KR20180017465A - Dual stimuli-responsive oligoamine boronic acid - Google Patents

Dual stimuli-responsive oligoamine boronic acid Download PDF

Info

Publication number
KR20180017465A
KR20180017465A KR1020160101314A KR20160101314A KR20180017465A KR 20180017465 A KR20180017465 A KR 20180017465A KR 1020160101314 A KR1020160101314 A KR 1020160101314A KR 20160101314 A KR20160101314 A KR 20160101314A KR 20180017465 A KR20180017465 A KR 20180017465A
Authority
KR
South Korea
Prior art keywords
oligoamine
boronic acid
sensitive
oab
acid
Prior art date
Application number
KR1020160101314A
Other languages
Korean (ko)
Other versions
KR101849461B1 (en
Inventor
홍종달
에스. 조세프 빈센트
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Priority to KR1020160101314A priority Critical patent/KR101849461B1/en
Publication of KR20180017465A publication Critical patent/KR20180017465A/en
Application granted granted Critical
Publication of KR101849461B1 publication Critical patent/KR101849461B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/69Boron compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)

Abstract

The present invention relates to a dual stimuli-responsive oligoamine boronic acid (OAB). More specifically, the present invention relates to a biodegradable OAB patch, a method of preparing the OAB patch by using natural amino acid and 3-carboxyphenylboronic acid, and a medical use of the OAB patch, wherein the OAB patch has a specific structure containing predetermined numbers of cationic amine groups and phenyl boronic acid groups such that the OAB patch is bonded to carbon dioxide (CO_2) and monosaccharides to obtain excellent sensitivity with respect to CO_2 and monosaccharides, and which is applicable as an ideal material in various biomedical fields such as a stimulus-responsive assembly with respect to CO_2 and blood sugar in the blood, a drug delivery encapsulant, and the like since bonds of the OAB patch with CO_2 and monosaccharides not only are formed at a neutral pH value similar to in vivo conditions, but also are free from cytotoxicity. A dual stimuli-responsive OAB of the present invention is represented by chemical formula 3.

Description

이중 자극-감응성 올리고아민 보론산{DUAL STIMULI-RESPONSIVE OLIGOAMINE BORONIC ACID}DUAL STIMULI-RESPONSIVE OLIGOAMINE BORONIC ACID < RTI ID = 0.0 >

본 발명은 이중 자극-감응성 올리고아민 보론산에 관한 것으로, 더욱 상세하게는 소정 개수의 양이온성 아민 그룹과 페닐보론산 그룹을 함유한 특정 구조를 지님으로써, 이산화탄소(CO2) 및 단당류(모노사카리드)와 결합하여 이들 각각에 대해 뛰어난 감응성을 지니고 이러한 결합이 생체 조건과 유사한 중성 pH에서 이루어지며 세포독성 또한 없어, 혈액 내 CO2 및 혈당에 대한 자극-감응성 어셈블리, 약물전달용 캡슐화제 등을 비롯한 다양한 생체의학 분야에서 이상적인 소재로 적용이 가능한 생체분해성 올리고아민 보론산(OAB) 패치, 천연 아미노산 및 3-카르복시페닐보론산을 이용해 이를 제조하는 방법, 및 이의 의약적 용도에 관한 것이다.
The present invention dual stimuli-responsive oligonucleotide relates to amine acid, and more particularly by jinim a specific structure containing a cationic amine group and a boronic acid group of a predetermined number, and carbon dioxide (CO 2) and monosaccharides (monosaccharides Leads) and has excellent sensitivity to each of these, and this binding is carried out at a neutral pH similar to in vivo conditions and is also not cytotoxic. Thus, stimulation-sensitive assemblies for blood CO 2 and blood glucose, encapsulating agents for drug delivery and the like Biodegradable oligoamine boronic acid (OAB) patches that can be applied as an ideal material in a variety of biomedical fields, including natural amino acids and 3-carboxyphenylboronic acid, and their pharmaceutical uses.

페닐보론산(Phenylboronic acid)은 단당류(Monosaccharide)에 가역적으로 결합하여 페닐보론산 에스테르를 형성할 수 있는바, 폴리이온, 폴리머 및 덴드리머 내로의 도입을 통해 인슐린 전달용 나노- 및 마이크로- 어셈블리, 생물학적으로 중요한 글리코컨쥬게이트(Glycoconjugate)용 수용체 등을 설계하는데 있어 큰 잠재성을 보이는 물질이다.
Phenylboronic acid can be reversibly bound to monosaccharides to form phenylboronic acid esters, which can be introduced into polyelectrolytes, polymers and dendrimers via nano- and micro-assemblies for insulin delivery, biological Which is important for the design of Glycoconjugate receptors.

그러나, 이러한 페닐보론산류를 생체에 적용함에는 높은 pH 조건(> pH 9), 독성 유발 등 아직까지 많은 제한사항이 존재한다. 또한 페닐보론산계 폴리머의 경우, 그 적절한 구조가 아직까지 충분히 연구되어 있지 않았고, 다수의 부수 조건(세포 조직에서 모든 네거티브 사이트에 강하고 비가역적으로 결합하는 거동, 불안정화 및 응집 유발 등)에 따른 제약을 받고 있는 상황이다. 또한 이러한 제한적인 부수 조건과 더불어, 페닐보론산을 이용해 폴리전해질 복합체 및 캡슐을 제조하는데에도 몇몇 실제적 요구사항들이 존재한다.However, there are still many limitations in application of such phenylboronic acids to living bodies, such as high pH conditions (> pH 9) and toxicity. In addition, in the case of the phenylboronic acid polymer, its proper structure has not yet been fully studied, and the constraint due to a large number of side conditions (strong irreversible binding, irreversible binding and aggregation induction in all the negative sites in the cell tissue) The situation is receiving. There are also some practical requirements for the production of polyelectrolyte complexes and capsules using phenylboronic acid, in addition to these restrictive side conditions.

따라서, 센싱 및 약물전달 분야에 있어서 페닐보론산류 물질의 생체적용성 및 잠재성에 대한 더욱 심도있는 연구 및 개발이 필요한 현실이다.
Therefore, in the field of sensing and drug delivery, further study and development of the bioavailability and potential of phenylboronic acid materials are necessary.

이와 관련하여, 아미도아민(Amidoamine) 골격과 더불어 비-독성의 생체분해성 구조를 지니도록 페닐보로네이트 부분을 설계하는 것은 좋은 해결책이 될 수 있다. 또한 명확한 구조로 설계되면 네거티브 사이트와의 특정적 상호작용에 관한 제어가 가능해지고, 단순한 외부 자극에 대해 세포막이 가역적으로 제어될 수 있다.In this regard, designing the phenylboronate moiety to have a non-toxic, biodegradable structure along with the amidoamine skeleton can be a good solution. In addition, when the structure is designed with a clear structure, control over the specific interaction with the negative site becomes possible, and the cell membrane can be reversibly controlled with respect to a simple external stimulus.

이러한 구조는 보다 진보된 스마트 복합체 구조를 가능하게 할 뿐만 아니라, 다양한 생체의학 분야에 있어서 자극-트리거 방식으로 활성 성분의 방출을 제어할 수 있도록 해 줄 것이다.
This structure not only allows for a more advanced smart composite structure, but also allows for controlled release of the active ingredient in a stimulus-triggered manner in various biomedical fields.

또한, 아미도아민 내의 아민 그룹은 분자간 보론산-아민(B-N) 상호작용을 통해 페닐보론산 그룹의 pKa를 낮출 수 있을 것으로 기대된다. 아울러 아미도아민 골격을 활용하면 세포독성 및 면역원성을 저감시킬 수 있을 것으로 예상되는바, 이는 폴리(아미도아민)이 통상적으로 생체적합성 고분자(거대분자)여서 생체의학용으로 적절하기 때문이다. 더불어 아미도아민은 부분적으로 양쪽친매성을 지니고 수소결합을 형성하는 능력이 있어 세포막과 원활하게 상호작용을 할 수 있는 것으로 알려져 있다.It is also expected that the amine groups in the amidoamine can lower the pKa of the phenyl boronic acid groups through intermolecular boronic acid-amine (B-N) interactions. In addition, the use of the amidoamine skeleton is expected to reduce cytotoxicity and immunogenicity, because poly (amidoamine) is usually a biocompatible polymer (macromolecule), and is suitable for living organisms. In addition, amidoamines are known to have a partial affinity for both and have the ability to form hydrogen bonds, allowing them to interact smoothly with the cell membrane.

따라서, 폴리(아미도아민)은 세포막 만곡(Membrane curvature)을 개시하여 엔도시토시스(Endocytosis)를 유도하는 것으로 현재 여겨지고 있는 인지질 머리 그룹(Phospholipid head groups)과의 멀티포인트 상호작용을 실현할 수 있는 소재이다.
Therefore, poly (amidoamine) is a substance that can realize multi-point interaction with phospholipid head groups, which is thought to induce endocytosis by initiating membrane curvature. to be.

이러한 새로운 소재가 개발된다면, 올리고펩티드 또는 단백질 약물(특히, 인슐린) 전달과 같은 관세포 수송(Transcellular trafficking) 분야에 크게 기여할 수 있을 것이다.
If such a new material is developed, it could contribute significantly to the field of transcellular trafficking, such as the delivery of oligopeptides or protein drugs (especially insulin).

구체적으로, 혈액 내에 있는 이산화탄소와 혈당에 감응하는 재료의 개발에 관한 연구가 활발하게 진행되고 있는바, 이러한 재료들은 약물 코팅제로 사용되었을 경우 혈액 내에 있는 이산화탄소 및 단당류와 결합하는 과정에 해리되거나 구조 변화가 일어나 약물방출을 제어할 수 있기 때문이다.Specifically, studies on the development of substances sensitive to carbon dioxide and blood sugar in blood have been actively carried out, and when these materials are used as a drug coating agent, they are dissociated or dissolved in the process of bonding with carbon dioxide and monosaccharides in blood And the drug release can be controlled.

이와 관련하여, 페닐보론산을 포함하는 다양한 형태의 재료들이 보고된 바 있으나, 지금까지 보고된 재료들은 대부분 높은 pH에서 작동하거나 강한 독성 때문에 생체에 사용될 수 없었다.
In this connection, various types of materials including phenylboronic acid have been reported, but most of the materials reported so far can not be used in living organisms due to their operation at high pH or their strong toxicity.

이에, 세포독성이 없는 페닐보론산계 물질로서 생체 조건과 유사한 중성 pH 영역에서 혈당 등에 대해 특이적인 감응성을 나타내어 자극-감응성 센싱, 약물 전달 및 방출 제어 등 다양한 생체의학 분야에 적용될 수 있는 새로운 소재에 대한 개발이 요구되는 실정이다.
As a result, it has been shown that a phenylboronic acid-based material having no cytotoxicity exhibits specific sensitivity to blood glucose and the like in a neutral pH region similar to a living body condition, and thus can be applied to a variety of biomedical fields such as stimuli-sensitive sensing, drug delivery, Development is required.

De Geest, B. G.; Jonas, A. M.; Demeester, J.; De Smedt, S. C. Langmuir 2006, 22, 5070.De Geest, B. G .; Jonas, A. M .; Demeester, J .; De Smedt, S. C. Langmuir 2006, 22, 5070.

본 발명은 상기와 같은 종래의 요구를 충족시키기 위한 것으로, 생체 조건과 유사한 중성 pH에서 이산화탄소 및 단당류와 원활하게 결합할 수 있는 비-세포독성의 이중 자극-감응성 올리고아민 보론산, 이를 효율적으로 합성하는 방법, 및 이의 의약적 용도를 제공함을 기술적 과제로 한다.
The present invention relates to a non-cytotoxic double-stimulus-sensitive oligoamine boronic acid capable of smoothly binding to carbon dioxide and monosaccharide at a neutral pH similar to a living condition, And to provide a medicinal use thereof.

상기한 기술적 과제를 달성하고자, 본 발명은 하기 화학식 3으로 표시되는 이중 자극-감응성(Dual stimuli-responsive) 올리고아민 보론산(Oligoamine boronic acid; OAB)을 최초로 제공한다.In order to achieve the above object, the present invention provides a dual stimuli-responsive oligoamine boronic acid (OAB) represented by the following formula (3).

[화학식 3](3)

Figure pat00001

Figure pat00001

본 발명은 예의 연구를 거듭한 결과, 천연 아미노산 및 3-카르복시페닐보론산에 기초한 단분산(Homodisperse) 이중 자극-감응성 올리고아민 보론산(OAB)(이른바, 페닐보로네이트로 개질된 올리고아민 패치)을 합성하는데 성공하였다.As a result of intensive studies, the present inventors have found that a homodisperse double stimulus-sensitive oligoamine boronic acid (OAB) based on natural amino acid and 3-carboxyphenylboronic acid (so-called oligoamine patch modified with phenylboronate ) Was successfully synthesized.

본 발명에 따른 올리고아민 보론산은 적절한 개수의 양이온성 아민 그룹(정확히는 7개의 아민 그룹)을 지녀 음이온성 표면 및 폴리머에 대해 충분히 강하면서도 가역적으로 결합할 수 있고, 비-세포독성(Non-cytotoxic)이라는 장점이 있다. 구체적으로 본 발명의 올리고아민 보론산은 이산화탄소(CO2)에 대한 감응성을 지닌 것으로, 가역적인 CO2 착화(Complexation) 및 카바메이트 형성에 의해 그 전체 전하(Overall charge)가 양이온성 및 음이온성 사이의 통상적인 pH 범위(5.5 ~ 7.5)에서 전환될 수 있다.The oligomainic boronic acid according to the present invention possesses a suitable number of cationic amine groups (exactly seven amine groups) and is sufficiently strong and reversible to anionic surfaces and polymers to be able to bind non-cytotoxic, . Specifically, the oligomainic boronic acid of the present invention has sensitivity to carbon dioxide (CO 2 ), and its overall charge due to reversible CO 2 complexation and carbamate formation is between cationic and anionic It can be converted in the usual pH range (5.5 to 7.5).

또한, 본 발명에 따른 올리고아민 보론산은 적절한 개수의 페닐보론산 그룹(정확히는 4개의 페닐보론산 그룹)을 지녀 0.1 M 인산 완충액(Phosphate buffer) 내의 중성 pH 조건에서 단당류(모노사카리드; Monosaccharide)에 대해 강한 결합을 나타내며, 이는 색상법(또는 측색법, 비색정량법; Colorimetry) 및 Wang의 경합결합측정법(Competitive binding assay)을 통해 정량적으로 확인되었다.The oligoamine boronic acid according to the present invention has an appropriate number of phenylboronic acid groups (specifically, four phenylboronic acid groups) and is reacted with a monosaccharide (monosaccharide) in neutral pH conditions in a 0.1 M phosphate buffer (Colorimetry) and Wang's competitive binding assay (quantitation). The results are shown in FIG.

즉, 본 발명에 따른 특정 구조의 올리고아민 보론산은 중성 pH 조건(예컨대, pH 7.4)에서 CO2와 같은 그린 트리거(Green trigger)와 가역적으로 결합하고, 단당류에 대한 강한 결합 특성을 나타내는바, 약물(예컨대, 인슐린) 패치, 혈액 내 이산화탄소 및 혈당에 대한 자극-감응성 어셈블리, 약물전달용 캡슐화제, 약물 코팅제 및 약물방출 제어제를 비롯한 다양한 의약적 용도로 적용될 수 있다.
That is, the oligoamine boronic acid having a specific structure according to the present invention reversibly binds to a green trigger such as CO 2 at a neutral pH condition (for example, pH 7.4) and exhibits strong binding properties to monosaccharides, (E.g., insulin) patches, stimulation-sensitive assemblies for blood carbon dioxide and blood glucose, encapsulating agents for drug delivery, drug coatings, and drug release control agents.

또한, 본 발명은 하기 화학식 2로 표시되는 올리고아민-2 화합물과 N,N'-디이소프로필카르보디이미드(DIC)에 의해 활성화된 3-카르복시페닐보론산을 커플링시켜, 하기 화학식 3으로 표시되는 올리고아민 보론산을 합성하는 것을 특징으로 하는, 이중 자극-감응성 올리고아민 보론산의 제조방법을 제공한다.The present invention also relates to a process for the preparation of a compound of formula (I), which comprises coupling an oligoamine-2 compound represented by the following formula 2 with 3-carboxyphenylboronic acid activated by N, N'-diisopropylcarbodiimide Characterized in that an oligoamine boronic acid to be displayed is synthesized.

구체적으로, 본 발명은 S1) N,N'-디이소프로필카르보디이미드(DIC)가 첨가된 N-메틸이미노디아세트산과 트리스(2-아미노에틸)아민을 반응시켜, 하기 화학식 1로 표시되는 블록-1 화합물을 합성하는 단계; S2) 상기 블록-1 화합물과 N,N'-디이소프로필카르보디이미드(DIC)가 첨가된 Boc-Lys(Boc)-OH를 반응시켜, 하기 화학식 2로 표시되는 올리고아민-2 화합물을 합성하는 단계; 및 S3) 상기 올리고아민-2 화합물과 N,N'-디이소프로필카르보디이미드(DIC)가 첨가된 3-카르복시페닐보론산을 반응시켜, 하기 화학식 3으로 표시되는 올리고아민 보론산을 합성하는 단계;를 포함하는, 이중 자극-감응성 올리고아민 보론산의 제조방법을 제공한다.Specifically, the present invention relates to a method for preparing a compound represented by the following formula (1): S1) reacting N-methyliminodiacetic acid to which N, N'-diisopropylcarbodiimide (DIC) Synthesizing a block-1 compound; S2) reacting the above-mentioned block-1 compound with Boc-Lys (Boc) -OH to which N, N'-diisopropylcarbodiimide (DIC) was added to synthesize an oligoamine-2 compound represented by the following formula ; And S3) reacting the oligoamine-2 compound with 3-carboxyphenylboronic acid to which N, N'-diisopropylcarbodiimide (DIC) is added to synthesize an oligoamine boronic acid represented by the following formula Wherein the method comprises the steps of:

[화학식 1][Chemical Formula 1]

Figure pat00002
Figure pat00002

[화학식 2](2)

Figure pat00003
Figure pat00003

[화학식 3](3)

Figure pat00004

Figure pat00004

본 발명에 따른 올리고아민 보론산은 생체 내와 유사한 중성 pH 조건에서 이산화탄소 및 단당류 각각에 대한 이중 자극-감응성을 나타낸다.The oligoamine boronic acid according to the present invention exhibits dual stimulus-sensitivity for each of carbon dioxide and monosaccharide at neutral pH conditions similar to in vivo.

또한, 본 발명에 따른 올리고아민 보론산은 세포독성이 없고 생체분해성(Biodegradable)이며 생체적합성이 뛰어나다.In addition, the oligomainic boronic acid according to the present invention has no cytotoxicity, is biodegradable and excellent in biocompatibility.

이를 통해, 본 발명에 따른 올리고아민 보론산은 다양한 생체의학 분야에 있어 자극-감응성 나노- 및 마이크로- 어셈블리, 센싱 어셈블리, 약물전달용 캡슐, 약물 방출제어제, 글리코컨쥬게이트(Glycoconjugate) 수용체 등을 설계하기 위한 매우 이상적인 소재가 될 수 있다.Thus, the oligomainic boronic acid according to the present invention can be used in a variety of biomedical fields to design stimulus-sensitive nano- and micro-assemblies, sensing assemblies, drug delivery capsules, drug release control agents, glycoconjugate receptors, It can be a very ideal material to do.

본 발명은 생체에 실제 적용이 가능한 것으로서 제약산업 분야에 미치는 파급효과가 매우 클 것으로 기대된다.
It is expected that the present invention can be practically applied to a living body and has a very large ripple effect on the pharmaceutical industry.

도 1의 (A)는 OAB(5 mM Millipore water 내, pH 7.0)의 전도도 측정 결과(상단) 및 기준치로서 순수한 물(Millipore water, pH 7.0)의 전도도 측정 결과(하단); (B)는 1분 동안 천천히 CO2 버블링을 시행하기 전과 후, MeOH/(50% 에테르/헥산) 용액(1:1, v/v) 내 OAB의 외관 변화를 보여주는 사진;이다.
도 2의 (A)는 (a) ARS(1.44 x 10-4 M, 0.1 M 인산 완충액 내(pH 7.4)), (b) ARS(1.44 x 10-4 M) + OAB(1.5 x 10-3 M), (c) ARS(1.44 x 10-4 M) + OAB(1.5 x 10-3 M) + 글루코오스(0.5 M), (d) ARS(1.44 x 10-4 M) + OAB(1.5 x 10-3 M) + 프룩토오스(0.5 M)의 UV-visible 분광분석 결과(* 삽입도 = a, b, c, d 각 용액의 이미지); (B)는 글루코오스 및 프룩토오스 첨가에 따른 ARS/OAB 복합체의 572 nm에서의 형광 변화를 보여주는 그래프;이다.
도 3의 (A)는 OAB의 1H NMR 스펙트럼; (B)는 OAB의 13C NMR 스펙트럼;(* MeOH-d4, 400 MHz, 별표 = 잔류 용매 및 H2O 피크)이다.
도 4는 OAB의 액체 크로마토그래피 질량 분광분석(LCMS) 결과이다.
도 5는 0.1 M 인산 완충액, pH 7.4에서 ARS(1.44 x 10-4 M) + OAB(1.5 x 10-3 M)의 외관을 보여주는 사진(* 좌측 = 당류 없음, 가운데 = 0.5 M 글루코오스, 우측 = 0.5 M 프룩토오스 함유)이다.
도 6의 (A)는 ARS-OAB 복합체의 농도 증가(0 ~ 1.0 x 10-2 M)에 따른 ARS(1.44 x 10-4 M) 형광 프로파일(λex = 468 nm, λem = 572 nm); (B)는 OAB 존재시(pH 7.4, 0.1 M 인산 완충액) ARS(1.44 x 10-4 M)의 형광 강도 증가를 보여주는 그래프; (C)는 ARS(1.44 x 10-4 M) 및 OAB(0.71 x 10-3 ~ 1.0 x 10-2 M) 존재시, ARS-OAB(Keq1)를 계산하기 위한 1/ΔIf vs. 1/R 플롯(* Keq1 = 1215.0);이다.
도 7의 (A)는 글루코오스 농도 증가(0 ~ 1.0 M)에 따른 OAB(1.5 x 10-3 M) 결합 관련 ARS 형광 프로파일; (B)는 ARS 용액(1.44 x 10-4 M)을 포함한 3-성분계에서 OAB(1.5 x 10-3 M)와 글루코오스(0.10 ~ 1.0 M)의 결합에 대한 [S]/P vs. Q 플롯(* Keq = 5.8);이다.
도 8의 (A)는 프룩토오스 농도 증가(0 ~ 1.0 M)에 따른 OAB(1.5 x 10-3 M) 결합 관련 ARS 형광 프로파일; (B)는 ARS 용액(1.44 x 10-4 M)을 포함한 3-성분계에서 OAB(1.5 x 10-3 M)와 프룩토오스(9.95 x 10-3 ~ 1.0 M)의 결합에 대한 [S]/P vs. Q 플롯(* Keq = 73.4);이다.
FIG. 1 (A) shows the conductivity measurement results (top) of OAB (5 mM in Millipore water, pH 7.0) and the conductivity measurement results (bottom) of pure water (Millipore water, pH 7.0) as a reference value; (B) is a photograph showing the appearance change of OAB in MeOH / (50% ether / hexane) solution (1: 1, v / v) before and after slow CO 2 bubbling for 1 minute.
(A) of Figure 2 (a) ARS (1.44 x 10 -4 M, 0.1 M in phosphate buffer (pH 7.4)), (b ) ARS (1.44 x 10 -4 M) + OAB (1.5 x 10 -3 M), (c) ARS ( 1.44 x 10 -4 M) + OAB (1.5 x 10 -3 M) + glucose (0.5 M), (d) ARS (1.44 x 10 -4 M) + OAB (1.5 x 10 -3 M) + fructose (0.5 M) (* image of inset = a, b, c, d solution of each solution); (B) is a graph showing the fluorescence change at 572 nm of the ARS / OAB complex upon addition of glucose and fructose;
Figure 3 (A) shows the 1 H NMR spectrum of OAB; (B) is a 13 C NMR spectrum of OAB (* MeOH-d4, 400 MHz, asterisk = residual solvent and H 2 O peak).
Figure 4 is the result of liquid chromatography mass spectrometry (LCMS) of OAB.
FIG. 5 is a photograph showing the appearance of ARS (1.44 x 10-4 M) + OAB (1.5 x 10-3 M) in 0.1 M phosphate buffer, pH 7.4 (left side = no saccharide, middle = 0.5 M glucose, 0.5 M fructose).
Figure 6 (A) shows the ARS (1.44 x 10 -4 M) fluorescence profile (λ ex = 468 nm, λ em = 572 nm) with increasing concentration (0-1.0 x 10 -2 M) of the ARS- ; (B) is a graph showing the increase in fluorescence intensity of ARS (1.44 x 10 -4 M) in the presence of OAB (pH 7.4, 0.1 M phosphate buffer); (C) is 1 / ΔI f for calculating ARS-OAB (K eq1 ) in the presence of ARS (1.44 × 10 -4 M) and OAB (0.71 × 10 -3 to 1.0 × 10 -2 M). 1 / R plot (* K eq1 = 1215.0);
Figure 7 (A) shows the ARS fluorescence profile associated with OAB (1.5 x 10-3 M) binding according to an increase in glucose concentration (0 to 1.0 M); (B) shows the [S] / P vs. the binding of OAB (1.5 x 10-3 M) and glucose (0.10-1.0 M) in a three-component system containing the ARS solution (1.44 x 10-4 M). Q plot (* K eq = 5.8).
Figure 8 (A) shows the ARS fluorescence profile associated with OAB (1.5 x 10-3 M) binding according to increasing fructose concentration (0-1.0 M); (B) shows the effect of [S] on the binding of OAB (1.5 x 10 -3 M) and fructose (9.95 x 10 -3 to 1.0 M) in a three-component system containing ARS solution (1.44 x 10 -4 M) / P vs. Q plot (* K eq = 73.4);

이하, 실시예 및 실험예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 예로 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. It should be understood, however, that these examples are for illustrative purposes only and are not intended to limit the scope of the invention in any way.

실시예Example

(1) 재료 및 기기(1) materials and equipment

트리스(2-아미노에틸)아민(TAEA, Aldrich), N-메틸이미노디아세트산(MIDA, Alfa aesar), 트리에틸아민(TEA, Aldrich,), N,N'-디이소프로필카르보디이미드(DIC, TCI), 3-카르복시페닐보론산(CPBA, TCI), MeOH(LCMS grade), 트리플루오로아세트산(TFA; Aldrich) 및 Boc-아미노산 유도체(Boc-Lys(Boc)-OH*DCHA, TCI)를 입수한 그대로 사용하였다.(TEA, Aldrich), N, N'-diisopropylcarbodiimide (DIC, Aldrich), tris (2-aminoethyl) amine (TAEA, Aldrich), N-methyliminodiacetic acid , TCI), 3-carboxyphenylboronic acid (CPBA, TCI), MeOH (LCMS grade), trifluoroacetic acid (TFA; Aldrich) and Boc- amino acid derivatives (Boc- Was used as received.

다른 모든 시약들은 상업적으로 구입하여 그대로 사용하였다.All other reagents were purchased commercially and used as is.

핵자기 공명(NMR) 스펙트럼은 MeOH-d4 용매를 이용해 Agilent DD2 NMR(400 MHz) 분광계 상에 기록하였다.Nuclear magnetic resonance (NMR) spectra using the solvent MeOH-d 4 was recorded on a Agilent DD2 NMR (400 MHz) spectrometer.

질량 스펙트럼은 Agilent 6300 Ion trap LC/MS 시스템을 이용해 기록하였다.Mass spectra were recorded using an Agilent 6300 Ion trap LC / MS system.

UV-visible 흡수 스펙트럼은 Perkin Elmer(Lambda-40) UV-vis 분광광도계(Quartz cell, Path length: 10 mm)를 이용해 확보하였다.UV-visible absorption spectra were obtained using a Perkin Elmer (Lambda-40) UV-vis spectrophotometer (Quartz cell, Path length: 10 mm).

형광 스펙트럼은 FluoroMate FS-2 형광 분광계를 이용해 기록하였다.Fluorescence spectra were recorded using a FluoroMate FS-2 fluorescence spectrometer.

ARS 형광 강도는 여기 파장 468 nm 및 방출 파장 572 nm의 조건으로 측정하였다.The ARS fluorescence intensity was measured under conditions of an excitation wavelength of 468 nm and an emission wavelength of 572 nm.

전도도는 Thermo Scientific Orion 4-star pH/전도도 계측기를 이용해 측정하였다.
Conductivity was measured using a Thermo Scientific Orion 4-star pH / conductivity meter.

(2) (2) BlockBlock -1의 합성Synthesis of -1

트리스(2-아미노에틸)아민(5.3 mL, 54 mmol, 2 eq.)를 100 mL MeOH에 용해시켰다.Tris (2-aminoethyl) amine (5.3 mL, 54 mmol, 2 eq.) Was dissolved in 100 mL MeOH.

별도의 플라스크에서 트리에틸아민(5 mL)을 천천히 첨가하면서 N-메틸이미노디아세트산(4.0 g, 27 mmol, 1 eq.)을 MeOH(35 mL)에 용해시켰다.N-Methyliminodiacetic acid (4.0 g, 27 mmol, 1 eq.) Was dissolved in MeOH (35 mL) while slowly adding triethylamine (5 mL) in a separate flask.

이어서, N,N'-디이소프로필카르보디이미드(DIC)(8.4 mL, 54 mmol, 2 eq.)를 빙냉 하에서 천천히 첨가하고, 용액을 0℃에서 15분 동안 교반하였다.N, N'-Diisopropylcarbodiimide (DIC) (8.4 mL, 54 mmol, 2 equiv.) Was then slowly added under ice-cooling and the solution was stirred at 0 ° C for 15 minutes.

활성화된 디아세트산 용액을 적하 깔때기 내로 옮기고, 격렬하게 교반하면서 아민 용액에 천천히 첨가하였다.The activated diacetic acid solution was transferred into the dropping funnel and slowly added to the amine solution with vigorous stirring.

첨가 완료 후, 용액을 실온에서 24시간 동안 교반하였다.After the addition was complete, the solution was stirred at room temperature for 24 hours.

그 다음, 용매를 진공 하에서 제거하고, Block-1 조생성물을 MeOH-Et2O로부터 2회 침전시켰다. (* 수율: 95%, 녹는점: 98℃)Then, the solvent was removed under vacuum, and precipitated twice with Block-1 crude product from MeOH-Et 2 O. (* Yield: 95%, melting point: 98 占 폚)

Figure pat00005

Figure pat00005

1H-NMR (400 MHz, MeOH-d4) δ(ppm) = 1.22-1.30 (d, 24H, H1-5), 2.52-2.55 (s, 3H, H6), 2.60-2.69 (m, 2H, H7), 2.72-2.87 (m, 4H, H8), 3.32-3.41 (m, 4H, H9), 3.78-3.88 (m, 4H, H10). 13C-NMR (400 MHz, MeOH-d4) δ(ppm) = 37.59 (s, C6), 39.67 (d, C2), 40.34 (d, C3), 41.91 (s, C10), 44.01 (m, C8), 53.10 (d, C4), 53.90 (d, C5), 61.65 (s, C9), 176.97 (s, C11). ESI-MS: m/z = 399 ([M-4]), 437 ([M + CH3OH + H]+), 263 ([M + 3ACN + 2H]2+). FT-IR (KBr, cm-1): 1169(tertiary amines), 1584 (amide II), 1620 (amide I), 2945 (N-CH3), 3300-3500 (primary amines).
1 H-NMR (400 MHz, MeOH-d4) δ (ppm) = 1.22-1.30 (d, 24H, H1-5), 2.52-2.55 (s, 3H, H6), 2.60-2.69 (m, 2H, H7 ), 2.72-2.87 (m, 4H, H8), 3.32-3.41 (m, 4H, H9), 3.78-3.88 (m, 4H, H10). 13 C-NMR (400 MHz, MeOH-d4) δ (ppm) = 37.59 (s, C6), 39.67 (d, C2), 40.34 (d, C3), 41.91 (s, C10), 44.01 (m, C8 ), 53.10 (d, C 4), 53.90 (d, C 5), 61.65 (s, C 9), 176.97 (s, C 11). ESI-MS: m / z = 399 ([M-4]), 437 ([M + CH 3 OH + H] +), 263 ([M + 3ACN + 2H] 2+). FT-IR (KBr, cm -1 ): 1169 (tertiary amines), 1584 (amide II), 1620 (amide I), 2945 (N-CH 3 ), 3300-3500 (primary amines).

(3) (3) 올리고아민Oligoamine -2의 합성Synthesis of -2

Block-1(403 mg, 1 mmol, 1 eq.)을 50 mL MeOH에 용해시켰다.Block-1 (403 mg, 1 mmol, 1 eq.) Was dissolved in 50 mL MeOH.

별도의 플라스크에서 Boc-Lys(Boc)-OH(1.39 g, 4 mmol, 4 eq.)를 MeOH(10 mL)에 용해시키고, 용액을 얼음으로 냉각시켰다.In a separate flask, Boc-Lys (Boc) -OH (1.39 g, 4 mmol, 4 eq.) Was dissolved in MeOH (10 mL) and the solution was ice-cooled.

Boc-아미노산은 그 디사이클로헥실아민 염의 형태로 입수되었고, 사용 전에 표준 프로토콜에 따라 자유 산으로 트랜스퍼하였다.The Boc-amino acid was obtained in the form of its dicyclohexylamine salt and was transferred to free acid according to standard protocols before use.

이어서, DIC(619 μL, 4 mmol, 4 eq.)를 천천히 첨가하고, 용액을 15분 동안 교반하였다.Then DIC (619 [mu] L, 4 mmol, 4 eq.) Was slowly added and the solution was stirred for 15 minutes.

활성화된 아미노산 용액을 적하 깔때기 내로 옮기고, 격렬하게 교반하면서 Block-1 용액에 천천히 첨가하였다.The activated amino acid solution was transferred into a dropping funnel and slowly added to the Block-1 solution with vigorous stirring.

첨가 완료 후, 용액을 실온에서 밤새 교반하였다.After the addition was complete, the solution was stirred overnight at room temperature.

그 다음, 용매를 진공 하에서 제거하였다.The solvent was then removed under vacuum.

보호된 올리고아민 조생성물에 DCM 내의 트리플루오로아세트산(TFA)(30%) 용액을 첨가하고, 2시간 동안 교반하였다.To the protected oligoamine crude product was added a solution of trifluoroacetic acid (TFA) (30%) in DCM and stirred for 2 hours.

그 다음, 용매를 진공 하에서 감소시키고, 잔류물을 MeOH-Et2O로부터 2회 침전시켜 올리고아민-2를 수득하였다. (* 수율: 95%, 녹는점: 119 ~ 121℃)The solvent was then reduced in vacuo and the residue was precipitated twice from MeOH-Et2O to give oligoamine- 2 . (* Yield: 95%, melting point: 119 ~ 121 캜)

Figure pat00006

Figure pat00006

1H NMR (400 MHz, MeOH-d4) δ(ppm) = 1.17-1.23 (d, 20H, H1), 1.38-1.49 (m, 8H, H2), 1.62-1.73 (m, 8H, H3), 1.83-1.91 (m, 8H, H4), 2.91-3.05 (m, 11H, H5 and H12), 3.33-3.58 (m, 12H, H6), 3.67-3.80 (m, 12H, H7), 3.90-4.05 (m, 4H, H8), 4.05-4.28 (m, 4H, H9). 13C-NMR (400 MHz, MeOH-d4) δ(ppm) = 20.51 (m, C3), 25.72 (m, C5), 29.75 (m, C2), 35.61 (s, C12), 35.71 (m, C4), 38.22 (m, C7), 43.33 (s, C6), 52.16 (d, C1), 56.52 (s, C9), 160.69 (m, C10), 168.30 (m, C11). ESI-MS: m/z = 525 ([M + 2MeOH + 2H]2+), 329 ([M + 3Na]3+). FT-IR (KBr, cm-1): 1180 (tertiary amines), 1626 (amide II), 1679 (amide I), 2980 (N-CH3), 3300-3500 (primary amines).
1 H NMR (400 MHz, MeOH-d4)? (Ppm) = 1.17-1.23 (d, 20H, H1), 1.38-1.49 (m, 8H, H2), 1.62-1.73 (M, 12H, H4), 2.91-3.05 (m, 11H, H5 and H12), 3.33-3.58 (m, 12H, H6), 3.67-3.80 , 4H, H8), 4.05-4.28 (m, 4H, H9). 13 C-NMR (400 MHz, MeOH-d4) δ (ppm) = 20.51 (m, C3), 25.72 (m, C5), 29.75 (m, C2), 35.61 (s, C12), 35.71 (m, C4 ), 38.22 (m, C7), 43.33 (s, C6), 52.16 (d, Cl), 56.52 (s, C9), 160.69 (m, C10), 168.30 (m, C11). ESI-MS: m / z = 525 ([M + 2MeOH + 2H] 2+ ), 329 ([M + 3Na] 3+ ). FT-IR (KBr, cm -1 ): 1180 (tertiary amines), 1626 (amide II), 1679 (amide I), 2980 (N-CH 3 ), 3300-3500 (primary amines).

(4) (4) OABOAB 의 합성Synthesis of

올리고아민-2(300 mg, 0.327 mmol, 1 eq.)를 10 mL MeOH에 용해시켰다.Oligramine-2 (300 mg, 0.327 mmol, 1 eq.) Was dissolved in 10 mL MeOH.

별도의 플라스크에서 3-카르복시페닐보론산(217 mg, 1.309 mmol, 4 eq.)을 MeOH(10 mL)에 용해시키고, 용액을 얼음으로 냉각시켰다.In a separate flask, 3-carboxyphenylboronic acid (217 mg, 1.309 mmol, 4 eq.) Was dissolved in MeOH (10 mL) and the solution was ice-cooled.

이어서, DIC(204 μL, 1.309 mmol, 4 eq.)를 천천히 첨가하고, 용액을 0℃에서 30분 동안 교반하였다.Then DIC (204 L, 1.309 mmol, 4 eq.) Was slowly added and the solution was stirred at 0 < 0 > C for 30 min.

격렬하게 교반하면서 활성화된 3-카르복시페닐보론산 용액을 올리고아민-2 용액에 천천히 첨가하였다.The activated 3-carboxyphenylboronic acid solution was slowly added to the oligoamine-2 solution while vigorously stirring.

첨가 완료 후, 용액을 실온에서 24시간 동안 교반하였다.After the addition was complete, the solution was stirred at room temperature for 24 hours.

그 다음, 용매를 진공 하에서 제거하고, OAB 조생성물을 MeOH-Et2O로부터 2회 침전시켰다. (* 수율: 정량)
Then, the solvent was removed under vacuum, and precipitated twice with OAB crude product from MeOH-Et 2 O. (* Yield: quantitative)

1H NMR (400 MHz, MeOH-d4) δ(ppm) = 1.05-1.13 (d, 8H, H1a), 1.19-1.31 (m, 4H, H1), 1.45-1.60 (m, 8H, H2), 1.64-1.77 (m, 8H, H3), 1.85-2.00 (m, 8H, H4), 2.89-2.99 (m, 8H, H5), 3.36-3.51 (m, 4H, H6), 3.73-3.85 (m, 12H, H7), 3.97-4.09 (m, 4H, H8), 4.19-4.50 (m, 4H, H9),7.35-8.30 (m, 16H, H13, 15-17). 13C-NMR (400 MHz, MeOH-d4) δ(ppm) = 21.15 (m, C2), 22.24 (m, C3), 26.60 (m, C4), 38.74 (m, C5), 41.38 (s, C10), 43.09 (m, C7), 44.18 (m, C1), 55.85 (m, C9), 112.34 (s, C15), 115.30 (s, C16), 118.25 (s, C14), 121.21 (s, C17-18), 161.67 (m, C13), 169.61 (s, C19), 172.25 (s, C20), 174.90 (s, C21). ESI-MS: m/z 527.0 ([M + 3Na]3+), (OAB m/z 1508). FT-IR (KBr, cm-1): 1180 (tertiary amine), 1620 (amide II), 1679 (amide I), 2923 (N-CH3), 3030(aromatic), 3300-3500(primary amines).
1 H NMR (400 MHz, MeOH -d4) δ (ppm) = 1.05-1.13 (d, 8H, H1a), 1.19-1.31 (m, 4H, H1), 1.45-1.60 (m, 8H, H2), 1.64 8H, H5), 3.36-3.51 (m, 4H, H6), 3.73-3.85 (m, 8H, H3), 1.85-2.00 , H7), 3.97-4.09 (m, 4H, H8), 4.19-4.50 (m, 4H, H9), 7.35-8.30 (m, 16H, H13, 15-17). 13 C-NMR (400 MHz, MeOH-d4) δ (ppm) = 21.15 (m, C2), 22.24 (m, C3), 26.60 (m, C4), 38.74 (m, C5), 41.38 (s, C10 ), 43.09 (m, C7), 44.18 (m, Cl), 55.85 (m, C9), 112.34 (s, C15), 115.30 18), 161.67 (m, C13), 169.61 (s, C19), 172.25 (s, C20), 174.90 (s, C21). ESI-MS: m / z 527.0 ([M + 3Na] 3+ ), (OAB m / z 1508). FT-IR (KBr, cm -1 ): 1180 (tertiary amine), 1620 (amide II), 1679 (amide I), 2923 (N-CH 3 ), 3030 (aromatic), 3300-3500 (primary amines).

실험 조건 및 방법Experimental conditions and methods

(1) (One) ARSARS 법에 의한 By law KK aa 측정을 위한 방법론 Methodology for Measurement

* 회합상수(Association constant) 계산을 위한 식* Expression for association constant calculation

1/ΔIf = (ΔK poIoKeq1)-1/[R] + (ΔK poIo)-1 (1)1 / ΔI f = (ΔK p o I o K eq1 ) -1 / [R] + (ΔK p o I o ) -1 (1)

(상기 식 (1)에서, ΔK, po, Io는 모두 형광 분광광도계의 파라미터이고, [R]은 수용체(OAB)의 농도이고, If는 형광 강도이다)(R) is the concentration of the receptor (OAB), and I f is the fluorescence intensity). In the above equation (1),? K, p o and I o are parameters of the fluorescence spectrophotometer,

Q = [I]/[RI] = (IRI - I)/(I - II) (2)Q = [I] / [RI] = (I RI - I) / (I - I I ) (2)

(상기 식 (2)에서, Q는 측정된 흡광도이고, IRI는 수용체-인디케이터(OAB-ARS) 복합체의 강도이고, II는 자유 인디케이터의 강도이다)(In the formula (2), Q is the measured absorbance, I RI receptor-indicator (OAB-ARS) and the strength of the composite, I I is the intensity of the free indicator)

P = [R0] - 1/(Q Keq1) - [I0]/(Q+1) (3)P = [R 0 ] - 1 / (QK eq 1) - [I 0 ] / (Q + 1)

(상기 식 (3)에서, R0는 OAB의 총량이고, I0는 ARS의 총량이다)(In the above formula (3), R 0 is the total amount of OAB and I 0 is the total amount of ARS)

[S]/P = (Keq1/Keq)Q + 1 (4)[S] / P = (K eq1 / K eq) Q + 1 (4)

(상기 식 (4)에서, [S]는 기질 농도이다)
(In the above formula (4), [S] is the substrate concentration)

(2) 형광 및 (2) fluorescence and 흡광Absorbance 연구 Research

전형적인 ARS-OAB 형광 측정을 위해, 0.10 M 인산나트륨 1염기성 완충액(Sodium phosphate monobasic buffer) 내 1.44 x 10-3 M ARS 원액(Stock solution)(지난 7일 이내에 제조 및 냉장고에 저장된 것)을 0.10 M 인산나트륨 1염기성 완충액으로 10배 희석시키고, 4 M NaOH를 이용해 pH를 7.4로 만들어, 0.10 M 인산 완충액 내 pH 7.4의 1.44 x 10-4 M ARS 용액을 준비하였다(용액 A).For a typical ARS-OAB fluorescence measurement, 1.44 x 10 -3 M ARS stock solution (stored in the manufacturing and refrigerator within the last 7 days) in 0.10 M sodium phosphate monobasic buffer was diluted to 0.10 M Diluted 10-fold with sodium phosphate monobasic buffer, and adjusted to pH 7.4 with 4 M NaOH to prepare a 1.44 x 10 -4 M ARS solution in 0.10 M phosphate buffer (pH 7.4) (solution A).

OAB를 용액 일부에 첨가하여 1.44 x 10-4 ARS, 1.5 x 10-2 M OAB 용액을 만들고, 용액의 pH를 7.4로 조절하였다(용액 B).The OAB was added to a portion of the solution to make a 1.44 x 10-4 ARS, 1.5 x 10-2 M OAB solution, and the pH of the solution was adjusted to 7.4 (solution B).

용액 B를 용액 A 내로 적정하여 일정한 농도의 ARS와 농도 범위 7.1 x 10-4 ~ 1.0 x 10-2 M OAB의 혼합물을 만들었고, 각 혼합물을 10분 동안 그대로 두어 평형에 도달하도록 하였다.Solution B was titrated into Solution A to form a mixture of ARS at a constant concentration and a concentration range of 7.1 x 10 -4 to 1.0 x 10 -2 M OAB and each mixture was left for 10 min to reach equilibrium.

이어서, 형광 측정을 위해 용액 1 mL를 큐벳 내로 천천히 옮겼다.Then, 1 mL of the solution was slowly transferred into the cuvette for fluorescence measurement.

방출 강도는 572 nm에서 기록하였다.The emission intensity was recorded at 572 nm.

모든 정량적 실험에 대해 여기 파장은 468 nm로 설정하였다.For all quantitative experiments, the excitation wavelength was set at 468 nm.

형광 강도 변화 및 평형 상수 사이의 관계는 식 (1)을 이용해 표현될 수 있다. The relationship between the change in fluorescence intensity and the equilibrium constant can be expressed using Equation (1).

ARS-OAB에 대한 회합상수(Keq1)는 1/ΔIf vs. 1/[R] 플롯에서 절편의 몫과 기울기로부터 계산되며, 2회의 측정을 통해 Keq의 평균 값을 구하였다.The association constant (K eq1 ) for ARS-OAB is 1 / ΔI f vs.. Calculated from the slice and slope of the slice on a 1 / [R] plot, and the mean value of K eq was determined through two measurements.

1.5 x 10-3 M 농도의 OAB를 사용한 것을 제외하고는, 비슷한 방식으로 흡광도 연구를 수행하였다.
Absorbance studies were performed in a similar manner, except that OAB at a concentration of 1.5 x 10 < -3 > M was used.

(3) 3-(3) 3- 성분계Component 분석을 통한  Through analysis OABOAB 와 단당류의 결합 연구(경합결합측정 연구)And monosaccharides (Competitive binding measurement study)

경합결합측정 연구는 ARS-OAB 연구와 비슷한 방식으로 진행하였다.The competitive binding measurement study was conducted in a similar manner to the ARS-OAB study.

1.44 x 10-4 M ARS 및 1.5 x 10-3 M OAB 용액을 0.10 M 인산나트륨 1염기성 완충액 내에서 pH 7.4로 만들었다(용액 B).1.44 x 10-4 M ARS and 1.5 x 10-3 M OAB solution were made to pH 7.4 in 0.10 M sodium phosphate monobasic buffer (solution B).

용액 B 일부에 단당류를 첨가하여 1.44 x 10-4 ARS, 1.5 x 10-3 M OAB, 2.0 M 단당류 용액을 만들었다(용액 C).A portion of Solution B was added with monosaccharide to form a 1.44 x 10 -4 ARS, 1.5 x 10 -3 M OAB, 2.0 M monosaccharide solution (Solution C).

용액 C를 용액 B 내로 적정하여 일정한 농도의 ARS 및 OAB와 다양한 농도 범위의 단당류(글루코오스의 경우: 0.18 ~ 1.0 M, 프룩토오스의 경우: 0.01 ~ 1.0 M)로 이루어진 혼합물을 만들어, 가능한 많은 결합 곡선을 커버할 수 있도록 하였다.Solution C was titrated into solution B to make a mixture of constant concentrations of ARS and OAB and monosaccharides in various concentration ranges (0.18 to 1.0 M for glucose and 0.01 to 1.0 M for fructose) So that the curves can be covered.

Keq는 식 (3) 및 (4)를 이용해 계산하였다.
K eq was calculated using equations (3) and (4).

실험 결과Experiment result

(1) (One) OABOAB 의 합성 확인Synthesis confirmation

OAB는 N,N'-디이소프로필카르보디이미드(DIC)를 이용해 올리고아민-2를 3-카르복시페닐보론산 4 당량과 커플링시켜 합성되었다(그림 1).OAB was synthesized by coupling oligoamine-2 with 4 equivalents of 3-carboxyphenylboronic acid using N, N'-diisopropylcarbodiimide (DIC) (Figure 1).

OAB 구조에서 자유 1차 아민 그룹의 개수는 1H NMR 분광 상 그들의 특징적인 방향족 양성자 신호에 기초해 계산하였다.The number of free primary amine groups in the OAB structure was calculated based on their characteristic aromatic proton signal on 1 H NMR spectroscopy.

OAB는 7.35 ~ 8.30 δ ppm에서 16개 양성자에 대한 피크를 나타내었는바, 이는 OAB 내에 4개의 1차 아민 그룹이 존재함을 의미한다.The OAB showed peaks for 16 protons at 7.35 to 8.30 δ ppm, which means that there are four primary amine groups in the OAB.

액체 크로마토그래피 질량분석(Liquid chromatography mass spectrometry; LCMS) 결과, OAB(m/z 1508)에 대해 ESI-MS: m/z 527.0([M + 3Na]3+)을 나타내었다.Liquid chromatography mass spectrometry (LCMS) showed ESI-MS: m / z 527.0 ([M + 3Na] 3+ ) for OAB (m / z 1508).

[그림 1] 올리고아민 보론산(OAB)의 합성 과정[Figure 1] Synthesis of oligoamine boronic acid (OAB)

Figure pat00007

Figure pat00007

(2) (2) OABOAB Wow COCO 22 의 가역적 결합 평가Of reversible binding

전도도 측정에 의해, CO2의 5 mM OAB 수용액(pH 7.0)에 대한 가역적 결합을 조사하였다.Reversible binding of CO 2 to 5 mM OAB aqueous solution (pH 7.0) was investigated by conductivity measurement.

CO2 또는 N2를 용액 내로 천천히 버블링시키는 과정 중, OAB 용액에서의 전도도 변화를 시간 경과에 따라 측정하였다(도 1A).During the slow bubbling of CO 2 or N 2 into the solution, the change in conductivity in the OAB solution was measured over time (FIG. 1A).

일정한 CO2 버블링 도중 처음에는 OAB 용액의 전도도가 급격하게 증가하였고, 분 범위에서 유의적인 변화 없이 안정 값에 도달하였다.During constant CO 2 bubbling, the conductivity of the OAB solution increased sharply at the beginning and reached a stable value without significant change in the minute range.

이러한 전도도 증가는 CO2가 OAB의 1차 아민 작용기에 결합하여 카바메이트를 형성했기 때문이다(그림 2).This increase in conductivity is due to CO 2 binding to the primary amine functional group of OAB to form carbamates (Figure 2).

[그림 2] CO2와 아민 작용기의 결합과 관련된 서로 다른 모드: (a) CO2의 공유결합에 의한 카바메이트 형성, (b) 물에서 CO2의 용매화에 의해 탄산이 형성된 후 아민의 양성자화Figure 2 shows the different modes involved in the bonding of CO 2 and amine functional groups: (a) carbamate formation by covalent bonding of CO 2 , (b) the formation of carbonic acid by solvation of CO 2 in water, anger

Figure pat00008

Figure pat00008

모든 1차 아민 작용기가 소모된 후, 더 이상의 반응은 일어나지 않았고, 그 결과 전도도는 안정 값에 도달하였다.After all of the primary amine functionality had been consumed, no further reaction occurred and consequently the conductivity reached a steady state value.

안정 값에 도달한 후 전도도가 꾸준히 약하게 증가한 것은 높은 CO2 농도에서 보론산 부분이 천천히 카르복실화되었기 때문일 수 있다.The steady, weak increase in conductivity after reaching the steady state value may be due to the slow carboxylation of the boronic acid moiety at high CO 2 concentrations.

CO2 또는 N2 버블링 과정 중 중성 pH에서 OAB 및 순수한 물의 전도도를 비교할 필요가 있다.It is necessary to compare the conductivity of OAB and pure water at neutral pH during CO 2 or N 2 bubbling.

도 1A에서 보듯이, OAB의 전도도 변화는 순수한 물의 기준 값보다 10배 더 높았는바, 이는 탄산수소염(Hydrogen carbonate) 종이 형성되었기 때문이다.
As shown in FIG. 1A, the change in conductivity of OAB was 10 times higher than the reference value of pure water because of the formation of hydrogencarbonate species.

도 1B는 MeOH/(50% 에테르/헥산)(1:1, v/v) 용액 내 OAB의 디지털 사진이다.Figure IB is a digital photograph of OAB in a MeOH / (50% ether / hexane) (1: 1, v / v) solution.

CO2로 매우 천천히 버블링시킴에 따라 탁한 용액이 분 범위 내에서 즉시 깨끗한 용액으로 변하였는바, 이는 용액에서의 카바메이트 형성 및 OAB 아민 그룹의 양성자화에 기인한 것일 수 있다(그림 2).
By bubbling very slowly into CO 2 , the turbid solution immediately turned into a clean solution in a minute range, possibly due to carbamate formation in the solution and protonation of the OAB amine group (Figure 2).

(3) (3) OABOAB 와 단당류의 결합 평가(And monosaccharide binding assay ( UVUV // visiblevisible 및 형광 분광분석) And fluorescence spectroscopy)

UV/visible 및 형광 분광분석을 이용해, 단당류의 OAB에 대한 결합을 평가하였다(도 2). UV / visible and fluorescence spectroscopy were used to evaluate the binding of monosaccharide to OAB (Figure 2).

글루코오스(0.5 M)가 OAB/ARS 복합체 용액 내로 첨가됨에 따라, 0.1 M 인산 완충액(pH 7.4) 내 초기 OAB/Alizarin Red S(ARS) 복합체([OAB]:[ARS] = 10:1)의 465 nm에서의 흡광이 480 nm로 이동하였다.Of the initial OAB / Alizarin Red S (ARS) complex ([OAB]: [ARS] = 10: 1) in 0.1 M phosphate buffer, pH 7.4, was added to the OAB / ARS complex solution The absorption at nm shifted to 480 nm.

흡광도의 적색 이동은 단당류가 OAB에 결합하여 OAB-결합 ARS를 대체하였음을 의미한다(도 2A 및 도 5).The red shift in absorbance means that the monosaccharide binds to OAB and replaces OAB-binding ARS (FIG. 2A and FIG. 5).

글루코오스 대신 프룩토오스(0.5 M)를 첨가한 경우, 465 nm에서 OAB/ARS 복합체의 흡광도가 520 nm로 크게 적색 이동하였다.When fructose (0.5 M) was added instead of glucose, the absorbance of the OAB / ARS complex shifted significantly to 520 nm at 465 nm.

이러한 실험 결과는 중성 pH 조건에서 OAB가 단당류에 대해 민감한 응답을 보이는 점을 뚜렷하게 증명해준다.
These experimental results clearly demonstrate that OAB has a sensitive response to monosaccharides at neutral pH conditions.

중성 pH에서 단당류의 OAB에 대한 결합은 비색 평가로도 확인할 수 있다.Binding of the monosaccharide to OAB at neutral pH can be confirmed by colorimetric evaluation.

ARS/OAB 복합체 형성에 따라 ARS의 짙은 핑크(Dark pink) 색이 짙은 노랑(Dark yellowish) 색으로 변하였고, 단당류 결합에 따라 다시 색이 회복되었다(도 2A, 삽입도).
The formation of ARS / OAB complex changed the dark pink color of ARS into a dark yellowish color, and the color was recovered again according to the monosaccharide binding (Fig. 2A, inset).

(4) (4) OABOAB 와 단당류의 정량적 결합 평가(And quantitative determination of monosaccharides WangWang 의 경합결합측정법)Lt; / RTI >

Wang의 경합결합측정법에 기초하여, OAB와 단당류의 정량적 결합을 평가하였다.Based on Wang's competition binding assay, quantitative binding of OAB and monosaccharide was evaluated.

여기 상태의 양성자는 ARS의 페놀 하이드록실 그룹에서 케톤 산소로 전달되고, 그 결과 자유 ARS의 형광 소광(Fluorescence quenching)이 일어난다.The protons in the excited state are transferred to the ketone oxygen in the phenol hydroxyl group of the ARS, resulting in fluorescence quenching of the free ARS.

따라서, 보론산 에스테르가 형성되면 형광 소광 메커니즘 제거를 통해 시스템의 형광이 증가할 것으로 예상된다(그림 3).Thus, when the boronic acid ester is formed, the fluorescence of the system is expected to increase through elimination of the fluorescence quenching mechanism (Figure 3).

[그림 3] 보론산과 탄수화물의 결합에 관한 Wang의 경합결합측정법(ARS를 비색 리포터(Coloriemetric reporter)로 사용)[Figure 3] Wang's competitive binding assay (using ARS as a colorimetric reporter) on the binding of boronic acids to carbohydrates

Figure pat00009

Figure pat00009

OAB가 ARS 용액 내로 첨가되어 OAB/ARS 복합체를 형성함에 따라, ARS 용액의 형광 강도가 100배 증가하였다.As the OAB was added into the ARS solution to form the OAB / ARS complex, the fluorescence intensity of the ARS solution was increased 100-fold.

OAB/ARS 복합체의 형광 강도에 기초하여 OAB의 회합상수(Association constant; Keq)를 측정하였다. 또한 단당류의 디올에 의해 (OAB에 결합된) ARS가 대체됨에 따라 형광 강도가 감소하였다(도 2B).
The association constant (K eq ) of OAB was measured based on the fluorescence intensity of the OAB / ARS complex. Fluorescence intensity also decreased as ARS (bound to OAB) was replaced by the diol of the monosaccharide (Fig. 2B).

pH 7.4에서, OAB와 ARS 결합에 대한 Keq는 1.215 x 103 M-1로 측정되었고, OAB의 글루코오스 또는 프룩토오스에의 결합에 대한 Keq는 각각 5.8 M-1 및 73.4 M-1로 측정되었다(표 1).At pH 7.4, the K eq for OAB and ARS binding was measured to be 1.215 x 10 3 M -1 and the K eq for binding of OAB to glucose or fructose was 5.8 M -1 and 73.4 M -1 , respectively (Table 1).

중성 pH에서 Keq 값은 보고된 페닐보론산에 대한 값에 맞먹는 수치였는바, 이는 중성 pH에서 OAB에 포함된 페닐보론산 그룹이 자유 페닐보론산의 경우 못지않게 단당류와 강하게 결합함을 뚜렷이 확인시켜주는 것이다.At neutral pH, the value of K eq was comparable to the reported value for phenylboronic acid, indicating that the phenylboronic acid group contained in the OAB at neutral pH was strongly bound to the monosaccharide as well as the free phenylboronic acid It is.

[표 1] OAB와의 회합상수(Keq)(* 0.1 M 인산 완충액, pH 7.4, 2회 측정의 평균 값) [Table 1] Association constant with OAB (K eq ) (* 0.1 M phosphoric acid buffer, pH 7.4, average value of two measurements)

Figure pat00010

Figure pat00010

결과 검토Review results

본 발명에 따른 생체분해성(Biodegradable) OAB 구조는 생리학적 조건(pH 7.4)에서 단당류-감응성 거동을 나타내고, CO2와 결합하여 전체 전하의 가역적인 전환을 보였다.The biodegradable OAB structure according to the present invention exhibited monosaccharide-responsive behavior at physiological conditions (pH 7.4) and showed reversible conversion of total charge by binding with CO 2 .

생리학적으로 적절한 pH에서 CO2 처리에 따라 카바메이트를 형성하고 수중에서 운반물(예컨대, 약물)을 당류에 응답하여 방출하는 이중 자극-감응성 보론산-함유 올리고아민 패치는 아직까지 보고된 바가 없다.A dual-stimulus-sensitive boronic acid-containing oligoamine patch has not been reported yet that forms a carbamate according to CO 2 treatment at physiologically relevant pH and releases the carrier (e.g., drug) in response to the saccharide in water.

따라서, 본 발명에 따른 OAB는 센싱, 약물전달 및 다양한 생체의학적 적용을 위한 스마트 복합체의 구조를 수립하는데 있어 매우 이상적인 소재가 될 수 있을 것이다.
Thus, the OAB according to the present invention may be an ideal material for establishing the structure of a smart complex for sensing, drug delivery and various biomedical applications.

Claims (16)

하기 화학식 3으로 표시되는 이중 자극-감응성(Dual stimuli-responsive) 올리고아민 보론산(Oligoamine boronic acid; OAB):
[화학식 3]
Figure pat00011
.
Dual stimuli-responsive Oligoamine boronic acid (OAB) represented by the following formula (3): < EMI ID =
(3)
Figure pat00011
.
제1항에 있어서,
상기 올리고아민 보론산은 이산화탄소(CO2) 및 단당류(Monosaccharide)에 대한 감응성을 동시에 지니는 것을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
The method according to claim 1,
Characterized in that the oligoamine boronic acid is simultaneously susceptible to carbon dioxide (CO 2 ) and monosaccharides.
Dual stimuli-sensitive oligoamine boronic acid.
제2항에 있어서,
상기 올리고아민 보론산에 함유된 아민 그룹이 이산화탄소와 가역적으로 결합하여 이산화탄소-감응성을 지니는 것임을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
3. The method of claim 2,
Wherein the amine group contained in the oligomainic boronic acid is reversibly bound to carbon dioxide to have carbon dioxide-sensitive properties.
Dual stimuli-sensitive oligoamine boronic acid.
제3항에 있어서,
상기 올리고아민 보론산에 함유된 아민 그룹이 이산화탄소와 결합하여 카바메이트(Carbamate)를 형성하는 것임을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
The method of claim 3,
Wherein the amine group contained in the oligomeric aminoboronic acid is combined with carbon dioxide to form a carbamate.
Dual stimuli-sensitive oligoamine boronic acid.
제2항에 있어서,
상기 올리고아민 보론산에 함유된 페닐보론산 그룹이 단당류와 강하게 결합하여 단당류-감응성을 지니는 것임을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
3. The method of claim 2,
Wherein the phenylboronic acid group contained in the oligomeric aminoboronic acid is strongly bound to the monosaccharide and has a monosaccharide-sensitive property.
Dual stimuli-sensitive oligoamine boronic acid.
제5항에 있어서,
상기 페닐보론산 그룹과 단당류의 결합은 색상법(Colorimetry) 또는 경합결합측정법(Competitive binding assay)을 통해 정량이 가능한 것임을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
6. The method of claim 5,
Wherein the binding between the phenyl boronic acid group and the monosaccharide is quantitatively determined by a colorimetric method or a competitive binding assay.
Dual stimuli-sensitive oligoamine boronic acid.
제6항에 있어서,
알리자린 레드 에스(Alizarin Red S; ARS)가 비색 리포터(Coloriemetric reporter)로 사용되는 것임을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
The method according to claim 6,
Characterized in that Alizarin Red S (ARS) is used as a colorimetric reporter.
Dual stimuli-sensitive oligoamine boronic acid.
제2항에 있어서,
상기 올리고아민 보론산은 생체 조건인 중성 pH 조건에서 이산화탄소 및 단당류에 대한 감응성을 지니는 것을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
3. The method of claim 2,
Characterized in that said oligoamine boronic acid is sensitive to carbon dioxide and monosaccharides under conditions of neutral pH,
Dual stimuli-sensitive oligoamine boronic acid.
제8항에 있어서,
상기 올리고아민 보론산은 pH 7.4의 조건에서 이산화탄소 및 단당류와 결합하는 것임을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
9. The method of claim 8,
Characterized in that said oligoamine boronic acid binds to carbon dioxide and a monosaccharide under conditions of pH 7.4.
Dual stimuli-sensitive oligoamine boronic acid.
제1항에 있어서,
상기 올리고아민 보론산은 비-세포독성(Non-cytotoxic)인 것을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
The method according to claim 1,
Characterized in that said oligoamine boronic acid is non-cytotoxic.
Dual stimuli-sensitive oligoamine boronic acid.
제1항에 있어서,
상기 올리고아민 보론산은 약물 패치의 소재로 사용되는 것을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
The method according to claim 1,
Characterized in that the oligomainic boronic acid is used as the material of the drug patch.
Dual stimuli-sensitive oligoamine boronic acid.
제11항에 있어서,
상기 올리고아민 보론산은 혈액 내 이산화탄소 및 혈당에 대한 자극-감응성 어셈블리, 약물전달용 캡슐화제, 약물 코팅제 또는 약물방출 제어제의 소재로 사용되는 것을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
12. The method of claim 11,
Characterized in that the oligomainic boronic acid is used as a material for a stimulus-sensitive assembly for carbon dioxide and blood sugar in blood, an encapsulating agent for drug delivery, a drug coating agent or a drug release control agent.
Dual stimuli-sensitive oligoamine boronic acid.
제11항에 있어서,
상기 약물은 올리고펩티드 또는 단백질인 것을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
12. The method of claim 11,
Wherein said drug is an oligopeptide or protein.
Dual stimuli-sensitive oligoamine boronic acid.
제13항에 있어서,
상기 약물은 인슐린인 것을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산.
14. The method of claim 13,
Wherein the drug is insulin.
Dual stimuli-sensitive oligoamine boronic acid.
제1항에 따른 이중 자극-감응성 올리고아민 보론산의 제조방법으로서,
하기 화학식 2로 표시되는 올리고아민-2 화합물과 N,N'-디이소프로필카르보디이미드(DIC)에 의해 활성화된 3-카르복시페닐보론산을 커플링시켜, 하기 화학식 3으로 표시되는 올리고아민 보론산을 합성하는 것을 특징으로 하는,
이중 자극-감응성 올리고아민 보론산의 제조방법:
[화학식 2]
Figure pat00012

[화학식 3]
Figure pat00013
.
A process for preparing the double stimulus-sensitive oligomeric aminoboronic acid according to claim 1,
Coupling an oligoamine-2 compound represented by the following formula (2) with 3-carboxyphenylboronic acid activated by N, N'-diisopropylcarbodiimide (DIC) to obtain an oligo- Lt; RTI ID = 0.0 >
Preparation of dual stimuli-sensitive oligoamine boronic acid:
(2)
Figure pat00012

(3)
Figure pat00013
.
제15항에 있어서,
S1) N,N'-디이소프로필카르보디이미드(DIC)가 첨가된 N-메틸이미노디아세트산과 트리스(2-아미노에틸)아민을 반응시켜, 하기 화학식 1로 표시되는 블록-1 화합물을 합성하는 단계;
S2) 상기 블록-1 화합물과 N,N'-디이소프로필카르보디이미드(DIC)가 첨가된 Boc-Lys(Boc)-OH를 반응시켜, 하기 화학식 2로 표시되는 올리고아민-2 화합물을 합성하는 단계; 및
S3) 상기 올리고아민-2 화합물과 N,N'-디이소프로필카르보디이미드(DIC)가 첨가된 3-카르복시페닐보론산을 반응시켜, 하기 화학식 3으로 표시되는 올리고아민 보론산을 합성하는 단계;를 포함하는,
이중 자극-감응성 올리고아민 보론산의 제조방법:
[화학식 1]
Figure pat00014

[화학식 2]
Figure pat00015

[화학식 3]
Figure pat00016
.




16. The method of claim 15,
S1) N-methyliminodiacetic acid to which N, N'-diisopropylcarbodiimide (DIC) is added is reacted with tris (2-aminoethyl) amine to synthesize a block- ;
S2) reacting the above-mentioned block-1 compound with Boc-Lys (Boc) -OH to which N, N'-diisopropylcarbodiimide (DIC) was added to synthesize an oligoamine-2 compound represented by the following formula ; And
S3) reacting the oligomer-2 compound with 3-carboxyphenylboronic acid to which N, N'-diisopropylcarbodiimide (DIC) is added to synthesize oligoamine boronic acid represented by the following Formula 3 ≪ / RTI >
Preparation of dual stimuli-sensitive oligoamine boronic acid:
[Chemical Formula 1]
Figure pat00014

(2)
Figure pat00015

(3)
Figure pat00016
.




KR1020160101314A 2016-08-09 2016-08-09 Dual stimuli-responsive oligoamine boronic acid KR101849461B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160101314A KR101849461B1 (en) 2016-08-09 2016-08-09 Dual stimuli-responsive oligoamine boronic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160101314A KR101849461B1 (en) 2016-08-09 2016-08-09 Dual stimuli-responsive oligoamine boronic acid

Publications (2)

Publication Number Publication Date
KR20180017465A true KR20180017465A (en) 2018-02-21
KR101849461B1 KR101849461B1 (en) 2018-04-17

Family

ID=61524573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160101314A KR101849461B1 (en) 2016-08-09 2016-08-09 Dual stimuli-responsive oligoamine boronic acid

Country Status (1)

Country Link
KR (1) KR101849461B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180020417A (en) * 2016-08-18 2018-02-28 인천대학교 산학협력단 Oligoamine boronic acids for heparin receptors
CN110487851A (en) * 2019-09-10 2019-11-22 华能国际电力股份有限公司 A kind of measuring system and method for the hydrogen conductivity that deaerates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180020417A (en) * 2016-08-18 2018-02-28 인천대학교 산학협력단 Oligoamine boronic acids for heparin receptors
CN110487851A (en) * 2019-09-10 2019-11-22 华能国际电力股份有限公司 A kind of measuring system and method for the hydrogen conductivity that deaerates

Also Published As

Publication number Publication date
KR101849461B1 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
JP4347693B2 (en) Inclusion compounds containing cucurbituril derivatives as host molecules and pharmaceutical compositions containing the same
Gros et al. New potential bimodal imaging contrast agents based on DOTA-like and porphyrin macrocycles
US9988388B2 (en) Synthesis of imidazo[1,2-a]pyrazin-4-ium salts for the synthesis of 1,4,7-triazacyclononane (tacn) and N- and/or C- functionalized derivatives thereof
CN111529716B (en) Polypeptide-paclitaxel conjugate and application thereof
Esteves et al. Remarkable inertness of copper (II) chelates of cyclen-based macrobicycles with two trans-N-acetate arms
KR101849461B1 (en) Dual stimuli-responsive oligoamine boronic acid
US9937272B2 (en) Anthracenyl-tetralactam macrocycles and their use in detecting a target saccharide
François et al. A functionalized heterobimetallic 99m Tc/Re complex as a potential dual-modality imaging probe: synthesis, photophysical properties, cytotoxicity and cellular imaging investigations
Khan et al. Design and characterization of a Cu (II) coordination polymer based on α-diimine: Evaluation of the biomimetic activity
US10233205B2 (en) Magnetic resonance imaging contrast agent capable of detecting hydrogen peroxide and reducing reactive oxygen species
Rout et al. Novel salts of the antiemetic drug domperidone: synthesis, characterization and physicochemical property investigation
US20110118484A1 (en) Process for the functionalization of biological molecules
EP3480197A1 (en) Pyrroloquinone quinone monosodium, method for manufacturing same, and composition including same.
US20080063602A1 (en) Magnetic Resonance Imaging Contrast Agents Synthesized Using Ring-Opening Metathesis Polymerization
Chakravarty et al. A multimeric MRI contrast agent based on a closo-borane scaffold bearing modified AAZTA chelates on the periphery
CN110612303B (en) Boron-containing multifunctional targeted drug conjugates, their use and methods of their preparation
CN109553590B (en) Compound with glutathione mercaptotransferase inhibiting function and preparation method thereof
KR101886922B1 (en) Oligoamine boronic acids for heparin receptors
FR2954321A1 (en) New platinum complexes obtained by reacting platinum compound and amine compound, useful as anticancer agent
CN111423497A (en) Antagonistic peptide, copolymer and nano assembly thereof, and preparation method and application thereof
KR101322615B1 (en) Thiol-targeting chemodosimetric fluorescent probe, method for preparing the same, and method for bioimaging of thiol using the same
Sahoo et al. Ferrocene substitution in amino acids strengthens the axial binding in Cu (II) complexes and separates the hydrophobic and hydrophilic region in the crystals
EP3000811B1 (en) Crown Ether Complexes and Methods for Poducing the Same
US20240124501A1 (en) Vanadium compounds and methods of making and using thereof
KR102162351B1 (en) Drug-conjugated compound and uses thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant