KR20180007651A - Hybrid thermoelectric material and the preparation process thereof - Google Patents
Hybrid thermoelectric material and the preparation process thereof Download PDFInfo
- Publication number
- KR20180007651A KR20180007651A KR1020170020546A KR20170020546A KR20180007651A KR 20180007651 A KR20180007651 A KR 20180007651A KR 1020170020546 A KR1020170020546 A KR 1020170020546A KR 20170020546 A KR20170020546 A KR 20170020546A KR 20180007651 A KR20180007651 A KR 20180007651A
- Authority
- KR
- South Korea
- Prior art keywords
- thermoelectric material
- polymer
- poly
- outermost
- pedot
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 56
- 238000002360 preparation method Methods 0.000 title description 4
- 239000005518 polymer electrolyte Substances 0.000 claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 229920000642 polymer Polymers 0.000 claims description 40
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- 229920000767 polyaniline Polymers 0.000 claims description 19
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 8
- 229920001940 conductive polymer Polymers 0.000 claims description 8
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 8
- 239000002244 precipitate Substances 0.000 claims description 7
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 5
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 4
- 229920000547 conjugated polymer Polymers 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229920000867 polyelectrolyte Polymers 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- 229920002518 Polyallylamine hydrochloride Polymers 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- -1 poly ( p -phenylenevinylene) aniline Polymers 0.000 claims description 3
- PDQRQJVPEFGVRK-UHFFFAOYSA-N 2,1,3-benzothiadiazole Chemical compound C1=CC=CC2=NSN=C21 PDQRQJVPEFGVRK-UHFFFAOYSA-N 0.000 claims description 2
- YYPLPZPLLWYWKD-UHFFFAOYSA-N 2-ethenylpyridin-1-ium;chloride Chemical compound Cl.C=CC1=CC=CC=N1 YYPLPZPLLWYWKD-UHFFFAOYSA-N 0.000 claims description 2
- 239000005964 Acibenzolar-S-methyl Substances 0.000 claims description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N Carbazole Natural products C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- 229920002873 Polyethylenimine Polymers 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 239000011133 lead Substances 0.000 claims description 2
- 229920001088 polycarbazole Polymers 0.000 claims description 2
- 229920000128 polypyrrole Polymers 0.000 claims description 2
- 229920000123 polythiophene Polymers 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims 2
- 229920005989 resin Polymers 0.000 claims 2
- 229920001187 thermosetting polymer Polymers 0.000 claims 2
- RHYDJSYLYBUSEY-UHFFFAOYSA-N imidazol-1-yloxyboronic acid Chemical compound OB(O)On1ccnc1 RHYDJSYLYBUSEY-UHFFFAOYSA-N 0.000 claims 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims 1
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 23
- 239000011147 inorganic material Substances 0.000 description 11
- 239000011368 organic material Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 229910010272 inorganic material Inorganic materials 0.000 description 9
- 239000002070 nanowire Substances 0.000 description 9
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 230000002087 whitening effect Effects 0.000 description 7
- 239000008188 pellet Substances 0.000 description 6
- 229910021642 ultra pure water Inorganic materials 0.000 description 6
- 239000012498 ultrapure water Substances 0.000 description 6
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000007792 addition Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003471 inorganic composite material Inorganic materials 0.000 description 1
- 125000003010 ionic group Chemical group 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- VOADVZVYWFSHSM-UHFFFAOYSA-L sodium tellurite Chemical compound [Na+].[Na+].[O-][Te]([O-])=O VOADVZVYWFSHSM-UHFFFAOYSA-L 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
-
- H01L35/12—
-
- H01L35/16—
-
- H01L35/18—
-
- H01L35/24—
-
- H01L35/34—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/852—Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/853—Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/856—Thermoelectric active materials comprising organic compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
본 발명은 하이브리드 열전소재 및 그 제조방법에 관한 것이다. The present invention relates to a hybrid thermoelectric material and a manufacturing method thereof.
열전기술은 외부로 버려지는 다양한 에너지를 수확하여 우리에게 유용한 에너지 형태로 바꿔 재사용하는 에너지 하베스팅(Energy harvesting) 기술의 한 종류로서, 간단히 말해 열에너지를 전기에너지로 바꾸는 기술을 의미한다. 다양한 에너지 형태 중에서도 열에너지는 우리의 일상 환경에서 가장 쉽게 발생하고 외부로 버려지는 에너지 중 하나이다. 예를 들어 발전소에서는 투입 에너지의 2/3 정도가 열에너지의 형태로 공기 중에 버려진다. 이러한 이유로 열전기술은 현재 매우 주목받는 연구 주제지만 그 원리가 일반적인 현상이 아니고 매우 복잡한 물리적 요소들에 의해 영향을 받기 때문에 연구함에 있어 어려움이 많다. Thermoelectric technology is a kind of energy harvesting technology that harvests various energy that is discharged to the outside and reuses it into usable energy form. It means simply a technology to convert thermal energy into electrical energy. Among various forms of energy, thermal energy is one of the most easily generated and abandoned energy in our daily environment. For example, in a power plant, about two-thirds of the input energy is discarded in the form of thermal energy in the air. For this reason, thermoelectric technology is a subject of great interest now, but it is difficult to study because its principle is not a general phenomenon but is influenced by very complex physical factors.
이러한 열전기술은 열전현상을 보이는 소재에 의해 구현될 수 있는데, 이 소재들은 무기물질부터 유기물질, 그리고 유/무기 복합물질 등 다양한 범위로 연구 되어왔다. 열전소재의 성능은 ZT라고 하는 무단위(unitless) 성능지수로 표현될 수 있는데, 이 성능지수는 크게 전기전도도, 제백계수, 열전도도에 의해 결정되며, 전기전도도와 제백계수는 높고 열전도도는 낮은 물질일수록 높은 ZT 값을 보인다. These thermoelectric techniques can be realized by thermoelectric materials, which have been studied in a wide range of inorganic materials, organic materials, and organic / inorganic composite materials. The performance of the thermoelectric material can be expressed as an unitless figure of merit called ZT, which is largely determined by the electrical conductivity, the whiteness coefficient, the thermal conductivity, the electrical conductivity and the whiteness coefficient are high and the thermal conductivity is low The higher the material, the higher the ZT value.
그 중에서도 제백계수는 물질 내에 가해진 온도 차이에 의해 발생하는 전위차의 정도를 나타내는 값으로, ZT = S2σ/k (S: 제백계수, σ: 전기전도도, k: 열전도도)라는 식에 따라 성능지수에 가장 큰 영향을 미치는 요소이다. 열전도도의 경우 정확한 측정이 어려운 경우가 많아 열전도도를 제외한 나머지 제백계수와 전기전도도만을 가지고 성능을 평가하기도 하는데, 이것을 파워지수(power factor, S2σ)라고 한다.Among them, the whiteness coefficient is a value indicating the degree of the potential difference caused by the temperature difference applied in the material, and is a function according to the formula ZT = S 2 σ / k (S: whit coefficient, σ: electric conductivity, k: thermal conductivity) It is the factor that has the greatest influence on the index. In the case of thermal conductivity, it is often difficult to measure accurately, so the performance is evaluated only with the remaining whiteness factor and electrical conductivity except for the thermal conductivity. This is called the power factor (S 2 σ).
다양한 종류의 열전소재를 크게 무기소재와 유기소재로 나눴을 때, 무기소재는 그 성능이 상용화 단계에 있을 정도로 높고 무기물질의 특성상 내구성이 좋으며 재현성 또한 좋다. 그러나 가공이 어렵고 많은 에너지가 필요하며 무기물질 자체적으로 비경제적, 비환경적이기 때문에 이를 개선하고자 유기물질을 이용한 열전소재 개발이 활발히 진행되어 왔다. 유기소재는 가볍고 값이 저렴하며 가공이 매우 용이하다는 장점이 있지만 아직 그 성능이 무기소재에 미치지 못한다. 이러한 무기 또는 유기 소재의 장점을 모두 취하고자 유/무기 하이브리드 소재에 대한 관심이 커지고 있는데, 무기물질에서 성능적 장점을 취하면서도 유기소재를 섞어 소재의 유연성을 증가시키거나 그 무게를 가볍게 하거나 가격을 저렴하게 하는 등의 이점을 취할 수 있다. 무기물질로는 주기율표의 5족에 해당하는 원소들이 주로 쓰이고 유기물질로는 전도성 고분자, 탄소나노튜브, 그래핀 등이 사용된다. When various types of thermoelectric materials are largely divided into inorganic and organic materials, inorganic materials are high in performance at the commercialization stage, have good durability and reproducibility due to the characteristics of inorganic materials. However, since it is difficult to process and requires a lot of energy and inorganic materials themselves are non-economic and non-environmental, development of thermoelectric materials using organic materials has been actively carried out to improve them. Organic materials are lightweight, low cost and very easy to process, yet their performance does not reach inorganic materials yet. We are taking the advantages of inorganic or organic materials and increasing interest in inorganic / inorganic hybrid materials. It is possible to increase the flexibility of material by mixing organic materials while taking advantage of performance in inorganic materials, It is possible to take advantages such as making it cheaper. Elements corresponding to Group 5 of the periodic table are mainly used as inorganic materials, and conductive polymers, carbon nanotubes, and graphenes are used as organic materials.
종래의 연구에서 가장 유망한 전도성 고분자로 주목받아 온 폴리(3,4-에틸렌다이옥시싸이오펜)(poly(3,4-ethylenedioxythiophene), 이하 'PEDOT')은 103 S/cm 이상의 전기전도도를 가질 수 있고, 폴리스타이렌설포네이트(polystyrenesulfate, 이하 'PSS')와 결합했을 때 용액공정이 용이해져 그 활용도가 더 높아진다. 이렇게 PSS로 처리된 PEDOT와 무기계 재료로 쓰여 온 텔루륨(이하 'Te')을 한 단계의 합성을 통해 나노와이어 구조의 복합체로 제조한 열전소재는 물을 용매로 하여 한 번에 대량 합성이 가능하면서도 일정 수준 이상의 열전성능(약 0.1 정도의 ZT)을 보여주어 열전소재로 주목받았다. 그러나 복합체의 구조가 물속에서 안정하지 못해 쉽게 변형되고 무기계 소재에 비해서는 여전히 낮은 전기전도도와 제백계수를 가진다는 한계를 또한 보여주었다.Poly (3,4-ethylenedioxythiophene) (hereinafter referred to as "PEDOT"), which has been regarded as the most promising conductive polymer in the prior art, has an electrical conductivity of 10 3 S / cm or more And when combined with polystyrenesulfate (hereinafter referred to as 'PSS'), the solution process becomes easier and its utilization becomes higher. The PEDOT treated with PSS and the tellurium (hereinafter referred to as 'Te'), which is an inorganic material, were synthesized through a one-step synthesis, and the thermoelectric material made of the complex of nanowire structure can be mass- But showed a certain level of thermoelectric performance (ZT of about 0.1). However, the structure of the composites is not stable in water and is easily deformed. Moreover, it has a limitation that it has low electrical conductivity and whiteness coefficient compared with inorganic materials.
본 발명이 해결하고자 하는 과제는 기존에 존재하는 유/무기 하이브리드 열전소재에 새로운 유기물질을 첨가해 열전성능에 가장 큰 영향을 미치는 제백 계수가 향상된 소재를 제조하고 그 물질의 구조를 안정시키는 공정을 통해 소재의 안정성을 높이는 것에 있다. A problem to be solved by the present invention is to prepare a material having improved whiteness coefficient, which has a great influence on thermoelectric performance, by adding a new organic material to an existing organic / inorganic hybrid thermoelectric material and stabilizing the structure of the material To improve the stability of the material.
본 발명의 일 측면은 (a) 열전물질, (b) 상기 열전물질을 둘러싼 내부 고분자쉘, (c) 상기 내부 고분자쉘을 둘러싼 외부 고분자쉘, (d) 상기 외부 고분자쉘을 둘러싼 최외각 고분자층을 포함하는 열전소재에 관한 것이다. One aspect of the present invention relates to a method of manufacturing a thermoelectric device, comprising the steps of: (a) providing a thermoelectric material, (b) an inner polymer shell surrounding the thermoelectric material, (c) an outer polymer shell surrounding the inner polymer shell, (d) To a thermoelectric material.
본 발명의 다른 측면은 (A) Te-PEDOT:PSS 분산액과 최외각 고분자 용액을 혼합하고 침전물을 분리하여 건조하는 단계를 포함하는 열전소재 제조방법에 관한 것이다. Another aspect of the present invention relates to (A) a method of manufacturing a thermoelectric material including a step of mixing a Te-PEDOT: PSS dispersion and an outermost polymer solution, and separating and drying the precipitate.
본 발명에 따르면, 한 배치에서 합성 가능한 유/무기 하이브리드 열전소재에 간단한 교반을 통해 고분자 전해질을 첨가하여 열전성능을 가지는 복합체를 구현하였고, 그 제조된 열전소재는 이전의 발명보다 높은 안정성과 향상된 제백계수를 보인다. According to the present invention, a composite material having thermoelectric performance is obtained by adding a polymer electrolyte to an organic / inorganic hybrid thermoelectric material that can be synthesized in one batch, by simple agitation, and the thermoelectric material produced has higher stability than the former invention, Counts.
기존에 연구된 PEDOT:PSS의 얇은 막으로 둘러싸인 Te 나노와이어는 그 제조방법이 매우 간단하고 그 용매로 물을 사용하여 용액공정이 가능하며 제조된 물질의 열전성능이 합리적이라는 장점이 있지만, 물 환경에 보관 시 그 나노와이어 구조가 파괴되고 그에 따라 성능도 함께 줄어드는 문제가 있었다. The Te nanowires surrounded by thin films of PEDOT: PSS, which have been studied in the past, have a merit that the manufacturing method thereof is very simple, the solution process can be performed using the water as the solvent, and the thermoelectric performance of the produced material is reasonable. There is a problem that the nanowire structure is destroyed and the performance is accordingly reduced.
기존의 PEDOT:PSS의 얇은 막으로 둘러싸인 Te 나노와이어에 본 발명에 따라 PSS와 반대되는 양전하를 가지는 고분자 전해질을 첨가하면, 용액 내에서 고분자 전해질이 그 반대 전하를 가지는 나노와이어 표면에 정전기적 인력으로 스스로 결합함으로써 전도성고분자/Te/고분자전해질 복합체가 생성되고 이를 침전시켜 쉽게 물과 분리시켜 고체로 얻을 수 있다. 그렇게 얻어진 고체 물질은 그 구조가 물속에서 보다 안정하고 장시간 보관 후에도 열전성능에 대한 변화가 적다는 점을 확인하였다. When a polymer electrolyte having a positive charge opposite to that of PSS according to the present invention is added to a Te nanowire surrounded by a thin film of a conventional PEDOT: PSS, the polymer electrolyte in the solution is electrostatically attracted to the surface of the nanowire having the opposite charge The conductive polymer / Te / polymer electrolyte complex is formed by self-bonding and can be precipitated and easily separated from water to be obtained as a solid. The solid material thus obtained was found to have a more stable structure in water and a less change in thermoelectric performance even after storage for a long time.
열전성능 측면에서 보편적으로 유기물질을 이용한 열전소재의 종래의 연구들은 그 내용이 전기전도도를 높이는 것에 치중되어 있었으며, 따라서 유기물질의 전기전도도를 향상시키는 방법은 다양하였다. 반면, 열전성능에 영향을 미치는 다른 요소인 제백계수를 향상시키는 연구는 거의 존재하지 않았는데, 이러한 점에서 본 발명의 일 구현예에 따라 고분자 전해질의 첨가를 통해 제백계수를 2.5배까지 향상시켰다는 점에서 큰 의미를 가질 수 있다. 특히 이 값은 복합체에서 제백계수를 높이는 역할을 하는 Te의 순수 제백계수 값과 거의 맞먹는 수준에 이르면서도 전기전도도는 그보다 훨씬 높아 매우 뜻깊은 결과라고 할 수 있다. Conventional studies of thermoelectric materials using organic materials in terms of thermoelectric performance have focused on improving the electrical conductivity of the materials, and thus, methods for improving the electrical conductivity of the organic materials have been various. On the other hand, there have been few studies to improve the whitening coefficient, which is another factor affecting the thermoelectric performance. In this respect, according to one embodiment of the present invention, the whitening coefficient is improved to 2.5 times by adding the polymer electrolyte It can have a big meaning. In particular, this value is very significant, even though the electrical conductivity is much higher than that of Te 's pure whiteness coefficient which increases the whitening coefficient in the composite.
또한 본 발명의 다른 구현예에 따라서, 전기전도도가 감소한다는 점을 보완하고자 스스로 전기전도도를 갖는 전도성고분자를 비공액 양전하 고분자(non-conjugated polycation) 대신 사용함으로써 전해질 고분자를 사용했을 때보다 전기전도도가 2배 이상 증가하였다. 전기전도도 향상 정도에 비해 제백계수는 약간의 감소만 보여, 결국 아무것도 첨가하지 않은 PEDOT:PSS/Te 나노와이어를 같은 공정에 따라 펠릿으로 제조하였을 때보다 약 1.5배 정도의 파워지수를 가져 최종적으로 매우 우수한 열전성능을 나타냄을 확인하였다. Further, according to another embodiment of the present invention, in order to compensate for the decrease in electric conductivity, the use of a conductive polymer having a self-electric conductivity instead of a non-conjugated polycation allows electric conductivity to be higher than that of an electrolyte polymer More than two times. As a result, the PEDOT: PSS / Te nanowire with no additions had a power factor of about 1.5 times that of the pellet produced by the same process, And excellent thermoelectric performance was confirmed.
도 1a와 1b는 기존 열전물질인 Te-PEDOT:PSS이 물속에서 매우 불안정하다는 것을 보여주는 사진이다.
도 2는 본 발명의 일 구현예에 따른 발명을 도식적으로 설명하고 있다.
도 3은 고분자 전해질 첨가 후 응집과 침전 과정을 보여주는 사진이다.
도 4는 본 발명에 따른 열전소재의 전기전도도와 제백계수를 보여준다.
도 5는 본 발명에 따른 열전소재의 파워지수를 보여준다.Figures 1a and 1b are photographs showing that the conventional thermoelectric material Te-PEDOT: PSS is very unstable in water.
2 schematically illustrates an invention according to an embodiment of the present invention.
3 is a photograph showing the coagulation and precipitation process after addition of a polymer electrolyte.
4 shows the electrical conductivity and whitening coefficient of the thermoelectric material according to the present invention.
5 shows the power index of the thermoelectric material according to the present invention.
이하에서, 본 발명의 여러 측면 및 다양한 구현예에 대해 더욱 구체적으로 살펴보도록 한다. Hereinafter, various aspects and various embodiments of the present invention will be described in more detail.
본 발명의 일 측면은 (a) 열전물질, (b) 상기 열전물질을 둘러싼 내부 고분자쉘, (c) 상기 내부 고분자쉘을 둘러싼 외부 고분자쉘, (d) 상기 외부 고분자쉘을 둘러싼 최외각 고분자층을 포함하는 열전소재에 관한 것이다. One aspect of the present invention relates to a method of manufacturing a thermoelectric device, comprising the steps of: (a) providing a thermoelectric material, (b) an inner polymer shell surrounding the thermoelectric material, (c) an outer polymer shell surrounding the inner polymer shell, (d) To a thermoelectric material.
일 구현예에 따르면, 상기 열전물질은 텔루륨, Bi, Bi2Te3, Sb2Te3, 탄소나노튜브, 그래파이트, Pb 중에서 선택된 1종 이상이다.According to one embodiment, the thermoelectric material is at least one selected from tellurium, Bi, Bi 2 Te 3 , Sb 2 Te 3 , carbon nanotubes, graphite, and Pb.
다른 구현예에 따르면, 상기 내부 고분자쉘은 PEDOT이다. According to another embodiment, the inner polymer shell is PEDOT.
또 다른 구현예에 따르면, 상기 외부 고분자쉘은 PSS이다. According to another embodiment, the outer polymer shell is a PSS.
또 다른 구현예에 따르면, 상기 최외각 고분자층은 상기 외부 고분자쉘과 정전기적 결합을 할 수 있도록 양전하를 띤 고분자이다. According to another embodiment, the outermost polymer layer is a positively charged polymer so as to be electrostatically bonded to the external polymer shell.
또 다른 구현예에 따르면, 상기 최외각 고분자층은 양전하를 띤 비공액 고분자 전해질, 양전하를 띤 공액 고분자 전해질, 또는 양전하를 띤 p-타입 전도성 고분자이다. According to another embodiment, the outermost polymer layer is a positively charged non-conjugated polymer electrolyte, a positively charged conjugated polymer electrolyte, or a positively charged p-type conducting polymer.
또 다른 구현예에 따르면, 상기 비공액 고분자 전해질은 폴리(알릴아민 하이드로클로라이드), 측쇄형이거나 직쇄형(branched or linear) 폴리에틸린이민, 폴리(비닐피리딘 하이드로클로라이드), 폴리(다이알릴다이메틸암모늄 클로라이드) 중에서 선택된 1종 이상이다. According to another embodiment, the non-conjugated polyelectrolyte is selected from the group consisting of poly (allylamine hydrochloride), branched or linear polyethylenimine, poly (vinylpyridine hydrochloride), poly Ammonium chloride).
또 다른 구현예에 따르면, 상기 공액 고분자 전해질은 폴리(9,9-다이헥실플루오린-alt-벤조싸이아다이아졸), 폴리(사이클로펜타-[2,1-b;3,4-b']-디싸이오펜-alt-4,7-(2,1,3-벤조싸이아디아졸)의 주쇄(backbone)에 나트륨 또는 피리딘-테트라키스(1-이미다졸릴)보레이트 등의 이온성 그룹이 결합되어 형성된 것 중에서 선택된 1종 이상이다.According to another embodiment, the conjugated polyelectrolyte is selected from the group consisting of poly (9,9-dihexylfluorene- alt -benzothiadiazole), poly (cyclopenta- [2,1- ] -Dithiophene- alt- 4,7- (2,1,3-benzothiadiazole) with an ionic group such as sodium or pyridine-tetrakis (1-imidazolyl) Or a combination thereof.
또 다른 구현예에 따르면, 상기 p-타입 전도성 고분자는 폴리아닐린, 폴리피롤, 폴리싸이오펜, 폴리(p-페닐렌 비닐렌)아닐린, 폴리카바졸, 폴리(3-헥실싸이오펜-2,5-다이일) 중에서 선택된 1종 이상이다.According to another embodiment, the p-type conductive polymer is selected from the group consisting of polyaniline, polypyrrole, polythiophene, poly ( p -phenylenevinylene) aniline, polycarbazole, poly (3-hexylthiophene- Day).
또 다른 구현예에 따르면, 상기 최외각 고분자층은 폴리(알릴아민 하이드로클로라이드)(이하, 'PAH'라고 함)이다. 최외각 고분자층이 PAH인 경우 열전소재의 물속에서의 수안정성을 향상시켰을 뿐만 아니라, 제벡계수를 2.5배 향상시켜 거의 순수 텔루륨 수준까지 향상시켰으며, 이때 전기전도도 저하도 크지 않았다는 점에서 매우 우수한 효과를 보였다고 할 수 있다. According to another embodiment, the outermost polymer layer is poly (allylamine hydrochloride) (hereinafter referred to as 'PAH'). When the outermost polymer layer was PAH, it improved not only the water stability of the thermoelectric material in water but also improved the Seebeck coefficient by 2.5 times to almost pure tellurium level, It can be said that it showed the effect.
또 다른 구현예에 따르면, 상기 최외각 고분자층은 PANI이다. 최외각 고분자층이 도핑된 PANI인 경우 전기전도도가 PAH를 사용하는 경우보다 2배 이상 증가하였을 뿐만 아니라, 이때 제백계수의 저하도 크지 않다는 점에서 매우 현격한 효과라고 할 수 있다. According to another embodiment, the outermost polymer layer is PANI. In the case of the PANI doped with the outermost polymer layer, the electric conductivity was increased more than twice as compared with the case of using PAH, and the reduction of the whiteness coefficient was not so significant.
또 다른 구현예에 따르면, 상기 열전소재는 Te-PEDOT:PSS:PAH 또는 Te-PEDOT:PSS:PANI-CSA이다. According to another embodiment, the thermoelectric material is Te-PEDOT: PSS: PAH or Te-PEDOT: PSS: PANI-CSA.
본 발명의 다른 측면은 (A) Te-PEDOT:PSS 분산액과 최외각 고분자 용액을 혼합하고 침전물을 분리하여 건조하는 단계를 포함하는 열전소재 제조방법에 관한 것이다. Another aspect of the present invention relates to (A) a method of manufacturing a thermoelectric material including a step of mixing a Te-PEDOT: PSS dispersion and an outermost polymer solution, and separating and drying the precipitate.
일 구현예에 따르면, 상기 Te-PEDOT:PSS와 상기 최외각 고분자는 중량비가 100 : 2 내지 6이다. According to one embodiment, the Te-PEDOT: PSS and the outermost polymer have a weight ratio of 100: 2 to 6.
다른 구현예에 따르면, 상기 최외각 고분자 용액은 PAH 용액이다. According to another embodiment, the outermost polymer solution is a PAH solution.
또 다른 구현예에 따르면, 상기 Te-PEDOT:PSS와 상기 PAH는 중량비가 100 : 2 내지 5이다. 2 미만인 경우 전기전도도의 감소 정도에 비해 제백계수의 증가가 미미한 문제가 생길 수 있고 5를 초과하는 경우에는 전기전도도가 큰 폭으로 감소하는 문제가 생길 수 있다. According to another embodiment, the weight ratio of Te-PEDOT: PSS to PAH is 100: 2 to 5. 2, the increase of the whitening coefficient may be insignificant compared with the decrease of the electrical conductivity, and the electrical conductivity may be greatly reduced when the ratio exceeds 5.
또 다른 구현예에 따르면, 상기 최외각 고분자 용액은 PANI를 캠포술폰산으로 처리한 용액이다. According to another embodiment, the outermost polymer solution is a solution prepared by treating PANI with camphorsulfonic acid.
또 다른 구현예에 따르면, 상기 Te-PEDOT:PSS와 상기 PANI는 중량비가 100 : 3 내지 6이다. 3 미만인 경우 전기전도도의 감소 정도에 비해 제백계수의 증가가 미미한 문제가 생길 수 있고 6을 초과하는 경우에는 전기전도도 증가의 정도에 비해 제백계수가 큰 폭으로 감소하는 문제가 생길 수 있다. According to another embodiment, the weight ratio of Te-PEDOT: PSS to PANI is 100: 3 to 6. 3, the increase of the whiteness coefficient may be insignificant compared with the decrease of the electrical conductivity. If the ratio is more than 6, the whitening coefficient may be significantly reduced compared with the increase of the electrical conductivity.
또 다른 구현예에 따르면, 상기 캠포술폰산으로 처리할 때 과황산암모늄도 함께 사용해서 처리한다.
According to another embodiment, the ammonium persulfate is also used in conjunction with the treatment with the camphorsulfonic acid.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다. Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the scope and content of the present invention can not be construed to be limited or limited by the following Examples. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the present invention as set forth in the following claims. It is natural that it belongs to the claims.
또한 이하에서 제시되는 실험 결과는 상기 실시예 및 비교예의 대표적인 실험 결과만을 기재한 것이며, 아래에서 명시적으로 제시하지 않은 본 발명의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다. In addition, the experimental results presented below only show representative experimental results of the embodiments and the comparative examples, and the respective effects of various embodiments of the present invention which are not explicitly described below will be specifically described in the corresponding part.
실시예Example
비교예 1: PEDOT:PSS로 둘러싸인 Te 나노와이어 용액 제조Comparative Example 1: Preparation of Te nanowire solution surrounded by PEDOT: PSS
공지된 방법(K. C. See, J. P. Feser, C. E. Chen, A. Majumdar, J. J. Urban and R. A. Segalman, Nano lett., 10(11), 4664 (2010))에 따라 아래와 같이 제조하였다. Was prepared as follows according to known methods (KC See, JP Feser, CE Chen, A. Majumdar, JJ Urban and RA Segalman, Nano Lett ., 10 (11) , 4664 (2010)).
둥근 플라스크에 용매로 초순수(deionized water) 40 mL를 투입하고 여기에 L-아스코르브산(L-ascorbic acid) 1 g 첨가한 뒤 교반하여 용해시켰다. 상기 혼합용액을 지속적으로 교반하면서 Whatman 0.45 μm 여과기로 여과시킨 상용으로 구입한 PH1000 (PEDOT:PSS) 1 mL, 그리고 소듐 텔룰라이트(sodium tellurite, Na2TeO3) 70 mg을 차례로 첨가하였다. 상기 혼합용액의 온도를 90 ℃로 유지하며 19 시간 동안 반응시키고 나서, 원심분리기에서 9000 rpm로 20 분 이상 분리시킨 후, 분리된 상층액은 버렸다. 침전된 물질을 다시 초순수에 넣어 분산시키고 한 번 더 원심 분리한 후 상층액 버리기를 반복하여 불순물을 제거하였다. 불순물이 제거된 상기 물질을 다시 초순수에 넣어 분산시킨 용액을 제조하였다. In a round flask, 40 mL of deionized water was added as a solvent, 1 g of L-ascorbic acid was added thereto, and the mixture was dissolved by stirring. 1 mL of commercially purchased PH1000 (PEDOT: PSS) and 70 mg of sodium tellurite (Na2TeO3), which had been filtered through a Whatman 0.45 μm filter, were added sequentially with continued stirring. The temperature of the mixed solution was maintained at 90 캜 for 19 hours, and then separated by centrifugation at 9000 rpm for at least 20 minutes. The separated supernatant was discarded. The precipitated material was again dispersed in ultrapure water, centrifuged once more, and the supernatant was discarded to remove impurities. And the above-mentioned impurity-removed material was again dispersed in ultrapure water to prepare a solution.
[반응식 1][Reaction Scheme 1]
실시예 1: PAH와 PEDOT:PSS로 둘러싸인 Te 나노와이어 복합체 제조Example 1 Preparation of Te Nanowire Composite Surrounded by PAH and PEDOT: PSS
위 비교예 1에서 제조한 용액에서 초순수를 제거했을 때의 순수 PEDOT:PSS로 둘러싸인 Te 나노와이어의 중량을 측정하였다. 상기 PEDOT:PSS로 둘러싸인 Te 나노와이어와 PAH의 중량비가 100:5가 되도록 하는 양의 PAH를 초순수에 용해한 후 교반을 하며 위 비교예 1의 용액에 첨가하였다. 이를 9,000 rpm로 20 분 이상 원심분리하여 상층액을 버리고 침전된 물질을 다시 초순수에 분산시켜 같은 방법으로 원심분리하였다. 최종적으로 얻어진 침전물을 진공 건조기(vacuum oven)에서 70 ℃로 12 시간 이상 건조하였다. 건조된 물질을 막자로 빻아 만든 분말을 펠릿타이징(pelletizing)법을 이용하여 지름 13 mm의 원판 모양 펠릿으로 제조하였다. The weight of Te nanowires surrounded by pure PEDOT: PSS when the ultrapure water was removed from the solution prepared in Comparative Example 1 was measured. The PAH in an amount such that the weight ratio of Te nanowire surrounded by PEDOT: PSS and PAH was 100: 5 was dissolved in ultrapure water and then added to the solution of Comparative Example 1 with stirring. The mixture was centrifuged at 9,000 rpm for 20 minutes or longer to discard the supernatant, and the precipitated material was dispersed again in ultrapure water and centrifuged in the same manner. The finally obtained precipitate was dried in a vacuum oven at 70 DEG C for over 12 hours. The dried powder was crushed into a disk-shaped pellet having a diameter of 13 mm by a pelletizing method.
비교예 2: 폴리아닐린(이하 'PANI')용액 제조방법Comparative Example 2: Production of polyaniline (hereinafter referred to as 'PANI') solution
공지된 방법(C. Kim, W. Oh and J. W. Park, RSC Adv., 6, 82721 (2016))에 따라 아래와 같이 제조하였다.Was prepared as follows according to a known method ( C. Kim, W. Oh and JW Park, RSC Adv. , 6 , 82721 (2016)).
유기용매인 클로로포름에 유기산 역할을 하는 캠포술폰산(camphorsulfonic acid, 이하 'CSA')과 0.5 M 농도의 아닐린을 첨가 후 용해시켰다. 상기 유기 혼합용액에 아닐린 : 과황산암모늄 = 4:1의 몰비율을 유지하며 과황산암모늄을 첨가하고 25 내지 30 ℃의 상온에서 48 시간 동안 반응시켰다. 반응이 완료된 후 생성물을 아세톤에 넣어 침전시킨 뒤, Whatman no. 42 여과지와 뷰흐너 여과기(Buchner funnel)를 이용하여 여과하고 세척하였다. 상기 침전물에 0.1 M 농도의 수산화암모늄(NH4OH)을 첨가하고 24 시간 동안 디도핑(dedoping)시킨 뒤 한 번 더 세척하였다. 최종적으로 얻어진 물질을 60 ℃로 진공건조기에서 48 시간 건조시켰다. 이와 같은 과정을 통해서 아래 반응식 2와 같이 PANI를 제조하였다.Camphorsulfonic acid (hereinafter referred to as 'CSA'), which acts as an organic acid, and aniline at a concentration of 0.5 M were added to the organic solvent, chloroform, and dissolved. The organic mixed solution was maintained at a molar ratio of aniline: ammonium persulfate = 4: 1, ammonium persulfate was added, and the mixture was allowed to react at 25 to 30 ° C for 48 hours. After the completion of the reaction, the product was precipitated in acetone, followed by addition of Whatman no. 42 filter paper and Buchner funnel. To the precipitate was added ammonium hydroxide (NH 4 OH) at a concentration of 0.1 M, dedoped for 24 hours, and washed once more. The finally obtained material was dried in a vacuum dryer at 60 캜 for 48 hours. Through this process, PANI was prepared as shown in Scheme 2 below.
[반응식 2][Reaction Scheme 2]
실시예 2: PANI와 PEDOT:PSS로 둘러싸인 Te 나노와이어 복합체 제조Example 2 Preparation of Te Nanowire Composite Surrounded by PANI and PEDOT: PSS
위 비교예 1에서 제조한 용액에서 초순수를 제거했을 때의 순수 PEDOT:PSS로 둘러싸인 Te 나노와이어의 중량을 위 실시예 1에서 측정한 값에 기초하여, 상기 PEDOT:PSS로 둘러싸인 Te 나노와이어와 위 비교예 2에서 제조한 용액에서 용매인 m-cresol을 제외한 도핑된 PANI의 중량비가 100:3이 되도록 하는 양의 PANI 용액을 교반하며 위 비교예 1의 용액에 첨가하였다(이때 PANI가 polycation 역할을 한다). The weight of Te nanowires surrounded by pure PEDOT: PSS when the ultrapure water was removed from the solution prepared in Comparative Example 1 was measured on the basis of the values measured in Example 1, and the Te nanowires surrounded by the PEDOT: PSS and the In the solution prepared in Comparative Example 2, a solution of PANI in an amount such that the weight ratio of doped PANI except for m-cresol as a solvent was 100: 3 was added to the solution of Comparative Example 1 above, with PANI serving as a polycation do).
더욱 구체적으로는 고체 상태의 PANI와 CSA를 2:1의 몰비로 섞고 막자로 잘 갈아주었다. 고르게 갈린 가루를 m-cresol 용매에 녹였으며, 구체적으로 2 중량%의 비율로 용해하고(m-cresol 100 g 당 PANI-CSA 가루 2 g의 비율), 이 용액을 교반하면서 50 ℃에서 24 시간 동안 두었다. 24 시간 후에 이 용액을 2.7 μm 글래스 필터로 걸러서 사용하였다. 이렇게 제조한 용액에서 m-cresol을 제외한 도핑된 PANI의 중량비가 100:3이 되도록 하는 양의 PANI 용액을 교반하며 위 비교예 1의 용액에 첨가하였다. More specifically, the solid state PANI and CSA were mixed at a molar ratio of 2: 1, and the pellet was well changed. The homogenized powder was dissolved in a m-cresol solvent, specifically dissolved at a ratio of 2 wt% (ratio of 2 g of PANI-CSA powder per 100 g of m-cresol), and the solution was stirred at 50 ° C for 24 hours I have. After 24 hours, the solution was filtered with a 2.7 μm glass filter. The PANI solution was added to the solution of Comparative Example 1 with stirring so that the weight ratio of doped PANI except m-cresol was 100: 3.
상기 용액을 9,000 rpm로 20 분 이상 원심분리하여 상층액을 버리고 침전하였다. 이렇게 얻어진 침전물을 진공건조기에서 70 ℃로 12 시간 이상 건조한 후, 막자로 빻아 만든 분말을 펠릿타이징법을 이용하여 지름 13mm의 원판 모양 펠릿으로 제조하였다. The solution was centrifuged at 9,000 rpm for at least 20 minutes to discard the supernatant and precipitate. The precipitate thus obtained was dried in a vacuum drier at 70 DEG C for 12 hours or more, and then pelletized to obtain a pellet-shaped pellet having a diameter of 13 mm by pelletizing.
시험예: Test example:
위에서 제조한 펠릿의 열전 특성은 일반적인 표면저항측정기 중 4-point probe 방식을 사용하여 구한 저항값을 통해 전기전도도를 구하였고, 제백계수는 Homemade Seebeck coefficient 측정기를 사용하였고, 그 결과를 도 4와 5에 제시하였다. The thermoelectric properties of the pellets prepared above were determined by measuring the electrical conductivity of the pellets using a 4-point probe method, and the whitening coefficient was measured using a Homemade Seebeck coefficient meter. The results are shown in FIGS. 4 and 5 Respectively.
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662361506P | 2016-07-13 | 2016-07-13 | |
US62/361,506 | 2016-07-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180007651A true KR20180007651A (en) | 2018-01-23 |
KR101972995B1 KR101972995B1 (en) | 2019-08-26 |
Family
ID=61071190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170020546A KR101972995B1 (en) | 2016-07-13 | 2017-02-15 | Hybrid thermoelectric material and the preparation process thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101972995B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109786542A (en) * | 2019-01-23 | 2019-05-21 | 深圳大学 | A kind of porphyrin/carbon nano-tube composite heat electric material and preparation method thereof |
US20210119100A1 (en) * | 2019-10-18 | 2021-04-22 | Kookmin University Industry Academy Cooperation Foundation | Organic thermoelectric material and thermoelectric generator including the same |
CN114456607A (en) * | 2022-02-21 | 2022-05-10 | 哈尔滨工业大学(深圳) | Room temperature base thermoelectric material containing infinite conjugated polymer and preparation method thereof |
WO2024148702A1 (en) * | 2023-01-12 | 2024-07-18 | 江苏上达半导体有限公司 | Flexible thermoelectric material for semiconductor device and preparation method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102545819B1 (en) | 2021-07-21 | 2023-06-20 | 재단법인대구경북과학기술원 | Method for manufacturing organic-inorganic composite thermoelectric material comprising Bi2Te3 and conductive polymer in bulk form with improved thermoelectric properties, and bulk organic-inorganic composite thermoelectric material manufactured by the method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130084464A1 (en) | 2010-05-24 | 2013-04-04 | The Regents Of The University Of California | Inorganic Nanostructure-Organic Polymer Heterostructures Useful for Thermoelectric Devices |
WO2014115909A1 (en) * | 2013-01-24 | 2014-07-31 | 연세대학교 산학협력단 | Method for preparing electro conductive polymer, and thermoelement including thin film of electro conductive polymer prepared by preparation method |
KR20150028513A (en) * | 2013-09-06 | 2015-03-16 | 한국과학기술연구원 | Highly flexible thermoelectric material comprising organic-inorganic hybrid composite and thermoelectirc device comprising the same |
WO2016090363A1 (en) * | 2014-12-05 | 2016-06-09 | Stc.Unm | Method of dispersing nanoparticles in different mediums & methods to achieve superior thermoelectric performances in carbon nanotube polymer systems |
-
2017
- 2017-02-15 KR KR1020170020546A patent/KR101972995B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130084464A1 (en) | 2010-05-24 | 2013-04-04 | The Regents Of The University Of California | Inorganic Nanostructure-Organic Polymer Heterostructures Useful for Thermoelectric Devices |
WO2014115909A1 (en) * | 2013-01-24 | 2014-07-31 | 연세대학교 산학협력단 | Method for preparing electro conductive polymer, and thermoelement including thin film of electro conductive polymer prepared by preparation method |
KR20150028513A (en) * | 2013-09-06 | 2015-03-16 | 한국과학기술연구원 | Highly flexible thermoelectric material comprising organic-inorganic hybrid composite and thermoelectirc device comprising the same |
WO2016090363A1 (en) * | 2014-12-05 | 2016-06-09 | Stc.Unm | Method of dispersing nanoparticles in different mediums & methods to achieve superior thermoelectric performances in carbon nanotube polymer systems |
Non-Patent Citations (2)
Title |
---|
1. Solid/liquid interfacial synthesis of high conductivity polyaniline Chingu Kim, Wangsuk Oh and Ji-Woong Park, RSC Adv., 6, 82721 (2016) |
2. Water-Processable Polymer??Nanocrystal Hybrids for Thermoelectrics, Nano Lett., 10(11), 4664-4667 (2010) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109786542A (en) * | 2019-01-23 | 2019-05-21 | 深圳大学 | A kind of porphyrin/carbon nano-tube composite heat electric material and preparation method thereof |
US20210119100A1 (en) * | 2019-10-18 | 2021-04-22 | Kookmin University Industry Academy Cooperation Foundation | Organic thermoelectric material and thermoelectric generator including the same |
US11637231B2 (en) * | 2019-10-18 | 2023-04-25 | Kookmin University Industry Academy Cooperation Foundation | Organic thermoelectric material and thermoelectric generator including the same |
CN114456607A (en) * | 2022-02-21 | 2022-05-10 | 哈尔滨工业大学(深圳) | Room temperature base thermoelectric material containing infinite conjugated polymer and preparation method thereof |
CN114456607B (en) * | 2022-02-21 | 2023-02-24 | 哈尔滨工业大学(深圳) | Room temperature base thermoelectric material containing infinite conjugated polymer and preparation method thereof |
WO2024148702A1 (en) * | 2023-01-12 | 2024-07-18 | 江苏上达半导体有限公司 | Flexible thermoelectric material for semiconductor device and preparation method |
Also Published As
Publication number | Publication date |
---|---|
KR101972995B1 (en) | 2019-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20180007651A (en) | Hybrid thermoelectric material and the preparation process thereof | |
Liu et al. | Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting | |
Wei et al. | Aniline oligomers–architecture, function and new opportunities for nanostructured materials | |
Toshima et al. | Organic–inorganic nanohybrids as novel thermoelectric materials: hybrids of polyaniline and bismuth (III) telluride nanoparticles | |
JP2012009462A (en) | Organic-inorganic hybrid thermoelectric material, thermoelectric conversion element using the same, and method for manufacturing organic-inorganic hybrid thermoelectric material | |
TWI553048B (en) | Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same | |
KR101284175B1 (en) | Composition for graphene/polyimide electroconductive composites, method for preparing the composites using the same and the composites prepared thereby | |
US9443639B2 (en) | Conductive polymer blend composition and manufacturing method thereof | |
CN110808329B (en) | Phthalocyanine copper sulfonic acid doped polymer-based thermoelectric material and preparation method and application thereof | |
Debnath et al. | Camphor sulfonic acid incorporation in SnO 2/polyaniline nanocomposites for improved thermoelectric energy conversion | |
Rashidifard et al. | Investigating the electrical properties of epoxy resin containing MWCNT–PANI with a core-shell morphology: synthesis and characterization | |
Kim et al. | Enhancement of mechanical stability and ionic conductivity of chitosan‐based solid polymer electrolytes using silver nanowires as fillers | |
Zubair et al. | Lithium polysulfides immobilization exploiting formate-ion doped polyaniline wrapped carbon for long cycle life sulfur cathodes via conventional electrode processing | |
Chaluvaraju et al. | Thermo-electric power study of polypyrrole/molybdenum trioxide composites | |
Srivastava et al. | electrochemical properties and band gap variation of polyaniline due to the presence of ZnO | |
KR101365014B1 (en) | Arylsulfonic acid-based compounds, dopant containing the same, and conductive polymer composite containing the dopant | |
Tohumcu et al. | Increasing the crystallite and conductivity of polypyrrole with dopant used | |
KR102075778B1 (en) | Thermoelectric materials using finely dispersed and long-tangled thread shaped carbon nano tubeand preparation method thereof | |
Ramalingam et al. | SYNTHESIS, SURFACE AND TEXTURAL CHARACTERIZATION OF Ag DOPED POLYANILINE-SiO 2 (Pan-Ag/RHA) NANOCOMPOSITESDERIVEDFROM BIOMASS MATERIALS. | |
JP7221496B2 (en) | Carbon nanotube composite and manufacturing method thereof | |
US20220173387A1 (en) | Cross-linked conductive polymer shells | |
Cheng et al. | Water-soluble fullerene-functionalized polymer micelles for efficient aqueous-processed conductive devices | |
KR20140142036A (en) | Polybenzimidasole nano-composite membrane using amine group-containing silsesquioxane, preparing method of the same, and fuel cell including the same | |
Karbownik et al. | The effect of temperature on electric conductivity of polyacrylonitrile-polyaniline fibers | |
KR101187041B1 (en) | Polyaniline Doped by Sulfonated Polyphenylsilsesquioxane with High Stability of Electrical Conductivity And Menufacturing Method Of The Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |