 35 is interposed between the lower shaft portion 28 of the rotary shaft 25 and the shaft support 17 to rotate the rotary shaft 25 and the anode 20 fixed thereto by a rotation axis RC, So as to rotate at a high speed.

진공 튜브(11)의 소직경부(14) 내부에 배치된 관(管) 형상의 로터(30)의 상단부는 상기 회전 샤프트(25)의 플랜지부(27)에 고정 결합된다. 상기 스테이터(미도시)는 진공 튜브(11)의 소직경부(14) 바깥에서 로터(30)를 에워싸도록 권선된 코일(coil)(미도시)을 구비한다. 상기 코일에 전류가 인가되면 전자기력이 발생하고, 이 전자기력에 의해 상기 로터(30) 및 이에 고정 결합된 회전 샤프트(25) 및 양극(20)이 회전 축선(RC)을 기준으로 고속 회전하게 된다. The upper end portion of the tube-shaped rotor 30 disposed inside the small diameter portion 14 of the vacuum tube 11 is fixedly coupled to the flange portion 27 of the rotary shaft 25. The stator (not shown) has a coil (not shown) wound around the rotor 30 outside the small diameter portion 14 of the vacuum tube 11. When an electric current is applied to the coil, an electromagnetic force is generated, and the rotor 30 and the rotary shaft 25 and the anode 20 fixedly coupled to the rotor 30 rotate at a high speed with respect to the rotation axis line RC.

플레인 베어링(35)은 상기 하부 샤프트부(28)의 외주면에 고정된 관(管)형의 내측 베어링 부재(36)와, 내측 베어링 부재(36)를 에워싸며 상기 샤프트 지지체(17)의 내주면에 고정된 관(管)형의 외측 베어링 부재(40)를 구비한다. 회전 샤프트(25)가 회전할 때 내측 베어링 부재(36)은 회전 샤프트(25)와 함께 회전하고, 외측 베어링 부재(40)는 정지되어 있으므로, 내측 베어링 부재(36)의 외주면(37)과 외측 베어링 부재(40)의 내주면(41)은 직접 대면(對面)하여 마찰한다. The plain bearing 35 includes an inner bearing member 36 in the form of a tube fixed to the outer circumferential surface of the lower shaft portion 28 and an inner bearing member 36 surrounding the inner bearing member 36 and fixed to the inner peripheral surface of the shaft support 17 And an outer bearing member 40 of a fixed pipe type. The inner bearing member 36 rotates together with the rotating shaft 25 and the outer bearing member 40 is stopped when the rotating shaft 25 rotates so that the outer peripheral surface 37 and the outer peripheral surface of the inner bearing member 36 The inner circumferential surface 41 of the bearing member 40 directly rubs against each other.

상기 내측 베어링 부재(36)는 전체가 탄화규소(SiC)로 이루어져 있으며, 외측 베어링 부재(40)와 미끄럼 접촉하는 외주면(37)도 탄화규소로 이루어진 탄화규소면이다. 상기 외측 베어링 부재(40)는 전체가 흑연(graphite)로 이루어져 있으며, 내측 베어링 부재(36)와 미끄럼 접촉하는 내주면(41)도 흑연으로 이루어진 흑연면이다. 전자가 양극(20)의 전자 충돌층(22)에 충돌할 때의 에너지가 열로 전환되어 회전 샤프트(25)를 통해 전달되기 때문에 내측 베어링 부재(36)나 외측 베어링 부재(40)가 고온의 환경에 노출되지만, 흑연과 탄화규소가 모두 녹는점이 2000℃ 보다 높아서 변형이나 파손 없이 신뢰성 있게 회전 샤프트(25)의 고속 회전을 지지한다. 또한, 흑연면(41)이 마모되면서 발생하는 미세한 파티클(particle)이 면접촉하는 탄화규소면(37)과 흑연면(41) 사이의 윤활을 촉진하고, 흑연뿐만 아니라 탄화규소도 마찰계수가 작아서, 별도의 윤활유가 없는 경우에도 적은 마찰저항으로 회전 샤프트(25)의 고속 회전을 지지할 수 있다. 따라서, 진공 상태에서 고속 회전을 지지하는 엑스선관(10A)에 적합하다. The inner bearing member 36 is entirely made of silicon carbide (SiC), and the outer circumferential surface 37 in sliding contact with the outer bearing member 40 is also a silicon carbide surface made of silicon carbide. The outer bearing member 40 is entirely made of graphite and the inner circumferential surface 41 which is in sliding contact with the inner bearing member 36 is also a graphite surface made of graphite. The energy when the electrons impinge on the electron collision layer 22 of the anode 20 is converted into heat and is transmitted through the rotary shaft 25 so that the inner bearing member 36 and the outer bearing member 40 are heated to a high temperature environment But the point at which both graphite and silicon carbide are melted is higher than 2000 DEG C, thereby supporting the high-speed rotation of the rotating shaft 25 reliably without deformation or breakage. In addition, since lubricating between the silicon carbide surface 37 and the graphite surface 41, which is in contact with fine particles generated by abrasion of the graphite surface 41, is promoted and the friction coefficient of silicon carbide as well as graphite is small , Even if there is no separate lubricant, it is possible to support the high-speed rotation of the rotary shaft 25 with a low frictional resistance. Therefore, it is suitable for an X-ray tube 10A that supports high-speed rotation in a vacuum state.

한편, 이상에서는 내측 베어링 부재(36)가 탄화규소로 이루어지고, 외측 베어링 부재(40)가 흑연으로 이루어진 실시예에 대해 설명하였으나, 이와 반대로 내측 베어링 부재가 흑연으로 이루어지고 외측 베어링 부재가 탄화규소로 이루어질 수도 있다. 또 한편, 미끄럼 접촉면으로 탄화규소면을 갖는 베어링 부재는 전체가 탄화규소로 이루어지지 않고, 예컨대, 스테인레스스틸과 같은 금속으로 된 모재(母材)와, 상기 모재에 코팅(coating)된, 탄화규소로 된 탄화규소층을 구비하여 이루어질 수도 있다. 상기 모재와 탄화규소층을 구비한 베어링 부재는, 내측 베어링 부재일 수도 있고 외측 베어링 부재일 수도 있다. In the above description, the inner bearing member 36 is made of silicon carbide and the outer bearing member 40 is made of graphite. In contrast, the inner bearing member is made of graphite and the outer bearing member is made of silicon carbide ≪ / RTI > On the other hand, the bearing member having the silicon carbide surface as the sliding contact surface is not entirely made of silicon carbide, but is made of, for example, a base material made of a metal such as stainless steel and a silicon carbide And a silicon carbide layer formed on the silicon carbide layer. The bearing member having the base material and the silicon carbide layer may be an inner bearing member or an outer bearing member.

도 1 내지 도 3을 함께 참조하면, 외측 베어링 부재(40)의 내주면(41)에는 회전 샤프트(25)가 회전할 때 내측 베어링 부재(36)와 외측 베어링 부재(40)의 마찰로 발생하는 미세 파티클(particle)이 수용되는 복수의 파티클 수용 홈(43, 44)이 형성된다. 상기 복수의 파티클 수용 홈(43, 44)은 규칙적인 패턴(P1, P2)을 형성하며 상기 외측 베어링 부재(40)의 내주면(41)에 분포된다. 1 to 3, the inner circumferential surface 41 of the outer bearing member 40 is provided with a fine (not shown in the drawing) surface, which is generated by friction between the inner bearing member 36 and the outer bearing member 40 when the rotating shaft 25 rotates A plurality of particle receiving grooves 43, 44 in which particles are accommodated are formed. The plurality of particle receiving grooves 43 and 44 form regular patterns P1 and P2 and are distributed on the inner peripheral surface 41 of the outer bearing member 40. [

부연하면, 제1 패턴(P1)을 구성하는 복수의 파티클 수용 홈(43)은 각각 회전 샤프트(25)의 길이 방향에 대해 기울어진 사선(斜線) 방향으로 연장되고, 그 길이 방향 양 측 말단은 폐쇄된다. 즉, 상기 회전 샤프트(25)의 길이 방향과 평행한 가상의 직선(VL)과, 파티클 수용 홈(43)과 평행한 가상의 직선(OL)의 교차 각도(AN)는 예각(銳角)이다. 제2 패턴(P2)을 구성하는 복수의 파티클 수용 홈(44)은 상기 제1 패턴(P1)을 구성하는 복수의 파티클 수용 홈(43)과 상하 대칭되는 형태의 홈이다. 상기 외측 베어링 부재(40)의 내주면(41)에는 상기 제1 패턴(P1)의 파티클 수용 홈(43)과 상기 제2 패턴(P2)의 파티클 수용 홈(44)이 상하 방향으로 교번하여 배열된다. The plurality of particle receiving grooves 43 constituting the first pattern P1 each extend in the oblique direction inclined with respect to the longitudinal direction of the rotary shaft 25, Lt; / RTI > That is, the intersection angle AN of the hypothetical straight line VL parallel to the longitudinal direction of the rotary shaft 25 and the hypothetical straight line OL parallel to the particle receiving grooves 43 is an acute angle. The plurality of particle receiving grooves 44 constituting the second pattern P2 are grooves which are vertically symmetrical with the plurality of particle receiving grooves 43 constituting the first pattern P1. The particle receiving grooves 43 of the first pattern P1 and the particle receiving grooves 44 of the second pattern P2 are alternately arranged in the vertical direction on the inner peripheral surface 41 of the outer bearing member 40 .

상기 파티클 수용 홈(43, 44)의 폭(WD)은 1 내지 3mm 이다. 상기 외측 베어링 부재(40)의 내주면(41)의 전체 표면적에서 복수의 파티클 수용 홈(43, 44)에 의해 점유된 표면적의 비율은 5 내지 30% 이다. 상기 파티클 수용 홈(43, 44)의 폭이 상기한 3mm보다 크거나, 상기 파티클 수용 홈(43, 44)이 점유한 표면적의 비율이 상기한 30% 보다 크면 상기 외측 베어링 부재(40)에 가해지는 힘에 의해 외측 베어링 부재(40)가 파손될 수 있다. 한편, 상기 파티클 수용 홈(43, 44)의 폭이 상기한 1mm보다 작거나, 상기 파티클 수용 홈(43, 44)이 점유한 표면적의 비율이 상기한 5% 보다 작으면 발생되는 흑연 파티클이 플레인 베어링(10A) 외부로 유출되어 진공 튜브(11) 내부에서 부유하게 되므로 엑스선관(10A)의 성능이 저하되고 내구성이 떨어진다. The width WD of the particle receiving grooves 43, 44 is 1 to 3 mm. The ratio of the surface area occupied by the plurality of particle receiving grooves 43, 44 in the total surface area of the inner peripheral surface 41 of the outer bearing member 40 is 5 to 30%. If the width of the particle receiving grooves 43 and 44 is greater than 3 mm or the ratio of the surface area occupied by the particle receiving grooves 43 and 44 is greater than 30% The outer bearing member 40 may be damaged by the losing force. On the other hand, if the width of the particle receiving grooves 43, 44 is smaller than 1 mm or the ratio of the surface area occupied by the particle receiving grooves 43, 44 is smaller than 5% Since the liquid flows out of the bearing 10A and floats inside the vacuum tube 11, the performance of the X-ray tube 10A is deteriorated and the durability is degraded.

상기 내측 베어링 부재(36)의 외주면(37)에도 내측 베어링 부재(36)와 외측 베어링 부재(40)의 마찰로 발생하는 파티클이 수용되는 복수의 파티클 수용 홈(미도시)이 더 형성될 수도 있다. 이 경우 베어링(10A) 외부로 유출되는 파티클을 더욱 억제할 수 있다. 상기 내측 베어링 부재(36)의 외주면(37)에 형성되는 파티클 수용 홈은 상기 외측 베어링 부재(40)의 내측면(41)에 형성된 파티클 수용 홈(43, 44)과 같은 형상일 수 있다. A plurality of particle receiving grooves (not shown) may also be formed on the outer peripheral surface 37 of the inner bearing member 36 to receive particles generated by friction between the inner bearing member 36 and the outer bearing member 40 . In this case, particles that flow out of the bearing 10A can be further suppressed. The particle receiving grooves formed on the outer peripheral surface 37 of the inner bearing member 36 may have the same shape as the particle receiving grooves 43 and 44 formed on the inner side surface 41 of the outer bearing member 40.

도 4는 본 발명의 제2 실시예에 따른 양극 회전형 엑스선관의 단면도이다. 도 4를 참조하면, 본 발명의 제2 실시예에 따른 양극 회전형 엑스선관(10B)은 상술한 제1 실시예에 따른 양극 회전형 엑스선관(10A)과 마찬가지로, 진공 튜브(vacuum tube)(11), 음극(cathode)(16), 양극(anode)(20), 회전 샤프트 부재(50), 샤프트 지지체(17), 플레인 베어링(plain bearing)(55), 로터(rotor)(30), 및 스테이터(stator)(미도시)를 구비한다. 상기 제2 실시예에 따른 양극 회전형 엑스선관(10B)의 구성 요소들 중에 상기 제1 실시예에 따른 양극 회전형 엑스선관(10A)의 구성 요소들과 같은 참조번호로 표시되는 것들은 동일한 형상과 기능을 가지는 것으로서 중복된 설명을 생략한다. 4 is a cross-sectional view of a positive rotation type X-ray tube according to a second embodiment of the present invention. 4, the anode rotation type X-ray tube 10B according to the second embodiment of the present invention is similar to the anode rotation type X-ray tube 10A according to the first embodiment described above except that a vacuum tube 11, a cathode 16, an anode 20, a rotating shaft member 50, a shaft support 17, a plain bearing 55, a rotor 30, And a stator (not shown). Among the constituent elements of the anode rotation type X-ray tube 10B according to the second embodiment, those indicated by the same reference numerals as those of the anode rotation type X-ray tube 10A according to the first embodiment have the same shape So that redundant description will be omitted.

회전 샤프트(50)는 진공 튜브(11) 내에서 양극(20)이 회전 축선(RC)을 중심으로 회전하도록 지지하는 것으로, 상향 연장된 상부 샤프트부(51)와, 하향 연장된 하부 샤프트부(53)와, 상부 샤프트부(51) 및 하부 샤프트부(53) 사이에 직경이 커지도록 방사 방향으로 확장된 플랜지부(flange portion)(52)를 구비한다. 상부 샤프트부(51)는 양극(20)의 중심을 상하 방향으로 관통하는 관통공(미도시)에 끼워지고, 고정 캡(cap)(29)에 의해 조여져서 양극(20)에 고정 결합된다. The rotary shaft 50 supports the anode 20 to rotate about the rotation axis RC in the vacuum tube 11 and includes an upwardly extending upper shaft portion 51 and a downwardly extending lower shaft portion 53 and a flange portion 52 extending in the radial direction so as to have a larger diameter between the upper shaft portion 51 and the lower shaft portion 53. The upper shaft portion 51 is fitted in a through hole (not shown) passing through the center of the anode 20 in the up and down direction and tightened by the fixing cap 29 to be fixedly coupled to the anode 20.

플레인 베어링(55)은 상기 회전 샤프트(50)의 하부 샤프트부(53)와 상기 샤프트 지지체(17) 사이에 마련되어 상기 회전 샤프트(50)와 이에 고정된 양극(20)을 회전 축선(RC)을 중심으로 고속 회전 가능하게 지지한다. 플레인 베어링(55)은, 상기 하부 샤프트부(53)의 외주면에 코팅(coating)된, 탄화규소(SiC)로 이루어진 탄화규소층(56), 및 상기 하부 샤프트부(53)를 에워싸고 상기 샤프트 지지체(17)의 내주면에 고정된 관(管)형의 외측 베어링 부재(60)를 구비한다. 회전 샤프트(50)가 회전할 때 외측 베어링 부재(60)는 정지되어 있으므로, 상기 탄화규소층(56)의 외주면과 상기 외측 베어링 부재(60)의 내주면(61)은 직접 대면(對面)하여 마찰한다. The plain bearing 55 is provided between the lower shaft portion 53 of the rotary shaft 50 and the shaft support 17 and rotates the rotary shaft 50 and the anode 20 fixed thereto by a rotation axis RC So as to rotate at a high speed. The plain bearing 55 includes a silicon carbide layer 56 made of silicon carbide (SiC) coated on the outer circumferential surface of the lower shaft portion 53 and a silicon carbide layer 56 surrounding the lower shaft portion 53, And a tube-shaped outer bearing member 60 fixed to the inner peripheral surface of the support body 17. The outer circumferential surface of the silicon carbide layer 56 and the inner circumferential surface 61 of the outer bearing member 60 are directly opposed to each other and frictionally contact with each other due to the stop of the outer bearing member 60 when the rotating shaft 50 rotates. do.

상기 외측 베어링 부재(60)는 전체가 흑연(graphite)로 이루어져 있으며, 탄화규소층(56)과 미끄럼 접촉하는 내주면(61)도 흑연으로 이루어진 흑연면이다. 전자가 양극(20)의 전자 충돌층(22)에 충돌할 때의 에너지가 열로 전환되어 회전 샤프트(50)를 통해 전달되기 때문에 탄화규소층(56)이나 외측 베어링 부재(60)가 고온의 환경에 노출되지만, 흑연과 탄화규소가 모두 녹는점이 2000℃ 보다 높아서 변형이나 파손 없이 신뢰성 있게 회전 샤프트(50)의 고속 회전을 지지한다. 또한, 흑연면(61)이 마모되면서 발생하는 미세한 파티클(particle)이 면접촉하는 탄화규소층(56)의 외주면과 흑연면(61) 사이의 윤활을 촉진하고, 흑연뿐만 아니라 탄화규소도 마찰계수가 작아서, 별도의 윤활유가 없는 경우에도 적은 마찰저항으로 회전 샤프트(50)의 고속 회전을 지지할 수 있다. 따라서, 진공 상태에서 고속 회전을 지지하는 엑스선관(10B)에 적합하다. The outer bearing member 60 is entirely made of graphite and the inner circumferential surface 61 in sliding contact with the silicon carbide layer 56 is also a graphite surface made of graphite. The silicon carbide layer 56 and the outer bearing member 60 are heated to a high temperature environment because the energy when the electrons impinge on the electron impact layer 22 of the anode 20 is converted into heat and is transmitted through the rotary shaft 50. [ But the melting point of both graphite and silicon carbide is higher than 2000 DEG C, thereby supporting the high-speed rotation of the rotating shaft 50 reliably without deformation or breakage. In addition, lubricating between the outer peripheral surface of the silicon carbide layer 56 in which fine particles generated by abrasion of the graphite surface 61 are in contact with the surface of the silicon carbide layer 56 and the graphite surface 61 is promoted, So that it is possible to support the high-speed rotation of the rotary shaft 50 with a low frictional resistance even when there is no separate lubricant. Therefore, it is suitable for the X-ray tube 10B that supports high-speed rotation in a vacuum state.

외측 베어링 부재(60)의 내주면(61)에는 도 2 및 도 3을 참조하여 설명한 것과 마찬가지로, 회전 샤프트(50)가 회전할 때 탄화규소층(56)과 외측 베어링 부재(60)의 마찰로 발생하는 미세 파티클(particle)이 수용되는 복수의 파티클 수용 홈이 형성될 수 있다. 상기 복수의 파티클 수용 홈에 대한 설명은 도 2 및 도 3을 참조하여 상세하게 설명하였으므로, 중복된 언급은 생략한다. 2 and 3, the inner peripheral surface 61 of the outer bearing member 60 is generated by friction between the silicon carbide layer 56 and the outer bearing member 60 when the rotary shaft 50 rotates A plurality of particle receiving grooves for receiving the fine particles may be formed. The description of the plurality of particle receiving grooves has been described in detail with reference to FIGS. 2 and 3. Therefore, redundant description will be omitted.

이상에서 설명한 플레인 베어링(35, 55)은, 고온에서 파손 염려가 있는 볼, 롤러와 같은 베어링 회전체가 없으며, 녹는점이 매우 높은 흑연막과 탄화규소막이 직접 면접촉하여 미끄럼 회전하므로, 내구성이 향상되고 소음과 진동 발생이 억제된다. 그러므로, 상기 플레인 베어링(35, 55)을 구비한 양극 회전형 엑스선관(10A, 10B)의 내구성도 향상된다. The above-described plain bearings 35 and 55 have no bearing rotors such as balls and rollers that are susceptible to breakage at high temperatures. The graphite film and the silicon carbide film, which have a very high melting point, And the generation of noise and vibration is suppressed. Therefore, the durability of the positive electrode rotating tube 10A, 10B having the plane bearings 35, 55 is also improved.

대면하는 접촉면에 파티클 수용 홈(43, 44)이 형성된 본 발명의 플레인 베어링(35)은 마찰로 인해 발생되는 파티클, 특히 흑연의 파티클이 파티클 수용 홈(43, 44)에 수용되고 플레인 베어링(35) 외부로 확산되지 않으므로, 면접촉되는 한 쌍의 면 사이의 윤활이 더욱 원활해지고 마찰 저항이 더욱 저감된다. 한편, 상기 플레인 베어링(35)을 구비한 엑스선관(10A)의 경우에는 상기 파티클이 진공 튜브(11) 내부로 배출되지 않으므로 엑스선 방출 성능 저하가 억제되어, 엑스선관(10A)의 성능 신뢰성과 내구성이 향상된다.The plane bearing 35 of the present invention in which the particle receiving grooves 43 and 44 are formed on the contact surfaces facing each other is formed in such a manner that the particles generated by the friction, particularly, the graphite particles are received in the particle receiving grooves 43 and 44, ), The lubrication between the pair of surfaces that are in surface contact becomes more smooth and the frictional resistance is further reduced. On the other hand, in the case of the X-ray tube 10A having the plane bearing 35, since the particles are not discharged into the vacuum tube 11, deterioration of the X-ray emission performance is suppressed and the performance reliability and durability .

본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능함을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 보호범위는 첨부된 특허청구범위에 의해서만 정해져야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the scope of the present invention. Therefore, the true scope of protection of the present invention should be defined only by the appended claims.

10A, 10B: 엑스선관 11: 진공 튜브
16: 음극 17: 샤프트 지지체
20: 양극 25: 회전 샤프트
30: 로터 35: 플레인 베어링
36: 내측 베어링 부재 40: 외측 베어링 부재
10A, 10B: X-ray tube 11: Vacuum tube
16: cathode 17: shaft support
20: anode 25: rotating shaft
30: rotor 35: plain bearing
36: Inner bearing member 40: Outer bearing member

Claims (12)

샤프트(shaft)를 샤프트 지지체에 대해 회전 가능하게 지지하는 것으로,
상기 샤프트의 외주면에 고정된 관(管)형의 내측 베어링 부재; 및, 상기 내측 베어링 부재를 에워싸며 상기 샤프트 지지체에 고정된 관형의 외측 베어링 부재;를 구비하고,
상기 내측 베어링 부재의 외주면과 상기 외측 베어링 부재의 내주면은 직접 대면(對面)하여 마찰하고,
상기 내측 베어링 부재의 외주면 및 상기 외측 베어링 부재의 내주면 중 하나는 흑연(graphite)으로 이루어진 흑연면이고, 나머지 하나는 탄화규소(SiC)로 이루어진 탄화규소면인 것을 특징으로 하는 플레인 베어링(plain bearing).
By rotatably supporting a shaft relative to the shaft support,
A tubular inner bearing member fixed to an outer peripheral surface of the shaft; And a tubular outer bearing member surrounding the inner bearing member and fixed to the shaft support,
The outer peripheral surface of the inner bearing member and the inner peripheral surface of the outer bearing member directly rub against each other,
Wherein one of the outer circumferential surface of the inner bearing member and the inner circumferential surface of the outer bearing member is a graphite surface made of graphite and the other is a silicon carbide surface made of silicon carbide (SiC) .
제1 항에 있어서,
상기 내측 베어링 부재와 상기 외측 베어링 부재 중에서 상기 흑연면을 갖는 베어링 부재는 전체가 흑연으로 이루어지고,
상기 탄화규소면을 갖는 베어링 부재는 전체가 탄화규소로 이루어진 것을 특징으로 하는 플레인 베어링.
The method according to claim 1,
Wherein the bearing member having the graphite surface among the inner bearing member and the outer bearing member is made entirely of graphite,
Wherein the bearing member having the silicon carbide surface is entirely made of silicon carbide.
제1 항에 있어서,
상기 내측 베어링 부재와 상기 외측 베어링 부재 중에서 상기 흑연면을 갖는 베어링 부재는 전체가 흑연으로 이루어지고,
상기 탄화규소면을 갖는 베어링 부재는 금속으로 된 모재(母材)와, 상기 모재에 코팅(coating)된, 탄화규소로 이루어진 탄화규소층을 구비하는 것을 특징으로 하는 플레인 베어링.
The method according to claim 1,
Wherein the bearing member having the graphite surface among the inner bearing member and the outer bearing member is made entirely of graphite,
Wherein the bearing member having the silicon carbide surface comprises a base material made of metal and a silicon carbide layer made of silicon carbide coated on the base material.
제1 항에 있어서,
상기 외측 베어링 부재의 내주면에 상기 내측 베어링 부재와 상기 외측 베어링 부재의 마찰로 발생하는 파티클(particle)이 수용되는 복수의 파티클 수용 홈(groove)이 형성되고,
상기 복수의 파티클 수용 홈은 규칙적인 패턴(pattern)을 형성하며 상기 외측 베어링 부재의 내주면에 분포된 것을 특징으로 하는 플레인 베어링.
The method according to claim 1,
A plurality of particle receiving grooves are formed in the inner peripheral surface of the outer bearing member to receive particles generated by friction between the inner bearing member and the outer bearing member,
Wherein the plurality of particle receiving grooves form a regular pattern and are distributed on the inner circumferential surface of the outer bearing member.
제4 항에 있어서,
상기 파티클 수용 홈은 상기 샤프트의 길이 방향에 대해 기울어진 사선(斜線) 방향으로 연장되고, 그 길이 방향 말단은 폐쇄된 것을 특징으로 하는 플레인 베어링.
5. The method of claim 4,
Wherein the particle receiving groove extends in a slanting direction oblique to the longitudinal direction of the shaft, and the longitudinal end of the particle receiving groove is closed.
제5 항에 있어서,
상기 파티클 수용 홈의 폭은 1 내지 3mm 이고, 상기 파티클 수용 홈의 깊이는 0.5 내지 1mm 이며,
상기 외측 베어링 부재의 내주면의 표면적에서 상기 복수의 파티클 수용 홈에 의해 점유된 표면적의 비율은 5 내지 30% 인 것을 특징으로 하는 플레인 베어링.
6. The method of claim 5,
The width of the particle receiving groove is 1 to 3 mm, the depth of the particle receiving groove is 0.5 to 1 mm,
And the ratio of the surface area occupied by the plurality of particle receiving grooves in the surface area of the inner peripheral surface of the outer bearing member is 5 to 30%.
제4 항에 있어서,
상기 내측 베어링 부재의 외주면에 상기 내측 베어링 부재와 상기 외측 베어링 부재의 마찰로 발생하는 파티클(particle)이 수용되는 복수의 파티클 수용 홈(groove)이 더 형성된 것을 특징으로 하는 플레인 베어링.
5. The method of claim 4,
Wherein a plurality of particle receiving grooves are formed on an outer peripheral surface of the inner bearing member to receive particles generated by friction between the inner bearing member and the outer bearing member.
샤프트(shaft)를 샤프트 지지체에 대해 회전 가능하게 지지하는 것으로,
상기 샤프트의 외주면에 코팅(coating)된, 탄화규소(SiC)로 이루어진 탄화규소층; 및, 상기 샤프트의 외주면을 에워싸고 상기 샤프트 지지체에 고정된 관(管)형의 부재로서, 흑연(graphite)으로 이루어진 외측 베어링 부재;를 구비하고,
상기 탄화규소층의 외주면과 상기 외측 베어링 부재의 내주면은 직접 대면(對面)하여 마찰하는 것을 특징으로 하는 플레인 베어링.
By rotatably supporting a shaft relative to the shaft support,
A silicon carbide layer formed of silicon carbide (SiC) coated on the outer circumferential surface of the shaft; And an outer bearing member made of graphite which surrounds the outer peripheral surface of the shaft and is fixed to the shaft support,
Wherein the outer peripheral surface of the silicon carbide layer and the inner peripheral surface of the outer bearing member directly rub against each other.
제8 항에 있어서,
상기 외측 베어링 부재의 내주면에 상기 탄화규소층과 상기 외측 베어링 부재의 마찰로 발생하는 파티클(particle)이 수용되는 복수의 파티클 수용 홈(groove)이 형성되고,
상기 복수의 파티클 수용 홈은 규칙적인 패턴(pattern)을 형성하며 상기 외측 베어링 부재의 내주면에 분포된 것을 특징으로 하는 플레인 베어링.
9. The method of claim 8,
A plurality of particle receiving grooves are formed in the inner circumferential surface of the outer bearing member to receive particles generated by friction between the silicon carbide layer and the outer bearing member,
Wherein the plurality of particle receiving grooves form a regular pattern and are distributed on the inner circumferential surface of the outer bearing member.
제9 항에 있어서,
상기 파티클 수용 홈은 상기 샤프트의 길이 방향에 대해 기울어진 사선(斜線) 방향으로 연장되고, 그 길이 방향 말단은 폐쇄된 것을 특징으로 하는 플레인 베어링.
10. The method of claim 9,
Wherein the particle receiving groove extends in a slanting direction oblique to the longitudinal direction of the shaft, and the longitudinal end of the particle receiving groove is closed.
제10 항에 있어서,
상기 파티클 수용 홈의 폭은 1 내지 3mm 이고, 상기 파티클 수용 홈의 깊이는 0.5 내지 1mm 이며,
상기 외측 베어링 부재의 내주면의 표면적에서 상기 복수의 파티클 수용 홈에 의해 점유된 표면적의 비율은 5 내지 30% 인 것을 특징으로 하는 플레인 베어링.
11. The method of claim 10,
The width of the particle receiving groove is 1 to 3 mm, the depth of the particle receiving groove is 0.5 to 1 mm,
And the ratio of the surface area occupied by the plurality of particle receiving grooves in the surface area of the inner peripheral surface of the outer bearing member is 5 to 30%.
내부 공간이 진공 상태인 진공 튜브(vacuum tube); 상기 진공 튜브 내부로 전자(electron)를 투사하는 음극(cathode); 상기 진공 튜브 내부에 배치되고, 상기 음극에서 투사된 전자(electron)가 충돌하여 엑스선(X-ray)이 방출되는 양극(anode); 상기 양극에 고정된 샤프트(shaft); 상기 진공 튜브에 고정된 샤프트 지지체; 및, 상기 샤프트를 상기 샤프트 지지체에 대해 회전 가능하게 지지하는 것으로, 제1 항 내지 제11 항 중 어느 한 항의 플레인 베어링;을 구비하는 것을 특징으로 하는 양극 회전형 엑스선관.A vacuum tube in which the inner space is in a vacuum state; A cathode for projecting electrons into the vacuum tube; An anode disposed inside the vacuum tube and having an electron projected from the cathode collide with the anode to emit an X-ray; A shaft fixed to the anode; A shaft support fixed to the vacuum tube; And a plain bearing according to any one of claims 1 to 11, wherein the shaft is rotatably supported with respect to the shaft support.
KR1020160167808A 2016-12-09 2016-12-09 Plain bearing, and rotating anode type X-ray tube KR101948303B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160167808A KR101948303B1 (en) 2016-12-09 2016-12-09 Plain bearing, and rotating anode type X-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160167808A KR101948303B1 (en) 2016-12-09 2016-12-09 Plain bearing, and rotating anode type X-ray tube

Publications (2)

Publication Number Publication Date
KR20180066686A true KR20180066686A (en) 2018-06-19
KR101948303B1 KR101948303B1 (en) 2019-02-14

Family

ID=62790532

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160167808A KR101948303B1 (en) 2016-12-09 2016-12-09 Plain bearing, and rotating anode type X-ray tube

Country Status (1)

Country Link
KR (1) KR101948303B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230068622A (en) * 2021-11-11 2023-05-18 경북대학교 산학협력단 Jig for glass tube of X-ray tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102236293B1 (en) 2019-03-27 2021-04-05 주식회사 동남케이티씨 Method for manufacturing rotating anode target of X-ray tube and Rotating anode target

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571541A (en) * 1991-09-12 1993-03-23 Koyo Seiko Co Ltd Bearing
JPH06196112A (en) * 1992-04-08 1994-07-15 Toshiba Corp Rotating anode type x-ray tube
JP2000337374A (en) * 1999-05-31 2000-12-05 Oiles Ind Co Ltd Bearing device
KR20010051058A (en) * 1999-10-18 2001-06-25 니시무로 타이죠 Rotary anode type x-ray tube
JP2003068239A (en) * 2001-08-29 2003-03-07 Toshiba Corp Rotation anode x-ray tube
JP2007085445A (en) * 2005-09-21 2007-04-05 Ntn Corp Sliding bearing
KR101512620B1 (en) 2013-11-28 2015-04-16 금오공과대학교 산학협력단 apparatus for rotary anode type x-ray tube

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571541A (en) * 1991-09-12 1993-03-23 Koyo Seiko Co Ltd Bearing
JPH06196112A (en) * 1992-04-08 1994-07-15 Toshiba Corp Rotating anode type x-ray tube
JP2000337374A (en) * 1999-05-31 2000-12-05 Oiles Ind Co Ltd Bearing device
KR20010051058A (en) * 1999-10-18 2001-06-25 니시무로 타이죠 Rotary anode type x-ray tube
JP2003068239A (en) * 2001-08-29 2003-03-07 Toshiba Corp Rotation anode x-ray tube
JP2007085445A (en) * 2005-09-21 2007-04-05 Ntn Corp Sliding bearing
KR101512620B1 (en) 2013-11-28 2015-04-16 금오공과대학교 산학협력단 apparatus for rotary anode type x-ray tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230068622A (en) * 2021-11-11 2023-05-18 경북대학교 산학협력단 Jig for glass tube of X-ray tube

Also Published As

Publication number Publication date
KR101948303B1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP4899858B2 (en) Envelope rotating X-ray tube device
JP5179240B2 (en) Stationary cathode of rotary frame X-ray tube
US7995708B2 (en) X-ray tube bearing shaft and hub
US9263224B2 (en) Liquid bearing assembly and method of constructing same
KR101948303B1 (en) Plain bearing, and rotating anode type X-ray tube
US11037752B2 (en) Spiral groove bearing assembly with minimized deflection
JP7134848B2 (en) Thrust flange for X-ray tubes with internal cooling channels
KR101824135B1 (en) Thermal damage preventing rotating anode type X-ray tube
JP6054764B2 (en) X-ray tube device
US20230343544A1 (en) Liquid metal bearing with enhanced sealing structures
US9275822B2 (en) Liquid metal containment in an X-ray tube
JP2015230844A (en) Rotating anode X-ray tube
US6891928B2 (en) Liquid metal gasket in x-ray tubes
US10460901B2 (en) Cooling spiral groove bearing assembly
US7044644B2 (en) Electrically conducting ceramic bearings
CN114975046A (en) X-ray tube liquid metal bearing structure for reducing gas entrapment
KR101759090B1 (en) Rotating anode type X-ray tube
JP5531293B2 (en) Rotating anode type X-ray tube and X-ray tube device
JP2010182521A (en) X-ray generating device of rotating target type
JP2006179231A (en) Rotary positive electrode x-ray tube
JP2010277822A (en) X-ray tube device
US20050254739A1 (en) Electrically conducting ceramic bearing rolling elements
US20220375711A1 (en) X-Ray Tube and X-Ray Generating Apparatus
KR20110077879A (en) X-ray tube
KR20130121557A (en) X-ray tube

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right