KR20180037729A - Catalyst for reducing carbon dioxide and process of preparing the same - Google Patents

Catalyst for reducing carbon dioxide and process of preparing the same Download PDF

Info

Publication number
KR20180037729A
KR20180037729A KR1020160128279A KR20160128279A KR20180037729A KR 20180037729 A KR20180037729 A KR 20180037729A KR 1020160128279 A KR1020160128279 A KR 1020160128279A KR 20160128279 A KR20160128279 A KR 20160128279A KR 20180037729 A KR20180037729 A KR 20180037729A
Authority
KR
South Korea
Prior art keywords
carbon dioxide
dispersion
catalyst
polyethyleneimine
nanoparticles
Prior art date
Application number
KR1020160128279A
Other languages
Korean (ko)
Other versions
KR101955236B1 (en
Inventor
장종현
박현서
김형준
유성종
김진영
함형철
디억 헨켄스마이어
이소영
류재윤
하민관
정영훈
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020160128279A priority Critical patent/KR101955236B1/en
Publication of KR20180037729A publication Critical patent/KR20180037729A/en
Application granted granted Critical
Publication of KR101955236B1 publication Critical patent/KR101955236B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/023Catalysts characterised by dimensions, e.g. grain size
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

The present invention relates to a catalyst for reducing carbon dioxide, which is coated with a polyimine-based polymer and to a manufacturing method thereof. In particular, gold nanoparticles synthesized by using PEI having a molecular average molecular weight of 1,000 to 3,000 as a ligand show a higher carbon dioxide reduction current density and reduction efficiency than conventional commercial catalysts.

Description

이산화탄소 환원용 촉매와 이의 제조방법{Catalyst for reducing carbon dioxide and process of preparing the same} [0001] The present invention relates to a catalyst for reducing carbon dioxide and a process for preparing the same,

본 발명은 이산화탄소 환원용 촉매와 고분자를 이용한, 이의 제조방법에 관한 것이다. The present invention relates to a catalyst for reducing carbon dioxide and a method for producing the same using a polymer.

일반적으로 이산화탄소 환원용 촉매는 일정한 크기(15 nm 이하)에서 활성이 좋다고 알려져 있다. 이산화탄소 환원 촉매는 이산화탄소 환원 반응 이외에의 부반응(예를 들어, 양성자 환원을 통한 수소 생성 반응)에는 활성이 떨어지는 특성이 요구된다. 이산화탄소 환원 촉매는 넓은 비표면적을 가지기 위해 탄소 등에 담지된 형태로 제조되어 사용된다. 현재 상기 요구되는 조건을 만족하는 촉매를 합성하기 다양한 계면활성제 등이 첨가물로 촉매 합성 중에 이용되며, 첨가물 첨가의 목적은 균일하고 작은 크기의 나노입자를 합성하려는 것이다. 현재 기술로 균일하고 작은 나노 입자를 형성하는 방법에는 여러가지 방법이 있으나 매우 작고 균일한 나노입자 형성은 여전히 어렵다는 문제가 있다. In general, it is known that a catalyst for reducing carbon dioxide has a good activity at a certain size (15 nm or less). The carbon dioxide reduction catalyst is required to have low activity in addition to the carbon dioxide reduction reaction (for example, a hydrogen production reaction through proton reduction). The carbon dioxide reduction catalyst is used in a form supported on carbon or the like to have a wide specific surface area. Various surfactants and the like are used as an additive during catalyst synthesis to synthesize a catalyst satisfying the above-mentioned requirements. The purpose of the addition of the additives is to synthesize uniform and small-sized nanoparticles. There are various methods for forming uniform and small nanoparticles with the present technology, but there is a problem that formation of very small and uniform nanoparticles is still difficult.

u Chen, Azam Khan, Douglas R. MacFarlane, Jie Zhang, "Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide", Energy Environ. Sci., 9, 216 (2016) u Chen, Azam Khan, Douglas R. MacFarlane, Jie Zhang, "Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide ", Energy Environ. Sci., 9, 216 (2016) 2. Zhi Cao, Dohyung Kim, Dachao Hong, Yi Yu, Jun Xu, Song Lin, Xiaodong Wen, Eva M. Nichols, Keunhong Jeong, Jeffrey A. Reimer, Peidong Yang, Christopher J. Chang, "Particle Size Effects in the Catalytic Electroreduction of CO2 on Cu Nanoparticles", J. Am. Chem. Soc. 138, 8120 (2016) 2. Particle Size Effects in the (2): Zhi Cao, Dohyung Kim, Dachao Hong, Yi Yu, Jun Xu, Song Lin, Xiaodong Wen, Eva M. Nichols, Keunhong Jeong, Jeffrey A. Reimer, Peidong Yang, Catalytic Electroreduction of CO2 on Cu Nanoparticles ", J. Am. Chem. Soc. 138, 8120 (2016)

본 발명은 위 기존 기술의 문제를 해결할 수 있는 이산화탄소용 촉매 및 제조방법을 제공하고자 한다. The present invention is to provide a catalyst for carbon dioxide and a manufacturing method which can solve the problems of the above conventional technologies.

위와 같은 과제 해결을 위한 본 발명의 일 구현예에서는 이민기를 포함한 고분자(polyethylenimie, PEI)를 리간드로 활용하여 나노입자의 크기와 분산도를 조절하고, 고분자의 분자량을 조절하여 3 nm 수준으로 매우 작으며 분산도가 높은 금 나노입자를 합성한다. In one embodiment of the present invention for solving the above problem, the size and the degree of dispersion of nanoparticles are controlled by using a polyethylenimine (PEI) containing a terminal amino group as a ligand, and the molecular weight of the polymer is controlled to be 3 nm And synthesize gold nanoparticles with high dispersion.

이렇게 분자량 3,000 이하의 PEI를 리간드로 사용하여 합성한 금 나노입자가 기존 상용 촉매에 비해 높은 이산화탄소환원 전류밀도 및 환원 효율을 보여준다. The gold nanoparticles synthesized by using PEI having a molecular weight of 3,000 or less as a ligand show higher carbon dioxide reduction current density and reduction efficiency than conventional commercial catalysts.

도 1은 리이민 고분자를 이용하여 합성된 금 나노입자의 (a) 투과전자현미경 및 전자산란 이미지와 (b) HADDF-주사투과전자현미경(HADDF-STEM) 및 에너지 분산형 분산분광법(EDS)에 의한 성분 분석(Au, N, C) 이미지이다.
도 2는 폴리에틸렌이민을 이용해 합성된 금 나노입자의 X-선 회절(X-ray diffraction) 분석결과와 (b) 폴리에틸렌이민을 이용하여 합성된 금 나노입자(붉은색) 및 폴리에틸렌이민을 포함하지 않고 합성된 금 나노입자(검은색) 열-질량분석기(TGA) 분석 결과이다.
도 3은 폴리에틸렌이민을 통해 합성된 금 나노 입자를 X-선 광전자 분광법(XPS)으로 분석하여 나타냄 (a) 금 원소의 전자결합에너지 및 (b) 질소 원자의 전자결합에너지와 (c) 금 입자의 X-선 흡광분석(XANES) 결과이다.
도 4는 폴리에틸렌이민으로 쌓여진 금속 나노입자를 이용한 이산화탄소 환원 반응의 전기화학 분석 결과이다. 중량평균 분자량 2,000의 폴리에틸렌이민으로 쌓여진 금 나노입자(빨간색), 중량평균 75,000의 폴리에틸렌이민으로 쌓여진 금 나노입자(파란색), 및 고분자가 코팅되지 않은 금 나노입자(검은색)의 (a) 전체 겉보기 전류값 및 (b) 가스크로마토그래피로 분석하여 계산한 일산화탄소 환원 전류값.
FIG. 1 shows (a) transmission electron microscopy and electron scattering images of (a) HADDF-scanning transmission electron microscopy (HADDF-STEM) and energy dispersive spectrometry (EDS) images of gold nanoparticles synthesized using a lymein polymer (Au, N, C) images of the components.
FIG. 2 shows the results of X-ray diffraction analysis of gold nanoparticles synthesized using polyethyleneimine and (b) the measurement results of gold nanoparticles (red) and polyethyleneimine synthesized using polyethyleneimine The result is a gold nanoparticle (black) thermo-mass spectrometry (TGA) analysis.
3 shows the results of analysis of gold nanoparticles synthesized through polyethyleneimine by X-ray photoelectron spectroscopy (XPS). (A) electron binding energy of a gold element, (b) electron binding energy of a nitrogen atom, and (c) Ray absorption analysis (XANES).
4 is an electrochemical analysis result of a carbon dioxide reduction reaction using metal nanoparticles piled up with polyethyleneimine. (A) of gold nanoparticles (red) deposited with a polyethyleneimine having a weight average molecular weight of 2,000, gold nanoparticles (blue) deposited with a polyethyleneimine having a weight average of 75,000, and gold nanoparticles (black) Current value and (b) carbon monoxide reduction current value calculated by gas chromatography analysis.

이하에서, 본 발명의 여러 측면 및 다양한 구현예에 대해 더욱 구체적으로 살펴보도록 한다. Hereinafter, various aspects and various embodiments of the present invention will be described in more detail.

본 발명의 일 측면은 (a) 지지체, (b) 상기 지지체 상에 담지되어 있는 나노입자로 구성된 이산화탄소 환원용 촉매로서, 상기 나노입자는 폴리이민계 고분자로 코팅된 금속 나노입자인 것을 특징으로 하는 이산화탄소 환원용 촉매에 관한 것이다. One aspect of the present invention is A catalyst for reducing carbon dioxide comprising (a) a support and (b) nanoparticles supported on the support, wherein the nanoparticles are metal nanoparticles coated with a polyimine-based polymer will be.

일 구현예에 따르면, 상기 폴리이민계 고분자는 폴리에틸렌이민이다. According to one embodiment, the polyimine-based polymer is a polyethyleneimine.

다른 구현예에 따르면, 상기 폴리에틸렌이민은 중량평균 분자량이 1,000 내지 3,000이다. According to another embodiment, the polyethyleneimine has a weight average molecular weight of 1,000 to 3,000.

잘 알려져 있는 바와 같이, 이산화탄소 환원와 양성자 환원은 서로 경쟁적인 반응으로, 양성자 환원을 억제하고 이산화탄소 환원 반응 비율을 높이는 것이 매우 중요하다. 본 발명에서는 특히 상기 폴리이민계 고분자가 폴리에틸렌이민이고 그 중량평균 분자량이 1,000 내지 3,000의 범위에 있는 경우에 이산화탄소 환원의 선택성이 매우 놀랍도록 증가하는 것을 확인하였다. 폴리이민계 고분자가 폴리에틸렌이민이 아니거나, 중량평균 분자량이 위 수치 범위 밖에 있는 경우에는 이러한 선택성의 현저한 증가가 관찰되지 않음을 확인하였다. As is well known, carbon dioxide reduction and proton reduction are competitive reactions, so it is very important to inhibit proton reduction and increase the rate of carbon dioxide reduction reaction. In the present invention, it has been confirmed that the selectivity of carbon dioxide reduction remarkably increases when the polyimine-based polymer is polyethyleneimine and the weight average molecular weight thereof is in the range of 1,000 to 3,000. It was confirmed that no remarkable increase in selectivity was observed when the polyimine-based polymer was not polyethyleneimine or the weight-average molecular weight was outside the above range.

또 다른 구현예에 따르면, 상기 지지체 상에 담지되어 있는 금속 나노입자의 담지량은 상기 지지체 중량를 기준으로 10 내지 30 중량%이다. According to another embodiment, the loading amount of the metal nanoparticles carried on the support is 10 to 30% by weight based on the weight of the support.

또 다른 구현예에 따르면, 상기 나노입자는 직경이 2 내지 5 nm이다. According to another embodiment, the nanoparticles are 2 to 5 nm in diameter.

본 발명의 다른 측면은 (A) 폴리에틸렌이민, 나노입자 전구체, 지지체의 분산액에 환원제를 투입하여 환원반응시키는 단계를 포함하는 이산화탄소 환원용 촉매의 제조방법에 관한 것이다. Another aspect of the present invention relates to (A) a method for producing a catalyst for reduction of carbon dioxide, which comprises a step of reducing a reducing agent into a dispersion of a polyethyleneimine, a nanoparticle precursor, and a support.

일 구현예에 따르면, 상기 분산액은 상기 폴리이민계 고분자와 상기 지지체를 포함하는 제1 분산액과 상기 나노입자 전구체를 포함하는 제2 분산액의 혼합 분산액이다. According to one embodiment, the dispersion is a mixed dispersion of a first dispersion comprising the polyimine-based polymer and the support and a second dispersion comprising the nanoparticle precursor.

다른 구현예에 따르면, 상기 폴리이민계 고분자를 폴리에틸렌이민이다. According to another embodiment, the polyimine-based polymer is a polyethyleneimine.

또 다른 구현예에 따르면, 상기 폴리에틸렌이민은 중량평균 분자량이 1,000 내지 3,000이다. According to another embodiment, the polyethyleneimine has a weight average molecular weight of 1,000 to 3,000.

또 다른 구현예에 따르면, 상기 환원제는 수소화 붕소 나트륨이고, 상기 나노입자 전구체는 염화금산(HAuCl4)이며, 상기 분산액, 상기 제1 분산액, 상기 제2 분산액의 분산매는 에탄올이다.According to another embodiment, the reducing agent is sodium borohydride, the nanoparticle precursor is chloroauric acid (HAuCl 4 ), and the dispersion medium of the dispersion, the first dispersion and the second dispersion is ethanol.

또 다른 구현예에 따르면, 상기 혼합 분산액은 상기 제2 분산액을 상기 제1 분산액에 투입함으로써 수득된다. According to another embodiment, the mixed dispersion is obtained by introducing the second dispersion into the first dispersion.

이와 같이 나노입자 전구체가 포함된 제2 분산액을 폴리이민계 고분자와 지지체를 포함하는 제1 분산액에 투입하는 것이 2 내지 5 nm의 균일한 크기의 나노입자를 얻을 수 있다는 점에서 중요하며, 만일 반대로 제1 분산액에 제2 분산액을 투입함으로써 혼합 분산액을 수득하는 경우에는 형성된 나노입자의 크기가 균일하지 않을 수 있음을 확인하였다.
It is important that the second dispersion containing the nanoparticle precursor is added to the first dispersion containing the polyimine polymer and the support in order to obtain nanoparticles of uniform size of 2 to 5 nm, It was confirmed that when the mixed dispersion was obtained by adding the second dispersion to the first dispersion, the size of the formed nanoparticles may not be uniform.

이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다. Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the scope and content of the present invention can not be construed to be limited or limited by the following Examples. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the present invention as set forth in the following claims. It is natural that it belongs to the claims.

또한 이하에서 제시되는 실험 결과는 상기 실시예 및 비교예의 대표적인 실험 결과만을 기재한 것이며, 아래에서 명시적으로 제시하지 않은 본 발명의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다. In addition, the experimental results presented below only show representative experimental results of the embodiments and the comparative examples, and the respective effects of various embodiments of the present invention which are not explicitly described below will be specifically described in the corresponding part.

실시예Example

실험방법: 폴리에틸렌이민으로 쌓여진 금 나노입자 촉매 제조Experimental method: Fabrication of gold nanoparticle catalyst packed with polyethyleneimine

물에 분산된 폴리에틸렌이민 고분자, 나노입자의 전구체(염화금산(HAuCl4ㅇ3H2O, hydrogen tetrachloroaurate)), 나노입자의 지지체(탄소, Vulcan-XC72), 및 금속 전구체의 환원제(수소화 붕소 나트륨(sodium borohydride)) 등을 에탄올 용매에 넣고 금속 전구체의 환원을 통하여 나노입자를 합성하였다.(HAuCl 4 O 3 H 2 O, hydrogen tetrachloroaurate), a nanoparticle support (carbon, Vulcan-XC72), and a metal precursor reducing agent (sodium borohydride sodium borohydride) were added to the ethanol solvent and the nanoparticles were synthesized by reduction of the metal precursor.

구체적으로, 에탄올 740 mL에 폴리에틸렌이민(Mw ~2,000, Mn ~1800, 이하 'PEI 2000'라고 부름) 2400 μL와 나노입자의 지지체로 쓰이는 탄소분말(Vulcan-XC72) 0.15 g을 넣고 탄소분말이 잘 분산되도록 초음파 처리를 30분 간 실시하였다. 이와 별도로, 에탄올에 금속 전구체(HAuCl4) 75 mg을 별도로 에탄올 20 mL에 넣고 기계적으로 흔들어(vortex) 섞어주었다. 상기 에탄올에 들어있는 탄소분말 및 폴리에틸렌이민 용액을 초음파로 교반한 후, 금속 전구체 에탄올 용액 20 mL를 탄소분말 용액에 더하였다. 이후 용액을 2시간 동안 기계적으로 더 교반시켰다. 그 이후에, 에탄올 20 mL에 녹인 수소화 붕소 나트륨(sodium borohydride) 용액을 금속 전구체, 탄소분말 및 폴리에틸렌이민이 들어있는 에탄올 용액(760 mL)에 더하여 금속 전구체의 환원반응을 개시하였다. 상기 용액은 12시간 정도 더 기계적으로 교반하여 금속 나노입자가 탄소 분말 위에 완전히 환원되도록 하였다. 금속의 환원반응을 마친 후, 합성된 금속 나노입자를 필터를 통해 분리하고, 붉은색으로 얻어진 나노입자를 에탄올 800 mL와 물 800 mL를 이용하여 차례로 세척하고 진공건조하여 폴리에틸렌이민으로 쌓여진 금 나노입자(PEI-Au/C)의 촉매를 회수하였다.Specifically, the polyethylene in ethanol 740 mL imine (M w ~ 2,000, M n ~ 1800, hereinafter 'PEI 2000' that call) into the carbon powder (Vulcan-XC72) 0.15 g is used as a support in 2400 μL with nanoparticles of carbon powder And ultrasonication was performed for 30 minutes so as to be well dispersed. Separately, 75 mg of a metal precursor (HAuCl 4 ) was added to ethanol separately in 20 mL of ethanol and vortexed mechanically. The carbon powder and the polyethylene imine solution in the ethanol were stirred by ultrasonication, and then 20 mL of the metal precursor ethanol solution was added to the carbon powder solution. The solution was then mechanically further stirred for 2 hours. Thereafter, a sodium borohydride solution dissolved in 20 mL of ethanol was added to an ethanol solution (760 mL) containing a metal precursor, a carbon powder and a polyethyleneimine to initiate the reduction reaction of the metal precursor. The solution was mechanically stirred for about 12 hours to allow the metal nanoparticles to be completely reduced on the carbon powder. After the metal reduction reaction was completed, the synthesized metal nanoparticles were separated through a filter, and the red nanoparticles were sequentially washed with 800 mL of ethanol and 800 mL of water, and vacuum dried to prepare gold nanoparticles (PEI-Au / C) catalyst was recovered.

중량평균 분자량이 2,000인 폴리에틸렌이민 대신에 중량평균 분자량이 각각 700, 2,000, 75,000인 폴리에틸렌이민(이하에서는 각각 'PEI 700', 'PEI 2000', 'PEI 75000'으로 부름)을 사용하는 점을 제외하고는 위 실시예 1과 동일하게 촉매를 제조하였다. Except that polyethyleneimine (hereinafter referred to as 'PEI 700', 'PEI 2000', or 'PEI 75000') having a weight average molecular weight of 700, 2000, or 75,000 was used in place of polyethyleneimine having a weight average molecular weight of 2,000 The catalyst was prepared in the same manner as in Example 1.

실험결과: 폴리에틸렌이민으로 쌓여진 금 나노입자 촉매를 통한 이산화탄소 환원반응Experimental Results: Carbon Dioxide Reduction with Gold Nanoparticle Catalyst Accumulated with Polyethyleneimine

도 1은 상기 기술한 합성법으로 PEI 2000을 이용하여 제조한 금 나노입자의 (a) 투과전자현미경(TEM), 전자회절이미지, 및 확대된 투과전자현미경 사진이며 (b) HAADF-주사투과전자현미경(HAADF-STEM) 및 에너지분산형 분광분석법(EDS)에 의한 성분 분석 이미지이다. 분석에 따르면 폴리에틸렌이민 고분자를 이용하여 합성된 금 나노입자는 약 3 nm의 크기를 가지며, 또한 에너지분산형 분광분석법에 따르면 탄소 위에 분포된 금과 질소는 같은 자리에서 검출되었다. 이는 질소가 포함된 폴리에틸렌이민이 금 입자 위에 잘 코팅된 형태로 존재하기 때문인 것으로 관찰되었다. 1 is a transmission electron microscope (TEM), electron diffraction image and magnified transmission electron micrograph of (a) gold nanoparticles prepared using PEI 2000 according to the synthesis method described above, and (b) HAADF-scanning transmission electron microscope (HAADF-STEM) and energy dispersive spectroscopy (EDS). According to the analysis, the gold nanoparticles synthesized using polyethyleneimine polymer have a size of about 3 nm. According to energy dispersive spectroscopy, gold and nitrogen distributed on carbon were detected at the same site. It was observed that the nitrogen-containing polyethyleneimine existed on the gold particles in a well-coated form.

PEI 2000을 이용하여 합성된 금 나노입자를 X-선 회절 실험을 통해 분석한 결과 폴리에틸렌이민은 금 나노입자의 결정성에 큰 영향을 끼치지 않았으며(그림 2a), 폴리에틸렌이민을 이용해 합성된 금 나노입자를 열-질량분석기를 통해 분석한 결과 금 나노입자는 탄소 지지체 위에 20%의 질량비로 담지되었음을 확인하였다(도 2b). As a result of the X-ray diffraction analysis of the gold nanoparticles synthesized using PEI 2000, the polyethyleneimine did not significantly affect the crystallinity of the gold nanoparticles (FIG. 2a), and the gold nanoparticles synthesized using polyethyleneimine The particles were analyzed by a heat-mass spectrometer to confirm that the gold nanoparticles were supported on a carbon support at a mass ratio of 20% (FIG. 2b).

PEI 2000을 이용하여 합성된 금 나노입자의 표면을 X-선 광전자 분광법으로 분석한 결과(도 3a과 3b)를 보면 도 1의 에너지 분산형 분광법(EDS)에서 얻은 결과와 같이 금과 질소가 같이 검출되는 것으로 보아 폴리에틸렌이민이 금 표면 위에 잘 도포된 것으로 보이며, 도 3의 X-선 흡광분석(XANES) 결과 금 표면에 코팅된 폴리에틸렌이민기는 금의 전자 구조에는 영향을 끼치지 않는 것으로 나타났다. The surface of gold nanoparticles synthesized using PEI 2000 was analyzed by X-ray photoelectron spectroscopy (FIGS. 3A and 3B). As can be seen from the results of energy dispersive spectroscopy (EDS) of FIG. 1, The polyethyleneimine appeared to be well coated on the gold surface, and the X-ray absorption analysis (XANES) of FIG. 3 showed that the polyethylene imine coated on the gold surface did not affect the electronic structure of gold.

폴리에틸렌이민으로 쌓여진 금 나노입자를 통한 이산화탄소 환원반응은 전기화학의 3-전극 시스템을 이용하여 분석하였다. 이때 은/염화은(Ag/AgCl)을 기준전극(reference electrode)으로 사용하여 폴리에틸렌이민으로 쌓여진 금 나노입자 전극의 전위를 제어하였다. 그리고 탄소 및 백금으로 이루어진 전극을 3-전극 시스템의 상대전극(counter electrode)으로 사용하여 전류가 흐르도록 하였다. 폴리에틸렌이민으로 쌓여진 금 나노입자는 양성자 전도성 고분자(예를 들어 나피온) 등을 이용하여 탄소 디스크 전극위에 고정시키고 그 활성을 분석하였다. 이산화탄소의 환원 반응은 이산화탄소가 포화된 물 수용액에서 분석하며, 생성된 일산화탄소 등은 가스 크로마토그래피 등을 통하여 성분분석을 실시하였다. The carbon dioxide reduction reaction through gold nanoparticles piled up with polyethyleneimine was analyzed using an electrochemical three - electrode system. At this time, silver / silver chloride (Ag / AgCl) was used as a reference electrode to control the potential of gold nanoparticle electrodes piled up with polyethyleneimine. And an electrode made of carbon and platinum was used as a counter electrode of the 3-electrode system to allow current to flow. Gold nanoparticles deposited with polyethyleneimine were immobilized on a carbon disk electrode using a proton conductive polymer (eg, Nafion), and their activity was analyzed. The reduction reaction of carbon dioxide was analyzed in an aqueous solution saturated with carbon dioxide, and the carbon monoxide produced was analyzed by gas chromatography or the like.

도 4는 상기 기술한 전기화학의 3-전극 시스템을 통하여 분석한 폴리에틸렌이민으로 쌓여진 금 나노입자의 전기화학적 이산화탄소 환원반응의 활성을 나타낸다. 이산화탄소환원 반응과 양성자의 환원 반응을 포함하여 수용액에서 발생할 수 있는 모든 환원 반응을 포함한 겉보기 전류값 측정에서 PEI 2000으로 코팅한 금 나노입자(도 4a, 빨간색)가 PEI 75000으로 코팅한 금 나노입자(도 4a, 파란색) 및 코팅되지 않은 금 입자(도 4a, 검은색)보다 20% 정도 증가한 전류밀도 값(PEI 2000 코팅 금 나노입자는 약 50 mA/cm2, PEI 75000 코팅 또는 코팅되지 않은 금 나노입자은 약 40 mA/cm2, -1.0 V에서의 전류값)을 보여준다.FIG. 4 shows the activity of electrochemical carbon dioxide reduction of gold nanoparticles deposited with polyethyleneimine analyzed through the electrochemical three-electrode system described above. The gold nanoparticles coated with PEI 2000 (Fig. 4a, red) were measured for apparent current values including all reduction reactions that may occur in aqueous solution, including carbon dioxide reduction and proton reduction reactions, using gold nanoparticles coated with PEI 75000 (PEI 2000 coated gold nanoparticles are about 50 mA / cm 2 , PEI 75000 coated or uncoated gold nanoparticles) increased by about 20% compared to the uncoated gold particles (FIG. 4A, blue) The particle shows a current value at about 40 mA / cm 2 , -1.0 V).

특히 이산화탄소 환원을 통한 일산화탄소 생산 전류만을 비교했을 때, PEI 2000로 코팅된 금 나노입자는 -1.0 V에서 약 37 mA/cm2의 일산화탄소 생산 전류밀도(도 4b 빨간색)을 가지며 이는 폴리에틸렌이민 75,000로 코팅된 금 나노입자의 일산화탄소 생산 전류밀도(도 4b 파란색, 약 4 mA/cm2) 또는 코팅되지 않은 금 나노입자의 일산화탄소 생산 전류밀도(도 4b 검은색, 약 20 mA/cm2) 보다 약 2배에서 9배 증가된 수치이다. In particular, when comparing only the carbon monoxide production current through carbon dioxide reduction, the gold nanoparticles coated with PEI 2000 had a carbon monoxide production current density (FIG. 4b red) at -1.0 V of about 37 mA / cm 2 , about two times the carbon monoxide production current density (Fig. 4b blue, about 4 mA / cm 2) or carbon monoxide production current density of the gold nano-particles (Fig. 4b black, and about 20 mA / cm 2) uncoated gold nanoparticles And 9 times higher than the previous year.

도 4에서는 폴리에틸렌이민의 코팅 유무와 함께 코팅되는 폴리에틸렌이민의 평균분자량이 금 나노입자를 통한 이산화탄소 환원 활성에 큰 영향을 끼치는 것을 보여준다. FIG. 4 shows that the average molecular weight of the polyethyleneimine coated with and without the polyethyleneimine has a great effect on the carbon dioxide reducing activity through the gold nanoparticles.

상기 분석을 통해, (i) 폴리에틸렌이민을 이용한 금속 나노입자 합성은 작고 균일(3 nm)한 폴리에틸렌이민이 코팅된 금속 나노입자가 합성되도록 하며, (ii) 이때 합성된 폴리에틸렌이민이 코팅된 금 나노입자는 예상하지 못한 뛰어난 이산화탄소 환원 활성을 보여준다. Through the above analysis, it was found that (i) synthesis of metal nanoparticles using polyethyleneimine allows the synthesis of metal nanoparticles coated with a small and uniform (3 nm) polyethyleneimine, and (ii) The particles exhibit unexpectedly excellent carbon dioxide reducing activity.

Claims (11)

(a) 지지체, (b) 상기 지지체 상에 담지되어 있는 나노입자로 구성된 이산화탄소 환원용 촉매로서,
상기 나노입자는 폴리이민계 고분자로 코팅된 금속 나노입자인 것을 특징으로 하는 이산화탄소 환원용 촉매.
A catalyst for reducing carbon dioxide comprising (a) a support, and (b) nanoparticles carried on the support,
Wherein the nanoparticles are metal nanoparticles coated with a polyimine-based polymer.
제1항에 있어서, 상기 폴리이민계 고분자는 폴리에틸렌이민인 것을 특징으로 하는 이산화탄소 환원용 촉매. The catalyst for reducing carbon dioxide according to claim 1, wherein the polyimine-based polymer is polyethyleneimine. 제2항에 있어서, 상기 폴리에틸렌이민은 중량평균 분자량이 1,000 내지 3,000인 것을 특징으로 하는 이산화탄소 환원용 촉매. The catalyst for reducing carbon dioxide according to claim 2, wherein the polyethyleneimine has a weight average molecular weight of 1,000 to 3,000. 제3항에 있어서, 상기 지지체 상에 담지되어 있는 금속 나노입자의 담지량은 상기 지지체 중량를 기준으로 10 내지 30 중량%인 것을 특징으로 하는 이산화탄소 환원용 촉매. 4. The catalyst for reducing carbon dioxide according to claim 3, wherein the amount of the metal nanoparticles carried on the support is 10 to 30% by weight based on the weight of the support. 제4항에 있어서, 상기 나노입자는 직경이 2 내지 5 nm인 것을 특징으로 하는 이산화탄소 환원용 촉매. 5. The catalyst for reducing carbon dioxide according to claim 4, wherein the nanoparticles have a diameter of 2 to 5 nm. (A) 폴리에틸렌이민, 나노입자 전구체, 지지체의 분산액에 환원제를 투입하여 환원반응시키는 단계를 포함하는 이산화탄소 환원용 촉매의 제조방법. (A) introducing a reducing agent into a dispersion of polyethylene imine, a nanoparticle precursor, and a support to perform a reduction reaction. 제6항에 있어서, 상기 분산액은 상기 폴리이민계 고분자와 상기 지지체를 포함하는 제1 분산액과 상기 나노입자 전구체를 포함하는 제2 분산액의 혼합 분산액인 것을 특징으로 하는 이산화탄소 환원용 촉매의 제조방법. The method of claim 6, wherein the dispersion is a mixed dispersion of a first dispersion containing the polyimine-based polymer and the support, and a second dispersion containing the nanoparticle precursor. 제7항에 있어서, 상기 폴리이민계 고분자를 폴리에틸렌이민인 것을 특징으로 하는 이산화탄소 환원용 촉매의 제조방법. The method for producing a catalyst for reduction of carbon dioxide according to claim 7, wherein the polyimine-based polymer is polyethyleneimine. 제8항에 있어서, 상기 폴리에틸렌이민은 중량평균 분자량이 1,000 내지 3,000인 것을 특징으로 하는 이산화탄소 환원용 촉매의 제조방법. The method of claim 8, wherein the polyethyleneimine has a weight average molecular weight of 1,000 to 3,000. 제9항에 있어서, 상기 환원제는 수소화 붕소 나트륨이고,
상기 나노입자 전구체는 염화금산(HAuCl4)이며,
상기 분산액, 상기 제1 분산액, 상기 제2 분산액의 분산매는 에탄올인 것을 특징으로 하는 이산화탄소 환원용 촉매의 제조방법.
10. The method of claim 9, wherein the reducing agent is sodium borohydride,
The nanoparticle precursor is chloroauric acid (HAuCl 4 )
Wherein the dispersion medium of the dispersion, the first dispersion, and the second dispersion is ethanol.
제10항에 있어서, 상기 혼합 분산액은 상기 제2 분산액을 상기 제1 분산액에 투입함으로써 수득되는 것을 특징으로 하는 이산화탄소 환원용 촉매의 제조방법. The method for producing a catalyst for reducing carbon dioxide according to claim 10, wherein the mixed dispersion is obtained by introducing the second dispersion into the first dispersion.
KR1020160128279A 2016-10-05 2016-10-05 Catalyst for reducing carbon dioxide and process of preparing the same KR101955236B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160128279A KR101955236B1 (en) 2016-10-05 2016-10-05 Catalyst for reducing carbon dioxide and process of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160128279A KR101955236B1 (en) 2016-10-05 2016-10-05 Catalyst for reducing carbon dioxide and process of preparing the same

Publications (2)

Publication Number Publication Date
KR20180037729A true KR20180037729A (en) 2018-04-13
KR101955236B1 KR101955236B1 (en) 2019-05-30

Family

ID=61974451

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160128279A KR101955236B1 (en) 2016-10-05 2016-10-05 Catalyst for reducing carbon dioxide and process of preparing the same

Country Status (1)

Country Link
KR (1) KR101955236B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108864439A (en) * 2018-06-29 2018-11-23 同济大学 A kind of tree-shaped metal ligand and the preparation method and application thereof
WO2020046064A1 (en) * 2018-08-30 2020-03-05 고려대학교 세종산학협력단 Carbon dioxide reduction composite catalyst and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050094501A (en) * 2004-03-23 2005-09-28 삼성에스디아이 주식회사 Supported catalyst and method of preparing the same
JP2005270883A (en) * 2004-03-25 2005-10-06 Tanaka Kikinzoku Kogyo Kk Catalyst manufacturing method
JP2009131835A (en) * 2007-10-30 2009-06-18 Toyama Univ Catalyst and method for deoxidizing carbon dioxide with hydrogen
JP2010209455A (en) * 2009-03-12 2010-09-24 Tokyo Univ Of Science Method of preparing metal nanoparticle and method of preparing metal nanoparticle dispersion solution
WO2013089112A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Acid-base reaction catalyst, gas diffusion electrode, and co2 permeable device
KR20130071358A (en) * 2011-12-20 2013-06-28 삼성전자주식회사 Cathode and electrochemical device
KR20160007888A (en) * 2014-07-08 2016-01-21 건국대학교 산학협력단 Electrode catalyst for fuel cell and the manufacturing method of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050094501A (en) * 2004-03-23 2005-09-28 삼성에스디아이 주식회사 Supported catalyst and method of preparing the same
JP2005270883A (en) * 2004-03-25 2005-10-06 Tanaka Kikinzoku Kogyo Kk Catalyst manufacturing method
JP2009131835A (en) * 2007-10-30 2009-06-18 Toyama Univ Catalyst and method for deoxidizing carbon dioxide with hydrogen
JP2010209455A (en) * 2009-03-12 2010-09-24 Tokyo Univ Of Science Method of preparing metal nanoparticle and method of preparing metal nanoparticle dispersion solution
WO2013089112A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Acid-base reaction catalyst, gas diffusion electrode, and co2 permeable device
KR20130071358A (en) * 2011-12-20 2013-06-28 삼성전자주식회사 Cathode and electrochemical device
KR20160007888A (en) * 2014-07-08 2016-01-21 건국대학교 산학협력단 Electrode catalyst for fuel cell and the manufacturing method of the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
2. Zhi Cao, Dohyung Kim, Dachao Hong, Yi Yu, Jun Xu, Song Lin, Xiaodong Wen, Eva M. Nichols, Keunhong Jeong, Jeffrey A. Reimer, Peidong Yang, Christopher J. Chang, "Particle Size Effects in the Catalytic Electroreduction of CO2 on Cu Nanoparticles", J. Am. Chem. Soc. 138, 8120 (2016)
u Chen, Azam Khan, Douglas R. MacFarlane, Jie Zhang, "Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide", Energy Environ. Sci., 9, 216 (2016)
논문1: J. Am. Chem. Soc. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108864439A (en) * 2018-06-29 2018-11-23 同济大学 A kind of tree-shaped metal ligand and the preparation method and application thereof
WO2020046064A1 (en) * 2018-08-30 2020-03-05 고려대학교 세종산학협력단 Carbon dioxide reduction composite catalyst and manufacturing method thereof

Also Published As

Publication number Publication date
KR101955236B1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
Lai et al. The quasi‐Pt‐allotrope catalyst: hollow PtCo@ single‐atom Pt1 on nitrogen‐doped carbon toward superior oxygen reduction
Bai et al. Bimetallic platinum–rhodium alloy nanodendrites as highly active electrocatalyst for the ethanol oxidation reaction
Liu et al. Recent progress in graphene‐based noble‐metal nanocomposites for electrocatalytic applications
Xia et al. One‐pot synthesis of Pt–Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties
Zhang et al. Crystalline palladium–cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction
Xiong et al. The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation
Song et al. Networked Pt–Sn nanowires as efficient catalysts for alcohol electrooxidation
Yang et al. Direct growth of ultrasmall bimetallic AuPd nanoparticles supported on nitrided carbon towards ethanol electrooxidation
Weng et al. Single-step aqueous synthesis of AuPt alloy nanodendrites with superior electrocatalytic activity for oxygen reduction and hydrogen evolution reaction
KR101807919B1 (en) Carrier-nano particles complex, method for fabricating the same and catalyst comprising the same
Wang et al. High-density surface protuberances endow ternary PtFeSn nanowires with high catalytic performance for efficient alcohol electro-oxidation
Zhao et al. Novel ionic liquid supported synthesis of platinum-based electrocatalysts on multiwalled carbon nanotubes
Lu et al. Pulse electrodeposition to prepare core–shell structured AuPt@ Pd/C catalyst for formic acid fuel cell application
KR20140100613A (en) A process of preparing carbon-supported metal catalyst by using physical deposition method
EP2953195A1 (en) Solid polymer fuel cell catalyst and method for manufacturing same
Yan et al. Investigation of AuNi/C anode catalyst for direct methanol fuel cells
Castagna et al. Carbon supported PtNiCu nanostructured particles for the electro-oxidation of ethanol in acid environment
Hunyadi Murph et al. Tuning of size and shape of Au–Pt nanocatalysts for direct methanol fuel cells
KR101955236B1 (en) Catalyst for reducing carbon dioxide and process of preparing the same
Yang et al. One-step synthesis in deep eutectic solvents of Pt3Sn1-SnO2 alloy nanopore on carbon nanotubes for boosting electro-catalytic methanol oxidation
Lashkenari et al. Fabrication of polyaniline/SBA-15-supported platinum/cobalt nanocomposites as promising electrocatalyst for formic acid oxidation
Kim et al. One-pot synthesis of ternary alloy hollow nanostructures with controlled morphologies for electrocatalysis
Wang et al. Pt Nanoparticles Loaded on W18O49 Nanocables–rGO Nanocomposite as a Highly Active and Durable Catalyst for Methanol Electro-Oxidation
Montaña-Mora et al. Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction
Wu et al. Facile synthesis of Pd@ PtM (M= Rh, Ni, Pd, Cu) multimetallic nanorings as efficient catalysts for ethanol oxidation reaction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right