KR20180016111A - Fabrication method of functional fabrics - Google Patents

Fabrication method of functional fabrics Download PDF

Info

Publication number
KR20180016111A
KR20180016111A KR1020160100105A KR20160100105A KR20180016111A KR 20180016111 A KR20180016111 A KR 20180016111A KR 1020160100105 A KR1020160100105 A KR 1020160100105A KR 20160100105 A KR20160100105 A KR 20160100105A KR 20180016111 A KR20180016111 A KR 20180016111A
Authority
KR
South Korea
Prior art keywords
fiber
functional
meth
solvent
reaction
Prior art date
Application number
KR1020160100105A
Other languages
Korean (ko)
Other versions
KR101867430B1 (en
Inventor
전준표
강필현
김두영
이영주
김선영
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020160100105A priority Critical patent/KR101867430B1/en
Publication of KR20180016111A publication Critical patent/KR20180016111A/en
Application granted granted Critical
Publication of KR101867430B1 publication Critical patent/KR101867430B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • D06B1/02Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating by spraying or projecting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B15/00Removing liquids, gases or vapours from textile materials in association with treatment of the materials by liquids, gases or vapours
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/001Treatment with visible light, infrared or ultraviolet, X-rays
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/003Treatment with radio-waves or microwaves
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/008Treatment with radioactive elements or with neutrons, alpha, beta or gamma rays
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

The present invention relates to a method for producing a functional fiber. According to the present invention, the method for producing the functional fiber enables simple adjustment of efficiency in which functional monomers are graft-polymerized in fibers (reaction spots), by regulating concentration of a solvent (a mixture of water and alcohol) in a reaction solution in which the functional monomers are added.

Description

기능성 섬유의 제조방법 {Fabrication method of functional fabrics}[0001] Fabrication method of functional fabrics [0002]

본 발명은 기능성 섬유의 제조방법에 관한 것으로, 보다 상세하게는 기능성 단량체가 첨가된 반응 용액에서 용매(물 및 알코올 혼합)의 농도를 조절함에 따라, 섬유(반응 기지)에 기능성 단량체가 그라프트 중합되는 효율을 간단히 조절하는 제조방법에 관한 것이다.More particularly, the present invention relates to a process for producing a functional fiber, and more particularly, to a process for producing a functional fiber by graft polymerizing a functional monomer in a fiber (reaction base) by controlling the concentration of a solvent (water and an alcohol mixture) in a reaction solution to which a functional monomer is added The efficiency of which is simply controlled.

감마선 또는 전자선을 이용한 방사선 그라프트 기술은 서로 다른 고분자를 접합시키는 기술로서 최근에 많은 연구가 이루어지고 있고 다양하게 응용되고 있다. 방사선 그라프트 기술을 이용하여 제조되는 이온교환섬유, 연료전지막, 분리막 등의 친환경 소재의 개발은 에너지 소비가 적은 공정으로 경쟁력 향상에 기여할 수 있기 때문이다. The radiation graft technique using gamma rays or electron beams is a technique for bonding different polymers, and many studies have been conducted recently and various applications have been made. The development of eco-friendly materials such as ion exchange fibers, fuel cell membranes, separators, and the like, which are manufactured using the radiation grafting technology, can contribute to enhancement of competitiveness by a process with low energy consumption.

이러한 기술을 통한 섬유의 표면 개질을 이용하여 고기능성 섬유를 제조할 수 있으며 이는 기존의 공정 기술보다 공정 시간을 효율적으로 줄일 수 있고 비용은 감소시켜 경제적 효과를 줄 수 있다. 기존의 화학적, 물리적 방법을 이용한 그라프팅은 산화제, 개시제 및 가교제를 첨가하여 중합하는 방법으로 화학물질이 추가적으로 첨가되어야 한다는 단점이 있다. By using the surface modification of the fibers, the high-performance fibers can be produced. This can reduce the process time more effectively than the conventional process technology, and can reduce the cost, thereby providing economical effects. Grafting using conventional chemical and physical methods has a disadvantage in that a chemical substance must be additionally added by a method of adding an oxidizing agent, an initiator, and a crosslinking agent to polymerize.

용액법 그라프팅 중합기술에서 용매는 고분자 주쇄에서 반응 모노머를 이동시키는 역할을 수행한다. 이때 사용되는 용매는 극성인자 뿐만 아니라 모노머들의 용해성, 고분자의 팽윤 및 팽창 능력, 용매 하에서의 자유라디칼의 생성능력이 중요인자로 고려되어 선택되어진다. 용매에 따라 반응성은 크게 차이가 나며, 때문에 고분자 및 단량체에 따라 용매는 신중히 결정되어야 한다. Solution In the grafting polymerization technique, the solvent acts to transfer the reactive monomer in the polymer backbone. In this case, the solvent used is selected in consideration of the solubility of the monomers, the swelling and swelling capacity of the polymer, and the ability to generate free radicals in the solvent, as well as the polar factors. The reactivity varies greatly depending on the solvent, so the solvent should be carefully determined depending on the polymer and the monomer.

본 발명자는 상기와 같은 문제점을 해결하기 위해 예의 연구를 거듭하던 중, 섬유(반응 기지)에 용매(물 및 알코올 혼합) 농도 최적화한 반응 용액을 도입한 방사선 그라프팅 중합반응을 고안하게 되었고 용매(물 및 알코올 혼합) 농도에 따라 그라프트 수율이 크게 달라지는 것을 확인하여, 용매(물 및 알코올 혼합) 농도 조절의 간편한 방법으로 기능성 단량체의 그라프트율을 조절할 수 있음을 발견하고 본 발명을 완성하였다.The inventor of the present invention has devised a radiationgrafting polymerization reaction by introducing a reaction solution optimized for concentration of a solvent (water and alcohol mixture) in a fiber (reaction base) while solving the above problems, Water and alcohol) concentration, the grafting rate of the functional monomer can be controlled by a simple method of adjusting the concentration of the solvent (water and alcohol mixture). Thus, the present invention has been completed.

미국등록특허 4,865,886호U.S. Pat. No. 4,865,886

본 발명의 목적은 기능성 섬유의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing a functional fiber.

본 발명의 다른 목적은 상기 제조방법으로 제조되는 기능성 섬유를 제공하는 것이다.Another object of the present invention is to provide a functional fiber produced by the above production method.

상기 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 물 단독 또는 물과 알코올의 혼합인 용매에 기능성 단량체를 첨가하고 교반하여 반응 용액을 준비하는 단계(단계 1);The present invention relates to a process for preparing a reaction solution by adding a functional monomer to a solvent which is water alone or a mixture of water and alcohol and stirring the solution (step 1);

상기 단계 1에서 준비한 반응 용액에 반응 기지로서 섬유를 담지하거나, 또는 반응 기지로서 섬유에 상기 단계 1에서 준비한 반응 용액을 분사하는 단계(단계 2);Carrying the fiber as a reaction base to the reaction solution prepared in the step 1 or injecting the reaction solution prepared in the step 1 into the fiber as a reaction base (step 2);

방사선을 조사하여 반응기지로서 섬유에 기능성 단량체를 그라프팅 중합시키는 단계(단계 3); 및(Step 3) of grafting the functional monomer onto the fiber as a reaction base by irradiation with radiation; And

건조를 통해 용매를 제거하는 단계(단계 4);Removing the solvent through drying (step 4);

를 포함하는 기능성 섬유의 제조방법을 제공한다.And a method for producing the functional fiber.

또한, 본 발명은 상기 제조방법으로 제조되는 기능성 섬유를 제공한다.The present invention also provides a functional fiber produced by the above production method.

본 발명에 따른 기능성 섬유의 제조방법은 기능성 단량체가 첨가된 반응 용액에서 용매(물 및 알코올 혼합)의 농도를 조절함에 따라, 섬유(반응 기지)에 기능성 단량체가 그라프트 중합되는 효율을 간단히 조절할 수 있는 효과가 있다.The method for preparing functional fibers according to the present invention can control the efficiency of graft polymerization of functional monomers to fibers (reaction base) by controlling the concentration of solvent (water and alcohol mixture) in a reaction solution to which functional monomers are added There is an effect.

도 1은 본 발명에 따른 기능성 섬유의 제조방법을 나타낸 순서도이다.
도 2는 실시예 1-6에서 제조한 기능성 섬유의 그라프트율을 측정한 그래프이다.
도 3은 실시예 6-8에서 제조한 기능성 섬유의 그라프트율을 측정한 그래프이다.
1 is a flowchart showing a method for producing a functional fiber according to the present invention.
2 is a graph showing the grafting rate of the functional fiber prepared in Example 1-6.
3 is a graph showing the graft rate of the functional fiber prepared in Example 6-8.

이하 도면 및 구체예를 포함하여 기능성 섬유의 제조방법을 더욱 상세히 설명한다. 다만 하기 구체예 또는 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.Hereinafter, a method for producing a functional fiber will be described in detail, including drawings and specific examples. It should be understood, however, that the invention is not limited thereto and that various changes and modifications may be made without departing from the spirit and scope of the invention.

또한, 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.Also, unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.

또한, 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다.In addition, the following drawings are provided by way of example so that those skilled in the art can fully understand the spirit of the present invention. Therefore, the present invention is not limited to the following drawings, but may be embodied in other forms. The following drawings may be exaggerated in order to clarify the spirit of the present invention.

또한, 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수형태도 포함하는 것으로 의도할 수 있다.It is also to be understood that the singular forms as used in the specification and the appended claims are intended to include the plural forms as well, unless the context clearly indicates otherwise.

기존의 화학적, 물리적 방법을 이용한 그라프팅은 개시제 및 가교제를 첨가하여 중합하는 방법으로 화학물질이 추가적으로 첨가되어야 한다는 단점이 있다.Grafting using existing chemical and physical methods has a disadvantage in that a chemical substance must be added additionally in a polymerization method by adding an initiator and a crosslinking agent.

본 발명자는 상기와 같은 문제점을 해결하기 위해 예의 연구를 거듭하던 중, 섬유(반응 기지)에 용매(물 및 알코올 혼합) 농도 최적화한 반응 용액을 도입한 방사선 그라프팅 중합반응을 고안하게 되었고 용매(물 및 알코올 혼합) 농도에 따라 그라프트 수율이 크게 달라지는 것을 확인하여, 용매(물 및 알코올 혼합) 농도 조절의 간편한 방법으로 기능성 단량체의 그라프트율을 조절할 수 있음을 발견하였다.The inventor of the present invention has devised a radiationgrafting polymerization reaction by introducing a reaction solution optimized for concentration of a solvent (water and alcohol mixture) in a fiber (reaction base) while solving the above problems, Water and alcohol) concentration, it was found that the graft ratio of the functional monomer can be controlled by a simple method of controlling the concentration of the solvent (water and alcohol mixture).

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 물 단독 또는 물과 알코올의 혼합인 용매에 기능성 단량체를 첨가하고 교반하여 반응 용액을 준비하는 단계(단계 1);The present invention relates to a process for preparing a reaction solution by adding a functional monomer to a solvent which is water alone or a mixture of water and alcohol and stirring the solution (step 1);

상기 단계 1에서 준비한 반응 용액에 반응 기지로서 섬유를 담지하거나, 또는 반응 기지로서 섬유에 상기 단계 1에서 준비한 반응 용액을 분사하는 단계(단계 2);Carrying the fiber as a reaction base to the reaction solution prepared in the step 1 or injecting the reaction solution prepared in the step 1 into the fiber as a reaction base (step 2);

방사선을 조사하여 반응기지로서 섬유에 기능성 단량체를 그라프팅 중합시키는 단계(단계 3); 및(Step 3) of grafting the functional monomer onto the fiber as a reaction base by irradiation with radiation; And

건조를 통해 용매를 제거하는 단계(단계 4);Removing the solvent through drying (step 4);

를 포함하는 기능성 섬유의 제조방법을 제공한다.And a method for producing the functional fiber.

본 발명에 따른 제조방법에서, 상기 단계 1은 물 단독 또는 물과 알코올의 혼합인 용매에 기능성 단량체를 첨가하고 교반하여 반응 용액을 준비하는 단계이다. In the production method according to the present invention, the step 1 is a step of preparing a reaction solution by adding a functional monomer to a solvent which is water alone or a mixture of water and alcohol and stirring the solution.

본 발명에 따른 제조방법은 상기 단계 1의 용매에서 물과 알코올의 혼합 비율을 조절하여, 반응기지로서 섬유에 기능성 단량체를 그라프팅 중합시키는 효율을 조절하는 것을 특징으로 한다(실험예 1 참조). 용매는 반응 효율 및 부반응 생성에 있어 영향을 주어 단량체의 그라프트 성장 반응 속도 및 섬유 내부로의 확산 속도 등에 큰 영향을 주기 때문에, 그라프트 반응에서 용매의 역할이 매우 중요하다. 특히 메탄올이나 에탄올 등 알코올류의 빈용매를 사용하게 되면 성장 중의 고분자 라디칼간의 충돌 횟수가 감소되어 그라프트 반응 종결을 늦춤으로써 그라프트율을 높일 수 있게 된다.The production method according to the present invention is characterized in that the mixing ratio of water and alcohol in the solvent of step 1 is controlled so as to control the efficiency of grafting polymerization of functional monomers onto the fibers as a reaction base (see Experimental Example 1). Solvent plays an important role in the reaction efficiency and side reaction formation, and has a great influence on the grafting reaction rate and the diffusion rate into the fiber of the monomer. Therefore, the role of the solvent in the grafting reaction is very important. Particularly, when a poor solvent such as methanol or ethanol is used, the number of collisions between polymer radicals during the growth is reduced, and the grafting rate can be increased by delaying the termination of the graft reaction.

바람직하게, 상기 물과 알코올의 혼합 비율은 100-60:0-40 중량% 비율로 사용할 수 있다. 만약, 상기 알코올 혼합 비율이 40 중량%를 초과할 경우에는 단량체가 완전히 용해되지 않는 문제가 있을 수 있다.Preferably, the mixing ratio of water to alcohol is 100-60: 0-40 wt%. If the alcohol mixing ratio exceeds 40% by weight, the monomer may not completely dissolve.

상기 알코올은 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 이소부탄올, 이염화에탄올 등을 사용할 수 있고, 본 발명에서는 일례로 메탄올을 사용하였다.The alcohol may be methanol, ethanol, propanol, isopropanol, butanol, isobutanol, dichlorinated ethanol, or the like. In the present invention, methanol is used as an example.

상기 기능성 단량체는 다양한 기능을 갖는 단량체를 목적에 맞게 선택하여 사용할 수 있으며, 일례로 아크릴산, 메타크릴산, 쇼듐아크릴레이트, 메타크릴레이트, 아크릴아마이드, 무수말레인산, 크로토산, 푸말산, 이타콘산, 2-히드록시에틸 (메타)아크릴레이트, 2-히드록시프로필 (메타)아크릴레이트, 메톡시폴리에틸렌글리콜 (메타)아크릴레이트, 폴리에틸렌글리콜 (메타)아크릴레이트, (N,N)-디메틸아미노에틸 (메타)아크릴레이트, (N,N)-디메틸아미노프로필 (메타)아크릴아미드, 2-(메타)아크릴로일에탄술폰산, 2-(메타)아크릴로일프로판술폰산 등을 사용할 수 있다.The functional monomer may be selected from a variety of monomers having various functions. Examples of the monomer include acrylic acid, methacrylic acid, sodium acrylate, methacrylate, acrylamide, maleic anhydride, crotonic acid, fumaric acid, itaconic acid, (Meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol (Meth) acrylate, (N, N) -dimethylaminopropyl (meth) acrylamide, 2- (meth) acryloylethanesulfonic acid and 2- (meth) acryloylpropanesulfonic acid.

상기 기능성 단량체는 고흡수성, 이온교환성 등을 부여하는 역할을 한다.The functional monomer serves to impart superabsorbent properties, ion exchange properties, and the like.

본 발명에 따른 제조방법에서, 상기 단계 2는 상기 단계 1에서 준비한 반응 용액에 반응 기지로서 섬유를 담지하거나, 또는 반응 기지로서 섬유에 상기 단계 1에서 준비한 반응 용액을 분사하는 단계이다.In the manufacturing method according to the present invention, the step 2 is a step of supporting the fiber as a reaction base in the reaction solution prepared in the step 1, or injecting the reaction solution prepared in the step 1 into the fiber as a reaction base.

상기 섬유는 직포 또는 부직포를 사용할 수 있다. 상기 직포 또는 부직포는 천연고분자 또는 합성수지일 수 있고, 또한 이들이 합성된 것일 수도 있다. 상기 천연고분자의 예로는 셀룰로오스 등을 사용할 수 있고, 상기 합성수지의 예로는 폴리프로필렌, 폴리에틸렌, 폴리염화비닐, 폴리에스터, 폴리아미드, 폴리아크릴로니트릴 등을 사용할 수 있다.The fiber may be a woven fabric or a nonwoven fabric. The woven fabric or nonwoven fabric may be a natural polymer or a synthetic resin, or may be a synthetic resin or synthetic resin. Examples of the natural polymer include cellulose and the like. Examples of the synthetic resin include polypropylene, polyethylene, polyvinyl chloride, polyester, polyamide, polyacrylonitrile, and the like.

본 발명에 따른 제조방법에서, 상기 단계 3은 방사선을 조사하여 반응기지로서 섬유에 기능성 단량체를 그라프팅 중합시키는 단계이다.In the production method according to the present invention, the step 3 is a step of grafting and polymerizing the functional monomer onto the fiber as a reaction base by irradiating the radiation.

방사선을 조사하게 되면, 반응기지로서 섬유 및 기능성 단량체에 반응성 라디칼 사이트가 생성되어 그라프트 중합반응이 일어나는 것이다.When radiation is irradiated, a reactive radical site is generated in the fiber and the functional monomer as a reaction base, and a graft polymerization reaction occurs.

상기 단계 3의 방사선은 전자선, 감마선 또는 자외선을 사용할 수 있다. 여기서, 상기 방사선 조사 총선량은 10-200 kGy로 하는 것이 바람직하다.The radiation in step 3 may be electron beam, gamma ray or ultraviolet ray. Here, the total irradiation dose is preferably 10-200 kGy.

또한, 본 발명은 상기 제조방법을 통해 제조되는 기능성 섬유를 제공한다. 본 발명에 따른 기능성 섬유는 목적하는 기능을 갖는 단량체를 사용하여, 목적의 기능성 섬유를 얻을 수 있다. 여기서, 상기 기능성 단량체는 상술한 바와 같다.The present invention also provides a functional fiber produced by the above-mentioned production method. The functional fiber according to the present invention can be obtained by using a monomer having a desired function. Here, the above-mentioned functional monomers are as described above.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

<< 실시예Example 1> 기능성 섬유의 제조 1> Production of functional fibers

반응 기지로서 폴리프로필렌 부직포 (모델명: SSS, 제조사: 도레이(주)) 18g을 사용하였으며, 반응 용액에 첨가되는 단량체로는 소듐아크릴레이트를 이용하였다. 반응 용액의 용매로는 증류수:메탄올 (99.5%, 삼전화학)을 100:0 중량% 비율로 사용하였다. 도 1에 본 발명에 따른 기능성 섬유의 제조방법을 단계별로 나타내었다.18 g of a polypropylene nonwoven fabric (model name: SSS, manufactured by Toray Industries, Inc.) was used as a reaction substrate, and sodium acrylate was used as a monomer added to the reaction solution. As a solvent for the reaction solution, distilled water: methanol (99.5%, Samcheon Chemical) was used at a ratio of 100: 0 wt%. FIG. 1 shows a stepwise process for producing a functional fiber according to the present invention.

단계 1: 반응 용액은 증류수:메탄올 (100:0 중량%)에 소듐아크릴레이트를 첨가하고 24시간 교반하였다. 이때, 단량체의 농도는 용매 대비 10 중량%였다.Step 1: Sodium acrylate was added to distilled water: methanol (100: 0 wt%) as a reaction solution, and the mixture was stirred for 24 hours. At this time, the concentration of the monomer was 10% by weight based on the solvent.

단계 2: 반응 용액에 부직포를 담지한 후 중합 반응이 골고루 되도록 고정하였다.Step 2: The nonwoven fabric was loaded on the reaction solution, and the polymerization reaction was fixed so as to be even.

단계 3: 2.5 MeV의 전자선가속기 (제조사: EB-tech)를 이용하여 전자선 50 kGy를 조사하였다. 이때, 조사속도는 8m/min, 전류는 17.7mA였다.Step 3: An electron beam of 50 kGy was irradiated using a 2.5 MeV electron beam accelerator (manufacturer: EB-tech). At this time, the irradiation speed was 8 m / min and the current was 17.7 mA.

단계 4: 전자선 조사를 통해 그라프트 반응을 진행한 후 건조과정을 거쳐 용매를 증발하여, 목적의 기능성 섬유를 제조하였다.Step 4: Graft reaction was carried out through electron beam irradiation, followed by drying process to evaporate the solvent, thereby preparing the objective functional fiber.

<< 실시예Example 2-8> 기능성 섬유의 제조 2-8> Fabrication of functional fiber

반응 용액 단량체 및 반응 용액 용매를 하기 표 1과 같이 한 것을 제외하고는 실시예 1과 동일하게 실시하여 실시예 2-8의 기능성 섬유를 제조하였다.Reaction solution The functional fibers of Example 2-8 were prepared in the same manner as in Example 1 except that the monomer and the reaction solution solvent were changed as shown in Table 1 below.

실시예Example 반응 용액The reaction solution 단량체Monomer 용매
(증류수:메탄올)
menstruum
(Distilled water: methanol)
1One 소듐아크릴레이트Sodium acrylate 100:0 중량%100: 0 wt% 22 소듐아크릴레이트Sodium acrylate 90:10 중량%90: 10 wt% 33 소듐아크릴레이트Sodium acrylate 80:20 중량%80: 20 wt% 44 소듐아크릴레이트Sodium acrylate 70:30 중량%70:30 wt% 55 소듐아크릴레이트Sodium acrylate 60:40 중량%60: 40 wt% 66 소듐아크릴레이트Sodium acrylate 50:50 중량%50: 50 wt% 77 아크릴산Acrylic acid 50:50 중량%50: 50 wt% 88 아크릴산 및 아크릴아미드
(50:50 중량%)
Acrylic acid and acrylamide
(50: 50% by weight)
50:50 중량%50: 50 wt%

<< 실험예Experimental Example 1> 반응 용액의 용매 혼합비율에 따른  1> Depending on the solvent mixture ratio of the reaction solution 그라프트율Graft rate 평가 evaluation

실시예 1-6은 반응 용액의 용매 혼합비율만 달리한 것을 제외하고는 모두 동일한 조건으로 제조하였다. 실시예 1-6에서 제조된 기능성 섬유에서 기능성 단량체가 반응 기지에 그라프트되는 효율을 다음과 같이 측정하였다.Example 1-6 was prepared under the same conditions except that the solvent mixture ratio of the reaction solution was different. The efficiency at which functional monomers were grafted to the reaction matrix in the functional fibers prepared in Example 1-6 was measured as follows.

구체적으로, 실시예별로 그라프트 중합 전 섬유의 무게 및 그라프트 중합 후 섬유의 무게를 측정하여 하기 수학식 1에 대입하여 계산하였고, 그 결과를 도 2에 나타내었다.Specifically, the weight of the graft-polymerized fiber before graft polymerization and the weight of the graft-polymerized fiber after the polymerization were calculated for each of the examples, and the results are shown in FIG.

Figure pat00001
Figure pat00001

상기 수학식 1에서,In the above equation (1)

W0은 그라프트 반응 전 섬유의 무게이고,W 0 is the weight of the fiber before grafting reaction,

Wg는 그라프트 반응 후 섬유의 무게이다.W g is the weight of the fiber after the grafting reaction.

도 2는 실시예 1-6에서 제조한 기능성 섬유의 그라프트율을 측정한 그래프이다.2 is a graph showing the grafting rate of the functional fiber prepared in Example 1-6.

도 2에 나타난 바와 같이, 용매로 물을 이용한 것보다 메탄올의 비율이 증가할수록 그라프트 수율이 증가하는 것을 확인할 수 있었고, 물과 메탄올의 비율이 60:40 중량%일 때 그라프트율이 가장 높은 것을 확인할 수 있었다. 또한, 50:50 중량%로 메탄올의 비율이 더 증가하였을 때 그라프트율이 약간 감소하였는데 이는 소듐아크릴레이트의 용매에 대한 상용성이 감소하기 때문인 것을 확인할 수 있었다. 이를 통해, 용매 농도의 조절만으로도 원하는 그라프트 수율을 가진 기능성 섬유를 제조할 수 있다는 것을 확인할 수 있었다.As shown in FIG. 2, it was confirmed that the graft yield was increased as the ratio of methanol was increased as compared with the case where water was used as a solvent, and it was confirmed that the graft rate was the highest when the ratio of water to methanol was 60:40 wt% I could. In addition, when the ratio of methanol to 50:50 wt% was further increased, the grafting rate was slightly decreased because it was confirmed that the compatibility of sodium acrylate with the solvent was decreased. As a result, it was confirmed that functional fibers having a desired graft yield can be produced by only adjusting the solvent concentration.

<< 실험예Experimental Example 2> 단량체 종류에 따른  2> Depending on monomer type 그라프트율Graft rate 평가 evaluation

실시예 6-8은 기능성 단량체의 종류만을 달리한 것을 제외하고는 모두 동일한 조건으로 제조하였다. 실시예 6-8에서 제조된 기능성 섬유에서 기능성 단량체가 반응 기지에 그라프트되는 효율을 상기 실험예 1과 동일한 방법으로 측정하였다.Example 6-8 was prepared under the same conditions except that only the kinds of the functional monomers were different. The efficiency at which functional monomers were grafted to the reaction matrix in the functional fibers prepared in Example 6-8 was measured in the same manner as in Experimental Example 1. [

도 3은 실시예 7-8에서 제조한 기능성 섬유의 그라프트율을 측정한 그래프이다.3 is a graph showing the graft rate of the functional fiber prepared in Example 7-8.

도 3에 나타난 바와 같이, 같은 아크릴계 물질인 아크릴산과 아크릴아마이드에서도 소듐아크릴레이트와 비슷한 그라프트율을 확인할 수 있었다. 이러한 결과로부터, 단량체의 종류와는 관계없이 용매에서 물과 알코올의 혼합비율을 조절하는 것만으로 그라프트율을 조절할 수 있음을 알 수 있었다.As shown in FIG. 3, grafting ratios similar to those of sodium acrylate were also found in acrylic acid and acrylamide, which are the same acrylic materials. From these results, it can be seen that the grafting rate can be controlled only by adjusting the mixing ratio of water and alcohol in the solvent regardless of the type of the monomer.

Claims (10)

물 단독 또는 물과 알코올의 혼합인 용매에 기능성 단량체를 첨가하고 교반하여 반응 용액을 준비하는 단계(단계 1);
상기 단계 1에서 준비한 반응 용액에 반응 기지로서 섬유를 담지하거나, 또는 반응 기지로서 섬유에 상기 단계 1에서 준비한 반응 용액을 분사하는 단계(단계 2);
방사선을 조사하여 반응기지로서 섬유에 기능성 단량체를 그라프팅 중합시키는 단계(단계 3); 및
건조를 통해 용매를 제거하는 단계(단계 4);
를 포함하는 기능성 섬유의 제조방법.
(Step 1) of preparing a reaction solution by adding a functional monomer to a solvent which is a mixture of water alone or water and an alcohol and stirring the solution;
Carrying the fiber as a reaction base to the reaction solution prepared in the step 1 or injecting the reaction solution prepared in the step 1 into the fiber as a reaction base (step 2);
(Step 3) of grafting the functional monomer onto the fiber as a reaction base by irradiation with radiation; And
Removing the solvent through drying (step 4);
&Lt; / RTI &gt;
제1항에 있어서,
상기 단계 1의 용매에서 물과 알코올의 혼합 비율을 조절하여, 반응기지로서 섬유에 기능성 단량체를 그라프팅 중합시키는 효율을 조절하는 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the mixing ratio of water and alcohol in the solvent of step 1 is controlled so as to control the efficiency of grafting polymerization of functional monomers onto the fibers as a reaction base.
제2항에 있어서,
상기 물과 알코올의 혼합 비율은 100-60:0-40 중량% 비율인 것을 특징으로 하는 제조방법.
3. The method of claim 2,
Wherein the mixing ratio of water to alcohol is 100-60: 0-40 wt%.
제1항에 있어서,
상기 단계 1의 알코올은 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 이소부탄올 또는 이염화에탄올인 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the alcohol of step 1 is methanol, ethanol, propanol, isopropanol, butanol, isobutanol or dichlorinated ethanol.
제1항에 있어서,
상기 단계 1의 기능성 단량체는 아크릴산, 메타크릴산, 쇼듐아크릴레이트, 메타크릴레이트, 아크릴아마이드, 무수말레인산, 크로토산, 푸말산, 이타콘산, 2-히드록시에틸 (메타)아크릴레이트, 2-히드록시프로필 (메타)아크릴레이트, 메톡시폴리에틸렌글리콜 (메타)아크릴레이트, 폴리에틸렌글리콜 (메타)아크릴레이트, (N,N)-디메틸아미노에틸 (메타)아크릴레이트, (N,N)-디메틸아미노프로필 (메타)아크릴아미드, 2-(메타)아크릴로일에탄술폰산 및 2-(메타)아크릴로일프로판술폰산으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법.
The method according to claim 1,
The functional monomers of step 1 above may be selected from the group consisting of acrylic acid, methacrylic acid, sodium acrylate, methacrylate, acrylamide, maleic anhydride, crotonic acid, fumaric acid, itaconic acid, 2- hydroxyethyl (meth) (N, N) -dimethylaminoethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, (Meth) acrylamide, 2- (meth) acryloylethanesulfonic acid, and 2- (meth) acryloylpropanesulfonic acid.
제1항에 있어서,
상기 단계 2의 섬유는 직포 또는 부직포인 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the fiber of step 2 is a woven fabric or a nonwoven fabric.
제6항에 있어서,
상기 직포 또는 부직포는 천연고분자 및 합성수지로 이루어지는 군으로부터 선택되는 어느 하나이거나 또는 둘 이상이 합성된 것을 특징으로 하는 제조방법.
The method according to claim 6,
Wherein the woven fabric or the nonwoven fabric is composed of any one or more selected from the group consisting of natural polymers and synthetic resins.
제1항에 있어서,
상기 단계 3의 방사선은 전자선, 감마선 또는 자외선인 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the radiation of step 3 is an electron beam, a gamma ray or an ultraviolet ray.
제1항에 있어서,
상기 방사선 조사 총선량은 10-200 kGy인 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the total irradiation dose is 10-200 kGy.
제1항의 제조방법을 통해 제조되는 기능성 섬유.A functional fiber produced by the manufacturing method of claim 1.
KR1020160100105A 2016-08-05 2016-08-05 Fabrication method of functional fabrics KR101867430B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160100105A KR101867430B1 (en) 2016-08-05 2016-08-05 Fabrication method of functional fabrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160100105A KR101867430B1 (en) 2016-08-05 2016-08-05 Fabrication method of functional fabrics

Publications (2)

Publication Number Publication Date
KR20180016111A true KR20180016111A (en) 2018-02-14
KR101867430B1 KR101867430B1 (en) 2018-06-15

Family

ID=61229757

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160100105A KR101867430B1 (en) 2016-08-05 2016-08-05 Fabrication method of functional fabrics

Country Status (1)

Country Link
KR (1) KR101867430B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865886A (en) 1986-08-29 1989-09-12 Mitsubishi Petrochemical Company Limited Process for preparation of water absorptive composite material
JPH11279945A (en) * 1998-03-23 1999-10-12 Japan Atom Energy Res Inst Polyethylene material graft-polymerized with radiation
US20040034117A1 (en) * 2000-11-02 2004-02-19 Kenneth Ekman Graft copolymers
JP2010083996A (en) * 2008-09-30 2010-04-15 Kurita Water Ind Ltd Manufacturing method for graft polymerization substance
KR20100132218A (en) * 2009-06-09 2010-12-17 한남대학교 산학협력단 Cation exchange membrane and process for preparing the same
KR20150083707A (en) * 2014-01-10 2015-07-20 한국원자력연구원 Method for manufacturing an absorbent polymer fiber using radio active rays

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865886A (en) 1986-08-29 1989-09-12 Mitsubishi Petrochemical Company Limited Process for preparation of water absorptive composite material
JPH11279945A (en) * 1998-03-23 1999-10-12 Japan Atom Energy Res Inst Polyethylene material graft-polymerized with radiation
US20040034117A1 (en) * 2000-11-02 2004-02-19 Kenneth Ekman Graft copolymers
JP4346903B2 (en) * 2000-11-02 2009-10-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Graft copolymer
JP2010083996A (en) * 2008-09-30 2010-04-15 Kurita Water Ind Ltd Manufacturing method for graft polymerization substance
KR20100132218A (en) * 2009-06-09 2010-12-17 한남대학교 산학협력단 Cation exchange membrane and process for preparing the same
KR20150083707A (en) * 2014-01-10 2015-07-20 한국원자력연구원 Method for manufacturing an absorbent polymer fiber using radio active rays

Also Published As

Publication number Publication date
KR101867430B1 (en) 2018-06-15

Similar Documents

Publication Publication Date Title
Bhattacharya et al. Grafting: a versatile means to modify polymers: techniques, factors and applications
JP5769827B2 (en) Method for producing an emulsion containing core-sheath-shell polymer particles
US20050272876A1 (en) Process for emulsion graft polymerization and products thereof
DE102009001776A1 (en) Composition comprising as aqueous dispersion preferably benzophenone-containing (meth) acrylate polymers mixed with these different (meth) acrylate polymers and the use of the composition
CN100519919C (en) Synthetic fiber and its fabric hydrophilic finish method
JP5733557B2 (en) Acrylic resin composition for adhesives
CA2414729A1 (en) Curable resin compositions and process for preparing oligomers and polymers having acryloyl groups, substituted methacrylate groups and .beta.-dicarbonyl groups
KR101867430B1 (en) Fabrication method of functional fabrics
CN106110899A (en) Method for preparing carbon dioxide responsive membrane
WO2007050326A2 (en) Method for preparing polymer particles
CN113661203B (en) Acrylic modified polymeric opacifiers for use in organic media
CN105820356A (en) Preparation method of photocrosslinked polyvinyl alcohol/nanocrystal cellulose (PVA/CNC) composite film
CN106188416B (en) A kind of high-strength shape memory hydrogel with hydrogen bond enhancing ion-drive and preparation method thereof and its application
US7399810B2 (en) Polymerization of monomers with differing reactivities
RU2742813C1 (en) Method for producing cellulose-containing polymeric material
JP2007284844A (en) Method for introducing amidoxime group to polymeric substrate in high density and product produced thereby
Nho et al. Radiation‐induced graft polymerization of vinyl benzyltrimethylammonium chloride onto polyethylene film
JPS591744B2 (en) self-reinforcing hydrogel
RU2690348C1 (en) Curable aqueous composition
KR101203197B1 (en) Preparation method of crosslinked polymer particle with target size according to novel surface activation method
JP2020515667A (en) Formaldehyde-free curable composition
KR20100042322A (en) Mono-dispersed polymer particle having high air gap and manufacturing method of the same
JP7016120B2 (en) Sizing agent for carbon fiber, carbon fiber to which the sizing agent is bonded and its manufacturing method, carbon fiber reinforced plastic containing the carbon fiber
Kang et al. Influences of the polymerization ingredients on the porous morphology of soap‐free poly (methyl methacrylate/ethyl acrylate/methacrylic acid) seeded latex particles
JPS6090010A (en) Water separating and holding agent and preparation thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right