KR20180055301A - Apparatus for detecting sample characteristic using a chaotic sensor - Google Patents

Apparatus for detecting sample characteristic using a chaotic sensor Download PDF

Info

Publication number
KR20180055301A
KR20180055301A KR1020160152973A KR20160152973A KR20180055301A KR 20180055301 A KR20180055301 A KR 20180055301A KR 1020160152973 A KR1020160152973 A KR 1020160152973A KR 20160152973 A KR20160152973 A KR 20160152973A KR 20180055301 A KR20180055301 A KR 20180055301A
Authority
KR
South Korea
Prior art keywords
sample
wave
unit
microorganisms
time
Prior art date
Application number
KR1020160152973A
Other languages
Korean (ko)
Other versions
KR102652472B1 (en
Inventor
김영덕
김남균
Original Assignee
주식회사 더웨이브톡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020160152973A priority Critical patent/KR102652472B1/en
Application filed by 주식회사 더웨이브톡 filed Critical 주식회사 더웨이브톡
Priority to JP2018526645A priority patent/JP7058837B2/en
Priority to EP16866671.7A priority patent/EP3379234A4/en
Priority to CN201680079041.1A priority patent/CN108474740B/en
Priority to PCT/KR2016/013288 priority patent/WO2017086719A1/en
Priority to CN202110183709.XA priority patent/CN113063755A/en
Priority to US15/776,584 priority patent/US10551293B2/en
Publication of KR20180055301A publication Critical patent/KR20180055301A/en
Priority to US16/697,373 priority patent/US10914665B2/en
Priority to US17/142,529 priority patent/US11262287B2/en
Priority to JP2022060460A priority patent/JP7377475B2/en
Application granted granted Critical
Publication of KR102652472B1 publication Critical patent/KR102652472B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • G01N2021/479Speckle

Abstract

The present invention relates to an apparatus for detecting a sample characteristic using a chaotic wave sensor. One embodiment of the present invention comprises: a sample arrangement unit for receiving a sample; a wave source for irradiating a wave toward the sample; a detection unit; and a control unit obtaining a temporal correlation of detected laser speckles and detecting the characteristic of the sample in real time based on the obtained time correlation. The detection unit detects the laser speckles generated by multiple scattering the irradiated waves with the sample. In the above case, the detection unit detects the laser speckles at a predetermined time point in a region on a path where the multi-scattered wave moves by the sample.

Description

혼돈파 센서를 이용한 시료 특성 탐지 장치{Apparatus for detecting sample characteristic using a chaotic sensor}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chaotic wave sensor,

본 발명의 실시예들은 혼돈파 센서를 이용한 시료 특성 탐지 장치에 관한 것이다.Embodiments of the present invention relate to a device for characterizing a sample using a chaos wave sensor.

인간은 다양한 생물들과 같은 공간에서 생활하고 있다. 눈에 보이는 생물부터 눈에 보이지 않는 생물들까지 인간의 주변에서 함께 생활하면서, 인간에게 직간접적으로 영향을 주고 있다. 그 중 인간의 건강에 영향을 주는 미생물 또는 작은 생물들은 눈에는 잘 보이지 않지만 인간의 주변에 존재하여 다양한 질병들을 유발하고 있다.Humans are living in the same space as various creatures. From creatures that are visible to invisible creatures living together around human beings, they are directly or indirectly affecting humans. Among them, microorganisms or small organisms affecting human health are not visible to the eye, but they are present around human beings and cause various diseases.

눈에 보이지 않는 미생물을 측정하기 위해서, 종래에는 미생물 배양법, 질량분석법(mass spectrometry), 핵자기공명(unclear magnetic resonance) 기법 등을 이용하였다. 미생물 배양법, 질량분석법, 핵자기공명 기법의 경우, 특정 종류의 세균을 정밀하게 측정할 수 있으나, 세균을 배양시키는 준비 시간이 오래 걸리고, 고비용의 정밀하고 복잡한 장비를 필요로 한다.In order to measure invisible microorganisms, microbial culture, mass spectrometry, and unclear magnetic resonance have been used. In the case of microorganism culture, mass spectrometry, and nuclear magnetic resonance technique, it is possible to precisely measure a specific kind of bacteria, but it takes a long preparation time to cultivate the bacteria and requires expensive and precise and complicated equipment.

이외에, 광학적 기법을 이용하여 미생물을 측정하는 기법이 있다. 예를 들어, 광학적 기법으로 라만 분광법(Raman spectrometry), 및 다중분광영상(Multispectral imaging)이 이용되나, 복잡한 광학계가 필요하여, 복잡한 광학계를 다룰 수 있는 전문적인 지식과 연구실 수준의 설비를 요구하며, 오랜 측정 시간이 필요하므로, 일반적인 대중이 사용하는데 문제점이 있다.In addition, there is a technique for measuring microorganisms using optical techniques. For example, Raman spectrometry and multispectral imaging are used as optical techniques, but complex optical systems are needed, requiring expert knowledge and lab-level equipment to handle complex optical systems, Since a long measurement time is required, there is a problem that the general public uses.

상기한 문제 및/또는 한계를 해결하기 위하여, 혼돈파 센서를 이용한 시료 특성 탐지 장치를 제공하는 데에 목적이 있다.In order to solve the above-mentioned problems and / or limitations, it is an object of the present invention to provide a sample characteristic detecting device using a chaos wave sensor.

본 발명의 일 실시예는 시료를 수용하는 시료 배치부, 시료를 향하여 파동을 조사하는 파동원, 상기 조사된 파동이 상기 시료에 의해 다중 산란(multiple scattering)되어 발생된 레이저 스펙클을 검출하되, 상기 시료에 의해 상기 다중 산란된 파동이 이동하는 경로 상의 일 영역에서 상기 레이저 스펙클을 사전에 설정된 시점마다 검출하는 검출부 및 상기 검출된 레이저 스펙클의 시간 상관관계(temporal correlation)을 획득하고, 상기 획득된 시간 상관관계를 기초하여, 상기 시료의 특성을 실시간(real-time)으로 탐지하는 제어부;를 포함하는 시료 특성 탐지 장치를 제공한다.In one embodiment of the present invention, there is provided an apparatus for detecting a laser speckle in which a specimen accommodating portion for accommodating a specimen, a wave source for irradiating a wave toward the specimen, multiple scattering of the irradiated wave by the specimen, A detector for detecting the laser speckle at a predetermined time point in a region on a path along which the multi-scattered wave moves by the sample, and a controller for obtaining a temporal correlation of the detected laser speckle, And a controller for detecting the characteristics of the sample in real time based on the obtained time correlation.

전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.Other aspects, features, and advantages will become apparent from the following drawings, claims, and detailed description of the invention.

본 발명의 실시예들에 따른 시료 특성 탐지 장치는 파동경로변경부를 이용하여 복수의 시료배치부에 수용된 복수의 시료들의 미생물 존재 여부 또는 미생물의 농도를 빠르게 탐지할 수 있다.The apparatus for detecting a characteristic of a sample according to embodiments of the present invention can rapidly detect the presence of microorganisms or the concentration of microorganisms in a plurality of samples accommodated in a plurality of sample arranging units using a wave path changing unit.

도 1은 본 발명의 일 실시예에 따른 혼돈파 센서의 원리를 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시예에 따른 시료 특성 탐지 장치를 개략적으로 도시한 개념도다.
도 3은 도 2의 시료채취수단의 다른 실시형태를 도시한 개념도이다.
도 4는 도 2의 시료채취수단을 이용한 시료 특성 탐지 장치를 개략적으로 도시한 개념도이다.
도 5는 도 2의 검출부에서의 레이저 스펙클의 검출 방법을 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 제어부에서 레이저 스펙클의 시간 상관 관계를 분석하는 방법을 설명하기 위해 제공되는 도면이다.
도 7은 본 발명의 일 실시예에 따른 시료 특성 탐지 장치를 통해 시간에 따라 측정된 레이저 스펙클의 빛 세기의 표준편차 분포를 도시한 도면이다.
도 8a 및 도 8b는 본 발명의 다른 실시예에 따른 시료 특성 탐지 장치(100-4)를 개략적으로 도시한 개념도이다.
도 9는 본 발명의 다른 실시예에 따른 시료 특성 탐지 장치을 개략적으로 도시한 개념도이다.
도 10은 도 9의 Ⅰ-Ⅰ선을 따라 절취한 단면도이다.
도 11 및 도 12는 본 발명의 다른 실시예예 따른 시료 특성 탐지 장치의 다른 실시형태들을 개략적으로 도시한 도면이다.
1 is a view for explaining the principle of a chaos wave sensor according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram schematically showing a sample property detecting apparatus according to an embodiment of the present invention.
3 is a conceptual diagram showing another embodiment of the sample collecting means of FIG.
FIG. 4 is a conceptual diagram schematically showing a sample property detecting apparatus using the sample collecting means of FIG. 2. FIG.
5 is a diagram showing a method of detecting a laser speckle in the detection unit of FIG. 2. FIG.
6 is a view for explaining a method of analyzing time correlation of laser speckles in a controller according to an embodiment of the present invention.
FIG. 7 is a graph showing a standard deviation distribution of light intensity of a laser speckle measured over time through a sample characteristic detecting apparatus according to an embodiment of the present invention. FIG.
8A and 8B are conceptual diagrams schematically showing a sample property detection apparatus 100-4 according to another embodiment of the present invention.
FIG. 9 is a conceptual diagram schematically showing a sample characteristic detecting device according to another embodiment of the present invention.
10 is a cross-sectional view taken along the line I-I in FIG.
11 and 12 schematically illustrate other embodiments of a sample characterization apparatus according to another embodiment of the present invention.

이하, 첨부된 도면을 참조하여 이하의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, wherein like reference numerals refer to like or corresponding parts throughout the drawings, and a duplicate description thereof will be omitted.

본 실시예들은 다양한 변환을 가할 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 실시예들의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 내용들을 참조하면 명확해질 것이다. 그러나 본 실시예들은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다. These embodiments are capable of various transformations, and specific embodiments are illustrated in the drawings and described in detail in the detailed description. The effects and features of the embodiments, and how to achieve them, will be apparent from the following detailed description taken in conjunction with the drawings. However, the embodiments are not limited to the embodiments described below, but may be implemented in various forms.

이하의 실시예에서 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다. In the following embodiments, the terms first, second, and the like are used for the purpose of distinguishing one element from another element, not the limitative meaning.

이하의 실시예에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following examples, the singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise.

이하의 실시예에서 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. In the following embodiments, terms such as inclusive or having mean that a feature or element described in the specification is present, and do not exclude the possibility that one or more other features or elements are added in advance.

이하의 실시예에서 유닛, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 유닛, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다. In the following embodiments, when a unit, a region, an element, or the like is on or on another portion, not only the case where the portion is directly on another portion but also another unit, region, .

이하의 실시예에서 연결하다 또는 결합하다 등의 용어는 문맥상 명백하게 다르게 뜻하지 않는 한, 반드시 두 부재의 직접적 및/또는 고정적 연결 또는 결합을 의미하는 것은 아니며, 두 부재 사이에 다른 부재가 개재된 것을 배제하는 것이 아니다.In the following embodiments, terms such as joining or joining do not necessarily mean a direct and / or fixed connection or coupling of two members unless the context clearly indicates otherwise, and it is understood that other members are interposed between the two members It is not excluded.

명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.Means that there is a feature or element described in the specification and does not preclude the possibility that one or more other features or components will be added.

도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 이하의 실시예는 반드시 도시된 바에 한정되지 않는다.In the drawings, components may be exaggerated or reduced in size for convenience of explanation. For example, the sizes and thicknesses of the components shown in the drawings are arbitrarily shown for convenience of explanation, and therefore, the following embodiments are not necessarily drawn to scale.

이하에서는 먼저, 도 1을 참조하여, 본 발명의 혼돈파 센서의 원리에 대하여 설명한다.First, the principle of the chaos wave sensor of the present invention will be described with reference to Fig.

도 1은 본 발명의 일 실시예에 따른 혼돈파 센서의 원리를 설명하기 위한 도면이다.1 is a view for explaining the principle of a chaos wave sensor according to an embodiment of the present invention.

유리와 같이 내부 굴절율이 균질한 물질의 경우에는 광을 조사했을 때에 일정한 방향으로 굴절이 일어난다. 하지만, 내부 굴절률이 불균질한 물체에 레이저와 같은 간섭광(Coherent Light)을 조사하면, 물질 내부에서 매우 복잡한 다중 산란(multiple scattering)이 발생하게 된다. In the case of a material having a homogeneous internal refractive index like glass, refraction occurs in a certain direction when light is irradiated. However, when a coherent light such as a laser is irradiated on an object having an inhomogeneous internal refractive index, a very complex multiple scattering occurs inside the material.

도 1을 참고하면, 파동원에서 조사한 빛 또는 파동(이하, 간략화를 위하여 파동이라 함) 중, 다중 산란을 통해 복잡한 경로로 산란된 파동의 일부는 검사 대상면을 통과하게 된다. 검사 대상면의 여러 지점을 통과하는 파동들이 서로 보강 간섭(constructive interference) 또는 상쇄 간섭(destructive interference)를 일으키게 되고, 이러한 파동들의 보강/상쇄 간섭은 낱알 모양의 무늬(스페클; speckle)를 발생시키게 된다.Referring to FIG. 1, a part of a wave scattered by a complicated path through multiple scattering among light or waves (hereinafter referred to as waves for simplification) irradiated from a wave source passes through a surface to be inspected. The waves passing through various points on the surface to be inspected cause mutual constructive interference or destructive interference and the reinforcement / destructive interference of these waves causes a speckle do.

본 명세서에서는 이러한 복잡한 경로로 산란되는 파동들을 "혼돈파(Chaotic wave)"라고 명명하였으며, 혼돈파는 레이저 스페클을 통해 검출할 수 있다.In this specification, the waves scattered by this complex path are named as "Chaotic wave", and chaotic waves can be detected through laser speckle.

다시, 도 1의 좌측 도면은 안정한 매질을 레이저로 조사하였을 때를 나타낸 도면이다. 내부 구성 물질의 움직임이 없는 안정한 매질을 간섭광(예를 들면 레이저)로 조사하였을 때에는 변화가 없는 안정한 스페클 무늬를 관측할 수 있다.1 is a diagram showing a case where a stable medium is irradiated with a laser. Stable speckle patterns with no change can be observed when irradiating a stable medium with no movement of the internal constituent material with interference light (for example, laser).

그러나, 도 1의 우측 도면과 같이, 내부에 박테리아 등, 내부 구성 물질 중 움직임이 있는 불안정한 매질을 포함하고 있는 경우에는 스페클 무늬가 변화하게 된다. However, as shown in the right side of Fig. 1, when the unstable medium including movement of internal constituent substances such as bacteria is included therein, the speckle pattern changes.

즉, 생물의 미세한 생명활동(예컨대, 세포 내 움직임, 미생물의 이동, 진드기의 움직임 등)으로 인해 광경로가 시간에 따라 미세하게 변화할 수 있다. 스페클 패턴은 파동의 간섭으로 인해 발생하는 현상이기 때문에, 미세한 광경로의 변화는 스페클 패턴에 변화를 발생시킬 수 있다. 이에 따라, 스페클 패턴의 시간적인 변화를 측정함으로써, 생물의 움직임을 신속하게 측정할 수 있다. 이처럼, 스페클 패턴의 시간에 따른 변화를 측정하는 경우, 생물의 존재여부 및 농도를 알 수 있으며, 더 나아가서는 생물의 종류 또한 알 수 있다.That is, microscopic life activity of an organism (for example, intracellular movement, microbial movement, mite movement, etc.) may cause microscopic changes in the optical path over time. Since the speckle pattern is a phenomenon caused by wave interference, a change in the minute light path can cause a change in the speckle pattern. Thus, by measuring the temporal change of the speckle pattern, the movement of the creature can be measured quickly. As described above, when the change of the speckle pattern with time is measured, it is possible to know the presence or concentration of the organism, and furthermore, the kind of the organism.

본 명세서는 이러한 스페클 패턴의 변화를 측정하는 구성을 혼돈파 센서(Chaotic Wave Sensor)라 정의한다.In the present specification, a configuration for measuring the change of the speckle pattern is defined as a Chaotic Wave Sensor.

이하에서는, 상술한 혼돈파 센서의 원리를 바탕으로 본 발명의 일 실시예인 시료 특성 탐지 장치(300)에 대하여 설명한다.Hereinafter, a sample property detecting apparatus 300, which is an embodiment of the present invention, will be described based on the principle of the chaos wave sensor described above.

도 2는 본 발명의 일 실시예에 따른 시료 특성 탐지 장치(300)를 개략적으로 도시한 개념도고, 도 3은 도 2의 시료채취수단(311)의 다른 실시형태를 도시한 개념도이다. 또한, 도 4는 도 2의 시료채취수단(311)을 이용한 시료 특성 탐지 장치(300)를 개략적으로 도시한 개념도이다. FIG. 2 is a conceptual diagram schematically showing a sample property detection apparatus 300 according to an embodiment of the present invention, and FIG. 3 is a conceptual diagram showing another embodiment of the sample collection means 311 of FIG. 4 is a conceptual diagram schematically showing a sample property detecting apparatus 300 using the sample taking means 311 of FIG.

도 2를 참조하면, 일 실시예에 따른 시료 특성 탐지 장치(300)는 파동원(320), 검출부(330), 제어부(340), 시료 배치부(310) 및 시료채취수단(311)을 포함할 수 있다.2, the apparatus 300 for detecting a characteristic of a sample includes a wave source 320, a detection unit 330, a control unit 340, a sample arrangement unit 310, and a sample collection unit 311 can do.

본 발명의 일 실시예에 따른 미생물 탐지 장치시료 특성 탐지 장치(300)를 통해 측정할 수 있는 시료(S)는 측정하고자 하는 개체로부터 채취된 타액, 혈액, 조직과 같은 시료일 수도 있고, 개체의 외부로 배출된 대변, 소변, 각질과 같은 시료일 수도 있다. 또는 음식물과 같은 개체로부터 채취된 유기 시료 등을 포함할 수 있다. 한편, 시료(S)는 측정하고자 하는 개체 그 자체를 의미할 수도 있다. 다시 말해, 음식물이 개체이고, 음식물을 훼손(damage)하지 않으면서 미생물의 존재 여부를 측정하고자 하는 경우에는 음식물 그 자체가 시료(S)가 될 수 있다. 예를 들면, 판매를 위해 포장된 고기(meat)와 같은 개체가 시료(S)가 될 수 있다. 시료(S)는 시료 전체가 샘플로 이용될 수도 있고, 테이프, 생체막(membrane) 등과 같이 미생물이 옮겨갈 수 있는 수단을 이용하여 준비될 수도 있다. 한편, 시료(S)는 개체가 입으로 부는 것에 의해 채취 또는 피부로부터 채취되거나, 대변 등을 필터에 걸러 채취될 수도 있다. 일 실시예로서, 채취된 시료(S)는 시료 배치부(110)에 수용될 수 있다. 시료배치부(110)는 시료(S)를 수용할 수 있는 용기 형태로 이루어질 수 있다. 시료배치부(110)는 시료 자체의 움직임을 제한하면서 시료(S)를 지지할 수 있다. 다시 말해, 시료(S) 자체는 움직임이 제한된 상태에서 검출을 진행하게 된다. The sample S that can be measured through the apparatus 300 for detecting a characteristic of a microorganism detection apparatus according to an embodiment of the present invention may be a sample such as saliva, blood, tissue sampled from the object to be measured, It may be a sample such as stool, urine, or keratin that has been discharged to the outside. Or an organic sample taken from an object such as food or the like. On the other hand, the sample S may mean the object itself to be measured. In other words, if the food is an individual and it is desired to measure the presence of microorganisms without damaging the food, the food itself may become the sample (S). For example, an object such as meat packaged for sale can be a sample S. The sample (S) may be prepared by using the entire sample as a sample, or by means of a microorganism such as a tape, a membrane or the like. On the other hand, the sample (S) may be collected by picking up the individual by mouth or taken from the skin, or may be collected by filtering the feces and the like. In one embodiment, the collected sample S may be accommodated in the sample placement part 110. [ The sample arrangement part 110 may be in the form of a container capable of receiving the sample S. The sample placement unit 110 can support the sample S while restricting the movement of the sample itself. In other words, the sample S itself is detected in a state in which the motion is limited.

파동원(320)은 시료 배치부(310) 내의 시료(S)를 향하여 파동을 조사할 수 있다. 파동원(320)은 파동(wave)을 생성할 수 있는 모든 종류의 소스 장치를 적용할 수 있으며, 예를 들면, 특정 파장 대역의 광을 조사할 수 있는 레이저(laser)일 수 있다. 본 발명은 파동원 종류에 제한이 없으나, 다만, 이하에서는 설명의 편의를 위하여 레이저인 경우를 중심으로 설명하기로 한다. The wave source 320 can irradiate a wave toward the sample S in the sample arrangement part 310. [ The wave source 320 may be any type of source device capable of generating a wave, and may be, for example, a laser capable of irradiating light of a specific wavelength band. The present invention is not limited to the kind of the wave source, but the following description will focus on the case of a laser for convenience of explanation.

예를 들어, 시료 배치부(310) 에 스펙클을 형성하기 위해서 간섭성(coherence)이 좋은 레이저를 파동원(320)으로 이용할 수 있다. 이때, 레이저 파동원의 간섭성을 결정하는 파동원의 스펙트럴 대역폭(spectral bandwidth)이 짧을수록 측정 정확도가 증가할 수 있다. 즉, 간섭길이(coherence length)가 길수록 측정 정확도가 증가할 수 있다. 이에 따라, 파동원의 스펙트럴 대역폭이 기정의된 기준 대역폭 미만인 레이저광이 파동원(320)으로 이용될 수 있으며, 기준 대역폭보다 짧을수록 측정 정확도는 증가할 수 있다. 예컨대, 아래의 수학식 1의 조건이 유지되도록 파동원의 스펙트럴 대역폭이 설정될 수 있다.For example, a laser having good coherence can be used as the wave source 320 in order to form a speckle in the sample arrangement unit 310. In this case, the shorter the spectral bandwidth of the wave source that determines the coherence of the laser source, the greater the measurement accuracy. That is, the longer the coherence length, the greater the measurement accuracy. Accordingly, the laser beam whose spectral bandwidth of the wave source is less than the predetermined reference bandwidth can be used as the wave source 320, and the measurement accuracy can be increased as it is shorter than the reference bandwidth. For example, the spectral bandwidth of the wave source may be set such that the condition of Equation (1) below is maintained.

Figure pat00001
Figure pat00001

수학식 1에 따르면, 레이저 스펙클의 패턴 변화를 측정하기 위해, 기준 시간마다 배양접시 내에 광을 조사 시에, 파동원(320)의 스펙트럴 대역폭은 1nm 미만을 유지될 수 있다.According to Equation (1), in order to measure the pattern change of the laser speckle, the spectral bandwidth of the wave source 320 can be kept less than 1 nm when light is irradiated in the culture dish every reference time.

다시 도 2를 참조하면, 검출부(330)는 조사된 파동이 시료(S)에 의해 다중 산란(multiple scattering)되어 발생된 레이저 스펙클(laser speckle)을 사전에 설정된 시점(time)마다 검출할 수 있다. 여기서, 시점(time)이란, 연속적인 시간의 흐름 가운데 어느 한 순간을 의미하며, 시점(time)들은 동일한 시간 간격으로 사전에 설정될 수 있으나 반드시 이에 제한되지 않으며, 임의의 시간 간격으로 사전에 설정될 수도 있다. 검출부(330)는 파동원(320) 종류에 대응한 감지수단을 포함할 수 있으며, 예를 들면, 가시광선 파장 대역의 광원을 이용하는 경우에는 영상을 촬영하는 촬영장치인 CCD 카메라(camera)가 이용될 수 있다. 다른 실시예로서, 검출부(330)는 렌즈를 포함하지 않는 이미지 센서가 이용될 수도 있다. 검출부(330)는 적어도 제1 시점에서의 레이저 스펙클을 검출하고, 제2 시점에서의 레이저 스펙클을 검출하여 제어부(340)로 제공할 수 있다. 한편, 제1 시점 및 제2 시점은 설명의 편의를 위하여 선택된 하나의 예시일 뿐이며, 검출부(330)는 제1 시점 및 제2 시점보다 많은 복수의 시점에서 레이저 스펙클을 검출할 수 있다. Referring to FIG. 2 again, the detector 330 can detect a laser speckle generated by multiple scattering of the irradiated wave by the sample S at predetermined time points have. Here, time refers to any one of continuous time flows, and time points can be set in advance at the same time interval, but are not limited thereto, and may be set in advance at an arbitrary time interval . The detection unit 330 may include detection means corresponding to the type of the wave source 320. For example, when a light source of a visible light wavelength band is used, a CCD camera, which is a photographing device for photographing an image, . As another embodiment, the detection unit 330 may be an image sensor that does not include a lens. The detection unit 330 detects the laser speckle at the first time point and detects the laser speckle at the second time point and provides the laser speckle to the control unit 340. Meanwhile, the first and second points of time are only one example selected for the convenience of explanation, and the detector 330 can detect the laser speckles at a plurality of points of time greater than the first and second points of time.

구체적으로, 시료(S)에 파동이 조사되면, 입사된 파동은 다중 산란에 의해 레이저 스펙클을 형성할 수 있다. 레이저 스펙클은 빛의 간섭 현상에 의해 발생하므로, 샘플 내에 움직임이 없으면 시간에 따라 항상 일정한 간섭 무늬를 나타낼 수 있다. 이와 비교하여, 시료(S) 내에 박테리아와 같은 미생물이 존재하는 경우, 레이저 스펙클은 미생물의 움직임에 의해 시간에 따라 변화할 수 있다. 검출부(330)는 이러한 시간에 따라 변화하는 레이저 스펙클을 사전에 설정된 시점마다 검출하여 제어부(340)로 제공할 수 있다. 검출부(330)는 미생물의 움직임을 감지할 수 있을 정도의 속도로 레이저 스펙클을 검출할 수 있으며, 예를 들면, 초당 25 프레임 내지 30 프레임의 속도로 검출할 수 있다.Specifically, when a sample is irradiated with a wave, the incident wave can form laser speckles by multiple scattering. Since the laser speckle is caused by the light interference phenomenon, if there is no movement in the sample, it can always show a constant interference pattern with time. In contrast, when a microorganism such as bacteria is present in the sample S, the laser speckle may change with time due to the movement of the microorganism. The detecting unit 330 may detect the laser speckles varying according to the time, and provide the laser speckles to the control unit 340 at predetermined time points. The detection unit 330 can detect the laser speckle at a speed at which the microbial movement can be detected. For example, the detection unit 330 can detect the laser speckle at a speed of 25 to 30 frames per second.

도 5는 도 2의 검출부(330)에서의 레이저 스펙클의 검출 방법을 도시한 도면이다.5 is a diagram showing a method of detecting a laser speckle in the detection unit 330 of FIG.

도 5를 참조하면, 검출부(330)는 시료(S)로 조사된 파동이 시료(S)에 의해 다중 산란(multiple scattering)되어 발생된 레이저 스펙클을 검출할 수 있다. 다시 말해, 검출부(130)는 시료(S)로부터 유발된(caused) 레이저 스펙클을 검출할 수 있다. 구체적으로, 검출부(330)는 시료(S)의 표면(F)에서 레이저 스펙클을 검출할 수도 있지만, 시료(S)에 의해 다중산란된 파동이 이동하는 경로 상의 일 영역(A1)에서 레이저 스펙클을 사전에 설정된 시점마다 검출할 수 있다. 이때, 제1 영역(A1)은 시료(S)의 표면(F)으로부터 일정 거리 이격된 영역일 수 있다. 일 실시예로서, 제1 영역(A1)은 시료(S)의 표면(F)으로부터 제1 거리(d1) 이격된 제1 지점(x1)을 포함하는 제1 면(B1)과 시료(S)의 표면(F)으로부터 제1 거리(d1)보다 먼 제2 거리(d2) 이격된 제2 지점(x2)을 포함하는 제2 면(B2) 사이에 배치된 영역일 수 있다. 다른 실시예로서, 검출부(330)는 이미지 센서를 이용하여 레이저 스펙클을 검출할 수도 있다. 이미지 센서를 이용하여 레이저 스펙클을 검출하는 경우, 시료(S)의 표면에서 레이저 스펙클을 관찰하는 경우보다 초점 거리를 줄여 레이저 스펙클을 검출할 수 있다. Referring to FIG. 5, the detector 330 can detect a laser speckle generated by multiple scattering of a wave irradiated by the sample S by the sample S. In other words, the detection unit 130 can detect the laser speckle caused by the sample S. Specifically, the detection unit 330 may detect the laser speckle on the surface F of the sample S. However, the detection unit 330 may detect the laser speckle in one region A1 on the path where the multiple scattered waves are moved by the sample S, It is possible to detect a set at a preset time point. At this time, the first region A1 may be a region spaced from the surface F of the sample S by a certain distance. In one embodiment, the first area (A1) has a first side (B 1) comprising a first distance (d1) spaced from the first point (x1) from the surface (F) of the sample (S) and the sample (S And a second surface B 2 that includes a second point x 2 that is a second distance d 2 away from the surface F of the first surface d 1. In another embodiment, the detector 330 may detect the laser speckle using an image sensor. In the case of detecting the laser speckle using the image sensor, the laser speckle can be detected by reducing the focal distance as compared with the case of observing the laser speckle on the surface of the sample (S).

한편, 검출부(330)로 이미지 센서가 이용되는 경우, 이미지 센서 한 픽셀(pixel)의 크기 d가 스펙클 패턴의 입자 크기(grain size)보다 작거나 같아지도록 이미지 센서가 배치될 수 있다. 예컨대, 아래의 수학식 2의 조건을 만족하도록, 도 4a 내지 도 4c의 광학계에서 이미지 센서가 배치될 수 있다.Meanwhile, when the image sensor is used as the detector 330, the image sensor may be arranged such that the size d of one pixel of the image sensor is smaller than or equal to the grain size of the speckle pattern. For example, the image sensor may be disposed in the optical system of Figs. 4A to 4C so as to satisfy the condition of the following equation (2).

Figure pat00002
Figure pat00002

수학식 2와 같이, 이미지 센서의 한 픽셀(pixel)의 크기 d가 스펙클 패턴의 입자 크기(grain size) 이하이어야 하나, 픽셀의 크기가 너무 작아지게 되면 언더샘플링(undersampling)이 발생해서 픽셀 해상도를 활용하는데 어려움이 존재할 수 있다. 이에 따라, 효과적인 SNR(Signal to Noise Ratio)를 달성하기 위해 스펙클 입자 크기(speckle grain size)에 최대 5개 이하의 픽셀이 위치하도록 이미지 센서가 배치될 수 있다.If the size d of one pixel of the image sensor is less than the grain size of the speckle pattern as shown in Equation (2), if the size of the pixel becomes too small, undersampling occurs and the pixel resolution There may be difficulties in utilizing Thus, the image sensor can be arranged so that no more than five pixels are located in the speckle grain size to achieve an effective SNR (Signal to Noise Ratio).

스펙클 신호의 동적 변화를 비교하기 위해서는 서로 다른 시간에 측정된 최소 둘 이상의 영상이 필요할 수 있다. 예를 들어, 일정한 간격으로 기준 시간마다 둘 이상의 레이저 스펙클 영상이 생성될 수 있다. 예컨대, 현재 시간에 레이저 광을 조사하여 피검사대상을 촬영함으로써 생성된 레이저 스펙클 영상 1, 10초 후에 광을 조사하여 배양접시를 촬영함으로써 생성된 레이저 스펙클 영상 2가 존재할 수 있다. 이외에, 다시 10초 후에 레이저 스펙클 영상 3, 다시 10초 후에 레이저 스펙클 영상 4 등과 같이, 처음 광을 조사한 이후 일정 간격마다 광을 조사하여, 결국 n-1초 후에 n개의 레이저 스펙클 영상이 생성될 수 있다. 그러면, 생성된 레이저 스펙클 영상 간의 차이를 분석하여 배양접시 내의 미생물 존재유무가 탐지될 수 있다.In order to compare the dynamic changes of the speckle signal, at least two images measured at different times may be needed. For example, two or more laser speckle images may be generated for each reference time at regular intervals. For example, there may be a laser speckle image 2 produced by irradiating the laser speckle image 1 by irradiating the laser light at the current time and irradiating the laser speckle image 1 after 10 seconds, and photographing the culture dish. In addition, laser speckle image 3 again after 10 seconds, laser speckle image 4 after 10 seconds again, light is irradiated at regular intervals after first irradiating light, and finally, n-1 seconds later, Lt; / RTI > Then, the presence or absence of microorganisms in the culture dish can be detected by analyzing the difference between the generated laser speckle images.

이때, 두 개의 스펙클 영상을 이용하여 미생물의 존재유무를 탐지하는지 또는 셋 이상의 스펙클 영상을 이용하여 미생물의 존재유무를 탐지하는지에 따라 미생물 탐지 방법이 달라질 수 있다.In this case, the method of detecting microorganisms may be changed depending on whether two speckle images are used to detect the presence or absence of microorganisms or whether three or more speckle images are used to detect presence or absence of microorganisms.

일례로, 일정 시간 간격으로 광을 조사함에 따라 각각의 시간에서 생성된 두 개의 스펙클 영상을 이용하는 경우, 피검사대상 내에 미생물이 존재하지 않으면 0초에 측정한 스펙클 영상과 10초에 측정한 스펙클 영상 간의 차이가 기정의된 제1 기준값 이하로 매우 미미할 수 있다. 간혹 작은 신호 차이가 존재할 수 있으나, 이는 수분 증발, 진동 등과 같이 실험 시에 존재하는 모든 잡음(noise)의 영향으로 해석될 수 있다. 이때, 배양접시 내에 미생물이 존재하는 경우(예컨대, B. cereus, E. coli 등), 0초에 생성된 스펙클 영상과 10초에 생성된 스펙클 영상 간에 차이가 기정의된 제2 기준값 이상일 수 있다. 즉, 0초와 10초 사이에 측정한 스펙클 신호의 차이가 제2 기준값 이상으로, 신호에 큰 변화가 존재하면, 피검사대상 내에 박테리아 등의 미생물이 존재함을 탐지할 수 있다.For example, when two speckle images generated at each time are irradiated at a predetermined time interval, if the microorganisms do not exist in the subject, the speckle image measured at 0 second and the measured speckle image measured at 10 second The difference between the speckle images may be very small below the predetermined first reference value. Sometimes there may be small signal differences, but this can be interpreted as the effect of all noise present in the experiment, such as moisture evaporation, vibration, and so on. At this time, when the microorganism is present in the culture dish (for example, B. cereus, E. coli, etc.), the difference between the speckle image generated at 0 second and the speckle image generated at 10 seconds is equal to or more than the predetermined second reference value . That is, if the difference between the speckle signals measured between 0 second and 10 seconds is greater than or equal to the second reference value and there is a large change in the signal, it is possible to detect that microorganisms such as bacteria are present in the subject.

제어부(340)는 검출된 상기 레이저 스펙클을 이용하여 시간 상관관계(temporal correlation)를 획득하고, 획득된 시간 상관관계에 기초하여 시료(S)에 포함된 미생물의 존재 여부 또는 미생물의 농도를 실시간(real-time)으로 추정할 수 있다. 본 명세서에서 실시간(real-time)이란 1시간 내에 미생물의 존재 여부 또는 미생물의 농도 변화를 추정하여 항생제의 적합성을 판단하는 것을 의미하며, 바람직하게는 5분내에 미생물의 존재 여부 또는 미생물의 농도 변화를 추정할 수 있다. 더욱 바람직하게는 20초 내에 미생물의 존재 여부 또는 미생물의 농도 변화를 추정할 수 있다. 이처럼, 제어부(340)는 두 스펙클 영상 간의 차이(예컨대, 픽셀값 차이 등)가 제1 기준값 이하인지 여부, 그리고, 제2 기준값 이상인지 여부를 체크하여, 배양접시 내에 미생물이 존재하는지 여부를 탐지할 수 있다. 이때, 제1 기준값과 제2 기준값을 동일한 값으로 정의될 수도 있고, 서로 다른 값으로 정의될 수도 있다. 다른 예로, 일정 시간 간격으로 측정된 셋 이상의 스펙클 영상을 이용하는 경우, 제어부(340)는 셋 이상의 스펙클 영상에서 시간 상관 분석(time correlation analysis)을 수행하여 배양접시 내에 미생물이 존재하는지 여부를 탐지할 수 있다. 즉, 검출부(330)는 일정 시간 간격으로 서로 다른 시점에 피검사대상으로 광을 조사하고, 다중산란(multiple scattering)시켜서 형성된 레이저 스펙클(laser speckle) 간의 시간 상관관계(temporal correlation)에 기초하여 배양접시 내에 미생물이 존재하는지 여부를 탐지할 수 있다. 예를 들어 각 시간 t에 대해 측정한 스펙클 영상을 평준화한 데이터를

Figure pat00003
라고 하면, 제어부(340)는 특정 지연 시간
Figure pat00004
에 대해, 각 지점에서 시간 상관 계수를 위의 연산할 수 있다. 제어부(340)에서 미생물의 존재 여부 또는 미생물의 농도 변화를 추정하는 방법에 관하여는 후술하기로 한다.The control unit 340 obtains a temporal correlation using the detected laser speckle and determines the presence or absence of microorganisms contained in the sample S based on the obtained time correlation, (real-time). In the present specification, real-time means to judge the suitability of antibiotics by estimating the presence of microorganisms or changes in the concentration of microorganisms within 1 hour. Preferably, the presence of microorganisms or the concentration of microorganisms Can be estimated. More preferably, the presence of the microorganism or the concentration change of the microorganism can be estimated within 20 seconds. In this way, the controller 340 checks whether the difference between the two speckle images (for example, the pixel value difference) is less than or equal to the first reference value, and whether or not the difference is greater than the second reference value, It can detect. At this time, the first reference value and the second reference value may be defined as the same value or may be defined as different values. As another example, when three or more speckle images measured at predetermined time intervals are used, the controller 340 performs time correlation analysis on three or more speckle images to detect whether microorganisms are present in the culture dish can do. That is, the detecting unit 330 may detect a laser beam based on a temporal correlation between laser speckles formed by irradiating light to an object to be inspected at a predetermined time interval and performing multiple scattering It is possible to detect whether or not microorganisms are present in the culture dish. For example, if the speckle image measured for each time t is leveled
Figure pat00003
, The control unit 340 determines that the specific delay time
Figure pat00004
, The temporal correlation coefficient can be calculated above at each point. A method for estimating the presence or absence of microorganisms in the control unit 340 will be described later.

한편, 다시 도 2를 참조하면, 시료채취수단(311)은 대상체로부터 미생물을 포함하는 시료(S)를 채취할 수 있다. 일 실시예로서, 도 2의 시료채취수단(311)은 평면 형태의 접착부재를 포함할 수 있다. 도 2의 시료채취수단(311)은 상기한 접착부재를 이용하여 사람의 피부에 접착시켰다 떼어낸 후 시료 배치부(310)에 수용될 수 있다. 사람의 피부에는 수많은 미생물이 존재하며, 모낭충과 같은 기생충도 존재할 수 있다. 눈에 잘 보이지 않는 미생물 또는 모낭충과 같은 기생충을 상기 시료채취수단(311)을 이용하여 채취한 후, 이를 시료 특성 탐지 장치(300)를 이용하여 분석함으로써, 대상체인 사람의 피부에 존재하는 미생물 또는 기생충의 존재 여부를 확인할 수 있다. 다른 실시예로서, 시료채취수단(311)은 사람의 활동이 많은 물건에 접착한 후 떼어내어 상기 물건에 존재하는 미생물의 존재를 확인할 수 있다. 예를 들면, 카페트와 같은 대상체는 부피가 클 뿐만 아니라 카페트 섬유의 움직임으로 인하여 직접 시료로 사용하기에는 적합하지 않을 수 있다. 이런 대상체에 상기 시료채취수단(311)을 이용하여 접착시켰다 떼어낸 후 시료 특성 탐지 장치(300)를 이용하여 분석함으로써, 대상체에 존재하는 미생물의 존재를 확인할 수 있다. On the other hand, referring again to FIG. 2, the sample collecting means 311 can collect the sample S containing microorganisms from the object. In one embodiment, the sampling means 311 of FIG. 2 may include a planar adhesive member. The sample collecting means 311 of FIG. 2 may be adhered to the skin of a person using the above-described adhesive member, and then taken out of the sample placing unit 310. There are numerous microorganisms in human skin, and parasites such as folliculitis can also exist. A parasitic organism such as a microorganism or a parasitic organism which is not visible to the naked eye is sampled using the sampler 311 and analyzed using the sampler 300, The presence of parasites can be confirmed. As another embodiment, the sample collecting means 311 can be detached after adhering to an object having a lot of human activity to confirm the presence of microorganisms present in the object. For example, objects such as carpets are not only bulky, but also may not be suitable for use as a direct sample due to movement of the carpet fibers. The object is adhered to and detached from the object using the sample-collecting means 311, and analyzed using the sample-characteristic detecting apparatus 300, thereby confirming the presence of microorganisms present in the object.

도 3 및 도 4를 참조하면, 다른 실시예로서, 시료채취수단(311)은 액체인 시료를 채취할 수 있다. 이때, 시료(S)는 소변, 혈액과 같은 유동성을 갖는 액체일 수 있다. 또는, 시료(S)는 대변과 같은 비유동성을 갖는 시료를 물과 같은 용매와 혼합한 시료일 수도 있다. 여기서, 혼합용매는 시료(S) 내의 미생물의 생장에 영향을 주지 않는 용매일 수 있다. 이러한, 유동성을 갖는 시료(S)는 시료채취수단(311)에 의해 채취된 후 필터(313)에 의해 걸러질 수 있다. 유동성을 갖는 시료(S)로 직접 미생물을 탐지하는 경우, 유동적인 움직임과 미생물의 움직임을 구분하기 어렵기 때문에 미생물을 정확히 탐지할 수 없다. 따라서, 일 실시예에 따른 시료 특성 탐지 장치(300)는 박테리아와 같은 미생물은 걸러지고 나머지 액체(315)는 빠져나갈 수 있는 필터(313), 예를 들면, 다공성 필터를 이용함으로써, 시료(S)로부터 시료(S)에 포함된 미생물을 걸러낼 수 있다. Referring to FIGS. 3 and 4, as another embodiment, the sample collecting means 311 can collect a liquid sample. At this time, the sample S may be a fluid having fluidity such as urine and blood. Alternatively, the sample (S) may be a sample mixed with a non-flowable sample such as a feces with a solvent such as water. Here, the mixed solvent may be a solvent that does not affect the growth of microorganisms in the sample (S). The sample S having fluidity can be collected by the sampling means 311 and then filtered by the filter 313. [ In the case of detecting microorganisms directly with a sample (S) having fluidity, microorganisms can not be accurately detected because it is difficult to distinguish between fluid movement and microbial movement. Accordingly, the apparatus 300 for detecting a characteristic of a sample according to an embodiment can detect the presence of a sample S (e.g., a sample) by using a filter 313, for example, a porous filter capable of filtering out microorganisms such as bacteria, The microorganisms contained in the sample S can be filtered out.

시료(S)가 소변인 경우 소변에 미생물이 존재한다면 필터(313)에 미생물이 걸러지고, 대부분의 물(315)은 필터(313)를 통과할 수 있다. 또는, 시료(S)가 혈액인 경우 적혈구, 백혈구 또는 박테리아와 같은 크기를 갖는 미생물이 필터(313)에 걸러지고, 혈장(315)은 필터(313)를 통과할 수 있다. 이와 같이, 미생물이 걸러진 필터(313)에 파동을 조사하고, 미생물에 의해 유발된 레이저 스펙클을 검출함으로써, 시료(S) 내의 미생물의 존재여부 또는 농도를 확인할 수 있다.When the sample S is urine, if there is microorganisms in the urine, microorganisms are filtered in the filter 313, and most of the water 315 can pass through the filter 313. [ Alternatively, when the sample S is blood, a microorganism having a size such as red blood cells, white blood cells or bacteria is filtered on the filter 313, and the plasma 315 can pass through the filter 313. [ Thus, the presence or concentration of the microorganism in the sample S can be confirmed by irradiating the filter 313 with the microorganisms filtered and detecting the laser speckles caused by the microorganisms.

이하, 도 6을 참조하여 본 발명의 일 실시예에 따른 제어부(340)의 제어 방법을 설명하기로 한다. Hereinafter, a control method of the controller 340 according to an embodiment of the present invention will be described with reference to FIG.

도 6은 본 발명의 일 실시예에 따른 제어부(340)에서 레이저 스펙클의 시간 상관 관계를 분석하는 방법을 설명하기 위해 제공되는 도면이다. 6 is a diagram for explaining a method of analyzing time correlation of laser speckles in the controller 340 according to an embodiment of the present invention.

도 6을 참조하면, 일 실시예로서, 제어부(340)는 제1 시점에서 검출된 레이저 스펙클의 제1 영상정보와, 제1 시점과 다른 제2 시점에서 검출된 레이저 스펙클의 제2 영상정보 차이를 이용하여 미생물 존재 여부 또는 미생물의 농도를 추정할 수 있다. 여기서, 제1 영상정보 및 제2 영상정보는 레이저 스펙클의 패턴 정보 및 파동의 세기 정보 중 적어도 어느 하나 일 수 있다. 한편, 본 발명의 일 실시예는 제1 시점에서의 제1 영상정보와 제2 시점에서의 제2 영상정보의 차이만을 이용하는 것이 아니며, 이를 확장하여 복수의 시점에서 검출된 복수의 레이저 스펙클의 영상정보를 이용할 수 있다. 제어부(340)는 사전에 설정된 복수의 시점마다 생성된 레이저 스펙클의 영상정보를 이용하여 영상들 간의 시간 상관 계수를 계산할 수 있으며, 시간 상관 관계 계수에 기초하여 시료(S) 내에 미생물의 존재여부 또는 미생물의 농도를 추정할 수 있다. Referring to FIG. 6, in one embodiment, the control unit 340 determines whether the first image information of the laser speckle detected at the first point of time and the second image information of the laser speckle detected at the second point of time other than the first point of view Information differences can be used to estimate the presence of microorganisms or the concentration of microorganisms. Here, the first image information and the second image information may be at least one of pattern information of the laser speckle and intensity information of the wave. Meanwhile, the embodiment of the present invention does not use only the difference between the first image information at the first viewpoint and the second image information at the second viewpoint, and extends the plurality of laser speckles detected at a plurality of viewpoints Video information can be used. The control unit 340 may calculate the temporal correlation coefficient between images using the image information of the laser speckles generated at a plurality of predetermined points in time, and may determine the presence or absence of microorganisms in the sample S based on the temporal correlation coefficient Or the concentration of the microorganism.

검출된 레이저 스펙클 영상의 시간 상관 관계는 아래의 수학식 3을 이용하여 계산될 수 있다.The temporal correlation of the detected laser speckle image can be calculated using the following equation (3).

Figure pat00005
Figure pat00005

수학식 3에서

Figure pat00006
은 시간 상관 관계 계수,
Figure pat00007
은 표준화된 빛 세기, (x,y)는 카메라의 픽셀 좌표, t는 측정된 시간, T는 총 측정 시간,
Figure pat00008
는 타임래그(time lag)를 나타낸다. In Equation 3,
Figure pat00006
Time correlation coefficient,
Figure pat00007
(X, y) is the pixel coordinates of the camera, t is the measured time, T is the total measurement time,
Figure pat00008
Represents a time lag.

수학식 3에 따라 시간 상관 관계 계수가 계산될 수 있으며, 일 실시예로서, 시간 상관 관계 계수가 사전에 설정된 기준값 이하로 떨어지는 분석을 통해 미생물의 존재여부 또는 미생물의 농도를 추정할 수 있다. 구체적으로, 시간 상관 관계 계수가 사전에 설정된 오차 범위를 넘어 기준값 이하로 떨어지는 것으로 미생물이 존재한다고 추정할 수 있다. 또한, 미생물의 농도가 증가할수록 시간 상관 관계 계수가 기준값 이하로 떨어지는 시간이 짧아지므로, 이를 이용하여 시간 상관 관계 계수를 나타내는 그래프의 기울기 값을 통해 미생물의 농도를 추정할 수 있다. 기준값은 미생물의 종류에 따라 달라질 수 있다. 도 6의 그래프에 있어서, 실선(S1)은 미생물이 존재하지 않는 시료의 시간 상관 계수를 나타내며, 점선(S2)은 미생물이 존재하는 경우의 시료의 시간 상관 계수를 나타낸다. 미생물의 농도가 달라지면, 점선(S2)의 기울기 값도 달라질 수 있다.The time correlation coefficient may be calculated according to Equation (3). In one embodiment, the presence or absence of the microorganism or the concentration of the microorganism can be estimated through the analysis that the time correlation coefficient falls below a preset reference value. Specifically, it can be assumed that microorganisms exist because the temporal correlation coefficient falls below a reference value beyond a predetermined error range. Also, as the concentration of the microorganism increases, the time correlation coefficient falls below the reference value becomes shorter, so that the concentration of the microorganism can be estimated through the slope value of the graph showing the time correlation coefficient. The reference value may vary depending on the type of microorganism. In the graph of Fig. 6, the solid line S1 represents the time correlation coefficient of the sample in which no microorganisms are present, and the dotted line S2 represents the time correlation coefficient of the sample in the presence of microorganisms. If the concentration of the microorganism is different, the slope value of the dotted line S2 may be varied.

이하에서는 도 7을 참조하여 제어부(340)에서, 레이저 스펙클을 이용하여 시료의 미생물의 농도를 판단하는 방법에 대하여 구체적으로 설명한다.Hereinafter, with reference to FIG. 7, a method of determining the concentration of microorganisms in a sample using the laser speckle in the control unit 340 will be described in detail.

도 7은 본 발명의 일 실시예에 따른 시료 특성 탐지 장치를 통해 시간에 따라 측정된 레이저 스펙클의 빛 세기의 표준편차 분포를 도시한 도면이다.FIG. 7 is a graph showing a standard deviation distribution of light intensity of a laser speckle measured over time through a sample characteristic detecting apparatus according to an embodiment of the present invention. FIG.

도 7을 참고하면, 제어부(340)는 기준 시간마다 측정된 레이저 스펙클 영상을 대상으로, 레이저 스펙클의 빛 세기(intensity)의 표준편차를 계산할 수 있다. Referring to FIG. 7, the controller 340 may calculate the standard deviation of the intensity of the laser speckle with respect to the laser speckle image measured for each reference time.

시료 내에 존재하는 세균 및 미생물이 지속적으로 움직임에 따라 보강 간섭과 상쇄 간섭이 상기 움직임에 대응하여 변화할 수 있다. 이때, 보강 간섭과 상쇄 간섭이 변화함에 따라, 빛 세기의 정도가 크게 변화할 수 있다. 그러면, 제어부(340)은, 빛 세기의 변화 정도를 나타내는 표준 편차를 구하여 시료에서 세균 및 미생물이 있는 곳을 측정할 수 있으며, 세균 및 미생물의 분포도를 측정할 수 있다.As the bacteria and microorganisms present in the sample continuously move, the constructive interference and the destructive interference may change corresponding to the movement. At this time, as the constructive interference and the destructive interference change, the degree of light intensity may vary greatly. Then, the control unit 340 can measure the location of bacteria and microorganisms in the sample by obtaining a standard deviation representing the degree of change of light intensity, and can measure the distribution of bacteria and microorganisms.

예를 들어, 제어부(340)은 미리 정해진 시간마다 측정된 레이저 스펙클 영상을 합성하고, 합성된 영상에서 레이저 스펙클의 시간에 따른 빛 세기 표준편차를 계산할 수 있다. 레이저 스펙클의 시간에 따른 빛 세기 표준편차는 아래의 수학식 4에 기초하여 계산될 수 있다.For example, the control unit 340 may synthesize the laser speckle images measured at predetermined time intervals, and calculate the light intensity standard deviation of the laser speckle over time in the synthesized image. The light intensity standard deviation of the laser speckle over time can be calculated based on Equation (4) below.

Figure pat00009
Figure pat00009

수학식 4에서, S: 표준편차, (x,y): 카메라 픽셀 좌표, T: 총 측정 시간, t: 측정 시간, It: t 시간에 측정된 빛 세기,

Figure pat00010
: 시간에 따른 평균 빛 세기를 나타낼 수 있다.In Equation 4, S: standard deviation, (x, y): camera pixel coordinates, T: total measurement time, t: measurement time,
Figure pat00010
: It can indicate the average light intensity over time.

세균 및 미생물의 움직임에 따라 보강 및 상쇄 간섭 패턴이 달라지게 되고, 수학식 4에 기초하여 계산된 표준편차 값이 커지게 되기 때문에 이에 기초하여 세균 및 미생물의 농도가 측정될 수 있다.The intensities of the reinforcement and destructive interference patterns are changed according to the movement of bacteria and microorganisms, and the standard deviation value calculated based on Equation (4) becomes large, so that the concentration of bacteria and microorganisms can be measured based on this.

그리고, 제어부(340)는 레이저 스펙클의 빛 세기의 표준편차 값의 크기와 세균 및 미생물 농도와 선형적인 관계에 기초하여 시료에 포함된 세균 및 미생물의 분포도, 즉, 농도를 측정할 수 있다. The control unit 340 can measure the distribution, that is, the concentration, of the bacteria and microorganisms included in the sample based on the linear relationship between the magnitude of the standard deviation of the light intensity of the laser speckle and the bacteria and microbial concentration.

도 8a 및 도 8b는 본 발명의 다른 실시예에 따른 시료 특성 탐지 장치(100-4)를 개략적으로 도시한 개념도이다. 도 8a 및 도 8b에서는 설명의 편의를 위하여, 광학부(335)과 검출부(330)과의 관계를 중심으로 도시하였다. 8A and 8B are conceptual diagrams schematically showing a sample property detection apparatus 100-4 according to another embodiment of the present invention. 8A and 8B, the relationship between the optical portion 335 and the detection portion 330 is mainly shown for convenience of explanation.

도 8a 및 도 8b를 참조하면, 시료 특성 탐지 장치(100-4)는 시료에서 산란된 제1 파동 신호를 파동원(320)의 파동이 시료에 의해 산란되기 전의 제2 광신호로 복원하는 변조하는 광학부(335)를 더 포함할 수 있다. 이때, 광학부(335)는 공간 광 변조부(Spatial Light Modulator; SLM, 1351) 및 검출부(330)를 포함할 수 있다. 광학부(335)는 측정 대상으로부터 산란된 파동이 입사되면, 산란된 파동의 파면을 제어하여, 다시 산란되기 전의 파동(광)으로 복원하여 검출부(130)로 제공할 수 있다. Referring to FIGS. 8A and 8B, the apparatus for detecting a characteristic of a sample 100-4 includes a first characteristic analyzer 100-4 for analyzing a first characteristic of a sample, a second characteristic of the sample, And an optical unit 335 which is disposed on the optical path. At this time, the optical unit 335 may include a spatial light modulator (SLM) 1351 and a detection unit 330. The optical unit 335 controls the wavefront of the scattered wave to restore the wave to the scattered wave (light), and provides the wave to the detector 130 when the scattered wave is incident from the measurement object.

공간 광 변조부(1351)는 시료에서 산란된 파동(광)이 입사될 수 있다. 공간 광 변조부(1351)는 시료에서 산란된 파동의 파면을 제어하여 렌즈(1352)에 제공할 수 있다. 렌즈(1352)는 제어된 광을 집약하여 다시 검출부(330)로 제공할 수 있다. 검출부(330)는 렌즈에서 집약된 파동을 감지하여 산란되기 최초 파동원에서 출력된 파동으로 복원하여 출력할 수 있다. The spatial light modulator 1351 can receive waves (light) scattered from the sample. The spatial light modulator 1351 can control the wavefront of the scattered wave in the sample and provide it to the lens 1352. [ The lens 1352 can collect the controlled light and provide it to the detector 330 again. The detection unit 330 may detect the wave condensed in the lens and may restore the wave output from the original wave source to be scattered and output.

여기서, 광학부(335)는 안정적인 매질, 즉, 측정 대상 내에 생물의 움직임이 없는 경우, 시료로부터 산란된 제1 광신호를 산란되기 이전의 광으로 복원할 수 있다. 그러나, 측정 대상 내에 바이러스가 존재하는 경우, 검출용 복합체의 움직임으로 인하여 제1 광신호가 달라지므로 위상 제어 파면을 감지할 수 없게 되고, 이로 인하여 위상 공액 파면을 갖는 제2 광신호로 변조할 수 없다. 전술한 광학부(335)를 포함하는 미생물 탐지 장치(100-4)는 이러한 제2 광신호의 차이를 이용하여 좀 더 미세하게 미생물의 존재 여부 또는 미생물의 농도를 추정할 수 있다.Here, the optical section 335 can restore the first optical signal scattered from the sample to light before the scattering, when there is no stable movement of the living body, that is, the movement of the living things in the measurement object. However, when the virus exists in the measurement object, the first optical signal changes due to the motion of the detection complex, so that the phase control wavefront can not be detected, and therefore, the second optical signal having the phase conjugate wavefront can not be modulated . The microorganism detecting apparatus 100-4 including the optical unit 335 can estimate the presence or microbe concentration of the microbe more finely using the difference of the second optical signal.

도 9는 본 발명의 다른 실시예에 따른 시료 특성 탐지 장치(400)을 개략적으로 도시한 개념도이고, 도 10은 도 9의 Ⅰ-Ⅰ선을 따라 절취한 단면도이다. FIG. 9 is a conceptual diagram schematically showing a sample characteristic detecting apparatus 400 according to another embodiment of the present invention, and FIG. 10 is a sectional view taken along the line I-I in FIG.

도 9를 참조하면, 다른 실시예에 따른 시료 특성 탐지 장치(400)는 파동원(420), 파동경로변경부(421), 검출부(430), 제어부(440), 시료 배치부(410), 시료어레이부(410A) 및 다중산란증폭부(450)를 포함할 수 있다. 본 발명의 다른 실시예는 파동원(420), 검출부(430) 및 제어부(440)의 구성 및 이를 이용하여 미생물을 탐지하는 방법이 일 실시예와 동일하므로, 중복되는 설명은 생략하기로 한다.9, the apparatus for detecting a characteristic of a sample 400 according to another embodiment includes a wave source 420, a wave path changing unit 421, a detecting unit 430, a controller 440, a sample arranging unit 410, A sample array unit 410A and a multiple scattering amplification unit 450. [ In another embodiment of the present invention, the configuration of the wave source 420, the detection unit 430, and the control unit 440 and the method of detecting microorganisms using the same are the same as those of the first embodiment.

다른 실시예에 따른 시료 특성 탐지 장치(400)는 복수의 시료배치부(410)들을 포함할 수 있다. 복수의 시료배치부(410)는 서로 소정의 이격 거리를 갖고 배열될 수 있으며, 도면에 도시된 바와 같이 하나의 시료어레이부(410A)에 복수의 시료배치부(410)가 형성될 수도 있다. 이하에서는, 설명의 편의를 위하여 하나의 시료어레이부(410A)에 복수의 시료배치부(410)가 배치되는 경우를 중심으로 설명하기로 한다. The apparatus for detecting a characteristic of a sample 400 according to another embodiment may include a plurality of sample arrangement parts 410. The plurality of sample arrangement parts 410 may be arranged at a predetermined distance from each other. As shown in the figure, a plurality of sample arrangement parts 410 may be formed in one sample array part 410A. Hereinafter, for convenience of description, a case will be described in which a plurality of sample arranging units 410 are arranged in one sample array unit 410A.

복수의 시료배치부(410) 각각에는 복수의 시료들이 수용될 수 있다. 복수의 시료들은 동일한 시료일 수도 있으나, 서로 다른 시료일 수도 있다. 예를 들면, 제1 시료배치부(410-1)에는 제1 시료(S-1)가 수용될 수 있고, 제2 시료배치부(410-2)에는 제2 시료(S-2)가 수용될 수 있다. 제1 시료(S-1)과 제2 시료(S-2)는 서로 다른 대상체로부터 채취된 시료일 수도 있고, 같은 대상체의 다른 영역에서 채취된 시료일 수도 있다. A plurality of samples can be accommodated in each of the plurality of sample arrangement parts 410. The plurality of samples may be the same sample, but may be different samples. For example, the first sample S-1 may be accommodated in the first sample arrangement part 410-1 and the second sample S-2 may be accommodated in the second sample arrangement part 410-2. . The first sample (S-1) and the second sample (S-2) may be samples taken from different objects or samples taken from different areas of the same object.

파동원(420)은 시료 배치부(410) 내의 시료(S)를 향하여 파동을 조사할 수 있다. 파동원(320)은 파동(wave)을 생성할 수 있는 모든 종류의 소스 장치를 적용할 수 있으며, 예를 들면, 특정 파장 대역의 광을 조사할 수 있는 레이저(laser)일 수 있다. 파동원(420)을 이용하여 복수의 시료들에 파동을 조사하기 위해서, 다른 실시예에 따른 시료 특성 탐지 장치(400)는 파동경로변경부(421)를 포함할 수 있다. 다시 말해, 파동원(420)으로부터 직접 시료(S)에 파동이 조사되는 것이 아니라, 파동경로변경부(421)를 이용하여 시료(S)에 파동이 조사될 수 있다.The wave source 420 can irradiate a wave toward the sample S in the sample arrangement part 410. [ The wave source 320 may be any type of source device capable of generating a wave, and may be, for example, a laser capable of irradiating light of a specific wavelength band. In order to irradiate a plurality of samples with waves using the wave source 420, the sample property detecting apparatus 400 according to another embodiment may include a wave path changing unit 421. [ In other words, the sample S can be irradiated with the wave using the wave path changing unit 421, instead of the wave S being directly irradiated from the wave source 420.

파동경로변경부(421)는 파동원(420)으로부터 파동이 입사될 수 있다. 파동경로변경부(421)는 마이크로 미러로 이루어질 수 있다. 파동경로변경부(421)는 반사면을 구비하여, 입사된 파동을 복수의 시료(S)들을 향해 반사시킬 수 있다. 반사면은 굴절력이 없는 플랫면으로 도시되었으나, 본 발명은 이에 제한되지 않는다. 파동경로변경부(421)는 구동제어부(미도시)에 의해 미세 구동될 수 있다. 다른 실시예로서, 파동경로변경부(421)는 제어부(440)에 의해 미세 구동되며, 이에 따라 복수의 시료(S)들 각각에 파동을 조사할 수 있다. 파동경로변경부(421)를 구성하는 마이크로 미러는 전기적 제어에 따라 반사면의 역학적 변위가 일어날 수 있는 다양한 구성이 채용될 수 있으며, 예를 들어, 일반적으로 알려진 멤스(micro electromechanical system; MEMS) 미러, 디지털 마이크로미러 디바이스(digital micromirror device, DMD) 소자 등이 채용될 수 있다. 파동경로변경부(421)는 하나의 마이크로 미러로 도시되었으나, 이는 예시적인 것이며, 복수개의 마이크로 미러가 2차원적으로 어레이된 구성일 수도 있다. The wave path changing unit 421 may receive a wave from the wave source 420. The wave path changing unit 421 may be formed of a micromirror. The wave path changing unit 421 may include a reflection surface to reflect the incident waves toward a plurality of samples S. The reflecting surface is shown as a flat surface without refracting power, but the present invention is not limited thereto. The wave path changing unit 421 may be finely driven by a drive control unit (not shown). In another embodiment, the wave path changing unit 421 is finely driven by the control unit 440, and thus the waves S can be irradiated to each of the plurality of samples S, respectively. The micromirror constituting the wave path changing unit 421 may have various configurations in which the mechanical displacement of the reflection surface can be caused by electrical control. For example, a micro electromechanical system (MEMS) mirror , A digital micromirror device (DMD) device, or the like may be employed. Although the wave path changing unit 421 is shown as one micromirror, this is an example, and a configuration in which a plurality of micromirrors are two-dimensionally arrayed may be used.

한편, 파동경로변경부(421)는 파동 경로 상에 배치되는 미러(422)를 더 포함하여, 시료배치부(410)로 조사되는 파동의 각도가 일정하도록 조절할 수 있다. 다시 말해, 파동경로변경부(421)는 마이크로 미러를 이용하여 복수의 시료배치부(410)들로 파동을 조사하는 경우 시료배치부(410)의 위치에 따라 파동의 입사각도가 달라질 수 있다. 이에 따라, 시료(S) 내에서 다중산란되는 정도가 복수의 시료배치부(410)들의 위치에 따라 달라질 수 있어, 정확한 비교 평가가 어려울 수 있으므로, 미러(422)를 더 배치시켜 시료배치부(410)들로 입사되는 파동의 각도가 균일할 수 있도록 조절할 수 있다. 도면에서는 제1 시료배치부(410-1) 상에 배치된 미러(422)만 도시하였으나, 이는 설명의 편의를 위하여 개략적으로 도시한 것이며, 시료배치부(410) 각각의 상단에 미러가 배치되어 시료배치부(410)로 조사되는 파동의 각도를 조절할 수 있다. The wave path changing unit 421 may further include a mirror 422 disposed on the wave path so that the angle of the wave to be irradiated to the sample placing unit 410 can be adjusted to be constant. In other words, when the wave path changing unit 421 irradiates a wave with a plurality of sample arranging units 410 using a micromirror, the incident angle of the wave can be changed according to the position of the sample arranging unit 410. Accordingly, since the degree of multiple scattering in the sample S may vary depending on the positions of the plurality of sample arranging portions 410, accurate comparison and evaluation may be difficult, so that the mirror 422 is further disposed, 410 may be adjusted so that the angles of the waves incident on the waveguides 410, 410 are uniform. Although only the mirror 422 disposed on the first sample arrangement part 410-1 is shown in the figure, it is schematically shown for the sake of convenience of explanation, and a mirror is disposed on the top of each sample arrangement part 410 The angle of the wave irradiated to the sample arrangement part 410 can be adjusted.

도 9 및 도 10을 참조하면, 다중산란증폭부(450)는 시료(S)로부터 다중산란되어 출사되는 파동의 적어도 일부를 시료(S)로 반사시켜 시료(S)에서의 다중산란 횟수를 증폭시킬 수 있다. 다중산란증폭부(450)는 다중산란물질(multiple scattering material)을 포함할 수 있다. 예를 들면, 다중산란물질은 산화티타늄(TiO2)를 포함하며, 다중산란증폭부(450)는 상기 다중산란증폭부(450)로 입사되는 파동의 적어도 일부를 반사시킬 수 있다. 다중산란증폭부(450)는 시료(S)와 인접하게 배치되어, 시료(S)로부터 다중산란되어 출사되는 파동이 시료(S)와 상기 다중산란증폭부(450) 사이의 공간을 적어도 1회 이상 왕복하도록 할 수 있다. 9 and 10, the multiple scattering amplification unit 450 amplifies the number of multiple scatterings in the sample S by reflecting at least a part of the waves that are multi-scattered and emitted from the sample S to the sample S, . The multiple scattering amplification unit 450 may include multiple scattering materials. For example, the multiple scattering material may include titanium oxide (TiO2), and the multiple scattering amplification unit 450 may reflect at least a part of the waves incident on the multiple scattering amplification unit 450. [ The multiple scattering amplification unit 450 is disposed adjacent to the sample S so that the waves that are multiple scattered and emitted from the sample S transmit the space between the sample S and the multiple scattering amplification unit 450 at least once Or more.

다중산란증폭부(450)는 제1 다중산란증폭부(451) 및 제2 다중산란증폭부(453)을 포함할 수 있다. 제1 다중산란증폭부(451)는 시료배치부(410)와 파동경로변경부(421) 사이에 배치되며, 시료배치부(410)에 중첩되도록 배치될 수 있다. 도면에 도시된 바와 같이, 복수의 시료배치부(410)를 포함하는 제4 실시예는, 각각의 시료배치부(410)에 복수의 제1 다중산란증폭부(451)가 배치될 수 있으며, 시료(S)를 시료배치부(410)로 배치시키기 위하여 탈착이 가능한 구조로 형성될 수 있다. 다른 실시예로서, 제1 다중산란증폭부(451)는 시료어레이부(410A) 전체면을 덮는 구조로 형성되어, 각각의 시료배치부(410)에 대응되는 위치에 다중산란물질이 포함되는 영역으로 구분될 수도 있다. 마찬가지로, 시료배치부(410)에 시료(S)를 투입하기 위해서 다른실시예에 따른 제1 다중산란증폭부(451)도 뚜껑과 같은 형태로 구성될 수 있다.The multiple scattering amplification unit 450 may include a first multiple scattering amplification unit 451 and a second multiple scattering amplification unit 453. [ The first multiple scattering amplification unit 451 is disposed between the sample arrangement unit 410 and the wave path modification unit 421 and may be disposed to overlap the sample arrangement unit 410. As shown in the figure, in the fourth embodiment including a plurality of sample arrangement parts 410, a plurality of first multiple scattering amplification parts 451 may be arranged in each sample arrangement part 410, And may be formed in a detachable structure in order to dispose the sample S in the sample arrangement part 410. In another embodiment, the first multi-scattering amplification unit 451 is formed to cover the entire surface of the sample array unit 410A, and has a structure in which multiple scattering materials are included in the positions corresponding to the respective sample arrangement units 410 . Similarly, in order to inject the sample S into the sample arrangement unit 410, the first multi-scattering amplification unit 451 according to another embodiment may also be configured in the form of a lid.

제2 다중산란증폭부(453)는 시료배치부(410)와 검출부(430) 사이에 배치될 수 있다. 제2 다중산란증폭부(453)는 복수의 시료배치부(410) 각각에 중첩되도록 배치될 수 있다. 제2 다중산란증폭부(453)는 따로 구비되어 시료배치부(410)와 검출부(430) 사이에 배치될 수 있으나, 다른 실시예로서, 시료배치부(410)에 중첩되는 영역의 시료어레이부(410A)에 다중산란물질을 포함시켜 시료어레이부(410A)와 일체로 형성될 수도 있다. 또는, 시료어레이부(410A) 전체면에 배치되는 하나의 판 형태로 형성될 수도 있다. The second multiple scattering amplification unit 453 may be disposed between the sample arrangement unit 410 and the detection unit 430. The second multiple scattering amplification unit 453 may be disposed to overlap each of the plurality of sample arrangement units 410. The second multiple scattering amplification unit 453 may be separately provided and disposed between the sample arrangement unit 410 and the detection unit 430. In another embodiment, the second multiple scattering amplification unit 453 may be disposed between the sample arrangement unit 410 and the detection unit 430, Or may be formed integrally with the sample array unit 410A by including multiple scattering materials in the sample array unit 410A. Or may be formed in a single plate shape disposed on the entire surface of the sample array part 410A.

검출부(430)는 조사된 파동이 시료(S)에 의해 다중 산란(multiple scattering)되어 발생된 레이저 스펙클(laser speckle)을 사전에 설정된 시점(time)마다 검출할 수 있다. 여기서, 시점(time)이란, 연속적인 시간의 흐름 가운데 어느 한 순간을 의미하며, 시점(time)들은 동일한 시간 간격으로 사전에 설정될 수 있으나 반드시 이에 제한되지 않으며, 임의의 시간 간격으로 사전에 설정될 수도 있다. 검출부(430)는 파동원(420) 종류에 대응한 감지수단을 포함할 수 있으며, 예를 들면, 가시광선 파장 대역의 광원을 이용하는 경우에는 영상을 촬영하는 촬영장치인 CCD 카메라(camera)가 이용될 수 있다. 검출부(430)는 적어도 제1 시점에서의 레이저 스펙클을 검출하고, 제2 시점에서의 레이저 스펙클을 검출하여 제어부(440)로 제공할 수 있다.The detection unit 430 can detect laser speckle generated by multiple scattering of the irradiated waves by the sample S at predetermined time points. Here, time refers to any one of continuous time flows, and time points can be set in advance at the same time interval, but are not limited thereto, and may be set in advance at an arbitrary time interval . The detection unit 430 may include detection means corresponding to the type of the wave source 420. For example, when a light source of a visible light wavelength band is used, a CCD camera, which is a photographing device for photographing an image, . The detection unit 430 may detect the laser speckle at the first time point and detect the laser speckle at the second time point and provide the laser speckle to the control unit 440.

제어부(440)는 검출된 상기 레이저 스펙클을 이용하여 시간 상관관계(temporal correlation)를 획득하고, 획득된 시간 상관관계에 기초하여 시료(S) 내의 미생물 존재 여부 또는 미생물의 농도를 추정할 수 있다. 제어부(440)는 복수의 시료배치부(410)에 수용된 복수의 시료(S)들 각각의 미생물 존재 여부 또는 미생물의 농도를 추정할 수 있다. 이때, 제어부(440)는 일정 시간마다 복수의 시료배치부(410)로 파동의 경로를 변경하여 조사하도록 파동경로변경부(421)의 반사면을 전기적으로 제어할 수 있다. 제어부(440)는 파동경로변경부(421)를 제어하는 타이밍과 연동하여 검출부(430)에서 검출된 레이저 스펙클 영상을 분류하여 시간상관관계를 획득할 수 있다. 따라서, 제어부(440)는 하나의 검출부(430)를 이용하더라도 복수의 시료배치부(410) 각각에 수용된 복수의 시료(S)들의 미생물 존재여부 또는 미생물의 농도를 추정할 수 있다. The control unit 440 may obtain a temporal correlation using the detected laser speckle and estimate the presence or the concentration of the microorganism in the sample S based on the obtained time correlation . The control unit 440 can estimate the presence or the concentration of the microorganisms in the plurality of samples S accommodated in the plurality of sample arrangement units 410. At this time, the control unit 440 can electrically control the reflection surface of the wave path changing unit 421 so as to change the wave path to the plurality of sample arranging units 410 at predetermined time intervals. The control unit 440 may classify the laser speckle images detected by the detection unit 430 in association with the timing of controlling the wave path changing unit 421 to obtain time correlation. Therefore, the controller 440 can estimate the presence or the concentration of the microorganisms in the plurality of samples S contained in each of the plurality of sample arrangement units 410 even if one detector 430 is used.

전술한 바와 같이, 제4 실시예에 따른 시료 특성 탐지 장치는 파동경로변경부를 이용하여 복수의 시료배치부에 수용된 복수의 시료들의 미생물 존재 여부 또는 미생물의 농도를 빠르게 탐지할 수 있다. As described above, the apparatus for detecting a characteristic of a sample according to the fourth embodiment can quickly detect the presence of microorganisms or the concentration of microorganisms in a plurality of samples accommodated in a plurality of sample arranging units by using the wave path changing unit.

도 11 및 도 12는 본 발명의 다른 실시예예 따른 시료 특성 탐지 장치의 다른 실시형태들을 개략적으로 도시한 도면이다.11 and 12 schematically illustrate other embodiments of a sample characterization apparatus according to another embodiment of the present invention.

도 11을 참조하면, 시료 특성 탐지 장치(400-1)는 파동원(420), 파동경로변경부(421), 검출부(430) 및 제어부(440)를 포함할 수 있다. 다른 실시형태의 시료 특성 탐지 장치(400-1)는 시료(S)를 영역별로 분할하여 각 영역에서의 미생물 존재 여부 또는 미생물의 농도를 추정하고 비교할 수 있다. 예컨대, 포장된 소고기와 같은 식품은 포장된 상태 그대로 세균과 같은 미생물의 존재 여부를 확인할 필요가 있다. 이때, 파동경로변경부(421)를 구비한 시료 특성 탐지 장치(400-1)는 시료의 각 분할 영역(T1, T2 .. TN)을 따라 파동원(420)으로부터 조사되는 파동을 순차적으로 조사함으로써, 시료의 각 영역에서의 미생물의 존재 여부 또는 미생물의 농도를 탐지할 수 있다. Referring to FIG. 11, the apparatus for detecting a characteristic of a sample 400-1 may include a wave source 420, a wave path changing unit 421, a detecting unit 430, and a control unit 440. The apparatus for detecting a characteristic of a sample 400-1 according to another embodiment can divide the sample S by regions and estimate the presence or absence of microorganisms or concentrations of microorganisms in the respective regions. For example, food such as packaged beef needs to be checked for the presence of microorganisms such as bacteria in a packaged state. At this time, the sample characteristic detecting apparatus 400-1 including the wave path changing unit 421 sequentially detects the waves irradiated from the wave source 420 along the respective divided regions T1, T2, ..., T N of the sample By the irradiation, it is possible to detect the presence or the concentration of the microorganism in each region of the sample.

시료 특성 탐지 장치(400-1)는 식품과 같은 시료의 미생물을 탐지하기 위하여 반사형 광학계로 구비될 수 있다. 이때, 파동원(420)으로부터 조사된 파동을 파동경로변경부(421)로 입사시키기 위한 미러(423)를 더 포함할 수 있다. 도면에서는 하나의 미러(423)를 도시하였으나, 파동 경로 변경을 위한 추가적인 렌즈 또는 미러를 더 구비할 수도 있다. 다른 실시예로서, 시료 특성 탐지 장치(400-1)는 투과형 광학계로 구비될 수도 있다. 이때 시료(S)는 투명한 포장재에 수용된 식품일 수 있다. The sample property detection apparatus 400-1 may be provided with a reflection type optical system for detecting microorganisms in a sample such as food. At this time, the mirror 421 may further include a mirror 423 for making the wave path changing unit 421 enter the wave irradiated from the wave source 420. Although one mirror 423 is shown in the drawing, it may further include an additional lens or mirror for changing the wave path. As another embodiment, the sample property detecting apparatus 400-1 may be provided with a transmission type optical system. At this time, the sample (S) may be the food contained in the transparent packaging material.

한편, 시료 특성 탐지 장치(400-1)는 시료의 매질 종류에 따라 다중산란증폭부(미도시)를 더 구비할 수 있다. 예를 들면, 소고기와 같이 조직이 치밀한 매질의 시료인 경우 다중산란증폭부를 구비하지 않아도 다중 산란이 충분히 일어나기 때문에 미생물을 탐지하는 것이 가능하다. 그러나, 이와 다른 매질의 경우에는 다중산란증폭부(미도시)를 더 구비하여 시료 내의 미생물 존재 여부를 탐지함으로써, 좀 더 정밀한 분석이 가능할 수 있다. On the other hand, the sample characteristic detecting apparatus 400-1 may further include a multiple scattering amplifying unit (not shown) depending on the kind of the medium of the sample. For example, in the case of a sample of a dense medium such as beef, it is possible to detect microorganisms because multiple scattering occurs sufficiently without a multiple scattering amplification part. However, in the case of the other medium, a multi-scattering amplification unit (not shown) is further provided to detect the presence of microorganisms in the sample, thereby enabling more accurate analysis.

제어부(440)는 파동경로변경부(421)를 제어하는 타이밍과 연동하여 검출부(430)에서 검출된 레이저 스펙클 영상을 분류하여 시간상관관계를 획득할 수 있다. 이를 통해, 제어부(440)는 검출된 레이저 스펙클을 이용하여 각 영역에서의 미생물 존재 여부를 탐지할 수 있다. 또한, 제어부(440)는 파동경로변경부(421)의 스캔 경로(일점쇄선)를 제어할 수 있으며, 이를 통해, 레이저 스펙클의 공간상관관계를 획득할 수 있다. 즉, 다른 실시형태의 시료 특성 탐지 장치(400-1)는 레이저 스펙클의 시간상관관계뿐만 아니라 공간상관관계를 획득함으로써, 시료 내의 미생물 존재여부 또는 농도에 관한 매핑(mapping)이 가능할 수 있다. The control unit 440 may classify the laser speckle images detected by the detection unit 430 in association with the timing of controlling the wave path changing unit 421 to obtain time correlation. Accordingly, the controller 440 can detect the presence or absence of microorganisms in each region using the detected laser speckle. In addition, the control unit 440 can control the scan path (one-dot chain line) of the wave path changing unit 421, thereby obtaining the spatial correlation of the laser speckle. That is, the sample characteristic detecting apparatus 400-1 of another embodiment can acquire not only time correlation but also spatial correlation of the laser speckle, so that mapping of presence or concentration of microorganisms in the sample can be possible.

도 12를 참조하면, 또 다른 실시형태의 시료 특성 탐지 장치(400-2)는 복수의 시료배치부(410)들을 포함하는 회전어레이부(410B)를 구비하며, 파동원(420), 검출부(430), 제어부(440) 및 다중산란증폭부(451, 453)를 포함할 수 있다. 여기서, 파동원(420), 검출부(430) 및 다중산란증폭부(451, 453)으로 이루어진 광학계는 고정된 상태에서 회전어레이부(410B)가 회전하면서 복수의 시료배치부(410)에 수용된 복수의 시료들을 측정할 수 있다. 12, the apparatus for detecting a characteristic of a specimen 400-2 according to another embodiment includes a rotation array part 410B including a plurality of sample arrangement parts 410 and includes a wave source 420, 430, a control unit 440, and multiple scattering amplification units 451, 453. The optical system including the wave source 420, the detection unit 430 and the multiple scattering amplification units 451 and 453 is configured such that the rotating array unit 410B is rotated while the plurality of sample accommodation units 410 Can be measured.

회전어레이부(410B)는 사전에 설정된 회전 속도로 회전어레이부(410B)를 구동하는 구동부(415)를 포함할 수 있다. 회전어레이부(410B)에는 복수의 시료배치부(410)가 원주 방향을 따라 소정의 간격으로 이격되어 배치될 수 있다. 회전어레이부(410B)에 배치된 복수의 시료배치부(410)는 일정한 간격으로 이격되며, 일정한 회전속도로 회전하도록 함으로써, 고정된 파동원(420) 및 검출부(430)를 이용하여 시료배치부(410) 내의 시료의 미생물의 존재여부 또는 농도를 탐지할 수 있다. 회전어레이부(410B)는 중심(O)을 지나는 중심축(Axis1)을 따라 회전할 수 있으며, 회전하는 동안 중심축(Axis1)을 기준으로 틸트(tilt)되지 않도록 정밀하게 구동될 수 있다. 회전어레이부(410B)의 틸트는 레이저 스펙클을 검출하는 것에 노이즈(noise)로 작용하기 때문이다. 제어부(440)는 상기한 구동부(415)를 제어하여 회전어레이부(410B)를 일정한 회전 속도로 회전시킬 수 있으며, 이때 시료배치부(410)들로부터 검출된 레이저 스펙클을 각각의 시료에 대한 레이저 스펙클로 분류하여 분석할 수 있다. The rotation array unit 410B may include a drive unit 415 that drives the rotation array unit 410B at a predetermined rotation speed. In the rotation array part 410B, a plurality of sample arrangement parts 410 may be disposed at predetermined intervals along the circumferential direction. The plurality of sample arranging parts 410 arranged in the rotary array part 410B are spaced apart from each other at a predetermined interval and rotated at a constant rotational speed so that the sample arranging part 410 can be rotated by using the fixed wave source 420 and the detecting part 430, The presence or concentration of the microorganisms in the sample in the sample 410 can be detected. The rotary array part 410B can be rotated along the central axis Axis1 passing through the center O and precisely driven so as not to be tilted with respect to the central axis Axis1 while rotating. This is because the tilting of the rotary array part 410B acts as noise in detecting the laser speckle. The control unit 440 controls the driving unit 415 to rotate the rotating array unit 410B at a constant rotation speed and the laser speckle detected from the sample arranging units 410 is rotated for each sample Laser specs can be categorized and analyzed.

한편, 회전어레이부(410B)는 시료배치부(410)들 사이에 기준시료배치부(R)을 포함할 수 있다. 기준시료배치부(R)는 시료배치부(410)와 동일하나 시료(S)가 수용되지 않을 수 있다. 기준시료배치부(R)에서의 기준 레이저 스펙클을 측정함으로써, 회전어레이부(410B)가 회전하는 동안 발생될 수 있는 노이즈를 제거하여 정확한 레이저 스펙클 검출이 가능할 수 있다. Meanwhile, the rotary array part 410B may include a reference sample arrangement part R between the sample arrangement parts 410. [ The reference sample placement part R is the same as the sample placement part 410 but the sample S may not be accommodated. By measuring the reference laser speckle in the reference sample arrangement part R, it is possible to accurately detect the laser speckle by removing the noise that may be generated during the rotation of the rotation array part 410B.

다중산란증폭부는 제1 다중산란증폭부(451)과 제2 다중산란증폭부(452)를 포함할 수 있다. 제1 다중산란증폭부(451)는 파동원(420)과 시료배치부(410) 사이에 배치될 수 있다. 제1 다중산란증폭부(451)는 파동원(420)이 조사되는 시료배치부(410) 상에 배치되어 다른 시료배치부(410)에 파동이 조사되지 않게 하여 노이즈를 저감시킬 수 있다. 또한, 제2 다중산란증폭부(453)는 시료배치부(410)과 검출부(430) 사이에 배치될 수 있으며, 마찬가지로 측정되는 시료배치부(410)에서 다중산란되는 파동만을 검출하도록 측정되는 시료배치부(410)에 대응되는 영역 상에 위치할 수 있다. 도면에서는 제1 다중산란증폭부(451)과 제2 다중산란증폭부(453)이 시료배치부(410)으로부터 이격되어 배치된 것처럼 도시하였으나, 이에 제한되지 않는다. 다른 실시예로서, 각각 시료배치부(410)들의 상부와 하부에 제1 다중산란증폭부(451) 및 제2 다중산란증폭부(453)가 고정되어 위치할 수도 있다.The multiple scattering amplification unit may include a first multiple scattering amplification unit 451 and a second multiple scattering amplification unit 452. The first multiple scattering amplification unit 451 may be disposed between the wave source 420 and the sample arrangement unit 410. The first multiple scattering amplification unit 451 may be disposed on the sample arrangement unit 410 to which the wave source 420 is irradiated so that no waves are irradiated to the other sample arrangement unit 410 to reduce the noise. The second multiple scattering amplification unit 453 may be disposed between the sample arrangement unit 410 and the detection unit 430 and may be disposed between the sample arrangement unit 410 and the detection unit 430. In addition, And may be located on an area corresponding to the arrangement part 410. [ Although the first multipath scattering amplification unit 451 and the second multipath scattering amplification unit 453 are arranged apart from the sample arrangement unit 410 in the figure, the present invention is not limited thereto. As another example, the first multi-scattering amplification unit 451 and the second multiple scattering amplification unit 453 may be fixedly disposed on the upper and lower portions of the sample arrangement units 410, respectively.

이제까지 본 발명에 대하여 바람직한 실시예를 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 본 발명을 구현할 수 있음을 이해할 것이다. 그러므로 상기 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 한다.The present invention has been described above with reference to preferred embodiments. It will be understood by those skilled in the art that the present invention may be embodied in various other forms without departing from the spirit or essential characteristics thereof. Therefore, the above-described embodiments should be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated by the appended claims rather than by the foregoing description, and all differences within the scope of equivalents thereof should be construed as being included in the present invention.

100: 바이러스 검출 장치 110: 시료 배치부
120: 바이러스 마커 적용부 130: 파동원
140: 검출부 150: 자계 형성부
155: RF 코일 160: 제어부
190: 디스플레이부 200: 바이러스 검출 장치
240: 검출부
100: Virus detection device 110: Sample arrangement part
120: Virus marker applying unit 130: Wave marker
140: detecting part 150: magnetic field forming part
155: RF coil 160:
190: display unit 200: virus detection device
240:

Claims (1)

시료를 향하여 파동을 조사하는 파동원;
상기 조사된 파동이 상기 시료에 의해 다중 산란(multiple scattering)되어 발생된 레이저 스펙클(laser speckle)을 검출하되, 상기 레이저 스펙클을 사전에 설정된 시점마다 검출하는 검출부;
상기 검출된 레이저 스펙클의 시간에 따른 변화인 시간 상관관계(temporal correlation)을 획득하고, 상기 획득된 시간 상관관계를 기초하여, 상기 시료의 특성을 실시간(real-time)으로 탐지하는 제어부; 및
상기 시료로부터 다중산란되어 출사되는 상기 파동의 적어도 일부를 상기 시료로 반사시켜 상기 시료에서의 다중 산란 횟수를 증폭시키는 다중산란증폭부;를 포함하며,
상기 검출부는 상기 시료와 상기 검출부 사이 또는 상기 검출부 내부의 일 영역에서 상기 레이저 스펙클을 검출하는, 시료 특성 탐지 장치
A wave source for irradiating a wave toward a sample;
A detector for detecting a laser speckle generated by multiple scattering of the irradiated wave by the sample, and detecting the laser speckle at predetermined time points;
A controller for obtaining a temporal correlation that is a change with time of the detected laser speckle and detecting the characteristics of the sample in real time based on the obtained time correlation; And
And a multiple scattering amplification unit for reflecting at least a part of the waves emitted from the sample in multiple scattering to the sample to amplify the number of multiple scatterings in the sample,
Wherein the detection unit detects the laser speckle between the sample and the detection unit or in a region inside the detection unit,
KR1020160152973A 2015-11-17 2016-11-16 Apparatus for detecting sample characteristic using a chaotic sensor KR102652472B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020160152973A KR102652472B1 (en) 2016-11-16 2016-11-16 Apparatus for detecting sample characteristic using a chaotic sensor
EP16866671.7A EP3379234A4 (en) 2015-11-17 2016-11-17 Apparatus for detecting sample properties using chaotic wave sensor
CN201680079041.1A CN108474740B (en) 2015-11-17 2016-11-17 Sample characteristic detection device using chaotic wave sensor
PCT/KR2016/013288 WO2017086719A1 (en) 2015-11-17 2016-11-17 Apparatus for detecting sample properties using chaotic wave sensor
JP2018526645A JP7058837B2 (en) 2015-11-17 2016-11-17 Sample characteristic detector using chaotic wave sensor
CN202110183709.XA CN113063755A (en) 2015-11-17 2016-11-17 Sample characteristic detection device using chaotic wave sensor
US15/776,584 US10551293B2 (en) 2015-11-17 2016-11-17 Apparatus for detecting sample properties using chaotic wave sensor
US16/697,373 US10914665B2 (en) 2015-11-17 2019-11-27 Apparatus for detecting sample properties using chaotic wave sensor
US17/142,529 US11262287B2 (en) 2015-11-17 2021-01-06 Apparatus for detecting sample properties using chaotic wave sensor
JP2022060460A JP7377475B2 (en) 2015-11-17 2022-03-31 Sample characteristic detection device using chaotic wave sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160152973A KR102652472B1 (en) 2016-11-16 2016-11-16 Apparatus for detecting sample characteristic using a chaotic sensor

Publications (2)

Publication Number Publication Date
KR20180055301A true KR20180055301A (en) 2018-05-25
KR102652472B1 KR102652472B1 (en) 2024-03-29

Family

ID=62299867

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160152973A KR102652472B1 (en) 2015-11-17 2016-11-16 Apparatus for detecting sample characteristic using a chaotic sensor

Country Status (1)

Country Link
KR (1) KR102652472B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200004128A (en) * 2018-07-03 2020-01-13 주식회사 더웨이브톡 System for detecting impurities in fluid with chaotic sensor
KR20200052866A (en) * 2018-07-03 2020-05-15 주식회사 더웨이브톡 System for detecting impurities in fluid with chaotic sensor
KR20210110998A (en) * 2020-03-02 2021-09-10 주식회사 더웨이브톡 Detecting microorganisms system, apparatus and method using this
US11156541B2 (en) 2018-05-18 2021-10-26 The Wave Talk, Inc. Optical detecting system
KR20220031211A (en) * 2020-09-04 2022-03-11 에스디서비스코리아 주식회사 Microorganism monitoring system, and method of monitoring microorganism and Microorganism treatment system
US11391659B2 (en) 2018-05-18 2022-07-19 The Wave Talk, Inc. Optical detecting system
WO2023153623A1 (en) * 2022-02-09 2023-08-17 주식회사 더웨이브톡 Turbidity monitoring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210989A (en) * 1995-02-07 1996-08-20 Hitachi Ltd Method for detecting fine defect and device therefor
KR20040094817A (en) * 2002-03-28 2004-11-10 타카이 토후 앤 소이 밀크 이큅먼트 컴퍼니 리미티드 Evaluation method and device for gel state or sol-gel state change of object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210989A (en) * 1995-02-07 1996-08-20 Hitachi Ltd Method for detecting fine defect and device therefor
KR20040094817A (en) * 2002-03-28 2004-11-10 타카이 토후 앤 소이 밀크 이큅먼트 컴퍼니 리미티드 Evaluation method and device for gel state or sol-gel state change of object

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156541B2 (en) 2018-05-18 2021-10-26 The Wave Talk, Inc. Optical detecting system
US11280716B2 (en) 2018-05-18 2022-03-22 The Wave Talk, Inc. Optical detecting system
US11391659B2 (en) 2018-05-18 2022-07-19 The Wave Talk, Inc. Optical detecting system
KR20200004128A (en) * 2018-07-03 2020-01-13 주식회사 더웨이브톡 System for detecting impurities in fluid with chaotic sensor
KR20200052866A (en) * 2018-07-03 2020-05-15 주식회사 더웨이브톡 System for detecting impurities in fluid with chaotic sensor
KR20210110998A (en) * 2020-03-02 2021-09-10 주식회사 더웨이브톡 Detecting microorganisms system, apparatus and method using this
US11513049B2 (en) 2020-03-02 2022-11-29 The Wave Talk, Inc. System, apparatus, and method for detecting microbes
KR20220031211A (en) * 2020-09-04 2022-03-11 에스디서비스코리아 주식회사 Microorganism monitoring system, and method of monitoring microorganism and Microorganism treatment system
WO2023153623A1 (en) * 2022-02-09 2023-08-17 주식회사 더웨이브톡 Turbidity monitoring device

Also Published As

Publication number Publication date
KR102652472B1 (en) 2024-03-29

Similar Documents

Publication Publication Date Title
KR102652472B1 (en) Apparatus for detecting sample characteristic using a chaotic sensor
KR20170057827A (en) Apparatus and method for detecting microbes or bacteria and scattering chaotic wave in nail plates and teeth or gums using laser speckle patterns
JP7377475B2 (en) Sample characteristic detection device using chaotic wave sensor
JP5843761B2 (en) Microlens imaging system and sample detection system attached device
EP3379234A1 (en) Apparatus for detecting sample properties using chaotic wave sensor
CN101563021A (en) Apparatus for dental optical coherence tomography imaging
WO2004081549A1 (en) Spectroscopic analysis apparatus and method with excitation system and focus monitoring system
CN101730498A (en) Low coherence dental oct imaging
WO2020013325A1 (en) Image generation device and image generation method
KR101602353B1 (en) Methods and appratus for high-throughput label-free cell assay
WO2004111621A1 (en) Analysis apparatus and method comprising auto-focusing means
CN108139198A (en) For exposing the method and apparatus at least one of light scattering interior of articles section
KR102285089B1 (en) Detecting microorganisms apparatus
US20170350874A1 (en) Optical interrogation and control of dynamic biological functions
JPH04122248A (en) Optical tomographic image imaging device
JP6895297B2 (en) Cell mass evaluation method and cell mass state analyzer
KR102309613B1 (en) Detecting microorganisms system, apparatus and method using this
JP2020086204A (en) Optical image measurement device and optical image measurement method
KR101601899B1 (en) Methods and appratus for high-throughput label-free cell assay
KR102207041B1 (en) Optical measuring apparatus
KR102018895B1 (en) Virus detecting device with chaotic sensor and virus detecting method using the same
KR101602359B1 (en) Methods and appratus for high-throughput label-free cell assay
KR102055310B1 (en) Antibiotics Suitability Test Apparatus With Chaotic Sensor
KR101959023B1 (en) Individual identification device with chaotic sensor and individual identification method using the same
JPWO2018221430A1 (en) Observation container and fine particle measurement device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant