KR20180025717A - Method For Preparing Fused Silica Sintered Material Containing Silicon Nitride Using Gel-Casting Process - Google Patents

Method For Preparing Fused Silica Sintered Material Containing Silicon Nitride Using Gel-Casting Process Download PDF

Info

Publication number
KR20180025717A
KR20180025717A KR1020160112766A KR20160112766A KR20180025717A KR 20180025717 A KR20180025717 A KR 20180025717A KR 1020160112766 A KR1020160112766 A KR 1020160112766A KR 20160112766 A KR20160112766 A KR 20160112766A KR 20180025717 A KR20180025717 A KR 20180025717A
Authority
KR
South Korea
Prior art keywords
mixed solution
slurry
molded body
silicon nitride
fused silica
Prior art date
Application number
KR1020160112766A
Other languages
Korean (ko)
Other versions
KR101904873B1 (en
Inventor
최두현
백승수
최세영
송준영
강을손
백용기
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020160112766A priority Critical patent/KR101904873B1/en
Publication of KR20180025717A publication Critical patent/KR20180025717A/en
Application granted granted Critical
Publication of KR101904873B1 publication Critical patent/KR101904873B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

The present invention relates to a method for preparing a fused silica sintered body using a gel-casting method. The present invention provides a method for preparing a sintered body using a gel-casting method, which comprises the steps of: dissolving acrylamide as a monomer and N,N′-methylenebis(acrylamide) as a dimer in a certain solvent to prepare a mixed solution; adding fused silica powder and silicon nitride to the mixed solution to subject the mixed solution to ball milling processing for 20 to 30 hours, thereby preparing slurry; mixing a catalyst and an initiator with the slurry to inject the mixture into a certain mold to prepare a molded body; removing the molded body from the mold to sinter the molded body, wherein 40 to 75 vol% of the fused silica powder and 0.25 to 5 wt% of the silicon nitride are added to the mixed solution. The molded body prepared by the method of the present invention has excellent thermal and shock resistance against air resistance, high mechanical strength, and excellent radio permeability, thereby making the molded body able to be utilized as a protective material of a microwave explorer.

Description

겔캐스팅법을 이용한 질화규소가 첨가된 퓨즈드실리카 소결체 제조 방법{Method For Preparing Fused Silica Sintered Material Containing Silicon Nitride Using Gel-Casting Process}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method of manufacturing a fused silica crucible containing silicon nitride by gel casting,

본 발명은 겔캐스팅(Gel-Casting)공법을 이용한 퓨즈드실리카 소결체 제조 방법에 관한 것이다. 보다 구체적으로, 본 발명은 기계적 강도를 향상시키기 위해 질화물계의 질화규소를 첨가시켜 퓨즈드실리카 소결체를 제조하는 제조 방법에 관한 것이다.The present invention relates to a method for producing a fused silica crucible by using a gel-casting method. More specifically, the present invention relates to a manufacturing method for producing a fused silica crucible by adding nitride-based silicon nitride to improve mechanical strength.

현재까지 알려진 복잡형상 제작기술은 사출성형, 슬립캐스팅, 가공 등의 기술이 있는데, 사출성형은 성형체 내에 결합제가 20 wt% 이상 함유되어 있어서 결합제 제거시 성형체가 허물어지거나, 균열발생의 문제가 있다. Known complex shaping techniques to date include techniques such as injection molding, slip casting, and processing. Injection molding involves a problem that the molded body is broken or cracked when the binder is removed because the binder contains 20 wt% or more of binder.

또한, 슬립캐스팅은 성형체 내부에 밀도구배가 발생하여 소결 시 뒤틀림의 원인이 되며, 성형체의 강도가 낮다는 단점이 있다. 그리고 가공에 의한 성형체 제작은 경제성이 없다(비특허문헌 0001).In addition, slip casting has a disadvantage in that a density gradient occurs in the inside of the formed body, which causes distortion during sintering and the strength of the formed body is low. The production of a molded body by machining is not economical (Non-Patent Document 0001).

이러한 기존의 복잡형상 제작기술의 단점을 극복하기 위해 개발된 것이 겔캐스팅법이다(특허문헌 0001 내지 0003 및 비특허문헌 0002 내지 0005). 이 방법은 세라믹 공정과 중합체(polymer) 제조기술을 혼합한 기술로서, 유기단량체(monomer)와 망목형성제인 이량체(dimer)를 녹인 용액에 세라믹 분말을 혼합하여 슬러리를 제조하고, 원하는 성형체의 몰드에 슬러리를 주입한 후 겔화반응을 통한 단량체들을 중합시키고, 세라믹 성형체 구조를 형성하여 소결하는 방법이다.The gel casting method developed to overcome the disadvantages of the conventional complicated shape producing technique is disclosed in Patent Documents 0001 to 0003 and Non-Patent Documents 0002 to 0005. This method is a combination of a ceramic process and a polymer manufacturing technique. A ceramic powder is mixed with a solution of an organic monomer and a dimer, which is a network forming agent, to prepare a slurry. And the monomers through the gelling reaction are polymerized to form a ceramic compact structure and sintered.

U.S. Patent No. 4894194, Jan 16, 1990U.S.A. Patent No. 4894194, Jan 16, 1990 U.S. Patent No. 5028362, Jul 2, 1991U.S.A. Patent No. 5028362, Jul 2, 1991 U.S. Patent No. 5145908, Sep 8, 1992U.S.A. Patent No. 5145908, Sep 8, 1992

Journal of American Ceramic Society, Vol.81, No.3, 581-591, 1998 Journal of American Ceramic Society, Vol. 81, No. 3, 581-591, 1998 Journal of the American Ceramic Society Journal of the American Ceramic Society Ceramic Bulletin, Vol.70, No.10, 1641-1649, 1991 Ceramic Bulletin, Vol. 70, No. 10, 1641-1649, 1991 Journal of the American Ceramic Society, Vol.74, No.3, 612-618, 1991 Journal of the American Ceramic Society, Vol. 74, No. 3, 612-618, 1991 Journal of the European Ceramics Society, Vol.17, No.2-3, 407-413, 1997 Journal of the European Ceramics Society, Vol. 17, No.2-3, 407-413, 1997

본 발명은 열적, 기계적 화학적 내구성이 우수한 퓨즈드실리카 소결체를 제조하는 방법을 제공하는 것을 그 목적으로 한다.It is an object of the present invention to provide a method for producing a fused silica crucible having excellent thermal, mechanical and chemical durability.

본 발명은 겔캐스팅(Gel-Casting)법을 이용한 소결체 제조방법을 제공하고, 상기 제조방법은 소정 용매에 단량체인 아크릴아마이드(acrylamide) 및 이량체인 메틸렌비스아크릴아마이드(N,N′-Methylenebis(acrylamide))를 용해시켜 혼합용액을 제조하는 단계, 상기 혼합용액에 퓨즈드실리카 분말 및 질화규소을 첨가하고 20 내지 30 시간 동안 볼 밀링하여 슬러리를 제조하는 단계, 상기 슬러리에 촉매제 및 개시제를 혼합하고 소정 몰드에 주입하여 성형체를 제조하는 단계 및 상기 성형체를 상기 몰드로부터 탈형시키고, 상기 성형체를 소결하는 단계를 포함하고, 상기 퓨즈드실키카 분말은 40 내지 75 vol%, 상기 질화규소는 0.25 내지 5 wt%로 상기 혼합용액에 혼합되는 것을 특징으로 한다.The present invention provides a method for producing a sintered body using a gel-casting method, which comprises the steps of adding a monomer, acrylamide, and an equivalent amount of methylene bisacrylamide (N, N'-Methylenebis ) To prepare a mixed solution, adding a fused silica powder and silicon nitride to the mixed solution and ball milling for 20 to 30 hours to prepare a slurry, mixing the catalyst and the initiator into the slurry, And a step of sintering the molded body, wherein the fused silicate powder is contained in an amount of 40 to 75 vol% and the silicon nitride is contained in an amount of 0.25 to 5 wt% In a solution.

일 실시 예에 있어서, 상기 혼합용액을 제조하는 단계는, 상기 혼합용액에 염기를 첨가하여 pH를 10 내지 11로 조절하는 단계를 더 포함할 수 있다.In one embodiment, the step of preparing the mixed solution may further include a step of adjusting the pH to 10 to 11 by adding a base to the mixed solution.

일 실시 예에 있어서, 상기 슬러리는 0.1 내지 0.8 wt%의 폴리카르본산암모늄을 더 포함할 수 있다.In one embodiment, the slurry may further comprise 0.1 to 0.8 wt% of ammonium polycarboxylate.

일 실시 예에 있어서, 상기 촉매제는 테트라메틸에틸렌디아민(N,N,N'N'-Tetramethylethylenediamin)이고, 상기 개시제는 암모늄퍼설페이트(Ammonium Persulfate)일 수 있다.In one embodiment, the catalyst is N, N, N'N'-Tetramethylethylenediamine and the initiator may be Ammonium Persulfate.

일 실시 예에 있어서, 상기 성형체를 소결하는 단계는, 상기 성형체를 산소분위기에서 600 내지 900 ℃의 온도로 1 내지 2시간 동안 가열하여 상기 성형체에 포함된 유기물을 제거하는 단계 및 유기물이 제거된 상기 성형체를 질소분위기에서 1150 내지 1400 ℃에서 가열하는 단계를 포함할 수 있다.In one embodiment, the step of sintering the shaped body may include heating the formed body in an oxygen atmosphere at a temperature of 600 to 900 ° C. for 1 to 2 hours to remove the organic substances contained in the formed body, And heating the shaped body at 1150 to 1400 캜 in a nitrogen atmosphere.

일 실시 예에 있어서, 상기 슬러리를 제조하는 단계는, 상기 슬러리의 기포가 제거되도록 상온에서 진공 탈포하는 단계를 더 포함할 수 있다.In one embodiment, the step of preparing the slurry may further include a step of vacuum defoaming at room temperature to remove the bubbles of the slurry.

일 실시 예에 있어서, 상기 혼합용액은, 증류수에 4 내지 5 wt%의 아크릴아마이드 및 0.1 내지 0.2 wt%의 메틸렌비스아크릴아마이드가 혼합되어 이루어질 수 있다.In one embodiment, the mixed solution may be prepared by mixing 4 to 5 wt% of acrylamide and 0.1 to 0.2 wt% of methylene bisacrylamide in distilled water.

본 발명에 따른 방법으로 제조된 퓨즈드실리카 소결체는 공기의 저항(공력 가열)에 의한 내열 충격성이 우수하고, 높은 기계적 강도를 가지며, 우수한 전파투과성을 지니기 때문에 마이크로파 탐색기 보호재료로 활용될 수 있다.The fused silicate sintered body manufactured by the method according to the present invention can be utilized as a protection material for a microwave searcher because it has excellent thermal shock resistance by air resistance (aerodynamic heating), high mechanical strength, and excellent radio wave permeability.

도 1은 본 발명의 일 실시 예에 따른 소결체 제조방법을 나타내는 순서도이다.
도 2a 및 2b는 본 발명에 따른 슬러리의 전단속도 변화에 대한 전단응력변화를 나타내는 그래프이다.
도 3은 본 발명에 따른 슬러리의 질화규소 첨가량에 따른 점도 변화를 나타내는 그래프이다.
도 4는 적외선분광법(FT-IR)에 의한 소결체의 결합구조 분석결과를 나타내는 그래프이다.
도 5는 소결온도 변화에 따른 소결체의 굽힘강도 변화를 나타내는 그래프이다.
1 is a flowchart showing a method of manufacturing a sintered body according to an embodiment of the present invention.
FIGS. 2A and 2B are graphs showing changes in shear stress with respect to shear rate change of the slurry according to the present invention. FIG.
FIG. 3 is a graph showing a viscosity change according to the addition amount of silicon nitride in the slurry according to the present invention.
4 is a graph showing the result of analyzing the bonding structure of the sintered body by infrared spectroscopy (FT-IR).
5 is a graph showing changes in the bending strength of the sintered body with changes in sintering temperature.

이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, wherein like reference numerals are used to designate identical or similar elements, and redundant description thereof will be omitted. In the following description of the embodiments of the present invention, a detailed description of related arts will be omitted when it is determined that the gist of the embodiments disclosed herein may be obscured. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. , ≪ / RTI > equivalents, and alternatives.

이하 본 발명에 따른 소결체 제조방법에 대하여 설명한다.Hereinafter, a method for producing a sintered body according to the present invention will be described.

도 1은 본 발명의 일 실시 예에 따른 소결체 제조방법을 나타내는 순서도이다. 이하에서는, 도 1을 참조하여 본 발명에 따른 소결체 제조방법에 대하여 설명한다.1 is a flowchart showing a method of manufacturing a sintered body according to an embodiment of the present invention. Hereinafter, a method for manufacturing a sintered body according to the present invention will be described with reference to FIG.

먼저, 본 발명에 따른 제조 방법에서는 소정 용매에 단량체인 아크릴아마이드(acrylamide) 및 이량체인 메틸렌비스아크릴아마이드(N,N′-Methylenebis(acrylamide))를 용해시켜 혼합용액을 제조하는 단계가 진행된다.First, in the production process according to the present invention, a step of preparing a mixed solution by dissolving acrylamide, which is a monomer, and N, N'-methylenebis (acrylamide), which is a monomer, in a predetermined solvent is performed.

여기서, 상기 혼합용액은 증류수에 4 내지 5 wt%의 아크릴아마이드 및 0.1 내지 0.2 wt%의 메틸렌비스아크릴아마이드가 혼합되어 이루어 질 수 있다.Here, the mixed solution may be prepared by mixing 4 to 5 wt% of acrylamide and 0.1 to 0.2 wt% of methylene bisacrylamide in distilled water.

다음으로, 상기 혼합용액에 퓨즈드실리카 분말 및 질화규소을 첨가하고 20 내지 30 시간 동안 볼 밀링하여 슬러리를 제조하는 단계가 진행된다.Next, fused silica powder and silicon nitride are added to the mixed solution, followed by ball milling for 20 to 30 hours to prepare a slurry.

여기서, 상기 퓨즈드실키카 분말은 40 내지 75 vol%, 상기 질화규소는 0.25 내지 5 wt%로 상기 혼합용액에 혼합될 수 있다.Here, the fused silicate glass powder may be mixed in the mixed solution at 40 to 75 vol% and the silicon nitride may be mixed at 0.25 to 5 wt%.

이때, 슬러리의 유동성을 확보하고 슬러리내 퓨즈드실리카 분말의 분산이 잘 이루어지게 하기 위해 음이온계 분산제인 폴리카르본산암모늄을 0.1~0.8 wt% 첨가한 후 볼 밀링을 할 수 있다.At this time, in order to secure the fluidity of the slurry and to ensure that the fused silica powder in the slurry is well dispersed, the ball milling can be performed after 0.1 to 0.8 wt% of ammonium polycarboxylate, which is an anionic dispersant, is added.

한편, 겔캐스팅을 위한 슬러리는 전단속도 변화에 대한 전단응력의 변화가 선형적으로 변화하는 뉴토니안플로우(newtonian flow) 거동을 함으로써, 슬러리 내 세라믹 분말들은 균일한 상태로 분산되어 있음을 확인할 수 있다. 하지만, 100cps 이상의 점도를 갖는 슬러리는 탈포과정에서 기포가 완전히 제거되지 않아 성형 후 결함으로 존재하고, 캐스팅 시 몰드표면과의 마찰에 의해 응력을 발생시켜 건조과정에서 균열을 야기시킨다.On the other hand, it is confirmed that the slurry for gel casting has a newtonian flow behavior in which the change of shear stress with respect to shear rate change linearly changes, so that the ceramic powders in the slurry are uniformly dispersed . However, a slurry having a viscosity of 100 cps or more is not completely removed from the bubbles during the defoaming process and is present as a defect after molding, causing stress due to friction with the mold surface during casting, causing cracking in the drying process.

퓨즈드실리카 분말만을 이용하여 슬러리를 제조과정에서는 분산제를 이용하여 슬러리가 뉴토니안 플로우 거동을 할 수 있도록 제어가 가능하지만, 기계적 강도의 향상을 위해 질화규소를 첨가하여 슬러리를 제조할 경우, 퓨즈드실리카와 질화규소 분말 간의 밀도차이로 인하여 슬러리가 고르게 분산되지 못한다.It is possible to control the behavior of the slurry using a dispersant in the process of manufacturing the slurry using only the fused silica powder. However, when the slurry is prepared by adding silicon nitride for improving the mechanical strength, the fused silicate And silicon nitride powders, the slurry is not uniformly dispersed.

상술한 문제를 해결하기 위해, 본 발명은 질화규소를 첨가량을 0.25~5.0 wt%로 제어하고, 염기를 이용하여 슬러리의 pH를 10~11로 조절함으로써, 슬러리가 균일하게 분산될 수 있도록 할 수 있다.In order to solve the above-described problems, the present invention can control the addition amount of silicon nitride to 0.25 to 5.0 wt% and adjust the pH of the slurry to 10 to 11 using a base so that the slurry can be uniformly dispersed .

여기서, 상기 염기는 수산화나트륨일 수 있다.Here, the base may be sodium hydroxide.

다음으로, 상기 슬러리에 촉매제 및 개시제를 혼합하고 소정 몰드에 주입하여 성형체를 제조하는 단계가 진행된다. Next, the slurry is mixed with a catalyst and an initiator, and the mixture is injected into a predetermined mold to produce a molded body.

여기서, 상기 촉매제는 테트라메틸에틸렌디아민(N,N,N'N'-Tetramethylethylenediamin)일 수 있고, 상기 개시제는 암모늄퍼설페이트(Ammonium Persulfate)일 수 있다. 상기 촉매제 및 개시제 각각은 단량체의 0.001~0.2 mol% 로 첨가될 수 있다.Here, the catalyst may be N, N, N'N'-Tetramethylethylenediamine, and the initiator may be Ammonium Persulfate. Each of the catalyst and the initiator may be added in an amount of 0.001 to 0.2 mol% of the monomer.

마지막으로, 상기 성형체를 상기 몰드로부터 탈형시키고, 상기 성형체를 소결하는 단계가 진행된다.Finally, the step of demolding the molded body from the mold and sintering the molded body is proceeded.

여기서, 상기 성형체는 몰드로부터 탈형된 후, 항온항습기를 통해 내부의 수분이 제거될 수 있다. 이후, 1150~1400 ℃ 온도범위에서 소결하여 비정질 상태의 소결체를 제조할 수 있다.Here, after the mold is demolded from the mold, the inside of the mold can be removed through the thermostat. Thereafter, the sintered body in an amorphous state can be manufactured by sintering at a temperature range of 1150 to 1400 ° C.

상기 소결단계에서 산화방지를 위해 질소분위기하에서 결정질이 생성되지 않도록 열처리를 이행함으로써 Si-O 결합 일부분을 Si-N 결합이 생성되도록 하여 기계적 강도를 증가시킬 수 있다. In order to prevent oxidation in the sintering step, heat treatment is performed so as not to generate a crystal in a nitrogen atmosphere, so that Si-N bond is formed in a part of the Si-O bond to increase the mechanical strength.

한편, 슬러리 제조시 첨가된 유기첨가제 즉, 단량체, 이량체, 촉매, 개시제, 분산제는 질소분위기하에서 완전히 제거되지 않기 때문에 소결이 진행되지 않고 아주 낮은 기계적 강도를 나타낼 수 있다.On the other hand, the organic additives added to the slurry, that is, monomers, dimers, catalysts, initiators and dispersants, can not be completely removed in a nitrogen atmosphere, so that sintering does not proceed and very low mechanical strength can be exhibited.

한편, 일반적인 공기분위기하에서 소결시 질화규소는 산화되어 안정한 상태의 실리카로 변하게 되는데 이를 방지하기 위하여 소결 시 분위기 제어가 필수적이다.On the other hand, in the general air atmosphere, silicon nitride is oxidized and converted into stable silica during sintering. In order to prevent this, atmosphere control in sintering is indispensable.

소결체에 Si-N 결합이 생성되도록 하고, 상술한 유기첨가제를 제거하기 위해, 상기 성형체를 소결하는 단계는 상기 성형체를 산소분위기에서 가열하여 상기 성형체에 포함된 유기물을 제거하는 단계 및 유기물이 제거된 상기 성형체를 질소분위기에서 가열하는 단계를 포함하여 이루어질 수 있다.The step of sintering the molded body to generate Si-N bonds in the sintered body and to remove the organic additive described above includes heating the molded body in an oxygen atmosphere to remove the organic substances contained in the molded body, And heating the shaped body in a nitrogen atmosphere.

구체적으로, 상기 소결 단계는 산소분위기 하에서 상온에서 600 내지 900 ℃의 온도까지 1℃/min의 속도로 승온시키고 1시간 유지하여 유기물을 완전히 제거하는 단계, 유기물을 제거한 후 질소 분위기 하에서 5℃/min 속도로 각 소결온도까지 열처리하는 단계를 포함하여 이루어질 수 있다.Specifically, the sintering step is a step of raising the temperature at a temperature of 600 to 900 ° C. at a temperature of 600 to 900 ° C. under an oxygen atmosphere, maintaining the temperature at a rate of 1 ° C./min and keeping it for 1 hour to completely remove the organic matter, Heat treating the sintered body to a sintering temperature.

여기서, 건조된 상기 성형체를 분쇄하여 열중량/시차열분석(TG/DTA)을 통해 겔캐스팅에 사용된 유기물들은 720℃에서 완전히 산화됨을 확인하였다. 이에, 산소분위기 하에서 가열온도는 800 ℃인 것이 바람직하다.Here, it was confirmed that the organic materials used for gel casting were completely oxidized at 720 ° C by pulverizing the dried molded body and performing thermogravimetric / differential thermal analysis (TG / DTA). Thus, the heating temperature in an oxygen atmosphere is preferably 800 ° C.

이하에서는, 실시 예 및 실험 예들을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만, 후술할 실시 예 및 실험 예들에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석되지 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the scope and contents of the present invention are not construed to be limited or limited by the following Examples and Experimental Examples.

[실시 예][Example]

증류수 45 ㎖에 단량체인 아크릴아마이드 4.1 wt%, 이량체인 메칠렌비스아크릴아마이드 0.1 wt%를 완전히 용해시켜 혼합용액을 만들고, 수산화나트륨을 이용하여 pH 10.5가 되도록 조절하였다.To 45 ml of distilled water, 4.1 wt% of acrylamide monomer and 0.1 wt% of methylene bisacrylamide were completely dissolved to prepare a mixed solution, and the solution was adjusted to pH 10.5 with sodium hydroxide.

레이돔의 주원료인 퓨즈드실리카 세라믹 분말 119.048 g(54.291 ㎖)과 첨가제인 질화규소 분말 2.438 g(0.709 ㎖)을 혼합하여 2 wt% 실리콘나이트라이드 첨가된 55 vol%의 퓨즈드실리카 슬러리(100㎖)를 제조하였다. 119.048 g (54.291 ml) of fused silica powder as a main ingredient of radome and 2.438 g (0.709 ml) of silicon nitride powder as an additive were mixed and fused silica slurry (100 ml) of 55 vol% added with 2 wt% .

상기와 같은 방법으로 제조된 슬러리에 음이온 분산제인 폴리카르본산암모늄을 0.4 wt% 첨가하고 24 시간 동안 볼 밀링하여 혼합하였다.0.4 wt% of ammonium polycarboxylate, which is an anionic dispersant, was added to the slurry prepared as described above and mixed by ball milling for 24 hours.

혼합된 슬러리를 로터리펌프와 탈포기를 이용하여 기포가 보이지 않을 때까지 상온에서 진공 탈포하고, 촉매 테트라메틸에틸렌디아민 0.005 mol%과, 개시제 암모늄퍼설페이트 0.01 mol%을 첨가하고 혼합한 후 테프론 재질로 된 몰드에 주입하고 겔화시켰다. The mixed slurry was vacuum degassed at room temperature until no bubbles were visible using a rotary pump and a deaerator. The catalyst was added with 0.005 mol% tetramethylethylenediamine and 0.01 mol% initiator ammonium persulfate, mixed with Teflon Lt; / RTI > mold and gelled.

겔화반응은 5~10분 정도 소요되며 겔화가 종료되면 겔화된 성형체와 몰드를 치환용매(아세톤, 에탄올) 수조에 담그고 용매를 계속적으로 교반하여 성형체 내부의 수분을 표면장력이 낮은 아세톤으로 치환시키고 항온항습기를 이용하여 건조하였다.The gelation reaction takes about 5 to 10 minutes. When the gelling is completed, the gelled molded body and the mold are immersed in a substitution solvent (acetone, ethanol) water bath and the solvent is continuously stirred to replace the water inside the molded body with acetone having low surface tension, And dried using a hygrostat.

건조된 성형체를 분위기로를 이용하여 상온에서 600~900℃까지 승온속도 1 ℃/min 속도로 가열한 후, 1~2 시간 동안 가열된 온도를 유지시켰다. 이때, 분위기는 산소분위기로 산소가스의 유입속도는 0.1~1.0 ℓ/min 였다.The dried molded body was heated at a temperature raising rate of 1 占 폚 / min from room temperature to 600 to 900 占 폚 using an atmosphere furnace, and then the heated temperature was maintained for 1 to 2 hours. At this time, the atmosphere was oxygen atmosphere and the flow rate of oxygen gas was 0.1 to 1.0 L / min.

상기 성형체로부터 유기물을 완전히 제거한 후 산소가스 대신 질소가스를 0.1~1.0 ℓ/min속도로 유입하여 로 내 분위기를 질소분위기로 만들고 소결온도(1150~1400 ℃)까지 열처리하여 균열 및 변형이 없는 소결체를 제조하였다.After the organic matter was completely removed from the molded body, nitrogen gas was introduced at a rate of 0.1 to 1.0 L / min instead of oxygen gas to make the atmosphere in the furnace nitrogen atmosphere and heat treatment to a sintering temperature (1150 to 1400 ° C) .

본 발명의 실시 예에서 세라믹 분말로 퓨즈드실리카 분말을 사용하였으나, 본 발명은 이에 한정되는 것이 아니다.Although the fused silicate powder is used as the ceramic powder in the embodiment of the present invention, the present invention is not limited thereto.

본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof.

또한, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.In addition, the above detailed description should not be construed in all aspects as limiting and should be considered illustrative. The scope of the present invention should be determined by rational interpretation of the appended claims, and all changes within the scope of equivalents of the present invention are included in the scope of the present invention.

Claims (7)

겔캐스팅(Gel-Casting)법을 이용한 소결체 제조방법에 있어서,
소정 용매에 단량체인 아크릴아마이드(acrylamide) 및 이량체인 메틸렌비스아크릴아마이드(N,N′-Methylenebis(acrylamide))를 용해시켜 혼합용액을 제조하는 단계;
상기 혼합용액에 퓨즈드실리카 분말 및 질화규소을 첨가하고 20 내지 30 시간 동안 볼 밀링하여 슬러리를 제조하는 단계;
상기 슬러리에 촉매제 및 개시제를 혼합하고 소정 몰드에 주입하여 성형체를 제조하는 단계; 및
상기 성형체를 상기 몰드로부터 탈형시키고, 상기 성형체를 소결하는 단계를 포함하고,
상기 퓨즈드실키카 분말은 40 내지 75 vol%, 상기 질화규소는 0.25 내지 5 wt%로 상기 혼합용액에 혼합되는 것을 특징으로 하는 퓨즈드실리카 소결체의 제조 방법.
In a method for producing a sintered body using a gel-casting method,
Preparing a mixed solution by dissolving acrylamide and N, N'-methylenebis (acrylamide), which are monomers, in a predetermined solvent;
Adding a fused silica powder and silicon nitride to the mixed solution and ball milling for 20 to 30 hours to prepare a slurry;
Mixing the slurry with a catalyst and an initiator, and injecting the slurry into a predetermined mold to produce a molded body; And
Demolding the molded body from the mold, and sintering the molded body,
Wherein the fused silicate crucible powder is mixed with the mixed solution in an amount of 40 to 75 vol% and the silicon nitride is mixed in the mixed solution in an amount of 0.25 to 5 wt%.
제1항에 있어서, 상기 혼합용액을 제조하는 단계는,
상기 혼합용액에 염기를 첨가하여 pH를 10 내지 11로 조절하는 단계를 더 포함하는 것을 특징으로 하는 퓨즈드실리카 소결체의 제조 방법.
The method according to claim 1, wherein the step of preparing the mixed solution comprises:
Further comprising adding a base to the mixed solution to adjust the pH to 10 to 11.
제2항에 있어서,
상기 슬러리는 0.1 내지 0.8 wt%의 폴리카르본산암모늄을 더 포함하여 이루어지는 것을 특징으로 하는 퓨즈드실리카 소결체의 제조 방법.
3. The method of claim 2,
Wherein the slurry further comprises 0.1 to 0.8 wt% of ammonium polycarboxylate.
제3항에 있어서,
상기 촉매제는 테트라메틸에틸렌디아민(N,N,N'N'-Tetramethylethylenediamin)이고,
상기 개시제는 암모늄퍼설페이트(Ammonium Persulfate)인 것을 특징으로 하는 퓨즈드실리카 소결체의 제조 방법.
The method of claim 3,
The catalyst is tetramethylethylenediamine (N, N'N'-Tetramethylethylenediamine)
Wherein the initiator is ammonium persulfate. ≪ RTI ID = 0.0 > 21. < / RTI >
제4항에 있어서, 상기 성형체를 소결하는 단계는,
상기 성형체를 산소분위기에서 600 내지 900 ℃의 온도로 1 내지 2시간 동안 가열하여 상기 성형체에 포함된 유기물을 제거하는 단계; 및
유기물이 제거된 상기 성형체를 질소분위기에서 1150 내지 1400 ℃에서 가열하는 단계를 포함하는 것을 특징으로 하는 퓨즈드실리카 소결체의 제조 방법.
5. The method according to claim 4,
Heating the formed body in an oxygen atmosphere at a temperature of 600 to 900 DEG C for 1 to 2 hours to remove organic matter contained in the formed body; And
And heating the shaped body from which the organic material has been removed in a nitrogen atmosphere at a temperature of 1150 to 1400 占 폚.
제5항에 있어서, 상기 슬러리를 제조하는 단계는,
상기 슬러리의 기포가 제거되도록 상온에서 진공 탈포하는 단계를 더 포함하는 것을 특징으로 하는 퓨즈드실리카 소결체의 제조 방법.
6. The method of claim 5,
Further comprising the step of vacuum degassing at room temperature to remove the bubbles of the slurry.
제6항에 있어서, 상기 혼합용액은,
증류수에 4 내지 5 wt%의 아크릴아마이드 및 0.1 내지 0.2 wt%의 메틸렌비스아크릴아마이드가 혼합되어 이루어지는 것을 특징으로 하는 퓨즈드실리카 소결체의 제조 방법.
7. The method according to claim 6,
Characterized in that distilled water is mixed with 4 to 5 wt% of acrylamide and 0.1 to 0.2 wt% of methylene bisacrylamide.
KR1020160112766A 2016-09-01 2016-09-01 Method For Preparing Fused Silica Sintered Material Containing Silicon Nitride Using Gel-Casting Process KR101904873B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160112766A KR101904873B1 (en) 2016-09-01 2016-09-01 Method For Preparing Fused Silica Sintered Material Containing Silicon Nitride Using Gel-Casting Process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160112766A KR101904873B1 (en) 2016-09-01 2016-09-01 Method For Preparing Fused Silica Sintered Material Containing Silicon Nitride Using Gel-Casting Process

Publications (2)

Publication Number Publication Date
KR20180025717A true KR20180025717A (en) 2018-03-09
KR101904873B1 KR101904873B1 (en) 2018-11-28

Family

ID=61727826

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160112766A KR101904873B1 (en) 2016-09-01 2016-09-01 Method For Preparing Fused Silica Sintered Material Containing Silicon Nitride Using Gel-Casting Process

Country Status (1)

Country Link
KR (1) KR101904873B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210081969A (en) * 2019-12-24 2021-07-02 이화여자대학교 산학협력단 Method for preparing sponge type liphophlic gel for absorbing and removing volatile organic compounds
CN114988856A (en) * 2022-07-01 2022-09-02 徐州协鑫太阳能材料有限公司 Composite quartz ceramic feeding cone for pulling single crystal and manufacturing method thereof
KR102464543B1 (en) * 2022-08-02 2022-11-07 목포대학교산학협력단 Conductive Titanium Dioxide Sintered Body And It’s Manufacturing Method Using Sol-Gel Casting Molding Method
KR102464544B1 (en) * 2022-08-02 2022-11-08 목포대학교산학협력단 Conductive Titanium Dioxide Sintered Body And It’s Manufacturing Method Using Pressure Casting Molding Method
KR102494908B1 (en) * 2022-08-02 2023-02-07 목포대학교산학협력단 Conductive Titanium Dioxide Sintered Body And It’s Manufacturing Method Using Cold Isostatic Pressing Multi layer Molding Method
CN116496092A (en) * 2023-04-10 2023-07-28 北京科技大学 Micron-sized silicon nitride ceramic microsphere and preparation method and application thereof
CN116873884A (en) * 2023-08-16 2023-10-13 衡阳凯新特种材料科技有限公司 Method for preparing silicon nitride powder by catalytic nitridation of composite catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102048310B1 (en) 2019-04-26 2020-01-08 오창용 Method and Device For Preparing Ceramic Plate Using Gel-Casting Process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349499B1 (en) * 1994-12-30 2002-11-05 주식회사 엘지화학 Molding slurry composition containing coupling agent, and molding method using the same
JP5972630B2 (en) 2011-03-30 2016-08-17 日本碍子株式会社 Manufacturing method of electrostatic chuck

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210081969A (en) * 2019-12-24 2021-07-02 이화여자대학교 산학협력단 Method for preparing sponge type liphophlic gel for absorbing and removing volatile organic compounds
CN114988856A (en) * 2022-07-01 2022-09-02 徐州协鑫太阳能材料有限公司 Composite quartz ceramic feeding cone for pulling single crystal and manufacturing method thereof
KR102464543B1 (en) * 2022-08-02 2022-11-07 목포대학교산학협력단 Conductive Titanium Dioxide Sintered Body And It’s Manufacturing Method Using Sol-Gel Casting Molding Method
KR102464544B1 (en) * 2022-08-02 2022-11-08 목포대학교산학협력단 Conductive Titanium Dioxide Sintered Body And It’s Manufacturing Method Using Pressure Casting Molding Method
KR102494908B1 (en) * 2022-08-02 2023-02-07 목포대학교산학협력단 Conductive Titanium Dioxide Sintered Body And It’s Manufacturing Method Using Cold Isostatic Pressing Multi layer Molding Method
CN116496092A (en) * 2023-04-10 2023-07-28 北京科技大学 Micron-sized silicon nitride ceramic microsphere and preparation method and application thereof
CN116496092B (en) * 2023-04-10 2024-04-19 北京科技大学 Micron-sized silicon nitride ceramic microsphere and preparation method and application thereof
CN116873884A (en) * 2023-08-16 2023-10-13 衡阳凯新特种材料科技有限公司 Method for preparing silicon nitride powder by catalytic nitridation of composite catalyst

Also Published As

Publication number Publication date
KR101904873B1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
KR101904873B1 (en) Method For Preparing Fused Silica Sintered Material Containing Silicon Nitride Using Gel-Casting Process
CN101665360A (en) Microwave curing process for ceramic material gel casting
CN110483053B (en) Preparation method of SiC nanowire/SiC porous ceramic for high-temperature wave absorption
CN106316377A (en) Preparing method of homogeneity fused quartz ceramic
KR101904874B1 (en) Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process
CN110790581A (en) Preparation process of high-strength high-temperature-resistant quartz ceramic roller
CN105835209A (en) Ceramic gel injection molding method based on agarose
CN111517770A (en) Production method of high-compactness fused quartz ceramic
CN103242044B (en) Gel-casting preparation method of BN/Si3N4 composite ceramics
CN104108938A (en) Preparation method for Sialon ceramic
US20020124597A1 (en) Method for production of silica glass using sol-gel process
Sun et al. Improved strength of alumina ceramic gel and green body based on addition‐esterification reaction
CN110015892A (en) A kind of quartz-ceramics densification maceration extract and preparation method thereof, application method
US20170282401A1 (en) Casting Cores And Producing Slips
US6508082B2 (en) Method for fabricating high-purity silica glass using sol-gel processing
JP2007261925A (en) Method for producing ceramic molding and method for producing ceramic sintered compact using the molding
CN101224983A (en) Gel casting method for pre-reduced hard magnetic ferrite ceramic parts
CN107352781B (en) Preparation method for silicon nitride porous ceramic material through rapid curing molding
CN108344518A (en) A kind of preparation method of dense form PRECURSOR-DERIVED CERAMICS temperature sensor
Wang et al. Postcasting contraction: improving the density of gelcast nanoparticle green bodies with heated liquid desiccants
CN104891998B (en) Method for preparing ceramic matrix diamond composite material by employing organosilicon
CN108821774B (en) Preparation method of porous silicon nitride-silicon carbide composite ceramic
JP2002037682A (en) Porous silicon carbide sintered body and its manufacturing method
EP0711735B1 (en) Method for the preparation of silicon oxycarbide
JPH06287055A (en) Production of sintered article of ceramic

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right