KR20180023385A - Water-soluble polyurethane for liquid coating of thermal interface material and method thereof - Google Patents

Water-soluble polyurethane for liquid coating of thermal interface material and method thereof Download PDF

Info

Publication number
KR20180023385A
KR20180023385A KR1020160108590A KR20160108590A KR20180023385A KR 20180023385 A KR20180023385 A KR 20180023385A KR 1020160108590 A KR1020160108590 A KR 1020160108590A KR 20160108590 A KR20160108590 A KR 20160108590A KR 20180023385 A KR20180023385 A KR 20180023385A
Authority
KR
South Korea
Prior art keywords
weight
parts
water
soluble urethane
graphite
Prior art date
Application number
KR1020160108590A
Other languages
Korean (ko)
Other versions
KR101852128B1 (en
Inventor
최정환
김대건
김동환
Original Assignee
주식회사 이앤코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이앤코리아 filed Critical 주식회사 이앤코리아
Priority to KR1020160108590A priority Critical patent/KR101852128B1/en
Publication of KR20180023385A publication Critical patent/KR20180023385A/en
Application granted granted Critical
Publication of KR101852128B1 publication Critical patent/KR101852128B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0866Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being an aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention provides a water-soluble urethane composition comprising 60 parts by weight of polyol, 3 to 9 parts by weight of dimethylol butanoic acid (DMBA), 1 to 5 parts by weight of isocyanate, and 2 to 6 parts by weight of a chain extender, and a water-soluble urethane comprising graphite dispersed into the water-soluble urethane composition, wherein a weight ratio of the water-soluble urethane composition to graphite is 3 to 6 : 4 to 7. Furthermore, the present invention provides a production method of the water-soluble urethane, comprising the steps of: mixing 60 parts by weight of polyol with 3 to 9 parts by weight of DMBA to prepare a mixture; adding 1 to 5 parts by weight of isocyanate and 2 to 6 parts by weight of the chain extender to 63 to 69 parts by weight of the mixture, and stirring isocyanate and the chain extender with the mixture to prepare the water-soluble urethane composition; and dispersing 7 to 4 parts by weight of graphite into 3 to 6 parts by weight of the water-soluble urethane composition. The water-soluble urethane according to the present invention has an increased tensile strength by having viscosity and solid content optimized for liquid coating, thereby increasing dispersibility of graphite in the water-soluble urethane, is easily processed by lowering formability, and is able to solve problems such as functional deterioration, malfunction, degradation and the like of electronic devices by having high thermal conductivity.

Description

열계면 재료의 액상 코팅에 사용되는 수용성 우레탄 및 이의 제조방법 {Water-soluble polyurethane for liquid coating of thermal interface material and method thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-soluble polyurethane for liquid-phase coating of a thermal interface material,

본 발명은 수용성 우레탄의 제조방법에 관한 것으로, 더욱 상세하게는 액상코팅에 적합한 수용성 폴리우레탄의 제조방법에 관한 것이다.The present invention relates to a process for producing a water-soluble urethane, and more particularly to a process for producing a water-soluble polyurethane suitable for liquid-phase coating.

최근 자동차, 전기·전자 분야 등에서 사용되고 있는 전자기기는 경량화, 박형화, 소형화, 다기능화가 추구되고 있다. 이러한 전자소자가 고집적화될수록 더욱 많은 열이 발생하는데, 이러한 방출열은 소자의 기능을 저하시킬 뿐만 아니라 주변 소자의 오작동, 기판 열화 등의 원인이 되고 있어 방출 열을 제어하는 기술에 대해 많은 관심과 연구가 이루어지고 있다.BACKGROUND ART [0002] In recent years, electronic devices used in automobiles, electric and electronic fields have been sought to be lightweight, thin, miniaturized, and multifunctional. As these electronic devices become more highly integrated, more heat is generated. This heat dissipation not only degrades the function of the device but also causes malfunction of the peripheral device and deterioration of the substrate. Therefore, .

특히, 고 방열 회로 기판 소재는 베이스 금속기판의 열전도성을 이용할 수 있어 파워 디바이스나 LED 모듈 등 고 전력이 소모되고 열이 많이 발생하는 부품의 제작에 유리하여 연구개발에 대한 관심이 증폭되고 있다. Particularly, the material of the high heat dissipation circuit board can utilize the thermal conductivity of the base metal substrate, and thus it is advantageous in manufacturing high power consuming parts such as a power device and an LED module and a heat generating part, so that interest in research and development has been amplified.

LED는 약 85%가 손실로 전환되며 고온의 방출 열로 인해 접합부의 온도가 계속 증가함으로써 LED 반도체의 수명저하를 일으키며, LED의 오작동이 일어나는 평균시간은 소자 작용 온도가 10℃ 상승할 때 수명은 2배 감소하는 것으로 알려져 있다.About 85% of LEDs are turned into loss, and the temperature of the junction continuously increases due to the high temperature of heat emission. This causes the lifetime of the LED semiconductor to decrease, and the average time during which the LED malfunctions occurs is 10% It is known to decrease the number of times.

따라서, 현재 전자기기의 열을 제어하여 전자기기의 기능저하, 오작동 및 열화 등의 문제를 방지할 수 있는 기술이 필요한 실정이다. Therefore, there is a need for a technique that can control the heat of the electronic device at present to prevent problems such as deterioration, malfunction, and deterioration of the electronic device.

전술한 전자기기의 열을 제어하여 전자기기의 기능저하, 오작동 및 열화 등의 문제를 해결할 수 있도록 액상 코팅에 사용되는 수용성 우레탄 개발 및 상기 수용성 우레탄 내의 흑연(graphite)의 분산성을 높이는 기술을 개발하여 상기 수용성 우레탄의 인장강도 및 열전도도를 증가시킬 수 있는 기술을 제공하고자 한다.Development of a water-soluble urethane which is used in a liquid coating and a technique of improving the dispersibility of graphite in the water-soluble urethane so that the problems of the functional deterioration, malfunction and degradation of the electronic device can be solved by controlling the heat of the above-mentioned electronic device To thereby increase the tensile strength and thermal conductivity of the water-soluble urethane.

전술한 문제를 해결하기 위해, 본 발명은 폴리올 60중량부, 디메틸 부타 산(Dimethylol butanoic acid, DMBA) 3 내지 9중량부, 이소시아네이트 1 내지 5중량부 및 사슬연장제 2 내지 6중량부를 포함하는 수용성 우레탄 조성물 및 상기 수용성 우레탄 조성물에 분산된 흑연을 포함하며, 상기 수용성 우레탄 조성물과 상기 흑연의 중량비는 3 내지 6 : 4 내지 7인 것을 특징으로 하는 수용성 우레탄을 제공한다.In order to solve the above-mentioned problems, the present invention relates to a water-soluble polymer comprising 60 parts by weight of a polyol, 3 to 9 parts by weight of dimethylol butanoic acid (DMBA), 1 to 5 parts by weight of an isocyanate and 2 to 6 parts by weight of a chain- A urethane composition and graphite dispersed in the water-soluble urethane composition, wherein the weight ratio of the water-soluble urethane composition and the graphite is 3 to 6: 4 to 7.

상기 폴리올로 분자량이 2,000인 폴리프로필렌글리콜(PPG)을 사용할 수 있으며, 상기 이소시아네이트로 메틸렌 다이페닐 다이아이소사이아네이트(MDI)를 사용하고, 상기 사슬연장제로 트리에틸아민(TEA)을 사용할 수 있다.Polypropylene glycol (PPG) having a molecular weight of 2,000 may be used as the polyol, methylene diphenyldiisocyanate (MDI) may be used as the isocyanate, and triethylamine (TEA) may be used as the chain extender .

상기 흑연(graphite)의 분말 크기가 10 내지 15㎛일 수 있다.The powder size of the graphite may be 10-15 mu m.

또한, 본 발명은 폴리올 60중량부에 디메틸 부타 산(Dimethylol butanoic acid, DMBA) 3 내지 9중량부를 혼합하여 혼합물을 제조하는 단계, 상기 혼합물 63 내지 69중량부에 이소시아네이트 1 내지 5중량부 및 사슬연장제 2 내지 6중량부를 첨가하여 교반하여 수용성 우레탄 조성물을 제조하는 단계 및 상기 수용성 우레탄 조성물 3 내지 6 중량부에 흑연 7 내지 4 중량부를 분산하는 단계를 포함하는 것을 특징으로 하는 수용성 우레탄의 제조방법을 제공한다.The present invention also relates to a process for preparing a mixture by mixing 60 parts by weight of polyol with 3 to 9 parts by weight of dimethylbutanoic acid (DMBA), adding to said mixture 63 to 69 parts by weight of isocyanate 1 to 5 parts by weight, Adding 2 to 6 parts by weight of the water-soluble urethane composition to the mixture to prepare a water-soluble urethane composition, and dispersing 7 to 4 parts by weight of graphite in 3 to 6 parts by weight of the water-soluble urethane composition. to provide.

상기 폴리올과 디메틸 부타 산(Dimethylol butanoic acid, DMBA)을 혼합하는 단계는 상기 폴리올 및 디메틸 부타 산(Dimethylol butanoic acid, DMBA)를 150℃에서 4시간 동안 반응시켜 혼합물을 제조하며, 상기 폴리올로 분자량이 2,000인 폴리프로필렌글리콜(PPG)을 사용할 수 있다.The step of mixing the polyol and dimethylol butanoic acid (DMBA) comprises reacting the polyol and Dimethylol butanoic acid (DMBA) at 150 ° C for 4 hours to prepare a mixture, Polypropylene glycol (PPG) having a molecular weight of 2,000 can be used.

상기 혼합물에 이소시아네이트 및 사슬연장제를 첨가하여 교반하는 단계는 상기 혼합물에 상기 이소시아네이트 및 사슬연장제를 첨가하여 80℃에서 1,000rpm으로 8시간 동안 교반할 수 있다.The isocyanate and the chain extender may be added to the mixture and stirred, and the isocyanate and the chain extender may be added to the mixture, followed by stirring at 80 ° C and 1,000 rpm for 8 hours.

상기 이소시아네이트로 메틸렌 다이페닐 다이아이소사이아네이트(MDI)를 사용할 수 있으며, 상기 사슬연장제로 트리에틸아민(TEA)을 사용할 수 있다.Methylene diphenyldiisocyanate (MDI) may be used as the isocyanate, and triethylamine (TEA) may be used as the chain extender.

상기 수용성 우레탄 조성물 3 내지 6 중량부에 흑연 7 내지 4 중량부를 분산하는 단계는 상기 수용성 우레탄 조성물과 흑연을 300 내지 500 rpm으로 1시간 내지 3시간 동안 교반할 수 있다.In the step of dispersing 7 to 4 parts by weight of graphite in 3 to 6 parts by weight of the water-soluble urethane composition, the water-soluble urethane composition and graphite may be stirred at 300 to 500 rpm for 1 to 3 hours.

본 발명에 따른 수용성 우레탄은 액상코팅에 최적화된 점도와 고형분을 갖추어 상기 수용성 우레탄 내의 흑연(graphite)의 분산성을 높일 수 있으므로, 상기 수용성 우레탄의 인장강도를 증가시키면서 성형성은 낮춰 가공이 용이하고, 열전도도가 높으므로 전자기기의 기능저하, 오작동 및 열화 등의 문제를 해결할 수 있다.The water-soluble urethane according to the present invention has a viscosity and a solid content optimized for liquid-phase coating to increase the dispersibility of graphite in the water-soluble urethane. Therefore, the water-soluble urethane can be easily processed by decreasing the formability while increasing the tensile strength of the water- Since the thermal conductivity is high, it is possible to solve problems such as deterioration of function, malfunction and deterioration of the electronic device.

도 1은 본 발명에 따른 수용성 우레탄의 제조방법을 나타낸 단계도이다.
도 2는 본 발명에 따른 일 실시예와 비교예의 분산성 실험 결과를 도시한 것이다.
도 3은 본 발명에 따른 일 실시예 및 비교의 필름 상태를 나타낸 것이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a process for producing a water-soluble urethane according to the present invention.
Fig. 2 shows the dispersibility test results of an embodiment and a comparative example according to the present invention.
3 shows a film state of an embodiment and a comparison according to the present invention.

본 발명은 흑연(graphite)의 분산도를 증가시켜, 우수한 인장강도 및 열전도도를 갖는 수용성 우레탄에 관한 것이다.The present invention relates to a water-soluble urethane which increases the degree of dispersion of graphite and has excellent tensile strength and thermal conductivity.

이하에서는, 실시예를 통하여 본 발명을 더욱 상세하게 설명하지만, 실시예가 본 발명을 한정하는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

본 발명은 폴리올 60중량부, 디메틸 부타 산(Dimethylol butanoic acid, DMBA) 3 내지 9중량부, 이소시아네이트 1 내지 5중량부 및 사슬연장제 2 내지 6중량부;를 포함하는 수용성 우레탄 조성물 및 상기 수용성 우레탄 조성물에 분산된 흑연을 포함하며, 상기 수용성 우레탄 조성물과 상기 흑연의 중량비는 3 내지 6 : 4 내지 7인 것을 특징으로 하는 수용성 우레탄을 제공한다.The present invention relates to a water-soluble urethane composition comprising 60 parts by weight of a polyol, 3 to 9 parts by weight of dimethyl butanoic acid (DMBA), 1 to 5 parts by weight of an isocyanate and 2 to 6 parts by weight of a chain extender, Wherein the weight ratio of the water-soluble urethane composition to the graphite is from 3 to 6: 4 to 7, wherein the water-soluble urethane composition comprises graphite dispersed in the composition.

상기 흑연(graphite)의 분말 크기가 10 내지 15㎛이 바람직하다. 상기 흑연 분말 크기가 10㎛ 미만일 경우, 열전도도가 감소하며 필름 상태가 깔끔하지 못한 단점이 있으며, 상기 흑연이 15㎛를 초과할 경우, 분산도가 떨어질 수 있다.The powder size of the graphite is preferably 10 to 15 mu m. When the size of the graphite powder is less than 10 mu m, the thermal conductivity is decreased and the film condition is not clean. When the graphite exceeds 15 mu m, the degree of dispersion may decrease.

또한, 본 발명은 폴리올 60중량부에 디메틸 부타 산(Dimethylol butanoic acid, DMBA) 3 내지 9중량부를 혼합하여 혼합물을 제조하는 단계, 상기 혼합물 63 내지 69중량부에 이소시아네이트 1 내지 5중량부 및 사슬연장제 2 내지 6중량부를 첨가하여 교반하여 수용성 우레탄 조성물을 제조하는 단계 및 상기 수용성 우레탄 조성물 3 내지 6 중량부에 흑연 7 내지 4 중량부를 분산하는 단계를 포함하는 것을 특징으로 하는 수용성 우레탄의 제조방법을 제공한다.The present invention also relates to a process for preparing a mixture by mixing 60 parts by weight of polyol with 3 to 9 parts by weight of dimethylbutanoic acid (DMBA), adding to said mixture 63 to 69 parts by weight of isocyanate 1 to 5 parts by weight, Adding 2 to 6 parts by weight of the water-soluble urethane composition to the mixture to prepare a water-soluble urethane composition, and dispersing 7 to 4 parts by weight of graphite in 3 to 6 parts by weight of the water-soluble urethane composition. to provide.

상기 폴리올과 디메틸 부타 산(Dimethylol butanoic acid, DMBA)을 혼합하는 단계는 상기 폴리올 및 디메틸 부타 산(Dimethylol butanoic acid, DMBA)를 150℃에서 4시간 동안 반응시켜 혼합물을 제조할 수 있다. The mixing of the polyol and dimethylol butanoic acid (DMBA) may be performed by reacting the polyol and dimethylol butanoic acid (DMBA) at 150 ° C. for 4 hours.

상기 DMBA는 상기 폴리올 60 중량부에 대하여 3 내지 9 중량부를 혼합하는 것이 바람직하다. 상기 DMBA가 폴리올 60 중량부에 대하여 9 중량부를 초과할 경우, 반응이 진행되며 겔화가 될 수 있으며, 3 중량부 미만일 경우, 반응이 진행되지 않을 수 있다.The DMBA is preferably mixed with 3 to 9 parts by weight based on 60 parts by weight of the polyol. If the DMBA exceeds 9 parts by weight based on 60 parts by weight of the polyol, the reaction proceeds and gelation may occur. If the DMBA is less than 3 parts by weight, the reaction may not proceed.

상기 수용성 우레탄 조성물 3 내지 6 중량부에 흑연 4 내지 7 중량부를 분산하는 것이 바람직하다. 상기 수용성 우레탄 조성물이 3 중량부 미만일 경우, 분산도가 감소하며, 6 중량부를 초과할 경우, 열전도도가 감소하는 문제가 발생할 수 있다. It is preferable to disperse 4 to 7 parts by weight of graphite in 3 to 6 parts by weight of the water-soluble urethane composition. When the water-soluble urethane composition is less than 3 parts by weight, the degree of dispersion decreases. When the amount of the water-soluble urethane composition is more than 6 parts by weight, the thermal conductivity may decrease.

상기 흑연이 4 중량부 미만일 경우, 열전도도가 감소하며, 7 중량부를 초과할 경우, 분산도가 감소할 수 있다.When the graphite is less than 4 parts by weight, the thermal conductivity is decreased, and when it is more than 7 parts by weight, the degree of dispersion may be decreased.

상기 폴리올로 폴리프로필렌글리콜(PPG)을 사용할 수 있다. 상기 PPG의 분자량이 높을수록 상기 수용성 우레탄의 인장강도가 상승하지만 성형성이 낮아지는 문제가 발생하며, 상기 PPG의 점도는 상기 PPG의 분자량이 2,000일 때 가장 높으므로, 상기 PPG의 분자량은 2,000인 것이 바람직하다.Polypropylene glycol (PPG) may be used as the polyol. The higher the molecular weight of the PPG, the higher the tensile strength of the water-soluble urethane but the lower the formability. The viscosity of the PPG is the highest when the molecular weight of the PPG is 2,000. Therefore, the molecular weight of the PPG is 2,000 .

상기 혼합물에 이소시아네이트 및 사슬연장제를 첨가하여 교반하는 단계는 상기 혼합물에 상기 이소시아네이트 및 사슬연장제를 첨가하여 80℃에서 1,000rpm으로 8시간 동안 교반할 수 있으며, 상기 혼합물 66 중량부에 상기 이소시아네이트 1 내지 5 중량부 및 상기 사슬연장제 2 내지 6 중량부를 첨가하는 것이 바람직하다.Adding isocyanate and chain extender to the mixture and stirring the mixture, the isocyanate and chain extender may be added to the mixture, and the mixture may be stirred at 80 DEG C at 1,000 rpm for 8 hours. 66 parts by weight of the mixture is mixed with the isocyanate 1 To 5 parts by weight of the chain extender and 2 to 6 parts by weight of the chain extender.

상기 이소시아네이트가 상기 혼합물 66 중량부에 대하여 5 중량부를 초과할 경우, 반응이 진행되며 겔화되는 문제가 있으며, 1 중량부 미만일 경우, 반응이 진행되지 않을 수도 있다. 상기 이소시아네이트로 메틸렌 다이페닐 다이아이소사이아네이트(MDI)를 사용할 수 있다.If the amount of the isocyanate exceeds 5 parts by weight based on 66 parts by weight of the mixture, there is a problem that the reaction proceeds and gelation occurs. If the content of isocyanate is less than 1 part by weight, the reaction may not proceed. Methylene diphenyldiisocyanate (MDI) may be used as the isocyanate.

상기 사슬연장제가 상기 혼합물 66 중량부에 대하여 6 중량부를 초과할 경우, 반응이 진행되면 겔화되는 것이 문제이며, 2 중량부 미만일 경우 반응이 진행되지 않는 문제가 발생할 수 있다. 상기 사슬연장제로 트리에틸아민(TEA)을 사용할 수 있다.When the chain extender exceeds 6 parts by weight based on 66 parts by weight of the mixture, gelation occurs when the reaction proceeds. When the chain extender is less than 2 parts by weight, the reaction may not proceed. As the chain extender, triethylamine (TEA) can be used.

상기 수용성 우레탄 조성물 3 내지 6 중량부에 흑연 7 내지 4 중량부를 분산하는 단계는 상기 수용성 우레탄 조성물과 흑연 10 중량부에 계면활성제 0.1 중량부를 첨가하여 300 내지 500rpm의 교반 속도로 1시간 내지 3시간 동안 교반할 수 있다. In the step of dispersing 7 to 4 parts by weight of graphite in 3 to 6 parts by weight of the water-soluble urethane composition, 0.1 part by weight of a surfactant is added to 10 parts by weight of the water-soluble urethane composition and graphite, and the mixture is stirred at 300 to 500 rpm for 1 to 3 hours Stirring can be carried out.

상기 교반 속도가 300rpm 미만이거나 500rpm을 초과하면 상기 흑연이 분산되지 않고 응집될 수 있다. If the stirring speed is less than 300 rpm or exceeds 500 rpm, the graphite may be agglomerated without being dispersed.

상기 교반을 1시간 내지 3시간 하는 것이 바람직하며, 교반 시간이 3시간을 초과할 경우, 이미 분산되었으므로 추가적인 교반이 필요하지 않으며, 교반 시간이 1시간 미만일 경우, 분산성이 떨어질 수 있다.The stirring is preferably performed for 1 to 3 hours, and if the stirring time is more than 3 hours, no further stirring is necessary since it is already dispersed, and if the stirring time is less than 1 hour, the dispersibility may be lowered.

(( 실험예Experimental Example 1) 폴리올에 따른 수용성 우레탄의 인장강도 비교 1) Comparison of tensile strength of water-soluble urethane with polyol

폴리올로 PPG, PEG 및 PTMG를 사용하여 실시예 및 비교예를 제조하고, 인장강도 및 점도를 비교한 결과를 하기 표 1에 나타내었다.Examples and Comparative Examples were prepared using PPG, PEG and PTMG as polyols, and the results of the comparison of tensile strength and viscosity are shown in Table 1 below.

[표 1][Table 1]

Figure pat00001
Figure pat00001

상기 결과를 참조하면, 실시예 1 내지 3이 비교예 1 내지 6보다 수용성 우레탄의 인장강도가 9.43 내지 10.28MPa로 더 우수한 것을 알 수 있다.Referring to the above results, it can be seen that the tensile strength of the water-soluble urethane of Examples 1 to 3 is more excellent than that of Comparative Examples 1 to 6, which is 9.43 to 10.28 MPa.

(( 실험예Experimental Example 2) 이소시아네이트에 따른 수용성 우레탄의 물성 비교  2) Comparison of properties of water-soluble urethane with isocyanate

폴리올로 분자량이 2,000인 PPG에 이소시아네이트로 MDI, TDI 및 IPDI를 사용하여 실시예와 비교예를 제조하여 물성을 비교한 결과를 하기 표 2에 나타내었다. Examples and Comparative Examples were prepared by using MDI, TDI and IPDI as isocyanate in PPG having a molecular weight of 2,000 as a polyol, and the physical properties were compared with each other in Table 2 below.

[표 2][Table 2]

Figure pat00002
Figure pat00002

상기 결과를 참조하면, 실시예 4의 인장강도 및 점도가 비교예 7 및 8보다 더욱 우수한 것을 알 수 있다.Referring to the results, it can be seen that the tensile strength and the viscosity of Example 4 are superior to those of Comparative Examples 7 and 8.

(( 실험예Experimental Example 3) 사슬연장제에 따른 수용성 우레탄의 물성 비교 3) Comparison of properties of water-soluble urethane with chain extender

폴리올로 분자량이 2,000인 PPG 및 이소시아네이트로 MDI에 사슬연장제로 TEA, EG, 1,4-Butandiol을 사용하여 실시예 및 비교예를 제조하여 물성을 비교한 결과를 하기 표 3에 나타내었다.PPG having a molecular weight of 2,000 as a polyol and TEA, EG and 1,4-butanediol as chain extenders in MDI with isocyanate were prepared and the physical properties of the examples and comparative examples are shown in Table 3 below.

[표 3][Table 3]

Figure pat00003
Figure pat00003

상기 결과를 참조하면, 실시예 5의 인장강도 및 점도가 비교예 9 및 10의 인장강도 및 점도보다 우수한 것을 알 수 있다.Referring to the results, it can be seen that the tensile strength and viscosity of Example 5 are superior to those of Comparative Examples 9 and 10.

(( 실험예Experimental Example 4) 수용성 우레탄의 고형분 함량에 따른 수용성 우레탄의 물성 비교 4) Comparison of properties of water-soluble urethane with solids content of water-soluble urethane

폴리올로 분자량이 2,000인 PPG, 이소시아네이트로 MDI 및 사슬연장제로 TEA를 사용하고 고형분의 함량을 20%, 30%, 40%로 하여 실시예 및 비교예를 제조하여 물성을 비교한 결과를 하기 표 4에 나타내었다.PPG having a molecular weight of 2,000 as a polyol, MDI as an isocyanate, and TEA as a chain extender were used, and the solid contents were 20%, 30% and 40%, respectively. Respectively.

[표 4][Table 4]

Figure pat00004
Figure pat00004

상기 결과를 참조하면, 실시예 8의 인장강도 및 점도가 가장 우수한 것을 알 수 있다.Referring to the above results, it can be seen that the tensile strength and viscosity of Example 8 are the most excellent.

(( 실험예Experimental Example 5) 수용성 우레탄과 흑연(graphite) 함량에 따른 물성 비교 5) Comparison of physical properties according to the content of water-soluble urethane and graphite

PPG 60중량부에 DMBA 6중량부, MDI 3중량부 및 TEA 4중량부로 수용성 우레탄을 제조하여 수용성 우레탄과 흑연(graphite)의 비율을 달리하여 실시예 및 비교예를 제조한 후, 분산성, 인장강도 및 열전도도를 측정한 결과를 하기 표 5와 도 2에 나타내었다.Water-soluble urethane was prepared with 60 parts by weight of PPG, 6 parts by weight of DMBA, 3 parts by weight of MDI and 4 parts by weight of TEA to prepare Examples and Comparative Examples in different ratios of water-soluble urethane and graphite. The results of strength and thermal conductivity measurements are shown in Table 5 and FIG.

[표 5][Table 5]

Figure pat00005
Figure pat00005

상기 결과와 도 2를 참조하면, 열전도도는 비교에 16 및 17이 우수하지만 분산성이 낮으며, 비교예 13 내지 15는 열전도도 및 분산성 모두 낮은 것을 알 수 있으나, 실시예 7 내지 10은 분산성 및 열전도도 모두 우수한 것을 확인할 수 있다.Referring to the results and FIG. 2, the thermal conductivity of Comparative Examples 13 to 15 is lower than that of Comparative Examples 13 to 15, It can be confirmed that both the dispersibility and the thermal conductivity are excellent.

(( 실험예Experimental Example 6) 흑연(graphite) 분말 크기에 따른 열 전도도 측정 6) Measurement of thermal conductivity according to the size of graphite powder

상기 흑연(graphite) 분말 크기를 5, 10, 15㎛하여 실시예 및 비교예를 제작하여 열전도도 및 필름상태를 확인한 결과를 하기 표 6 및 도 3에 나타내었다.The graphite powder sizes were 5, 10, and 15 μm, and the thermal conductivity and the film state were checked. The results are shown in Table 6 and FIG. 3.

[표 6][Table 6]

Figure pat00006
Figure pat00006

상기 결과와 도 3을 참조하면, 실시예 11 및 12가 비교예 18보다 필름상태도 깨끗하며, 열전도도 또한 더 우수한 것을 알 수 있다.Referring to the results and FIG. 3, it can be seen that the films of Examples 11 and 12 are cleaner than those of Comparative Example 18, and the thermal conductivity is also better.

Claims (12)

폴리올 60중량부;
디메틸 부타 산(Dimethylol butanoic acid, DMBA) 3 내지 9중량부;
이소시아네이트 1 내지 5중량부 및 사슬연장제 2 내지 6중량부;를 포함하는 수용성 우레탄 조성물; 및
상기 수용성 우레탄 조성물에 분산된 흑연을 포함하며, 상기 수용성 우레탄 조성물과 상기 흑연의 중량비는 3 내지 6 : 4 내지 7인 것을 특징으로 하는 수용성 우레탄.
60 parts by weight of polyol;
3 to 9 parts by weight of dimethyl butanoic acid (DMBA);
1 to 5 parts by weight of isocyanate and 2 to 6 parts by weight of chain extender; And
Wherein the water-soluble urethane composition comprises graphite dispersed in the water-soluble urethane composition, wherein the weight ratio of the water-soluble urethane composition and the graphite is 3 to 6: 4 to 7.
제 1항에 있어서,
상기 폴리올로 분자량이 2,000인 폴리프로필렌글리콜(PPG)을 사용하는 것을 특징으로 하는 수용성 우레탄.
The method according to claim 1,
Characterized in that polypropylene glycol (PPG) having a molecular weight of 2,000 is used as the polyol.
제 1항에 있어서,
상기 이소시아네이트로 메틸렌 다이페닐 다이아이소사이아네이트(MDI)를 사용하는 것을 특징으로 하는 수용성 우레탄.
The method according to claim 1,
Soluble urethane in which methylene diphenyldiisocyanate (MDI) is used as the isocyanate.
제 1항에 있어서,
상기 사슬연장제로 트리에틸아민(TEA)을 사용하는 것을 특징으로 하는 수용성 우레탄.
The method according to claim 1,
Characterized in that triethylamine (TEA) is used as the chain extender.
제 1항에 있어서,
상기 흑연(graphite)의 분말 크기가 10 내지 15㎛인 것을 특징으로 하는 수용성 우레탄.
The method according to claim 1,
Wherein the powder of the graphite has a size of 10 to 15 占 퐉.
폴리올 60중량부에 디메틸 부타 산(Dimethylol butanoic acid, DMBA) 3 내지 9중량부를 혼합하여 혼합물을 제조하는 단계;
상기 혼합물 63 내지 69중량부에 이소시아네이트 1 내지 5중량부 및 사슬연장제 2 내지 6중량부를 첨가하여 교반하여 수용성 우레탄 조성물을 제조하는 단계; 및
상기 수용성 우레탄 조성물 3 내지 6 중량부에 흑연 7 내지 4 중량부를 분산하는 단계;를 포함하는 것을 특징으로 하는 수용성 우레탄의 제조방법.
Mixing 60 parts by weight of polyol with 3 to 9 parts by weight of dimethylbutanoic acid (DMBA) to prepare a mixture;
1 to 5 parts by weight of isocyanate and 2 to 6 parts by weight of chain extender are added to 63 to 69 parts by weight of the mixture and stirred to prepare a water-soluble urethane composition; And
And dispersing 7 to 4 parts by weight of graphite in 3 to 6 parts by weight of the water-soluble urethane composition.
제 6항에 있어서, 상기 폴리올과 디메틸 부타 산(Dimethylol butanoic acid, DMBA)을 혼합하는 단계는,
상기 폴리올 및 디메틸 부타 산(Dimethylol butanoic acid, DMBA)를 150℃에서 4시간 동안 반응시켜 혼합물을 제조하는 것을 특징으로 하는 수용성 우레탄의 제조방법.
7. The method of claim 6, wherein mixing the polyol with dimethylol butanoic acid (DMBA)
Wherein the polyol and dimethylol butanoic acid (DMBA) are reacted at 150 DEG C for 4 hours to prepare a mixture.
제 6항 또는 7항 중 어느 한 항에 있어서,
상기 폴리올로 분자량이 2,000인 폴리프로필렌글리콜(PPG)을 사용하는 것을 특징으로 하는 수용성 우레탄의 제조방법.
7. The method according to any one of claims 6 to 7,
And polypropylene glycol (PPG) having a molecular weight of 2,000 is used as the polyol.
제 6항에 있어서, 상기 혼합물에 이소시아네이트 및 사슬연장제를 첨가하여 수용성 우레탄 조성물을 제조하는 단계는,
상기 혼합물에 상기 이소시아네이트 및 사슬연장제를 첨가하여 80℃에서 1,000rpm으로 8시간 동안 교반하는 것을 특징으로 하는 수용성 우레탄의 제조방법.
7. The method of claim 6, wherein adding the isocyanate and chain extender to the mixture to produce the water soluble urethane composition comprises:
Adding the isocyanate and the chain extender to the mixture, and stirring the mixture at 80 DEG C and 1,000 rpm for 8 hours.
제 6항 또는 9항 중 어느 한 항에 있어서,
상기 이소시아네이트로 메틸렌 다이페닐 다이아이소사이아네이트(MDI)를 사용하는 것을 특징으로 하는 수용성 우레탄의 제조방법.
10. The method according to any one of claims 6 to 9,
Characterized in that methylene diphenyldiisocyanate (MDI) is used as the isocyanate.
제 6항 또는 9항 중 어느 한 항에 있어서,
상기 사슬연장제로 트리에틸아민(TEA)을 사용하는 것을 특징으로 하는 수용성 우레탄의 제조방법.
10. The method according to any one of claims 6 to 9,
Characterized in that triethylamine (TEA) is used as the chain extender.
제 6항에 있어서, 상기 수용성 우레탄 조성물 3 내지 6 중량부에 흑연 7 내지 4 중량부를 분산하는 단계는,
상기 수용성 우레탄 조성물과 흑연을 300 내지 500rpm으로 1시간 내지 3시간 동안 교반하는 것을 특징으로 하는 수용성 우레탄의 제조방법.
7. The method of claim 6, wherein the step of dispersing 7 to 4 parts by weight of graphite in 3 to 6 parts by weight of the water-soluble urethane composition comprises:
Wherein the water-soluble urethane composition and graphite are stirred at 300 to 500 rpm for 1 to 3 hours.
KR1020160108590A 2016-08-25 2016-08-25 Water-soluble polyurethane for liquid coating of thermal interface material and method thereof KR101852128B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160108590A KR101852128B1 (en) 2016-08-25 2016-08-25 Water-soluble polyurethane for liquid coating of thermal interface material and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160108590A KR101852128B1 (en) 2016-08-25 2016-08-25 Water-soluble polyurethane for liquid coating of thermal interface material and method thereof

Publications (2)

Publication Number Publication Date
KR20180023385A true KR20180023385A (en) 2018-03-07
KR101852128B1 KR101852128B1 (en) 2018-04-25

Family

ID=61689037

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160108590A KR101852128B1 (en) 2016-08-25 2016-08-25 Water-soluble polyurethane for liquid coating of thermal interface material and method thereof

Country Status (1)

Country Link
KR (1) KR101852128B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102564781B1 (en) * 2023-04-21 2023-08-07 홍정애 Conductive Member Coated with Graphite Composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5015366B2 (en) 2000-09-12 2012-08-29 ポリマテック株式会社 Thermally conductive molded body and method for producing the same
KR101061735B1 (en) 2008-12-31 2011-09-02 주식회사 노루홀딩스 A coating composition comprising a method for producing an aqueous urethane resin composition and a urethane resin composition prepared accordingly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102564781B1 (en) * 2023-04-21 2023-08-07 홍정애 Conductive Member Coated with Graphite Composition

Also Published As

Publication number Publication date
KR101852128B1 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
TWI616398B (en) Composition containing boron nitride and three-dimensional integrated circuit having layers composed of the composition
TWI534256B (en) Hardened heat dissipation composition
CN107312440A (en) High-termal conductivity aqueous polyurethane coating and preparation method thereof
KR101312203B1 (en) Carbon black pigment for electronic paper, dispersion of the pigment, and process for production of the pigment
KR20150064039A (en) Conductive composition and conductive molded body using same
JP2015006980A (en) Boron nitride aggregated particle, aggregated bn particle-containing resin composition, and heat-radiation sheet
US11075021B2 (en) Conductive composites
EP1967552A1 (en) Surface-modified carbon black and dispersions thereof
TWI500736B (en) Composition for anisotropic conductive adhesive film, anisotropic conductive adhesive film, and semiconductor device
CN104629606A (en) Antibacterial waterproof polyurethane coating and preparation method thereof
KR101852128B1 (en) Water-soluble polyurethane for liquid coating of thermal interface material and method thereof
TWI680995B (en) Epoxy resin composition
KR101780515B1 (en) Method for producing latent curing agent
KR101102867B1 (en) Composition of Water-dispersive Re-emulsifiable Polyurethane/Arcrylate Copolymer Hybrid and Method of Producing the Same
JP5713619B2 (en) Anisotropic conductive material and method for producing the same
KR20180011420A (en) Protected Coating composition for processing Wafer and the Coating Material manufacturing thereof
CN104341569B (en) TPUE and preparation method thereof
JPH10251377A (en) Molding material for sealing and electronic part
KR100842411B1 (en) Composition of Water-soluble Polyurethane/Epoxy Hybrid and Method of Producing the Same
KR101398514B1 (en) Coating composition comprising aniline terminated waterborne polyurethane and poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate
KR101946713B1 (en) Nonionic surfactant, composition for color filter including the nonionic surfactant, and method of forming the nonionic surfactant
EP4258291A1 (en) Method for producing an electrically conductive polyurethane composite material, and said material
CN116554822A (en) Double-component polyurethane pouring sealant and preparation method and application thereof
TW202106741A (en) Cured object, overcoat film, and flexible wiring board
CN116568722A (en) Curable composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant