KR20180034021A - Animal model for lipodystrophy, preparation method thereof, and screening method for lipodystrophy therapeutic agent using the same - Google Patents

Animal model for lipodystrophy, preparation method thereof, and screening method for lipodystrophy therapeutic agent using the same Download PDF

Info

Publication number
KR20180034021A
KR20180034021A KR1020160124005A KR20160124005A KR20180034021A KR 20180034021 A KR20180034021 A KR 20180034021A KR 1020160124005 A KR1020160124005 A KR 1020160124005A KR 20160124005 A KR20160124005 A KR 20160124005A KR 20180034021 A KR20180034021 A KR 20180034021A
Authority
KR
South Korea
Prior art keywords
lipodystrophy
mouse
mice
sptlc2
asptlc2
Prior art date
Application number
KR1020160124005A
Other languages
Korean (ko)
Other versions
KR101889753B1 (en
Inventor
박태식
이수연
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Priority to KR1020160124005A priority Critical patent/KR101889753B1/en
Publication of KR20180034021A publication Critical patent/KR20180034021A/en
Application granted granted Critical
Publication of KR101889753B1 publication Critical patent/KR101889753B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0362Animal model for lipid/glucose metabolism, e.g. obesity, type-2 diabetes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8527Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic for producing animal models, e.g. for tests or diseases

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Environmental Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Animal Husbandry (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided are an animal model useful for studying progression and pathological mechanisms of lipodystrophy, a method for producing the animal model, and a method for screening a treatment and preventive agent for lipodystrophy using the animal model. By selecting a regulatory substance for lipodystrophy by using the animal model of the present invention, the animal model can be useful in screening to verify therapeutic effects.

Description

지방이상증 동물모델과 그 제작방법 및 이를 이용한 지방이상증 치료제의 스크리닝 방법{Animal model for lipodystrophy, preparation method thereof, and screening method for lipodystrophy therapeutic agent using the same}TECHNICAL FIELD The present invention relates to an animal model for lipodystrophy, a method for producing the lipodystrophy animal model, and a screening method for treating a lipodystrophy therapeutic agent using the same.

본 발명은 지방이상증 동물모델과 그 제조방법에 관한 것이며, 더 나아가 상기 동물모델을 이용하여 지방이상증 치료제를 스크리닝하는 방법에 관한 것이다.The present invention relates to an animal model of lipodystrophy and a method for producing the same, and further, to a method for screening a therapeutic agent for lipodystrophy using the animal model.

스핑고지질은 다른 지질대사체와는 달리 염증과 여러 사이토카인에 의해 생합성이 조절되며 비만 및 당뇨병 동물모델의 여러 조직에서 증가되는 것이 보고되고 있다(비특허문헌 1). 또한 스핑고 지질의 생합성 기질인 지방산의 농도에 의해 세포내 농도가 조절되기 때문에 비만에 의해 증가된 혈중 지방산의 농도에 민감하게 조절된다(비특허문헌 2). 특히 스핑고지질의 역할은 비만에 유발되는 대사질환 병리에 관한 연구에서 규명되고 있으며 동맥경화, 당뇨병, 심근병증의 발병에 관여함이 알려져 있다. 유전적 변이동물 모델과 스핑고 생합성 저해제를 사용한 약리학적 연구로 그 치료효능과 그 기전이 규명되고 있다. Unlike other lipid metabolites, sphingolipids are controlled by biosynthesis by inflammation and various cytokines and have been reported to be increased in various tissues of obese and diabetic animal models (Non-Patent Document 1). In addition, since intracellular concentration is regulated by the concentration of fatty acid which is a biosynthetic substrate of sphingolipids, it is sensitively controlled to the concentration of fatty acids in blood increased by obesity (Non-Patent Document 2). In particular, the role of sphingolipid has been elucidated in studies on obesity-induced metabolic pathology and is known to be involved in arteriosclerosis, diabetes, and cardiomyopathy. Pharmacological studies using genetic mutant animal models and sphingos biosynthesis inhibitors have identified their therapeutic efficacy and its mechanism.

스핑고지질의 생합성은 세린 팔미토일트랜스페라제(serine palmitoyltransferase, SPT)에 의해 전구체인 지방산 CoA 중 하나인 팔미토일 CoA(palmitoyl CoA, C16:0)와 세린(serine)의 축합과정으로 3-키토스핑가닌(3-ketosphinganine)의 생성으로부터 시작한다. SPT는 SPTLC1과 SPTLC2의 단위체(subunit)로 구성되며 스핑고 지질 생합성을 조절하는 주요단계의 효소로 알려져 있다(비특허문헌 3). The biosynthesis of sphingolipids is accomplished by the condensation process of serine with palmitoyl CoA (palmitoyl CoA, C16: 0) which is one of fatty acid CoA which is a precursor, by serine palmitoyltransferase (SPT) We start with the production of 3-ketosphinganine. SPT consists of SPTLC1 and SPTLC2 subunits and is known to be a key step enzyme for controlling sphingolipid biosynthesis (Non-Patent Document 3).

세라마이드 생합성을 억제하기 위한 약리적인 연구로, 세라마이드 생합성과 관련한 효소인 스핑고마이엘리나제(sphingomyelinase), 세린 팔미토일트랜스페라제, 3-케토스핑가닌 환원효소(3-ketosphinganine reductase), 세라마이드 합성효소(ceramide synthase) 및 다이하이드로세라마이드 불포화효소(dihydroceramide desaturase) 중에서 최소한 하나의 효소를 억제하는 화합물에 대한 연구가 진행되었다(특허문헌 1-2). In order to inhibit ceramide biosynthesis, pharmacological studies on ceramide biosynthesis, sphingomyelinase, serine palmitoyltransferase, 3-ketosphinganine reductase, Studies have been made on compounds that inhibit at least one enzyme among enzymes (ceramide synthase) and dihydroceramide desaturase (Patent Document 1-2).

미국 특허공개 제2005-0182020호(2005.08.18)U.S. Patent Publication No. 2005-0182020 (Aug. 18, 2005) 미국 특허공개 제2010-0086543호(2010.04.08)U.S. Patent Publication No. 2010-0086543 (Apr. 4, 2010)

Merrill, A.H.,Jr.(2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Bio Chem. 277, 25843-25846Merrill, A. H., Jr. (2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Bio Chem. 277, 25843-25846 Kuller, L.H. (2006) Nutrition, lipids, and cardiovascular disease, Nutr Rev. 64, S15-26Kuller, L.H. (2006) Nutrition, lipids, and cardiovascular disease, Nutr Rev. 64, S15-26 Hanada, K. (2003) serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochem Biophys Acta. 1632, 16-30.Hanada, K. (2003) serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochem Biophys Acta. 1632, 16-30. The Journal of Biological Chemistry, 280, 10284-10289.March 18, 2005. Xian-Cheng JiangThe Journal of Biological Chemistry, 280, 10284-10289. March 18, 2005. Xian-Cheng Jiang

본 발명은 지방이상증의 진행 및 병리학적 기전의 연구에 유용한 동물모델을 제공하고자 하는 것을 목적으로 한다.It is an object of the present invention to provide an animal model that is useful for the study of progression and pathological mechanism of lipodystrophy.

본 발명은 또한 상기 동물 모델의 제조방법을 제공하는 것을 다른 목적으로 한다.Another object of the present invention is to provide a method for producing the animal model.

본 발명의 또 다른 목적은 상기 동물 모델을 이용한 지방이상증 예방 및 치료제의 스크리닝 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for screening a therapeutic and / or therapeutic agent for lipodystrophy using the animal model.

본 발명의 일 태양에 따라, 지방세포 특이적 SPTLC2 유전자가 결손(knock-out)된 마우스인 것을 특징으로 하는 지방이상증 동물모델이 제공된다. According to one aspect of the present invention, there is provided an animal model of lipodystrophy characterized in that the adipocyte-specific SPTLC2 gene is a knock-out mouse.

일 구현예에서, 상기 마우스가 동형접합체(homozygote)인 것을 특징으로 하는 지방이상증 동물모델일 수 있다.In one embodiment, the mouse may be an animal model of lipodystrophy characterized by a homozygote.

일 구현예에서, 상기 지방이상증이 지방간, 전신성 인슐린저항성 및 고중성지방증으로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 지방이상증 동물모델일 수 있다.In one embodiment, the lipid disorder is any one selected from the group consisting of fatty liver, systemic insulin resistance, and hypertonicity.

본 발명의 일 태양에 따라, (a) 플록스트(floxed) SPTLC2 마우스 및 아디포넥틴-Cre 이식유전자를 가진 마우스를 준비하는 단계; (b) 플록스트 SPTLC2 마우스 및 아디포넥틴-Cre 이식유전자를 가진 마우스를 교배하여 2세대 마우스를 얻는 단계; 및 (c) 단계 (b)에서 얻은 상기 2세대 마우스로부터 지방세포 특이적 SPTLC2 유전자 결손 마우스를 선별하는 단계를 포함하는 SPTLC2 exon1이 제거된 지방이상증 동물모델의 제작방법이 제공된다. According to one aspect of the present invention, there is provided a method of preparing a mouse, comprising: (a) preparing a mouse having a floxed SPTLC2 mouse and an adiponectin-Cre transplant gene; (b) obtaining a second generation mouse by crossing a mouse with a plastose SPTLC2 mouse and an adiponectin-Cre transplantation gene; And (c) selecting an adipocyte-specific SPTLC2 gene-deficient mouse from the second-generation mouse obtained in step (b).

본 발명의 일 태양에 따라, (i) 지방이상증 동물모델에 시료를 투여하는 단계; (ii) 시료 투여 후 상기 동물모델의 지방이상증의 증상을 측정하는 단계; 및 (iii) 상기 시료를 투여하지 않은 대조군과 비교하여 지방이상증의 증상을 개선시키는 시료를 선별하는 단계를 포함하는 것을 특징으로 하는 지방이상증 예방 및 치료제의 스크리닝 방법이 제공된다.According to one aspect of the present invention, there is provided a method of treating an animal model comprising: (i) administering a sample to an animal model of lipid disorder; (ii) measuring the symptoms of lipodystrophy of the animal model after administration of the sample; And (iii) selecting a sample that alleviates the symptoms of lipodystrophy in comparison with a control group to which the sample is not administered.

일 구현예에서, 단계 (ii)의 지방이상증의 증상이 부고환 WAT의 세라마이드, 스핑고마이엘린, 스핑고이드 염기 및 다이아실글리세롤의 함량; 혈장의 세라마이드, 다이하이드로 세라마이드, 스핑고마이엘린 및 스핑고이드염기 함량; 간 콜레스테롤 또는 간 트리글리세라이드(TG)의 함량, TG 생합성 유전자 또는 지방산 산화 유전자의 발현; 간의 세라마이드, 스핑고마이엘린, 스핑고이드 염기 및 다이아실글리세라이드의 함량; 및 골격근의 지방 합성 유전자의 발현으로 이루어진 군으로부터 선택된 어느 하나를 측정하는 것을 특징으로 하는 스크리닝 방법일 수 있다.In one embodiment, the symptom of lipodystrophy of step (ii) is the content of ceramide, sphingomyelin, sphingoid base and diacylglycerol of epididymal WAT; Plasma ceramide, dihydroceramide, sphingomyelin and sphingoid base content; Expression of hepatic cholesterol or liver triglyceride (TG) content, TG biosynthesis gene or fatty acid oxidase gene; The content of ceramide, sphingomyelin, sphingoid base and diacylglyceride; And expression of a lipogenic gene of a skeletal muscle. The screening method may further comprise:

본 발명에 따른 동물모델은 지방세포 특이적인 SPTLC2 유전자 결손으로 동형접합체(homozygote)인 것을 특징으로 하며, 지방간, 전신성 인슐린저항성 및 고중성지방증으로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 지방이상증 동물모델이다. 본 발명의 동물모델은 부고환 WAT에서 지방세포화유전자의 하향조절, C18:1 스핑고마이엘린의 감소, C16:0 및 C24:1 세라마이드의 상승, 스핑가닌 상승, 스핑고신 상승, S1P 감소; 간에서 지방 합성 유전자의 상향조절, C24:0 및 C24:1 세라마이드의 감소, DAG 레벨 상승; 혈장 포도당 레벨 상승, 콜레스테롤 레벨 상승, HMG CoR의 상향조절, 비에스테르화된 FA 레벨 감소, 베타-하이드록시 부틸레이트로 대표되는 케톤체 증가라는 지방이상증의 증상을 나타냄을 확인하였다. 따라서, 본 발명에 따른 동물모델은 지방이상증의 진행 경과와 병리학적 기전 연구의 동물모델로 유용하게 이용될 수 있다.The animal model according to the present invention is characterized in that it is a homozygote due to fat cell specific SPTLC2 gene deletion and is any one selected from the group consisting of fatty liver, systemic insulin resistance and hypertonic papilloma. It is a model. The animal model of the present invention is an animal model for the downregulation of adipocytic genes in epididymal WAT, a decrease in C18: 1 sphingomyelin, a rise in C16: 0 and C24: 1 ceramides, a rise in sphinganine, a rise in sphingosine, a decrease in S1P; Upregulation of lipogenic genes in liver, reduction of C24: 0 and C24: 1 ceramides, elevation of DAG levels; It has been confirmed that symptoms of lipodystrophy such as elevation of plasma glucose level, increase of cholesterol level, upregulation of HMG CoR, decrease of unesterified FA level and increase of ketone body represented by beta-hydroxybutyrate are shown. Therefore, the animal model according to the present invention can be usefully used as an animal model of progression of lipodystrophy and pathological mechanism studies.

또한, 본 발명에 따른 지방이상증 동물모델을 이용하여 지방이상증 조절물질을 선별함으로써, 그 치료효과를 검증하는 스크리닝에 매우 유용하게 사용될 수 있다. In addition, by using an animal model of lipodystrophy according to the present invention, a lipodystrophy regulating substance can be selected and used for screening to verify its therapeutic effect.

도 1은 분화의 일수(Day of differentiation)에 따른 '고지방혈증 상태는 고지방식이(HFD)를 섭식시킨 마우스의 지방조직에서 및 분화하는 3T3-L1 지방세포에서 스핑고리피드 신생합성을 전사시에 활성화시킨다'는 것을 나타낸다. 야생형(WT) C57BL/6 마우스에게 고지방식이(HFD)(60 kcal % 지방)를 8주 동안 섭취시켰고, 부고환의 백색지방조직(white adipose tissue, WAT)을 분리하였다. qRT-PCR 분석을 위해서 mRNA를 추출하였고(A), 조직 용해물들은 SPTLC1, SPTLC2 및 SPHK1에 대해 면역블로팅법으로 분석하였다(B). 데이타는 평균±SEM(*p < 0.05, n=6)로 나타냈다. 3T3-L1 세포를 7일 동안 분화시켰고 정해진 날(D0, D2, D4, D5 및 D7)에 수확하였다. 스핑고리피드 생합성 유전자의 발현을 측정하기 위해서 qRT-PCR을 하였다(C, E). 세포 용해물들은 SPTLC1, SPTLC2, 및 SPHK1에 대해 면역블로팅법으로 분석하였다(E)(평균±SEM, *p < 0.05 [3T3-L1 대조군의 D0 대비], n=3).
도 2는 분화의 일수(Day of differentiation)에 따른 aCer1/2/3(alkaline ceramidase1/2/3)(A-C), AcCer(acid ceramidase)(D) 및 nCer(neutral ceramidase)(E)의 발현을 나타낸다. 3T3-L1 세포를 7일 동안 분화시켰고 지정된 날(D0, D2, D4, D5 및 D7)에 수확했다. mRNA 발현을 측정하기 위해서 qRT-PCR를 수행하였다(평균±SEM, *p < 0.05 [3T3-L1 대조군의 D0 대비], n=3).
도 3은 'SPTLC2의 억제는 지방 축적을 감소시키고 비만유전자를 하향조절한다' 는 것을 나타낸다. SPTLC2가 특이적으로 제거된 안정적인 3T3-L1 균주(shRNA-SPTLC2)를 렌티바이러스를 사용하여 제작하였다. shRNA-SPTLC2 세포는 SPTLC2 단백질 및 mRNA를 감소시켰다(A). 3T3-L1 세포가 분화하는 동안, SPTLC2의 발현은 대조군 및 SPTLC2-억제된 세포에서 감소되었다(B). 지방 축적은 실시예에 기재된 바와 같이 아디포레드 어세이(AdipoRed Assay)를 사용하여 측정하였다(C). 3T3-L1 대조군 세포 및 SPTLC2를 억제시킨 세포를 분화시켜, 분화의 일수(Day of differentiation)에 따른 SPHK1/2, aP2, C/EBPα, PPARγ, PEPCK, SREBP-1c 및 GLUT4의 발현을 측정하기 위하여 qRT-PCR 분석을 수행하였다(D, E)(평균±SEM, *p < 0.05 [대조군의 D0 대비], #p < 0.05 [각 날짜의 대조군 대비], §p < 0.05 [shRNA-SPTLC2 세포의 D0 대비], n=3).
도 4는 '지방 세포 특이적인 SPTLC2를 제거한(aSPTLC2 KO) 마우스에서는 지방이상증이 발생했다' 는 것을 나타낸다. 다수 조직들을 aSPTLC2 KO 마우스로부터 분리하였고, SPTLC2의 발현을 면역블로팅법으로 검사하였다(A). 마우스는 고지방식이(HFD)(45 kcal % 지방, 8 주 동안)를 섭식시켰고 지방 조직 크기를 측정하였다(B). 기준자는 1 cm를 나타낸다. 부고환의 WAT(white adipose tissue) 조직 단면을 헤마톡실린과 에오신(H&E) 또는 F4/80 항체로 염색하였다(C). 부고환의 WAT(white adipose tissue)를 분리하여 지방생성유전자의 발현을 qRT-PCR로 측정하였다(D) (평균±SEM, *p < 0.05 [플록스트 마우스 대비], n=5). 세라마이드, 스핑고마이엘린(SM)(E), 스핑고이드 염기 및 다이아실글리세롤(diacylglycerol, DAG)(F)에 대한 분석은 LC-MS/MS로 수행하였다(평균±SEM, *p < 0.05 [플록스트 마우스 대비], n=5-6).
도 5는 '혈장 스핑고리피드 프로파일'을 나타낸다. 마우스에 정상 음식식이(NCD) 또는 고지방식이(HFD, 45 kcal % 지방)를 8주 동안 섭식시킨 후, 혈장 샘플을 채취하였다. 세라마이드(Ceramide, A), 다이하이드로 세라마이드(dihydroceramide, B), 스핑고마이엘린(sphingomyelin, C), 스핑고이드염기(sphingoid bases, D)를 LC/MS/MS를 사용하여 분석하였다(평균±SEM. *p < 0.05 [정상 음식식이를 섭취시킨 플록스트 마우스 대비], #p < 0.05 [고지방식이를 섭취시킨 플록스트 마우스 대비], n=5-6).
도 6은 'aSPTLC2 KO 마우스에서는 지방간이 발생했다' 는 것을 나타낸다. 플록스트 마우스와 aSPTLC2 KO 마우스에게 8주 동안 정상 음식식이(NCD) 또는 고지방식이(HFD)(45 kcal % 지방)를 섭식시켰다. 마우스의 간을 분리하여, 간에서 지방 적을 확인하기 위해서 얼린 단면을 오일 레드 오(Oil Red O, ORO)로 염색하였다(A). 기준자는 100 μm를 나타낸다. 간 콜레스테롤 및 트리글리세라이드(triglyceride, TG)(B)를 측정하였다. TG(triglyceride) 생합성 유전자(C) 및 지방산(fatty acid, FA) 산화 유전자(D)의 발현을 qRT-PCR로 측정하였다. 세라마이드, SM(E), 스핑고이드 염기 및 다이아실글리세라이드 (diacylglycerol, DAG)(F)에 대한 분석은 LC-MS/MS로 수행하였다(평균±SEM, *p < 0.05 [정상 음식식이(NCD)를 섭식시킨 플록스트 마우스 대비], #p < 0.05 [고지방식이(HFD)를 섭식시킨 플록스트 마우스 대비], n=5-6).
도 7은 정상 음식식이(NCD) 또는 고지방식이(HFD)를 섭취시킨 후 쥐의 골격근에서 지방을 합성시키는 유전자의 발현을 나타낸다. 플록스트 및 aSPTLC2 KO 마우스에게 고지방식이(45 kcal % fat)를 8주 동안 섭취시킨 후 근육조직을 분리하였다. 지방 생합성 유전자의 발현을 조사하기 위하여 정량적 RT-PCR 분석을 수행하였다(평균±SEM, *p < 0.05 [정상 음식식이를 섭취시킨 플록스트 마우스 대비], n=5-6).
도 8은 'aSPTLC2 KO 마우스는 고지방식이(HFD)로 유발되는 비만에 저항성을 가지지만 인슐린저항성을 발생시킨다' 는 것을 나타낸다. 플록스트 및 aSPTLC2 KO 마우스는 정상 음식식이(NCD)와 고지방식이(HFD)(60 kcal % 지방) 를 6 주 동안 섭식시켰다. 4 주 동안, 플록스트 및 aSPTLC2 KO 마우스의 체중(A) 및 체지방조성(B)을 매주 1H NMR을 이용하여 분석하였다(평균±SEM, *p < 0.05 [정상 음식식이(NCD)를 섭식시킨 플록스트 마우스 대비], #p < 0.05 [정상 음식식이(NCD)를 섭식시킨 aSPTLC2 KO 마우스 대비], n=10-14). 포도당 주입속도(GIR), 간 포도당 생성(HGP) 억제(C), 기저 간 포도당 생성(BHGP), 및 클램프하는 동안의 간 포도당 생성(CHGP)(D)을 측정하기 위해서 고인슐린혈증 정상혈당 클램프를 수행하였다. 독립적으로, 플록스트 및 aSPTLC2 KO 마우스에게 인슐린을 복강내로 투여하였다(0.5 unit/kg 체중). 간(E) 및 피하 지방조직(F)을 인슐린 주사 10 분 후에 분리하였고, pAKT 레벨을 측정하기 위해서 면역블랏(immunoblot) 분석을 수행하였다(평균±SEM, *p < 0.05 [고지방식이를 섭식시킨 플록스트 마우스 대비], n=10-14, 체중[Body weight], 지방량[Fat mass], 지방제외체질량[Lean body mass]).
도 9는 플록스트 및 aSPTLC2 KO 마우스의 음식 섭취량을 나타낸다. 정상 음식식이(NCD) 또는 고지방식이(HFD, 60 kcal % fat)를 섭취시키는 동안, 4주 동안 매주 음식 섭취량을 측정하였다(평균±SEM, n=10-14, 음식 섭취량[Food intake]).
도 10은 플록스트 및 aSPTLC2 KO 마우스에서의 대사성 변화를 나타낸다. 정상 음식식이(NCD) 및 고지방식이(HFD, 60 kcal % fat)를 한 후 4주 뒤에 종합적 실험동물 모니터링 시스템(Comprehensive Laboratory Animal Monitoring System)을 사용하여 산소 소비(VO2)(A), 이산화탄소 생성속도(VCO2)(B), 호흡비(C), 에너지소비(D), 음식섭취(E) 및 활동(F)을 포함하는 기본적 에너지 균형을 측정하였다(평균±SEM, *p < 0.05 [정상 음식식이를 섭취시킨 플록스트 마우스 대비], n=10).
도 11은 부가적인 고인슐린혈증 정상혈당 클램프 및 포도당 흐름에 대한 결과를 나타낸다. 고지방식이를 6주 동안 섭취시키고 하루 밤을 절식시킨 후, 공복 혈당을 측정하였고(A), 전체 몸의 포도당 흡수(B), 당분해(C) 및 글라이코겐 합성 속도(D)를 측정하였다(평균±SEM, *p < 0.05 [고지방식이를 섭취시킨 플록스트 마우스 대비], n=10-14, 공복 혈당[Fasting glucose], 포도당 흡수[Glucose uptake], 당분해[Glycolysis], 글라이코겐 합성 속도[Glycogen synthesis rate]).
도 12는 '혈액순환 중의 스핑고신-1-포스페이트(S1P)의 상승은 지방세포 비대를 유발하였다' 는 것을 나타낸다. 8주된 플록스트와 aSPTLC2 KO 마우스에게 고지방식이(HFD)(60 kcal % 지방)를 2 주 동안 섭취시켰고, GFP 또는 SPHK2(1 X 109 PFU) 포함 아데노바이러스를 꼬리 정맥에 주입하였다. 주사 후 2 주 뒤에, 체지방 조성을 1H NMR(A)으로 측정하였고, 지방조직을 헤마톡실린과 에오신(H&E)으로 염색하였다(B)(평균±SEM, *p < 0.05 [아데노바이러스 주사 전(0 주) 대비], n=5). S1P 수용체의 발현을 측정하였다(C)(평균±SEM, *p < 0.05 [고지방식이(HFD)를 섭식시킨 플록스트 마우스 대비], n=5-6). 대조군 또는 SPTLC2-shRNA 3T3-L1 세포가 분화 하는 동안, S1P 수용체의 발현을 측정하기 위해서 qRT-PCR 분석을 실시하였다(D-F)(평균±SEM, *p < 0.05 [콘트롤의 D0 대비], #p < 0.05 [각 날짜의 콘트롤 대비], n=3, 분화의 일수[Day of differentiation]).
도 13은 '스핑고신-1-포스페이트(S1P)는 PPARγ와 3T3-L1 전-지방세포의 증식을 활성화시킨다' 는 것을 나타낸다. 3T3-L1 전-지방세포에 대해서 S1P가 있는 상태로 또는 S1P가 없는 상태로 24시간 동안 처리하였고, 긁혀진 영역으로의 이동 패턴을 다양한 S1P 조건에서 관찰하였다(A). 세포 이동을 운드-힐링 어세이(wound-healing assay)로 측정하였고, 0시간에서와 24시간에서의 간극(gap distances) 비율로 정량화하였다(B). 간극은 세 개의 무작위 지점을 잡은 후에 값을 표준화시켰다. 3T3-L1 세포 생존율은 24시간 동안 S1P를 농도 증가시키면서 처리한 후에 XTT 어세이로 평가하였다(C). PPRE-x3-TK-luc 구조체를 포함하는 벡터로 AML-12 세포를 일시적으로 감염시켰고, 세포를 5μM S1P 또는 10μM 로지글리타존(rosiglitazone)으로 6시간 동안 처리하였다. 그 후에, 루미노미터(luminometer)를 사용하여 루시페라제(luciferase) 활성을 측정하였다(D)(평균±SEM, *p < 0.05 [대조군 대비], n=5-6).
도 14는 동형접합 마우스와 이형접합 마우스를 구분하는 비교 데이터를 나타내는 것으로서, LoxP 삽입을 확인하기 위해서 마우스 꼬리를 0.5 cm 정도 절단한 후 프로테이나제 케이(proteinase K)로 조직을 분해하고, 이를 이용해 중합효소 연쇄반응(PCR)을 수행한 결과 LoxP가 삽입된 경우 366 bp에 생산물이 나타나며, 야생종의 경우 205 bp에 생산물이 나타나는 것으로 동형접합 마우스와 이형접합 마우스를 구분하였으며, 아디포넥틴-Cre의 존재도 중합효소 연쇄반응을 통해 확인하여 지방조직 특이 SPTLC2 마우스와 플록스트 마우스를 구분하였다.
FIG. 1 shows that the 'hyperlipidemia state' according to the day of differentiation is caused by the sphingolipid neogenesis in adipose tissue and differentiated 3T3-L1 adipocytes fed high-fat diet (HFD) Activated '. Wild type (WT) C57BL / 6 mice were fed high fat diet (HFD) (60 kcal% fat) for 8 weeks, and white adipose tissue (WAT) of the epididymis was isolated. mRNA was extracted for qRT-PCR analysis (A), and tissue lysates were analyzed by immunoblotting for SPTLC1, SPTLC2 and SPHK1 (B). Data were expressed as mean ± SEM (* p <0.05, n = 6). 3T3-L1 cells were differentiated for 7 days and harvested at designated days (D0, D2, D4, D5 and D7). QRT-PCR was performed to measure the expression of the sphingolipid biosynthetic gene (C, E). Cell lysates were analyzed by immunoblotting for SPTLC1, SPTLC2, and SPHK1 (E) (mean ± SEM, * p <0.05 [3T3-L1 control compared to D0], n = 3).
Figure 2 shows the expression of aCer1 / 2/3 (AC ceramidase 1/2/3) (AC), AcCer (acid ceramidase) (D) and nCer (neutral ceramidase) (E) according to the day of differentiation . 3T3-L1 cells were differentiated for 7 days and harvested on designated days (D0, D2, D4, D5 and D7). To measure mRNA expression, qRT-PCR was performed (mean ± SEM, * p <0.05 [3T3-L1 compared to D0 in the control group], n = 3).
Figure 3 shows that inhibition of SPTLC2 reduces fat accumulation and downregulates obesity genes. A stable 3T3-L1 strain (shRNA-SPTLC2) in which SPTLC2 was specifically removed was prepared using lentivirus. shRNA-SPTLC2 cells reduced SPTLC2 protein and mRNA (A). During the differentiation of 3T3-L1 cells, the expression of SPTLC2 was reduced in control and SPTLC2-inhibited cells (B). Fat accumulation was measured using the AdipoRed Assay as described in the Examples (C). To determine the expression of SPHK1 / 2, aP2, C / EBPalpha, PPARy, PEPCK, SREBP-1c and GLUT4 according to the day of differentiation by differentiating 3T3-L1 control cells and SPTLC2- pR &lt; 0.05 [shRNA-SPTLC2 < / RTI &gt; cells (compared to the control of each day), p < 0.05 D0 contrast], n = 3).
FIG. 4 shows that lipodystrophy occurred in 'a SPTLC2 KO mice with SPTLC2-specific adipocytes removed'. Multiple tissues were isolated from aSPTLC2 KO mice and the expression of SPTLC2 was examined by immunoblotting (A). Mice were fed high fat diet (45 kcal% fat, for 8 weeks) and fat tissue size was measured (B). The reference indicates 1 cm. The white adipose tissue section of the epididymis was stained with hematoxylin and eosin (H & E) or F4 / 80 antibodies (C). (D) (mean ± SEM, * p <0.05 [compared with plucked mouse], n = 5). The expression of adipogenic gene was measured by isolating the adipose tissue white adipose tissue (WAT). Analysis on ceramide, sphingomyelin (SM) (E), sphingoid base and diacylglycerol (DAG) (F) was performed with LC-MS / MS (mean ± SEM, * p <0.05 [Compared to flocked mouse], n = 5-6).
Figure 5 shows the 'plasma sphering loop feed profile'. Mice were fed a normal food diet (NCD) or a high fat diet (HFD, 45 kcal% fat) for 8 weeks and plasma samples were collected. The analysis of ceramide (A), dihydroceramide (B), sphingomyelin (C) and sphingoid bases (D) was performed using LC / MS / MS SEM. * P <0.05 [compared to flocked mice fed a normal diet], #p <0.05 [compared to flocked mice fed high-fat diet], n = 5-6).
Figure 6 shows that 'aSPTLC2 KO mice developed fatty liver.' Flocked mice and aSPTLC2 KO mice were fed a normal diet (NCD) or high fat diet (HFD) (45 kcal% fat) for 8 weeks. The mouse liver was separated and the frozen section was stained with Oil Red O (ORO) (A) in order to check the liver in the liver. The standard indicates 100 μm. Liver cholesterol and triglyceride (TG) (B) were measured. Expression of TG (triglyceride) biosynthetic gene (C) and fatty acid (FA) oxidized gene (D) was measured by qRT-PCR. Analysis of ceramide, SM (E), sphingoid base and diacylglycerol (DAG) (F) was performed by LC-MS / MS (mean ± SEM, * p <0.05 [ (Compared to flocked mice fed high-density lipoprotein (HFD)), n = 5-6).
Figure 7 shows the expression of genes that synthesize fats in rat skeletal muscle after ingestion of normal food diet (NCD) or high fat diet (HFD). Plastost and aSPTLC2 KO mice were sacrificed after 8 weeks of high fat diet (45 kcal% fat). Quantitative RT-PCR analysis was performed to determine the expression of fat biosynthesis genes (mean ± SEM, * p <0.05 [compared to flocked mice fed a normal diet], n = 5-6).
Figure 8 shows that aSPTLC2 KO mice are resistant to obesity induced by high fat diet (HFD), but produce insulin resistance. Plastost and aSPTLC2 KO mice were fed a normal diet (NCD) and high fat diet (HFD) (60 kcal% fat) for 6 weeks. Body weights (A) and body fat composition (B) of the plastost and aSPTLC2 KO mice were analyzed weekly by 1 H NMR (mean ± SEM, * p <0.05 [ (Compared with aSPTLC2 KO mice fed a normal food diet (NCD), n = 10-14). To determine glucose uptake rate (GIR), hepatic glucose production (HGP) inhibition (C), basal hepatic glucose production (BHGP), and hepatic glucose production during clamping (CHGP) (D), hyperinsulinemic normoglycan clamp Respectively. Independently, plastost and aSPTLC2 KO mice were administered intraperitoneally with insulin (0.5 unit / kg body weight). Liver (E) and subcutaneous adipose tissue (F) were isolated after 10 minutes of insulin injection and immunoblot analysis was performed to determine pAKT levels (mean ± SEM, * p <0.05 [ N = 10-14, body weight, fat mass, and lean body mass).
Figure 9 shows the food intake of plastost and aSPTLC2 KO mice. Food intake was measured weekly for 4 weeks (mean ± SEM, n = 10-14, food intake) during normal diet (NCD) or high fat diet (HFD, 60 kcal% fat) .
Figure 10 shows metabolic changes in plastost and aSPTLC2 KO mice. Four weeks after the normal diet (NCD) and high fat diet (HFD, 60 kcal% fat), oxygen consumption (VO2) (A), carbon dioxide Basic energy balance including velocity (VCO2) (B), respiratory rate (C), energy consumption (D), food intake (E) and activity (F) N = 10) compared to those with a food diet.
Figure 11 shows the results for additional hyperinsulinemic normal blood glucose clamps and glucose flux. Fasting glucose was measured for fasting glucose (B), sugar solution (C) and glycogen synthesis rate (D) in the whole body after 6 weeks of high fat diet and fasting overnight. Fasting glucose, Glucose uptake, Glycolysis, Glucose uptake (mean ± SEM, * p <0.05 [compared to flocked mice fed high-fat diet], n = Glycogen synthesis rate).
Figure 12 shows that elevation of sphingosine-1-phosphate (S1P) during blood circulation caused adipocyte hypertrophy. 8-week-old plastost and aSPTLC2 KO mice were fed high fat diet (HFD) (60 kcal% fat) for 2 weeks and adenovirus containing GFP or SPHK2 (1 × 10 9 PFU) was injected into the tail vein. Two weeks after injection, the body fat composition was measured by 1 H NMR (A) and the adipose tissue was stained with hematoxylin and eosin (B) (mean ± SEM, * p <0.05 [ 0 week) contrast], n = 5). S1P receptor expression was measured (C) (mean ± SEM, * p <0.05 [compared to flocked mice fed high-fat diet (HFD)], n = 5-6). QRT-PCR analysis was performed to determine the expression of S1P receptor (DF) (mean ± SEM, * p <0.05 [control D0 contrast], #p <0.05 [control for each date], n = 3, day of differentiation).
FIG. 13 shows that 'sphingosine-1-phosphate (S1P) activates the proliferation of PPARγ and 3T3-L1 pre-adipocytes'. 3T3-L1 pre-adipocytes were treated for 24 hours with S1P or without S1P, and the migration pattern to the scratched area was observed under various S1P conditions (A). Cell migration was measured by a wound-healing assay and quantified by the ratio of gap distances at 0 h and at 24 h (B). The gap standardized the values after capturing three random points. 3T3-L1 cell viability was evaluated by XTT assay after treatment with increasing S1P concentration for 24 hours (C). AML-12 cells were transiently transfected with a vector containing the PPRE-x3-TK-luc construct and the cells were treated with 5 [mu] M S1P or 10 [mu] M rosiglitazone for 6 hours. Thereafter, the luciferase activity was measured using a luminometer (D) (mean ± SEM, * p <0.05 [control group], n = 5-6).
14 shows comparative data distinguishing between homozygous mice and heterozygous mice. In order to confirm LoxP insertion, the mouse tail was cut about 0.5 cm, the tissue was digested with proteinase K, PCR was performed to detect products at 366 bp when LoxP was inserted and products at 205 bp for wild type, and homozygous mouse and heterozygous mouse were distinguished from each other. The presence of adiponectin-Cre Were also identified by polymerase chain reaction to distinguish between adipose tissue specific SPTLC2 mice and flocked mice.

본 명세서에서 'SPTLC2'란 스핑고 지질 생합성을 조절하는 주요단계의 효소로 알려져 있는 세린 팔미토일트랜스페라제(serine palmitoyltransferase, SPT)를 구성하는 단위체(subunit) 중의 하나를 의미한다. SPT를 구성하는 단위체는 SPTLC1과 SPTLC2이다(박태식, 스핑고 지질과 대사성질환, 생화학분자생물학회소식, 2010년 12월호).In the present specification, 'SPTLC2' means one of subunits constituting serine palmitoyltransferase (SPT), which is known as a main step enzyme for controlling sphingolipid biosynthesis. SPT is composed of SPTLC1 and SPTLC2 (Tae Sik Park, Sphingolipids and Metabolic Diseases, Biochemical Molecular Biology Society, December 2010).

본 명세서에서 '프록스트 마우스'란 두 개의 재조합 효소 결합 염기서열인 lox P 사이트 사이에 SPTLC2 유전자의 exon1이 샌드위치된 마우스이다.In the present specification, 'prokst mouse' is a mouse in which exon1 of the SPTLC2 gene is sandwiched between two recombinant enzyme-binding base sequences loxP sites.

본 발명은 지방세포 특이적 SPTLC2 유전자가 결손(knock-out)된 마우스인 것을 특징으로 하는 지방이상증 동물모델을 제공한다. 본 발명은 동형접합체(homozygote)인 것을 특징으로 하는 지방이상증 동물모델로, 상기 지방이상증은 지방간, 전신성 인슐린저항성 및 고중성지방증으로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 지방이상증 동물모델이 될 수 있으나, 이에 제한되는 것은 아니다. The present invention provides an animal model of lipodystrophy characterized by that the adipocyte-specific SPTLC2 gene is a knock-out mouse. The present invention is an animal model of lipodystrophy characterized by being homozygote, wherein the lipodystrophy is any one selected from the group consisting of fatty liver, systemic insulin resistance and hypertonic papilloma But is not limited thereto.

한편, 선행기술인 US 2008-0249174 A1(JIANG, Xian-cheng)에서는 SPTLC1과 SPTLC2 전체 반결핍 이형접합 마우스(whole-body heterozygous SPTLC2 knock-out mice(-/+))에 대하여 개시한 바 있으나, 지방이상증에 대해서는 연구된 바가 없으나, 본 발명은 지방세포 특이적 SPTLC2 결핍 동형접합 마우스(adipocyte-specific SPTLC2 knock-out mice(-/-))라는 점에서 차별화되어 있다.On the other hand, prior art US 2008-0249174 A1 (JIANG, Xian-cheng) discloses SPTLC1 and SPTLC2 whole-body heterozygous SPTLC2 knock-out mice (- / +), Although no abnormalities have been studied, the present invention is differentiated in that adipocyte-specific SPTLC2 knock-out mice (- / -) are adipocyte-specific SPTLC2 deficient mice.

본 발명은 (a) 플록스트(floxed) SPTLC2 마우스 및 아디포넥틴-Cre 이식유전자를 가진 마우스를 제작하는 단계; (b) 플록스트 SPTLC2 마우스를 아디포넥틴-Cre 이식유전자를 가진 마우스와 교배하여, 2세대인 마우스를 얻는 단계; 및 (c) 상기 2세대 마우스로부터 지방세포 특이적 SPTLC2 유전자 결손 마우스를 선별하는 단계 를 포함하는 SPTLC2 exon1이 제거된 지방이상증 동물모델의 제작방법을 제공한다. (A) producing a mouse having a floxed SPTLC2 mouse and an adiponectin-Cre transplanted gene; (b) crossing a plastost SPTLC2 mouse with a mouse having an adiponectin-Cre transplantation gene to obtain a second-generation mouse; And (c) selecting an adipocyte-specific SPTLC2 gene-deficient mouse from the second-generation mouse, wherein SPTLC2 exon1 is deleted.

본 발명은 (i) 지방이상증 동물모델에 시료를 투여하는 단계; (ii) 시료 투여 후 상기 동물모델의 지방이상증의 증상을 측정하는 단계; 및 (iii) 상기 시료를 투여하지 않은 대조군과 비교하여 지방이상증의 증상을 개선시키는 시료를 선별하는 단계를 포함하는 것을 특징으로 하는 지방이상증 예방 및 치료제의 스크리닝 방법을 제공한다.(I) administering a sample to an animal model of lipodystrophy; (ii) measuring the symptoms of lipodystrophy of the animal model after administration of the sample; And (iii) selecting a sample that alleviates the symptoms of lipodystrophy in comparison with a control group to which the sample is not administered. The present invention also provides a method of screening for a therapeutic and / or therapeutic agent for lipodystrophy.

또한, 본 발명의 일 구현예에서, 단계(e)의 상기 측정은 부고환 WAT의 세라마이드, 스핑고마이엘린, 스핑고이드 염기 및 다이아실글리세롤을 측정; 혈장의 세라마이드, 다이하이드로 세라마이드, 스핑고마이엘린 및 스핑고이드염기를 측정; 간 콜레스테롤 및 간 트리글리세라이드(TG) 측정, TG 생합성 유전자 및 지방산 산화 유전자의 발현 측정; 간의 세라마이드, 스핑고마이엘린, 스핑고이드 염기 및 다이아실글리세라이드 측정; 골격근에서 지방을 합성시키는 유전자의 발현 측정을 포함할 수 있다.Further, in an embodiment of the present invention, said measurement of step (e) comprises measuring ceramide, sphingomyelin, sphingoid base and diacylglycerol of epididymal WAT; Measurement of plasma ceramide, dihydroceramides, sphingomyelin and sphingoid bases; Measurement of liver cholesterol and liver triglyceride (TG), measurement of expression of TG biosynthesis gene and fatty acid oxidase gene; Measurement of ceramide, sphingomyelin, sphingoid base and diacylglyceride; And measuring the expression of genes that synthesize fats in the skeletal muscle.

본 발명에 따른 동물모델은 지방세포 특이적인 SPTLC2 유전자 결손으로 지방간, 전신성 인슐린저항성 및 고중성지방증 등의 지방이상증을 일으키므로 지방이상증의 진행 경과와 병리학적 기전 연구의 동물모델로 유용하게 이용될 수 있다. The animal model according to the present invention can be used as an animal model of progression of lipodystrophy and pathological mechanism study because it causes lipid disorder such as fatty liver, systemic insulin resistance and hypertonic ptosis due to adipocyte-specific SPTLC2 gene deletion have.

따라서, 본 발명에 따른 동물모델은 지방이상증 조절물질을 선별하고, 그 치료효과를 검증하는 스크리닝에 매우 유용하게 사용될 수 있다. Therefore, the animal model according to the present invention can be very usefully used for screening for selecting a substance for controlling lipodystrophy and verifying its therapeutic effect.

이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by way of examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples.

<< 실시예Example >>

1.One. 실험재료 및 방법Materials and Methods

(1)(One) 고인슐린혈증 정상혈당 클램프와 포도당 플럭스 계산Hyperinsulinemia Normal blood glucose clamp and glucose flux calculation

클램프 실험의 8 일 전, 우측 경정맥 내에 카테터를 내재하도록 위치시켰다. 정상혈당(약 130 mg/dl)을 유지하기 위해서 인간 인슐린의 기본적/연속적 주입(기본적 주입의 경우는 21.4 mU/kg로, 연속적 주입의 경우는 3 mU/kg/분으로 주입함, Eli Lilly)과 동시에 20% 덱스트로스를 가변적으로 주입하면서 고인슐린혈증 정상혈당 클램프 실험을 120분 동안 수행하였다. Eight days before clamping, the catheter was placed in the right jugular vein. Basal / continuous infusion of human insulin (21.4 mU / kg for basal infusion and 3 mU / kg / min for continuous infusion, Eli Lilly) to maintain normal blood glucose (approximately 130 mg / dl) At the same time, 20% dextrose was injected variably and hyperinsulinemic normal blood glucose clamp test was performed for 120 minutes.

(2)(2) 세포 배양Cell culture

마우스 3T3-L1 세포는 한국생명공학연구원(Korea Research Institute of Bioscience and Biotechnology, KRIBB, Korea)에서 얻었다. 세포를 10% 우아혈청(Bovine Calf Serum, BCS), 10 units/ml 페니실린, 10 μg/ml 스트렙토마이신(P/S)을 넣은 동물세포배양배지인 DMEM에서 배양했고, 37 ℃와 5% CO2 에서 배양했다. Mouse 3T3-L1 cells were obtained from the Korea Research Institute of Bioscience and Biotechnology, KRIBB, Korea. The cells 10% elegant serum (Bovine Calf Serum, BCS), 10 units / ml penicillin, 10 μg / ml streptomycin (P / S) the insert had the animal cell culture in a culture medium of DMEM, 37 ℃ and 5% CO 2 Lt; / RTI &gt;

(3)(3) 일시적인 형질주입 및 리포터 유전자 Transient transfection and reporter genes 어세이Assay

리포펙타민(Lipofectamine) 2000(Invitrogen)을 사용하여 PPRE-x3-TK-luc(plasmid 1015; Addgene) 구조체 포함 벡터를 AML-12 세포에 일시적 형질주입하였다. 형질주입 효율을 표준화하기 위해서 레닐라 루시퍼라제(Renilla luciferase)에 대한 발현벡터인 pTK-RL를 사용하였다.The vector containing PPRE-x3-TK-luc (plasmid 1015; Addgene) construct was transiently transfected into AML-12 cells using Lipofectamine 2000 (Invitrogen). In order to standardize the transfection efficiency, the expression vector pTK-RL for Renilla luciferase was used.

(4)(4) RNA 준비 및 정량적인 RT-RNA preparation and quantitative RT- PCRPCR

총 RNA를 3T3-L1 세포 또는 간 조직에서 분리하였고, 이로부터 합성된 상보적인 DNA를 분석하여 유전자 발현을 결정하였다. 이 실험에서 사용된 프라이머 염기서열을 하기 표 1에 제시하였다. Total RNA was isolated from 3T3-L1 cells or liver tissue, and gene expression was determined by analyzing the complementary DNA synthesized therefrom. The primer sequences used in this experiment are shown in Table 1 below.

유전자gene 프라이머 염기서열Primer base sequence β-actinβ-actin FF GAC GTT GAC ATC CGT AAA G (서열번호 1)GAC GTT GAC ATC CGT AAA G (SEQ ID NO: 1) RR CAG TAA CAG TCC GCC T (서열번호 2)CAG TAA CAG TCC GCC T (SEQ ID NO: 2) GAPDHGAPDH FF CAA GGT CAT CCA TGA CAA CTT TG (서열번호 3)CAA GGT CAT CCA TGA CAA CTT TG (SEQ ID NO: 3) RR GGC CAT CCA CAG TCT TCT GG (서열번호 4)GGC CAT CCA CAG TCT TCT GG (SEQ ID NO: 4) SPTLC1SPTLC1 FF AGT GGT GGG AGA GTC CCT TT (서열번호 5)AGT GGT GGG AGA GTC CCT TT (SEQ ID NO: 5) RR CAG TGA CCA CAA CCC TGA TG (서열번호 6)CAG TGA CCA CAA CCC TGA TG (SEQ ID NO: 6) SPTLC2SPTLC2 FF GGA TAC ATC GGA GGC AAG AA (서열번호 7)GGA TAC ATC GGA GGC AAG AA (SEQ ID NO: 7) RR ACC TGG TGT TCT CAG CCA AC (서열번호 8)ACC TGG TGT TCT CAG CCA AC (SEQ ID NO: 8) SPHK1SPHK1 FF TGT GAA CCA CTA TGC TGG GTA (서열번호 9)TGT GAA CCA CTA TGC TGG GTA (SEQ ID NO: 9) RR CAG CCC AGA AGC AGT GTG (서열번호 10)CAG CCC AGA AGC AGT GTG (SEQ ID NO: 10) SPHK2SPHK2 FF AGA CGG GCT GCT TTA CGA G (서열번호 11)AGA CGG GCT GCT TTA CGA G (SEQ ID NO: 11) RR CCT GCT CAA ACC CGC CAT (서열번호 12)CCT GCT CAA ACC CGC CAT (SEQ ID NO: 12) aP2aP2 FF GAA CCT GGA AGC TTG TCT TCG (서열번호 13)GAA CCT GGA AGC TTG TCT TCG (SEQ ID NO: 13) RR ACC AGC TTG TCA CCA TCT CG (서열번호 14)ACC AGC TTG TCA CCA TCT CG (SEQ ID NO: 14) C/EBPαC / EBPα F F GAA CAG CAA CGA GTA CCG GGT A (서열번호 15)GAA CAG CAA CGA GTA CCG GGTA (SEQ ID NO: 15) RR GCC ATG GCC TTG ACC AAG GAG (서열번호 16)GCC ATG GCC TTG ACC AAG GAG (SEQ ID NO: 16) PPARγPPARγ FF GAG TGT GAC GAC AAG ATT TG (서열번호 17)GAG TGT GAC GAC AAG ATT TG (SEQ ID NO: 17) RR GGT GGG CCA GAA TGG CAT CT (서열번호 18)GGT GGG CCA GAA TGG CAT CT (SEQ ID NO: 18) PEPCKPEPCK FF CCC CTT GTC TAT GAA GCC CTC A (서열번호 19)CCC CTT GTC TAT GAA GCC CTC A (SEQ ID NO: 19) RR GCC CTT GTG TTC TGC AG (서열번호 20)GCC CTT GTG TTC TGC AG (SEQ ID NO: 20) SREBP-1cSREBP-1c FF CGG AAG CTG TCG GGG TAG (서열번호 21)CGG AAG CTG TCG GGG TAG (SEQ ID NO: 21) RR GGC CAG AGA AGC AGA AGA GA (서열번호 22)GGC CAG AGA AGC AGA AGA GA (SEQ ID NO: 22) GLUT4GLUT4 FF AGA GTC TAA AGC GCC T (서열번호 23)AGA GTC TAA AGC GCC T (SEQ ID NO: 23) RR CCG AGA CCA ACG TGA A (서열번호 24)CCG AGA CCA ACG TGA A (SEQ ID NO: 24) FASFAS FF CAG ATG ATG ACA GGA GAT GGA A (서열번호 25)CAG ATG ATG ACA GGA GAT GGA A (SEQ ID NO: 25) RR CAC TCA CAC CCA CCC AGA (서열번호 26)CAC TCA CAC CCA CCC AGA (SEQ ID NO: 26) DGAT1DGAT1 FF GTG CCA TCG TCT GCA AGA TTC (서열번호 27)GTG CCA TCG TCT GCA AGA TTC (SEQ ID NO: 27) RR GCA TCA CCA CAC ACC AAT TCA G (서열번호 28)GCA TCA CCA CAC ACC AAT TCA G (SEQ ID NO: 28) DGAT2DGAT2 FF CTG TCA CCT GGC TCA ACA GA (서열번호 29)CTG TCA CCT GGC TCA ACA GA (SEQ ID NO: 29) RR TAT CAG CCA GCA GTC TGT GC (서열번호 30)TAT CAG CCA GCA GTC TGT GC (SEQ ID NO: 30) HMG CoRHMG CoR FF GGG AAC TAT TGC ACC G (서열번호 31)GGG AAC TAT TGC ACC G (SEQ ID NO: 31) RR GTA GCC GCC TAT GCT C (서열번호 32)GTA GCC GCC TAT GCT C (SEQ ID NO: 32) LpLLpL FF TCT GTA CGG CAC AGT GG (서열번호 33)TCT GTA CGG CAC AGT GG (SEQ ID NO: 33) R R CCT CTC GAT GAC GAA GC (서열번호 34)CCT CTC GAT GAC GAA GC (SEQ ID NO: 34) CPT1αCPT1α FF CCA TCC TGT CCT GAC AAG GTT TAG (서열번호 35)CCA TCC TGT CCT GAC AAG GTT TAG (SEQ ID NO: 35) RR CCT CAC TTC TGT TAC AGC TAG CAC (서열번호 36)CCT CAC TTC TGT TAC AGC TAG CAC (SEQ ID NO: 36) CPT1βCPT1? FF GGT CCC ATA AGA AAC AAG ACC TCC (서열번호 37)GGT CCC ATA AGA AAC AAG ACC TCC (SEQ ID NO: 37) RR CAG AAA GTA CCT CAG CCA GGA AAG (서열번호 38)CAG AAA GTA CCT CAG CCA GGA AAG (SEQ ID NO: 38) ACOX1ACOX1 FF ACG CCA CTT CCT TGC TCT TC (서열번호 39)ACG CCA CTT CCT TGC TCT TC (SEQ ID NO: 39) RR AGA TTG GTA GAA ATT GCT GCA AA (서열번호 40)AGA TTG GTA GAA ATT GCT GCA AA (SEQ ID NO: 40) LCADLCAD FF TTT CCT CGG AGC ATG ACA TTT T (서열번호 41)TTT CCT CGG AGC ATG ACA TTT T (SEQ ID NO: 41) RR GCC AGC TTT TTC CCA GAC CT (서열번호 42)GCC AGC TTT TTC CCA GAC CT (SEQ ID NO: 42) MCADMCAD FF AAC ACT TAC TAT GCC TCG ATT GCA (서열번호 43)AAC ACT TAC TAT GCC TCG ATT GCA (SEQ ID NO: 43) RR CCA TAG CCT CCG AAA ATC TGA A (서열번호 44)CCA TAG CCT CCG AAA ATC TGA A (SEQ ID NO: 44) S1P1 S1P 1 FF ATG GTG TCC ACT AGC ATC CC (서열번호 45)ATG GTG TCC ACT AGC ATC CC (SEQ ID NO: 45) RR CGA TGT TCA ACT TGC CTG TGT AG (서열번호 46)CGA TGT TCA ACT TGC CTG TGT AG (SEQ ID NO: 46) S1P2 S1P 2 FF ACA GCA AGT TCC ACT CAG CAA (서열번호 47)ACA GCA AGT TCC ACT CAG CAA (SEQ ID NO: 47) RR CTG CAC GGG AGT TAA GGA CAG (서열번호 48)CTG CAC GGG AGT TAA GGA CAG (SEQ ID NO: 48) S1P3 S1P 3 FF ACT CTC CGG GAA CAT TAC GAT (서열번호 49)ACT CTC CGG GAA CAT TAC GAT (SEQ ID NO: 49) RR CCA AGA CGA TGA AGC TAC AGG (서열번호 50)CCA AGA CGA TGA AGC TAC AGG (SEQ ID NO: 50) CD36CD36 FF ATT GGT CAA GCC AGC T (서열번호 51)ATT GGT CAA GCC AGC T (SEQ ID NO: 51) RR TGT AGG CTC ATC CAC TAC (서열번호 52)TGT AGG CTC ATC CAC TAC (SEQ ID NO: 52) ACCACC FF CGC CAA CAA TGG TAT TGC AGC (서열번호 53)CGC CAA CAA TGG TAT TGC AGC (SEQ ID NO: 53) RR TCG GAT TGC ACG TTC ATT TCG (서열번호 54)TCG GAT TGC ACG TTC ATT TCG (SEQ ID NO: 54)

(5)(5) 면역블랏Immune Blot (( ImmunoblotImmunoblot ) 분석) analysis

조직 또는 세포를 세포용해 완충액에서 균질화시켰다. 단백질 30 μg을 선행문헌에 기재된 바에 따라 면역블랏법에 사용하였다(Lee SY, Hong IK, Kim BR, Shim SM, Sung Lee J, Lee HY, et al., Hepatology, 2015, 62, 135-146). 블랏(blot)을 강화된 화학발광 기질(Millipore, Bilerica, MA)로 현상시켰고, 퓨전 솔로 화학발광 영상화 분석기(FUSION SOLO chemiluminescent imaging analyzer, Vilber Lourmat, Germany)를 사용하여 검출하였다.Tissues or cells were homogenized in cell lysis buffer. 30 μg of the protein was used in the immunoblotting method as described in the prior art (Lee, SY, Lee, HY, et al., Hepatology, 2015, 62, 135-146) . The blot was developed with an enhanced chemiluminescent substrate (Millipore, Bilecica, MA) and detected using a Fusion Solo chemiluminescent imaging analyzer (Vilber Lourmat, Germany) with a Fusion Solo.

(6)(6) 대사체의Metabolite 측정 Measure

혈액 포도당 레벨, 혈장 및 간 TG(triglyceride), 콜레스테롤, HDL, LDL 및 비에스터화지방산을 측정하였다. 혈장 및 조직에서의 스핑고리피드 레벨을 액체크로마토그래피 / 탠덤 매스 분광광도법(liquid chromatography/tandem mass spectrometry, LC/MS/MS)으로 선행문헌에 기재된 바에 따라 측정하였다(Lee SY, Hong IK, Kim BR, Shim SM, Sung Lee J, Lee HY, et al., Hepatology, 2015, 62, 135-146). Blood glucose level, plasma and liver TG (triglyceride), cholesterol, HDL, LDL and unesterified fatty acids. The sphering loop feed levels in plasma and tissue were determined by liquid chromatography / tandem mass spectrometry (LC / MS / MS) as described in the prior art (Lee SY, Hong IK, Kim BR , Shim SM, Sung Lee J, Lee HY, et al., Hepatology, 2015, 62, 135-146).

(7)(7) 조직학histology

간을 분리하여 OCT를 넣은 매체(medium)에서 냉동시켰다. 지방조직을 분리하여 10% 완충된 포르말린에서 24 시간 동안 고정시켰다. 파라핀으로 고정된 조직 또는 냉동된 조직의 5 μm 단면을 헤마톡실린과 에오신(H&E, Sigma-Aldrich)으로 염색하거나 오일 레드 오(Oil Red O, ORO)로 염색하였다. 마크로파지를 F4/80 항체로 검출하였다.The liver was separated and frozen in medium containing OCT. Adipose tissue was detached and fixed in 10% buffered formalin for 24 hours. 5 μm sections of either paraffin-fixed or frozen tissue were stained with hematoxylin and eosin (H & E, Sigma-Aldrich) or stained with Oil Red O (ORO). Macrophages were detected with F4 / 80 antibody.

(8)(8) 통계적 분석Statistical analysis

결과를 평균±표준오차(SEM)로 나타내었다. 그룹 간 차이를 양측 독립적 스튜던트 티 테스트(two-tailed unpaired Student t test)로 결정하였다. P < 0.05를 통계적으로 유의하다고 판단했다.Results are expressed as mean ± standard error (SEM). The difference between the groups was determined as a two-tailed unpaired Student t test. P <0.05 was considered statistically significant.

2.2. 결과result

(1)(One) 스핑고리피드Sphing ring feed 신생합성은 비만 조건하에서 지방세포가 분화하는 동안에 지방조직에서 상향조절된다.  Neoplastic synthesis is upregulated in adipose tissue during adipocyte differentiation under obesity conditions.

WAT(white adipose tissue) 비대는 비만에 의한 FA(fatty acid)의 WAT로의 증가된 전달 및 활성화된 TG(triglyceride) 합성으로 인해 발생한다. FA는 스핑고리피드 생합성에 대한 기질이기 때문에, 본 발명의 발명자는 고지방식이(HFD)를 섭취한 마우스에서 유래된 부고환의 WAT에서 스핑고리피드 대사가 변화되는지 조사하였다. WAT (white adipose tissue) hypertrophy is caused by increased delivery of FA (fatty acid) to WAT and activated TG (triglyceride) synthesis by obesity. Since FA is a substrate for sphingolipid biosynthesis, the inventors of the present invention investigated whether sphingolipid metabolism changes in the WAT of epididymis derived from mice fed high-fat diet (HFD).

8주 동안의 60% 고지방식이(HFD) 결과, WAT의 SPTLC2, SPHK1, aCer2(alkaline ceramidase2), aCer3, CerS2(ceramide synthase2) 및 DES1(dihydroceramide desaturase 1)이 상향조절되었다(도 1A). 특히, 상승된 SPTLC2 mRNA와 단백질의 상승은 스핑고리피드 신생합성의 활성화를 나타낸다. 그리고 DES1, CerS2, aCer2/3와 SPHK1의 상향조절은 SPT 촉매 단계로부터 시작하는 전체적인 대사 흐름(flux)이 비만 조건에서는 세라마이드를 통한 S1P(sphingosine 1-phosphate)의 합성쪽으로 이동함을 시사한다(도 1A, B). As a result of 8 weeks of 60% high-fat diet (HFD) results, SPTLC2, SPHK1, aCer2 (alkaline ceramidase2), aCer3, CerS2 (ceramide synthase2) and DES1 (dihydroceramide desaturase 1) of WAT were upregulated (FIG. 1A). In particular, the elevation of elevated SPTLC2 mRNA and protein indicates the activation of sphingolipid neogenesis. Up-regulation of DES1, CerS2, aCer2 / 3 and SPHK1 suggests that the overall metabolic flux, starting from the SPT catalytic phase, shifts to the synthesis of S1P (sphingosine 1-phosphate) via ceramide in the obese condition 1A, B).

3T3-L1 세포가 분화하는 동안, SPTLC2, SPHK1, aCer1/2/3, AcCer(acid ceramidase) 및 nCer(neutral ceramidase)는 시간 의존적인 방식으로 상향조절되었다(도 1C, E 및 도 2). 반면에, SPTLC2 단백질 레벨은 감소되었고, SPTLC1 단백질 레벨은 변화가 없었다(도 1D). 스핑고리피드 생합성 지류(branch)에서 이러한 상향조절의 종점인 SPHK1는 선행문헌에 보고된 바와 같이 지방세포 분화의 후반 단계에서 상향조절되었다(Hashimoto T, Igarashi J, Kosaka H., J Lipid Res, 2009, 50, 602-610). 이러한 결과는 지방조직에서의 스핑고리피드 신생합성은 비만 조건 하에서 지방세포가 분화하는 동안에 전사시에 상향조절됨을 나타낸다. SPTLC2, SPHK1, aCer1 / 2/3, AcCer (acid ceramidase) and nCer (neutral ceramidase) were up-regulated in a time-dependent manner during the differentiation of 3T3-L1 cells (Fig. 1C, E and Fig. 2). On the other hand, the SPTLC2 protein level was decreased and the SPTLC1 protein level was not changed (Fig. 1D). SPHKl, the endpoint of this upregulation in the sphingolip feed biosynthetic branch, was upregulated in the later stages of adipocyte differentiation as reported in the prior art (Hashimoto T, Igarashi J, Kosaka H., J Lipid Res, 2009 , 50, 602-610). These results indicate that sphingolipid neogenesis in adipose tissue is upregulated during transcription during adipocyte differentiation under obesity conditions.

(2)(2) SPTLC2의SPTLC2 억제는 지질생성을 감소시키고 지방세포화유전자를 하향조절한다.  Inhibition reduces lipogenesis and downregulates lipogenic genes.

비만지방조직 및 분화된 3T3-L1 세포에서 SPTLC2가 전사시에 상향조절되었다는 관찰은, WAT 분화에 스핑고리피드 신생합성이 필요할 수도 있다는 것을 추정하게 한다. 이 가설을 확인하기 위해서, 본 발명의 발명자는 a SPTLC2 shRNA(short hairpin RNA)를 갖는 렌티바이러스(lentivirus)를 제작하였고, SPTLC2 발현을 억제하기 위해서 3T3-L1 세포를 감염시켰다. shRNA(short hairpin RNA) 중재 SPTLC2 하향조절은 mRNA와 단백질을 측정하여 확인하였다(도 3A, B). 분화하는 동안, SPTLC2 발현이 억제된 3T3-L1 세포는 대조군 3T3-L1 세포보다 적은 지방을 축적했다(도 3C). Observations that SPTLC2 was upregulated at transcription in obese adipose tissue and differentiated 3T3-L1 cells suggests that sprint cyclic neogenesis may be required for WAT differentiation. To confirm this hypothesis, the inventors of the present invention prepared a lentivirus having a SPTLC2 shRNA (short hairpin RNA) and infected 3T3-L1 cells to suppress SPTLC2 expression. shRNA (short hairpin RNA) mediated down-regulation of SPTLC2 was confirmed by measuring mRNA and protein (Fig. 3A, B). During differentiation, 3T3-L1 cells with suppressed SPTLC2 expression accumulated less fat than control 3T3-L1 cells (Fig. 3C).

다음으로, 본 발명의 발명자는 지방생성 동안의 지방세포화 인자(adipogenic factors)의 mRNA 레벨을 측정했다. 비록 SPHK1 레벨에서 거의 변화가 없었지만, 지방세포화유전자 SPHK2, aP2, C/EBPα, PPARγ, PEPCK, SREBP-1c 및 GLUT4는 하향조절되었고(도 3D, E), 이것은 교란된 지방생성의 원인일 수 있다. 이러한 결과는 스핑고리피드 신생합성이 비만유전자의 발현을 조절함으로써 3T3-L1 지방세포의 분화에서 중요한 역할을 한다는 것을 나타낸다.Next, the inventors of the present invention measured the mRNA levels of adipogenic factors during fat production. Although there was little change at the SPHK1 level, the adipocyte saturation genes SPHK2, aP2, C / EBPa, PPARy, PEPCK, SREBP-lc and GLUT4 were downregulated (Fig. 3D, E) . These results indicate that sphingolipid neogenesis plays an important role in the differentiation of 3T3-L1 adipocytes by regulating the expression of obesity genes.

(3)(3) 지방세포 특이적인 Adipocyte-specific SPTLC2SPTLC2 결핍은  Deficiency 지방이상증을Adipose 일으킨다.  Cause.

다음으로, 본 발명의 발명자는 지방세포 특이적인 SPTLC2 결핍(aSPTLC2 KO)이 마우스에서 지방조직의 발달을 변화시키는지 여부를 조사하였다. 본 발명의 발명자는 플록스트(floxed) SPTLC2 마우스를 아디포넥틴-Cre 이식유전자를 가진 마우스와 교배함으로써, aSPTLC2 KO 마우스를 만들었다. aSPTLC2 KO 마우스로부터 유래된 다수 조직에서 SPTLC2 발현을 검사했을 때, 부고환 및 피하 WAT에서 SPTLC2는 검출되지 않았다(도 4A). Next, the inventors of the present invention investigated whether adipocyte specific SPTLC2 deficiency (aSPTLC2 KO) changes the development of adipose tissue in mice. The inventors of the present invention produced an aSPTLC2 KO mouse by crossing a floxed SPTLC2 mouse with a mouse having the adiponectin-Cre transplantation gene. When SPTLC2 expression was examined in multiple tissues derived from aSPTLC2 KO mice, SPTLC2 was not detected in epididymal and subcutaneous WAT (FIG. 4A).

특히, 정상 음식식이(NCD)를 섭식시킨 수컷 aSPTLC2 KO 마우스에서 지방 패드는 발견되지 않았고, 8주 동안 45% 고지방식이(HFD)를 섭식시킨 경우에도, 플록스트 마우스의 부고환 및 피하지방의 패드와 비교했을 때, 수컷 aSPTLC2 KO 마우스에서 부고환 및 피하지방의 패드는 거의 관찰되지 않았다(도 4B). In particular, no fat pads were found in male aSPTLC2 KO mice fed a normal diet (NCD), and even when feeding 45% high fat diet (HFD) for 8 weeks, the epididymal and subcutaneous fat pad , Pads of epididymal and subcutaneous fat were scarcely observed in male aSPTLC2 KO mice (Fig. 4B).

aSPTLC2 KO 마우스의 부고환의 WAT의 지방세포 크기는 플록스트 마우스의 것보다 더 작았다(도 4C). The fat cell size of the epididymal WAT of aSPTLC2 KO mice was smaller than that of plucked mice (FIG. 4C).

또한, aSPTCL2 KO 마우스의 부고환의 WAT에서 심한 마크로파지 침윤이 있었다. aSPTCL2 KO 마우스의 경우 WAT에서 SPHK2는 상향조절되는 반면에, SPTLC2-억제된 3T3-L1 세포에서 발견되는 것처럼, SPHK1, aP2, C/EBPα, PPARγ, PEPCK 및 SREBP-1c를 포함하는 대부분의 지방세포화유전자는 하향조절되거나 검출되지 않았다(도 4D). There was also severe macrophage infiltration in the epididymal WAT of aSPTCL2 KO mice. SPHK2 was up-regulated in WAT for aSPTCL2 KO mice, while most lipo-saturation, including SPHK1, aP2, C / EBPa, PPARy, PEPCK and SREBP-1c, as found in SPTLC2-inhibited 3T3- The gene was not down-regulated or detected (Figure 4D).

WAT 스핑고리피드 프로파일에서 aSPTLC2 결핍의 효과를 검사한 결과, C18:1 스핑코마이엘린(SM)은 감소된 반면에, C16:0 와 C24:1 세라마이드는 상승한 것으로 확인하였다(도 4E). Examination of the effect of aSPTLC2 deficiency in the WAT sphingolip feed profile revealed that the C18: 1 sphingomyelin (SM) was reduced while the C16: 0 and C24: 1 ceramides were elevated (Fig. 4E).

또한, 스핑가닌(SA) 및 스핑고신(SO)은 상승된 반면에, S1P는 급격히 감소하였다(도 4F). 또한, C18:1/C18:1 DAG(diacylglycerol)에서의 작은 증가를 제외하고는 DAG 레벨의 변화는 없었다. 혈장 스핑고리피드 프로파일은 aSPTLC2 결핍에 의해서 의미있게 변하지 않았고, 고지방식이(HFD)를 섭식한 플록스트 마우스에서만 상승된 세라마이드, 다이하이드로세라마이드 및 SM이 나타났다(도 5). 이러한 결과는, 스핑고리피드 신생합성의 결함은 지방 스핑고리피드 조성을 변화시키고 지방 조직의 발달을 막는다는 것을 시사한다.In addition, while sphinganine (SA) and sphingosine (SO) were elevated, S1P decreased sharply (Fig. 4F). There was also no change in DAG levels except for a small increase in C18: 1 / C18: 1 DAG (diacylglycerol). The plasma sphingolipid profile was not significantly altered by aSPTLC2 deficiency, and elevated ceramide, dihydroceramides, and SM appeared only in flocked mice fed high-fat diet (HFD) (Fig. 5). These results suggest that defects in sphingolipid neogenesis alter fat sphingolipid composition and prevent the development of adipose tissue.

(4)(4) 지방조직에 축적되지 않은 지방산은 간에 축적되고, 마우스에서 지방간이 발생한다. Fatty acids that are not accumulated in adipose tissue accumulate in the liver, and fatty acids are generated in the mouse.

aSPTLC2 KO 마우스는 확연히 감소된 지방 저장고와 아주 작은 지방조직을 가지므로, 본 발명의 발명자는 초과 지방이 간과 같은 말초조직에 재분포되었는지를 조사하였다. 고지방식이(HFD)는 플록스트 및 aSPTLC2 KO 마우스 모두에서 간에서의 지방축적을 일으킨 반면에, 정상 음식식이(NCD)를 섭식시킨 군에서는 aSPTLC2 KO 마우스의 간이 심한 지방 축적을 보였다(도 6A). Since the aSPTLC2 KO mouse has a significantly reduced fat pool and very small adipose tissue, the inventors of the present invention investigated whether the excess fat was redistributed to peripheral tissues such as the liver. High-fat diet (HFD) resulted in fat accumulation in the liver in both the plastose and aSPTLC2 KO mice, whereas in the group fed the normal food diet (NCD), the aSPTLC2 KO mice showed a high fat accumulation (Fig. 6A) .

aSPTLC2 결핍은 간 콜레스테롤 레벨을 변화시키지 않았으며, 고지방식이(HFD) 그룹이 정상 음식식이 (NCD) 그룹과 비교시 플록스트와 aSPTLC2 KO 마우스에서 간 콜레스테롤 레벨이 감소된 것으로 나타났다(도 6B). 고지방식이(HFD)를 섭식시킨 aSPTLC2 KO 마우스에서 간 TG 레벨은 변화되지 않았다는 것은 주목할 만하다(도 6B). aSPTLC2 deficiency did not alter liver cholesterol levels and high-fat diet (HFD) groups showed reduced levels of liver cholesterol in both plastost and aSPTLC2 KO mice compared to the normal diet (NCD) group (FIG. 6B). It is noteworthy that liver TG levels were not changed in aSPTLC2 KO mice fed high fat diet (HFD) (FIG. 6B).

이런 현상이 활성화된 지방 생합성 또는 억제된 FA 산화 때문인지를 결정하기 위해서, 지방 대사 유전자의 발현을 조사하였다. 그 결과, 스테롤 리스판스 엘레먼트 바인딩 단백질(sterol response element binding protein, SREBP)-1c, 지방산 생성효소(fatty acid synthase, FAS), 다이아실글리세롤 아실트랜스퍼라제(diacylglycerol acyltransferase, DGAT) 및 HMG CoA 리덕타제(HMG CoR)를 포함한 지방 합성 유전자가 정상 음식식이(NCD)를 섭식시킨 aSPTLC2 KO 마우스의 간에서 상향조절되었음을 발견했다(도 6C). 고지방식이(HFD)를 섭식시킨 aSPTLC2 KO 마우스의 간이 증가된 발현 경향을 보였다. 특히, aSPTLC2 KO 마우스의 간에서 FA-트랜스포터(FA-transporter) CD36의 급격한 상향조절은 혈장에서 간으로의 증가된 FA 흡수를 시사한다. 대조적으로, FA 산화 유전자는 aSPTLC2 KO 마우스의 간에서 크게 변화되지 않았다(그림 6D). To determine whether this phenomenon was due to activated lipid biosynthesis or inhibited FA oxidation, we examined the expression of lipid metabolism genes. As a result, sterol response element binding protein (SREBP) -1c, fatty acid synthase (FAS), diacylglycerol acyltransferase (DGAT) and HMG CoA reductase HMG CoR) was up-regulated in the liver of aSPTLC2 KO mice fed a normal diet (NCD) (Fig. 6C). Expression patterns of aSPTLC2 KO mice fed high - fat diet (HFD) were increased. In particular, the rapid upregulation of FA-transporter CD36 in the liver of aSPTLC2 KO mice suggests increased FA uptake from plasma to liver. In contrast, the FA oxidase gene was not significantly altered in the liver of aSPTLC2 KO mice (Figure 6D).

상기 마우스의 간에서 스핑고리피드 프로파일에 대한 aSPTLC2 결핍의 효과를 검사한 결과, 정상 음식식이(NCD)와 고지방식이(HFD)를 섭식시킨 aSPTLC2 KO 마우스에서 C24:0 및 C24:1 세라마이드만이 감소되었다(도 6E). 고지방식이(HFD)를 한 플록스트 및 aSPTLC2 KO 마우스 모두의 간에서 C18:0 SM은 상승되었다(도 6E). The effect of aSPTLC2 deficiency on the sphingolipid profile in the liver of the mice was tested in the aSPTLC2 KO mice fed with normal diet (NCD) and high fat diet (HFD), and only C24: 0 and C24: 1 ceramides (Fig. 6E). C18: 0 SM was elevated in the liver of both high-fat diet (HFD) and aSPTLC2 KO mice (Fig. 6E).

고지방식이(HFD)를 섭식시킨 aSPTLC2 KO 마우스의 간에서 스핑가닌(SA) 및 스핑고신(SO) 레벨은 감소되었으나, 정상 음식식이(NCD)를 섭식시킨 마우스의 간에서는 변화가 없었다(도 6F). 한편, S1P은 고지방식이(HFD)를 섭식시킨 플록스트 마우스의 간에서만 상승되었다. 정상 음식식이(NCD)를 섭식시킨 aSPTLC2 KO 마우스의 간에서 DAG 레벨은 상승하였고, 반면에 고지방식이(HFD)는 플록스트 마우스의 간에서 증가된 DAG를 발생시켰다(도 6F). The levels of sphinganine (SA) and sphingosine (SO) in the liver of aSPTLC2 KO mice fed high fat diet (HFD) decreased, but there was no change in liver of mice fed a normal diet (NCD) 6F). On the other hand, S1P was elevated only in the liver of flocked mice fed high-fat diet (HFD). DAG levels were elevated in the liver of aSPTLC2 KO mice fed a normal food diet (NCD), whereas high fat diet (HFD) produced increased DAG in the liver of plucked mice (FIG. 6F).

그에 반해서, 골격근에서의 TG 생합성 유전자의 발현은 aSPTLC2 결핍에 의해서 변화되지 않았다(도 7). 이러한 결과는 지방조직에서의 스핑고리피드 신생합성의 결함 및 결과적으로 나타나는 지방이상증은 간의 TG 생합성을 활성화시키고 지방간을 일으킨다는 것을 시사한다. In contrast, the expression of the TG biosynthesis gene in skeletal muscle was not altered by aSPTLC2 deficiency (Fig. 7). These results suggest that defects in sphingolipid neogenesis in adipose tissue and consequent lipodystrophy activate TG biosynthesis in the liver and cause fatty liver.

(5)(5) aSPTLC2aSPTLC2 KO마우스는  The KO mouse 고혈당증을Hyperglycemia 유발한다.  cause.

aSPTLC2 KO 마우스의 몸무게는 뚜렷한 변화가 나타나지 않은 반면에, aSPTLC2 KO 마우스의 혈장 포도당 레벨은 식이와 상관없이 플록스트 마우스와 비교시 상승되었다(표 2). The aSPTLC2 KO mice did not show any significant change in body weight, whereas the plasma glucose levels of aSPTLC2 KO mice were elevated compared to the flocked mice regardless of diet (Table 2).

NCDNCD HFDHFD SPT Flox(n=6)SPT Flox (n = 6) aSPTLC2 KO(n=6)aSPTLC2 KO (n = 6) SPT Flox(n=5)SPT Flox (n = 5) aSPTLC2 KO(n=6)aSPTLC2 KO (n = 6) Body weight (g)Body weight (g) 24.1 ± 0.224.1 ± 0.2 25.6 ± 0.5* 25.6 ± 0.5 * 26.2 ± 0.6# 26.2 ± 0.6 # 26.2 ± 0.526.2 ± 0.5 Plasma glucose (mg/dL)Plasma glucose (mg / dL) 100.6 ± 2.7100.6 ± 2.7 152.7 ± 7.3* 152.7 ± 7.3 * 95.8 ± 9.595.8 ± 9.5 145.6 ± 11.8* 145.6 ± 11.8 * ALT (U/L)ALT (U / L) 38.8 ± 10.238.8 ± 10.2 19.3 ± 7.419.3 ± 7.4 33.9 ± 7.733.9 ± 7.7 92.3 ± 26.8* 92.3 ± 26.8 * AST (U/L)AST (U / L) 156.1 ± 52.1156.1 ± 52.1 141.9 ± 32.4141.9 ± 32.4 135.3 ± 31.4135.3 ± 31.4 206 ± 57.9206 ± 57.9 T-CHO (mg/dl)T-CHO (mg / dl) 95.8 ± 4.395.8 ± 4.3 117.3 ± 4.4* 117.3 ± 4.4 * 170.7 ± 18.9170.7 ± 18.9 156.1 ± 28.5156.1 ± 28.5 TG (mg/dl)TG (mg / dl) 117.8 ± 11.2117.8 ± 11.2 115.7 ± 13.6115.7 ± 13.6 86.4 ± 9.586.4 ± 9.5 88.2 ± 18.488.2 ± 18.4 HDL (mg/dl)HDL (mg / dl) 64.6 ± 3.264.6 ± 3.2 81.4 ± 2.9* 81.4 ± 2.9 * 113.7 ± 12.8113.7 ± 12.8 103.6 ± 15.4103.6 ± 15.4 LDL (mg/dl)LDL (mg / dl) 12.1 ± 0.812.1 ± 0.8 12.3 ± 0.812.3 ± 0.8 23.5 ± 3.623.5 ± 3.6 20.5 ± 5.720.5 ± 5.7 NEFA (mEq/L)NEFA (mEq / L) 12.8 ± 0.512.8 ± 0.5 9.8 ± 1.0* 9.8 ± 1.0 * 10.5 ± 1.310.5 ± 1.3 9.5 ± 0.3* 9.5 ± 0.3 * β-OH butyrate (μM)β-OH butyrate (μM) 100.6 ± 19100.6 ± 19 188.3 ± 32* 188.3 ± 32 * 102.5 ± 28102.5 ± 28 137.5 ± 10137.5 ± 10

알라닌 트랜스아미나제(Alanine transaminase, ALT) 활성은 고지방식이(HFD)를 섭식시킨 aSPTLC2 KO 마우스에서 증가하였고, 아스파르테이트 아미노트랜스퍼라제(aspartate aminotransferase, AST) 활성에는 변화가 없었다. 정상 음식식이(NCD)를 섭식시킨 aSPTLC2 KO 마우스에서 혈장 콜레스테롤 레벨은 증가하였고, 이러한 결과는 상향조절된 HMG CoR과 일치한다(도 6C).Alanine transaminase (ALT) activity was increased in aSPTLC2 KO mice fed high-fat diet (HFD) and there was no change in the activity of aspartate aminotransferase (AST). Plasma cholesterol levels were increased in aSPTLC2 KO mice fed a normal diet (NCD), which is consistent with an upregulated HMG CoR (FIG. 6C).

놀랍게도, 정상 음식식이(NCD) 또는 고지방식이(HFD)를 섭식시킨 지방이상증의 aSPTLC2 KO 마우스에서 혈장 비에스테르화된 FA(non-esterified fatty acid, NEFA) 레벨은 감소하였다(표 2). 베타-하이드록시 부틸레이트(β-hydroxybutyrate)로 대표되는 케톤체는 정상 음식식이(NCD)를 섭식시킨 aSPTLC2 KO 마우스에서만 증가하였다(표 2). 요약하면, 지방 조직에 축적되어야 하는 지방질은 증가된 CD36-중재 FA 수송(CD36-mediated FA transport) 및 활성화된 TG 생합성을 통하여 대신에 간에 축적된 것으로 추정된다. Surprisingly, plasma nonesterified fatty acid (FA) levels in aSPTLC2 KO mice with lipodystrophy fed normal diet (NCD) or high fat diet (HFD) decreased (Table 2). The ketone body, represented by beta-hydroxybutyrate, increased only in aSPTLC2 KO mice fed normal food diet (Table 2). In summary, the fat that should be accumulated in adipose tissue is presumed to have accumulated in the liver instead of through increased CD36-mediated FA transport and activated TG biosynthesis.

(6)(6) 지방이상증의Adipose aSPTLC2aSPTLC2 KO 마우스는 인슐린-저항성이다. KO mice are insulin-resistant.

혈장 포도당 레벨은 정상 음식식이(NCD) 또는 고지방식이(HFD)를 섭식시킨 aSPTLC2 KO 마우스에서 상승되었기 때문에, 지방이상증 환자에서 보고된 것처럼(Huang-Doran I, Sleigh A, Rochford JJ, O'Rahilly S, Savage DB., J Endocrinol, 2010, 207, 245-255, Savage DB., Dis Model Mech, 2009, 2, 554-562, Vernochet C, Damilano F, Mourier A, Bezy O, Mori MA, Smyth G, et al., FASEB journal, 2014, 28, 4408-4419), SPTLC2 KO-매개 지방간이 간 인슐린저항성을 일으키는지를 조사하였다. 우선, 본 발명의 발명자는 플록스트 및 aSPTLC2 KO 마우스에게 4 주 동안 60 kcal% 고지방식이(HFD)를 섭식시킨 후 체 조성을 측정했다. 고지방식이(HFD)를 섭식시킨 플록스트 마우스는 정상 음식식이(NCD)를 섭식시킨 마우스와 비교시 시간-의존적인 방식으로 몸무게가 증가했다(도 8A). Plasma glucose levels were elevated in aSPTLC2 KO mice fed either normal diet (NCD) or high fat diet (HFD), as reported in patients with lipid disorders (Huang-Doran I, Sleigh A, Rochford JJ, O'Rahilly S, Savage DB., J Endocrinol, 2010, 207, 245-255, Savage DB., Dis Model Mech, 2009, 2, 554-562, Vernochet C, Damilano F, Mouriere, Bezy O, , et al., FASEB journal, 2014, 28, 4408-4419), and whether SPTLC2 KO-mediated fatty liver causes liver insulin resistance. First, the inventors of the present invention measured the sperm composition after feeding a 60 kcal% high-fat diet (HFD) to flockst and aSPTLC2 KO mice for 4 weeks. Flocked mice fed high-fat diet (HFD) gained weight in a time-dependent manner when compared to mice fed a normal diet (NCD) (Fig. 8A).

이 기간 동안, 플록스트 및 aSPTLC2 KO 마우스에서 식이와 관련된 음식섭취는 변하지 않았다(도 9). 반면에, aSPTLC2 KO 마우스의 몸무게는, 플록스트 마우스의 몸무게보다 약간 높았지만, 고지방식이(HFD) 동안 몸무게가 변화하지 않았다. 또한, 상기 마우스의 에너지 소비를 24 시간 동안 측정하였으나 산소 소비(VO2), 이산화탄소 생성 속도(VCO2), 호흡 에너지 교환비율(RER), 에너지 소비 또는 음식섭취에서 변화가 없었다(도 10). 단, 정상 음식식이(NCD)를 섭식시킨 aSPTLC2 KO 마우스의 활동성에서만 증가가 관찰되었다. During this period, food intake associated with diets was not changed in plastock and aSPTLC2 KO mice (Fig. 9). On the other hand, the weight of aSPTLC2 KO mice was slightly higher than that of Flockst mice, but the weight did not change during high fat diet (HFD). In addition, the energy consumption of the mice was measured for 24 hours, but there was no change in oxygen consumption (VO2), carbon dioxide production rate (VCO2), respiratory energy exchange ratio (RER), energy consumption or food intake (FIG. However, an increase was observed only in the activity of aSPTLC2 KO mice fed with normal food diet (NCD).

다음으로, 본 발명의 발명자는 1H-NMR을 사용하여 지방 및 지방제외체질량(lean body mass)으로 특징지워지는 체조성을 측정했다. 플록스트 마우스는 고지방식이(HFD)를 섭식시켰을 때, 급격히 증가된 지방 양 및 감소된 지방제외체질량을 보이는 반면에, aSPTLC2 KO 마우스는 체중 및 체조성에서 변화를 보이지 않았다(도 8B). Next, the inventors of the present invention measured the body composition characterized by lean body mass using 1 H-NMR. Flocked mice showed a rapidly increased fat content and reduced fat exclusion mass when fed high fat diet (HFD), whereas aSPTLC2 KO mice showed no change in body weight and body composition (FIG. 8B).

그 후, aSPTLC2 마우스에서 인슐린저항성을 조사하기 위해서, 고인슐린혈증 정상혈당 클램프 실험을 수행했다. 고지방식이(HFD)를 섭식시킨 플록스트 마우스의 공복 혈당 레벨과 비교했을 때, aSPTLC2 KO 마우스의 공복 혈당 레벨은 상승되었다(도 11). Then, in order to examine insulin resistance in aSPTLC2 mice, a hyperinsulinemic normal blood glucose clamp experiment was performed. Fasting blood glucose levels in aSPTLC2 KO mice were elevated compared to fasting glucose levels in flocked mice fed high-fat diet (HFD) (Fig. 11).

또한, 고지방식이(HFD)를 섭식시킨 aSPTLC2 KO 마우스에서 포도당 주입 속도는 감소되었다(도 8C). aSPTLC2 KO 마우스에서 간 포도당 생성 억제는 감소되었고 간 포도당 생성은 증가했다(도 8C-D). In addition, glucose uptake rate was decreased in aSPTLC2 KO mice fed high fat diet (HFD) (Fig. 8C). In aSPTLC2 KO mice, inhibition of hepatic glucose production was decreased and hepatic glucose production was increased (Fig. 8C-D).

반면에, 포도당 흡수(glucose uptake), 당분해(glycolysis) 및 글라이코겐 합성(glycogen synthesis)에서 변화는 없었다(도 11B-D). 이러한 결과는 간-특이적인 인슐린저항성이 aSPTLC2 KO 마우스에서 일어난다는 것을 제시한다. 인슐린 신호전달체계가 변했는지를 더 조사하기 위해서, 인슐린(0.5 mg/kg)을 10 분 동안 주입했고 AKT의 인산화(phosphorylation) 정도를 측정했다. aSPTLC2 KO 마우스의 간 및 지방조직 양쪽에서 AKT의 인슐린-매개 인산화는 감소되었다(도 8E-F). On the other hand, there was no change in glucose uptake, glycolysis and glycogen synthesis (FIG. 11B-D). These results suggest that liver-specific insulin resistance occurs in aSPTLC2 KO mice. To further investigate changes in the insulin signaling system, insulin (0.5 mg / kg) was injected for 10 minutes and the degree of phosphorylation of AKT was measured. Insulin-mediated phosphorylation of AKT was reduced in both liver and adipose tissue of aSPTLC2 KO mice (Fig. 8E-F).

위의 결과를 종합적으로 정리하면, aSPTLC2 KO 마우스에서 총 체내 인슐린저항성이 증가된 것은 지방간에 수반된 간 인슐린저항성 때문으로 추정된다. Taken together, these results suggest that increased insulin resistance in the aSPTLC2 KO mice is due to liver insulin resistance associated with fatty liver.

(7)(7) aSPTLC2aSPTLC2 결핍은  Deficiency S1PS1P 레벨을 감소시키고  Reduce the level S1PS1P 1One 수용체를 하향조절한다. The receptor is down-regulated.

본 발명의 발명자는 감소된 지방 S1P 레벨이 aSPTLC2 KO 마우스에서 나타난 지방이상증과 연관되었는지 알아보고자 했다(도 4F). The inventors of the present invention sought to determine whether reduced fat S1P levels were associated with lipid abnormalities that appeared in aSPTLC2 KO mice (Fig. 4F).

선행문헌에 발표된 대로(Lee SY, Hong IK, Kim BR, Shim SM, Sung Lee J, Lee HY, et al., Hepatology, 2015, 62, 135-146), 플록스트 및 aSPTLC2 KO 마우스에 60% 고지방식이(HFD)를 2 주 동안 섭식시킨 후 SPHK2 아데노바이러스를 주사하여 추가 2주 동안 혈장 S1P를 증가시키고 체 조성을 측정하였다. GFP 대조군 아데노바이러스를 주입한 마우스와 비교했을 때, SPHK2 아데노바이러스를 주입한 플록스트와 aSPTLC2 KO 마우스의 지방세포에서 세포 크기가 증가하였다(도 12A). As described in the prior art, 60% of the mice were injected into the plastost and aSPTLC2 KO mice, as described in the previous literature (Lee SY, Hong IK, Kim BR, Shim SM, Sung Lee J, Lee HY, et al., Hepatology, 2015, 62, 135-146) High - fat diet (HFD) was fed for 2 weeks and SPHK2 adenovirus was injected to increase plasma S1P and sperm composition for an additional 2 weeks. Cell size increased in adipocytes of SPHK2 adenovirus-injected plastose and aSPTLC2 KO mice as compared to mice injected with GFP-control adenovirus (Figure 12A).

aSPTLC2 KO 마우스에서의 지방 조직량은 GFP 또는 SPHK2 아데노바이러스에 의해서 변하지 않은 반면에, SPHK2 아데노바이러스를 주입한 플록스트 마우스에서 지방 조직이 현저하게 증가하였다(도 12B). 이러한 결과는 세포외(extracellular) S1P가 지방세포 비대에서 어떠한 역할을 함을 나타낸다. Fat tissue mass in aSPTLC2 KO mice was not altered by GFP or SPHK2 adenovirus, whereas fat tissue was significantly increased in SPHK2 adenovirus-infected plucked mice (FIG. 12B). These results indicate that extracellular S1P plays a role in adipocyte hypertrophy.

다음으로 지방 조직에서의 S1P 수용체의 발현을 측정했다. 그 결과, aSPTLC2 KO WAT에서 S1P1이 급격하게 하향조절되었고 S1P2 및 S1P3는 상향조절되었음을 발견하였다(도 12C). Next, expression of S1P receptor in adipose tissue was measured. As a result, it was found that S1P 1 was abruptly down-regulated and S1P 2 and S1P 3 were up-regulated in aSPTLC2 KO WAT (Fig. 12C).

SPTLC2 shRNA로 처리된 3T3-L1 세포에서 S1P1 는 현저히 하향조절되었고, 반면에 S1P2 또는 S1P3의 발현에서는 특징적인 변화가 없었다(도 12D-F). 따라서, 이런 결과들은 S1P1 수용체-매개 S1P 신호전달체계는 지방세포의 증식 또는 분화에서 중요한 역할을 한다는 것을 시사한다.It was S1P 1 is significantly down-regulation in the 3T3-L1 cells treated with SPTLC2 shRNA, on the other hand, the S1P 2 or S1P 3 expression was not characteristic changes (Figure 12D-F). Thus, these results suggest that the S1P 1 receptor-mediated S1P signaling pathway plays an important role in the proliferation or differentiation of adipocytes.

(8)(8) S1P는S1P PPARPPAR (( peroxisomeperoxisome proliferatorproliferator -activated receptor)γ의 활성화를 통해서, 전-지방세포(pre--activated receptor) Through γ activation, pre-adipocytes (pre- adipocytesadipocytes )의 증식 및 지방생성을 유도한다. ) And induces fat production.

증가된 혈장 S1P가 지방세포 분화를 증가시킨다는 선행문헌의 보고는(Hashimoto T, Igarashi J, Kosaka H., J Lipid Res, 2009, 50, 602-610) S1P가 지방세포 증식 또는 지질생성을 증가시킬 수 있음을 시사한다. 이것을 조사하기 위해서, 3T3-L1 세포를 S1P로 처리하였고 그들의 증식을 조사하였다. S1P 레벨이 증가함에 따라, 이동성 전-지방세포(pre-adipocytes) 3T3-L1 세포는 용량-의존적인 방식으로 증가했다(도 13A). A previous report that increased plasma S1P increased adipocyte differentiation (Hashimoto T, Igarashi J, Kosaka H., J Lipid Res, 2009, 50, 602-610) suggests that S1P increases adipocyte proliferation or lipogenesis . To investigate this, 3T3-L1 cells were treated with S1P and their proliferation was examined. As S1P levels were increased, pre-adipocytes 3T3-L1 cells increased in a dose-dependent manner (Fig. 13A).

S1P 처리에 따른 감소된 간극은 S1P가 지방세포를 증식시키는 인자라는 것을 제시한다(도 13B). 또한, 세포 생존에서의 S1P 의존적 증가는 S1P가 세포 증식을 촉진시킨다는 것을 나타낸다(도 13C). The reduced clearance following S1P treatment suggests that S1P is a proliferative factor of adipocytes (Fig. 13B). In addition, S1P-dependent increase in cell viability indicates that S1P promotes cell proliferation (Fig. 13C).

최근 보고는 혈관상피세포(endothelial cells)에서 S1P 수용체에 독립적으로, S1P가 퍼옥시좀 프로리퍼레이터-활성화 수용체(PPAR, peroxisome proliferator-activated receptor) γ에 대한 리간드라는 것을 암시하기 때문에(Parham KA, Zebol JR, Tooley KL, Sun WY, Moldenhauer LM, Cockshell MP, et al., FASEB journal, 2015, 29, 3638-3653), 본 발명의 발명자는 6 시간동안 S1P 처리 후, 알려진 PPARγ 작용제(agonist)인 로지글리타존(rosiglitazone)을 양성 대조군으로 사용하여, 퍼옥시좀 프로리퍼레이터-활성화 수용체 반응 엘레먼트(PPRE, peroxisome proliferator-activated receptor response element) 리포터 활성을 측정했다. 그 결과, S1P 처리는 로지글리타존을 처리해서 생성된 활성 레벨과 유사한 수준까지 PPRE-루시페라제 리포터(PPRE-luciferase reporter) 활성을 증가시키는 것으로 나타났다(도 13D). 이러한 결과는 지방세포 증식 및 지방생성은 S1P에 의해 조절된다는 것을 제시한다.A recent report suggests that S1P is a ligand for the peroxisome proliferator-activated receptor (PPAR) gamma, independently of the S1P receptor in endothelial cells (Parham KA, The inventors of the present invention have found that after the S1P treatment for 6 hours, the known PPARgamma agonist (Zebol JR, Tooley KL, Sun WY, Moldenhauer LM, Cockshell MP, et al., FASEB journal, 2015, 29, 3638-3653) The activity of the peroxisome proliferator-activated receptor response element (PPRE) reporter was measured using rosiglitazone as a positive control. As a result, S1P treatment increased PPRE-luciferase reporter activity to a level similar to the activity level generated by treatment with rosiglitazone (Fig. 13D). These results suggest that adipocyte proliferation and lipogenesis are regulated by S1P.

3.3. 토의discussion

스핑고리피드는 세포증식 및 분화에서 중요한 조절인자(regulators)이고, 스핑고리피드의 대사 조절장애는 고혈압, 고혈당증 및 이상지질혈증을 포함하는 주요한 대사 질환 및 심혈관 질환을 발생시킨다. 스핑고리피드 신생합성의 억제는 비만-연관 인슐린 저항성 및 WAT 분화를 개선하는 것으로 보고되었다.Sphingolipids are important regulators in cell proliferation and differentiation, and metabolic dysregulation of sphingolipids results in major metabolic diseases and cardiovascular diseases, including hypertension, hyperglycemia and dyslipidemia. Inhibition of sphingolipid neogenesis has been reported to improve obesity-associated insulin resistance and WAT differentiation.

이번 실험에서, 스핑고리피드 생합성 및 지방세포의 증식/분화 간의 연결을 설명하고자 했고, 하기 사항이 확인되었다: 1) 지방세포가 분화하는 동안, 스핑고리피드 생합성 흐름은 S1P 생합성 쪽으로 이동한다; 2) 스핑고리피드 신생합성의 억제는 지방세포 분화를 억제한다; 3) 지방세포-특이적 SPTLC2 결핍은 지방이상증, 지방간 및 전신성 인슐린저항성을 일으킨다; 4) S1P 와 S1P1 수용체는 지방세포의 증식 및 분화와 연관되어 있다. 이러한 실험은 간 및 지방 조직 사이의 FA/TG 저장에 대한 상호간섭을 설명해주고, 지방 형성에서 스핑고리피드 대사체가 중요한 역할을 함을 나타낸다. In this experiment, we attempted to explain the link between sphingolipid biosynthesis and adipocyte proliferation / differentiation, and the following were identified: 1) during adipocyte differentiation, the sphingolipid biosynthetic flow shifts towards S1P biosynthesis; 2) inhibition of sphingolipid neogenesis inhibits adipocyte differentiation; 3) Adipocyte-specific SPTLC2 deficiency causes lipodystrophy, fatty liver and systemic insulin resistance; 4) S1P and S1P 1 Receptors are associated with proliferation and differentiation of adipocytes. These experiments explain the interferences to FA / TG storage between liver and adipose tissue and indicate that sphingolipid metabolites play an important role in lipogenesis.

본 발명의 발명자는 고지방식이(HFD)를 섭식시킨 마우스의 지방조직에서는 SPTLC2 및 SPHK1의 발현이 증가됨을 발견했다. 고지방식이(HFD)로 표현되는 영양과다는 지방조직에서 증가된 지방의 저장 및 지방생성 인자인 SPHK1의 유도를 가져왔다. 고지방식이(HFD)를 섭식시킨 마우스에서 3T3-L1 세포가 분화하는 동안, SPT 효소의 촉매성 단위체인 SPTLC2, DES1 및 몇몇 세라마이드들이 상향조절된다는 것은 총 스핑고리피드 생합성 흐름이 S1P를 생성하는 쪽으로 이동함을 의미한다. 흥미롭게도, SPTLC2 mRNA 및 단백질의 발현은 지방생성이 일어나는 동안에 일치하지 않았다. 이것은 아마도 증가된 단백질 분해 및 지방세포에서 스핑고리피드 풀(pool)을 보충하는 보상적 메카니즘 때문일 것으로 추정되나, 현재까지 주된 이유는 불명확하다.The inventors of the present invention have found that expression of SPTLC2 and SPHK1 is increased in adipose tissue of mice fed high-fat diet (HFD). Nutritional excess, expressed as high fat diet (HFD), resulted in increased fat storage in adipose tissue and induction of SPHK1, a lipogenesis factor. During the differentiation of 3T3-L1 cells in mice fed high-fat diet (HFD), the upregulation of the catalytic units SPTLC2, DES1, and some ceramides of the SPT enzymes, suggests that the total sphingolipid biosynthetic flow is directed towards producing S1P It means to move. Interestingly, the expression of SPTLC2 mRNA and protein did not coincide during fat production. This is presumably due to increased proteolysis and a compensatory mechanism to supplement the sphingolip pool in adipocytes, but the main reason for this to date is unclear.

본 발명의 발명자는 shRNA에 의한 SPTLC2의 유전자적 억제는 TG 합성을 위한 FA 가용성 증가로 인한, 3T3-L1 세포에서의 지방 저장을 증가시킬 것으로 기대했다. 그러나 놀랍게도, 지방 축적 및 비만유전자의 발현은 유의하게 감소된 것으로 나타났다. DES1를 억제하여 스핑고리피드 신생합성을 억제하는 것은 교란된 지방 축적 및 비만유전자의 억제에 이르게 된다는 것이 선행기술문헌에 보고된 바 있다(Barbarroja N, Rodriguez-Cuenca S, Nygren H, Camargo A, Pirraco A, Relat J, et al., Diabetes, 2015, 64, 1180-1192). 이런 결과는 스핑고리피드 조성에 대한 조절은 구조적인 생합성적 역할보다는 신호전달체계 분자로서 제어적 역할을 함을 의미한다. The inventors of the present invention anticipated that genetic suppression of SPTLC2 by shRNA would increase fat storage in 3T3-L1 cells due to increased FA solubility for TG synthesis. Surprisingly, however, the expression of fat accumulation and obesity genes was significantly reduced. It has been reported in the prior art literature that suppressing DES1 and inhibiting sphingolipid neogenesis leads to disturbed fat accumulation and inhibition of obesity genes (Barbarroja N, Rodriguez-Cuenca S, Nygren H, Camargo A, Pirraco A, Relat J, et al., Diabetes, 2015, 64, 1180-1192). These results suggest that the regulation of sphingolipid composition plays a role as a signaling molecule rather than a structural biosynthetic role.

3T3-L1 결과와 일치하게도, aSPTLC2 KO 마우스는 심한 지방이상증의 표현형을 나타냈다. 정상 음식식이(NCD)를 섭식시킨 aSPTLC2 KO 마우스에서 지방 조직은 거의 발견되지 않는 반면에, 고지방식이(HFD)는 aSPTLC2 KO 마우스에서 지방 조직에서의 소량 증가를 가져왔다. aSPTLC2 KO 마우스의 지방 조직에서, SPHK1와 다른 비만유전자의 발현은 뚜렷이 감소되었고 지방조직의 세포 크기는 감소되었다(도 4). 특히, aSPTLC2 KO 지방조직에서는 스핑고리피드 생합성 경로가 결핍된 상태에서도, 스핑고신(SO)과 스핑가닌(SA)을 포함하는 세라마이드와 스핑고이드 염기가 증가된 것으로 나타났다. 이것은 아마도 혈액순환 또는 다른 온전한 세포로부터의 공급 때문일 것이며, 또한 교란된 지방세포 증식 및 분화를 회복하기에는 불충분하지만, SPHK2에 대한 보상적 상향조절 때문일 것이다. 반면에, aSPTLC2 KO 마우스의 WAT 총 양은 스핑고리피드 생합성 체계가 온전한지, 또한 전신적 지방 풀(pool)에 기여할 수 있는지를 결정하기에는 너무 작다.Consistent with the results of 3T3-L1, aSPTLC2 KO mice exhibited severe lipodystrophic phenotypes. High fat diet (HFD) resulted in small increases in adipose tissue in aSPTLC2 KO mice, whereas fat tissue was rarely found in aSPTLC2 KO mice fed a normal food diet (NCD). In adipose tissue of aSPTLC2 KO mice, the expression of SPHK1 and other obese genes was markedly decreased and the adipose tissue cell size was reduced (FIG. 4). In particular, the aSPTLC2 KO adipose tissue showed increased levels of ceramide and sphingoid bases, including sphingosine (SO) and sphinganine (SA), even in the absence of the sphingolipid biosynthetic pathway. This may be due to blood circulation or supply from other intact cells, and is also insufficient to restore disturbed adipocyte proliferation and differentiation, but may be due to compensatory upregulation of SPHK2. On the other hand, the total amount of WAT in aSPTLC2 KO mice is too small to determine if the sphingolipid biosynthetic system is intact and can contribute to the systemic fat pool.

지방 조직이 결핍된 상태인 지방이상증은 국소화되거나, 부분적이거나, 전반적인 양상으로 나타날 수 있다. 일반적으로, 지방이상증 환자에서 지방은 말초기관으로 재분포된다. 이러한 이소성 지방은 인슐린저항성, 지방간 및 고중성지방증(hypertriglyceridemia)과 같은 대사 기능장애의 주요 원인이다. 이러한 보고와 일치하게도, aSPTLC2 KO 마우스는 간으로의 지방 재분포를 나타낸다. 정상 음식식이(NCD)를 섭식시킨 경우에도, 상향조절된 CD36를 통해서, aSPTLC2 KO 마우스의 간에서 지방간이 발생했다. 놀랍게도, 이 경우 혈장 TG와 NEFA(non-esterified fatty acid) 레벨은 변화하지 않았다. 이것은 아마도 상향조절된 CD36에 의해 간의 FA 흡수가 증가되었기 때문이며, 이것은 혈액순환에서 항상성의 유지를 가져온다. 간에서, 수송된 FA는 TG 합성에 이용되며, TG 생합성 체계는 전사적으로 활성화된다는 것이 밝혀졌다. aSPTLC2 KO 마우스 또한 지방이상증의 또 다른 특징인 고혈당증을 보였다. 이것은 주로 증가된 간 포도당 생성 및 간 억제에 대한 인슐린 작용의 억제 때문이다. 이것은 간에서 상승되지 않았던 세라마이드 때문이 아니다. 반면에, 상승된 간 DAG(diacylglycerol)는 아마도 교란된 인슐린 신호전달체계에 기여했을 것이다.Fatty dystrophy, which is a deficiency of adipose tissue, can be localized, partial, or generalized. Generally, in patients with lipodystrophy, fat is redistributed to the peripheral organs. These ectopic fats are a major cause of metabolic dysfunctions such as insulin resistance, fatty liver and hypertriglyceridemia. Consistent with these reports, aSPTLC2 KO mice show lipid redistribution in the liver. Even when fed a normal food diet (NCD), fatty liver was developed in the liver of aSPTLC2 KO mice through upregulated CD36. Surprisingly, in this case, plasma TG and non-esterified fatty acid (NEFA) levels did not change. This is probably because of increased FA absorption in the liver by up-regulated CD36, which leads to maintenance of homeostasis in the blood circulation. In the liver, FAs transported are used for TG synthesis, and the TG biosynthetic system is activated throughout the enterprise. aSPTLC2 KO mice also showed hyperglycemia, another characteristic of lipodystrophy. This is mainly due to increased hepatic glucose production and inhibition of insulin action on liver inhibition. This is not due to ceramide that has not been elevated in the liver. On the other hand, elevated liver DAG (diacylglycerol) probably contributed to the disturbed insulin signaling system.

aSPTLC2 KO 마우스에 의해 나타나는 지방이상증의 표현형은 선천적 일반적 지방이상증(congenital generalized lipodystrophy, CGL)과 유사하다. 선천적 일반적 지방이상증의 가장 흔한 원인은 포스파티드 산(phosphatidic acid)을 합성하고 TG 합성에 관련된 1-아실글리세롤-3-포스페이트 O-아실트랜스퍼라제 2(1-acylglycerol-3-phosphate O-acyltransferase 2, AGPAT2)에서의 돌연변이이다. 특히, PPARγ에서의 이형접합성 돌연변이는 가족성 부분적 지방이상증(familial partial lipodystrophy)을 가진 환자들에서 발견되어 왔고, 이것은 아마도 지방세포 분화를 교란시킬 것이다. 최근에, Parhan 등은 S1P가 인간 혈관상피세포(endothelial cells)에서 PPARγ에 대한 리간드라고 보고하였다(Parham KA, Zebol JR, Tooley KL, Sun WY, Moldenhauer LM, Cockshell MP, et al., FASEB journal, 2015;29:3638-3653). The phenotype of lipodystrophy presented by aSPTLC2 KO mice is similar to that of congenital generalized lipodystrophy (CGL). The most common cause of congenital generalized dyslipidemia is the synthesis of phosphatidic acid which is involved in the synthesis of 1-acylglycerol-3-phosphate O-acyltransferase 2 , AGPAT2). In particular, heterozygous mutations in PPARγ have been found in patients with familial partial lipodystrophy, which will likely disturb adipocyte differentiation. Recently, Parhan et al. Reported that S1P is a ligand for PPARγ in human endothelial cells (Parham KA, Zebol JR, Tooley KL, Sun WY, Moldenhauer LM, Cockshell MP, et al., FASEB journal, 2015; 29: 3638-3653).

본 발명의 발명자는 S1P 매개 PPARγ 활성화를 확인하였고, 따라서, aSPTLC2 결핍의 결과로 나타나는 S1P 고갈은 부분적으로 PPARγ 활성화를 방해할 것이고, 지방세포 분화의 억제로 이어질 것이다. 더욱이, S1P 수용체는 지방세포의 증식 및 분화에 독립적으로 관련되어 있다. 혈장 S1P 레벨이 간에서의 SPHK2 아데노바이러스성 과발현에 의해서 상승되었을 때, 플록스트와 aSPTLC2 KO 마우스 모두는 지방세포 비대를 보였다(도 12A). 반면에, 증가된 지방 조직 양은 aSPTLC2 KO 마우스가 아닌 단지 플록스트 마우스에서만 발견되었다. 이에 대한 정확한 이유는 현재 확실하지 않다. 기저 S1P 수용체 발현의 유지는 필수적일 수 있으며, 혈액순환으로부터의 S1P 보충은 aSPTLC2 KO 마우스에서의 지방이상증 표현형을 회복하는데에 부적절할 수 있다. 이와 일치하게, 분화하는 동안의 SPTLC2-억제된 3T3-L1 지방세포에서, 단지 S1P1 수용체만이 유전자 발현 감소하였음을 발견했다. 최근에, S1P1 /3 수용체에 대한 약리학적 억제가 지방세포 증식을 억제한다는 보고는 지방 형성에 S1P1 수용체가 관련되었음을 제시한다. 이번 결과에서는 S1P가 3T3-L1 지방세포의 증식이 용량 의존적 방식으로 활성화된다는 것이 확인되었다. The inventors of the present invention have confirmed S1P-mediated PPARgamma activation and thus S1P depletion resulting from aSPTLC2 deficiency will partly interfere with PPARgamma activation and lead to inhibition of adipocyte differentiation. Furthermore, S1P receptors are independently involved in the proliferation and differentiation of adipocytes. When plasma S1P levels were elevated by SPHK2 adenoviral overexpression in the liver, both plastock and aSPTLC2 KO mice showed adipocyte hypertrophy (Fig. 12A). On the other hand, the increased amount of adipose tissue was found only in aplock mice, but not in aSPTLC2 KO mice. The exact reason for this is uncertain at this time. Maintenance of basal S1P receptor expression may be essential and S1P supplementation from blood circulation may be inadequate for restoring the dyslipidemic phenotype in aSPTLC2 KO mice. SPTLC2- in fat cells inhibit the 3T3-L1 during the match, differentiation, these were only discovered that they have only reduced S1P 1 receptor gene expression. It proposes that recently, S1P 1/3 report that the pharmacological inhibition of the receptor inhibition of fat cell proliferation is S1P 1 receptor is involved in lipogenesis. This result confirms that S1P activates the proliferation of 3T3-L1 adipocytes in a dose-dependent manner.

종합적으로 정리하면, aSPTLC2 KO 마우스에서 관찰된 지방이상증 및 지방간은 PPARγ-매개 지방생성 및 S1P-매개 증식이라는 두가지 작용을 억제해서 나타난 복합적인 결과이다. 향후 지방세포 형성에서 S1P 수용체의 명확한 역할을 설명하기 위해서 추가적인 연구가 필요하다. Collectively, lipid disorders and fatty liver observed in aSPTLC2 KO mice are a composite result of inhibiting the two actions of PPARγ-mediated lipogenesis and S1P-mediated proliferation. Additional studies are needed to explain the apparent role of S1P receptors in adipocyte formation in the future.

본 발명의 발명자는 이전에 SPHK2의 아데노바이러스성 과발현이 FA 산화를 활성화시키고, 고지방식이(HFD)를 섭식시킨 마우스의 간에서 지방 적을 감소시킴을 보고한 바 있다(Lee SY, Hong IK, Kim BR, Shim SM, Sung Lee J, Lee HY, et al., Hepatology, 2015, 62, 135-146). S1P의 상승은 간에서의 FA 산화를 활성화시킨다. 반면에, S1P는 3T3-L1 세포 분화 동안에 SPHK1 및 SPHK2의 상향조절에 의해서 증가되며, 지방생성에 기여한다. 본 발명의 생체내 시험 결과에 의해, 간의 SPHK2 과발현의 결과로 증가된 S1P는 지방세포 비대와 증식을 활성화시킴이 확인되었다. 이러한 S1P의 서로 다른 역할은 간과 지방 조직 사이의 상호간섭을 통해서 FA/TG 분포와 이용의 균형에 기여한다. 추가적으로, S1P/S1P1 수용체 신호전달체계의 활성화는 음식 소비를 감소시키고 시상하부 POMC(pro-opiomelanocortin)에서 에너지 소비를 증가시키는 것으로 보고되었다. 비록 작용기작은 간, 지방 조직 및 시상하부에서 다를 수 있더라도, 이러한 보고는 S1P 신호전달체계가 전신성 대사 조절에서 중요한 역할을 한다는 것을 제시한다. The inventors of the present invention have previously reported that adenoviral overexpression of SPHK2 activates FA oxidation and decreases lipid in the liver of mice fed high-fat diet (HFD) (Lee SY, Hong IK, Kim BR, Shim SM, Sung Lee J, Lee HY, et al., Hepatology, 2015, 62, 135-146). The elevation of S1P activates FA oxidation in the liver. On the other hand, S1P is increased by upregulation of SPHK1 and SPHK2 during 3T3-L1 cell differentiation and contributes to fat production. The in vivo test results of the present invention confirmed that S1P increased as a result of liver overexpression of SPHK2 activates adipocyte hypertrophy and proliferation. The different roles of these S1Ps contribute to the balance of FA / TG distribution and utilization through mutual interference between liver and adipose tissue. In addition, S1P / S1P 1 Activation of the receptor signaling system has been reported to reduce food consumption and increase energy expenditure in the hypothalamic POMC (pro-opiomelanocortin). Although the functional groups may vary in small liver, adipose tissue and hypothalamus, this report suggests that the S1P signaling system plays an important role in systemic metabolic regulation.

종합적으로, 본 발명의 실험결과는, 스핑고리피드 신생합성이 지방세포의 증식 및 분화에서 중요한 역할을 한다는 것을 제시한다. 스핑고리피드 신생합성의 지방세포-특이적 봉쇄는 지방생성을 억제하고 지방이상증 및 지방간을 일으킨다. 스핑고리피드 대사체 중에서, 지방 및 순환성 S1P는 수용체 매개 및 PPARγ 매개 작용을 통해서 지방세포의 증식 및 분화를 조절하는 것으로 밝혀졌다. 결론적으로, S1P가 에너지 항상성 및 간과 지방조직 사이의 기관 상호간의 상호간섭을 중재하는 신호전달체계 분자임을 제시한다.Collectively, the experimental results of the present invention suggest that sphingolipid neogenesis plays an important role in the proliferation and differentiation of adipocytes. Adipocyte-specific blockade of sphingolipid neogenesis inhibits lipogenesis and causes lipid disorders and fatty liver. Among the sphingolipid metabolites, fat and cyclic S1P have been shown to regulate proliferation and differentiation of adipocytes through receptor mediated and PPARy mediated action. In conclusion, S1P suggests that it is a signaling molecule that mediates energy homeostasis and mutual interference between the liver and adipose tissue.

Claims (6)

지방세포 특이적 SPTLC2 유전자가 결손(knock-out)된 마우스인 것을 특징으로 하는 지방이상증 동물모델.
Wherein the adipocyte-specific SPTLC2 gene is a knock-out mouse.
제 1항에 있어서, 상기 마우스가 동형접합체(homozygote)인 것을 특징으로 하는 지방이상증 동물모델.
The animal model of lipodystrophy according to claim 1, wherein the mouse is a homozygote.
제 1항에 있어서, 상기 지방이상증이 지방간, 전신성 인슐린저항성 및 고중성지방증으로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 지방이상증 동물모델.
The animal model of lipodystrophy according to claim 1, wherein the lipodystrophy is any one selected from the group consisting of fatty liver, systemic insulin resistance and hypertonicity.
(a) 플록스트(floxed) SPTLC2 마우스 및 아디포넥틴-Cre 이식유전자를 가진 마우스를 준비하는 단계;
(b) 플록스트 SPTLC2 마우스 및 아디포넥틴-Cre 이식유전자를 가진 마우스를 교배하여 2세대 마우스를 얻는 단계; 및
(c) 단계 (b)에서 얻은 상기 2세대 마우스로부터 지방세포 특이적 SPTLC2 유전자 결손 마우스를 선별하는 단계;
를 포함하는 SPTLC2 exon1이 제거된 지방이상증 동물모델의 제작방법.
(a) preparing a mouse with a floxed SPTLC2 mouse and an adiponectin-Cre transplant gene;
(b) obtaining a second generation mouse by crossing a mouse with a plastose SPTLC2 mouse and an adiponectin-Cre transplantation gene; And
(c) selecting an adipocyte-specific SPTLC2 gene-deficient mouse from the second-generation mouse obtained in step (b);
Lt; RTI ID = 0.0 &gt; exon1 &lt; / RTI &gt; removed.
(i) 제 1항 내지 제 3항 중 어느 한 항의 지방이상증 동물모델에 시료를 투여하는 단계;
(ii) 시료 투여 후 상기 동물모델의 지방이상증의 증상을 측정하는 단계; 및
(iii) 상기 시료를 투여하지 않은 대조군과 비교하여 지방이상증의 증상을 개선시키는 시료를 선별하는 단계;
를 포함하는 것을 특징으로 하는 지방이상증 예방 및 치료제의 스크리닝 방법.
(i) administering a sample to an animal model of lipodystrophy according to any one of claims 1 to 3;
(ii) measuring the symptoms of lipodystrophy of the animal model after administration of the sample; And
(iii) selecting a sample that alleviates symptoms of lipodystrophy compared to a control group to which the sample is not administered;
The method of screening for a preventive and therapeutic agent for lipodystrophy.
제 5항에 있어서, 단계 (ii)의 지방이상증의 증상이 부고환 WAT의 세라마이드, 스핑고마이엘린, 스핑고이드 염기 및 다이아실글리세롤의 함량; 혈장의 세라마이드, 다이하이드로 세라마이드, 스핑고마이엘린 및 스핑고이드염기 함량; 간 콜레스테롤 또는 간 트리글리세라이드(TG)의 함량, TG 생합성 유전자 또는 지방산 산화 유전자의 발현; 간의 세라마이드, 스핑고마이엘린, 스핑고이드 염기 및 다이아실글리세라이드의 함량; 및 골격근의 지방 합성 유전자의 발현으로 이루어진 군으로부터 선택된 어느 하나를 측정하는 것을 특징으로 하는 스크리닝 방법.6. The method according to claim 5, wherein the symptom of lipodystrophy in step (ii) is a content of ceramide, sphingomyelin, sphingoid base and diacylglycerol of epididymal WAT; Plasma ceramide, dihydroceramide, sphingomyelin and sphingoid base content; Expression of hepatic cholesterol or liver triglyceride (TG) content, TG biosynthesis gene or fatty acid oxidase gene; The content of ceramide, sphingomyelin, sphingoid base and diacylglyceride; And expression of a lipogenic gene of a skeletal muscle.
KR1020160124005A 2016-09-27 2016-09-27 Animal model for lipodystrophy, preparation method thereof, and screening method for lipodystrophy therapeutic agent using the same KR101889753B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160124005A KR101889753B1 (en) 2016-09-27 2016-09-27 Animal model for lipodystrophy, preparation method thereof, and screening method for lipodystrophy therapeutic agent using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160124005A KR101889753B1 (en) 2016-09-27 2016-09-27 Animal model for lipodystrophy, preparation method thereof, and screening method for lipodystrophy therapeutic agent using the same

Publications (2)

Publication Number Publication Date
KR20180034021A true KR20180034021A (en) 2018-04-04
KR101889753B1 KR101889753B1 (en) 2018-08-20

Family

ID=61975380

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160124005A KR101889753B1 (en) 2016-09-27 2016-09-27 Animal model for lipodystrophy, preparation method thereof, and screening method for lipodystrophy therapeutic agent using the same

Country Status (1)

Country Link
KR (1) KR101889753B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102579433B1 (en) * 2021-03-04 2023-09-15 한국생명공학연구원 Neu2-deficient mouse as an animal model of lipid metabolism dysfunction and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050182020A1 (en) 2003-11-14 2005-08-18 Worgall Tilla S. Ceramide de novo synthesis-based therapeutic and prophylactic methods, and related articles of manufacture
US20100086543A1 (en) 2007-04-02 2010-04-08 Saint Louis University Compositions and methods for treating conditions associated with ceramide biosynthesis
KR20150040305A (en) * 2012-08-08 2015-04-14 상하이 지아오통 유니버시티 Obesity aminal model and methods for making and using thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050182020A1 (en) 2003-11-14 2005-08-18 Worgall Tilla S. Ceramide de novo synthesis-based therapeutic and prophylactic methods, and related articles of manufacture
US20100086543A1 (en) 2007-04-02 2010-04-08 Saint Louis University Compositions and methods for treating conditions associated with ceramide biosynthesis
KR20150040305A (en) * 2012-08-08 2015-04-14 상하이 지아오통 유니버시티 Obesity aminal model and methods for making and using thereof

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Hanada, K. (2003) serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochem Biophys Acta. 1632, 16-30.
Journal of biological chemistry vol.290 no.49 pp.29402-29413(2015.12.04)* *
Kuller, L.H. (2006) Nutrition, lipids, and cardiovascular disease, Nutr Rev. 64, S15-26
Merrill, A.H.,Jr.(2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Bio Chem. 277, 25843-25846
Nat Med. vol.18 no.12 pp.1768-1777(2012.12.31)* *
The Journal of biological chemistry vol.284 no.39 pp.27010-27019(2009.09.25)* *
The Journal of Biological Chemistry, 280, 10284-10289.March 18, 2005. Xian-Cheng Jiang

Also Published As

Publication number Publication date
KR101889753B1 (en) 2018-08-20

Similar Documents

Publication Publication Date Title
Lee et al. Adipocyte-specific deficiency of de novo sphingolipid biosynthesis leads to lipodystrophy and insulin resistance
Suzuki et al. Interleukin-6 enhances glucose-stimulated insulin secretion from pancreatic β-cells: Potential involvement of the PLC-IP3–dependent pathway
Stienstra et al. Kupffer cells promote hepatic steatosis via interleukin‐1β–dependent suppression of peroxisome proliferator‐activated receptor α activity
Field et al. The role of ceramides in diabetes and cardiovascular disease regulation of ceramides by adipokines
Li et al. Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis
Kazantzis et al. Fatty acid transport proteins, implications in physiology and disease
Yin et al. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver
Liu et al. Deficiency of adiponectin receptor 2 reduces diet-induced insulin resistance but promotes type 2 diabetes
Wang et al. Sphingosine kinase 1 regulates adipose proinflammatory responses and insulin resistance
Mason et al. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle
Boini et al. Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet
Nishino et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets
Liu et al. Peroxisome proliferator-activated receptor β/δ activation in adult hearts facilitates mitochondrial function and cardiac performance under pressure-overload condition
Sugden et al. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs
Zhang et al. The unfolded protein response transducer IRE1α prevents ER stress‐induced hepatic steatosis
Corpeleijn et al. Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle
Badin et al. Altered skeletal muscle lipase expression and activity contribute to insulin resistance in humans
Zach‐Avec et al. Ablation of the very‐long‐chain fatty acid elongase ELOVL3 in mice leads to constrained lipid storage and resistance to diet‐induced obesity
Jeong et al. Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARα in high fat diet-induced obese mice
Huang et al. Adipocyte-derived kynurenine promotes obesity and insulin resistance by activating the AhR/STAT3/IL-6 signaling
Torretta et al. Sphingolipids in obesity and correlated co-morbidities: the contribution of gender, age and environment
Meex et al. Modulation of myocellular fat stores: lipid droplet dynamics in health and disease
Zraika et al. Effects of free fatty acids on insulin secretion in obesity
García-Martínez et al. Impact on fatty acid metabolism and differential localization of FATP1 and FAT/CD36 proteins delivered in cultured human muscle cells
Li et al. Ceramides in adipose tissue

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant