KR20180036888A - Apparatus and method of DL data scheduling for MTC UEs - Google Patents

Apparatus and method of DL data scheduling for MTC UEs Download PDF

Info

Publication number
KR20180036888A
KR20180036888A KR1020160127102A KR20160127102A KR20180036888A KR 20180036888 A KR20180036888 A KR 20180036888A KR 1020160127102 A KR1020160127102 A KR 1020160127102A KR 20160127102 A KR20160127102 A KR 20160127102A KR 20180036888 A KR20180036888 A KR 20180036888A
Authority
KR
South Korea
Prior art keywords
pdsch
terminal
scheduling
transmission
subframe
Prior art date
Application number
KR1020160127102A
Other languages
Korean (ko)
Inventor
박규진
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to KR1020160127102A priority Critical patent/KR20180036888A/en
Publication of KR20180036888A publication Critical patent/KR20180036888A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention suggest a method for transmitting and receiving a downlink data channel (PDSCH) for a machine type communication (MTC) terminal in a 3GPP LTE/LTE-A system. Especially, the present invention suggests a method for scheduling a downlink data channel for a further enhanced MTC terminal supporting an up/down link data channel (i.e. PDSCH and PUSCH) band width improved compared to an MTC terminal (BL/CE UE) defined in LTE rel-13. The method for scheduling a downlink data channel for an MTC terminal comprises the steps of: setting whether same-subframe scheduling is applied to PDSCH scheduling for the MTC terminal; indicating to the MTC terminal that the same-subframe scheduling is applied; and performing a PDSCH receiving operation according to information on the indication.

Description

MTC 단말을 위한 하향 링크 데이터 스케줄링 방법 및 장치{Apparatus and method of DL data scheduling for MTC UEs}[0001] The present invention relates to a method and apparatus for scheduling downlink data for an MTC terminal,

본 실시예들은 3GPP LTE/LTE-A 시스템에서 MTC(Machine Type Communication) 단말을 위한 하향 링크 데이터 채널(PDSCH) 송수신 방법에 관한 것이다.The present embodiments relate to a method of transmitting and receiving a downlink data channel (PDSCH) for a MTC (Machine Type Communication) terminal in a 3GPP LTE / LTE-A system.

일 실시예는, MTC 단말을 위한 하향 링크 데이터 스케줄링 방법에 있어서, MTC 단말을 위한 PDSCH 스케줄링에 same-subframe scheduling 적용 여부를 설정하는 단계와, same-subframe scheduling 적용 여부를 MTC 단말로 indication하는 단계와, indication 정보에 따라 PDSCH 수신 동작을 수행하는 단계를 포함하는 방법을 제공한다.One embodiment of the present invention provides a downlink data scheduling method for a MTC terminal, the method comprising: setting whether or not to apply the same-subframe scheduling to PDSCH scheduling for the MTC terminal; indicating to the MTC terminal whether same-subframe scheduling is applied; and performing a PDSCH reception operation according to the indication information.

도 1은 Exemplary description of MPDCCH and corresponding PDSCH transmission time for rel-13 BL/CE UEs 을 나타낸 도면이다.
도 2는 Exemplary description of same-subframe scheduling for HeMTC UEs 을 나타낸 도면이다.
도 3은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 4는 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
FIG. 1 is a diagram illustrating Exemplary description of MPDCCH and corresponding PDSCH transmission time for rel-13 BL / CE UEs.
FIG. 2 is a diagram illustrating Exemplary description of same-subframe scheduling for HeMTC UEs.
3 is a diagram illustrating a configuration of a base station according to another embodiment of the present invention.
4 is a diagram illustrating a configuration of a user terminal according to another embodiment of the present invention.

이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail with reference to exemplary drawings. It should be noted that, in adding reference numerals to the constituent elements of the drawings, the same constituent elements are denoted by the same reference symbols as possible even if they are shown in different drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.Herein, the MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement. In this specification, the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement. Alternatively, the MTC terminal may refer to a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.

다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.In other words, the MTC terminal in this specification may mean a newly defined 3GPP Release-13 low cost (or low complexity) UE category / type for performing LTE-based MTC-related operations. Alternatively, the MTC terminal may support enhanced coverage over the existing LTE coverage or a UE category / type defined in the existing 3GPP Release-12 or lower that supports low power consumption, or a newly defined Release-13 low cost low complexity UE category / type.

본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.The wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data and the like. A wireless communication system includes a user equipment (UE) and a base station (BS, or eNB). The user terminal in this specification is a comprehensive concept of a terminal in wireless communication. It is a comprehensive concept which means a mobile station (MS), a user terminal (UT), an SS (User Equipment) (Subscriber Station), a wireless device, and the like.

기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.A base station or a cell generally refers to a station that communicates with a user terminal and includes a Node-B, an evolved Node-B (eNB), a sector, a Site, a BTS A base transceiver system, an access point, a relay node, a remote radio head (RRH), a radio unit (RU), and a small cell.

즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. That is, the base station or the cell in this specification is interpreted as a comprehensive meaning indicating a partial region or function covered by BSC (Base Station Controller) in CDMA, NodeB in WCDMA, eNB in LTE or sector (site) And covers various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, and small cell communication range.

상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.Since the various cells listed above exist in the base station controlling each cell, the base station can be interpreted into two meanings. i) the device itself providing a megacell, macrocell, microcell, picocell, femtocell, small cell in relation to the wireless region, or ii) indicating the wireless region itself. i indicate to the base station all devices that are controlled by the same entity or that interact to configure the wireless region as a collaboration. An eNB, an RRH, an antenna, an RU, an LPN, a point, a transmission / reception point, a transmission point, a reception point, and the like are exemplary embodiments of a base station according to a configuration method of a radio area. ii) may indicate to the base station the wireless region itself that is to receive or transmit signals from the perspective of the user terminal or from a neighboring base station.

따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신 포인트를 통칭하여 기지국으로 지칭한다.Therefore, a base station is collectively referred to as a base station, collectively referred to as a megacell, macrocell, microcell, picocell, femtocell, small cell, RRH, antenna, RU, low power node do.

본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.Herein, the user terminal and the base station are used in a broad sense as the two transmitting and receiving subjects used to implement the technical or technical idea described in this specification, and are not limited by a specific term or word. The user terminal and the base station are used in a broad sense as two (uplink or downlink) transmitting and receiving subjects used to implement the technology or technical idea described in the present invention, and are not limited by a specific term or word. Here, an uplink (UL, or uplink) means a method of transmitting / receiving data to / from a base station by a user terminal, and a downlink (DL or downlink) .

무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.There are no restrictions on multiple access schemes applied to wireless communication systems. Various multiple access schemes such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM- Can be used. An embodiment of the present invention can be applied to asynchronous wireless communication that evolves into LTE and LTE-advanced via GSM, WCDMA, and HSPA, and synchronous wireless communication that evolves into CDMA, CDMA-2000, and UMB. The present invention should not be construed as limited to or limited to a specific wireless communication field and should be construed as including all technical fields to which the idea of the present invention can be applied.

상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.A TDD (Time Division Duplex) scheme in which uplink and downlink transmissions are transmitted using different time periods, or an FDD (Frequency Division Duplex) scheme in which they are transmitted using different frequencies can be used.

또한, LTE, LTE-advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다. In systems such as LTE and LTE-advanced, a standard is constructed by configuring uplink and downlink based on a single carrier or carrier pair. The uplink and the downlink are divided into a Physical Downlink Control Channel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel, a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control Channel (EPDCCH) Transmits control information through the same control channel, and is configured with data channels such as PDSCH (Physical Downlink Shared CHannel) and PUSCH (Physical Uplink Shared CHannel), and transmits data.

한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.On the other hand, control information can also be transmitted using EPDCCH (enhanced PDCCH or extended PDCCH).

본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다. In this specification, a cell refers to a component carrier having a coverage of a signal transmitted from a transmission point or a transmission point or transmission / reception point of a signal transmitted from a transmission / reception point, and a transmission / reception point itself .

실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다. The wireless communication system to which the embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-point transmission / reception system in which two or more transmission / reception points cooperatively transmit signals. antenna transmission system, or a cooperative multi-cell communication system. A CoMP system may include at least two multipoint transmit and receive points and terminals.

다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.The multi-point transmission / reception point includes a base station or a macro cell (hereinafter referred to as 'eNB'), and at least one mobile station having a high transmission power or a low transmission power in a macro cell area, Lt; / RTI >

이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다. Hereinafter, a downlink refers to a communication or communication path from a multipoint transmission / reception point to a terminal, and an uplink refers to a communication or communication path from a terminal to a multiple transmission / reception point. In the downlink, a transmitter may be a part of a multipoint transmission / reception point, and a receiver may be a part of a terminal. In the uplink, the transmitter may be a part of the terminal, and the receiver may be a part of multiple transmission / reception points.

이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.Hereinafter, a situation in which a signal is transmitted / received through a channel such as PUCCH, PUSCH, PDCCH, EPDCCH, and PDSCH is expressed as 'PUCCH, PUSCH, PDCCH, EPDCCH and PDSCH are transmitted and received'.

또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.In the following description, an indication that a PDCCH is transmitted or received or a signal is transmitted or received via a PDCCH may be used to mean transmitting or receiving an EPDCCH or transmitting or receiving a signal through an EPDCCH.

즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.That is, the physical downlink control channel described below may mean a PDCCH, an EPDCCH, or a PDCCH and an EPDCCH.

또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 PDCCH를 적용할 수 있다.Also, for convenience of description, the PDCCH, which is an embodiment of the present invention, may be applied to the PDCCH, and the PDCCH may be applied to the portion described with the EPDCCH.

한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC 시그널링을 포함한다.Meanwhile, the High Layer Signaling described below includes RRC signaling for transmitting RRC information including RRC parameters.

eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.The eNB performs downlink transmission to the UEs. The eNB includes a physical downlink shared channel (PDSCH) as a main physical channel for unicast transmission, downlink control information such as scheduling required for reception of PDSCH, and uplink data channel A physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission in a Physical Uplink Shared Channel (PUSCH). Hereinafter, the transmission / reception of a signal through each channel will be described in a form in which the corresponding channel is transmitted / received.

[[ RelRel -13 -13 BLBL /CE / CE UEsUEs for  for MTCMTC operation operation ]]

LTE 네트워크가 확산될수록, 이동통신 사업자는 네트워크의 유지보수 비용 등을 줄이기 위해 RAT(Radio Access Terminals)의 수를 최소화하기를 원하고 있다. 하지만, 종래의 GSM/GPRS 네트워크 기반의 MTC 제품들이 증가하고 있고, 낮은 데이터 전송률을 사용하는 MTC를 저비용으로 제공할 수 있다. 따라서 이동통신 사업자 입장에서 일반 데이터 전송을 위해서는 LTE 네트워크를 사용하고 MTC를 위해서는 GSM/GPRS 네트워크를 사용하므로, 두 개의 RAT을 각각 운영해야 하는 문제가 발생하며, 이는 주파수 대역의 비효율적 활용으로 이동통신 사업자의 수익에 부담이 된다. 따라서 기존의 normal LTE 단말 대비 단말 단가를 낮추기 위해 단말의 송수신 대역폭을 6 PRBs(Physical Resource Blocks)로 한정하고, 송수신 안테나의 개수를 1개로 한정한 BL(Bandwidth reduced Low complexity) UE 및 지하실과 같이 'deep indoor' 환경에 설치된 smart metering과 같은 MTC application scenario를 고려하여 커버리지 향상(Coverage Enhancement, CE) 모드를 CE UE를 정의하고, 해당 BL/CE UE를 지원하기 위한 표준 기술이 LTE rel-13 시스템에서 정의되었다. As the LTE network spreads, mobile operators want to minimize the number of Radio Access Terminals (RATs) to reduce network maintenance costs. However, conventional MTC products based on a GSM / GPRS network are increasing, and MTC using a low data rate can be provided at low cost. Therefore, there is a problem in that two RATs must be operated respectively, since LTE network is used for general data transmission and GSM / GPRS network is used for MTC. Therefore, Of the total revenue. Accordingly, in order to lower the terminal unit price compared to the conventional normal LTE terminal, the transmission / reception bandwidth of the terminal is limited to 6 PRBs (Physical Resource Blocks), and the number of transmission / reception antennas is limited to one, CE UE is defined as a coverage enhancement (CE) mode considering MTC application scenario such as smart metering installed in a 'deep indoor' environment, and a standard technology for supporting the corresponding BL / CE UE is defined in the LTE rel-13 system Defined.

[CE mode definition][CE mode definition]

LTE rel-13 시스템에서는 BL/CE 단말을 위한 coverage enhancement mode로서 CEModeA와 CEModeB의 두 가지 mode가 정의되었다. CEModeA는 BL/CE 단말의 커버리지 향상을 위한 MPDCCH, PDSCH, PUSCH, PUCCH 등의 무선 채널에 대한 repetition이 적용되지 않거나 혹은 적은 수의 repetition을 적용하기 위한 단말 동작 모드이며, CEModeB는 커버리지 향상을 위해 상기 무선 채널들에 대한 많은 수의 repetition을 적용하기 위한 단말 동작 모드로서 해당 CE mode는 단말 별로 설정되어 signaling되도록 정의되었다.In the LTE rel-13 system, two modes are defined as coverage enhancement modes for BL / CE terminals: CEModeA and CEModeB. CEModeA is a terminal operation mode in which repetition of a wireless channel such as MPDCCH, PDSCH, PUSCH, PUCCH is not applied or a small number of repetition is applied for coverage enhancement of a BL / CE terminal, and CEModeB is a terminal operation mode The CE mode is defined as a terminal operation mode for applying a large number of repetitions to wireless channels and is defined to be signaled for each terminal.

[[ NarrowbandNarrowband definition definition ]]

상기에서 서술한 바와 같이 Rel-13 BL/CE 단말의 경우, 시스템 대역폭에 관계 없이 임의의 서브프레임을 통해 1.4MHz(즉, 6 PRBs)에 대해서만 송수신이 가능하다. 이로 인해 임의의 상/하향 링크 서브프레임에서 임의의 BL/CE 단말의 송수신 대역을 정의하고, 이를 할당하기 위한 단위로서 연속적인 6 PRBs로 구성된 narrowband가 정의되었으며, 각각의 시스템 대역폭에 따라

Figure pat00001
개의 하향 링크 narrowbands 및
Figure pat00002
개의 상향 링크 narrowbands가 구성되었다. 단, 임의의 시스템 대역폭에서 상기의 narrowband 구성 시, 해당 시스템 대역폭을 구성하는 전체 PRB의 수를 6으로 나눈 나머지에 해당하는 remaining RB(s)에 대해, 해당 remaining RB(s)를 시스템 대역의 양 쪽 band edge에 even하게 두거나(시스템 대역폭이 짝수의 PRBs로 구성된 경우), 혹은 시스템 대역의 센터(시스템 대역이 25 PRBs로 구성된 경우), 혹은양 edge와 시스템 대역의 센터(시스템 대역이 15 PRBs, 75 PRBs인 경우)에 각각 위치시키고, 이를 제외한 PRBs를 이용해 increasing PRB number로 6개 연속적인 PRBs를 묶어서 상기의 narrowband를 구성하도록 할 수 있다.As described above, in the Rel-13 BL / CE terminal, transmission / reception is possible only at 1.4 MHz (i.e., 6 PRBs) through arbitrary subframes regardless of the system bandwidth. As a result, a transmission band of an arbitrary BL / CE terminal is defined in an arbitrary uplink / downlink subframe, and a narrowband composed of 6 consecutive PRBs is defined as a unit for allocating the bandwidth, and according to each system bandwidth
Figure pat00001
Lt; RTI ID = 0.0 > narrowbands &
Figure pat00002
Uplink narrowbands were constructed. However, in the narrowband configuration in the arbitrary system bandwidth, for the remaining RB (s) corresponding to the remaining number obtained by dividing the total number of PRBs constituting the corresponding system bandwidth by six, the remaining RB (s) (System bandwidth is equal to 25 PRBs), or both edge and system bandwidth centers (system bandwidth is 15 PRBs). 75 PRBs), and by using the PRBs other than the PRBs, it is possible to configure the narrowband by grouping six consecutive PRBs with increasing PRB numbers.

구체적으로 TS 36.211 문서에 정의된 narrowband 구성 방법은 아래와 같다.Specifically, the narrowband configuration method defined in TS 36.211 document is as follows.

[TS 36.211 v13.2.0][TS 36.211 v13.2.0]

DownlinkDownlink narrowbandsnarrowbands

6.2.7 Narrowbands6.2.7 Narrowbands

A narrowband is defined as six non-overlapping consecutive physical resource blocks in the frequency domain. The total number of downlink narrowbands in the downlink transmission bandwidth configured in the cell is given byA narrowband is defined as six non-overlapping consecutive physical resource blocks in the frequency domain. The total number of downlink bandwidths in the downlink transmission bandwidth configured in the cell is given by

Figure pat00003
Figure pat00003

The narrowbands are numbered

Figure pat00004
in order of increasing physical resource-block number where narrowband
Figure pat00005
is composed of physical resource-block indicesThe narrowbands are numbered
Figure pat00004
in order of increasing physical resource-block number where narrowband
Figure pat00005
is composed of physical resource-block indices

Figure pat00006
Figure pat00006

wherewhere

Figure pat00007
Figure pat00007

UplinkUplink narrowbandsnarrowbands

5.2.4 Narrowbands5.2.4 Narrowbands

A narrowband is defined as six non-overlapping consecutive physical resource blocks in the frequency domain. The total number of uplink narrowbands in the uplink transmission bandwidth configured in the cell is given byA narrowband is defined as six non-overlapping consecutive physical resource blocks in the frequency domain. The total number of uplink narrowbands in the uplink transmission bandwidth configured in the cell is given by

Figure pat00008
Figure pat00008

The narrowbands are numbered

Figure pat00009
in order of increasing physical resource-block number where narrowband
Figure pat00010
is composed of physical resource-block indicesThe narrowbands are numbered
Figure pat00009
in order of increasing physical resource-block number where narrowband
Figure pat00010
is composed of physical resource-block indices

Figure pat00011
Figure pat00011

wherewhere

Figure pat00012
Figure pat00012

[Resource allocation and [Resource allocation and DCIDCI format for  format for BLBL /CE / CE UEUE ]]

Rel-13에서 정의된 BL/CE 단말을 위한 PDSCH 및 PUSCH 자원 할당 방법에 따르면, 임의의 기지국은 임의의 BL/CE 단말을 위한 PDSCH 혹은 PUSCH 자원 할당 정보를 포함하는 DCI를 구성함에 있어서, 해당 BL/CE 단말을 위한 PDSCH 혹은 PUSCH 전송이 PRB(혹은 VRB) 할당을 위해 narrowband index 정보 및 해당 narrowband 내에서의 RB 할당 정보를 포함하도록 정의되었다. 또한 해당 narrowband 내에서의 RB 할당 정보는 연속적인 VRB 자원 할당 방식으로 이루어지며, 이에 따라 PDSCH의 경우 resource allocation type 2 기반으로, PUSCH의 경우 resource allocation type 0 기반으로 이루어지도록 정의되었다. 단, PUSCH 의 경우 CEModeB가 설정된 BL/CE 단말에 한해 resource allocation type 2 기반으로 자원 할당이 이루어질 수 있다.According to the PDSCH and PUSCH resource allocation method for the BL / CE terminal defined in Rel-13, when a certain base station constructs a DCI including PDSCH or PUSCH resource allocation information for an arbitrary BL / CE terminal, The PDSCH or PUSCH transmission for the / CE terminal is defined to include narrowband index information and RB allocation information within the corresponding narrowband for PRB (or VRB) allocation. In addition, the RB allocation information within the corresponding narrowband is defined to be based on the resource allocation type 2 for the PDSCH and the resource allocation type 0 for the PUSCH based on the continuous VRB resource allocation scheme. However, in case of PUSCH, resource allocation can be performed based on resource allocation type 2 only in a BL / CE terminal in which CEModeB is set.

구체적인 자원 할당 방법과 그에 따라 정의된 BL/CE 단말을 위한 DCI format을 각각 TS 36.213 문서 및 TS 36.212 문서에서 발췌하여 "appendix 1" 문서를 통해 첨부하도록 한다. The specific resource allocation method and the DCI format for the defined BL / CE terminal are extracted from the TS 36.213 document and the TS 36.212 document respectively and attached through the "appendix 1" document.

[[ PDSCHPDSCH subframesubframe assignment for  assignment for BLBL /CE / CE UEUE ]]

Rel-13 BL/CE 단말을 위한 PDSCH 수신 방법에 따르면, 임의의 BL/CE 단말은 MPDCCH를 통해 전송되는 DCI를 수신함으로써 해당 단말을 위한 PDSCH 자원 할당 정보를 수신하였다. 해당 PDSCH 자원 할당 정보를 포함하는 DCI는 각각 MPDCCH 반복 전송 횟수 및 PDSCH 반복 전송 횟수를 포함하고 있다. 이에 따라 해당 단말은 임의의 MPDCCH의 반복 전송 횟수를 기반으로 해당 MPDCCH에 대한 마지막 반복 전송이 이루어진 서브프레임 후속 서브프레임 중 2번째 BL/CE subframe으로부터 해당 DCI를 통해 설정된 PDSCH의 반복 전송 횟수만큼의 BL/CE 서브프레임을 통해 PDSCH를 수신하도록 정의되었다. 즉, MPDCCH와 그에 따른 PDSCH는 서로 다른 서브프레임을 통해 전송되는 cross-subframe scheduling 방식이 적용되었다.According to the PDSCH reception method for the Rel-13 BL / CE terminal, any BL / CE terminal receives the DCI transmitted through the MPDCCH and receives the PDSCH resource allocation information for the corresponding terminal. The DCI including the PDSCH resource allocation information includes the MPDCCH repetition transmission count and the PDSCH repetition transmission count, respectively. Accordingly, the corresponding UE transmits BLs / BLs corresponding to the number of repeated transmissions of the PDSCH set through the corresponding DCI from the second BL / CE subframe among the subframe subsequent subframes of the last repeated transmission for the corresponding MPDCCH based on the number of repetition transmissions of the arbitrary MPDCCH / CE < / RTI > subframe. That is, a cross-subframe scheduling scheme in which MPDCCH and the corresponding PDSCH are transmitted through different subframes is applied.

구체적인 BL/CE 단말을 위해 정의된 MPDCCH 및 PDSCH 수신 서브프레임 설정과 관련하여 아래의 TS 36.213 문서를 발췌하여 appendix 2 문서를 통해 첨부하도록 한다.In connection with the defined MPDCCH and PDSCH receive subframe settings for specific BL / CE terminals, the following TS 36.213 document should be extracted and appended via appendix 2 document.

[Further enhanced [Further enhanced MTCMTC ]]

상기에서 서술한 바와 같이 3GPP rel-13에서 정의된 BL/CE 단말에 대한 추가적인 enhanced feature에 대한 논의가 3GPP rel-14 시스템에서 이루어질 예정으로 구체적인 scope은 아래의 WID 문서 RP-161321을 발췌하여 첨부하도록 한다.As discussed above, a discussion on additional enhanced features for the BL / CE terminal defined in 3GPP rel-13 will be made in the 3GPP rel-14 system, and the specific scope should be attached as an excerpt from the following WID document RP-161321 do.

3 Justification3 Justification

The provision of IoT via cellular networks is proving to be a significant opportunity for mobile operators. In Release 13, two classes of low-cost IoT devices with enhanced coverage and long battery life are specified: eMTC devices and NB-IoT devices with UE bandwidths of 6 PRBs and 1 PRB, respectively (1 PRB = a 180-kHz physical resource block).The Provision of IoT via cellular networks is proving to be a significant opportunity for mobile operators. In Release 13, two classes of low-cost IoT devices with enhanced coverage and long battery life are specified: eMTC devices and NB-IoT devices with UE bandwidths of 6 PRBs and 1 PRB, respectively (1 PRB = a 180-kHz physical resource block).

UE positioning and tracking are important in many IoT applications, such as asset tracking. But GNSS-based positioning method is not appropriate for many IoT applications. Additionally, the narrow UE bandwidth poses challenges for the positioning accuracy when using the 3GPP positioning functionalities defined for normal UEs. In Rel-13, only limited positioning functionalities are provided for these UEs. Hence completing the core requirements from Rel-13 and considering improvements of the 3GPP positioning methods are necessary to improve the 3GPP-based IoT eco-system.UE positioning and tracking are important in many IoT applications, such as asset tracking. But GNSS-based positioning method is not suitable for many IoT applications. Additionally, the narrow UE bandwidth poses challenges for the positioning accuracy when using the 3GPP positioning functionalities defined for normal UEs. In Rel-13, only limited positioning functionalities are provided for these UEs. Hence, 3GPP-based IoT eco-system is required to improve the positioning requirements of Rel-13 and considering improvements.

When many devices in the same cell need to receive the same information simultaneously, for example in case of rollout of firmware or software upgrades, it is in many cases more efficient to use multicast transmission instead of unicast transmission. Low complexity multicast functionality can be introduced either in the form of a narrowband format of the regular MBSFN transmission functionality or as a small extension of the recently introduced single-cell point-to-multipoint transmission (SC-PtM) functionality.In many cases, the same cell is used for the same information simultaneously, for example in the case of rollout of firmware or software upgrades. Low complexity multicast functionality can be achieved either in the form of a regular MBSFN transmission or as a small extension of the recently introduced single-cell point-to-multipoint transmission (SC-PtM) functionality.

In Rel-13 the requirements of complexity reduction, extended battery life, and coverage enhancements aimed at devices such as sensors, meters, smart readers, and similar. Other types of devices/use cases, such as voice capable wearable devices and health monitoring devices share some of these requirements. However, a subset of these devices are not fully covered by the Rel-13 improvements because they require higher data rates above 1 Mbps, mobility, and they may support services that are more delay sensitive. It is important to address such use cases with higher data rate requirements and with mobility compared to those addressed by Rel-13 eMTC while maximally harvesting the power consumption and complexity reduction and link budget enhancements features enabled by using the existing Rel-13 eMTC solution. In Rel-13 the requirements of complexity reduction, extended battery life, and coverage enhancements are aimed at devices such as sensors, meters, smart readers, and similar. Other types of devices / use cases, such as voice capable wearable devices and health monitoring devices share some of these requirements. However, a subset of these devices are not fully covered by the Rel-13 because they require higher data rates above 1 Mbps. Rel e-13 eMTC solution is used for the existing Rel-13 eMTC solution. The e-commerce solution is based on the e-commerce solution.

4 Objective4 Objective

4.1 Objective of SI or Core part WI or Testing part WI4.1 Objective of SI or Core part WI or Testing part WI

The objective is to specify the following improvements for machine-type communications for BL/CE (eMTC) UEs.The objective is to specify the following improvements for machine-type communications for BL / CE (eMTC) UEs.

Positioning [RAN4, RAN1]Positioning [RAN4, RAN1]

Figure pat00013
E-CID: RSRP/RSRQ measurement
Figure pat00013
E-CID: RSRP / RSRQ measurement

Figure pat00014
E-CID: UE Rx-Tx time difference measurement
Figure pat00014
E-CID: UE Rx-Tx time difference measurement

Figure pat00015
OTDOA: core requirements
Figure pat00015
OTDOA: core requirements

Figure pat00016
From RAN#73: (considering the outcome of the NB-IoT) accuracy, UE complexity and power consumption for OTDOA can be studied
Figure pat00016
From RAN # 73: Considering the outcome of the NB-IoT accuracy, UE complexity and power consumption for OTDOA can be studied

Multicast [RAN2 lead, RAN1]Multicast [RAN2 lead, RAN1]

Figure pat00017
Extend Rel-13 SC-PTM to support multicast downlink transmission (e.g. firmware or software updates, group message delivery)
Figure pat00017
Extend Rel-13 SC-PTM to support multicast downlink transmission (eg firmware or software updates, group message delivery)

Figure pat00018
Introduction of necessary enhancements to support narrowband operation, e.g. support of MPDCCH, and coverage enhancement, e.g. repetitions
Figure pat00018
Introduction to enhancements to support narrowband operation, eg support of MPDCCH, and coverage enhancement, eg repetitions

Mobility enhancements [RAN4 only]Mobility enhancements [RAN4 only]

Figure pat00019
Full standard support for inter-frequency measurements for eMTC [RAN4]
Figure pat00019
Full standard support for inter-frequency measurements for eMTC [RAN4]

Higher data rates [RAN1, RAN2, RAN4]Higher data rates [RAN1, RAN2, RAN4]

Figure pat00020
Specify HARQ-ACK bundling in CE mode A in HD-FDD
Figure pat00020
Specify HARQ-ACK bundling in CE mode A in HD-FDD

Figure pat00021
Larger maximum TBS
Figure pat00021
Larger maximum TBS

Figure pat00022
Larger max. PDSCH/PUSCH channel bandwidth in connected mode at least in CE mode A in order to enhance support e.g. voice and audio streaming or other applications and scenarios
Figure pat00022
Larger max. PDSCH / PUSCH channel bandwidth in connected mode at least in CE mode A in order to enhance support for voice and audio streaming or other applications and scenarios

Figure pat00023
Up to 10 DL HARQ processes in CE mode A in FD-FDD
Figure pat00023
Up to 10 DL HARQ processes in CE mode A in FD-FDD

본 발명에서는 rel-13 BL/CE 단말 대비 확장된 PDSCH/PUSCH channel bandwidth를 지원하는 새로운 rel-14 MTC 단말(본 발명에서는 설명의 편의를 위해 이를 HeMTC 단말이라 지칭하도록 하겠다. 하지만 그 명칭에 본 발명이 제한되는 것은 아니다)을 위한 하향 링크 데이터 스케줄링 방법에 대해 제안한다.In the present invention, a new rel-14 MTC terminal supporting an extended PDSCH / PUSCH channel bandwidth compared to a rel-13 BL / CE terminal (referred to as a HeMTC terminal for convenience of explanation in the present invention, The present invention is not limited thereto).

상기에서 서술한 바와 같이 기존 rel-13 BL/CE 단말 대비 향상된 data rates를 요구하는 HeMTC 단말의 경우, 기존 rel-13 BL/CE 단말의 최대 송수신 대역폭을 기반으로 6 PRBs의 크기로 정의된 narrowband보다 확장된 PDSCH 송수신 대역폭을 지원한다. 하지만, 해당 HeMTC 단말을 위한 PDSCH 에 대한 스케줄링 제어 정보를 포함하는 DCI는 rel-13 BL/CE 단말을 위해 정의된 하향 링크 제어 채널인 MPDCCH를 통해 전송이 되도록 정의되었다. As described above, in the case of the HeMTC terminal requiring improved data rates compared to the existing rel-13 BL / CE terminal, the narrow band defined as the size of 6 PRBs based on the maximum transmission / reception bandwidth of the existing rel-13 BL / CE terminal Supports extended PDSCH transmit / receive bandwidth. However, the DCI including the scheduling control information for the PDSCH for the corresponding HeMTC terminal is defined to be transmitted through the MPDCCH, which is a downlink control channel defined for the rel-13 BL / CE terminal.

이처럼 MPDCCH를 통한 PDSCH 스케줄링이 이루어질 경우, 도 1과 같이 MPDCCH와 그에 따른 PDSCH 전송이 서로 다른 서브프레임을 통해 이루어지는, 즉, PDSCH 반복 전송 시작 서브프레임이 MPDCCH 마지막 반복 전송 서브프레임 후속 하향 링크 서브프레임을 통해 구성되는 cross subframe scheduling이 적용되기 때문에 VoLTE와 같이 latency에 critical한 HeMTC application 서비스 제공에 있어서 제약이 될 수 있다. 본 발명에서는 이를 해결하기 위한 방법으로 확장된 대역폭을 지원하는 HeMTC 단말을 위한 scheduling latency reduction 방안을 제안하도록 한다. When PDSCH scheduling is performed through the MPDCCH, as shown in FIG. 1, the MPDCCH and the PDSCH transmission are performed through different subframes, that is, the PDSCH repeated transmission start subframe is the MPDCCH last repeated transmission subframe subsequent downlink subframe Since cross subframe scheduling is applied, latency - critical HeMTC application services such as VoLTE can be limited. In the present invention, a scheduling latency reduction scheme for a HeMTC terminal supporting extended bandwidth is proposed as a method for solving the problem.

Point 1. Definition of same-Point 1. Definition of same- subframesubframe scheduling indicator SCHEDING indicator

임의의 HeMTC 단말을 위한 PDSCH 스케줄링 방안으로서 도 2와 같이 same-subframe scheduling을 적용하도록 할 수 있다. As a PDSCH scheduling scheme for an arbitrary HeMTC terminal, same-subframe scheduling can be applied as shown in FIG.

이를 위해 MPDCCH를 통해 PDSCH에 대한 자원 할당 정보를 포함하는 DCI 송수신이 이루어지는 HeMTC 단말에 대해 기지국/네트워크에서 PDSCH에 대한 scheduling 방식을 indication해주기 위한 higher layer parameter(본 발명에서는 설명의 편의를 위해 이를 PDSCH_scheduling_config라 지칭하도록 하겠다. 하지만 그 명칭에 본 발명이 한정되는 것은 아니다)를 정의하고, 이를 통해 도 2와 같은 same-scheduling 적용 여부를 higher layer signaling을 통해 설정하도록 할 수 있다. 구체적으로 임의의 기지국/셀은 cell-specific RRC layer signaling을 통해 해당 셀 내의 HeMTC 단말에 대해 same-subframe scheduling 적용 여부를 indication해줄 수 있다. 또는 임의의 기지국/셀은 UE-specific RRC signaling을 통해 각각의 HeMTC 단말 별로 same-subframe scheduling을 적용 여부를 indication해 줄 수 있다.For this purpose, a higher layer parameter for indicating a scheduling scheme for a PDSCH in a base station / network (in the present invention, it is referred to as PDSCH_scheduling_config) for a HeMTC terminal in which DCI transmission / reception including resource allocation information for a PDSCH is performed through an MPDCCH However, the present invention is not limited to such a name), and it is possible to set whether same-scheduling is applied through higher layer signaling as shown in FIG. Specifically, an arbitrary base station / cell can indicate whether the same-subframe scheduling is applied to the HeMTC terminal in the corresponding cell through cell-specific RRC layer signaling. Or an arbitrary base station / cell can indicate whether same-subframe scheduling is applied to each HeMTC terminal through UE-specific RRC signaling.

이처럼 cell-specific/UE-specific RRC signaling을 통해 전송되는 PDSCH_scheduling_config 설정 정보에 따라 해당 HeMTC 단말은 기존의 cross-subframe scheduling 방식의 MPDCCH와 PDSCH timing relationship을 기반으로 PDSCH에 대한 수신 동작을 수행할 것인지 혹은 same-subframe scheduling 방식의 MPDCCH와 PDSCH timing relationship을 기반으로 PDSCH 수신 동작을 수행할 것인지 결정될 수 있다.According to the PDSCH_scheduling_config configuration information transmitted through the cell-specific / UE-specific RRC signaling, the corresponding HeMTC terminal determines whether to perform the PDSCH reception based on the existing cross-subframe scheduling MPDCCH and PDSCH timing relationship, it can be determined whether to perform the PDSCH reception operation based on the MPDCCH and PDSCH timing relationship of the -subframe scheduling scheme.

혹은 도 1과 같은 기존의 cross-subframe scheduling 기반의 MPDCCH와 그에 상응하는 PDSCH 간의 timing relationship을 default operation으로서 정의하고, 해당 PDSCH_scheduling_config를 통해서는 추가적인 same-subframe scheduling 지원 여부를 indication해주도록 하고, PDSCH에 대한 자원 할당 정보를 포함하는 DCI을 통해 dynamic하게 해당 MPDCCH와 PDSCH 간 timing relationship(즉, 1 bit scheduling subframe indication을 통해 cross-subframe scheduling 기반의 PDSCH allocation인지, same-subframe scheduling 기반의 PDSCH allocation인지)를 해당 HeMTC 단말에게 indication해주도록 하는 2-step 기반의 PDSCH scheduling 방법을 정의할 수 있다. 이 경우, 해당 HeMTC은 해당 PDSCH_scheduling_config 설정 정보에 따라 해당 단말을 위한 PDSCH 송수신 서브프레임을 정의함에 있어서 rel-13의 BL/CE 단말을 위해 정의된 MPDCCH/PDSCH 간 timing relationship 기반으로 하는 cross-subframe scheduling 기반의 DCI format(즉, 상기의 1 bit scheduling subframe indication을 포함하지 않는 DCI format)을 기반으로 해당 MPDCCH search space에 대한 decoding을 수행할 것인지, 혹은 cross-subframe scheduling과 same-subframe scheduling 여부에 대한 해당 1 bit scheduling subframe indication 정보를 포함하는 DCI format을 기반으로 해당 MPDCCH search space에 대한 decoding을 수행할 것인지를 결정하도록 할 수 있다. The timing relationship between the MPDCCH based on the existing cross-subframe scheduling as shown in FIG. 1 and the PDSCH corresponding thereto is defined as a default operation, the PDSCH_scheduling_config indicates whether to support additional same-subframe scheduling, (I.e., PDSCH allocation based on cross-subframe scheduling or PDSCH allocation based on same-subframe scheduling) through the DCI including the resource allocation information corresponding to the timing relationship between the corresponding MPDCCH and the PDSCH A PDSCH scheduling method based on a 2-step can be defined to indicate to the HeMTC terminal. In this case, the HeMTC defines a PDSCH transmission / reception subframe for the UE according to the PDSCH_scheduling_config setting information, and performs a cross-subframe scheduling based on the timing relationship between MPDCCH / PDSCH defined for the BL / Subframe scheduling and cross-subframe scheduling based on the DCI format of the DCI format (i.e., the DCI format that does not include the 1-bit scheduling subframe indication) bit scheduling subframe indication information based on the DCI format including the bit scheduling subframe indication information.

추가적으로 도 2와 같이 same-subframe scheduling 기반의 PDSCH 할당이 이루어지는 경우, 해당 PDSCH의 repetition 횟수는 rel-13의 BL/CE 단말을 위해 정의된 RRC signaling 및 DCI를 통한 configuration 값과 관계없이 항상 해당 MPDCCH의 반복 전송 횟수를 따르도록 정의할 수 있다. 이를 위해 해당 same-subframe scheduling이 higher layer signaling에 의해 설정된 경우, 해당 HeMTC 단말에 대한 PDSCH 자원 할당 정보를 전송하는 DCI format은 해당 PDSCH repetition level을 설정하기 위한 정보 영역을 포함하지 않도록 정의할 수 있다. 혹은 기존의 BL/CE 단말을 위한 DCI format과 동일하게 해당 PDSCH repetition level 설정 정보 영역을 포함하도록 정의될 경우, same-subframe scheduling이 설정되면, 해당 PDSCH repetition level의 설정 값에 관계없이, 해당 MPDCCH의 반복 전송 횟수를 따르도록 한다.In addition, when PDSCH allocation based on the same-subframe scheduling is performed as shown in FIG. 2, the number of repetitions of the corresponding PDSCH is always set to the value of the corresponding MPDCCH regardless of the RRC signaling defined for the BL / It can be defined to follow the number of repeated transmissions. For this, when the same-subframe scheduling is set by higher layer signaling, the DCI format for transmitting the PDSCH resource allocation information for the corresponding HeMTC terminal can be defined so as not to include the information area for setting the corresponding PDSCH repetition level. Or if the same subframe scheduling is set to include the corresponding PDSCH repetition level setting information area in the same manner as the DCI format for the existing BL / CE terminal, regardless of the set value of the corresponding PDSCH repetition level, Follow the number of repeated transmissions.

도 3 또 다른 실시예에 의한 기지국(1000)의 구성을 보여주는 도면이다.3 is a diagram illustrating a configuration of a base station 1000 according to another embodiment of the present invention.

도 3을 참조하면, 또 다른 실시예에 의한 기지국(1000)은 제어부(1010)과 송신부(1020), 수신부(1030)를 포함한다.3, a base station 1000 according to another embodiment includes a control unit 1010, a transmission unit 1020, and a reception unit 1030.

제어부(1010)는 전술한 본 발명에 따라 MTC 단말을 위한 하향 링크 데이터 스케줄링에 same-subframe scheduling 적용 여부를 설정하고 MTC 단말로 indication함에 따른 전반적인 기지국(1000)의 동작을 제어한다.The controller 1010 sets whether to apply the same-subframe scheduling to the downlink data scheduling for the MTC terminal according to the present invention described above, and controls the overall operation of the base station 1000 according to indication to the MTC terminal.

송신부(1020)와 수신부(1030)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다.The transmitting unit 1020 and the receiving unit 1030 are used to transmit and receive signals, messages, and data necessary for carrying out the present invention to and from the terminal.

도 4는 또 다른 실시예에 의한 사용자 단말(1100)의 구성을 보여주는 도면이다.FIG. 4 is a diagram illustrating a configuration of a user terminal 1100 according to another embodiment of the present invention.

도 4를 참조하면, 또 다른 실시예에 의한 사용자 단말(1100)은 수신부(1110) 및 제어부(1120), 송신부(1130)를 포함한다.4, a user terminal 1100 according to another embodiment includes a receiving unit 1110, a control unit 1120, and a transmitting unit 1130.

수신부(1110)는 기지국으로부터 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.The receiving unit 1110 receives downlink control information, data, and messages from the base station through the corresponding channel.

또한, 제어부(1120)는 전술한 본 발명에 따라 MTC 단말을 위한 하향 링크 데이터 스케줄링에 same-subframe scheduling 적용 여부를 확인하고 하향 링크 데이터를 수신함에 따른 전반적인 사용자 단말(1100)의 동작을 제어한다.In addition, the controller 1120 determines whether the same-subframe scheduling is applied to the downlink data scheduling for the MTC terminal according to the present invention described above, and controls the overall operation of the user terminal 1100 upon receiving the downlink data.

송신부(1130)는 기지국에 상향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.The transmitter 1130 transmits uplink control information, data, and a message to the base station through the corresponding channel.

전술한 실시예에서 언급한 표준내용 또는 표준문서들은 명세서의 설명을 간략하게 하기 위해 생략한 것으로 본 명세서의 일부를 구성한다. 따라서, 위 표준내용 및 표준문서들의 일부의 내용을 본 명세서에 추가하거나 청구범위에 기재하는 것은 본 발명의 범위에 해당하는 것으로 해석되어야 한다.The standard content or standard documents referred to in the above-mentioned embodiments constitute a part of this specification, for the sake of simplicity of description of the specification. Therefore, it is to be understood that the content of the above standard content and some of the standard documents is added to or contained in the scope of the present invention, as falling within the scope of the present invention.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The foregoing description is merely illustrative of the technical idea of the present invention, and various changes and modifications may be made by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are intended to illustrate rather than limit the scope of the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be construed according to the following claims, and all technical ideas within the scope of equivalents should be construed as falling within the scope of the present invention.

Claims (1)

MTC 단말을 위한 하향 링크 데이터 스케줄링 방법에 있어서,
상기 MTC 단말을 위한 PDSCH 스케줄링에 same-subframe scheduling 적용 여부를 설정하는 단계;
상기 same-subframe scheduling 적용 여부를 상기 MTC 단말로 indication하는 단계; 및
상기 indication 정보에 따라 PDSCH 수신 동작을 수행하는 단계를 포함하는 방법.
A method for downlink data scheduling for an MTC terminal,
Setting whether to apply the same-subframe scheduling to the PDSCH scheduling for the MTC terminal;
Indicating whether the same-subframe scheduling is applied to the MTC terminal; And
And performing a PDSCH reception operation according to the indication information.
KR1020160127102A 2016-09-30 2016-09-30 Apparatus and method of DL data scheduling for MTC UEs KR20180036888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160127102A KR20180036888A (en) 2016-09-30 2016-09-30 Apparatus and method of DL data scheduling for MTC UEs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160127102A KR20180036888A (en) 2016-09-30 2016-09-30 Apparatus and method of DL data scheduling for MTC UEs

Publications (1)

Publication Number Publication Date
KR20180036888A true KR20180036888A (en) 2018-04-10

Family

ID=61975044

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160127102A KR20180036888A (en) 2016-09-30 2016-09-30 Apparatus and method of DL data scheduling for MTC UEs

Country Status (1)

Country Link
KR (1) KR20180036888A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190119447A (en) * 2018-04-12 2019-10-22 삼성전자주식회사 Method and apparatus for resouce allocation in wireless communication system
WO2019203547A1 (en) * 2018-04-16 2019-10-24 엘지전자 주식회사 Method for transmitting and receiving physical downlink shared channel in wireless communication system and device supporting same
WO2019209017A1 (en) * 2018-04-23 2019-10-31 엘지전자 주식회사 Method for transmitting and receiving physical downlink shared channel in wireless communication system, and device for supporting same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190119447A (en) * 2018-04-12 2019-10-22 삼성전자주식회사 Method and apparatus for resouce allocation in wireless communication system
WO2019203547A1 (en) * 2018-04-16 2019-10-24 엘지전자 주식회사 Method for transmitting and receiving physical downlink shared channel in wireless communication system and device supporting same
US10986623B2 (en) 2018-04-16 2021-04-20 Lg Electronics Inc Method for transmitting and receiving physical downlink shared channel in wireless communication system and device supporting same
US11729785B2 (en) 2018-04-16 2023-08-15 Lg Electronics Inc. Method for transmitting and receiving physical downlink shared channel in wireless communication system and device supporting same
WO2019209017A1 (en) * 2018-04-23 2019-10-31 엘지전자 주식회사 Method for transmitting and receiving physical downlink shared channel in wireless communication system, and device for supporting same
US10897775B2 (en) 2018-04-23 2021-01-19 Lg Electronics Inc. Method for transmitting and receiving physical downlink shared channel in wireless communication system and device supporting the same
US11140703B2 (en) 2018-04-23 2021-10-05 Lg Electronics Inc. Method for transmitting and receiving physical downlink shared channel in wireless communication system and device supporting the same

Similar Documents

Publication Publication Date Title
US10517074B2 (en) Methods for allocating data channel resources in a wireless communication system and apparatuses
US10567939B2 (en) Method for transmitting/receiving signal by MTC UE, and apparatus therefor
KR101895170B1 (en) Apparatus and method for multicast
KR101919636B1 (en) Methods for Transmitting and Receiving Downlink Control Channels and Apparatuses thereof
US10085249B2 (en) Method of transmitting and receiving downlink control information and apparatuses thereof
CN107734648B (en) Method and apparatus for transmitting or receiving multicast control channel for BL/CE terminal
KR20160091491A (en) Apparatus and method of downlink data channel reception of MTC UEs
KR20160089844A (en) Apparatus and method of downlink common control channel transmission and reception for MTC UEs
KR20180081669A (en) Apparatus and method of common control information transmission for NR(New Radio)
US11799510B2 (en) Methods for configuring radio resources in a wireless communication system and apparatuses
JP2023103342A (en) Terminal, wireless communication method, base station, and system
KR20180036888A (en) Apparatus and method of DL data scheduling for MTC UEs
US11778624B2 (en) Terminal, radio communication method for a terminal, and base station
CN110226354B (en) Method and apparatus for using indication information on time domain resource allocation
CN110050434B (en) Feedback transmission for hybrid services
KR20150037461A (en) Methods for Transmitting and Receiving Downlink Data Channels and Apparatuses thereof
KR20190028262A (en) Apparatus and method of uplink control information piggyback on PUSCH for new radio
KR102042032B1 (en) Methods for allocating data channel resources in a wireless communication system and apparatuses
KR20180036887A (en) Apparatus and method of DL data bandwidth configuration for MTC UEs
KR20160135013A (en) Apparatus and method of UL physical channel transmission and reception for MTC UEs
KR101945107B1 (en) Methods for configuring radio resources in a wireless communication system and apparatuses
KR20180108429A (en) Method for transmitting and receiving PUSCH for MTC UEs based on sub-PRB and Apparatus thereof
KR101896766B1 (en) Methods for transmitting and receiving downlink control information and Apparatuses thereof
KR20170031589A (en) Apparatus and method of HARQ ACK/NACK feedback timing configuration for MTC UEs
KR20160037087A (en) Methods for configuring Downlink resource for a MTC UE and Apparatuses thereof