KR20180050776A - Energy storage devices including the electrode, the electrode manufacturing method and the electrode to improve the electrochemical performances - Google Patents

Energy storage devices including the electrode, the electrode manufacturing method and the electrode to improve the electrochemical performances Download PDF

Info

Publication number
KR20180050776A
KR20180050776A KR1020160147204A KR20160147204A KR20180050776A KR 20180050776 A KR20180050776 A KR 20180050776A KR 1020160147204 A KR1020160147204 A KR 1020160147204A KR 20160147204 A KR20160147204 A KR 20160147204A KR 20180050776 A KR20180050776 A KR 20180050776A
Authority
KR
South Korea
Prior art keywords
oxide
electrode
active material
carbon
composite
Prior art date
Application number
KR1020160147204A
Other languages
Korean (ko)
Other versions
KR102563546B1 (en
Inventor
양선혜
김익준
정승열
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020160147204A priority Critical patent/KR102563546B1/en
Publication of KR20180050776A publication Critical patent/KR20180050776A/en
Application granted granted Critical
Publication of KR102563546B1 publication Critical patent/KR102563546B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • Y02T10/7022

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention relates to an electrode for improving characteristics, a manufacturing method thereof, and an energy storage device including the same. A technical point includes the steps of: manufacturing an active material/carbon material composite by mixing an active material with a carbon material; manufacturing a manganese oxide/graphene oxide (MnO2/GO) electrode catalyst; and forming the electrode by mixing the active material/carbon material composite with the electrode catalyst. Accordingly, the composite of the active material for a hybrid capacitor and the carbon material for enhancing conductivity is formed and MnO2/GO that is the electrode catalyst is mixed therewith to improve electrode characteristics.

Description

전기화학 특성 개선을 위한 전극, 전극 제조방법 및 전극을 포함하는 에너지 저장 디바이스 {Energy storage devices including the electrode, the electrode manufacturing method and the electrode to improve the electrochemical performances}[0001] The present invention relates to an electrode for improving electrochemical characteristics, an electrode manufacturing method, and an energy storage device including an electrode,

본 발명은 전기화학 특성 개선을 위한 전극, 전극 제조방법 및 전극을 포함하는 에너지 저장 디바이스에 관한 것으로, 더욱 상세하게는 하이브리드 커패시터용 활물질과 전도성 증가를 위한 탄소재를 복합한 복합체를 형성하고, 여기에 전극촉매제인 MnO2/GO을 혼합하여 전극을 형성하는 전기화학 특성 개선을 위한 전극, 전극 제조방법 및 전극을 포함하는 에너지 저장 디바이스에 관한 것이다.The present invention relates to an electrode for improving electrochemical characteristics, an electrode manufacturing method, and an energy storage device including an electrode. More particularly, the present invention relates to an energy storage device for forming a composite of an active material for a hybrid capacitor and a carbonaceous material for increasing conductivity, To an electrode for improving electrochemical characteristics of forming an electrode by mixing MnO 2 / GO which is an electrode catalyst, an electrode manufacturing method, and an electrode.

산업발전 및 생활수준 향상에 맞춰 휴대 전자기기의 소형화와 장시간 연속 사용을 목표로 부품의 경량화와 저소비 전력화에 대한 연구와 더불어 소형이면서 고용량을 실현할 수 있는 고성능 에너지 저장 디바이스가 요구되고 있다. 이에 최근에는 리튬 이온 전지(lithium ion battery), 전기이중층 커패시터(electric double layer capacitor, EDLC), 슈퍼 커패시터(super capacitor) 또는 하이브리드 커패시터(hybrid capacitor)와 같은 에너지 저장 디바이스를 전기자동차, 전지전력 저장시스템 등 대용량 전력저장전지와 휴대전화, 캠코더, 노트북 등의 휴대전자기기 등과 같은 소형의 고성능 에너지원으로 사용되고 있다. 하지만 리튬 이온 전지의 경우 높은 에너지밀도를 나타냄에도 불구하고 낮은 출력특성과 1000회 정도의 충방전 횟수로 인해 무선충전 효율이 감소하고, 2~3년 사용 후에는 교체하여야 한다는 단점이 있다. 또한 전기이중층 커패시터는 높은 출력과 많은 충방전 횟수로 인해 높은 무선충전 효율과 10년 이상의 장기신뢰성을 지니나, 낮은 에너지밀도로 인해 1회 충전시 사용할 수 있는 용량이 작아 상업적 가치가 떨어진다. 따라서 높은 무선충전 효율 및 장기신뢰성을 확보하기 위해서는 기존의 전기이중층 커패시터와 이차전지와의 장점을 겸비한 하이브리드 커패시터의 개발이 필요한 실정이다.In order to achieve miniaturization and long-term continuous use of portable electronic devices in accordance with the improvement of industrial development and living standards, there is a demand for light weight and low power consumption of parts, and a high performance energy storage device capable of realizing small size and high capacity. Recently, an energy storage device such as a lithium ion battery, an electric double layer capacitor (EDLC), a super capacitor or a hybrid capacitor has been used as an electric vehicle, a battery electric power storage system And is used as a small-sized, high-performance energy source such as a large-capacity power storage battery and a portable electronic device such as a mobile phone, a camcorder, and a notebook computer. However, despite the high energy density, the lithium ion battery has a disadvantage in that the charging efficiency is reduced due to the low output characteristics and the number of charge / discharge cycles of about 1000 times, and that the lithium ion battery should be replaced after 2 to 3 years of use. In addition, electric double layer capacitors have high wireless charging efficiency and long term reliability for more than 10 years due to high power and high charge / discharge frequency, but because of low energy density, they have small capacity for one charge and they are of low commercial value. Therefore, in order to secure a high wireless charging efficiency and long-term reliability, it is necessary to develop a hybrid capacitor having advantages of an electric double layer capacitor and a secondary battery.

하이브리드 커패시터는 전기이중층 커패시터의 출력특성과 이차전지의 에너지 특성을 겸비한 융합형 에너지 저장 디바이스이며, 전기이중층 커패시터의 장점과 이차전지의 장점을 모두 가지고 있어 최근 커패시터 시장에서는 최근에 이러한 커패시터의 개발 필요성이 대두되고 있다. 하이브리드 커패시터는 주로 활물질로 루테늄옥사이드(RuO2), 망가니즈옥사이드(MnO2), 니켈옥사이드(Ni(OH)2), 틴옥사이드(SnO2), 몰리브데넘옥사이드(Mo2N), 티타늄니트라이드(TiN), 바나듐옥사이드(V2O5), 페라이트(MnFe2O4), 탄탈럼옥사이드(Ta2O5) 등과 같은 전이금속산화물(transition metal oxide)을 많이 사용한다. 이러한 활물질들은 높은 이론용량, 안정적인 전기화학 반응, 우수한 속도 성능, 알칼리성 전해질에서의 구조적 안정성으로 인하여 많이 활용되어지고 있다. Hybrid capacitors are fusion energy storage devices that combine the output characteristics of an electric double layer capacitor and the energy characteristics of a secondary battery. The hybrid capacitor has both advantages of an electric double layer capacitor and advantages of a secondary battery. In recent years, the necessity of developing such a capacitor Is emerging. Hybrid capacitors are mainly composed of ruthenium oxide (RuO 2 ), manganese oxide (MnO 2 ), nickel oxide (Ni (OH) 2 ), tin oxide (SnO 2 ), molybdenum oxide (Mo 2 N) Transition metal oxides such as rid (TiN), vanadium oxide (V 2 O 5 ), ferrite (MnFe 2 O 4 ), tantalum oxide (Ta 2 O 5 ) These active materials have been widely used due to their high theoretical capacity, stable electrochemical reactions, excellent speed performance, and structural stability in alkaline electrolytes.

하지만 이러한 활물질들은 단독으로 사용할 경우 출력 특성, 사이클 특성, 고비용, 높은 촉매 활성이 부족한 문제점으로 인하여 상용화에 제한적으로 활용되어지고 있다. 따라서 활물질들에 의한 특성을 개선하기 위한 복합체의 개발이 필요한 실정이다.However, when these active materials are used alone, they are limited in commercialization due to the problems of output characteristics, cycle characteristics, high cost, and lack of high catalytic activity. Therefore, it is necessary to develop a composite material for improving the properties of the active materials.

대한민국특허청 등록특허 제10-0856286호Korea Patent Office Registration No. 10-0856286 대한민국특허청 등록특허 제10-0833041호Korea Patent Office Registration No. 10-0833041 대한민국특허청 등록특허 제10-0571267호Korea Patent Office Registration No. 10-0571267

따라서 본 발명의 목적은, 하이브리드 커패시터용 활물질과 전도성 증가를 위한 탄소재를 복합한 복합체를 형성하고, 여기에 전극촉매제인 MnO2/GO을 혼합하여 전극을 형성하는 전기화학 특성 개선을 위한 전극, 전극 제조방법 및 전극을 포함하는 에너지 저장 디바이스를 제공하는 것이다.Accordingly, an object of the present invention is to provide an electrode for improving the electrochemical characteristics of forming a composite of an active material for a hybrid capacitor and a carbonaceous material for increasing conductivity and forming an electrode by mixing MnO 2 / GO, which is an electrode catalyst, An electrode manufacturing method, and an electrode.

상기한 목적은, 활물질과 탄소재를 혼합하여 활물질/탄소재 복합체를 제조하는 단계 및 망간옥사이드/그래핀옥사이드(MnO2/GO) 전극촉매제를 제조하는 단계와; 상기 활물질/탄소재 복합체 및 상기 전극촉매제를 혼합하여 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 전기화학 특성 개선을 위한 전극 제조방법에 의해서 달성된다.The above object can be accomplished by a process for producing a manganese oxide / graphene oxide (MnO 2 / GO) electrode catalyst, comprising the steps of: preparing an active material / carbon composite by mixing an active material and a carbonaceous material; And forming an electrode by mixing the active material / carbonaceous composite and the electrode catalyst. The present invention also provides a method of manufacturing an electrode for improving electrochemical characteristics.

여기서, 상기 활물질은, 루테늄옥사이드(RuO2), 망가니즈옥사이드(MnO2), 니켈옥사이드(Ni(OH)2), 틴옥사이드(SnO2), 몰리브데넘옥사이드(Mo2N), 티타늄니트라이드(TiN), 바나듐옥사이드(V2O5), 페라이트(MnFe2O4), 탄탈럼옥사이드(Ta2O5) 및 이의 혼합으로 이루어진 군으로부터 선택되며, 상기 탄소재는, 활성탄(activated carbon), 그라파이트(graphite), 그래핀(graphene), 그래핀옥사이드(graphene oxide, GO), 환원된 그래핀옥사이드(reduced graphene oxide, RGO), 탄소나노튜브(carbon nano tube), 탄소섬유(carbon fiber), 전도성폴리머(conducting polymer), 에어로겔(aerogel) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.Here, the active material is ruthenium oxide (RuO 2), manganese oxide (MnO 2), nickel oxide (Ni (OH) 2), tin oxide (SnO 2), molybdenum oxide (Mo 2 N), titanium knit Wherein the carbon material is selected from the group consisting of ruthenium (TiN), vanadium oxide (V 2 O 5 ), ferrite (MnFe 2 O 4 ), tantalum oxide (Ta 2 O 5 ) Graphite, graphene, graphene oxide (GO), reduced graphene oxide (RGO), carbon nano tube, carbon fiber, , A conducting polymer, an aerogel, and mixtures thereof.

또한, 상기 활물질/탄소재 복합체 및 전극촉매제의 혼합비는 95 : 5 중량비로 이루어지는 것이 바람직하다.The mixture ratio of the active material / carbonaceous material and the electrode catalyst is preferably 95: 5 by weight.

상기한 목적은, 기판과; 상기 기판의 상부에 적층된 활물질/탄소재 복합체 및 망간옥사이드/그래핀옥사이드(MnO2/GO) 전극촉매제로 이루어진 전극층을 포함하는 것을 특징으로 하는 전기화학 특성 개선을 위한 전극에 의해서도 달성된다.The above-described object is achieved by a semiconductor device comprising: a substrate; And an electrode layer composed of an active material / carbonaceous composite laminated on the substrate and a manganese oxide / graphen oxide (MnO 2 / GO) electrode catalyst.

여기서, 상기 활물질/탄소재 복합체는 α-니켈하이드록사이드/그래핀옥사이드 복합체(α-Ni(OH)2/GO)인 것이 바람직하다.Here, the active material / carbonaceous composite is preferably an? -Nickel hydroxide / graphen oxide composite (? -Ni (OH) 2 / GO).

또한, 상기 활물질은, 루테늄옥사이드(RuO2), 망가니즈옥사이드(MnO2), 니켈옥사이드(Ni(OH)2), 틴옥사이드(SnO2), 몰리브데넘옥사이드(Mo2N), 티타늄니트라이드(TiN), 바나듐옥사이드(V2O5), 페라이트(MnFe2O4), 탄탈럼옥사이드(Ta2O5) 및 이의 혼합으로 이루어진 군으로부터 선택되며, 상기 탄소재는, 활성탄(activated carbon), 그라파이트(graphite), 그래핀(graphene), 그래핀옥사이드(graphene oxide, GO), 환원된 그래핀옥사이드(reduced graphene oxide, RGO), 탄소나노튜브(carbon nano tube), 탄소섬유(carbon fiber), 전도성폴리머(conducting polymer), 에어로겔(aerogel) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.Further, the active material is ruthenium oxide (RuO 2), manganese oxide (MnO 2), nickel oxide (Ni (OH) 2), tin oxide (SnO 2), molybdenum oxide (Mo 2 N), titanium knit Wherein the carbon material is selected from the group consisting of ruthenium (TiN), vanadium oxide (V 2 O 5 ), ferrite (MnFe 2 O 4 ), tantalum oxide (Ta 2 O 5 ) Graphite, graphene, graphene oxide (GO), reduced graphene oxide (RGO), carbon nano tube, carbon fiber, , A conducting polymer, an aerogel, and mixtures thereof.

상기한 목적은 또한, 활물질/탄소재 복합체 및 망간옥사이드/그래핀옥사이드(MnO2/GO) 전극촉매제를 양극활물질로 포함하는 양극과; 환원된 그래핀옥사이드(reduced graphene oxide, RGO)를 음극활물질로 포함하는 음극과; 상기 양극 및 상기 음극이 침지되는 전해액을 포함하는 것을 특징으로 하는 에너지 저장 디바이스에 의해서도 달성된다.The above objects are further accomplished by a cathode active material comprising a cathode comprising an active material / carbonaceous composite and a manganese oxide / graphene oxide (MnO 2 / GO) electrode catalyst as a cathode active material; An anode including reduced graphene oxide (RGO) as a negative electrode active material; And an electrolyte solution in which the anode and the cathode are immersed.

상술한 본 발명의 구성에 따르면, 하이브리드 커패시터용 활물질과 전도성 증가를 위한 탄소재를 복합한 복합체를 형성하고, 여기에 전극촉매제인 MnO2/GO을 혼합하여 전극 특성이 개선되는 효과를 얻을 수 있다.According to the structure of the present invention described above, a composite material of an active material for a hybrid capacitor and a carbon material for increasing conductivity can be formed, and MnO 2 / GO, which is an electrode catalyst, can be mixed with the carbon material to improve the electrode characteristics .

도 1은 본 발명의 실시예에 따른 전기화학 특성 개선을 위한 전극 제조방법의 순서도이고,
도 2는 비교예 및 실시예의 임피던스를 나타낸 그래프이고,
도 3은 비교예 및 실시예의 인가 전류 밀도에 따른 출력특성을 나타낸 그래프이다.
1 is a flowchart of an electrode manufacturing method for improving electrochemical characteristics according to an embodiment of the present invention,
2 is a graph showing the impedance of the comparative example and the embodiment,
3 is a graph showing output characteristics according to applied current densities of Comparative Examples and Examples.

이하 도면을 참조하여 본 발명의 실시예에 따른 전기화학 특성 개선을 위한 전극, 전극 제조방법 및 전극을 포함하는 에너지 저장 디바이스를 상세히 설명한다.Hereinafter, an electrode for improving electrochemical characteristics, an electrode manufacturing method, and an energy storage device including an electrode according to embodiments of the present invention will be described in detail with reference to the drawings.

본 발명은 전극은 기판과, 기판의 상부에 적층된 활물질/탄소재 복합체 및 망간옥사이드/그래핀옥사이드(MnO2/GO) 전극촉매제로 이루어진 전극층을 포함한다. 여기서 활물질/탄소재 복합체는 α-니켈하이드록사이드/그래핀옥사이드 복합체(α-Ni(OH)2/GO)가 바람직하다. 또한 전극을 포함하는 본 발명의 에너지 저장 디바이스는, 활물질/탄소재 복합체 및 망간옥사이드/그래핀옥사이드(MnO2/GO) 전극촉매제를 양극활물질로 포함하는 양극과, 환원된 그래핀옥사이드(reduced graphene oxide, RGO)를 음극활물질로 포함하는 음극과, 양극 및 음극이 침지되는 전해액을 포함한다.The electrode comprises a substrate, and an electrode layer comprising an active material / carbon composite and a manganese oxide / graphene oxide (MnO 2 / GO) electrode catalyst deposited on top of the substrate. Here, the active material / carbon composite material is preferably an? -Nickel hydroxide / graphen oxide composite (? -Ni (OH) 2 / GO). Also, the energy storage device of the present invention including an electrode includes a positive electrode containing a positive electrode active material and a manganese oxide / graphite oxide (MnO 2 / GO) electrode catalyst as a cathode active material, a reduced graphene oxide oxide, RGO) as a negative electrode active material, and an electrolyte solution in which the positive electrode and the negative electrode are immersed.

이러한 전극의 제조방법으로는 도 1에 도시된 바와 같이 먼저, 활물질과 탄소재를 혼합하여 활물질/탄소재 복합체를 제조한다(S1).As shown in FIG. 1, an active material / carbon composite is prepared by mixing an active material and a carbonaceous material (S1).

하이브리드 커패시터에 사용되는 활물질은 다양하나 그 중 높은 이론용량, 안정적인 전기화학 반응, 우수한 속도 성능, 알칼리성 전해질에서의 구조적 안정성을 보이는 활물질과 탄소재를 혼합하여 활물질/탄소재 복합체를 제조한다.The active materials used in the hybrid capacitors are various, but the active material / carbon composite is prepared by mixing active materials having high theoretical capacity, stable electrochemical reaction, excellent speed performance and structural stability in an alkaline electrolyte and carbon materials.

여기서 활물질은 루테늄옥사이드(RuO2), 망가니즈옥사이드(MnO2), 니켈옥사이드(Ni(OH)2), 틴옥사이드(SnO2), 몰리브데넘옥사이드(Mo2N), 티타늄니트라이드(TiN), 바나듐옥사이드(V2O5), 페라이트(MnFe2O4), 탄탈럼옥사이드(Ta2O5) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다. 또한 탄소재의 경우 활물질로부터 부족한 전도성을 개선하기 위해 관능기를 가지고 있는 탄소재를 혼합하여 전도성을 증가시키기 위해 혼합된다. 이러한 탄소재는 활성탄(activated carbon), 그라파이트(graphite), 그래핀(graphene), 그래핀옥사이드(graphene oxide, GO), 환원된 그래핀옥사이드(reduced graphene oxide, RGO), 탄소나노튜브(carbon nano tube), 탄소섬유(carbon fiber), 전도성폴리머(conducting polymer), 에어로겔(aerogel) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.The active material may be at least one selected from the group consisting of ruthenium oxide (RuO 2 ), manganese oxide (MnO 2 ), nickel oxide (Ni (OH) 2 ), tin oxide (SnO 2 ), molybdenum oxide (Mo 2 N), titanium nitride ), Vanadium oxide (V 2 O 5 ), ferrite (MnFe 2 O 4 ), tantalum oxide (Ta 2 O 5 ), and mixtures thereof. In the case of carbon materials, carbonaceous materials having functional groups are mixed to improve conductivity, which is mixed with active materials to increase conductivity. These carbon materials include activated carbon, graphite, graphene, graphene oxide (GO), reduced graphene oxide (RGO), carbon nano tube ), A carbon fiber, a conducting polymer, an aerogel, and a mixture thereof.

MnO2/GO 전극촉매제를 제조한다(S1').MnO 2 / GO electrode catalyst is prepared (S1 ').

S1 단계와는 별개로 망간옥사이드/그래핀옥사이드(MnO2/GO) 전극촉매제를 제조한다. MnO2/GO 전극촉매제를 제조하는 방법으로는 그래핀옥사이드와 MnCl2·4H2O를 용매에 넣고 혼합한 다음, 여기에 과망간산칼륨(KMnO4)을 넣고 다시 교반시켜 전극촉매제를 얻을 수 있다. 이때 교반온도는 50 내지 100℃에서 수행하는 것이 바람직한데, 교반온도가 50℃ 미만일 경우 반응이 원활하게 진행되지 않을 수 있으며, 100℃를 초과할 경우 용매가 증발할 수 있기 때문에 교반 반응은 50 내지 100℃에서 행해지는 것이 바람직하다.Separately from step S1, a manganese oxide / graphene oxide (MnO 2 / GO) electrode catalyst is prepared. As a method for preparing the MnO 2 / GO electrode catalyst, graphene oxide and MnCl 2 .4H 2 O are mixed in a solvent, potassium permanganate (KMnO 4 ) is added thereto and stirred again to obtain an electrode catalyst. At this time, the stirring temperature is preferably 50 to 100 ° C. If the stirring temperature is less than 50 ° C., the reaction may not proceed smoothly. If the stirring temperature exceeds 100 ° C., the solvent may evaporate, 100 < 0 > C.

활물질/탄소재 복합체와 전극촉매제를 혼합하여 전극을 형성한다(S2).An electrode is formed by mixing an active material / carbon composite and an electrode catalyst (S2).

S1 단계를 통해 제조된 활물질/탄소재 복합체와 S1' 단계를 통해 제조된 전극촉매제를 도전재 및 바인더와 혼합하고, 이를 기판에 도포하여 전극을 형성한다. 여기서 활물질로 사용되는 복합체와 전극촉매제의 혼합비는 복합체 : 전극촉매제 = 95 : 5의 중량비로 혼합되는 것이 가장 바람직하나 이에 한정되지는 않는다. 여기서 기판에 복합체 및 전극촉매제를 도포하는 방법으로는 복합체 및 전극촉매제의 혼합물을 형성하고, 여기에 기판을 담구어 딥코팅(dip coating) 시키는 방법으로 이루어지는 것이 바람직하다. 그 다음 혼합물을 고온에서 건조 및 압착을 통해 기판과 혼합물이 견고하게 고정된 전극을 제조할 수 있다.The active material / carbon composite prepared through the step S1 and the electrode catalyst prepared through the step S1 'are mixed with a conductive material and a binder, and then coated on the substrate to form an electrode. Here, it is most preferable that the mixing ratio of the composite used as the active material and the electrode catalyst is in a ratio of the composite: electrode catalyst = 95: 5, but is not limited thereto. Here, as a method of applying the composite and the electrode catalyst to the substrate, it is preferable that the method comprises forming a mixture of the composite and the electrode catalyst, and immersing the substrate in the mixture to dip coating the substrate. The mixture can then be dried and pressed at high temperature to produce electrodes with the substrate and the mixture firmly fixed.

이하에서는 본 발명의 실시예를 좀 더 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in more detail.

<비교예> : 전극 제조&Lt; Comparative Example >

1) 활물질 제조1) Production of active material

먼저 α-니켈하이드록사이드/그래핀옥사이드 복합체(α-Ni(OH)2/GO) 합성방법으로, DI water 500ml를 넣은 반응기에 나노 사이즈의 α-니켈하이드록사이드 18g과 그래핀옥사이드(graphene oxide) 2g을 넣고, 초음파처리기(ultrasonication)를 2시간 한 다음 균질기(homogenizer)를 20,000rpm에서 30분 동안 처리하여 분산 용액을 제조한다. 이를 건조하여 파우더 상태의 α-니켈하이드록사이드/그래핀옥사이드 복합체 샘플을 채취한다.First, in a reactor equipped with an α-nickel hydroxide / graphene oxide complex (α-Ni (OH) 2 / GO) synthesis method, 500 ml of DI water was charged. To the reactor were added 18 g of α-nickel hydroxide of nano size and 18 g of graphene oxide, 2 g of ultrasonication is applied for 2 hours, and a homogenizer is treated at 20,000 rpm for 30 minutes to prepare a dispersion solution. This is dried to obtain a sample of a-nickel hydroxide / graphen oxide composite in powder state.

2) 양극 제조2) Manufacture of anode

α-Ni(OH)2/GO 복합체를 양극활물질로 사용하였으며, 슬러리 전극의 조성은 활물질 : 도전재 : 바인더 = 89 : 6 : 5 중량비로 혼합하였다. 바인더는 카복시메틸셀룰로오스(carboxymethylcellulose, CMC) 0.3g을 탈이온수(deionized water) 9.7ml에 녹인 후, 도전재인 카본블랙(carbon black)과 CoO를 각각 0.6g씩 넣어 초음파 처리를 하였다. 초음파 처리가 끝난 후 양극활물질을 16.91g 추가하여 혼합기(thinky mixer)로 20분간 처리한 뒤, 활물질, 도전재 및 바인더의 분산을 돕기 위하여 초음파처리기(ultrasonication) 또는 균질기(homogenizer)를 이용하여 10분간 처리하였다. 마지막으로 스티렌부타디엔고무(styrene butadiene rubber, SBR)를 넣어 슬러리의 점도를 1000 내지 1500mPa·S가 되도록 조정하였다. 슬러리를 1mmT의 두께를 가진 니켈폼(Ni foam)에 넣어 딥코팅을 한 다음, 100℃의 진공오븐에 전극을 건조시켰다. 전극의 건조가 끝난 후, 80℃의 핫롤프레스(hot roll press)를 이용하여 전극의 두께가 500㎛가 되도록 압착시켰다.α-Ni (OH) 2 / GO composite was used as a cathode active material, and the composition of the slurry electrode was mixed in an active material: conductive material: binder = 89: 6: 5 weight ratio. The binder was prepared by dissolving 0.3 g of carboxymethylcellulose (CMC) in 9.7 ml of deionized water, and then 0.6 g of each of carbon black and CoO as conductive materials was ultrasonicated. After the ultrasonic treatment, 16.91 g of the cathode active material was added, and the mixture was treated with a thinky mixer for 20 minutes. Then, to aid dispersion of the active material, conductive material and binder, ultrasonic treatment was carried out using a homogenizer Respectively. Finally, styrene butadiene rubber (SBR) was added to adjust the viscosity of the slurry to 1000 to 1500 mPa · S. The slurry was dip coated in a Ni foam having a thickness of 1 mmT, and the electrode was then dried in a vacuum oven at 100 캜. After the electrode was dried, the electrode was pressed with a hot roll press at 80 DEG C so that the thickness of the electrode was 500 mu m.

3) 음극 제조3) Cathode manufacturing

환원된 그래핀옥사이드(reduced graphene oxide, RGO)를 음극활물질로 사용하였으며, 슬러리 전극의 조성물은 활물질 : 도전재 : 바인더 = 82 : 8 : 10 중량비로 혼합하였다. 바인더는 카복시메틸셀룰로오스 0.3g을 탈이온수 9.7ml에 녹인 용액과 미리 연신시켜놓은 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE) 0.5g에 도전재인 카본블랙을 1.6g씩 넣어 초음파 처리를 하였다. 초음파 처리가 끝난 후 활물질을 16.4g 추가하여 혼합기로 20분간 처리한 뒤, 활물질, 도전재 및 바인더의 분산을 돕기 위하여 초음파처리기 또는 균질기를 이용하여 10분간 처리하였다. 마지막으로 SBR을 넣어 슬러리의 점도를 1000 내지 1500mPa·S가 되도록 조정하였다. 슬러리를 1.8mmT 두께를 가진 니켈폼에 넣어 딥코팅을 한 다음 100℃의 진공오븐에 전극을 건조시켰다. 전극의 건조가 끝난 후, 80℃의 핫롤프레스를 이용하여 전극의 두께가 900㎛가 되도록 압착시켰다.Reduced graphene oxide (RGO) was used as the negative electrode active material, and the composition of the slurry electrode was mixed at a weight ratio of active material: conductive material: binder = 82: 8: 10. The binder was ultrasonicated by adding 1.6 g of carbon black as a conductive material to 0.5 g of polytetrafluoroethylene (PTFE) preliminarily stretched in a solution of 0.3 g of carboxymethylcellulose in 9.7 ml of deionized water. After the ultrasonic treatment, 16.4 g of active material was added, and the mixture was treated with a mixer for 20 minutes. Then, the mixture was treated with an ultrasonic processor or a homogenizer for 10 minutes to aid dispersion of the active material, conductive material and binder. Finally, SBR was added to adjust the viscosity of the slurry to 1000 to 1500 mPa · S. The slurry was dip coated in a nickel foam having a thickness of 1.8 mmT, and the electrode was then dried in a vacuum oven at 100 캜. After drying of the electrode, the electrode was pressed with a hot roll press at 80 DEG C so that the thickness of the electrode was 900 mu m.

<실시예 1> : 전극 제조&Lt; Example 1 >: Electrode Fabrication

1) 활물질 제조1) Production of active material

먼저 α-니켈하이드록사이드/그래핀옥사이드 복합체(α-Ni(OH)2/GO) 합성방법으로, DI water 500ml를 넣은 반응기에 나노 사이즈의 α-니켈하이드록사이드 18g과 그래핀옥사이드(graphene oxide) 2g을 넣고, 초음파처리기(ultrasonication)를 2시간 한 다음 균질기(homogenizer)를 20,000rpm에서 30분 동안 처리하여 분산 용액을 제조한다. 이를 건조하여 파우더 상태의 α-니켈하이드록사이드/그래핀옥사이드 복합체 샘플을 채취한다.First, in a reactor equipped with an α-nickel hydroxide / graphene oxide complex (α-Ni (OH) 2 / GO) synthesis method, 500 ml of DI water was charged. To the reactor were added 18 g of α-nickel hydroxide of nano size and 18 g of graphene oxide, 2 g of ultrasonication is applied for 2 hours, and a homogenizer is treated at 20,000 rpm for 30 minutes to prepare a dispersion solution. This is dried to obtain a sample of a-nickel hydroxide / graphen oxide composite in powder state.

2) 전극촉매제 제조2) Electrode catalyst preparation

그래핀옥사이드(graphene oxide) 5.2g을 이소프로필알콜(isopropyl alcohol) 100ml에 넣고, 균질기(homogenizer)를 10,000rpm에서 10분 동안 처리한 다음 MnCl2·4H2O 15.6g을 넣는다. 분산을 위해 한번 더 균질기를 10,000rpm에서 20분간 처리하고, 초음파처리기(ultrasonication)를 이용하여 20분 동안 처리하여 제1혼합액을 형성한다. 그 다음 Di water 250ml에서 과망간산칼륨(KMnO4) 7.8g을 녹인 용액을 반응기에 넣은 후, 80℃까지 온도를 올려 교반하여 제2혼합액을 형성한다. 제1혼합액과 제2혼합액을 반응기에 함께 넣은 후 80℃의 온도로 2시간 동안 교반을 수행하고, 그 다음 온도를 내려 쿨링시킨다. 반응이 끝나면 원심분리기(centrifuge)를 통해 증류수로 여러번 세척한 뒤 이를 80℃에서 건조시켜 전극촉매제를 얻는다.5.2 g of graphene oxide is added to 100 ml of isopropyl alcohol, the homogenizer is treated at 10,000 rpm for 10 minutes, and then 15.6 g of MnCl 2 .4H 2 O is added. For dispersion, the homogenizer is further treated at 10,000 rpm for 20 minutes and treated with ultrasonication for 20 minutes to form a first mixed solution. Then, a solution obtained by dissolving 7.8 g of potassium permanganate (KMnO 4 ) in 250 ml of Di water is added to the reactor, and the temperature is raised to 80 ° C. and stirred to form a second mixed solution. The first mixed solution and the second mixed solution were put together in a reactor, stirred at a temperature of 80 캜 for 2 hours, and then cooled down. When the reaction is completed, it is washed several times with distilled water through a centrifuge and dried at 80 ° C to obtain an electrode catalyst.

3) 양극 제조3) Anode manufacturing

α-Ni(OH)2/GO 복합체를 양극활물질로 사용하였으며, 슬러리 전극의 조성은 활물질 : 도전재 : 바인더 = 89 : 6 : 5 중량비로 혼합하였다. 바인더는 카복시메틸셀룰로오스(carboxymethylcellulose, CMC) 0.3g을 탈이온수(deionized water) 9.7ml에 녹인 후, 도전재인 카본블랙(carbon black)과 CoO를 각각 0.6g씩 넣어 초음파 처리를 하였다. 초음파 처리가 끝난 후 양극활물질을 16.91g과 전극촉매제인 MnO2/GO를 0.89g을 추가하여 혼합기로 20분간 처리한 뒤, 활물질, 도전재, 바인더의 분산을 돕기 위하여 초음파처리기 또는 균질기를 이용하여 10분간 처리하였다. 마지막으로 스티렌부타디엔고무(styrene butadiene rubber, SBR)를 넣어 슬러리의 점도를 1000 내지 1500mPa·S가 되도록 조정하였다. 슬러리를 1mmT의 두께를 가진 니켈폼(Ni foam)에 넣어 딥코팅을 한 다음, 100℃의 진공오븐에 전극을 건조시켰다. 전극의 건조가 끝난 후, 80℃의 핫롤프레스(hot roll press)를 이용하여 전극의 두께가 500㎛가 되도록 압착시켰다.α-Ni (OH) 2 / GO composite was used as a cathode active material, and the composition of the slurry electrode was mixed in an active material: conductive material: binder = 89: 6: 5 weight ratio. The binder was prepared by dissolving 0.3 g of carboxymethylcellulose (CMC) in 9.7 ml of deionized water, and then 0.6 g of each of carbon black and CoO as conductive materials was ultrasonicated. After the ultrasonic treatment, 16.91 g of the cathode active material and 0.89 g of MnO 2 / GO as the electrode catalyst were treated with a mixer for 20 minutes. Then, to aid dispersion of the active material, conductive material and binder, an ultrasonic processor or homogenizer And treated for 10 minutes. Finally, styrene butadiene rubber (SBR) was added to adjust the viscosity of the slurry to 1000 to 1500 mPa · S. The slurry was dip coated in a Ni foam having a thickness of 1 mmT, and the electrode was then dried in a vacuum oven at 100 캜. After the electrode was dried, the electrode was pressed with a hot roll press at 80 DEG C so that the thickness of the electrode was 500 mu m.

4) 음극 제조4) Negative electrode manufacturing

환원된 그래핀옥사이드(reduced graphene oxide, RGO)를 음극활물질로 사용하였으며, 슬러리 전극의 조성물은 활물질 : 도전재 : 바인더 = 82 : 8 : 10 중량비로 혼합하였다. 바인더는 카복시메틸셀룰로오스 0.3g을 탈이온수 9.7ml에 녹인 용액과 미리 연신시켜놓은 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE) 0.5g에 도전재인 카본블랙을 1.6g씩 넣어 초음파 처리를 하였다. 초음파 처리가 끝난 후 활물질을 16.4g 추가하여 혼합기로 20분간 처리한 뒤, 활물질, 도전재 및 바인더의 분산을 돕기 위하여 초음파처리기 또는 균질기를 이용하여 10분간 처리하였다. 마지막으로 SBR을 넣어 슬러리의 점도를 1000 내지 1500mPa·S가 되도록 조정하였다. 슬러리를 1.8mmT 두께를 가진 니켈폼에 넣어 딥코팅을 한 다음 100℃의 진공오븐에 전극을 건조시켰다. 전극의 건조가 끝난 후, 80℃의 핫롤프레스를 이용하여 전극의 두께가 900㎛가 되도록 압착시켰다.Reduced graphene oxide (RGO) was used as the negative electrode active material, and the composition of the slurry electrode was mixed at a weight ratio of active material: conductive material: binder = 82: 8: 10. The binder was ultrasonicated by adding 1.6 g of carbon black as a conductive material to 0.5 g of polytetrafluoroethylene (PTFE) preliminarily stretched in a solution of 0.3 g of carboxymethylcellulose in 9.7 ml of deionized water. After the ultrasonic treatment, 16.4 g of active material was added, and the mixture was treated with a mixer for 20 minutes. Then, the mixture was treated with an ultrasonic processor or a homogenizer for 10 minutes to aid dispersion of the active material, conductive material and binder. Finally, SBR was added to adjust the viscosity of the slurry to 1000 to 1500 mPa · S. The slurry was dip coated in a nickel foam having a thickness of 1.8 mmT, and the electrode was then dried in a vacuum oven at 100 캜. After drying of the electrode, the electrode was pressed with a hot roll press at 80 DEG C so that the thickness of the electrode was 900 mu m.

<실시예 2> : 셀 제조Example 2: Cell preparation

실시예 1을 통해 제조된 전극을 2.5×2.5cm2으로 재단하고, 셀룰로즈(cellulose) 계열 분리막으로 양극/분리막/음극 전극 순서로 겹쳐서 쌓은 후, 테프론 셀에 투입하고 진공 감압 또는 가압이 가능한 전해액 주입기에 6M의 수산화칼륨(KOH) 전해액을 함침하고 진공 실링(sealing)하여 셀을 제조하였다.The electrodes prepared in Example 1 were cut to 2.5 x 2.5 cm 2 and stacked in the order of anode / separator / cathode by a cellulose-based separator. Then, the electrodes were placed in a Teflon cell, and an electrolyte injector Was impregnated with a 6M potassium hydroxide (KOH) electrolyte and vacuum sealed to prepare a cell.

<실시예 3> : 충방전 용량 측정&Lt; Example 3 >: Measurement of charging / discharging capacity

하이브리드 커패시터의 충방전 용량은 충방전 시험기(MACCOR, 모델명 series 4000)에서 정전류법으로 충전과 방전을 행하였다. 구동전압은 0.8 내지 1.6V에서 인가전류밀도는 2mA/cm2의 조건으로 측정하였다. 하이브리드 커패시터의 충방전 용량은 5번째의 정전류 방전에서의 시간-전압 곡선에서 아래의 식 1에 의해 계산하였다.The charging and discharging capacities of the hybrid capacitors were charged and discharged by a constant current method in a charge and discharge tester (MACCOR, model series series 4000). The driving voltage was 0.8 to 1.6 V and the applied current density was 2 mA / cm 2 . The charging / discharging capacity of the hybrid capacitor was calculated by the following Equation 1 in the time-voltage curve in the fifth constant current discharge.

<식 1><Formula 1>

C(정전용량, F) = dt·I/DvC (capacitance, F) = dt I / Dv

<실시예 4> : 임피던스 측정Example 4: Impedance measurement

하이브리드 커패시터 셀의 임피던스(impedance)의 경우, 충방전 테스트가 끝난 후 주파수 범위 1m 내지 1MHz, 진폭(amplitude) 10mV로 분석하였으며 이때 1kHz 저항을 측정하였다. 도 2는 실시예와 비교예의 셀 저항을 비교하기 위한 임피던스 결과이며, 이 그래프는 기울기가 클수록 접촉저항(contact resistance)이 작은 것을 의미한다. 따라서 실시예에 비해 비교예의 기울기가 큰 것으로 보아 실시예는 비교예에 비해 접촉저항이 개선되는 결과를 나타내는 것을 알 수 있는데, 실시예의 Nyquist plot 결과 전기화학적촉매(electrocatalyst)인 MnO2/GO 전극촉매제를 첨가하여 용액 저항(solution resistance) 및 접촉 저항(contact resistance) 특성을 개선할 수 있는 것을 알 수 있다. 실시예의 1kHz 저항 값은 0.119Ω이고, 비교예는 0.178Ω으로 비교예보다 실시예의 저항값이 더 낮은 결과를 나타내었다. 또한 그래프에서 높은 주파수 영역에서 반원 모양이 형성되는데, 반원의 직경이 커질수록 임피던스가 커지는 것을 의미한다. 이를 확인하면 실시예의 경우 반원의 직경이 거의 나타나지 않는 데에 비해 비교예 경우 반원이 명확하게 나타나며, 이는 비교예의 반원 직경이 실시예의 반원 직경보다 큰 것을 알 수 있다. 즉 반원의 직경과 접촉저항을 조합했을 경우 비교예의 임피던스가 실시예의 임피던스보다 높은 것을 확인할 수 있다. 이는 전극촉매제인 MnO2/GO의 높은 촉매활성, 전하 저장 특성으로 인하여 개선되는 것으로 보여진다.In the case of the impedance of the hybrid capacitor cell, after the charge / discharge test, the frequency range was 1 to 1 MHz and the amplitude was 10 mV, and the 1 kHz resistance was measured. Fig. 2 shows the impedance results for comparing the cell resistances of the embodiment and the comparative example. The larger the slope of the graph, the smaller the contact resistance. Therefore, it can be seen from the fact that the slope of the comparative example is larger than that of the examples, the contact resistance is improved compared with the comparative example. As a result of Nyquist plot of the embodiment, MnO 2 / GO electrode catalyst as an electrocatalyst Can be added to improve solution resistance and contact resistance characteristics. The 1 kHz resistance value of the embodiment was 0.119 OMEGA, and the comparative example was 0.178 OMEGA, showing a lower resistance value of the embodiment than the comparative example. Also, a semi-circular shape is formed in the high frequency region of the graph, which means that the larger the diameter of the semicircle is, the larger the impedance is. As a result, it can be seen that the diameter of the semicircle of the comparative example is clearly larger than that of the semicircular diameter of the comparative example, whereas the diameter of the semicircular circle of the comparative example is larger than that of the embodiment. That is, when the diameter of the semicircle and the contact resistance are combined, the impedance of the comparative example is higher than that of the embodiment. It is believed that this is due to the high catalytic activity and charge storage characteristics of the electrode catalyst, MnO 2 / GO.

<실시예 5> : 율특성Example 5: Rate characteristics

하이브리드 커패시터 셀의 율특성(rate capability)의 경우 전류밀도 x mA/cm2(x = 1, 2, 3, 5, 7, 10, 20, 30), 구동전압은 0.8 내지 1.6V로 실시하여 용량 유지율(%)을 측정하였다. 도 3은 인가 전류밀도에 따른 충방전 용량을 나타낸 그래프로, 방전전류의 범위를 1, 3, 5, 7, 10, 20, 30mA/cm2로 인가하여 율특성을 측정하였으며, 그 결과 비교예보다 실시예가 출력 특성이 우수하게 나타나는 것을 확인할 수 있다. 실시예의 율특성이 증가하는 이유는 MnO2/GO 전극촉매제가 전극의 첨가제로 적용되어 높은 촉매활성, 전하 저장 특성이 증가함과 동시에, 그래핀옥사이드와 같은 탄소재료가 산화환원 활성 재료(redox active materials)의 역할을 하기 때문에 전류에 따른 율특성이 개선되어지는 것으로 보여진다.In the case of the rate capability of the hybrid capacitor cell, the current density x mA / cm 2 (x = 1, 2, 3, 5, 7, 10, 20, 30) The retention ratio (%) was measured. FIG. 3 is a graph showing charge / discharge capacities according to the applied current density. The rate characteristics were measured by applying a range of discharge currents at 1, 3, 5, 7, 10, 20, and 30 mA / cm 2 , It can be seen that the embodiment shows better output characteristics. The reason for the increase in the rate characteristics of the embodiment is that the MnO 2 / GO electrode catalyst is applied as an additive to the electrode to increase the catalytic activity and the charge storage property, and at the same time, the carbon material such as graphene oxide, materials, it is seen that the current - dependent rate characteristics are improved.

Claims (9)

전기화학 특성 개선을 위한 전극 제조방법에 있어서,
활물질과 탄소재를 혼합하여 활물질/탄소재 복합체를 제조하는 단계 및 망간옥사이드/그래핀옥사이드(MnO2/GO) 전극촉매제를 제조하는 단계와;
상기 활물질/탄소재 복합체 및 상기 전극촉매제를 혼합하여 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 전기화학 특성 개선을 위한 전극 제조방법.
A method of manufacturing an electrode for improving electrochemical characteristics,
Preparing an active material / carbon composite material by mixing an active material and a carbonaceous material, and preparing a manganese oxide / graphene oxide (MnO 2 / GO) electrode catalyst;
And forming an electrode by mixing the active material / carbon composite and the electrode catalyst.
제 1항에 있어서,
상기 활물질은, 루테늄옥사이드(RuO2), 망가니즈옥사이드(MnO2), 니켈옥사이드(Ni(OH)2), 틴옥사이드(SnO2), 몰리브데넘옥사이드(Mo2N), 티타늄니트라이드(TiN), 바나듐옥사이드(V2O5), 페라이트(MnFe2O4), 탄탈럼옥사이드(Ta2O5) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 전기화학 특성 개선을 위한 전극 제조방법.
The method according to claim 1,
The active material may be at least one selected from the group consisting of ruthenium oxide (RuO 2 ), manganese oxide (MnO 2 ), nickel oxide (Ni (OH) 2 ), tin oxide (SnO 2 ), molybdenum oxide (Mo 2 N), titanium nitride Wherein the electrode is selected from the group consisting of TiN, vanadium oxide (V 2 O 5 ), ferrite (MnFe 2 O 4 ), tantalum oxide (Ta 2 O 5 ) Way.
제 1항에 있어서,
상기 탄소재는, 활성탄(activated carbon), 그라파이트(graphite), 그래핀(graphene), 그래핀옥사이드(graphene oxide, GO), 환원된 그래핀옥사이드(reduced graphene oxide, RGO), 탄소나노튜브(carbon nano tube), 탄소섬유(carbon fiber), 전도성폴리머(conducting polymer), 에어로겔(aerogel) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 전기화학 특성 개선을 위한 전극 제조방법.
The method according to claim 1,
The carbon material may be activated carbon, graphite, graphene, graphene oxide (GO), reduced graphene oxide (RGO), carbon nano wherein the electrode is selected from the group consisting of carbon fiber, tube, carbon fiber, conducting polymer, aerogel and mixtures thereof.
제 1항에 있어서,
상기 활물질/탄소재 복합체 및 전극촉매제의 혼합비는 95 : 5 중량비로 이루어지는 것을 특징으로 하는 전기화학 특성 개선을 위한 전극 제조방법.
The method according to claim 1,
Wherein the mixing ratio of the active material / carbonaceous material composite to the electrode catalyst material is in a weight ratio of 95: 5.
전기화학 특성 개선을 위한 전극에 있어서,
기판과;
상기 기판의 상부에 적층된 활물질/탄소재 복합체 및 망간옥사이드/그래핀옥사이드(MnO2/GO) 전극촉매제로 이루어진 전극층을 포함하는 것을 특징으로 하는 전기화학 특성 개선을 위한 전극.
An electrode for improving electrochemical characteristics,
Claims [1]
And an electrode layer comprising an active material / carbonaceous composite laminated on the substrate and a manganese oxide / graphene oxide (MnO 2 / GO) electrode catalyst.
제 5항에 있어서,
상기 활물질/탄소재 복합체는 α-니켈하이드록사이드/그래핀옥사이드 복합체(α-Ni(OH)2/GO)인 것을 특징으로 하는 전기화학 특성 개선을 위한 전극.
6. The method of claim 5,
Wherein the active material / carbonaceous composite is an? -Nickel hydroxide / graphen oxide composite (? -Ni (OH) 2 / GO).
제 5항에 있어서,
상기 활물질은, 루테늄옥사이드(RuO2), 망가니즈옥사이드(MnO2), 니켈옥사이드(Ni(OH)2), 틴옥사이드(SnO2), 몰리브데넘옥사이드(Mo2N), 티타늄니트라이드(TiN), 바나듐옥사이드(V2O5), 페라이트(MnFe2O4), 탄탈럼옥사이드(Ta2O5) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 전기화학 특성 개선을 위한 전극.
6. The method of claim 5,
The active material may be at least one selected from the group consisting of ruthenium oxide (RuO 2 ), manganese oxide (MnO 2 ), nickel oxide (Ni (OH) 2 ), tin oxide (SnO 2 ), molybdenum oxide (Mo 2 N), titanium nitride Wherein the electrode is selected from the group consisting of titanium oxide (TiN), vanadium oxide (V 2 O 5 ), ferrite (MnFe 2 O 4 ), tantalum oxide (Ta 2 O 5 ) and mixtures thereof.
제 5항에 있어서,
상기 탄소재는, 활성탄(activated carbon), 그라파이트(graphite), 그래핀(graphene), 그래핀옥사이드(graphene oxide, GO), 환원된 그래핀옥사이드(reduced graphene oxide, RGO), 탄소나노튜브(carbon nano tube), 탄소섬유(carbon fiber), 전도성폴리머(conducting polymer), 에어로겔(aerogel) 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 전기화학 특성 개선을 위한 전극.
6. The method of claim 5,
The carbon material may be activated carbon, graphite, graphene, graphene oxide (GO), reduced graphene oxide (RGO), carbon nano wherein the electrode is selected from the group consisting of carbon fiber, tube, carbon fiber, conducting polymer, aerogel and mixtures thereof.
에너지 저장 디바이스에 있어서,
활물질/탄소재 복합체 및 망간옥사이드/그래핀옥사이드(MnO2/GO) 전극촉매제를 양극활물질로 포함하는 양극과;
환원된 그래핀옥사이드(reduced graphene oxide, RGO)를 음극활물질로 포함하는 음극과;
상기 양극 및 상기 음극이 침지되는 전해액을 포함하는 것을 특징으로 하는 에너지 저장 디바이스.
In an energy storage device,
A cathode comprising an active material / carbon composite and a manganese oxide / graphen oxide (MnO 2 / GO) electrode catalyst as a cathode active material;
An anode including reduced graphene oxide (RGO) as a negative electrode active material;
And an electrolyte solution in which the anode and the cathode are immersed.
KR1020160147204A 2016-11-07 2016-11-07 Energy storage devices including the electrode, the electrode manufacturing method and the electrode to improve the electrochemical performances KR102563546B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160147204A KR102563546B1 (en) 2016-11-07 2016-11-07 Energy storage devices including the electrode, the electrode manufacturing method and the electrode to improve the electrochemical performances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160147204A KR102563546B1 (en) 2016-11-07 2016-11-07 Energy storage devices including the electrode, the electrode manufacturing method and the electrode to improve the electrochemical performances

Publications (2)

Publication Number Publication Date
KR20180050776A true KR20180050776A (en) 2018-05-16
KR102563546B1 KR102563546B1 (en) 2023-08-03

Family

ID=62451850

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160147204A KR102563546B1 (en) 2016-11-07 2016-11-07 Energy storage devices including the electrode, the electrode manufacturing method and the electrode to improve the electrochemical performances

Country Status (1)

Country Link
KR (1) KR102563546B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797214A (en) * 2019-09-16 2020-02-14 中车青岛四方机车车辆股份有限公司 Co-assembly preparation of MnO2Method for preparing/graphene composite material and application thereof
KR20210055217A (en) 2019-11-07 2021-05-17 한국전기연구원 Method for producing carbon-manganese oxide catalyst for electrode for improving life characteristics, carbon-manganese oxide catalyst produced therefrom, electrode including the same, and energy storage device
KR20210061764A (en) 2019-11-20 2021-05-28 한국전기연구원 High dispersion and high density electrode manufacturing method, electrode manufactured thereby, and energy storage device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571267B1 (en) 2004-11-29 2006-04-13 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR100833041B1 (en) 2005-05-03 2008-05-27 주식회사 엘지화학 Nonaqueous electrolyte for improving performance and lithium secondary battery comprising the same
KR100856286B1 (en) 2005-12-19 2008-09-03 주식회사 엘지화학 Nonflammable non-aqueous electrolyte and secondary battery comprising the same
JP2014503933A (en) * 2011-02-16 2014-02-13 トヨタ自動車株式会社 Method for producing positive electrode material for lithium air secondary battery, positive electrode material for lithium air secondary battery, and lithium air secondary battery
KR20140038035A (en) * 2012-09-19 2014-03-28 에스케이이노베이션 주식회사 Graphene oxide composite, production method thereof and electrochemical energy storage device containing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571267B1 (en) 2004-11-29 2006-04-13 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR100833041B1 (en) 2005-05-03 2008-05-27 주식회사 엘지화학 Nonaqueous electrolyte for improving performance and lithium secondary battery comprising the same
KR100856286B1 (en) 2005-12-19 2008-09-03 주식회사 엘지화학 Nonflammable non-aqueous electrolyte and secondary battery comprising the same
JP2014503933A (en) * 2011-02-16 2014-02-13 トヨタ自動車株式会社 Method for producing positive electrode material for lithium air secondary battery, positive electrode material for lithium air secondary battery, and lithium air secondary battery
KR20140038035A (en) * 2012-09-19 2014-03-28 에스케이이노베이션 주식회사 Graphene oxide composite, production method thereof and electrochemical energy storage device containing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L. Lu et al., ‘Graphene-MnO2 Hybrid Nanostructure as a New Catalyst for Formaldehyde Oxidation,’J. Phys. Chem. C 2016, 120, pp.23660-23668 (2016.10.10.) 1부.* *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797214A (en) * 2019-09-16 2020-02-14 中车青岛四方机车车辆股份有限公司 Co-assembly preparation of MnO2Method for preparing/graphene composite material and application thereof
KR20210055217A (en) 2019-11-07 2021-05-17 한국전기연구원 Method for producing carbon-manganese oxide catalyst for electrode for improving life characteristics, carbon-manganese oxide catalyst produced therefrom, electrode including the same, and energy storage device
KR20210061764A (en) 2019-11-20 2021-05-28 한국전기연구원 High dispersion and high density electrode manufacturing method, electrode manufactured thereby, and energy storage device including the same

Also Published As

Publication number Publication date
KR102563546B1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
Zhang et al. “Water-in-salt” electrolyte enhanced high voltage aqueous supercapacitor with all-pseudocapacitive metal-oxide electrodes
Cui et al. All-carbon lithium capacitor based on salt crystal-templated, N-doped porous carbon electrodes with superior energy storage
Wu et al. Electrochemical capacitance of polypyrrole nanowire prepared by using cetyltrimethylammonium bromide (CTAB) as soft template
JP6312825B2 (en) Flexible supercapacitor and method of manufacturing the same
Liu et al. NiO-based composite electrode with RuO2 for electrochemical capacitors
US20110043968A1 (en) Hybrid super capacitor
WO2004022484A1 (en) Carbon fine powder coated with metal oxide, metal nitride or metal carbide, process for producing the same, and supercapacitor and secondary battery using the carbon fine powder
Ye et al. In-situ growth of Se-doped NiTe on nickel foam as positive electrode material for high-performance asymmetric supercapacitor
Gong et al. Facile synthesis of Ni 0.85 Se on Ni foam for high-performance asymmetric capacitors
Zhang et al. Preparation of MnO2 electrodes coated by Sb-doped SnO2 and their effect on electrochemical performance for supercapacitor
Hosseini et al. Anchoring RuO 2 nanoparticles on reduced graphene oxide-multi-walled carbon nanotubes as a high-performance supercapacitor
KR102563546B1 (en) Energy storage devices including the electrode, the electrode manufacturing method and the electrode to improve the electrochemical performances
CN107346711A (en) A kind of composite PANI/Ti3C2TxPreparation and application
Tong et al. Co2NiO4 nanoneedle networks for high performance pseudocapacitor
KR20170068492A (en) Binder, use thereof and method for producing electrode
Sun et al. Physical and electrochemical characterization of CuO-doped activated carbon in ionic liquid
CN114031784A (en) Method for preparing nickel-cobalt bimetal organic framework composite material and application
CN104124435B (en) Multiple edge MoS2nanometer sheet/Graphene electrochemistry storage sodium combination electrode and preparation method
JP2019186266A (en) Electricity storage device
KR102518143B1 (en) Method of manufacturing the active material using a spray-dried, thereby the active material and energy storage device including the active material
Wang et al. Electrochemical performance of Fe x Mn 1− x-based metal–organic frameworks as electrode materials for supercapacitors
CN110610817A (en) Based on Mn3O4Supercapacitor made of graphene composite material and preparation method of supercapacitor
CN103451699A (en) Method for preparing Mn0.12Co0.94Ni0.51O2 ultrathin nanosheet super capacitor material
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
KR20210055217A (en) Method for producing carbon-manganese oxide catalyst for electrode for improving life characteristics, carbon-manganese oxide catalyst produced therefrom, electrode including the same, and energy storage device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant