KR20180011569A - Sulfonated polytetraphenyl benzophenone copolymer and method for preparing the same - Google Patents

Sulfonated polytetraphenyl benzophenone copolymer and method for preparing the same Download PDF

Info

Publication number
KR20180011569A
KR20180011569A KR1020160094085A KR20160094085A KR20180011569A KR 20180011569 A KR20180011569 A KR 20180011569A KR 1020160094085 A KR1020160094085 A KR 1020160094085A KR 20160094085 A KR20160094085 A KR 20160094085A KR 20180011569 A KR20180011569 A KR 20180011569A
Authority
KR
South Korea
Prior art keywords
sptbp
copolymer
sulfonated
membrane
polymer
Prior art date
Application number
KR1020160094085A
Other languages
Korean (ko)
Other versions
KR101838662B1 (en
Inventor
김환기
장호현
유지호
하재성
류태욱
이채균
스타라다사부찬드라
Original Assignee
건국대학교 글로컬산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 글로컬산학협력단 filed Critical 건국대학교 글로컬산학협력단
Priority to KR1020160094085A priority Critical patent/KR101838662B1/en
Publication of KR20180011569A publication Critical patent/KR20180011569A/en
Application granted granted Critical
Publication of KR101838662B1 publication Critical patent/KR101838662B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

The present invention relates to: a sulfonated polytetraphenyl benzophenone copolymer (SPTBP); a manufacturing method thereof; a polymer electrolyte membrane including the sulfonated polytetraphenyl benzophenone copolymer; and a fuel cell including the same. The SPTBP according to the present invention performs carbon-carbon bonding to a center chain to improve the flexibility and other properties of the polymer, and has an effect of obtaining a high molecular weight without an ether group and a benzoyl moiety. In addition, the polymer electrolyte membrane (hereinafter referred to as a membrane) including the SPTBP copolymer of the present invention has an effect of improving properties such as hydrogen ion conductivity, dimensional stability, moisture absorption and the like.

Description

술폰화 폴리테트라페닐 벤조페논 공중합체 및 이의 제조방법{Sulfonated polytetraphenyl benzophenone copolymer and method for preparing the same}Sulfonated polytetraphenylbenzophenone copolymers and methods for preparing the same are disclosed.

본 발명은 술폰화 폴리테트라페닐 벤조페논 공중합체, 이의 제조방법, 이를 포함하는 고분자 전해질막, 및 이를 포함하는 연료전지에 관한 것으로 더욱 상세하게는 에테르기 및 벤조일 모이어티 없이 중심쇄에 탄소-탄소 결합된 술폰화 폴리테트라페닐 벤조페논 공중합체에 관한 것이다.The present invention relates to a sulfonated polytetraphenylbenzophenone copolymer, a method for producing the same, a polymer electrolyte membrane containing the same, and a fuel cell comprising the same, and more particularly, to a fuel cell including a carbon- To a sulfonated polytetraphenylbenzophenone copolymer.

수세기동안, 산업 현장 및 인류의 생활수준은 많은 에너지원을 활용함으로써 개발되어 왔다. 이러한 개발은 천연자원을 사용함에 근거하여 이루어졌고, 이후 과도한 사용으로 인해 연료가 고갈될 수도 있다. 현재까지, 많은 연구자들은 연료의 고갈을 방지하기 위하여 풍력, 수력, 태양열, 연료전지 등과 같은 대체 에너지원을 개발하여 왔다. 그 중에서도, 고분자 전해질막 연료 전지(Polymer electrolyte membrane fuel cell, PEMFC)는 높은 전력 밀도, 변환 효율 및 환경 친화성으로 인하여 효과적인 이동성 활용이 가능하다.For centuries, industrial sites and living standards have been developed by utilizing many energy sources. These developments are based on the use of natural resources, and subsequent use can lead to depletion of fuel. To date, many researchers have developed alternative energy sources such as wind, hydro, solar, and fuel cells to prevent depletion of fuel. In particular, a polymer electrolyte membrane fuel cell (PEMFC) can effectively utilize mobility due to its high power density, conversion efficiency, and environmental friendliness.

술폰화된 퍼플루오로폴리머(Dupont's Nafion®, 3M AquivionTM)는 우수한 화학적 안정성과 높은 수소이온(양성자) 전도도로 인하여 PEM으로 널리 사용되고 있다. 그러나 이러한 막은 높은 메탄올 투과도, 복잡한 제조 공정, 100 ℃이상의 온도에서 성능이 저하되는 등의 주요 결점을 가지고 있다. 따라서, 술폰화 방향족 탄화수소 막이 PEM의 대안으로 연구되어 왔다.Polymer to the sulfonated perfluoro (Dupont's Nafion ®, 3M Aquivion TM) are widely used in PEM due to the excellent chemical stability and high hydrogen ion (proton) conductivity. However, such membranes have major drawbacks such as high methanol permeability, complicated manufacturing processes, and degradation of performance at temperatures above 100 < 0 > C. Thus, sulfonated aromatic hydrocarbon membranes have been studied as an alternative to PEM.

비특허문헌은 중합체 구조의 설계 변화를 통하여 술폰화 방향족 탄화수소 막의 성능을 개선할 수 있는 방안을 제시하였고, 고분자 합성에 중요한 점 2개를 언급하였다. 첫 번째는, 블록공중합체는 블록공중합체의 친수성 및 소수성 부분의 명확한 상 분리로 인하여 비슷한 이온 교환 용량(Ion exchange capacity, IEC)를 가지는 랜덤공중합체에 비해 높은 수소이온(양성자) 전도도를 나타낸다는 것이고, 두 번째는, 측쇄 술폰화가 중심쇄 술폰화 보다 반응성이 크다는 것이다.Non-patent documents have suggested a way to improve the performance of sulfonated aromatic hydrocarbon membranes by changing the design of the polymer structure, and mentioned two important points in polymer synthesis. First, the block copolymer exhibits a higher hydrogen ion (proton) conductivity than random copolymers with similar ion exchange capacity (IEC) due to the apparent phase separation of the hydrophilic and hydrophobic portions of the block copolymer And the second is that the side chain sulfonation is more reactive than the center chain sulfonation.

그 결과, 많은 발명자들은 폴리(에테르 술폰), 폴리(에테르 에테르 케톤), 폴리(아릴렌 에테르 술폰), 블록공중합체, 펜던트형 또는 빗살형 공중합체와 같은 술폰화된 방향족 고분자(중합체)를 연구하였다. 이들 중합체는 나피온 성능에 근접한 높은 열적, 산화적, 화학적 안정성으로 인하여 주목받게 되었다.As a result, many inventors have studied sulphonated aromatic polymers (polymers) such as poly (ether sulfone), poly (ether ether ketone), poly (arylene ether sulfone), block copolymer, pendant type or comb type copolymer Respectively. These polymers have attracted attention due to their high thermal, oxidative and chemical stability close to Nafion's performance.

그러나 PEMFC 작동 중에 생성된 과산화수소 또는 과산화물 라디칼에 의하여 산 작용기를 갖는 에테르 결합이 공격받기 때문에 화학적 안정성은 나피온에 근접하지 못한다. 화학적 안정성을 개선하기 위해 고분자 중심쇄에 있어서, 폴리페닐렌 또는 모든 탄소구조에 에테르 결합이 없는 중합체가 제안되었다. 이러한 중합체는 딜스-알더, 강산 촉매 및 니켈 촉매화 반응에 의해 제조되었다. 비특허문헌은 딜스-알더 중합에 의한 중합체를 합성하였으나, 이 방법은 단위체가 고가이기 때문에 상업화가 제한되었다. 통상적으로, 탄소-탄소 결합반응(스즈키반응)에서는 팔라듐 촉매가 사용되지만, 팔라듐 촉매보다 니켈 촉매가 방향족 구조에 대한 반응성이 높아 효율적이다.However, chemical stability does not come close to Naphion because the ether bond with an acid functional group is attacked by hydrogen peroxide or peroxide radicals produced during PEMFC operation. To improve the chemical stability, polymers having no ether bond in polyphenylene or in all carbon structures have been proposed in the polymer center chain. These polymers were prepared by a Diels-Alder, strong acid catalyst and nickel catalyzed reaction. Non-patent documents have synthesized polymers by the Diels-Alder polymerization, but commercialization of this method has been limited due to the high cost of the monomers. Usually, a palladium catalyst is used in the carbon-carbon bond reaction (Suzuki reaction), but the nickel catalyst is more reactive to the aromatic structure than the palladium catalyst, so that it is efficient.

비특허문헌에는 중합체에 벤조일기를 포함하여 높은 이온 전도도, 우수한 화학적 및 물리적 특성 등과 같은 이점을 갖는다고 제시되었다. 또한, 파맥스(Parmax) 제품은 측쇄에 벤조일기를 포함하는 상업적으로 유용한 발명 중의 하나이다. 측쇄의 벤조일기는 표면 형태 및 기타 특성을 포함한 표면 특성에 영향을 미친다.The non-patent literature has proposed that polymers include benzoyl groups and have advantages such as high ionic conductivity, good chemical and physical properties, and the like. In addition, the Parmax product is one of the commercially useful inventions containing a benzoyl group on the side chain. The benzoyl group of the side chain affects surface properties including surface morphology and other properties.

본 발명의 발명자는 니켈 촉매화 반응을 이용하여 에테르 결합이 없는 중합체 구조를 연구 하였다. 본 발명의 목적은 중합체의 화학적 안정성, 유연성 및 분자량을 개선하기 위하여 에테르기 및 벤조일 모이어티 없이 중심쇄에 탄소-탄소 결합된 중합체를 제조하는 것이다. 클로라이드 근처의 전자구인성기의 존재로 인해 테트라페닐 단량체 및 1,4- 디클로로-2,5-디벤조일벤젠의 케톤기는 높은 분자량을 갖게 된다.The inventors of the present invention have studied polymer structures without ether linkages using nickel catalysis. It is an object of the present invention to prepare carbon-carbon bonded polymers in the center chain without ether groups and benzoyl moieties in order to improve the chemical stability, flexibility and molecular weight of the polymers. Due to the presence of electron-attracting groups near the chloride, the ketone groups of tetraphenyl monomer and 1,4-dichloro-2,5-dibenzoylbenzene have high molecular weights.

본 발명에서는, 니켈, 트리페닐포스핀 및 아연을 촉매로 하여 1,2-비스(4-클로로벤조일)-3,6-디페닐벤젠 및 1,4-디클로로-2,5-디벤조일벤젠으로부터 디벤조일 모이어티를 포함하는 폴리(디케톤페닐렌)을 합성하는 방법을 제공한다.In the present invention, it is preferable to use 1,2-bis (4-chlorobenzoyl) -3,6-diphenylbenzene and 1,4-dichloro-2,5-dibenzoylbenzene as catalysts from nickel, triphenylphosphine and zinc (Diketone phenylene) comprising a dibenzoyl moiety.

미국특허등록 제5,869,599호(1999.02.09)U.S. Patent No. 5,869,599 (Mar. 2, 1999) 대한민국특허 공개 제2011-0066614호(2011.06.17)Korean Patent Publication No. 2011-0066614 (June 17, 2011)

Gross M, Maier G, Fuller T, MacKinnon S, Gittleman C. Kreuer KD.In: Vielstich W, Gasteiger HA, Lamm A, Yokokawa H, editors. Handbook of Fuel Cells, New York: John Wiley & Sons Ltd (2010)Gross M, Maier G, Fuller T, MacKinnon S, Gittleman C. Kreuer KD.In: Vielstich W, Gasteiger HA, Lamme, Yokokawa H, editors. Handbook of Fuel Cells, New York: John Wiley & Sons Ltd (2010) Ghassemi H, McGrath JE. Polymer 45:5847-54 (2004)Ghassemi H, McGrath JE. Polymer 45: 5847-54 (2004) Zhang X, Sheng L, Higashihara T, Ueda M. Polymer Chemistry 4:1235-42 (2013)Zhang X, Sheng L, Higashihara T, Ueda M. Polymer Chemistry 4: 1235-42 (2013)

본 발명자들은 니켈 촉매화 반응을 이용하여 에테르 결합이 없는 중합체 구조에 대하여 연구하던 중, 중심쇄로서 디케톤 및 측쇄로서 디벤조일로 구성된 중합체를 합성하면 중합체의 화학적 안정성, 유연성, 분자량이 개선된다는 것을 발견하였다. 따라서, 본 발명은 디벤조일 모이어티를 포함하는 술폰화 폴리(디케톤페닐렌) 공중합체를 제공하는 것을 목적으로 한다.The present inventors have found that when a polymer structure composed of dicetone as a center chain and dibenzoyl as a side chain is synthesized while studying a polymer structure having no ether bond by using a nickel catalyzed reaction, the chemical stability, flexibility and molecular weight of the polymer are improved Respectively. Accordingly, it is an object of the present invention to provide a sulfonated poly (diketonophenylene) copolymer containing a dibenzoyl moiety.

본 발명의 일 측면에 따라 하기 화학식 1 및 화학식 2로 표시되는 단위체를 포함하는 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체가 제공된다:According to one aspect of the present invention, there is provided a sulfonated polytetraphenylbenzophenone (SPTBP) copolymer comprising a unit represented by the following general formula (1) and general formula (2)

[화학식 1][Chemical Formula 1]

Figure pat00001
Figure pat00001

[화학식 2](2)

Figure pat00002
Figure pat00002

상기 식에서, 100 < m < 500, 100 < n < 500이다.In the above formula, 100 <m <500 and 100 <n <500.

본 발명의 또 다른 측면에 따라 상기 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체를 포함하는 고분자 전해질막이 제공된다.According to another aspect of the present invention, there is provided a polymer electrolyte membrane comprising the sulfonated polytetraphenylbenzophenone (SPTBP) copolymer.

본 발명의 또 다른 측면에 따라 상기 고분자 전해질막을 포함하는 막-전극 접합체가 제공된다.According to still another aspect of the present invention, there is provided a membrane-electrode assembly including the polymer electrolyte membrane.

본 발명의 또 다른 측면에 따라 상기 막-전극 접합체를 포함하는 연료전지가 제공된다.According to still another aspect of the present invention, there is provided a fuel cell including the membrane-electrode assembly.

본 발명의 또 다른 측면에 따라 하기 화학식 3로 표시되는 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체의 제조방법으로서,According to still another aspect of the present invention, there is provided a process for producing a sulfonated polytetraphenylbenzophenone (SPTBP)

하기 화학식 4로 표시되는 화합물과 하기 화학식 5로 표시되는 화합물을 반응시켜 하기 화학식 6으로 표시되는 화합물을 제조하는 단계(A);(A) reacting a compound represented by the following formula (4) with a compound represented by the following formula (5) to prepare a compound represented by the following formula (6);

하기 화학식 6으로 표시되는 화합물을 술폰화시켜 하기 화학식 3으로 표시되는 화합물을 제조하는 단계(B);를 포함하는 제조방법이 제공된다:(B) sulfonating a compound represented by the following formula (6) to prepare a compound represented by the following formula (3): &lt; EMI ID =

[화학식 3](3)

Figure pat00003
Figure pat00003

[화학식 4] [Chemical Formula 4]

Figure pat00004
Figure pat00004

[화학식 5][Chemical Formula 5]

Figure pat00005
Figure pat00005

[화학식 6][Chemical Formula 6]

Figure pat00006
Figure pat00006

상기 식에서, 100 < m < 500, 100 < n < 500이다.In the above formula, 100 <m <500 and 100 <n <500.

본 발명에 의한 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체는 에테르기 및 벤조일 모이어티 없이 중심쇄에 탄소-탄소 결합되어 중합체의 유연성 등의 특성이 개선되며, 높은 분자량을 갖게 된다는 것이 밝혀졌다.It has been found that the sulfonated polytetraphenylbenzophenone (SPTBP) copolymer according to the present invention is carbon-carbon bonded to the center chain without an ether group and a benzoyl moiety to improve the properties such as flexibility of the polymer and have a high molecular weight .

또한 본 발명의 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체를 포함하는 고분자 전해질막(이하, 막이라 함)은 수소이온 전도도, 치수안정성, 수분흡수 등의 특성이 개선되는 효과를 가진다.Further, the polymer electrolyte membrane (hereinafter referred to as a membrane) containing the sulfonated polytetraphenylbenzophenone (SPTBP) copolymer of the present invention has an effect of improving the properties such as hydrogen ion conductivity, dimensional stability, and moisture absorption.

도 1은 테트라페닐 및 디벤조일 단위체의 1H NMR 스펙트럼이다.
도 2는 PTBP 및 SPTBP 중합체의 1H NMR 스펙트럼이다.
도 3은 PTBP 및 SPTBP들의 열-산화 안정성을 나타낸 것이다.
도 4는 30 ~ 90% RH하에서 80 ℃에서의 막의 수소이온 전도도를 나타낸 것이다.
도 5는 90% RH하에서 30 ℃ ~ 80 ℃에서의 막의 수소이온 전도도를 나타낸 것이다.
도 6은 SPTBP 3 및 SPTBP 9의 원자현미경 사진을 나타낸 것이다.
Figure 1 is a 1 H NMR spectrum of tetraphenyl and dibenzoyl monomers.
Figure 2 is a 1 H NMR spectrum of PTBP and SPTBP polymers.
Figure 3 shows the thermal-oxidation stability of PTBP and SPTBPs.
4 shows the hydrogen ion conductivity of the membrane at 80 DEG C under 30 to 90% RH.
Figure 5 shows the hydrogen ion conductivity of the membrane at 30 ° C to 80 ° C under 90% RH.
FIG. 6 is an atomic force microscope photograph of SPTBP 3 and SPTBP 9. FIG.

이하에서는 본 발명의 일 실시예에 따른 술폰화 폴리테트라페닐 벤조페논 공중합체, 이를 포함하는 고분자 전해질막, 및 이를 포함하는 연료전지에 관하여 더욱 상세히 설명한다.Hereinafter, a sulfonated polytetraphenylbenzophenone copolymer, a polymer electrolyte membrane including the sulfonated polytetraphenylbenzophenone copolymer, and a fuel cell including the sulfonated polytetraphenylbenzophenone copolymer according to an embodiment of the present invention will be described in detail.

본 발명은 하기 화학식 1 및 화학식 2로 표시되는 단위체를 포함하는 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체를 제공한다:The present invention provides a sulfonated polytetraphenylbenzophenone (SPTBP) copolymer comprising a unit represented by the following general formulas (1) and (2):

[화학식 1][Chemical Formula 1]

Figure pat00007
Figure pat00007

[화학식 2](2)

Figure pat00008
Figure pat00008

상기 식에서, 100 < m < 500, 100 < n < 500이다.In the above formula, 100 <m <500 and 100 <n <500.

상기 공중합체에 포함된 술폰기로 인하여 반응성이 크게 되며, 높은 수소이온 전도도를 가질 수 있다.Due to the sulfone groups contained in the copolymer, the reactivity is increased, and high hydrogen ion conductivity can be obtained.

상기 공중합체에서 상기 m : n의 비율이 1:9 내지 9:1인 것이 바람직하며, 더욱 바람직하게는 상기 m : n의 비율이 2:8인 것일 수 있다. 상기 m : n의 비율이 고분자량을 얻기에 적합하다.In the copolymer, the ratio of m: n is preferably 1: 9 to 9: 1, and more preferably the ratio m: n is 2: 8. The ratio of m: n is suitable for obtaining a high molecular weight.

상기 공중합체의 중량평균분자량은 특별히 한정되지 않으나 50,000 내지 200,000인 것이 바람직하며, 더욱 바람직하게는 80,000 내지 180,000이며, 가장 바람직하게는 100,000 내지 150,000이다. 상기 중량평균분자량 범위가 본 발명의 목적 달성에 적합하다.The weight average molecular weight of the copolymer is not particularly limited, but is preferably 50,000 to 200,000, more preferably 80,000 to 180,000, and most preferably 100,000 to 150,000. The weight average molecular weight range is suitable for achieving the object of the present invention.

본 발명에 따른 술폰화 폴리테트라페닐 벤조페논(SPTBP) 고분자는 중심쇄에 탄소-탄소 결합되고, 측쇄에 술폰기가 도입된 구조로서, 중합체가 유연성을 가지며 높은 분자량을 가질 수 있다. 또한 술폰기가 측쇄에 도입됨으로써 고분자의 친수성-소수성 부분이 분리되어 수소이온 전도도가 향상될 수 있다.The sulfonated polytetraphenylbenzophenone (SPTBP) polymer according to the present invention has a structure in which carbon-carbon bonds to the center chain and a sulfone group is introduced to the side chain, and the polymer has flexibility and can have a high molecular weight. Also, the sulfone group is introduced into the side chain, so that the hydrophilic-hydrophobic part of the polymer is separated and the hydrogen ion conductivity can be improved.

또한 본 발명의 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체를 포함하는 고분자 전해질막(이하, 막이라 함)은 수소이온 전도도, 치수안정성, 수분흡수 등의 특성이 개선되는 효과를 가진다.Further, the polymer electrolyte membrane (hereinafter referred to as a membrane) containing the sulfonated polytetraphenylbenzophenone (SPTBP) copolymer of the present invention has an effect of improving the properties such as hydrogen ion conductivity, dimensional stability, and moisture absorption.

본 발명의 또 다른 일 실시예에 다르면, 상기 공중합체를 포함하는 고분자 전해질막이 제공된다. 상기 고분자 전해질막은 술폰기를 포함하여 수소이온 전도도가 높다. 그리고 수분 흡수 특성도 우수하다.According to another embodiment of the present invention, there is provided a polymer electrolyte membrane comprising the copolymer. The polymer electrolyte membrane contains sulfone groups and has high hydrogen ion conductivity. And it has excellent water absorption property.

본 발명의 또 다른 일 실시예에 따르면 상기 고분자 전해질막을 포함하는 막-전극 접합체가 제공된다. 본 발명의 또 다른 일 실시예에 따르면 상기 막-전극 접합체를 포함하는 연료전지가 제공된다.According to another embodiment of the present invention, there is provided a membrane-electrode assembly including the polymer electrolyte membrane. According to another embodiment of the present invention, there is provided a fuel cell including the membrane-electrode assembly.

상기 연료전지는 캐소드, 애노드 및 이들 사이에 개재된 상기 고분자 전해질막을 구비할 수 있다.The fuel cell may include a cathode, an anode, and the polymer electrolyte membrane sandwiched therebetween.

본 발명의 또 다른 일 실시예에 따르면 따라 하기 화학식 3로 표시되는 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체의 제조방법으로서,According to another embodiment of the present invention, there is provided a process for producing a sulfonated polytetraphenylbenzophenone (SPTBP) copolymer represented by the following general formula (3)

하기 화학식 4로 표시되는 화합물과 하기 화학식 5로 표시되는 화합물을 반응시켜 하기 화학식 6으로 표시되는 화합물을 제조하는 단계(A);(A) reacting a compound represented by the following formula (4) with a compound represented by the following formula (5) to prepare a compound represented by the following formula (6);

하기 화학식 6으로 표시되는 화합물을 술폰화시켜 하기 화학식 3으로 표시되는 화합물을 제조하는 단계(B);를 포함하는 제조방법이 제공된다:(B) sulfonating a compound represented by the following formula (6) to prepare a compound represented by the following formula (3): &lt; EMI ID =

[화학식 3](3)

Figure pat00009
Figure pat00009

[화학식 4] [Chemical Formula 4]

Figure pat00010
Figure pat00010

[화학식 5][Chemical Formula 5]

Figure pat00011
Figure pat00011

[화학식 6][Chemical Formula 6]

Figure pat00012
Figure pat00012

상기 식에서, 100 < m < 500, 100 < n < 500이다.In the above formula, 100 <m <500 and 100 <n <500.

상기 단계 (A)가 니켈(Ni), 포스핀(PPH3) 및 아연(Zn)의 존재하에서 수행되는 것을 특징으로 할 수 있다. 상기 니켈, 포스핀(트리페닐포스핀) 및 아연은 질소하에서 보관될 수 있다. 용매로는 DMAc 또는 DMSO가 사용될 수 있으며 반드시 이에 한정되는 것은 아니다.Wherein the step (A) is performed in the presence of nickel (Ni), phosphine (PPH 3 ) and zinc (Zn). The nickel, phosphine (triphenylphosphine) and zinc may be stored under nitrogen. As the solvent, DMAc or DMSO may be used, but not always limited thereto.

상기 니켈(Ni), 포스핀(PPH3) 및 아연(Zn)의 몰비는 60 : 8 : 1인 것을 특징으로 할 수 있다. 상기 몰비가 고분자량을 얻기에 적합하다.The molar ratio of nickel (Ni), phosphine (PPH 3 ) and zinc (Zn) is 60: 8: 1. The above-mentioned molar ratio is suitable for obtaining a high molecular weight.

이하, 본 발명을 실시예 및 시험예를 통하여 더욱 상세히 설명한다. 그러나 하기 실시예 및 시험예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples and test examples. However, the following examples and test examples are provided for illustrating the present invention, and the scope of the present invention is not limited thereto.

실시예 1. Example 1. 술폰화Sulfonation 폴리테트라페닐Polytetraphenyl 벤조페논( Benzophenone ( SPTBPSPTBP )의 합성) Synthesis of

(1) (One) 재 료material

푸마릴클로라이드, 알루미늄클로라이드, 트랜스,트랜스-1,4-디페닐-1,3-부타디엔, 인산, 브롬, 아세트산 나트륨, 벤젠, 2,5-디클로로-p-자일렌, 과망간산칼륨, 피리딘, 티오닐클로라이드, 니켈브로마이드, 트리페닐포스핀 및 클로로 술폰산은 알파에이사(Alfa Aesar) 및 시그마-알드리치(Sigma-Aldrich)로부터 구입하였다. 브롬화니켈, 아연분말, 및 트리페닐포스핀을 질소하에서 보관하였다. DMAc 및 DMSO를 수소화칼슘으로 건조한 후 증류하고, 사용 전까지 3Å 분자체로 건조 상태를 유지 하였다. 톨루엔, 아세톤, 이황화탄소, 클로로포름, 메탄올, 에탄올, 에틸벤젠, 아세트산 무수물 및 빙초산 등 일반적 용매는 추가 정제없이 사용하였다.Phosphoric acid, bromine, sodium acetate, benzene, 2,5-dichloro-p-xylene, potassium permanganate, pyridine, t-butyldimethylsilyl chloride, Oleyl chloride, nickel bromide, triphenylphosphine and chlorosulfonic acid were purchased from Alfa Aesar and Sigma-Aldrich. Nickel bromide, zinc powder, and triphenylphosphine were stored under nitrogen. The DMAc and DMSO were dried with calcium hydride and distilled, and the dried state was maintained with 3 Å molecular sieves before use. General solvents such as toluene, acetone, carbon disulfide, chloroform, methanol, ethanol, ethylbenzene, acetic anhydride and glacial acetic acid were used without further purification.

(2) 1,2-(2) 1,2- 비스Bis (4-(4- 클로로벤조일Chlorobenzoyl )-3,6-) -3,6- 디페닐벤젠[1,2-bisDiphenylbenzene [1,2-bis (4-(4- chlorobenzoylchlorobenzoyl )-3,6-diphenylbenzene]의 합성) -3,6-diphenylbenzene]

1,2-비스(4-클로로벤조일)-3,6-디페닐벤젠을 다음과 같은 절차에 따라 합성하였다. 500 ㎖ 3구 둥근 플라스크에 알루미늄클로라이드(0.25 mol, 33.39 g), 클로로벤젠(0.2 mol, 20.28 ㎖) 및 이황화탄소(200 ㎖)를 넣고 10 분 동안 교반하였다. 푸마릴 클로라이드(0.1 mol, 10.26 ㎖)를 이황화탄소(50 ㎖)로 희석하였으며, 30분 동안 천천히 적가하였다. 혼합물을 24 시간 동안 환류하였다. 1,2-bis (4-chlorobenzoyl) -3,6-diphenylbenzene was synthesized according to the following procedure. Aluminum chloride (0.25 mol, 33.39 g), chlorobenzene (0.2 mol, 20.28 ml) and carbon disulfide (200 ml) were placed in a 500 ml three-necked round flask and stirred for 10 minutes. Fumaryl chloride (0.1 mol, 10.26 mL) was diluted with carbon disulfide (50 mL) and slowly added dropwise over 30 min. The mixture was refluxed for 24 hours.

반응 후, 용액을 HCl 용액(얼음 중)에 부었다. 얻어진 생성물을 물로 세척하고, 디클로로메탄을 첨가하여, 유기층을 분리하였다. 상기 유기층을 증발시킨 후, 에탄올로 세척하고, 톨루엔으로 재결정화하였다. 얻어진 황색고체(0.03 mol, 10 g)를 500 ㎖ 2구 둥근 플라스크중의 에틸벤젠(250 ㎖)에 용해한 다음, 트랜스,트랜스-1,4-디페닐-1,3-부타디엔(0.03 mol, 6.76 g)에 첨가하였다.After the reaction, the solution was poured into an HCl solution (in ice). The obtained product was washed with water, dichloromethane was added, and the organic layer was separated. The organic layer was evaporated, washed with ethanol and recrystallized with toluene. The resulting yellow solid (0.03 mol, 10 g) was dissolved in ethylbenzene (250 ml) in a 500 ml two-necked round-bottomed flask and then trans-trans-1,4-diphenyl-1,3-butadiene (0.03 mol, g).

이 후, 상기 혼합물을 24 시간 동안 환류시켜 용매를 증발시켰다. 상기 생성물을 에탄올로 재결정화하고, 오븐에서 80 ℃로 12시간 동안 건조하였다. 무수 아세트산(600 ㎖) 중의 백색 고체(15 g) 혼합물을 86 % 시럽 상 인산(0.4 g)에 첨가하고 1 L 2구 둥근 플라스크에서 환류시켰다. 상기 혼합물을 냉각 상태가 되기 전에 1 시간 동안 교반하고, 에탄올로 재결정하였다. 250㎖ 3구 둥근 플라스크에서 1,3-비스(4-클로로페닐)-4,7-디히드로-4,7- 디페닐아이소벤코퓨란(0.01 mol, 5 g)을 빙초산(100 ㎖)에 용해시키고, 빙초산(5 ㎖)중 브롬 용액(0.02 mol, 1 ㎖)을 10분 동안 적가하였다. 상기 혼합물을 1 시간 동안 환류시켰다. 이 후, 아세트산나트륨(0.08 mol, 8 g)를 첨가하고 80 ℃에서 30분 동안 연속 교반하였다. 혼합물에 물을 첨가하고, 수 시간 동안 천천히 냉각시켰다. 백색 고체(7B)를 여과하고 에탄올로 재결정 하였다.After this time, the mixture was refluxed for 24 hours to evaporate the solvent. The product was recrystallized from ethanol and dried in an oven at 80 DEG C for 12 hours. A white solid (15 g) mixture in acetic anhydride (600 mL) was added to 86% syrupy phosphoric acid (0.4 g) and refluxed in a 1 L 2-neck round flask. The mixture was stirred for 1 hour before being cooled and recrystallized from ethanol. In a 250 ml three-necked round flask, 1,3-bis (4-chlorophenyl) -4,7-dihydro-4,7-diphenylisobenocoufuran (0.01 mol, 5 g) was dissolved in glacial acetic acid And a solution of bromine (0.02 mol, 1 mL) in glacial acetic acid (5 mL) was added dropwise over 10 minutes. The mixture was refluxed for 1 hour. Subsequently, sodium acetate (0.08 mol, 8 g) was added, and the mixture was continuously stirred at 80 캜 for 30 minutes. Water was added to the mixture and allowed to cool slowly for several hours. The white solid 7B was filtered and recrystallized from ethanol.

(3) 2,5-(3) 2,5- 디클로로Dichloro -1,4--1,4- 디벤조일벤젠Dibenzoylbenzene [2,5-[2,5- dichlorodichloro -1,4--1,4- dibenzoylbenzenedibenzoylbenzene ]의 합성] Synthesis of

2,5-디클로로-1,4-디벤조일벤젠을 다음과 같은 절차에 따라 제조하였다. 500 ㎖ 둥근 바닥 플라스크에 2,5-디클로로-p-자일렌(10 g, 42 mmol), 과망간산칼륨(54.5 g, 354 mmol), 피리딘(162 ㎖, 2048 mmol) 및 증류수 50 ㎖를 넣고 실온(상온)에서 교반하였다. 1시간 후, 상기 혼합물을 24시간 동안 환류시켰다. 망간을 셀라이트 여과에 의해 제거하고 온수로 세척하였다. 여과액을 증발시켜 백색 고체를 얻은 후 물에 용해시켰다. pH 2가 될 때까지 상기 용액에 HCl을 첨가하였다. 2,5-Dichloro-1,4-dibenzoylbenzene was prepared according to the following procedure. (10 g, 42 mmol), potassium permanganate (54.5 g, 354 mmol), pyridine (162 mL, 2048 mmol) and distilled water (50 mL) were placed in a 500 mL round- At room temperature). After 1 hour, the mixture was refluxed for 24 hours. Manganese was removed by celite filtration and washed with hot water. The filtrate was evaporated to give a white solid which was then dissolved in water. HCI was added to the solution until pH 2 was reached.

디클로로테레프탈산(10 g, 0.04 mol)을 티오닐클로라이드(30 ㎖, 0.4 mol)와 함께 24시간 동안 환류조건 하에서 교반 하였다. 상기 용액을 증발시키고, 다음 단계를 위해 즉시 5 ㎖의 이황화탄소를 첨가하였다. 벤젠(9.4 ㎖, 0.1 mol), 알루미늄클로라이드(28.36 g, 0.21 mol)를 250 ㎖의 이황화탄소에 용해시키고 클로라이드 단량체를 10분 동안 적가하였다. 혼합물을 24시간 동안 40℃에서 교반하고, 잔류물을 염산과 함께 얼음물에 부었다. 생성물을 여과 및 물로 2회 세척하고, 에틸아세테이트 및 헥산으로 재결정하고 60℃ 오븐에서 건조하였다.Dichloroterephthalic acid (10 g, 0.04 mol) was stirred with thionyl chloride (30 mL, 0.4 mol) for 24 hours under reflux conditions. The solution was evaporated and immediately 5 ml of carbon disulfide was added for the next step. Benzene (9.4 mL, 0.1 mol), aluminum chloride (28.36 g, 0.21 mol) was dissolved in 250 mL of carbon disulfide and the chloride monomer was added dropwise for 10 minutes. The mixture was stirred for 24 h at 40 &lt; 0 &gt; C and the residue was poured into ice water with hydrochloric acid. The product was washed twice with filtration and water, recrystallized from ethyl acetate and hexane and dried in an oven at 60 &lt; 0 &gt; C.

(4) (4) 폴리테트라페닐Polytetraphenyl 벤조페논[ Benzophenone [ polytetraphenyl폴리 테레 피렌 benzophenonebenzophenone , , PTBPPTBP ]의 합성] Synthesis of

글로브 박스에 촉매와 단량체를 넣기 위해 1구, 3구 플라스크를 준비하였다. 니켈 브로마이드(0.0978 g, 0.0004 mol), 아연 분말(1.757 g, 0.0268 mol), 트리 페닐포스핀(0.9409 g, 0.0035 mol)을 100 ㎖ 3구 플라스크에 넣고, 다른 둥근 플라스크에 7b (1 g, 0.0019 mol) 와 PBP(1.4 g, 0.0039 mol)를 넣었다.A 1-necked, 3-necked flask was prepared to accommodate the catalyst and monomers in the glove box. Nickel bromide (0.0978 g, 0.0004 mol), zinc powder (1.757 g, 0.0268 mol) and triphenylphosphine (0.9409 g, 0.0035 mol) were placed in a 100 ml three-necked flask, and another round flask was charged with 7b (1 g, 0.0019 mol) and PBP (1.4 g, 0.0039 mol).

습기를 방지하기 위하여 질소 가스를 글로브 박스 밖으로 흐르게 하였다. 촉매를 활성화하기 위해 주사기(바늘)을 이용하여 DMAC 3 ㎖를 주입하고 90 ℃로 온도를 상승시켰다. DMAC(12 ㎖)를 주입해서 단량체를 용해하고, 촉매가 포함된 플라스크에 주입하였다. 반응을 100 ℃에서 24시간 동안 진행하였다. 중합체를 30% 염산 포함 물에 부었다. 황색고체를 여과하고 메탄올 및 물로 세척한 다음 60℃ 오븐으로 건조하였다. Nitrogen gas was allowed to flow out of the glove box to prevent moisture. To activate the catalyst, 3 ml of DMAC was injected using a syringe (needle) and the temperature was raised to 90 ° C. DMAC (12 mL) was injected to dissolve the monomer, and the monomer was injected into the flask containing the catalyst. The reaction was carried out at 100 &lt; 0 &gt; C for 24 hours. The polymer was poured into water containing 30% hydrochloric acid. The yellow solid was filtered off, washed with methanol and water and then dried in an oven at 60 [deg.] C.

(5) (5) 술폰화Sulfonation 폴리테트라페닐Polytetraphenyl 벤조페논[ Benzophenone [ sulfonatedulfonated polytetraphenyl폴리 테레 피렌 benzophenone, SPTBP]의 합성 benzophenone, SPTBP]

합성된 중합체를 상온에서 클로로포름으로 용해하고, 클로로술폰산을 첨가하였다. 0.504 ㎖을 천천히 적가한 후 혼합물을 4시간 동안 교반하였다.The synthesized polymer was dissolved in chloroform at room temperature, and chlorosulfonic acid was added. 0.504 mL was slowly added dropwise and the mixture was stirred for 4 hours.

반응후, 혼합물을 증류수에 천천히 붓고, 잔류산 제거를 위해 수회 세척한 다음, 24시간 동안 60 ℃ 오븐에서 건조하였다.After the reaction, the mixture was slowly poured into distilled water, washed several times to remove residual acid, and then dried in an oven at 60 ° C for 24 hours.

실시예 2. 고분자 전해질막의 제조Example 2. Preparation of polymer electrolyte membrane

평면 유리판(5 cm × 5 cm)에서 60, 80, 100, 120℃의 주위온도에 걸쳐 투명 필름을 수득하기 위해 DMSO 중의 20 중량% 여과된 중합체로 막(25 μm)을 제조하였다. Films (25 μm) were prepared with a 20 wt% filtered polymer in DMSO to obtain a clear film over a flat glass plate (5 cm × 5 cm) at ambient temperatures of 60, 80, 100 and 120 ° C.

시험예 1. 특성 분석Test Example 1. Characterization

[시험 방법][Test Methods]

(1) 내부표준으로 테트라메틸실란(TMS)을 이용하여 브루커 DRX 분광계(400MHz)로 1H의 NMR 스펙트럼을 기록하였다.(1) 1 H NMR spectrum was recorded on a Bruker DRX spectrometer (400 MHz) using tetramethylsilane (TMS) as an internal standard.

(2) 열중량분석은 열중량분석기(Scinco TGA-1000N)를 사용하여 30 ~ 800 ℃까지 10 ℃/분의 승온속도 조건하에서 측정하였다. 분석은 막의 건조 및 습성 측정으로 수행하였으며, 24시간 동안 100 ℃에서 진공 건조한 후 중량 측정하였고, 24 시간 동안 30 ℃ 및 80 ℃에서 탈 이온수에 침수시켰다.(2) Thermogravimetric analysis was performed using a thermogravimetric analyzer (Scinco TGA-1000N) at 30 to 800 ° C under a temperature raising rate of 10 ° C / min. The analysis was carried out by measuring the drying and humidity of the membrane, vacuum drying at 100 ° C for 24 hours, weighing and immersion in deionized water at 30 ° C and 80 ° C for 24 hours.

(3) 막의 수분 흡수는 3 개 시료(SPTBP 3, SPTBP 6, SPTBP 9)로 측정하였고 하기 수식 1과 같이 건조 시료에 대한 물의 흡착 비로서 계산하였다.(3) Moisture absorption of the membrane was measured by three samples (SPTBP 3, SPTBP 6, SPTBP 9) and calculated as the adsorption ratio of water to the dried sample as shown in the following equation (1).

[수식 1][Equation 1]

물 흡수 (%) = [(Wwet - Wdry) / Wdry] × 100 (여기서, Wwet 및 Wdry는 각각 습성 및 건조 막의 무게이다).Water absorption (%) = [(Wwet - Wdry) / Wdry] x 100 where Wwet and Wdry are the weights of the wet and dry film, respectively.

(4) 막의 산 기능의 이온 교환 용량 (IEC)은 다음과 같은 적정 방법으로 측정하였다. 막의 산 형태(H +)를 24시간 동안 80 ℃에서 2.0 M NaCl 용액 20 ㎖에 침지한 다음 나트륨 염 형태로 전환시켰다.(4) The ion exchange capacity (IEC) of the acid function of the membrane was measured by the following suitable method. The acid form (H + ) of the membrane was immersed in 20 ml of a 2.0 M NaCl solution at 80 DEG C for 24 hours and then converted to the sodium salt form.

(5) 수소이온 전도도는 Newtons 4th Ltd(N4L) 임피던스 분석 인터페이스(PSM 1735)장착 관통-면(through-plane) 막 시험시스템(Scribner Associates Inc., MTS 740)을 사용하여 측정하였다. 막을 증류수로 실온에서 24 시간 동안 수화시킨 후 밀폐 셀(sealed cell)에 위치시켰다. 수소이온 전도도는 두 전극 사이에 막의 중간에서 발생하는 AC 전위차를 측정함으로써 얻었다. 일정한 교류 전류를 양 전극으로 인가하는 동안 90% RH 하에서 30 ℃ ~ 80 ℃ 및 30 ~ 90% RH 하에서 80 ℃였다. 셀 임피던스의 주파수 의존성은 교류 전압의 주파수 1 ~ 1×105 Hz에 걸쳐 10 mV에서 측정하였다.(5) The hydrogen ion conductivity was measured using a through-plane membrane test system (Scribner Associates Inc., MTS 740) equipped with a Newtons 4th Ltd (N4L) impedance analysis interface (PSM 1735) The membrane was hydrated with distilled water for 24 hours at room temperature and placed in a sealed cell. Hydrogen ion conductivity was obtained by measuring the AC potential difference between the two electrodes in the middle of the membrane. While applying a constant alternating current to both electrodes, it was 80 DEG C under 30 DEG C to 80 DEG C and 30 to 90% RH under 90% RH. The frequency dependence of the cell impedance was measured at 10 mV over an AC voltage frequency of 1 to 10 5 Hz.

(6) 원자현미경(AFM) 사진은 힘 상수 약 20 Nm- 1으로 미세제작된 캔틸레버를 이용하여, 측정기기(PSIA XE100와 SII-NT SPA400)로 관측하였다. 합성된 중합체 필름 표면을 P/N-910M NCHR tips로 비접촉 모드( Non-contact mode)로 적용 하였다.6 is an atomic force microscope (AFM) pictures are force constant of about 20 Nm - using a micro fabricated cantilever 1, was measured by a measuring device (PSIA XE100 and the SII-NT SPA400). The synthesized polymer film surface was applied in a non-contact mode with P / N-910M NCHR tips.

[결과][result]

(1) 단위체 및 중합체의 특성분석(1) Characterization of monomers and polymers

1,4-디클로로-2,5-,디벤조페논 및 1,2-비스(4-클로로벤조일)-3,6-디페닐벤젠 2개 단량체를 합성하였고, 하기 반응식 1 에 나타내었다.Two monomers of 1,4-dichloro-2,5-, dibenzophenone and 1,2-bis (4-chlorobenzoyl) -3,6-diphenylbenzene were synthesized and shown in Scheme 1 below.

[반응식 1][Reaction Scheme 1]

Figure pat00013
Figure pat00013

1,2-비스(4-클로로벤조일)-3,6-디페닐벤젠은 트랜스,트랜스-1,4-디페닐-1,3-부타디엔과의 딜스-알더 반응 및 알루미늄 클로라이드와 프리델-크래프트 반응을 통한 푸마릴 클로라이드를 사용한 4 단계 공정으로 제조하였다. 치환된 시클로헥센은 디히드로이소벤조퓨란 중간체를 거쳐 완전한 방향족 구조로 전환되었다. 상기 단량체인 1,4-디클로로-2-벤조페논은 벤조일기가 대칭구조이고 클로라이드의 근처에 전자구인성기로 인해 니켈ㅇ아연 촉매화 중합에서 높은 반응 부위로 작용한다. 합성된 단량체의 화학 구조는 1H NMR 분광학으로 확인하였다. 상기 단량체는 모두 방향족환 및 케톤기로 구성된 것으로 확인되었다.The 1,2-bis (4-chlorobenzoyl) -3,6-diphenylbenzene can be synthesized by the reaction of a trans-1,4-diphenyl-1,3-butadiene with a Diels-Alder reaction and an aluminum chloride with a Friedel- Lt; RTI ID = 0.0 &gt; 4-step &lt; / RTI &gt; The substituted cyclohexene was converted to a complete aromatic structure via the dihydroisobenzofuran intermediate. The above monomer, 1,4-dichloro-2-benzophenone, has a symmetrical structure of benzoyl group and acts as a highly reactive site in nickel-zinc catalyzed polymerization due to electron-attracting group in the vicinity of chloride. The chemical structure of the synthesized monomers was confirmed by 1 H NMR spectroscopy. All of the monomers were identified as consisting of aromatic rings and ketone groups.

도 1 을 참조하면 1,2-비스(4-클로로벤조일)-3,6-디페닐벤젠의 피크는 7.14(Ha), 7.45 ~ 7.50(Hb), 7.60(Hc), 및 7.15 ~ 7.26 (Hd ~ Hf) ppm을 나타냄을 알 수 있다. Ha는 클로라이드에 의해 이동되었고, Hb는 케톤기에 의해 이동되었고, Hc는 벤젠의 입체장애에 의해 이동되었다. PBP에서, 방향족 양성자 피크는 7.51 ~ 7.68 ppm에서 확인되었지만, 클로라이드의 전자 구인성 또는 공여성 효과로 인하여 클로라이드 근처의 양성자 피크는 7.48 또는 7.92 ppm에 특징적으로 나타났다. 또한, 케톤 근처의 양성자 피크는 7.84 ~ 7.87 ppm에 나타났다.1, the peaks of 1,2-bis (4-chlorobenzoyl) -3,6-diphenylbenzene were 7.14 (H a ), 7.45 to 7.50 (H b ), 7.60 (H c ) 7.26 (H d ~ H f ) ppm. H a was moved by the chloride, H b was moved by the ketone group, and H c was shifted by the steric hindrance of benzene. In PBP, the aromatic proton peak was identified at 7.51-7.6 ppm, but the proton peak near chloride was characterized by 7.48 or 7.92 ppm due to the electron-accepting or conjugative effect of chloride. Also, the proton peak near the ketone appeared at 7.84 to 7.87 ppm.

일련의 SPTBP는 1,2-비스(4-클로로벤조일)-3,6-디페닐벤젠 및 2,5-디클로로-1,4-디벤조일벤젠으로 니켈·포스핀·아연 촉매를 사용하여 스즈키 커플링 반응을 통해 합성하였다. 이러한 반응에 대하여 상기반응식 1에 나타내었다. 아연, 니켈 브로마이드 및 트리페닐포스핀 촉매의 비율은 분자량을 증가시키는 중요한 요인이며, 본 발명에서 촉매의 적합한 몰비는 60 : 8 : 1이다. 중합체는 110,500 ~ 124,200의 분자량(Mw)을 가진다. 서로 다른 단위체(단량체) 비율(n : m=1 : 9, 2 : 8, 3 : 7)(SPTBP 3, SPTBP 6, SPTBP 9)을 합성하려 시도하였고, 중합체의 분자량을 증가시키기 위하여 단량체 비율[1,2-비스(4-클로로벤조일)-3,6-디페닐벤젠 : 2,5-디클로로-1,4-디벤조일벤젠]을 변화시켰다. 그 결과, 단위체 비율 2 : 8인 경우에 고분자량 중합체를 얻을 수 있었다. 클로로술폰산이 진한 황산에 불용해되는 경향이 있으므로 클로로술폰산의 양으로 술폰화 반응을 제어하였다. 얻어진 중합체는 116,700 ~ 132,500의 중량 평균 분자량(Mw)을 갖는 것으로 나타났다.A series of SPTBPs were prepared using Suzuki couples using a nickel-phosphine-zinc catalyst with 1,2-bis (4-chlorobenzoyl) -3,6- Ring reaction. This reaction is shown in Scheme 1 above. The ratio of zinc, nickel bromide and triphenylphosphine catalyst is an important factor for increasing the molecular weight, and a suitable molar ratio of the catalyst in the present invention is 60: 8: 1. The polymer has a molecular weight (Mw) of 110,500 to 124,200. (SPTBP 3, SPTBP 6, SPTBP 9) with different monomer (monomer) ratios (n: m = 1: 9, 2: 8, 3: 7). In order to increase the molecular weight of the polymer, 1,2-bis (4-chlorobenzoyl) -3,6-diphenylbenzene: 2,5-dichloro-1,4-dibenzoylbenzene]. As a result, a high molecular weight polymer was obtained when the monomer ratio was 2: 8. Since the chlorosulfonic acid tends to be insoluble in concentrated sulfuric acid, the sulfonation reaction was controlled by the amount of chlorosulfonic acid. The obtained polymer had a weight average molecular weight (Mw) of 116,700 to 132,500.

PTBP 중합체의 화학 구조를 용매 및 기준물질로 CDCl3 및 DMSO-d6를 사용하여 1H NMR 분광법에 의해 조사하였다. 도 2는 PTBP과 SPTBP의 1H NMR 스펙트럼을 나타낸다. 중합체의 구조가 방향족 고리 및 케톤기로 연결 되어있기 때문에 PTBP에서의 페닐 양성자의 신호는 7.0 ~ 7.6 ppm에 나타났다. 이들 중에서 케톤기 근처 양성자는 약 7.6 ppm으로 나타났다. SPTBP에서 페닐양성자의 적분값(integration value)은 7.2 ~ 7.3 ppm에서 감소하고 비편재화 양성자는 술폰산의 전자구인성 효과로 인하여 다운필드(7.4 ~ 7.5 ppm)에서 나타났다.The chemical structure of the PTBP polymer was investigated by 1H NMR spectroscopy using CDCl 3 and DMSO-d 6 as solvents and reference materials. Figure 2 shows 1 H NMR spectra of PTBP and SPTBP. Since the structure of the polymer is linked by aromatic rings and ketone groups, the signal of the phenyl protons in PTBP appeared at 7.0 to 7.6 ppm. Of these, the proton near the ketone group was about 7.6 ppm. In SPTBP, the integration value of the phenyl protons decreased from 7.2 to 7.3 ppm, and the delocalized protons appeared in the down field (7.4 to 7.5 ppm) due to the electron donating effect of sulfonic acid.

(2) 막의 열-산화 안정성(2) Heat-oxidation stability of membrane

막의 열-산화 안정성을 TGA(열중량분석기)로 조사하였다. 중합체의 열-산화 안정성을 평가하기 위해 공기분위기 하에서 막의 분해곡선을 측정하였고, 이를 도 3에 나타냈다. PTBP에서 중합체의 중량 손실은 480 ℃에서 관측되었다. 일련의 술폰화 중합체는 230 ℃ ~ 400 ℃ 및 460 ℃ 이상의 2 단계 중량 감소를 나타냈다. 첫 번째 중량 감소는 술폰기의 소실에 기인하고 두 번째 중량 감소는 고분자 사슬의 분해에 기인한다.The thermal-oxidation stability of the membrane was examined by TGA (thermogravimetric analyzer). In order to evaluate the thermal-oxidation stability of the polymer, the decomposition curves of the membranes were measured under air atmosphere and are shown in FIG. The weight loss of the polymer in PTBP was observed at 480 ° C. A series of sulfonated polymers exhibited a two step weight loss over 230 ° C to 400 ° C and over 460 ° C. The first weight loss is due to the loss of the sulfone group and the second weight loss is due to the degradation of the polymer chain.

(3) 막의 수분 흡수, IEC, 및 치수 안정성(3) Moisture absorption, IEC, and dimensional stability of membranes

통상적으로, 수분 흡수 및 치수 안정성은 PEMFC 시스템을 작동시키기 위한 막의 내구성을 결정하는 핵심 요소이다. 수분은 막과 내부 장치 상호간 양성자 전달을 용이하게 한다. 그러나, 과도한 수분 흡수는 필연적으로 부적절한 막팽창 및 이후의 기계적 안정성 저하를 초래한다.Typically, moisture absorption and dimensional stability are key factors in determining the durability of membranes for operating PEMFC systems. Moisture facilitates proton transfer between membrane and internal devices. However, excessive water absorption inevitably leads to inadequate membrane expansion and subsequent deterioration of mechanical stability.

표 1 에 나타난 바와 같이, SPTBP의 수분 흡수는 IEC값의 증가에 따라 점진적으로 증가하는 것으로 나타났다. SPTBP의 수분흡수 값은 나피온211® 32.13과 비교하여 10.19 ~ 61.22에서 관찰되었다. 이온교환용량(IEC)은 술폰화 함량에 의해 결정되었으며, 수소이온 전도도를 예측하는 지표가 되었다. 표 1에 나타난 바와 같이, SPTBP의 IEC 값은 1.00 ~ 2.28 meq./g 범위였으며 나피온211® IEC 값은 0.91 meq./g 였다.As shown in Table 1, the water absorption of SPTBP increased gradually with increasing IEC value. The water absorption value of SPTBP was observed at 10.19 ~ 61.22 compared to Nafion 211 ® 32.13. The ion exchange capacity (IEC) was determined by the sulfonation content and was an indicator of the proton conductivity. As shown in Table 1, the value of the IEC is SPTBP was 1.00 ~ 2.28 meq./g range Nafion 211 ® IEC value was 0.91 meq./g.

중합체polymer 적정 IEC(meq/g)Proper IEC (meq / g) 수분흡수a (%)Water absorption a (%) tb (%)t b (%) b(%)b (%) 수소이온 전도도c(mS/cm)Hydrogen ion conductivity c (mS / cm) SPTPB 3SPTPB 3 1.001.00 10.1910.19 00 00 62.162.1 SPTPB 6SPTPB 6 1.561.56 38.4238.42 37.1237.12 12.512.5 89.489.4 SPTPB 9SPTPB 9 2.282.28 61.2261.22 48.1748.17 1515 110.2110.2 나피온 211Nafion 211 0.910.91 32.1332.13 14.1014.10 13.8413.84 103.7103.7

a : 80℃에서 24시간 동안 수분흡수a: Moisture absorption at 80 DEG C for 24 hours

b : 수분 존재하에서 80℃ 치수 변화b: Dimensional change at 80 캜 in the presence of water

c : 90% RH 하에서 80℃에서 수소이온 전도도c: Hydrogen ion conductivity at 80 캜 under 90% RH

온도 및 습도에 따른 변화와 관련하여 막(전해질막)의 치수안정성은 중요한 인자이다. 막(전해질막)의 치수안정성은 RH 100% 및 건조 상태의 관통-면(through-plane)(Δt) 및 내-면(in-plane)(Δℓ)에 의해 결정된다.The dimensional stability of the membrane (electrolyte membrane) is an important factor in relation to changes with temperature and humidity. The dimensional stability of the membrane (electrolyte membrane) is determined by the RH 100% and the through-plane (DELTA t) and the in-plane (DELTA l) of the dry state.

SPTBP 막(전해질막)의 결과로 각각 Δt 값은 0%, 37.12%, 48.17%이고, Δℓ 값은 0%, 12.5%, 15 %이었다. Δℓ값은 Δt값 보다 매우 낮은 것으로 나타났으며, 이는 강한 탄소-탄소 중합체 중심쇄에 의한 영향이기도 하며, 친수성 술폰산이 중합체 측쇄에 위치하고 있기 때문이기도 하다. As a result of the SPTBP membrane (electrolyte membrane), Δt values were 0%, 37.12%, and 48.17%, and Δℓ values were 0%, 12.5%, and 15%, respectively. The value of Δℓ is much lower than the value of Δt, which is also due to the strong carbon-carbon polymer center chain and also because the hydrophilic sulfonic acid is located in the side chain of the polymer.

(4) 막(전해질막)의 양성자 전도도 및 형태(4) Proton conductivity and morphology of membrane (electrolyte membrane)

막(전해질막)의 양성자(수소이온) 전도도를 AC 임피던스 분광계 장착 th면일정한 교류 전류를 양극과 음극 양전극에 인가하는 동안 90% RH하에서 30 ~ 80 ℃ 및 30 ~ 90% RH하에서 80 ℃로 설정하였다.Membrane proton (hydrogen ion) Set the AC impedance spectrometer equipped th surface constant alternating current conductivity to 80 ℃ under 30 ~ 80 ℃ and 30 ~ 90% RH under 90% RH while applying a positive electrode the positive electrode and the negative electrode of the (electrolyte membrane) Respectively.

도 4에 나타난 바와 같이, 나피온211® 전도도는 상대습도(RH) 90%, 80 ℃에서 103.7 mS/cm로 측정되었고, SPTBP막(전해질막)은 동일 조건에서 62.1, 89.4, 110.2 mS/cm로 측정되었다. 상대습도(RH) 90%로 일정하게 하고 30 ~ 80 ℃로 온도를 변화시켜 다른 조건을 시험하였다. 동일한 상대습도 하에서 30 ~ 80 ℃에서의 전도도 결과를 나피온211® 비교하여 도 5에 나타냈다. 온도가 증가함에 따라 막(전해질막)의 전도도는 증가하였고, 높은 IEC값을 가진 막(전해질막)은 높은 수소이온 전도도를 갖는 것으로 나타났다. 그러나 SPTBP 막(전해질막)은 나피온211® 비교하여 50% RH에서 낮은 전도도를 가진다는 것이 명확히 확인되었다.4, the Nafion 211 ® conductivity relative humidity (RH) 90%, was measured at 80 ℃ to 103.7 mS / cm, SPTBP membrane (electrolyte membrane) was 62.1, 89.4, 110.2 mS / cm at the same conditions Respectively. Other conditions were tested by varying the temperature from 30 to 80 ° C with a constant relative humidity (RH) of 90%. The results of conductivity at 30 to 80 ° C under the same relative humidity are shown in FIG. 5 by comparing Nafion 211 ® . As the temperature increased, the conductivity of the membrane (electrolyte membrane) increased and the membrane with a higher IEC value (electrolyte membrane) showed higher hydrogen ion conductivity. However, it was clearly confirmed that the SPTBP membrane (electrolyte membrane) had a low conductivity at 50% RH compared to Nafion 211 ® .

막(전해질막) 형태는 원자현미경(AFM)에 의해 관측하였고, 그 결과를 도 6의 상(phase) 사진으로 나타내었다. 밝은 영역은 소수성 방향족 부분에 의해 형성된 도메인에 해당하고, 어두운 납-염색 영역은 공기에서 흡수된 수분을 포함하는 국소적 친수성 술폰기를 나타낸다.The morphology of the membrane (electrolyte membrane) was observed by an atomic force microscope (AFM), and the result was shown in the phase photograph of FIG. The bright regions correspond to the domains formed by the hydrophobic aromatic moieties and the dark lead-dye regions represent the local hydrophilic sulfone groups including the water absorbed in the air.

상기 사진을 조사한 결과, 친수성-소수성의 미세(micro)상분리를 반영하는 표면패턴은 술폰기의 함량에 강하게 의존적인 것으로 확인되었다.As a result of the examination of the photographs, it was confirmed that the surface pattern reflecting the hydrophilic-hydrophobic microphase separation was strongly dependent on the content of the sulfone group.

도 6에 나타난 바와 같이, SPTBP 3 막(전해질막) 사진의 어두운 영역은 높은 IEC로 인하여 SPTBP 9 막에서 나타난 것 보다 넓었다. 미세(micro)상 분리 및 불균일 구조화된 막은, 높은 수소이온 전도도를 갖는 것으로 나타났으며, 특히, 높은 IEC 값에서는 나피온211® 보다 더 높은 값을 갖는 것으로 나타났다.As shown in FIG. 6, the dark areas of the SPTBP 3 film (electrolyte membrane) photographs were wider than those exhibited by the SPTBP 9 film due to the high IEC. Fine (micro) was found to have a phase separation and uneven film is structured, high proton conductivity, in particular, it was found to have a higher value than the high IEC value Nafion 211 ®.

나피온211® 막(전해질막)과 비교하여, 상기 막들은 1.00 ~ 2.28 meq./g의 IEC, 10.19 ~ 61.22 %의 수분 흡수, 61.2 ~ 110.2 mS/cm의 수소이온 전도도, 및 높은 열적 안정성을 나타냈다. 특히, 막(전해질막) SPTBP 9의 수소이온 전도도는 나피온211® 값보다 높았다. 또한, 에테르 연결이 없이 중심쇄로서 디케톤 및 측쇄로서 디벤조일 부분을 갖는 막(전해질막)은 높은 IEC 값을 갖지만 우수한 치수 안정성을 나타냈다. 중합체 매트릭스의 표면 형태는 막(전해질막) 특성에 큰 영향을 미치는 것으로 나타났으며, 본 발명의 SPTBP의 특성은 연료 전지 막(전해질막) 적용에 있어서 매우 유용할 것이다.Or to compare Nafion ® 211 membrane (electrolyte membrane), and the films are 1.00 ~ 2.28 meq./g of IEC, water absorption of 10.19 - 61.22%, 61.2 ~ proton conductivity of 110.2 mS / cm, and a high thermal stability . In particular, the hydrogen ion conductivity of the membrane (electrolyte membrane) SPTBP 9 was higher than that of Nafion 211 ® . Further, the membrane (electrolytic membrane) having a diketone as a center chain and a dibenzoyl moiety as a side chain without an ether linkage showed a high dimensional stability with a high IEC value. The surface morphology of the polymer matrix has been shown to have a significant effect on the membrane (electrolyte membrane) properties, and the properties of the SPTBP of the present invention will be very useful in fuel cell membrane (electrolyte membrane) applications.

Claims (10)

하기 화학식 1 및 화학식 2로 표시되는 단위체를 포함하는 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체:
[화학식 1]
Figure pat00014

[화학식 2]
Figure pat00015

상기 식에서, 100 < m < 500, 100 < n < 500이다.
Sulfonated polytetraphenylbenzophenone (SPTBP) copolymer comprising a unit represented by the following formulas (1) and (2):
[Chemical Formula 1]
Figure pat00014

(2)
Figure pat00015

In the above formula, 100 <m <500 and 100 <n <500.
제1항에 있어서, 상기 m : n의 비율이 1 : 9 내지 9 : 1 인 것을 특징으로 하는 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체.The sulfonated polytetraphenylbenzophenone (SPTBP) copolymer according to claim 1, wherein the ratio of m: n is 1: 9 to 9: 1. 제1항에 있어서, 상기 m : n의 비율이 2 : 8 인 것을 특징으로 하는 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체.The method according to claim 1, wherein the ratio of m: n is 2: 8. Polytetraphenylbenzophenone (SPTBP) copolymer. 제1항에 있어서, 상기 공중합체의 중량평균분자량(Mw)이 50,000 내지 200,000인 것을 특징으로 하는 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체.The sulfonated polytetraphenylbenzophenone (SPTBP) copolymer according to claim 1, wherein the copolymer has a weight average molecular weight (Mw) of 50,000 to 200,000. 제1항 내지 제4항 중 어느 한 항의 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체를 포함하는 고분자 전해질막.A polymer electrolyte membrane comprising a sulfonated polytetraphenylbenzophenone (SPTBP) copolymer according to any one of claims 1 to 4. 제5항의 고분자 전해질막을 포함하는 막-전극 접합체.A membrane-electrode assembly comprising the polymer electrolyte membrane of claim 5. 제6항의 막-전극 접합체를 포함하는 연료전지.A fuel cell comprising the membrane-electrode assembly of claim 6. 하기 화학식 3으로 표시되는 술폰화 폴리테트라페닐 벤조페논(SPTBP) 공중합체의 제조방법으로서,
(A) 하기 화학식 4로 표시되는 화합물과 하기 화학식 5로 표시되는 화합물을 반응시켜 하기 화학식 6으로 표시되는 화합물을 제조하는 단계; 및
(B) 하기 화학식 6으로 표시되는 화합물을 술폰화시켜 하기 화학식 3으로 표시되는 화합물을 제조하는 단계
를 포함하는 제조방법:
[화학식 3]
Figure pat00016


[화학식 4]
Figure pat00017

[화학식 5]
Figure pat00018


[화학식 6]
Figure pat00019

상기 식에서, 100 < m < 500, 100 < n < 500이다.
A process for producing a sulfonated polytetraphenylbenzophenone (SPTBP) copolymer represented by the following formula (3)
(A) reacting a compound represented by the following formula (4) with a compound represented by the following formula (5) to prepare a compound represented by the following formula (6); And
(B) sulfonating a compound represented by the following formula (6) to prepare a compound represented by the following formula
&Lt; / RTI &gt;
(3)
Figure pat00016


[Chemical Formula 4]
Figure pat00017

[Chemical Formula 5]
Figure pat00018


[Chemical Formula 6]
Figure pat00019

In the above formula, 100 <m <500 and 100 <n <500.
제8항에 있어서, 상기 단계 (A)가 니켈(Ni), 포스핀(PPH3) 및 아연(Zn)의 존재 하에서 수행되는 것을 특징으로 하는 제조방법.The method according to claim 8, wherein said step (A) is performed in the presence of nickel (Ni), phosphine (PPH 3 ) and zinc (Zn). 제9항에 있어서, 상기 니켈(Ni), 포스핀(PPH3) 및 아연(Zn)의 몰비가 60 : 8 : 1인 것을 특징으로 하는 제조방법The method according to claim 9, wherein the molar ratio of nickel (Ni), phosphine (PPH 3 ) and zinc (Zn) is 60: 8:
KR1020160094085A 2016-07-25 2016-07-25 Sulfonated polytetraphenyl benzophenone copolymer and method for preparing the same KR101838662B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160094085A KR101838662B1 (en) 2016-07-25 2016-07-25 Sulfonated polytetraphenyl benzophenone copolymer and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160094085A KR101838662B1 (en) 2016-07-25 2016-07-25 Sulfonated polytetraphenyl benzophenone copolymer and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20180011569A true KR20180011569A (en) 2018-02-02
KR101838662B1 KR101838662B1 (en) 2018-03-14

Family

ID=61223195

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160094085A KR101838662B1 (en) 2016-07-25 2016-07-25 Sulfonated polytetraphenyl benzophenone copolymer and method for preparing the same

Country Status (1)

Country Link
KR (1) KR101838662B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225493A (en) 2010-04-21 2011-11-10 Toyobo Co Ltd Aromatic sulfonic acid derivative, and method for producing the derivative

Also Published As

Publication number Publication date
KR101838662B1 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
KR101370806B1 (en) Sulfonated polyethersulfone copolymer containing hydroxyl groups and preparation method thereof, polymer electrolyte membrane for fuel cells and membrane electrode assembly comprising the same
Xu et al. Synthesis and properties of a novel side-chain-type hydroxide exchange membrane for direct methanol fuel cells (DMFCs)
Ahmed et al. Comparative study of sulfonated branched and linear poly (phenylene) s polymer electrolyte membranes for fuel cells
Han et al. Considerations of the morphology in the design of proton exchange membranes: cross-linked sulfonated poly (ether ether ketone) s using a new carboxyl-terminated benzimidazole as the cross-linker for PEMFCs
Ding et al. Fabrication and properties of cross-linked sulfonated fluorene-containing poly (arylene ether ketone) for proton exchange membrane
Seo et al. Preparation and characterization of sulfonated poly (tetra phenyl ether ketone sulfone) s for proton exchange membrane fuel cell
Zheng et al. Novel proton exchange membranes based on cardo poly (arylene ether sulfone/nitrile) s with perfluoroalkyl sulfonic acid moieties for passive direct methanol fuel cells
Jang et al. Studies of sulfonated poly (phenylene)-block-poly (ethersulfone) for proton exchange membrane fuel cell
Huang et al. Synthesis of novel sulfonated poly (arylene ether) s containing a tetra-trifluoromethyl side chain and multi-phenyl for proton exchange membrane fuel cell application
JPWO2014157389A1 (en) Composition for electrolyte membrane, solid polymer electrolyte membrane, method for producing the electrolyte membrane, membrane-electrode assembly, polymer electrolyte fuel cell, water electrolysis cell, and water electrolysis apparatus
Han et al. Carboxyl-terminated benzimidazole-assisted cross-linked sulfonated poly (ether ether ketone) s for highly conductive PEM with low water uptake and methanol permeability
Lim et al. Synthesis and characterization of sulfonated poly (arylene ether ketone sulfone) block copolymers containing multi-phenyl for PEMFC
KR20160081117A (en) Sulfonated poly(isatin-ethersulfone), method for preparing the same and polymer membrane composition for fuel cell using the same
KR100907476B1 (en) Polymer membranes containing partially fluorinated copolymer, manufacturing method thereof and polymer electrolyte fuel cell using them
Jeong et al. Selective and quantitative sulfonation of poly (arylene ether ketone) s containing pendant phenyl rings by chlorosulfonic acid
KR101084683B1 (en) Cross-linkable polyether ether ketone with pendent sulfonation groups, polymer electrolyte membrane for fuel cell prepared therewith and preparation method thereof
Jang et al. Synthesis and characterization of sulfonated polyphenylene containing benzophenone moiety via nickel catalyzed polymerization
KR101838662B1 (en) Sulfonated polytetraphenyl benzophenone copolymer and method for preparing the same
EP2148383A1 (en) Polymer electrolyte material and membrane-electrode assembly for fuel cell using the same
JP5549970B2 (en) Aromatic polyelectrolytes having superacid groups and their use
KR101004680B1 (en) Intramolecular ionic cross-linkable copolymer, manufacturing method of polymer membranes using it and polymer electrolyte fuel cell having polymer membranes
Jeong et al. Synthesis and characterization of sulfonated bromo-poly (2, 6-dimethyl-1, 4-phenylene oxide)-co-(2, 6-diphenyl-1, 4-phenylene oxide) copolymer as proton exchange membrane
Yoo et al. Synthesis of sulfonated poly (diketonephenylene) s containing dibenzoyl moiety via Ni/Zn catalyst
JP4245991B2 (en) Solid polymer electrolyte, membrane using the same, catalyst electrode layer, membrane / electrode assembly, and fuel cell
KR101538761B1 (en) Sulfonated polyphenylene polymer containing fluorine moiety

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant