KR20180028706A - Manufacturing method of nikel/multi walled carbon nanotube composite for hydrogen storage - Google Patents

Manufacturing method of nikel/multi walled carbon nanotube composite for hydrogen storage Download PDF

Info

Publication number
KR20180028706A
KR20180028706A KR1020160116354A KR20160116354A KR20180028706A KR 20180028706 A KR20180028706 A KR 20180028706A KR 1020160116354 A KR1020160116354 A KR 1020160116354A KR 20160116354 A KR20160116354 A KR 20160116354A KR 20180028706 A KR20180028706 A KR 20180028706A
Authority
KR
South Korea
Prior art keywords
nickel
carbon nanotube
carbon nanotubes
hydrogen storage
walled carbon
Prior art date
Application number
KR1020160116354A
Other languages
Korean (ko)
Inventor
박수진
한예지
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020160116354A priority Critical patent/KR20180028706A/en
Publication of KR20180028706A publication Critical patent/KR20180028706A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/178Opening; Filling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/10Filled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

The present invention relates to a multi-walled carbon nanotube/nickel composite for hydrogen storage and a manufacturing method thereof. An object of the present invention is to improve hydrogen storage capacity of conventional multi-walled carbon nanotubes by supporting nickel nanoparticles on the multi-walled carbon nanotubes. In order to achieve the above object, the present invention provides the manufacturing method for a carbon nanotube/nickel composite for hydrogen storage, comprising: a step of treating acid to the carbon nanotubes; a step of supporting nickel on the carbon nanotubes; and a step of reducing the nickel-supported carbon nanotubes.

Description

수소저장용 다중벽 탄소나노튜브/니켈 복합체 및 이의 제조방법{MANUFACTURING METHOD OF NIKEL/MULTI WALLED CARBON NANOTUBE COMPOSITE FOR HYDROGEN STORAGE}TECHNICAL FIELD [0001] The present invention relates to a multi-walled carbon nanotube / nickel composite for hydrogen storage, and a method for manufacturing the same. BACKGROUND ART < RTI ID = 0.0 >

본 발명은 수소저장용 다중벽 탄소나노튜브/ 니켈 복합체에 관한 것으로서, 더욱 상세하게는 기존 다중벽 탄소나노튜브보다 수소 저장량이 향상 된 수소흡착제를 제조하는 기술에 관한 것이다.The present invention relates to a multi-walled carbon nanotube / nickel composite for hydrogen storage, and more particularly, to a technique for manufacturing a hydrogen adsorbent having a higher hydrogen storage amount than conventional multi-walled carbon nanotubes.

최근 환경문제의 대두에 따른 친환경에너지에 대한 관심 증가에 따라 수소를 이용하려는 시도가 지속적으로 이루어지고 있다. 수소는 친환경적이며 무한하다는 장점을 가져 유망한 대체에너지로 많은 관심을 받고 있다. 수소를 사용하기 위해서는 저장물질이 필요함에 따라 이를 실현시키기 위한 방법으로는 금속수소화물, 압축수소, 액화수소 그리고 흡착이 있다. 현재로서는 수소기체를 700 bar이상의 고압에서 저장하는 압축수소법이 주로 사용되고 있으나, 안정성 문제로 상용화되지 못하고 있다. 이를 대체하는 방법으로 흡착을 주로 사용하고 있는데 다른 방법과 비교해서 상대적으로 높은 안정성을 가지기 때문이다. 그러나, 흡착의 경우 낮은 수소저장량을 갖는 단점을 가져 이를 개선, 보완하려는 노력이 지속적으로 이루어지고 있다. 흡착제로 주로 사용되는 물질로 제올라이트, 금속유기구조체 (Metal organic frameworks, MOFs) 그리고 탄소재료를 주로 사용하고 있으며 그 중에서도 탄소재료는 높은 열화학적 안정성과, 가역성, 그리고 낮은 가격이라는 장점을 가지고 있어 이를 이용한 연구가 활발히 진행 중이다.Recently, as the interest in environmentally friendly energy has increased due to the rise of environmental problems, attempts to use hydrogen have been continuously carried out. Hydrogen has the advantage of being environmentally friendly and infinite, attracting much attention as a promising alternative energy. In order to use hydrogen, there are metal hydrides, compressed hydrogen, liquefied hydrogen, and adsorption as a method for realizing a storage material. At present, a compressed hydrogen method for storing hydrogen gas at a high pressure of 700 bar or more is mainly used, but it is not commercialized because of stability problem. This is because the adsorption is mainly used as a substitute method because it has a relatively high stability compared with other methods. However, in the case of adsorption, there is a disadvantage that it has a low hydrogen storage amount, so efforts for improving and supplementing it have been continuously performed. Among them, zeolite, metal organic frameworks (MOFs) and carbon materials are mainly used as adsorbents, and among them, carbon materials have advantages of high thermochemical stability, reversibility and low price. Research is actively under way.

또한, 최근 전이 금속 담지를 통해 탄소재료의 수소저장량을 향상시키는 결과가 많이 보고되고 있는데 이는 금속 입자들이 친-수소 흡착점으로 작용하기 때문이다. 금속 중에서도 니켈은 다른 금속에 비해 얻기 쉽고 가격이 저렴한 장점을 가지고 있으며 수소저장에 있어 촉매역할을 한다. 많은 연구들이 다공성 탄소재료에 금속을 담지함에 따라 향상된 수소저장량 결과를 보인다. 그러나 다공성 탄소재료의 경우 금속에 의해 기공성이 저하될 수 있는 한계가 있다. Recently, it has been reported that the hydrogen storage amount of the carbon material is improved through the transition metal deposition because the metal particles act as the hydrogen-hydrogen adsorption sites. Among the metals, nickel is easier to obtain than other metals, has a cheap price and acts as a catalyst for hydrogen storage. Many studies show improved hydrogen storage capacity as metals are loaded onto porous carbon materials. However, in the case of the porous carbon material, there is a limit that the porosity can be lowered by the metal.

본 발명의 목적은, 니켈나노입자를 다중벽 탄소나노튜브에 담지함으로써, 기존 다중벽 탄소나노튜브보다 수소저장량을 향상시키는 것이다. An object of the present invention is to improve the amount of hydrogen stored in a multi-walled carbon nanotube by supporting nickel nanoparticles on multi-walled carbon nanotubes.

또한, 향상된 수소저장량을 갖는 다중벽 탄소나노튜브/ 니켈 복합체의 제조방법을 제공하는 것이다.It also provides a method for producing a multi-walled carbon nanotube / nickel composite with improved hydrogen storage capacity.

상기 목적을 달성하기 위하여, 본 발명은 수소저장용 탄소나노튜브/니켈 복합체 제조방법을 제공한다. 상기 수소저장용 탄소나노튜브/니켈 복합체 제조방법은 탄소나노튜브를 산처리 하는 단계, 니켈을 탄소나노튜브에 담지시키는 단계 및 니켈이 담지 된 탄소나노튜브를 환원시키는 단계를 포함한다.In order to achieve the above object, the present invention provides a method for producing a carbon nanotube / nickel composite for hydrogen storage. The method for producing a carbon nanotube / nickel composite for hydrogen storage includes an acid treatment of carbon nanotubes, a step of supporting nickel on the carbon nanotubes, and a step of reducing the carbon nanotubes bearing nickel.

상기 탄소나노튜브를 산처리 하는 단계에 있어서, 탄소나노튜브는 다중벽 탄소나노튜브인 것이 바람직하다. 또한 황산:질산을 1:1 내지 1:5의 부피비로 처리하는 것이 바람직하다. In the step of acid-treating the carbon nanotubes, it is preferable that the carbon nanotubes are multi-wall carbon nanotubes. It is also preferable to treat sulfuric acid: nitric acid at a volume ratio of 1: 1 to 1: 5.

상기 니켈을 탄소나노튜브에 담지시키는 단계에 있어서, 니켈은 탄소나노튜브 중량 대비 2 내지 20 중량%인 것이 바람직하다. 또한 탄소나노튜브에 니켈을 담지시킨 후 초음파 분산을 30분 내지 3시간동안 수행하는 것이 바람직하다.In the step of supporting the nickel on the carbon nanotubes, the amount of nickel is preferably 2 to 20% by weight based on the weight of the carbon nanotubes. Further, it is preferable to carry out the ultrasonic dispersion for 30 minutes to 3 hours after supporting the nickel on the carbon nanotubes.

상기 니켈이 담지된 탄소나노튜브를 환원시키는 단계는 니켈이 담지 된 탄소나노튜브를 1 내지 5시간동안 환원시키는 것이 바람직하다.The step of reducing the nickel-supported carbon nanotubes may include reducing the nickel-supported carbon nanotubes for 1 to 5 hours.

또한 본 발명은 상기 탄소나노튜브/니켈 복합체의 제조방법에 따라 제조된 수소저장용 탄소나노튜브/니켈 복합체를 제공한다.The present invention also provides a carbon nanotube / nickel composite for hydrogen storage prepared according to the above method for producing a carbon nanotube / nickel composite.

상기와 같은 본 발명에 따르면, 니켈을 다중벽 탄소나노튜브에 담지시킴으로써, 종래 다중벽 탄소나노튜브보다 수소 저장량이 향상 된 다중벽 탄소나노튜브/니켈 복합체를 제공하는 효과가 있다. According to the present invention, there is an effect of providing a multi-walled carbon nanotube / nickel composite having improved hydrogen storage amount over conventional multi-walled carbon nanotubes by supporting nickel on multi-walled carbon nanotubes.

또한 본 발명에 따라 제조된 수소저장용 다중벽 탄소나노튜브/니켈 복합체는 고용량의 수소저장이 가능하므로 수소저장 매체로서 유용하게 사용 될 수 있으며, 수소연료전지 시스템에 활용될 수 있다.Also, the multi-walled carbon nanotube / nickel composite for hydrogen storage according to the present invention can be used as a hydrogen storage medium because it can store a large amount of hydrogen, and can be utilized in a hydrogen fuel cell system.

도 1은 탄소나노튜브/니켈 복합체의 수소저장 메커니즘은 도시한 것이다.
도 2는 일 실시예에 따른 탄소나노튜브/니켈 복합체(실시예9) 및 다중벽 탄소나노튜브(비교예1)의 투과전자현미경(TEM) 사진이다.
1 shows a hydrogen storage mechanism of a carbon nanotube / nickel complex.
2 is a transmission electron microscope (TEM) photograph of a carbon nanotube / nickel composite (Example 9) and a multiwalled carbon nanotube (Comparative Example 1) according to an embodiment.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 형태에 따른 수소저장용 탄소나노튜브/니켈 복합체의 제조방법은 (1)탄소나노튜브를 산처리하는 단계; (2)니켈을 탄소나노튜브에 담지시키는 단계; 및 (3)니켈이 담지 된 탄소나노튜브를 환원시키는 단계를 포함한다.A method of manufacturing a carbon nanotube / nickel composite for hydrogen storage according to an embodiment of the present invention includes the steps of: (1) acid-treating a carbon nanotube; (2) supporting nickel on the carbon nanotubes; And (3) reducing the nickel-supported carbon nanotubes.

다중벽 탄소나노튜브에 니켈을 담지시킴으로써, 니켈이 친-수소 흡착점으로 작용하여 수소저장량을 향상시킨다. 이는 스필오버 효과(spillover effect)에 의한 것으로, 스필오버효과에 따른 다중벽 탄소나노튜브/니켈 복합체의 수소저장 메커니즘은 도 1에 도시하였다. 도 1과 같이 니켈과 같은 금속 표면에서 활성화 된 수소원자가 탄소나노튜브의 표면으로 이동시켜 탄소나노튜브/니켈 복합체의 수소저장량을 향상시킨다.By supporting nickel on the multi-walled carbon nanotube, nickel acts as a proton-hydrogen adsorption point to improve the hydrogen storage amount. This is due to the spillover effect, and the hydrogen storage mechanism of the multi-walled carbon nanotube / nickel composite according to the spillover effect is shown in FIG. As shown in FIG. 1, hydrogen atoms activated on a metal surface such as nickel move to the surface of the carbon nanotubes to improve the hydrogen storage amount of the carbon nanotube / nickel complex.

또한 상기 단계(1)의 탄소나노튜브는 다중벽 탄소나노튜브인 것이 바람직하다. The carbon nanotubes of step (1) are preferably multi-walled carbon nanotubes.

또한 상기 단계(1)은 황산(H2SO4) : 질산(HNO3)을 1:1 내지 1:5의 부피비로 혼합하여 처리한다. 질산은 황산보다 강산이며 탄소의 표면을 산성으로 처리하는 효과가 매우 뛰어나지만 황산보다 가격이 높기 때문에 일반적으로 적은 비율로 사용된다. 또한 황산 : 질산의 부피비가 1:1 미만일 경우 산회시키는 강도가 낮아 탄소나노튜브의 표면이 거의 활성화되지 못해 바람직하지 못하다. 또한 황산 : 질산의 부피비가 1:5 초과할 경우 과량의 질산이 탄소나노튜브의 구조를 파괴할 가능성이 있어 바람직하지 못하다. The step (1) is performed by mixing sulfuric acid (H 2 SO 4 ): nitric acid (HNO 3 ) at a volume ratio of 1: 1 to 1: 5 . Nitric acid is stronger than sulfuric acid and has an excellent effect of treating the surface of carbon with acidity, but it is generally used in a small proportion because it is more expensive than sulfuric acid. Also, when the volume ratio of sulfuric acid: nitric acid is less than 1: 1, the strength to be scoured is low and the surface of the carbon nanotube is hardly activated. Also, when the volume ratio of sulfuric acid: nitric acid exceeds 1: 5, excess nitric acid may destroy the structure of the carbon nanotubes, which is not preferable.

상기 단계(2)에 있어서, 니켈은 탄소나노튜브 중량 대비 2 내지 20 중량% 담지시킨다. 니켈의 함량이 2wt%미만일 경우 니켈에 의한 수소저장량 향상 정도가 미미하며, 20wt% 초과인 경우 니켈입자의 뭉침현상으로 인해 금속의 촉매현상이 나타나지 않아 바람직하지 못하다.In the step (2), nickel is supported in an amount of 2 to 20 wt% based on the weight of the carbon nanotubes. When the content of nickel is less than 2 wt%, the degree of improvement of the hydrogen storage amount by nickel is insignificant. When the content of nickel is more than 20 wt%, the catalyst phenomenon of metal does not appear due to the accumulation of nickel particles.

상기 단계(2) 수행 후 초음파 분산시키는 단계를 더 포함할 수 있다. 상기 초음파 분산은 30분 내지 3시간동안 수행하는 것이 바람직하다. 상기 초음파 분산 시간이 30분 미만인 경우 분산정도가 낮으며, 3시간 이상인 경우 탄소나노튜브의 구조가 변형될 수 있어 바람직하지 못하다. And performing ultrasonic dispersion after performing the step (2). The ultrasonic dispersion is preferably performed for 30 minutes to 3 hours. If the ultrasonic dispersion time is less than 30 minutes, the degree of dispersion is low, and if the ultrasonic dispersion time is more than 3 hours, the structure of the carbon nanotubes may be deformed, which is not preferable.

상기 단계(3)은 니켈이 담지된 탄소나노튜브를 1 내지 5시간 동안 환원시킨다. 상기 환원시간이 1시간 미만인 경우 환원되지 않은 니켈 산화물이 존재할 수 있으며, 5시간 초과인 경우 환원효과가 비슷하여 바람직하지 못하다. The step (3) reduces the nickel-supported carbon nanotubes for 1 to 5 hours. If the reduction time is less than 1 hour, there may exist unreduced nickel oxide. If the reduction time is more than 5 hours, reduction effect is similar, which is not preferable.

또한, 본 발명의 다른 형태에 따른 수소저장용 탄소나노튜브/니켈 복합체는 (1)탄소나노튜브를 산처리하는 단계; (2)니켈을 탄소나노튜브에 담지시키는 단계; 및 (3)니켈이 담지 된 탄소나노튜브를 환원시키는 단계;를 포함하는 방법으로 제조된 것을 특징으로 한다.According to another aspect of the present invention, there is provided a carbon nanotube / nickel composite for hydrogen storage comprising: (1) acid-treating a carbon nanotube; (2) supporting nickel on the carbon nanotubes; And (3) reducing the nickel-supported carbon nanotubes.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예Example 1.  One.

다중벽 탄소나노튜브/니켈 복합체 제조를 위하여 전처리 및 니켈담지 과정을 진행하였다. Pretreatment and nickel deposition were carried out for the preparation of multiwall carbon nanotube / nickel complex.

전처리 과정은 황산:질산 부피비가 1:1인 혼합물에 다중벽 탄소나노튜브를 담지함으로써 불순물 제거 및 표면 활성화를 진행하였다. The pretreatment process carried out the impurity removal and surface activation by loading the multiwalled carbon nanotubes on a mixture of sulfuric acid: nitric acid by volume ratio of 1: 1.

니켈 담지과정은 전처리 된 다중벽 탄소나노튜브를 아세톤에 담지하였으며, 니켈용액을 상기 다중벽 탄소나노튜브가 담지 된 아세톤에 천천히 떨어뜨린 후 교반하였다. 상시 니켈용액은 니켈 전구체인 Ni(NO3)6H2O와 아세톤을 혼합하여 니켈 함량이 2wt%가 되도록 제조하였다. In the nickel deposition process, pre-treated multi-walled carbon nanotubes were supported on acetone, and the nickel solution was slowly dropped onto the multi-walled carbon nanotube-loaded acetone and stirred. The nickel solution was prepared by mixing Ni (NO 3 ) 6 H 2 O, which is a nickel precursor, with acetone to make the nickel content 2 wt%.

이 때, 니켈입자의 분산성을 높이기 위하여 30분간 초음파 처리를 진행하였다. 또한 산화된 니켈입자를 환원시키기 위하여 H2/Ar(10:90) 조건에서 1시간동안 열처리하여 환원과정을 진행하여 다중벽 탄소나노튜브/니켈 복합체를 제조하였다.At this time, ultrasonic treatment was performed for 30 minutes in order to increase the dispersibility of the nickel particles. Also, in order to reduce the oxidized nickel particles, a multi - walled carbon nanotube / nickel composite was prepared by performing a reduction process by heat treatment for 1 hour under a condition of H 2 / Ar (10:90).

실시예Example 2.  2.

상기 실시예1과 동일하게 과정을 실시하되, 전처리 과정에서의 황산 : 질산의 부피비를 1:3으로 하여 다중벽 탄소나노튜브/니켈 복합체를 제조하였다.The procedure of Example 1 was followed except that the volume ratio of sulfuric acid: nitric acid in the pretreatment was 1: 3 to prepare a multi-walled carbon nanotube / nickel composite.

실시예Example 3.  3.

상기 실시예 2와 동일하게 과정을 실시하되, 전처리 과정에서의 황산:질산의 부피비를 1:5로 하여 다중벽 탄소나노튜브/니켈 복합체를 제조하였다.A multiwalled carbon nanotube / nickel composite was prepared in the same manner as in Example 2 except that the volume ratio of sulfuric acid: nitric acid in the pretreatment was 1: 5.

실시예Example 4.  4.

상기 실시예 2와 동일하게 과정을 실시 하되, 니켈을 담지하는 가정에서 니켈 함량을 5wt%로 하여 다중벽 탄소나노튜브/니켈 복합체를 제조하였다.A multiwalled carbon nanotube / nickel composite was prepared in the same manner as in Example 2 except that the nickel content was 5 wt% in a nickel-supported home.

실시예Example 5.  5.

상기 실시예 4와 동일하게 과정을 실시 하되, 니켈 담지 과정에서 니켈 함량을 10wt%로 하여 다중벽 탄소나노튜브/니켈 복합체를 제조하였다.A multiwalled carbon nanotube / nickel composite was prepared in the same manner as in Example 4, except that the nickel content was changed to 10 wt% in the nickel deposition process.

실시예Example 6.  6.

상기 실시예 5와 동일하게 과정을 실시하되, 니켈 담지 과정에서 니켈 함량을 20wt%로 하여 다중벽 탄소나노튜브/니켈 복합체를 제조하였다.A multiwalled carbon nanotube / nickel composite was prepared in the same manner as in Example 5, except that the nickel content was changed to 20 wt% in the nickel deposition process.

실시예Example 7.  7.

상기 실시예 5와 동일하게 과정을 실시하되, 니켈입자를 분산하기 위하여 1시간동안 초음파 처리하여 다중벽 탄소나노튜브/니켈 복합체를 제조하였다.A multiwalled carbon nanotube / nickel composite was prepared in the same manner as in Example 5 except that the nickel particles were dispersed by ultrasonication for 1 hour.

실시예Example 8.  8.

상기 실시예 7과 동일하게 과정을 실시하되, 니켈입자를 분산하기 위하여 3시간동안 초음파 처리하여 다중벽 탄소나노튜브/니켈 복합체를 제조하였다.The multi-walled carbon nanotube / nickel composite was prepared by ultrasonication for 3 hours in order to disperse the nickel particles.

실시예Example 9.  9.

상기 실시예 7과 동일하게 과정을 실시하되, 니켈입자를 환원시키기 위하여 3시간동안 열처리하여 다중벽 탄소나노튜브/니켈 복합체를 제조하였다.A multiwalled carbon nanotube / nickel composite was prepared by performing the same process as that of Example 7, but heat treatment for 3 hours to reduce nickel particles.

실시예Example 10. 10.

상기 실시예9와 동일하게 과정을 실시하되, 니켈 입자를 환원시키기 위하여 5시간동안 열처리하여 다중벽 탄소나노튜브/니켈 복합체를 제조하였다. A multi-walled carbon nanotube / nickel composite was prepared by performing the same process as in Example 9, except that the nickel particles were heat-treated for 5 hours to reduce the nickel particles.

비교예Comparative Example 1. One.

어떠한 처리도 하지 않은 기존 다중벽 탄소나노튜브이다.Walled carbon nanotubes without any treatment.

비교예Comparative Example 2.  2.

상기 실시예 9에서 전처리 과정을 진행하지 않고 나머지 과정을 동일하게 실시하여 다중벽 탄소나노튜브/니켈 복합체를 제조하였다.The multi-walled carbon nanotube / nickel composite was prepared in the same manner as in Example 9, except that the pretreatment was not carried out.

비교예Comparative Example 3. 3.

상기 실시예 9와 동일하게 진행하되 니켈입자를 분산시키기 위한 초음파처리를 수행하지 않고 다중벽 탄소나노튜브/니켈 복합체를 제조하였다.The procedure of Example 9 was followed except that the multiwall carbon nanotube / nickel composite was prepared without ultrasonic treatment to disperse the nickel particles.

비교예Comparative Example 4. 4.

상기 실시예 9와 동일하게 진행하되 니켈입자를 환원시키기 위한 열처리 과정을 수행하지 않고 다중벽 탄소나노튜브/니켈 복합체를 제조하였다.A multi-walled carbon nanotube / nickel composite was prepared without performing a heat treatment process for reducing nickel particles.

다중벽 탄소나노튜브/니켈 복합체의 제조 조건Manufacturing Conditions of Multi-Walled Carbon Nanotube / Nickel Composite 샘플명Sample name 황산:질산 부피비(v:v)Sulfuric acid: nitric acid volume ratio (v: v) 니켈 함량
(wt.%)
Nickel content
(wt.%)
초음파시간
(h)
Ultrasonic time
(h)
환원시간
(h)
Reduction time
(h)
실시예 1Example 1 1:11: 1 22 0.50.5 1One 실시예 2Example 2 1:31: 3 22 0.50.5 1One 실시예 3Example 3 1:51: 5 22 0.50.5 1One 실시예 4Example 4 1:31: 3 55 0.50.5 1One 실시예 5Example 5 1:31: 3 1010 0.50.5 1One 실시예 6Example 6 1:31: 3 2020 0.50.5 1One 실시예 7Example 7 1:31: 3 1010 1One 1One 실시예 8Example 8 1:31: 3 1010 33 1One 실시예 9Example 9 1:31: 3 1010 1One 33 실시예 10Example 10 1:31: 3 1010 1One 55 비교예 1Comparative Example 1 -- -- -- -- 비교예 2Comparative Example 2 -- 1010 1One 33 비교예 3Comparative Example 3 1:31: 3 1010 -- 33 비교예 4Comparative Example 4 1:31: 3 1010 1One --

측정예Measurement example 2.  2.

제조 된 다중벽 탄소나노튜브의 수소저장량을 측정은 BELSORP-Max(BEL Co, Ltd, Japan) 장비를 사용하였다. 상기 수소저장량은 상온(room temperature), 압력 100bar의 조건에서 수행하였다. 또한 수소저장량 측정에 사용된 계산법은 부피계산법을 사용하였다.The hydrogen storage amount of the prepared multi-wall carbon nanotubes was measured by BELSORP-Max (BEL Co, Ltd, Japan). The hydrogen storage amount was set at a room temperature and a pressure of 100 bar. The calculation method used for the hydrogen storage amount measurement was a volume calculation method.

다중벽 탄소나노튜브의 수소저장량 측정 결과는 표 2에 도시하였다. 상기 수소저장량 측정 결과에 따르면 제조조건이 황산:질산 부피비가 1:3, 니켈함량 10wt%, 초음파처리 시간 1시간 및 환원시간은 3 내지 5시간일 경우 수소저장량이 0.87wt%로 가장 향상된 것을 알 수 있다. 또한, 비교예1 및 실시예9의 투과전자현비경 사진(도 2)을 보면, 실시예9에 따른 다중벽 탄소나노튜브/니켈 복합체에 니켈이 담지된 것을 확인할 수 있다. The results of measurement of the hydrogen storage amount of the multi-walled carbon nanotube are shown in Table 2. According to the result of measurement of the hydrogen storage amount, it was found that when the production conditions were 1: 3 by volume of sulfuric acid: nitric acid, 10% by weight of nickel content, 1 hour of ultrasonic treatment and 3 to 5 hours of reduction time, the hydrogen storage amount was most improved to 0.87% . In addition, the transmission electron micrographs (FIG. 2) of Comparative Examples 1 and 9 show that the nickel was supported on the multiwall carbon nanotube / nickel composite according to Example 9.

다중벽 탄소나노튜브/니켈 복합체의 수소저장량 측정 결과Results of Hydrogen Storage Measurements of Multi-walled Carbon Nanotubes / Nickel Composites 수소저장량 (wt.%)Hydrogen storage (wt.%) 실시예 1Example 1 0.410.41 실시예 2Example 2 0.480.48 실시예 3Example 3 0.430.43 실시예 4Example 4 0.500.50 실시예 5Example 5 0.560.56 실시예 6Example 6 0.520.52 실시예 7Example 7 0.800.80 실시예 8Example 8 0.790.79 실시예 9Example 9 0.870.87 실시예 10Example 10 0.870.87 비교예 1Comparative Example 1 0.340.34 비교예 2Comparative Example 2 0.750.75 비교예 3Comparative Example 3 0.500.50 비교예 4Comparative Example 4 0.450.45

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (8)

(1) 탄소나노튜브를 산처리 하는 단계;
(2) 니켈을 탄소나노튜브에 담지시키는 단계; 및
(3) 니켈이 담지 된 탄소나노튜브를 열처리하여 환원시키는 단계
를 포함하는 니켈 입자가 담지 된 수소저장용 탄소나노튜브/니켈 복합체의 제조방법.
(1) acid treating the carbon nanotubes;
(2) supporting nickel on the carbon nanotubes; And
(3) a step of subjecting the nickel-carried carbon nanotube to heat treatment to reduce
Wherein the carbon nanotube / nickel composite particles are supported on the surface of the carbon nanotube / nickel composite particle.
제1항에 있어서,
상기 단계(1)의 탄소나노튜브는 다중벽 탄소나노튜브인 것을 특징으로 하는 수소 저장용 탄소나노튜브/니켈 복합체의 제조방법.
The method according to claim 1,
Wherein the carbon nanotubes of step (1) are multi-walled carbon nanotubes.
제1항에 있어서,
상기 단계(1)은 황산: 질산을 1:1 내지 1:5의 부피비로 혼합하여 처리하는 것을 특징으로 하는 수소저장용 탄소나노튜브/니켈 복합체의 제조방법.
The method according to claim 1,
Wherein the step (1) is performed by mixing sulfuric acid: nitric acid at a volume ratio of 1: 1 to 1: 5, and treating the carbon nanotube / nickel complex for hydrogen storage.
제1항에 있어서,
상기 단계(2)의 니켈은 탄소나노튜브 중량 대비 2 내지 20 중량% 담지시키는 것을 특징으로 하는 수소저장용 탄소나노튜브/니켈 복합체의 제조방법.
The method according to claim 1,
Wherein the nickel of the step (2) is loaded in an amount of 2 to 20 wt% based on the weight of the carbon nanotubes.
제1항에 있어서,
상기 단계(2) 수행 후 초음파 분산시키는 단계를 더 포함하는 것을 특징으로 하는 수소저장용 탄소나노튜브/니켈 복합체의 제조방법.
The method according to claim 1,
The method of claim 1, further comprising the step of dispersing the carbon nanotubes in a nitrogen atmosphere after the step (2).
제5항에 있어서,
상기 초음파 분산은 30분 내지 3시간동안 수행하는 것을 특징으로 하는 수소저장용 탄소나노튜브/니켈 복합체의 제조방법.
6. The method of claim 5,
Wherein the ultrasonic dispersion is performed for 30 minutes to 3 hours.
제1항에 있어서,
상기 단계(3)은 니켈이 담지 된 탄소나노튜브를 1 내지 5시간 동안 환원시키는 것을 특징으로 하는 수소저장용 탄소나노튜브/니켈 복합체의 제조방법
The method according to claim 1,
The method for producing a carbon nanotube / nickel composite for hydrogen storage according to claim 1, wherein the step (3) comprises reducing the nickel-supported carbon nanotubes for 1 to 5 hours
제1항 내지 제7항 중 어느 한 항에 따른 방법에 의해 제조 된 수소저장용 탄소나노튜브/니켈 복합체.
A carbon nanotube / nickel composite for hydrogen storage prepared by the method according to any one of claims 1 to 7.
KR1020160116354A 2016-09-09 2016-09-09 Manufacturing method of nikel/multi walled carbon nanotube composite for hydrogen storage KR20180028706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160116354A KR20180028706A (en) 2016-09-09 2016-09-09 Manufacturing method of nikel/multi walled carbon nanotube composite for hydrogen storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160116354A KR20180028706A (en) 2016-09-09 2016-09-09 Manufacturing method of nikel/multi walled carbon nanotube composite for hydrogen storage

Publications (1)

Publication Number Publication Date
KR20180028706A true KR20180028706A (en) 2018-03-19

Family

ID=61911260

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160116354A KR20180028706A (en) 2016-09-09 2016-09-09 Manufacturing method of nikel/multi walled carbon nanotube composite for hydrogen storage

Country Status (1)

Country Link
KR (1) KR20180028706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111288291A (en) * 2020-02-17 2020-06-16 深圳烯湾科技有限公司 High-pressure hydrogen storage bottle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111288291A (en) * 2020-02-17 2020-06-16 深圳烯湾科技有限公司 High-pressure hydrogen storage bottle

Similar Documents

Publication Publication Date Title
Liu et al. Confining ultrasmall bimetallic alloys in porous N–carbon for use as scalable and sustainable electrocatalysts for rechargeable Zn–air batteries
Park et al. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes
Guo et al. Protein-enriched fish “biowaste” converted to three-dimensional porous carbon nano-network for advanced oxygen reduction electrocatalysis
KR101408041B1 (en) Mesoporous carbon including sulfur, manufacturing method thereof, and fuel cell using the same
KR101231006B1 (en) Preparing method of Alloy Catalyst using Conductive polymer coating
EP2660192A1 (en) Graphene ramification-carbon nanotube composite material and preparation method thereof
US20050196336A1 (en) Activated graphitic carbon and metal hybrids thereof
CN105734323B (en) A kind of nano Mg base reversible hydrogen storage composite and preparation method thereof
WO2019200894A1 (en) Method for synthesizing atomically dispersed metal catalyst
CN103754878B (en) The method of the spontaneous carbon nanotube of a kind of silicon-carbide particle surface in situ
KR20130106463A (en) Manufacturing method of novel hybrid composites composed with metal-loaded graphene oxide and metal-organic frameworks for hydrogen storage
Park et al. Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers
Baca et al. Effect of Pd loading on hydrogen storage properties of disordered mesoporous hollow carbon spheres
Diaz et al. Hydrogen adsorption on Pd-modified carbon nanofibres: Influence of CNF surface chemistry and impregnation procedure
CN110624552A (en) Preparation method of graphene nano metal composite material
Soni et al. Enhanced hydrogen properties of MgH2 by Fe nanoparticles loaded hollow carbon spheres
CN114574894B (en) Ruthenium-molybdenum carbide composite material and preparation method and application thereof
TWI526396B (en) Hydrogen storage composite and method of forming the same
KR20180028706A (en) Manufacturing method of nikel/multi walled carbon nanotube composite for hydrogen storage
KR102212692B1 (en) Electrochemical catalyst for oxygen reduction reaction using carbon black and method for producing the same
KR101273495B1 (en) Tuning method of interlayer spacing in graphene oxide composites for hydrogen storage
Wang et al. Nanoscale engineering of solid-state materials for boosting hydrogen storage
KR20060108170A (en) Nano-sized ni doped carbon nanotubes for hydrogen storage and its preparation method
CN110898833A (en) Low-carbon alkane dehydrogenation catalyst and preparation method thereof
CN113731433B (en) Trace molybdenum doped iron-based catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment