KR20180041377A - A Novel alpha-neoagarobiose hydrolase from Gayadomonas joobiniege G7 and use thereof - Google Patents

A Novel alpha-neoagarobiose hydrolase from Gayadomonas joobiniege G7 and use thereof Download PDF

Info

Publication number
KR20180041377A
KR20180041377A KR1020160133438A KR20160133438A KR20180041377A KR 20180041377 A KR20180041377 A KR 20180041377A KR 1020160133438 A KR1020160133438 A KR 1020160133438A KR 20160133438 A KR20160133438 A KR 20160133438A KR 20180041377 A KR20180041377 A KR 20180041377A
Authority
KR
South Korea
Prior art keywords
neoagarobiose
alpha
galactose
present
neoagarobiose hydrolase
Prior art date
Application number
KR1020160133438A
Other languages
Korean (ko)
Other versions
KR101919105B1 (en
Inventor
홍순광
박재선
이창로
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Priority to KR1020160133438A priority Critical patent/KR101919105B1/en
Publication of KR20180041377A publication Critical patent/KR20180041377A/en
Application granted granted Critical
Publication of KR101919105B1 publication Critical patent/KR101919105B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01159Alpha-neoagaro-oligosaccharide hydrolase (3.2.1.159)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2511/00Cells for large scale production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to a novel alpha-neoagarobiose hydrolase derived from Gayadomonas joobiniege G7 and a use of the same. More specifically, the present invention relates to a novel alpha-neoagarobiose hydrolase which is identified from Gayadomonas joobiniege G7; can be overexpressed in a strain of different species; and decomposes anhydrous galactose at the non-reducing end of neoagarooligosaccharides to produce neoagarooligosaccharides composed of anhydrous galactose and an odd number of sugar molecules in a form in which anhydrous galactose molecules at the non-reducing end are eliminated. In addition, the present invention relates to a method of using the novel alpha-neoagarobiose hydrolase. The novel alpha-neoagarobiose hydrolase of the present invention is extremely effective in decomposing neoagarobiose into galactose and anhydrous galactose; can be mass produced through an overexpression system using host cells of different species; may be extremely beneficially used together with other enzymes in the industrial fields that produce biofuels and drug substances through saccharification from biomass. In addition, the novel alpha-neoagarobiose hydrolase acts on neoagarooligosaccharides formed by beta-agarase and composed of an even number of sugars (neoagarotetraose, neoagarohexaose, etc.) to eliminate only one anhydrous galactose molecule at the non-reducing end, and thus can be used in the production of novel functional neoagarooligosaccharides composed of an odd number of sugar molecules (neoagarotriose, neoagaropentaose, etc.).

Description

가야도모나스 주비니에게 G7 유래 신규 알파-네오아가로바이오스 하이드로레이즈 및 이의 이용{A Novel alpha-neoagarobiose hydrolase from Gayadomonas joobiniege G7 and use thereof}A Novel alpha-neoagarobiose hydrolase from Gayadomonas joobiniege G7 and use thereof, which is derived from G7,

본 발명은 가야도모나스 주비니에게 G7 유래 신규 알파-네오아가로바이오스 하이드로레이즈 및 이의 이용에 관한 것으로, 구체적으로 가야도모나스 주비니에게 G7으로부터 동정되어 이종균주에서 과발현이 가능하며 네오아가로올리고당의 비환원성 말단의 무수갈락토오스를 분해하여 무수갈락토오스 분자와 비환원성 말단의 무수갈락토오스가 제거된 형태의 홀수개 당분자로 구성된 네오아가로올리고당을 생성할 수 있는 신규 알파-네오아가로바이오스 하이드로레이즈 및 이를 이용하는 방법에 관한 것이다.The present invention relates to novel alpha-neoagarobiohydrolase derived from G7 to Kayadomonas juvinis and its use, and more specifically, it relates to a novel α-neoagarobiohydrolase which can be overexpressed in Lee, Neoagarobiose hydrolyzate capable of producing neoagarooligosaccharide composed of anhydrous galactose molecules and an odd sugar molecule in which anhydrogalactose at the non-reducing end is removed, by decomposing the anhydrous galactose of the non-reducing end of the And a method of using the same.

해조류는 일반적으로 이용되는 에너지 곡물에 비해 연료 생산량이 월등히 높으며, 지구온난화의 주범인 이산화탄소 흡수능이 뛰어나고, 태양광 및 비식용수 만을 이용하며 매우 빠른 속도의 성장이 이루어지는 장점을 가진다. 해조류를 구성하고 있는 주요성분은 다당류로, 최근에는 건강에 대한 관심이 증대되면서 생체조절기능을 갖는 다기능성 올리고당의 소재로 많이 사용되고 있다. 특히 해조류 유래 기능성 소재는 항종양성, 항바이러스성, 항혈액응고 및 면역력 증강 등 다양한 생리활성 기능을 가지고 있는 것으로 알려져 있다. 해조류 중에서도 홍조류는 바다 속에 다량 존재하고 있으나 이용률이 높지 않은 농수산자원으로 셀룰로오스(cellulose) 20%, 아가(agar) 60%, 단백질 10%, 기타 10%로 구성되어 있으며, 주로 식용 및 화장품에 사용하거나, 정제하여 연구용 아가 또는 아가로오스(agarose)로 사용하여 왔다.The seaweeds have the advantage that they produce much higher fuel yield than the commonly used energy grains, have excellent carbon dioxide absorbing ability that is the main cause of global warming, use only solar and non-drinking water, and grow very rapidly. The major constituent of seaweeds is polysaccharides. Recently, as interest in health has increased, it has been widely used as a material for multifunctional oligosaccharides having biological control functions. Especially, functional materials derived from seaweeds are known to have various physiological activities such as anti-viral, anti-viral, anti-blood coagulation and immunity enhancement. Among seaweeds, red algae are abundant in the sea, but they are composed of 20% of cellulose, 60% of agar, 10% of protein, 10% of other, and it is mainly used for edible and cosmetics , Purified and used as research agar or agarose.

해조류는 일년에 4 ~ 6회 정도 원료 수확이 가능하여 원료 확보가 유리하며, 또한 바다에 무한하게 존재하므로 생산 및 수확비용이 아주 저렴하다는 장점이 있다. 홍조류 우뭇가사리는 국내의 경우 매년 수확량이 4,000톤에 이르는 풍부한 농수산자원이지만, 전체 생산량의 10% 이하만이 단순가공 처리되어 공업용 또는 식용 등의 값싼 원료로 사용되고 있다. 따라서 우뭇가사리의 새로운 용도개발과 부가가치 향상에 대한 연구가 필요하며, 이에 다양한 분자생물학적 대사공학방법을 적용하여 방대한 농수산자원인 홍조류로부터 고부가가치 산물인 기능성 아가로올리고당을 생산할 수 있는 기술을 개발할 필요성이 있다. 또한 인체에 안전하게 적용하기 위해서는 염산과 같은 유해하지 않고 환경 오염원을 사용하지 않는 친환경적인 새로운 생물전환 방법으로 네오아가로올리고당을 제조하는 방법이 필요하며, 이를 응용하여 기존에 사용되어 왔던 다른 원료에 비해 경제성과 효능이 우수한 네오아가로올리고당 제품으로 개발할 필요가 있다. 이와 같은 기술개발은 국내에서 채취하는 천연농수산자원의 이용률을 높이고, 농수산 자원을 이용한 고부가가치 상품을 창출하며, 국민 건강에 기여할 수 있고, 세계의 생체 촉매 시장에서도 독자적 기술로 자생력을 갖출 수 있는 차세대 녹색 성장을 위하여 절대적으로 필요한 기술이라고 판단된다.Seaweeds can be harvested 4 ~ 6 times a year, so it is advantageous to secure raw materials and to exist in the sea infinitely so that production and harvesting costs are very cheap. Red algae is a rich source of agricultural and marine resources with a yield of 4,000 tons per year in Korea. However, less than 10% of the total production is processed by simple processing and used as inexpensive raw materials for industrial use or food. Therefore, it is necessary to study the development of new uses and value-added enhancement of Staphylococcus aureus, and it is necessary to develop a technology capable of producing high-value-added functional agar oligosaccharide from red algae, which is a vast agricultural and marine resource, by applying various molecular biological metabolic engineering methods . In order to apply it safely to human body, there is a need for a method of producing neoagarooligosaccharide by a new environmentally friendly bioconversion method which is not harmful such as hydrochloric acid and does not use an environmental pollutant source, and is applied to other raw materials It is necessary to develop a neoagarooligosaccharide product which is excellent in economy and efficacy. This kind of technology development can enhance the utilization rate of natural agricultural and marine resources that are collected in Korea, create high value-added products using agricultural and marine resources, contribute to the public health, and enable the next generation It is considered to be an absolutely necessary technology for green growth.

한편 홍조류에 함유된 아가의 약 70%는 아가로오스(agarose)이며, 이 아가로오스는 갈락토오스(D-galactose)와 무수갈락토오스(3,6-anhydro-L-galactose)가 β-1, 4 결합한 단위체인 아가로바이오스(agarobiose)가 반복하여 α-1, 3 결합으로 연결된 직쇄구조로 구성되어 있다. 아가로오스는 베타-아가레이즈(beta-agarase)에 의해 β-1, 4 결합이 가수분해되어 최소 단위체인 네오아가로바이오스로 되고 알파-네오아가로바이오스 하이드로레이즈에 의해 갈락토오스와 무수갈락토오스로 분해된다(도 1 참조). 네오아가로바이오스를 구성하는 무수갈락토오스의 경우 신 물질로 새로운 생리활성의 연구대상이 되고 있으며, 그 효용 가치가 매우 높다. 그리고 갈락토오스는 감미료 타가토스(Tagatose)의 원료로 사용하는 고가의 화합물이며, 무수갈락토오스와 함께 바이오에탄올을 생산에 활용될 수 있다.On the other hand, about 70% of the agar contained in the red algae is agarose, and the agarose contains galactose (D-galactose) and anhydrous galactose (3,6-anhydro-L-galactose) Agarobiose, which is a combined unit, is composed of a linear structure repeatedly connected by α-1,3 bonds. Agarose is hydrolyzed by β-1, 4 bond by beta-agarase to become the minimum unit neoagarobiose and decomposed into galactose and anhydrous galactose by alpha-neoagarose biosyme hydrate (See Fig. 1). In the case of anhydrous galactose constituting the neoagarose bios, the new material has been studied for its new physiological activity and its utility value is very high. And galactose is an expensive compound used as a raw material for sweetener Tagatose, and it can be used for producing bioethanol together with anhydrous galactose.

본 발명자는 상기와 같은 해조류 유래 아가로올리고당을 보다 유용하게 이용할 수 있는 방법을 개발하기 위하여 다양한 연구를 수행하였으며, 특히 이러한 아가로올리고당을 특이적으로 분해하여 유용한 네오아가로올리고당을 생산할 수 있는 미생물 및 관련 효소를 발굴하기 위하여 노력하였다. 이의 결과, 우리나라 가야섬의 연안 바닷물에서 분리된 가야도모나스 주비니에게 G7(Gayadomonas jubiniege G7) 균주로부터 신규한 알파-네오아가로바이오스 하이드로레이즈 및 이의 유전자를 동정하고, 이의 재조합 효소를 대량생산할 수 있는 방법을 구축하였으며, 생산된 효소를 이용하여 네오아가로올리고당을 분해함으로써 매우 유용한 당의 형태, 즉 갈락토오스, 무수갈락토오스, 또는 비환원성 말단의 무수갈락토오스가 제거된 홀수개의 당으로 구성된 네오아가로올리고당을 생산할 수 있음을 확인하고 본 발명을 완성하게 되었다.The present inventors have conducted various studies to develop a method for more effectively utilizing the above-described agarooligosaccharides derived from seaweeds. In particular, the present inventors have conducted various studies to develop a method for using agarooligosaccharides derived from algae such as microorganisms capable of producing useful neoagarooligosaccharides by specifically degrading such agarooligosaccharides And related enzymes. As a result, it is possible to identify novel alpha-neoagarobiose hydrolyzate and its gene from G7 (Gayadomonas jubiniege G7) strain and to produce recombinant enzyme thereof in large quantities to Gayadomasubinyi isolated from the coastal waters of Gaya Island, Korea And a neoagarooligosaccharide composed of an odd number of sugars in which galactose, anhydrous galactose, or non-reducing terminal anhydrogalactose is removed, is obtained by decomposing the neoagarooligosaccharide using the produced enzyme, And the present invention has been completed.

대한민국 등록특허 제10-1618765호Korean Patent No. 10-1618765 대한민국 등록특허 제10-1615141호Korean Patent No. 10-1615141

Ha SC, Lee S, Lee J, Kim HT, Ko HJ, Kim KH, Choi IG. Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochem Biophys Res Commun. 2011 Aug 26;412(2):238-44.Ha SC, Lee S, Lee J, Kim HT, Ko HJ, Kim KH, Choi IG. Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochem Biophys Res Commun. 2011 Aug 26; 412 (2): 238-44. Hehemann JH, Smyth L, Yadav A, Vocadlo DJ, Boraston AB. Analysis of keystone enzyme in Agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds. J Biol Chem. 2012 Apr 20;287(17):13985-95.Hehemann JH, Smyth L, Yadava, Vocadlo DJ, Boraston AB. Analysis of keystone enzyme in agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds. J Biol Chem. 2012 Apr 20; 287 (17): 13985-95. Ariga O, Okamoto N, Harimoto N, Nakasaki K. Purification and characterization of α-neoagarooligosaccharide hydrolase from Cellvibrio sp. OA-2007. J Microbiol Biotechnol. 2014 Jan;24(1):48-51.Ariga O, Okamoto N, Harimoto N, Nakasaki K. Purification and characterization of α-neoagarooligosaccharide hydrolase from Cellvibrio sp. OA-2007. J Microbiol Biotechnol. 2014 Jan; 24 (1): 48-51. Kwak MJ, Song JY, Kim BK, Chi WJ, Kwon SK, Choi S, Chang YK, Hong SK, Kim JF. Genome sequence of the agar-degrading marine bacterium Alteromonadaceae sp. strain G7. J Bacteriol. 2012 Dec;194(24):6961-2.Kwak MJ, Song JY, Kim BK, Chi WJ, Kwon SK, Choi S, Chang YK, Hong SK, Kim JF. Genome sequence of the agar-degrading marine bacterium Alteromonadaceae sp. strain G7. J Bacteriol. 2012 Dec; 194 (24): 6961-2. Chi WJ, Park JS, Kwak MJ, Kim JF, Chang YK, Hong SK. Isolation and characterization of a novel agar-degrading marine bacterium, Gayadomonas joobiniege gen, nov, sp. nov., from the Southern Sea, Korea. J Microbiol Biotechnol. 2013 Nov 28;23(11):1509-18.Chi WJ, Park JS, Kwak MJ, Kim JF, Chang YK, Hong SK. Isolation and characterization of a novel agar-degrading marine bacterium, Gayadomonas joobiniege gene, nov, sp. nov., from the Southern Sea, Korea. J Microbiol Biotechnol. 2013 Nov 28; 23 (11): 1509-18.

따라서 본 발명의 주된 목적은 가야도모나스 주비니에게 G7(Gayadomonas jubiniege G7) 균주로부터 유래한 신규한 알파-네오아가로바이오스 하이드로레이즈를 제공하는데 있다.Accordingly, a primary object of the present invention is to provide a novel alpha-neoagarobiose hydrate derived from G7 (Gayadomonas jubiniege G7) strain to Gayadomus jubini.

본 발명의 다른 목적은 상기 알파-네오아가로바이오스 하이드로레이즈를 암호화하는 유전자를 제공하는데 있다.It is another object of the present invention to provide a gene encoding the alpha-neoagarobiose hydrate.

본 발명의 또 다른 목적은 상기 알파-네오아가로바이오스 하이드로레이즈를 생산하기 위한 재조합 벡터를 제공하는데 있다.It is still another object of the present invention to provide a recombinant vector for producing the alpha-neoagarobiose hydrate.

본 발명의 또 다른 목적은 상기 알파-네오아가로바이오스 하이드로레이즈를 생산하기 위한 형질전환체를 제공하는데 있다.It is still another object of the present invention to provide a transformant for producing the alpha-neoagarobiohydrolase.

본 발명의 또 다른 목적은 상기 알파-네오아가로바이오스 하이드로레이즈를 대량생산하는 방법을 제공하는데 있다.It is still another object of the present invention to provide a method for mass production of the alpha-neoagarobiose hydrate.

본 발명의 또 다른 목적은 상기 알파-네오아가로바이오스 하이드로레이즈를 이용한 무수갈락토오스 또는 갈락토오스 생산방법을 제공하는데 있다.It is still another object of the present invention to provide a method for producing anhydrous galactose or galactose using the alpha-neoagarobiohydrolase.

본 발명의 또 다른 목적은 상기 알파-네오아가로바이오스 하이드로레이즈를 이용한 무수갈락토오스 또는 비환원성말단의 무수갈락토오스가 제거된 네오아가로올리고당 생산방법을 제공하는데 있다.It is still another object of the present invention to provide a method for producing neoagarooligosaccharide in which anhydrous galactose or non-reducing terminal anhydrous galactose is removed using the alpha-neoagarobiose hydrate.

본 발명의 한 양태에 따르면, 본 발명은 서열번호 1의 아미노산 서열로 이루어지는 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase)를 제공한다.According to one aspect of the present invention, there is provided an alpha-neoagarobiose hydrolase comprising the amino acid sequence of SEQ ID NO: 1.

본 발명의 다른 양태에 따르면, 본 발명은 서열번호 1의 아미노산 서열을 암호화하는 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 유전자를 제공한다. 본 발명의 알파-네오아가로바이오스 하이드로레이즈 유전자는 서열번호 2의 염기서열로 이루어질 수 있다.According to another aspect of the present invention, there is provided an alpha-neoagarobiose hydrolase gene encoding the amino acid sequence of SEQ ID NO: 1. The alpha-neoagarobiohydrolase gene of the present invention may comprise the nucleotide sequence of SEQ ID NO: 2.

본 발명의 또 다른 양태에 따르면, 본 발명은 상기 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 유전자를 함유하는 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 생산용 재조합 벡터를 제공한다.According to another aspect of the present invention, there is provided a recombinant vector for producing alpha-neoagarobiose hydrolase, which contains the alpha-neoagarobiose hydrolase gene, to provide.

본 발명의 또 다른 양태에 따르면, 본 발명은 상기 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 생산용 재조합 벡터로 형질전환된 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 생산용 형질전환체를 제공한다.According to another aspect of the present invention, there is provided a method for producing alpha-neoagarobiose hydrolase transformed with a recombinant vector for producing alpha-neoagarobiose hydrolase, A transformant for use in the present invention.

본 발명의 또 다른 양태에 따르면, 본 발명은 상기 형질전환체를 배양하고 상기 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 유전자를 과발현시키는 것을 특징으로 하는 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 대량생산방법을 제공한다.According to still another aspect of the present invention, there is provided an alpha-neoagarobiose hydratease characterized by culturing the transformant and overexpressing the alpha-neoagarobiose hydrolase gene, (alpha-neoagarobiose hydrolase) mass production method.

본 발명의 또 다른 양태에 따르면, 본 발명은 상기 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase)를 네오아가로바이오스(neoagarobiose)와 효소반응시키는 것을 특징으로 하는 무수갈락토오스 또는 갈락토오스 생산방법을 제공한다. 이때 상기 효소반응은 pH 6 내지 8 및 30 내지 50℃에서 이루어지는 것이 바람직하다.According to still another aspect of the present invention, there is provided a method for producing anhydrous galactose or galactose, which comprises reacting the alpha-neoagarobiose hydrolase with neoagarobiose. to provide. At this time, the enzyme reaction is preferably carried out at pH 6 to 8 and at 30 to 50 ° C.

본 발명의 또 다른 양태에 따르면, 본 발명은 상기 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase)를 네오아가로바이오스(neoagarobiose)를 제외한 네오아가로올리고당(neoagarooligosaccharide)과 효소반응시키는 것을 특징으로 하는 무수갈락토오스 또는 비환원성말단의 무수갈락토오스가 제거된 네오아가로올리고당 생산방법을 제공한다. 이때 상기 효소반응은 pH 6 내지 8 및 30 내지 50℃에서 이루어지는 것이 바람직하며, 상기 네오아가로올리고당(neoagarooligosaccharide)은 네오아가로테트라오스(neoagarotetraose) 또는 네오아가로헥사오스(neoagarohexaose)인 것이 바람직하다.According to another embodiment of the present invention, the present invention is characterized in that the alpha-neoagarobiose hydrolase is reacted with neoagarooligosaccharide except for neoagarobiose Galactose or a non-reducing terminal anhydrous galactose is removed. Preferably, the enzyme reaction is performed at a pH of 6 to 8 and at a temperature of 30 to 50 ° C, and the neoagarooligosaccharide is preferably neoagarotetraose or neoagarohexaose .

본 발명의 알파-네오아가로바이오스 하이드로레이즈는 네오아가로바이오스를 갈락토오스와 무수갈락토오스로 분해하는데 매우 효과적일 뿐만 아니라 이종숙주세포를 사용한 과발현 시스템을 통해 대량생산이 가능하고, 바이오매스로부터 당화를 통해 바이오연료 및 의약품 원료를 생산하는 산업분야에서 다른 효소들과 함께 매우 유용하게 사용될 수 있다. 또한, 베타-아가레이즈에 의해 형성되며 짝수개의 당으로 구성된 네오아가로올리고당(네오아가로테트라오스, 네오아가로헥사오스 등)에 작용하여 비환원성 말단의 무수갈락토오스 분자 1개 만을 제거함으로서, 홀수개의 당분자로 구성된 신규의 기능성 네오아가로올리고당(네오아가로트리오스, 네오아가로펜타오스 등)의 제조에 사용할 수 있다.The alpha-neoagarose biosynthetic hydrate of the present invention is very effective in decomposing neoagarobiose into galactose and anhydrous galactose, and can be mass-produced through an over-expression system using a transgenic main stem cell, It can be very useful in combination with other enzymes in the industry producing fuel and pharmaceutical raw materials. In addition, by acting on neoagarooligosaccharide (neoagarotetraose, neoagarohexaose, etc.) formed by beta-agarase and composed of an even number of sugars to remove only one non-reducing terminal galactose anhydrous molecule, Can be used for the production of novel functional neoagarooligosaccharides (neoagarotriose, neoagaropentaose, etc.) composed of sugar molecules.

도 1은 아가로오스(agarose)가 베타-아가레이즈(beta-agarase) 및 알파-네오아가로바이오스 하이드로레이즈에 의해 갈락토오스와 무수갈락토오스로 분해되는 과정을 도식화하여 나타낸 것이다.
도 2는 본 발명의 일실시예에 따라 본 발명의 알파-네오아가로바이오스 하이드로레이즈(이하, 'NABH-1'이라 한다)가 네오아가로바이오스(neoagarobiose)를 갈락토오스와 무수갈락토오스로, 네오아가로테트라오스(neoagarotetraose) 및 네오아가로헥사오스(neoagarohexaose)를 무수갈락토오스와 비환원성말단의 무수갈락토오스가 제거된 홀수개 당분자로 이루어진 네오아가로올리고당으로 분해하는 과정을 도식화하여 나타낸 것이다.
도 3은 본 발명의 일실시예에 따라 가야도모나스 주비니에게 균주의 게놈 DNA를 이용하여 PCR을 통해 수득한 NABH-1 유전자 DNA 단편의 아가로스젤 전기영동 결과이다.
도 4는 본 발명의 일실시예에 따른 NABH-1 유전자 형질전환체(E. coli ER2566/pET28a-NABH1)를 이용하여 정제한 NABH-1의 SDS-PAGE 결과이다.
도 5는 본 발명의 일실시예에 따른 NABH-1 유전자 형질전환체(E. coli ER2566/pET28a-NABH1)를 이용하여 정제한 NABH-1과 네오아가로올리고당의 반응산물을 TLC(thin-layer chromatography)를 이용하여 분석한 결과이다.
도 6은 본 발명의 일실시예에 따른 NABH-1 유전자 형질전환체(E. coli ER2566/pET28a-NABH1)를 이용하여 정제한 NABH-1과 네오아가로바이오스의 반응산물을 MS(mass spectrometry)를 이용하여 분석한 결과이다.
도 7은 본 발명의 일실시예에 따른 NABH-1 유전자 형질전환체(E. coli ER2566/pET28a-NABH1)를 이용하여 정제한 NABH-1과 네오아가로테트라오스의 반응산물을 MS(mass spectrometry)를 이용하여 분석한 결과이다.
도 8은 본 발명의 일실시예에 따른 NABH-1 유전자 형질전환체(E. coli ER2566/pET28a-NABH1)를 이용하여 정제한 NABH-1과 네오아가로헥사오스의 반응산물을 MS(mass spectrometry)를 이용하여 분석한 결과이다.
도 9는 본 발명 NABH-1의 반응 적정 pH를 분석한 결과이다.
도 10은 본 발명 NABH-1의 반응 적정 온도를 분석한 결과이다.
FIG. 1 is a diagram illustrating a process in which agarose is decomposed into galactose and anhydrogalactose by beta-agarase and alpha-neoagarobiose hydrolysis.
FIG. 2 is a graph showing that an alpha-neoagarobiose hydrate (hereinafter, referred to as 'NABH-1') of the present invention binds neoagarobiose to galactose and anhydrous galactose according to an embodiment of the present invention, A process for decomposing neoagarothelaose and neoagarohexaose into neoagarooligosaccharides composed of anhydrous galactose and an odd sugar molecule free from anhydrogalactose at the non-reducing end.
FIG. 3 is a result of agarose gel electrophoresis of a DNA fragment of NABH-1 gene obtained by PCR using the genomic DNA of a strain to a Gayadomonas jubini according to an embodiment of the present invention.
4 is a result of SDS-PAGE of NABH-1 purified using an NABH-1 gene transformant ( E. coli ER2566 / pET28a-NABH1) according to an embodiment of the present invention.
FIG. 5 is a graph showing the reaction products of NABH-1 and neoagarooligosaccharide purified using NABH-1 gene transformants ( E. coli ER2566 / pET28a-NABH1) according to an embodiment of the present invention by TLC chromatography).
6 is a graph showing the results of mass spectrometry of reaction products of NABH-1 and neoagarobiose purified using an NABH-1 gene transformant ( E. coli ER2566 / pET28a-NABH1) according to an embodiment of the present invention. The results are shown in Fig.
FIG. 7 is a graph showing the reaction products of NABH-1 and neoagarotetraose purified using NABH-1 gene transformants ( E. coli ER2566 / pET28a-NABH1) according to an embodiment of the present invention by mass spectrometry ), Respectively.
FIG. 8 is a graph showing the reaction products of NABH-1 and neoagarohexaose purified using an NABH-1 gene transformant ( E. coli ER2566 / pET28a-NABH1) according to an embodiment of the present invention by mass spectrometry ), Respectively.
FIG. 9 shows the results of analysis of the pH of the reaction of the present invention NABH-1.
10 shows the results of analysis of the reaction temperature of the present invention NABH-1.

본 발명의 NABH-1은 가야도모나스 주비니에게 G7(Gayadomonas joobiniege G7)이 생산하는 효소로, 서열번호 1의 359개 아미노산 서열로 이루어진다. 미생물 유래 아가레이즈 중에는 시그널 펩타이드가 포함된 형태의 전구단백질로 발현된 다음 시그널 펩타이드 프로그램에 의해 세포 외부로 분비될 때 이 시그널 펩타이드가 잘려 성숙한 형태의 단백질로 되는 경우들이 다수 존재하는데, 본 발명의 NABH-1은 이러한 시그널 펩타이드(signal peptide)를 보유하지 않는 것으로 나타났다.NABH-1 of the present invention is an enzyme produced by G7 ( Gayadomonas joobiniege G7) to Gayadomonasubinyi , which consists of 359 amino acid sequences of SEQ ID NO: 1. In the microorganism-derived agarase, there are many cases in which the signal peptide is cleaved to be a mature form protein when expressed as a precursor protein containing the signal peptide and then secreted out of the cell by the following signal peptide program. The NABH -1 did not possess such a signal peptide.

본 발명의 NABH-1의 근원인 가야도모나스 주비니에게 G7은 우리나라 가야섬의 연안 바닷물에서 분리된 균주로 한국생명공학연구원 생물자원센터에 KCTC23721로, 미국균주은행(American Type Culture Collection, ATCC)에 ATCC BAA-2321로, 독일균주은행(Deutsche Sammlung von Microorganismund Zellkulturen Gmb H, DSM)에 DSM25250로 기탁되어 있다.Gaya is a strain isolated from the coastal waters of Gaya Island in Korea. KCTC23721, American Type Culture Collection (ATCC), KCTC23721, (ATCC BAA-2321) and DSM25250 (Deutsche Sammlung von Microorganismund Zellkulturen Gmb H, DSM).

본 발명의 NABH-1 유전자는 서열번호 1의 아미노산 서열을 암호화하는 것으로, 가야도모나스 주비니에게 G7 균주로부터 확인된 본래의 염기서열은 서열번호 2의 염기서열이지만, 발현을 위한 숙주의 종류에 따라 적합한 코돈 서열로 변형하여 적용할 수 있을 것이다.The NABH-1 gene of the present invention encodes the amino acid sequence of SEQ ID NO: 1, and the original nucleotide sequence identified from the G7 strain by Gayadomonas jubini is the nucleotide sequence of SEQ ID NO: 2, but the type of host for expression It can be applied to a modified codon sequence.

본 발명의 NABH-1 생산용 재조합 벡터는 상기와 같은 NABH-1 유전자를 함유하여 이루어진다. 이때 벡터는 숙주세포의 종류 또는 프로모터, 선별마커 등을 고려하여 기존에 알려진 다양한 종류의 벡터 중에서 선택하여 적용할 수 있다. 예를 들어 대장균(Escherichia coli)을 숙주로 이용할 경우 pET 시리즈의 벡터를 사용할 수 있다.The recombinant vector for producing NABH-1 of the present invention comprises the NABH-1 gene as described above. At this time, the vector may be selected from various kinds of known vectors in consideration of the type of host cell, promoter, selection marker, and the like. For example, when Escherichia coli is used as a host, vectors of the pET series can be used.

본 발명의 NABH-1 생산용 형질전환체는 상기와 같은 재조합 벡터를 숙주생물체에 도입하여 제조될 수 있다. 이때 숙주로는 다양한 생물체를 이용할 수 있을 것으로 판단되며, NABH-1의 안정적인 발현 또는 생산 효율을 위해 미생물을 이용하는 것이 보다 바람직할 것이다. 본 발명에 따르면 본 발명의 NABH-1 유전자가 대장균의 발현시스템에서도 매우 원활하게 발현될 수 있는 것으로 확인되었다. 따라서 대장균을 숙주로 이용하여 형질전환체를 제조하면 NABH-1을 매우 용이하게 생산할 수 있다. 숙주생물체의 형질전환은 각 숙주생물체에 이용되고 있는 통상의 형질전환방법을 적용하여 상기 재조합 벡터를 숙주생물체에 도입하는 방법으로 달성할 수 있다.The transformant for producing NABH-1 of the present invention can be produced by introducing such a recombinant vector into a host organism. At this time, it is considered that various hosts can be used as a host, and it is more preferable to use microorganisms for stable expression or production efficiency of NABH-1. According to the present invention, it was confirmed that the NABH-1 gene of the present invention can be expressed very smoothly also in the expression system of E. coli. Therefore, when transformants are prepared using E. coli as a host, NABH-1 can be produced very easily. Transformation of the host organism can be accomplished by introducing the recombinant vector into the host organism by applying conventional transformation methods used in each host organism.

본 발명의 NABH-1 대량생산은 상기 형질전환체를 배양하고 상기 NABH-1 유전자를 과발현시키는 방법으로 달성할 수 있다. 이때 배양배지의 종류, 배양온도, 배양시간 등의 조건은 숙주 및 벡터의 종류에 따라 선택적으로 적용할 수 있다. 예를 들어 숙주가 대장균이고 pET28 시리즈의 벡터를 이용하는 경우, LB(Luria Bertani) 배지에서 약 15 ~ 40℃로 12시간 ~ 5일간 배양하는 방법을 사용할 수 있다.The mass production of NABH-1 of the present invention can be achieved by culturing the transformant and overexpressing the NABH-1 gene. At this time, conditions such as the type of culture medium, culture temperature, and incubation time can be selectively applied depending on the host and vector. For example, when the host is Escherichia coli and the vector of pET28 series is used, a method of culturing in LB (Luria Bertani) medium at about 15 to 40 DEG C for 12 hours to 5 days can be used.

본 발명의 NABH-1은 네오아가로바이오스(neoagarobiose)의 α1-3 결합을 잘라 무수갈락토오스(3,6-anhydro-α-L-galactose)와 갈락토오스(β-D-galactose)를 만드는 활성이 있는 것으로 확인되었다(도 1 참조). 따라서 본 발명의 NABH-1을 네오아가로바이오스와 효소반응시키는 방법으로 무수갈락토오스 또는 갈락토오스를 생산할 수 있다.The NABH-1 of the present invention has an activity of cleaving the α1-3 linkage of neoagarobiose to form 3,6-anhydro-α-L-galactose and galactose (β-D-galactose) (See FIG. 1). Therefore, anhydrous galactose or galactose can be produced by reacting NABH-1 of the present invention with neoagarobiozyme.

본 발명의 NABH-1은 네오아가로바이오스 뿐만 아니라, 보다 큰 분자량의 네오아가로올리고당(neoagarooligosaccharide)을 기질로 하여 효소반응을 수행할 수 있다. 본 발명의 NABH-1은 특이하게도 네오아가로올리고당의 비환원성 말단의 무수갈락토오스와 갈락토오스 분자 사이의 α1-3 결합 만을 자르는 활성을 나타낸다. 따라서 네오아가로비오스 보다 분자량이 큰 네오아가로올리고당을 기질로 하여 본 발명의 NABH-1과 효소반응시키면, 무수갈락토오스와 비환원성말단의 무수갈락토오스가 제거된 네오아가로올리고당을 생산할 수 있다. 이를 이용하면 네오아가로테트라오스(neoagarotetraose) 또는 네오아가로헥사오스(neoagarohexaose)를 기질로 하여 홀수개의 당분자로 이루어지며 분자의 양끝단이 갈락토오스 분자로 이루어진 특이적인 구조의 올리고당을 생산할 수 있다(도 2 참조).The NABH-1 of the present invention can perform an enzymatic reaction using a neoagarooligosaccharide as a substrate as well as neoagarobiose and a larger molecular weight. NABH-1 of the present invention specifically shows an activity of cleaving only the? 1-3 bond between the anhydrous galactose and the galactose molecule at the non-reducing end of the neoagarooligosaccharide. Therefore, when a neoagarooligosaccharide having a molecular weight larger than that of neoagarobiose is used as a substrate to react with NABH-1 of the present invention, neoagarooligosaccharide having anhydrous galactose and a non-reducing terminal anhydrogalactose can be produced. Using this, neoagarotetraose or neoagarohexaose can be used as a substrate to produce an oligosaccharide having a specific structure consisting of an odd number of sugar molecules and having both ends of the molecule composed of galactose molecules 2).

본 발명의 NABH-1은 pH 4 내지 11에 걸쳐서, 그리고 20 내지 80℃에 걸쳐 효소활성을 나타낼 수 있다. 따라서 이러한 pH 범위와 온도 범위에서 상기와 같은 효소반응을 수행할 수 있으나, 효소활성을 높여 반응생성물의 생산효율을 높이기 위해서는 pH 6 내지 8 및 30 내지 50℃에서 효소반응이 이루어지도록 하는 것이 바람직하며, 보다 바람직하게는 pH 6.5 내지 7.5, 35 내지 45℃가 좋을 것이다.The NABH-1 of the present invention can exhibit enzyme activity over a pH of 4 to 11 and over 20 to 80 캜. Therefore, the enzyme reaction can be performed in the pH range and the temperature range. However, in order to increase the enzyme activity and increase the production efficiency of the reaction product, the enzyme reaction is preferably performed at pH 6 to 8 and 30 to 50 ° C , More preferably pH 6.5 to 7.5, and 35 to 45 캜.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for illustrating the present invention, and thus the scope of the present invention is not construed as being limited by these embodiments.

실시예 1. NABH-1 암호화 유전자 발현벡터 및 형질전환체 제작Example 1. Production of NABH-1 Encoding Gene Expression Vector and Transformants

가야도모나스 주비니에게 G7(Gayadomonas joobiniege G7)(KCTC23721) 게놈 DNA를 추출하고 Forward primer (5′- ATCACTCATATGTCTGAAAAAAAATTAAGT-3′, 밑줄친 부분은 NdeI 인식부위)(서열번호 3)와 Reverse primer (5′-CTCCACAGGATCCTTTATTTTTAGTTGGAG-3′, 밑줄친 부분은 BamHI 인식부위)(서열번호 4)를 이용하여 PCR을 통해 359개의 아미노산으로 구성되는 NABH-1의 암호화부위(1,080bp)를 포함하는 DNA단편(서열번호 5)을 증폭하였다(도 3 참조). 증폭된 DNA단편을 NdeI-BamHI 제한효소로 이중절단하고 pET28a(+)의 NdeI-BamHI 제한효소부위에 접합하여 네오아가로바이오스 하이드로레이즈 C-말단에 His-tag가 포함되어 발현되는 pET28a-NABH1(NABH-1 암호화 유전자 발현벡터)을 제작하였다. 플라스미드 제작을 위한 형질전환에는 E. coli DH5α가 이용되었고 pET28a(+)는 항생물질인 카나마이신 내성 물질을 생성하므로 형질전환된 균주의 선별을 위해 pET28a-NABH1 제작 과정에 최종농도 50㎍/㎖의 카나마이신이 고체 및 액체 배지에 첨가되었다.Genomic DNA of G7 ( Gayadomonas joobiniege G7) (KCTC23721) was extracted from Ganoderma lucidum beanii and forward primer (5'- ATCACT CATATG TCTGAAAAAAAAATTAAGT-3 ', underlined portion of NdeI recognition site) (SEQ ID NO: 3) 5'-CTCCACA GGATCC TTTATTTTTAGTTGGAG-3 ' , underlined part is DNA containing the encrypted region (1,080bp) of NABH-1 which is by PCR using the BamHI recognition site) (SEQ ID NO: 4) composed of 359 amino acid fragment (SEQ ID NO: 5) was amplified (see Fig. 3). The amplified DNA fragment was double-digested with NdeI-BamHI restriction enzyme and ligated to the NdeI-BamHI restriction enzyme site of pET28a (+) to introduce pET28a-NABH1 ( NABH-1 encoding gene expression vector). E. coli DH5α was used for transformation and pET28a (+) produced an antibiotic substance, kanamycin resistant material. For the selection of transformed strains, pET28a-NABH1 was cultured in a final concentration of 50 μg / ml kanamycin Was added to the solid and liquid medium.

제작된 pET28a-NABH1으로 E. coli ER2566를 형질전환하여 NABH-1을 생산하기 위한 형질전환체(E. coli ER2566/pET28a-NABH1)를 제작하였다.The NABH1 to transform E. coli ER2566 manufactured by pET28a-NABH1 was prepared a transformant (E. coli ER2566 / pET28a-NABH1 ) to produce.

실시예 2. NABH-1 생산 및 정제Example 2. Production and purification of NABH-1

상기 실시예 1의 형질전환체(E. coli ER2566/pET28a-NABH1)를 최종농도 50㎍/㎖의 카나마이신이 첨가된 50㎖ LB 배지에서 OD600 값이 0.6이 될 때까지 37℃에서 배양한 뒤, isopropyl β-d-1-thiogalactopyranoside (IPTG)를 최종농도 1mM로 첨가하여 단백질 발현을 유도하고, 28℃에 12시간 더 배양하였다. 5,000rpm으로 10분간 원심리하여 균체를 회수하고, 5㎖ PBS 완충액(137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 2mM KH2PO4)에 현탁한 다음, 소니케이션하여 파쇄하고 6,000rpm에서 30분간 원심분리한 다음 상등액을 취하여 정제를 위해 사용하였다.The transformant ( E. coli ER2566 / pET28a-NABH1) of Example 1 was cultured at 37 DEG C in 50 mL of LB medium supplemented with kanamycin at a final concentration of 50 mu g / mL until the OD600 value reached 0.6, wasopropyl β-d-1-thiogalactopyranoside (IPTG) was added at a final concentration of 1 mM to induce protein expression and further cultured at 28 ° C for 12 hours. The cells were recovered by centrifugation at 5,000 rpm for 10 minutes, suspended in 5 ml of PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na 2 HPO 4 , 2 mM KH 2 PO 4 ), sonicated, disrupted and centrifuged at 6,000 rpm After centrifugation for 30 minutes, the supernatant was taken and used for purification.

단백질 정제를 위해 1.5㎖ Ni2+-NTA 레진(ClonTech, Japan)을 컬럼에 채운 뒤 5㎖ PBS 완충액으로 세척하고 상등액을 로딩하였다. 컬럼을 10㎖ PBS 완충액으로 세척하고 200mM 이미다졸이 함유된 1㎖ PBS 완충액을 단계적으로 총 5㎖ 이용하여 레진에 결합된 단백질을 용출하였다.For protein purification, the column was filled with 1.5 ml Ni 2+ -NTA resin (ClonTech, Japan), washed with 5 ml PBS buffer, and the supernatant was loaded. The column was washed with 10 ml of PBS buffer and 5 ml of 1 ml PBS buffer containing 200 mM imidazole was used in a total of 5 ml to elute the protein bound to the resin.

회수된 단백질은 SDS-PAGE를 이용하여 359개의 아미노산으로 구성된 분자량 40.8kDa의 NABH-1의 분자량을 가지는 단백질임을 확인하였다(도 4 참조).The recovered protein was confirmed to be a protein having a molecular weight of NABH-1 having a molecular weight of 40.8 kDa consisting of 359 amino acids using SDS-PAGE (see FIG. 4).

실시예 3. NABH-1의 기질 분해산물 분석Example 3. Analysis of substrate decomposition products of NABH-1

상기 실시예 2에서 수득한 NABH-1을 이용하여 각각의 네오아가로올리고당(네오아가로바이오스, 네오아가로테트라오스, 네오아가로헥사오스)과 반응시킨 뒤, 분해산물을 분석하였다.Each of the neo-agarooligosaccharides (Neoagarobiose, neoagarotetraose, neoagarohexaose) was reacted with the NABH-1 obtained in Example 2, and the degradation products were analyzed.

기질 분해산물은 TLC와 MS (mass spectrometry)를 이용하여 분석하였다.Substrate degradation products were analyzed by TLC and MS (mass spectrometry).

TLC를 이용한 기질 분해산물의 분석을 위하여 PBS 완충액(pH 7.4) 50㎕에 각각의 네오아가로올리고당(네오아가로바이오스, 네오아가로테트라오스, 네오아가로헥사오스) 0.2% 기질과 NABH-1(6㎍)을 함유한 반응액을 준비하였다. 반응은 40℃에 12시간 동안 수행한 후 분해 산물을 TLC (thin-layer chromatography)를 이용하여 분석하였다. 반응액(10㎕)을 Silica Gel 60 plate (EMD Merck AG, Darmstadt, Germany)에 로드하고 n-butanol, ethanol 및 물(2:1:1, v/v/v)의 용매시스템 상에서 이중으로 분리하였다. 30%(w/v) sulfuric acid가 함유된 에탄올 용액을 스프레이하여 분리된 산물을 가시화하고 플레이트를 120℃로 가열하였다.For the analysis of substrate degradation products by TLC, 0.2 μl of each of neoagaroligosaccharide (neoagarobiose, neoagarotetraose, neoagarohexaose) and NABH-1 (6)) was prepared. The reaction was carried out at 40 ° C for 12 hours, and the decomposition products were analyzed by thin-layer chromatography (TLC). The reaction mixture (10 μl) was loaded on a Silica Gel 60 plate (EMD Merck AG, Darmstadt, Germany) and double-isolated on a solvent system of n-butanol, ethanol and water (2: 1: 1, v / v / v) Respectively. The separated product was visualized by spraying an ethanol solution containing 30% (w / v) sulfuric acid and the plate was heated to 120 ° C.

반응 후 TLC 분석에서 각각의 네오아가로올리고당(네오아가로바이오스, 네오아가로테트라오스, 네오아가로헥사오스)를 함유한 반응액들은 두 종류의 분해산물을 보이는 것을 확인할 수 있었다(도 5 참조).After the reaction, it was confirmed by TLC analysis that the reaction solutions containing the respective neoagarooligosaccharides (Neoagarobio, neoagarotetraose, neoagarohexaose) showed two types of degradation products (see FIG. 5 ).

MS(mass spectrometry)를 이용한 기질 분해산물의 분석을 위하여 PBS 완충액(pH 7.4) 300㎕에 각각의 0.2% 네오아가로올리고당 기질(네오아가로바이오스, 네오아가로테트라오스, 네오아가로헥사오스)과 NABH-1(36㎍)를 함유한 반응액을 준비하였다. 40℃에 12시간 동안 반응을 수행한 후, 분해된 네오아가로올리고당을 30배의 메탄올을 첨가하여 침전시키고 14,000rpm에서 10분간 원심분리하여 상등액을 회수하였다. 상등액을 진공 건조하여 MS(mass spectrometry)로 분석하였다.For analysis of substrate degradation products using MS (mass spectrometry), 0.2 μl of a 0.2% neoagaroligosaccharide substrate (neoagarobiose, neoagarotetraose, neoagarohexaose) was added to 300 μl of PBS buffer (pH 7.4) And NABH-1 (36)) were prepared. After the reaction was carried out at 40 DEG C for 12 hours, the decomposed neoagarooligosaccharide was precipitated by adding 30 times methanol, and the supernatant was recovered by centrifugation at 14,000 rpm for 10 minutes. The supernatant was vacuum dried and analyzed by MS (mass spectrometry).

분석 결과, 기질로 네오아가로바이오스를 이용한 분해물로부터 무수갈락토오스[(M+Na)+=185m/z]와 갈락토오스[(M+Na)+=203m/z]의 분자량과 같은 위치에서 피크가 보였다(도 6 참조). 네오아가로테트라오스를 이용한 분해물로부터는 무수갈락토오스[(M+Na)+=185m/z]와 네오아가로트리오스[(M+Na)+=509m/z]의 분자량과 같은 위치에서 피크가 보였다(도 7 참조). 네오아가로헥사오스를 이용한 분해물로부터는 무수갈락토오스[(M+Na)+=185m/z]와 네오아가로펜타오스[(M+Na)+=815m/z]의 분자량과 같은 위치에서 피크가 보였다(도 8 참조).As a result, a peak was observed at the same position as the molecular weight of anhydrous galactose [(M + Na) + = 185m / z] and galactose [(M + Na) + = 203m / z] (See FIG. 6). Peaks were observed at the same molecular weight as the anhydrogalactose [(M + Na) + = 185m / z] and neoagarotriose [(M + Na) + = 509m / z] from the degradation products using neoagarotetraose (See FIG. 7). From the degradation products using neoagarohexaose, peaks at positions such as anhydrous galactose [(M + Na) + = 185m / z] and neoagaropentaose [(M + Na) + = 815m / (See FIG. 8).

MS 분석 결과로부터, TLC 분석에서 확인된 각각의 네오아가로올리고당(네오아가로바이오스, 네오아가로테트라오스, 네오아가로헥사오스)으로부터의 두 종류의 분해산물은 기질의 비환원성 말단의 무수갈락토오스와 그 잔여물인 각각 갈락토오스, 네오아가로트리오스, 네오아가로펜타오스로 구성됨을 확인하였다.From the MS analysis results, two kinds of degradation products from each of the neoagarooligosaccharides (Neoagarobiose, neoagarotetraose, neoagarohexaose) identified in the TLC analysis were obtained from the non-reducing terminal anhydrous galactose And its residues, galactose, neoagarotriose and neoagaropentaose, respectively.

실시예 4. NABH-1의 활성 분석Example 4. Activity assay of NABH-1

NABH-1의 효소반응 적정 pH와 효소반응 적정온도를 측정하여 효소의 생화학적 특성을 분석하였다.The enzyme biosynthesis of NABH-1 was determined by measuring the optimum pH and enzyme reaction temperature.

NABH-1의 효소반응 적정 pH 측정을 위해 각각의 pH에서 완충작용을 하는 완충액을 이용하였다. pH 4 ~ 6에서의 측정에는 50mM Sodium Citrate 완충액을 이용하였다. pH 7 ~ 8에서의 측정에는 50mM Sodium Phosphate 완충액을 이용하였다. pH 9 ~ 11에서의 측정에는 50mM Glycine-NaOH 완충액을 이용하였다. 각각의 pH에서의 반응액 500㎕는 네오아가로바이오스 100㎍과 NABH-1 14㎍이 포함되도록 구성하였다. 반응은 40℃에 10분 동안 수행한 후, 500㎕ DNS 용액과 혼합하고 10분간 수조에서 끓인 뒤, 얼음물에서 5분간 식혔다. 반응액의 흡광도를 스펙트로포토미터(spectrophotometer)를 이용하여 O.D. 540nm에서 측정하여 효소활성을 측정하였다. 측정결과로부터 NABH-1의 효소반응 최적 pH가 pH 7임이 확인되었다(도 9 참조).Enzyme Reaction of NABH-1 A buffer solution buffered at each pH was used for the appropriate pH measurement. For measurements at pH 4 ~ 6, 50 mM Sodium Citrate buffer was used. For measurement at pH 7 ~ 8, 50 mM Sodium Phosphate buffer was used. For measurements at pH 9-11, 50 mM Glycine-NaOH buffer was used. 500 占 퐇 of the reaction solution at each pH was composed so as to contain 100 占 퐂 of neoagarobio and 14 占 퐂 of NABH-1. The reaction was carried out at 40 ° C for 10 minutes, mixed with 500 μl of the DNS solution, boiled in a water bath for 10 minutes, and then cooled in ice water for 5 minutes. The absorbance of the reaction solution was measured by using a spectrophotometer. The enzyme activity was measured at 540 nm. From the measurement results, it was confirmed that the optimum pH of the enzyme reaction of NABH-1 was pH 7 (see FIG. 9).

NABH-1의 효소반응 적정온도 측정을 위해 50mM Sodium Phosphate 완충액(pH 7.0) 500㎕에 네오아가로바이오스 100㎍과 NABH-1 14㎍이 함유된 반응액을 준비하였다. 반응은 20 ~ 80℃의 10℃ 간격의 온도에서 10분 동안 수행한 후, 500㎕ DNS 용액과 혼합하고 10분간 수조에서 끓인 뒤, 얼음물에서 5분간 식혔다. 반응액의 흡광도를 스펙트로포토미터(spectrophotometer)를 이용하여 O.D. 540nm에서 측정하여 효소활성을 측정하였다. 측정결과로부터 NABH-1의 효소반응 최적 온도가 40℃임이 확인되었다(도 10 참조).Enzyme Reaction of NABH-1 For the appropriate temperature, a reaction solution containing 100 μg of neoagarobiose and 14 μg of NABH-1 was prepared in 500 μl of 50 mM sodium phosphate buffer (pH 7.0). The reaction was carried out at a temperature of 20 ° C to 80 ° C for 10 minutes, mixed with 500 μl of the DNS solution, boiled in a water bath for 10 minutes, and then cooled in ice water for 5 minutes. The absorbance of the reaction solution was measured by using a spectrophotometer. The enzyme activity was measured at 540 nm. From the measurement results, it was confirmed that the optimal temperature for enzyme reaction of NABH-1 was 40 ° C (see FIG. 10).

<110> Myongji University Industry and Academia Cooperation Foundation <120> A Novel alpha-neoagarobiose hydrolase from Gayadomonas joobiniege G7 and use thereof <130> PA-D16462 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 359 <212> PRT <213> Unknown <220> <223> Gayadomonas jubiniege G7 <400> 1 Met Ser Glu Lys Lys Leu Ser Leu Ala Ser Lys Arg Ala Ile Glu Arg 1 5 10 15 Gly Tyr Asp Asn Lys Gly Pro Glu Trp Leu Ile Glu Phe Glu Glu Glu 20 25 30 Pro Leu Gln Gly Asp Phe Ala Tyr Glu Glu Gly Val Ile Arg Arg Asp 35 40 45 Pro Thr Ala Val Ile Gln Val Asp Gly Lys Tyr His Val Trp Tyr Thr 50 55 60 Lys Gly Thr Gly Glu Thr Val Gly Phe Gly Ser Thr Asn Pro Cys Asp 65 70 75 80 Lys Val Phe Pro Trp Asp Leu Thr Glu Val Trp His Ala Thr Ser Asp 85 90 95 Asp Gly Leu Val Trp His Glu Glu Gly Cys Ala Ile Ala Arg Gly Glu 100 105 110 Ser Gly Arg Tyr Asp Asp Arg Ala Val Phe Thr Pro Glu Val Leu Ala 115 120 125 His Asp Gly Arg Tyr Tyr Leu Val Tyr Gln Thr Val Gln Tyr Pro Tyr 130 135 140 Thr Asn Arg Gln Tyr Glu Glu Ile Ala Ile Ala His Ala Asp Ser Pro 145 150 155 160 Tyr Gly Pro Trp Leu Lys Ser Glu Gln Pro Ile Leu Ser Pro Ser Lys 165 170 175 Asp Gly Glu Trp Asp Gly Asp Glu Asp Asn Arg Phe Lys Val Lys Ser 180 185 190 Lys Gly Ser Phe Asp Ser His Lys Val His Asp Pro Cys Leu Met Phe 195 200 205 Phe Asn Gly Gln Phe Tyr Leu Tyr Tyr Lys Gly Glu Thr Met Gly Glu 210 215 220 Gly Met Asn Phe Gly Gly Arg Glu Ile Lys His Gly Val Ala Ile Ala 225 230 235 240 Asp Asp Ile Leu Gly Pro Tyr Thr Lys Ser Glu Tyr Asn Pro Ile Ser 245 250 255 Asn Ser Gly His Glu Val Ala Val Trp His Tyr Asn Gly Gly Ile Ala 260 265 270 Ser Leu Ile Thr Thr Asp Gly Pro Glu Lys Asn Thr Ile Gln Trp Ala 275 280 285 Lys Asp Gly Ile Asn Phe Glu Ile Met Ser His Ile Lys Gly Ala Pro 290 295 300 Glu Ala Leu Gly Ile Phe Arg Asp Pro Gln Asp Arg Glu Ile Glu Ala 305 310 315 320 Pro Gly Leu Tyr Trp Gly Leu Cys His Lys Tyr Asp Asp Ser Trp Asn 325 330 335 Trp Asn Tyr Ile Cys Arg Tyr Arg Val Lys Arg Gln Ile Leu Asp Ala 340 345 350 Gly Thr Phe Gln Asn Ser Asn 355 <210> 2 <211> 1080 <212> DNA <213> Unknown <220> <223> Gayadomonas jubiniege G7 <400> 2 atgtctgaaa aaaaattaag tcttgcaagt aaacgcgcca tcgaacgtgg ttatgataac 60 aaaggtcccg aatggttgat cgaatttgaa gaagaaccgt tacaaggtga ttttgcttac 120 gaagaaggtg ttatcagacg agatccgact gctgtcatac aggttgatgg aaaatatcat 180 gtttggtata caaaggggac aggcgaaact gttggttttg gttctaccaa tccttgtgat 240 aaagtattcc cgtgggattt gactgaagtt tggcatgcga cctcagatga tggtttagta 300 tggcatgaag aaggttgtgc aattgcccgt ggtgaaagtg gtcgttacga tgatagggct 360 gtttttacgc cagaggttct agctcacgat gggcgatatt atctggtcta tcagacagtt 420 cagtatccgt atactaaccg ccaatatgaa gaaatagcga tagcacatgc ggatagccct 480 tatggtccat ggttaaaatc tgaacagcct attttgagcc catcaaaaga tggtgaatgg 540 gacggtgatg aagataatcg ttttaaagtt aaatcaaaag gtagctttga tagtcacaaa 600 gttcacgacc cttgtttaat gttttttaac ggccagtttt atttatatta taaaggcgaa 660 actatgggcg agggtatgaa ttttggtggt cgagaaatta aacatggtgt tgccatcgca 720 gacgatattt taggtccgta tactaagtct gaatacaacc caattagtaa ttcgggccat 780 gaagttgcag tttggcacta taatggtggt atagcgtcat tgattacgac ggatgggcca 840 gaaaaaaata ccattcaatg ggcaaaagac ggtattaact ttgaaataat gtcgcatatt 900 aaaggtgcac cagaagcttt aggtatattc agagacccac aagatcgcga gatagaggca 960 cctggtttat actggggctt atgtcacaaa tatgatgatt cttggaactg gaattatatt 1020 tgccgatatc gggtaaagcg tcagatatta gatgcaggga catttcagaa ctccaactaa 1080 1080 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for NABH <400> 3 atcactcata tgtctgaaaa aaaattaagt 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for NABH <400> 4 ctccacagga tcctttattt ttagttggag 30 <210> 5 <211> 1109 <212> DNA <213> Artificial Sequence <220> <223> PCR product for cloning of NABH gene <400> 5 atcactcata tgtctgaaaa aaaattaagt cttgcaagta aacgcgccat cgaacgtggt 60 tatgataaca aaggtcccga atggttgatc gaatttgaag aagaaccgtt acaaggtgat 120 tttgcttacg aagaaggtgt tatcagacga gatccgactg ctgtcataca ggttgatgga 180 aaatatcatg tttggtatac aaaggggaca ggcgaaactg ttggttttgg ttctaccaat 240 ccttgtgata aagtattccc gtgggatttg actgaagttt ggcatgcgac ctcagatgat 300 ggtttagtat ggcatgaaga aggttgtgca attgcccgtg gtgaaagtgg tcgttacgat 360 gatagggctg tttttacgcc agaggttcta gctcacgatg ggcgatatta tctggtctat 420 cagacagttc agtatccgta tactaaccgc caatatgaag aaatagcgat agcacatgcg 480 gatagccctt atggtccatg gttaaaatct gaacagccta ttttgagccc atcaaaagat 540 ggtgaatggg acggtgatga agataatcgt tttaaagtta aatcaaaagg tagctttgat 600 agtcacaaag ttcacgaccc ttgtttaatg ttttttaacg gccagtttta tttatattat 660 aaaggcgaaa ctatgggcga gggtatgaat tttggtggtc gagaaattaa acatggtgtt 720 gccatcgcag acgatatttt aggtccgtat actaagtctg aatacaaccc aattagtaat 780 tcgggccatg aagttgcagt ttggcactat aatggtggta tagcgtcatt gattacgacg 840 gatgggccag aaaaaaatac cattcaatgg gcaaaagacg gtattaactt tgaaataatg 900 tcgcatatta aaggtgcacc agaagcttta ggtatattca gagacccaca agatcgcgag 960 atagaggcac ctggtttata ctggggctta tgtcacaaat atgatgattc ttggaactgg 1020 aattatattt gccgatatcg ggtaaagcgt cagatattag atgcagggac atttcagaac 1080 tccaactaaa aataaaggat cctgtggag 1109 <110> Myongji University Industry and Academia Cooperation Foundation <120> A Novel alpha-neoagarobiose hydrolase from Gayadomonas joobiniege          G7 and use thereof <130> PA-D16462 <160> 5 <170> KoPatentin 3.0 <210> 1 <211> 359 <212> PRT <213> Unknown <220> <223> Gayadomonas jubiniege G7 <400> 1 Met Ser Glu Lys Lys Leu Ser Leu Ala Ser Lys Arg Ala Ile Glu Arg   1 5 10 15 Gly Tyr Asp Asn Lys Gly Pro Glu Trp Leu Ile Glu Phe Glu Glu Glu              20 25 30 Pro Leu Gln Gly Asp Phe Ala Tyr Glu Glu Gly Val Ile Arg Arg Asp          35 40 45 Pro Thr Ala Val Ile Gln Val Asp Gly Lys Tyr His Val Trp Tyr Thr      50 55 60 Lys Gly Thr Gly Glu Thr Val Gly Phe Gly Ser Thr Asn Pro Cys Asp  65 70 75 80 Lys Val Phe Pro Trp Asp Leu Thr Glu Val Trp His Ala Thr Ser Asp                  85 90 95 Asp Gly Leu Val Trp His Glu Glu Gly Cys Ala Ile Ala Arg Gly Glu             100 105 110 Ser Gly Arg Tyr Asp Asp Arg Ala Val Phe Thr Pro Glu Val Leu Ala         115 120 125 His Asp Gly Arg Tyr Tyr Leu Val Tyr Gln Thr Val Gln Tyr Pro Tyr     130 135 140 Thr Asn Arg Gln Tyr Glu Glu Ile Ala Ile Ala His Ala Asp Ser Pro 145 150 155 160 Tyr Gly Pro Trp Leu Lys Ser Glu Gln Pro Ile Leu Ser Pro Ser Lys                 165 170 175 Asp Gly Glu Trp Asp Gly Asp Glu Asp Asn Arg Phe Lys Val Lys Ser             180 185 190 Lys Gly Ser Phe Asp Ser His Lys Val His Asp Pro Cys Leu Met Phe         195 200 205 Phe Asn Gly Gln Phe Tyr Leu Tyr Tyr Lys Gly Glu Thr Met Gly Glu     210 215 220 Gly Met Asn Phe Gly Gly Arg Glu Ile Lys His Gly Val Ala Ile Ala 225 230 235 240 Asp Asp Ile Leu Gly Pro Tyr Thr Lys Ser Glu Tyr Asn Pro Ile Ser                 245 250 255 Asn Ser Gly His Glu Val Ala Val Trp His Tyr Asn Gly Gly Ile Ala             260 265 270 Ser Leu Ile Thr Thr Asp Gly Pro Glu Lys Asn Thr Ile Gln Trp Ala         275 280 285 Lys Asp Gly Ile Asn Phe Glu Ile Met Ser His Ile Lys Gly Ala Pro     290 295 300 Glu Ala Leu Gly Ile Phe Arg Asp Pro Gln Asp Arg Glu Ile Glu Ala 305 310 315 320 Pro Gly Leu Tyr Trp Gly Leu Cys His Lys Tyr Asp Asp Ser Trp Asn                 325 330 335 Trp Asn Tyr Ile Cys Arg Tyr Arg Val Lys Arg Gln Ile Leu Asp Ala             340 345 350 Gly Thr Phe Gln Asn Ser Asn         355 <210> 2 <211> 1080 <212> DNA <213> Unknown <220> <223> Gayadomonas jubiniege G7 <400> 2 atgtctgaaa aaaaattaag tcttgcaagt aaacgcgcca tcgaacgtgg ttatgataac 60 aaaggtcccg aatggttgat cgaatttgaa gaagaaccgt tacaaggtga ttttgcttac 120 gaagaaggtg ttatcagacg agatccgact gctgtcatac aggttgatgg aaaatatcat 180 gtttggtata caaaggggac aggcgaaact gttggttttg gttctaccaa tccttgtgat 240 aaagtattcc cgtgggattt gactgaagtt tggcatgcga cctcagatga tggtttagta 300 tggcatgaag aaggttgtgc aattgcccgt ggtgaaagtg gtcgttacga tgatagggct 360 gtttttacgc cagaggttct agctcacgat gggcgatatt atctggtcta tcagacagtt 420 cagtatccgt atactaaccg ccaatatgaa gaaatagcga tagcacatgc ggatagccct 480 tatggtccat ggttaaaatc tgaacagcct attttgagcc catcaaaaga tggtgaatgg 540 gacggtgatg aagataatcg ttttaaagtt aaatcaaaag gtagctttga tagtcacaaa 600 gttcacgacc cttgtttaat gttttttaac ggccagtttt atttatatta taaaggcgaa 660 actatgggcg agggtatgaa ttttggtggt cgagaaatta aacatggtgt tgccatcgca 720 gacgatattt taggtccgta tactaagtct gaatacaacc caattagtaa ttcgggccat 780 gaagttgcag tttggcacta taatggtggt atagcgtcat tgattacgac ggatgggcca 840 gaaaaaaata ccattcaatg ggcaaaagac ggtattaact ttgaaataat gtcgcatatt 900 aaaggtgcac cagaagcttt aggtatattc agagacccac aagatcgcga gatagaggca 960 cctggtttat actggggctt atgtcacaaa tatgatgatt cttggaactg gaattatatt 1020 tgccgatatc gggtaaagcg tcagatatta gatgcaggga catttcagaa ctccaactaa 1080                                                                         1080 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for NABH <400> 3 atcactcata tgtctgaaaa aaaattaagt 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for NABH <400> 4 ctccacagga tcctttattt ttagttggag 30 <210> 5 <211> 1109 <212> DNA <213> Artificial Sequence <220> <223> PCR product for cloning of NABH gene <400> 5 atcactcata tgtctgaaaa aaaattaagt cttgcaagta aacgcgccat cgaacgtggt 60 tatgataaca aaggtcccga atggttgatc gaatttgaag aagaaccgtt acaaggtgat 120 tttgcttacg aagaaggtgt tatcagacga gatccgactg ctgtcataca ggttgatgga 180 aaatatcatg tttggtatac aaaggggaca ggcgaaactg ttggttttgg ttctaccaat 240 ccttgtgata aagtattccc gtgggatttg actgaagttt ggcatgcgac ctcagatgat 300 ggtttagtat ggcatgaaga aggttgtgca attgcccgtg gtgaaagtgg tcgttacgat 360 gatagggctg tttttacgcc agaggttcta gctcacgatg ggcgatatta tctggtctat 420 cagacagttc agtatccgta tactaaccgc caatatgaag aaatagcgat agcacatgcg 480 gatagccctt atggtccatg gttaaaatct gaacagccta ttttgagccc atcaaaagat 540 ggtgaatggg acggtgatga agataatcgt tttaaagtta aatcaaaagg tagctttgat 600 agtcacaaag ttcacgaccc ttgtttaatg ttttttaacg gccagtttta tttatattat 660 aaaggcgaaa ctatgggcga gggtatgaat tttggtggtc gagaaattaa acatggtgtt 720 gccatcgcag acgatatttt aggtccgtat actaagtctg aatacaaccc aattagtaat 780 tcgggccatg aagttgcagt ttggcactat aatggtggta tagcgtcatt gattacgacg 840 gatgggccag aaaaaaatac cattcaatgg gcaaaagacg gtattaactt tgaaataatg 900 tcgcatatta aaggtgcacc agaagcttta ggtatattca gagacccaca agatcgcgag 960 atagaggcac ctggtttata ctggggctta tgtcacaaat atgatgattc ttggaactgg 1020 aattatattt gccgatatcg ggtaaagcgt cagatattag atgcagggac atttcagaac 1080 tccaactaaa aataaaggat cctgtggag 1109

Claims (11)

서열번호 1의 아미노산 서열로 이루어지는 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase).Alpha-neoagarobiose hydrolase consisting of the amino acid sequence of SEQ ID NO: 1. 서열번호 1의 아미노산 서열을 암호화하는 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 유전자.Alpha-neoagarobiose hydrolase gene encoding the amino acid sequence of SEQ ID NO: 1. 제 2항에 있어서,
서열번호 2의 염기서열로 이루어지는 것을 특징으로 하는 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 유전자.
3. The method of claim 2,
An alpha-neoagarobiose hydrolase gene comprising the nucleotide sequence of SEQ ID NO: 2.
제 2항 또는 제 3항의 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 유전자를 함유하는 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 생산용 재조합 벡터.A recombinant vector for producing alpha-neoagarobiose hydrolase containing the alpha-neoagarobiose hydrolase gene according to claim 2 or 3. 제 4항의 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 생산용 재조합 벡터로 형질전환된 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 생산용 형질전환체.A transformant for the production of alpha-neoagarobiose hydrolase transformed with the recombinant vector for producing alpha-neoagarobiose hydrolase according to claim 4. 제 5항의 형질전환체를 배양하고 상기 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 유전자를 과발현시키는 것을 특징으로 하는 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase) 대량생산방법.A method for mass production of alpha-neoagarobiose hydrolase characterized by culturing the transformant of claim 5 and overexpressing the alpha-neoagarobiose hydrolase gene. 제 1항의 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase)를 네오아가로바이오스(neoagarobiose)와 효소반응시키는 것을 특징으로 하는 무수갈락토오스 또는 갈락토오스 생산방법.A method for producing anhydrous galactose or galactose, which comprises reacting the alpha-neoagarobiose hydrolase of claim 1 with neoagarobiose. 제 7항에 있어서,
상기 효소반응이 pH 6 내지 8 및 30 내지 50℃에서 이루어지는 것을 특징으로 하는 무수갈락토오스 또는 갈락토오스 생산방법.
8. The method of claim 7,
Wherein the enzyme reaction is carried out at a pH of 6 to 8 and at a temperature of 30 to 50 占 폚.
제 1항의 알파-네오아가로바이오스 하이드로레이즈(alpha-neoagarobiose hydrolase)를 네오아가로바이오스(neoagarobiose)를 제외한 네오아가로올리고당(neoagarooligosaccharide)과 효소반응시키는 것을 특징으로 하는 무수갈락토오스 또는 비환원성말단의 무수갈락토오스가 제거된 네오아가로올리고당 생산방법.An anhydrous galactose or non-reducing terminal anhydrous polysaccharide characterized by reacting the alpha-neoagarobiose hydrolase of claim 1 with a neoagarooligosaccharide other than neoagarobiose. Production method of neoagarooligosaccharide from which galactose has been removed. 제 9항에 있어서,
상기 효소반응이 pH 6 내지 8 및 30 내지 50℃에서 이루어지는 것을 특징으로 하는 무수갈락토오스 또는 비환원성말단의 무수갈락토오스가 제거된 네오아가로올리고당 생산방법.
10. The method of claim 9,
Wherein the enzyme reaction is carried out at pH 6 to 8 and at 30 to 50 ° C.
제 9항에 있어서,
상기 네오아가로올리고당(neoagarooligosaccharide)은 네오아가로테트라오스(neoagarotetraose) 또는 네오아가로헥사오스(neoagarohexaose)인 것을 특징으로 하는 무수갈락토오스 또는 비환원성말단의 무수갈락토오스가 제거된 네오아가로올리고당 생산방법.
10. The method of claim 9,
Wherein the neoagarooligosaccharide is neoagarotetraose or neoagarohexaose, wherein the anhydrogalactose or the non-reducing terminal anhydrogalactose is removed, wherein the neoagarooligosaccharide is neoagarotetraose or neoagarohexaose.
KR1020160133438A 2016-10-14 2016-10-14 A Novel alpha-neoagarobiose hydrolase from Gayadomonas joobiniege G7 and use thereof KR101919105B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160133438A KR101919105B1 (en) 2016-10-14 2016-10-14 A Novel alpha-neoagarobiose hydrolase from Gayadomonas joobiniege G7 and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160133438A KR101919105B1 (en) 2016-10-14 2016-10-14 A Novel alpha-neoagarobiose hydrolase from Gayadomonas joobiniege G7 and use thereof

Publications (2)

Publication Number Publication Date
KR20180041377A true KR20180041377A (en) 2018-04-24
KR101919105B1 KR101919105B1 (en) 2018-11-16

Family

ID=62085039

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160133438A KR101919105B1 (en) 2016-10-14 2016-10-14 A Novel alpha-neoagarobiose hydrolase from Gayadomonas joobiniege G7 and use thereof

Country Status (1)

Country Link
KR (1) KR101919105B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102100958B1 (en) * 2019-01-10 2020-04-14 명지대학교 산학협력단 Use of alpha-neoagarooligosaccharide hydrolase from Gayadomonas joobiniege G7
KR20200087064A (en) * 2019-10-31 2020-07-20 명지대학교 산학협력단 Use of alpha-neoagarooligosaccharide hydrolase from Gayadomonas joobiniege G7
CN114214377A (en) * 2021-12-24 2022-03-22 中国海洋大学 Phosphatidyl-agaropectin oligosaccharide and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102100958B1 (en) * 2019-01-10 2020-04-14 명지대학교 산학협력단 Use of alpha-neoagarooligosaccharide hydrolase from Gayadomonas joobiniege G7
KR20200087064A (en) * 2019-10-31 2020-07-20 명지대학교 산학협력단 Use of alpha-neoagarooligosaccharide hydrolase from Gayadomonas joobiniege G7
CN114214377A (en) * 2021-12-24 2022-03-22 中国海洋大学 Phosphatidyl-agaropectin oligosaccharide and preparation method thereof
CN114214377B (en) * 2021-12-24 2024-03-08 中国海洋大学 Phosphatidyl-agar oligosaccharide and preparation method thereof

Also Published As

Publication number Publication date
KR101919105B1 (en) 2018-11-16

Similar Documents

Publication Publication Date Title
KR102132381B1 (en) Ketose 3-epimerase produced by arthrobacter globiformis
KR101455624B1 (en) Novel D-psicose-3-epimerase from Clostridium bolteae having production of functional rare sugar D-psicose and production method of D-psicose using thereof
CN110438136B (en) Beta-glucosidase and mutant gene, amino acid sequence and application thereof
CN112063666B (en) Application of recombinant sucrose isomerase in preparation of isomaltulose by converting sucrose
CN110358750B (en) Novel sucrose phosphorylase mutant and application thereof in synthesis of glycerol glucoside
KR101919105B1 (en) A Novel alpha-neoagarobiose hydrolase from Gayadomonas joobiniege G7 and use thereof
CN114410611A (en) Kunmu polysaccharide degrading enzyme OUC-BsLam26 and application thereof
KR102448351B1 (en) Variant of D-allulose 3-epimerase, manufacturing method thereof and manufacturing method of D-alluose using the same
Kotani et al. Purification and characterization of UDP-arabinopyranose mutase from Chlamydomonas reinhardtii
CN109988778B (en) Sucrose phosphorylase gene and application thereof
KR20100040438A (en) A novel agarase and an enzymatic production method of agarooligosaccharide from agarose using the same
CN110144341B (en) Alginate lyase mutant
CN110904075A (en) Salt-tolerant xylosidase mutant K321D and preparation method and application thereof
KR101957471B1 (en) Enzymatic method for neoagarobiose or neoagarotetraose production from agarose using a new beta-agarase
CN112626051B (en) 1,3/1, 4-xylanase MLX1034 and coding gene and application thereof
KR102017247B1 (en) Use of neoagarobiose hydrolase-2 from Gayadomonas joobiniege G7
CN105154457B (en) A kind of sorbitol dehydrogenase gene and its application from pseudomonas syringae
KR102254411B1 (en) Variant of D-allulose 3-epimerase, manufacturing method thereof and manufacturing method of D-alluose using the same
KR101768748B1 (en) Mutated sucrose isomerase and process for preparing the same
CN115558651A (en) Glycosyltransferase CaUGT capable of catalyzing rebaudioside-A to generate multiple stevioside derivatives
CN114015675A (en) Lambda-carrageenase OUC-LuV and application thereof
KR102100958B1 (en) Use of alpha-neoagarooligosaccharide hydrolase from Gayadomonas joobiniege G7
KR102166572B1 (en) Use of alpha-neoagarooligosaccharide hydrolase from Gayadomonas joobiniege G7
KR101796060B1 (en) Agarase generating neoagarooligosaccharide by hydrolyzing agar
KR20180043062A (en) A Novel alpha-neoagarobiose hydrolase from Streptomyces coelicolor A3(2) and use thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right