KR20180003400A - Apparatus and method for processing medical image - Google Patents

Apparatus and method for processing medical image Download PDF

Info

Publication number
KR20180003400A
KR20180003400A KR1020160174768A KR20160174768A KR20180003400A KR 20180003400 A KR20180003400 A KR 20180003400A KR 1020160174768 A KR1020160174768 A KR 1020160174768A KR 20160174768 A KR20160174768 A KR 20160174768A KR 20180003400 A KR20180003400 A KR 20180003400A
Authority
KR
South Korea
Prior art keywords
image
par
motion information
motion
phase
Prior art date
Application number
KR1020160174768A
Other languages
Korean (ko)
Inventor
이덕운
나종범
김승언
이경용
최지영
장용진
Original Assignee
삼성전자주식회사
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 한국과학기술원 filed Critical 삼성전자주식회사
Priority to US15/640,344 priority Critical patent/US10565744B2/en
Publication of KR20180003400A publication Critical patent/KR20180003400A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/269Analysis of motion using gradient-based methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/503Clinical applications involving diagnosis of heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/001Image restoration
    • G06T5/003Deblurring; Sharpening
    • G06T5/73
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Abstract

An objective of the present invention is to provide an apparatus and a method for processing a medical image which accurately indicate a motion relationship between adjacent points of time. According to an embodiment of the present invention, the apparatus for processing a medical image comprises a processing unit which acquires raw data in a first phase section, generates first motion information by using at least one partial angle reconstruction (PAR) image pair including two PAR images acquired in two phase sections facing each other in the first phase section, sums up a plurality of PAR images acquired in different phases in the first phase section by using the first motion information to generate a sum image, updates the first motion information to minimize an image metric indicating a motion artifact when the image metric is calculated from the sum image to generate second motion information, and applies the second motion information to the raw data to generate a reconstruction image.

Description

의료 영상 처리 장치 및 방법{Apparatus and method for processing medical image}[0001] Apparatus and method for processing medical image [0002]

개시된 실시예들은 의료 영상 처리 장치, 의료 영상 처리 방법, 및 상기 의료 영상 처리 방법을 수행하는 컴퓨터 프로그램 코드를 저장하는 컴퓨터로 읽을 수 있는 기록매체에 관한 것이다.The disclosed embodiments relate to a medical image processing apparatus, a medical image processing method, and a computer-readable recording medium storing computer program code for performing the medical image processing method.

X-ray CT(computed tomography) 영상 재구성은, 인체 외부에서 X-ray를 여러 방향으로 투과시켜 인체 각 조직의 X-ray 감쇄 정도 차이를 나타내는 로 데이터(raw data)를 얻고, 로 데이터를 이용하여 인체내부 영상을 재구성하는 것이다. X-ray CT 영상 재구성은, PET(positron emission tomography), MRI(magnetic resonance imaging), SPECT(single photon emission computed tomography) 등의 다른 인체 내부 영상 획득 시스템에 비해 빠른 시간 내에 고해상도의 영상을 얻을 수 있는 장점을 가진다. 그러나 X-ray CT 시스템을 이용하여 움직이는 대상체를 촬영하는 경우, 움직임 아티팩트(motion artifact)가 발생하여 화질이 저하되는 문제가 있다.X-ray computed tomography (CT) image reconstruction is a method of acquiring raw data representing the difference in degree of X-ray attenuation of each tissue of the human body by transmitting X-rays in various directions from outside the human body, And reconstruct the internal image of the human body. X-ray CT reconstruction is a technique that can acquire high-resolution images in a short time compared to other human internal image acquisition systems such as positron emission tomography (PET), magnetic resonance imaging (MRI), and single photon emission computed tomography . However, when a moving object is photographed using an X-ray CT system, motion artifacts are generated and image quality deteriorates.

개시된 실시예들은, 인접한 시간의 움직임 관계를 보다 정확하게 나타내는 의료 영상 처리 장치 및 방법을 제공하기 위한 것이다.The disclosed embodiments are intended to provide a medical image processing apparatus and method that more accurately indicate motion relationships of adjacent times.

또한, 개시된 실시예들은, 스캔 시간을 단축시키고 피치(pitch)를 증가시켜, 한 사이클 내의 움직임 아티팩트(inter cyclic motion artifact)가 저감된 3D 영상을 획득할 수 있는 의료 영상 처리 장치 및 방법을 제공하기 위한 것이다.In addition, the disclosed embodiments provide a medical image processing apparatus and method capable of shortening a scan time and increasing a pitch to acquire a 3D image with reduced inter cyclic motion artifact in one cycle .

일 실시예의 일 측면에 따르면, 제1 위상 구간에서 로 데이터(raw data)를 획득하고, 상기 제1 위상 구간 내의 서로 마주보는 2개의 위상 구간에서 각각 획득된 2개의 PAR(partial angle reconstruction) 영상을 포함하는 적어도 하나의 PAR 영상 쌍을 이용하여 제1 움직임 정보를 생성하고, 상기 제1 움직임 정보를 이용하여 상기 제1 위상 구간 내의 서로 다른 위상에서 획득된 복수의 PAR 영상을 합산하여 합산 영상을 생성하고, 상기 합산 영상으로부터 움직임 아티팩트를 나타내는 이미지 메트릭을 산출하였을 때, 상기 이미지 메트릭이 최소가 되도록, 상기 제1 움직임 정보를 업데이트하여, 제2 움직임 정보를 생성하고, 상기 제2 움직임 정보를 상기 로 데이터에 적용하여 재구성 영상을 생성하는 처리부를 포함하는 의료 영상 처리 장치가 제공된다.According to an aspect of an embodiment, there is provided a method for acquiring raw data in a first phase interval and generating two PAR partial images obtained in two mutually opposing phase intervals in the first phase interval, And generates a sum image by summing a plurality of PAR images obtained at different phases in the first phase section using the first motion information, And generating second motion information by updating the first motion information so that the image metric becomes minimum when calculating an image metric representing motion artifacts from the summed image, And a processing unit for generating a reconstructed image by applying the reconstructed image to the data.

상기 처리부는, 상기 제1 움직임 정보를 생성할 때, 180도 위상 차를 갖는 상기 적어도 하나의 PAR 영상 쌍을 이용하여 상기 제1 움직임 정보를 생성할 수 있다.The processor may generate the first motion information using the at least one PAR image pair having a 180 degree phase difference when generating the first motion information.

상기 처리부는, 공간적으로 인접한 콘트롤 포인트 사이의 움직임 정보의 차이가 작아지도록 상기 제1 움직임 정보를 업데이트할 수 있다.The processing unit may update the first motion information so that a difference of motion information between spatially adjacent control points becomes smaller.

상기 처리부는, 기준 위상에서 움직임 정보가 영(0)이 되도록 상기 제1 움직임 정보를 업데이트할 수 있다.The processing unit may update the first motion information so that the motion information is zero in the reference phase.

상기 처리부는, 상기 재구성 영상을 생성할 때, 상기 제2 움직임 정보에 기초하여 상기 로 데이터의 레이(ray)를 와핑(warping)할 수 있다.The processor may warp a ray of the raw data based on the second motion information when generating the reconstructed image.

상기 제1 위상 구간은, 180도보다 큰 위상 구간일 수 있다.The first phase interval may be a phase interval greater than 180 degrees.

상기 서로 마주보는 2개의 위상 구간은 0보다 크고 180도보다 작은 위상 구간일 수 있다.The two opposing phase intervals may be greater than zero and less than 180 degrees.

상기 처리부는, 동일한 위상에 속한 복수의 PAR 영상을 소스가 프로젝션 하는 위치에 기초하여 합산하여 PAR 스택을 생성하고, 상기 제1 움직임 정보를 생성할 때, 상기 서로 마주보는 2개의 위상 구간의 PAR 스택 쌍을 이용하여 상기 제1 움직임 정보를 생성할 수 있다.Wherein the processing unit generates a PAR stack by summing a plurality of PAR images belonging to the same phase on the basis of a position at which the source projects the first PAR information and generates a PAR stack, The first motion information may be generated using the pair.

상기 처리부는, 상기 합산 영상을 생성할 때, 상기 서로 다른 위상에서 획득된 복수의 PAR 영상에 상기 제1 움직임 정보를 적용하여 움직임을 보상하고, 움직임 보상된 상기 복수의 PAR 영상을 합산하여 상기 합산 영상을 생성할 수 있다.Wherein the processor applies the first motion information to a plurality of PAR images obtained in the different phases to generate a sum image, and compensates the motion by summing the plurality of motion compensated PAR images, Images can be generated.

일 실시예의 다른 측면에 따르면,According to another aspect of one embodiment,

제1 위상 구간에서 로 데이터(raw data)를 획득하는 단계;Obtaining raw data in a first phase interval;

상기 제1 위상 구간 내의 서로 마주보는 2개의 위상 구간에서 각각 획득된 2개의 PAR(partial angle reconstruction) 영상을 이용하여 제1 움직임 정보를 생성하는 단계;Generating first motion information using two partial angle reconstruction (PAR) images obtained in two phase sections opposed to each other in the first phase section;

상기 제1 위상 구간 내의 서로 다른 위상에서 획득된 복수의 PAR 영상을 합산하여 합산 영상을 생성하고, 상기 합산 영상으로부터 움직임 아티팩트를 나타내는 이미지 메트릭(metric)을 산출하였을 때, 상기 이미지 메트릭이 최소가 되도록, 상기 제1 움직임 정보를 업데이트하여, 제2 움직임 정보를 생성하는 단계; 및A plurality of PAR images obtained in different phases in the first phase section are summed to generate a summed image and an image metric representing a motion artifact is calculated from the summed image so that the image metric is minimized Updating the first motion information to generate second motion information; And

상기 제2 움직임 정보를 상기 로 데이터에 적용하여 재구성 영상을 생성하는 단계를 포함하는 의료 영상 처리 방법이 제공된다.And applying the second motion information to the RO data to generate a reconstructed image.

일 실시예의 또 다른 측면에 따르면, According to another aspect of an embodiment,

프로세서에 의해 판독되어 실행되었을 때, 의료 영상 처리 방법을 수행하는 컴퓨터 프로그램 코드들을 저장하는 컴퓨터 판독가능 기록매체에 있어서, 상기 의료 영상 처리 방법은,A computer readable recording medium storing computer program codes for performing a medical image processing method when read and executed by a processor,

제1 위상 구간에서 로 데이터(raw data)를 획득하는 단계;Obtaining raw data in a first phase interval;

상기 제1 위상 구간 내의 서로 마주보는 2개의 위상 구간에서 각각 획득된 2개의 PAR(partial angle reconstruction) 영상을 이용하여 제1 움직임 정보를 생성하는 단계;Generating first motion information using two partial angle reconstruction (PAR) images obtained in two phase sections opposed to each other in the first phase section;

상기 제1 위상 구간 내의 서로 다른 위상에서 획득된 복수의 PAR 영상을 합산하여 합산 영상을 생성하고, 상기 합산 영상으로부터 움직임 아티팩트를 나타내는 이미지 메트릭을 산출하였을 때, 상기 이미지 메트릭이 최소가 되도록, 상기 제1 움직임 정보를 업데이트하여, 제2 움직임 정보를 생성하는 단계; 및Wherein when the image metric representing motion artifacts is calculated from the summed image by summing a plurality of PAR images obtained in different phases within the first phase section to generate a summed image, 1 motion information to generate second motion information; And

상기 제2 움직임 정보를 상기 로 데이터에 적용하여 재구성 영상을 생성하는 단계를 포함하는, 컴퓨터 판독가능 기록매체가 제공된다.And applying the second motion information to the RO data to generate a reconstructed image.

개시된 실시예들에 따르면, 인접한 시간의 움직임 관계를 보다 정확하게 나타내는 의료 영상 처리 장치 및 방법을 제공할 수 있는 효과가 있다.According to the disclosed embodiments, it is possible to provide a medical image processing apparatus and method that more accurately indicate a motion relationship between adjacent times.

또한, 개시된 실시예들에 따르면, 스캔 시간을 단축시키고 피치(pitch)를 증가시켜, 사이클 간 움직임 아티팩트(inter cyclic motion artifact)가 저감된 3D 영상을 획득할 수 있는 의료 영상 처리 장치 및 방법을 제공할 수 있는 효과가 있다.Also, according to the disclosed embodiments, there is provided a medical image processing apparatus and method capable of shortening a scan time and increasing a pitch, thereby acquiring a 3D image with reduced inter cyclic motion artifacts There is an effect that can be done.

도 1은 개시된 일 실시예에 따른 CT 시스템(100)의 구조를 나타낸 도면이다.
도 2는 일 실시예에 따른 의료 영상 장치(100a) 및 외부 장치들을 나타낸 도면이다.
도 3은 일 실시예에 따른 의료 영상 처리 방법을 나타낸 흐름도이다.
도 4는 일 실시예에 따라, 제1 MVF를 생성하는 과정을 나타낸 도면이다.
도 5는 개시된 실시예에 따라 움직임 정보를 획득하기 위한 방법을 설명하기 위한 도면이다.
도 6은 일 실시예에 따라 PAR 영상으로부터 MVF를 산출하는 과정을 나타낸 도면이다.
도 7은 일 실시예에 따라 움직임 보상된 재구성 영상을 생성하는 과정을 나타낸 도면이다.
도 8은 일 실시예에 따른 PAR 시퀀스를 나타낸 도면이다.
1 is a diagram illustrating the structure of a CT system 100 according to an embodiment disclosed herein.
2 is a diagram illustrating a medical imaging apparatus 100a and external apparatuses according to an embodiment.
3 is a flowchart illustrating a medical image processing method according to an exemplary embodiment.
4 is a diagram illustrating a process of generating a first MVF according to an embodiment of the present invention.
5 is a diagram for explaining a method for acquiring motion information according to the disclosed embodiment.
FIG. 6 is a diagram illustrating a process of calculating an MVF from a PAR image according to an embodiment of the present invention.
7 is a diagram illustrating a process of generating a motion compensated reconstructed image according to an embodiment.
8 is a diagram illustrating a PAR sequence according to an embodiment.

본 명세서는 본 발명의 권리범위를 명확히 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 실시할 수 있도록, 본 발명의 원리를 설명하고, 실시예들을 개시한다. 개시된 실시예들은 다양한 형태로 구현될 수 있다.The present specification discloses the principles of the present invention and discloses embodiments of the present invention so that those skilled in the art can carry out the present invention without departing from the scope of the present invention. The disclosed embodiments may be implemented in various forms.

명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. 본 명세서가 실시예들의 모든 요소들을 설명하는 것은 아니며, 본 발명이 속하는 기술분야에서 일반적인 내용 또는 실시예들 간에 중복되는 내용은 생략한다. 명세서에서 사용되는 '부'(part, portion)라는 용어는 소프트웨어 또는 하드웨어로 구현될 수 있으며, 실시예들에 따라 복수의 '부'가 하나의 요소(unit, element)로 구현되거나, 하나의 '부'가 복수의 요소들을 포함하는 것도 가능하다. 이하 첨부된 도면들을 참고하여 본 발명의 작용 원리 및 실시예들에 대해 설명한다.Like reference numerals refer to like elements throughout the specification. The present specification does not describe all elements of the embodiments, and redundant description between general contents or embodiments in the technical field of the present invention will be omitted. As used herein, the term " part " may be embodied in software or hardware, and may be embodied as a unit, element, or section, Quot; element " includes a plurality of elements. Hereinafter, the working principle and embodiments of the present invention will be described with reference to the accompanying drawings.

본 명세서에서 영상은 컴퓨터 단층 촬영(CT, Computed Tomography) 장치, 자기 공명 영상(MRI, Magnetic Resonance Imaging) 장치, 초음파 촬영 장치, 또는 엑스레이 촬영 장치 등의 의료 영상 장치에 의해 획득된 의료 영상을 포함할 수 있다.In this specification, the image includes a medical image obtained by a medical imaging apparatus such as a computer tomography (CT) apparatus, a magnetic resonance imaging (MRI) apparatus, an ultrasound imaging apparatus, or an X- .

본 명세서에서 '대상체(object)'는 촬영의 대상이 되는 것으로서, 사람, 동물, 또는 그 일부를 포함할 수 있다. 예를 들어, 대상체는 신체의 일부(장기 또는 기관 등; organ) 또는 팬텀(phantom) 등을 포함할 수 있다.As used herein, the term " object " may include a person, an animal, or a part thereof as an object of photographing. For example, the object may comprise a part of the body (organ or organ) or a phantom.

본 명세서에서 'CT 시스템' 또는 'CT 장치'는 대상체에 대한 적어도 하나의 축을 중심으로 회전하며 X선을 조사하고, X선을 검출하여 대상체를 촬영하는 시스템 또는 장치를 의미한다.As used herein, the term "CT system" or "CT apparatus" refers to a system or apparatus that rotates about at least one axis with respect to a target and irradiates X-rays, and detects X-rays to photograph the target.

본 명세서에서 'CT 영상'은 대상체에 대한 적어도 하나의 축을 중심으로 회전하며 조사된 X선을 검출하여 대상체를 촬영함으로써 획득된 로 데이터(raw data)로부터 구성된 영상을 의미한다.In the present specification, the term 'CT image' means an image composed of raw data obtained by detecting X-rays and irradiating the object by rotating around at least one axis with respect to the object.

본 개시의 실시예들에 따르면, 움직임 아티팩트가 저감된 3D CT 영상을 얻을 수 있다. 먼저 획득한 사이노그램을 사용하여 연속된 PAR 영상을 만든다. 각 PAR 영상 쌍의 에러를 최소화하는 것으로 초기 모션 추정을 수행한다. 그 후, 생성된 PAR 스택에 대해서 IP maximization을 수행하여 보정 항(refining term)을 추정한 뒤, 업데이트된 MVF를 사용하여 움직임 보상 영상 재구성을 수행한다.According to embodiments of the present disclosure, a 3D CT image with reduced motion artifacts can be obtained. First, consecutive PAR images are created using the obtained sinogram. Initial motion estimation is performed by minimizing the error of each PAR image pair. Thereafter, the generated PAR stack is subjected to IP maximization to estimate a refinement term, and then motion compensated image reconstruction is performed using the updated MVF.

도 1은 개시된 일 실시예에 따른 CT 시스템(100)의 구조를 나타낸 도면이다.1 is a diagram illustrating the structure of a CT system 100 according to an embodiment disclosed herein.

개시된 일 실시예에 따른 CT 시스템(100)은 갠트리(110), 테이블(105), 제어부(130), 저장부(140), 영상 처리부(150), 입력부(160), 디스플레이부(170), 및 통신부(180)를 포함할 수 있다.The CT system 100 according to an embodiment includes a gantry 110, a table 105, a controller 130, a storage unit 140, an image processing unit 150, an input unit 160, a display unit 170, And a communication unit 180.

갠트리(110)는 회전 프레임(111), 엑스레이 생성부(112), 엑스레이 검출부(113), 회전 구동부(114), 및 리드아웃부(115)를 포함할 수 있다.The gantry 110 may include a rotating frame 111, an x-ray generating unit 112, an x-ray detecting unit 113, a rotation driving unit 114, and a lead-out unit 115.

회전 프레임(111)은 회전 구동부(114)로부터 구동 신호를 수신하여, 회전축(RA)을 중심으로 회전할 수 있다.The rotation frame 111 receives the drive signal from the rotation drive unit 114 and can rotate around the rotation axis RA.

산란 방지 그리드(116)는 대상체와 엑스레이 검출부(113) 사이에 배치되어, 주 방사선은 대부분 투과시키고, 산란 방사선은 감쇠시킬 수 있다. 대상체는 테이블(105) 상에 배치되고, 테이블(105)은 CT 촬영을 수행하는 동안 이동되거나, 기울어지거나(tilting), 회전(rotating)할 수 있다.The scatter prevention grid 116 is disposed between the object and the X-ray detecting unit 113 so that the main radiation can be mostly transmitted and the scattering radiation can be attenuated. The object is placed on the table 105 and the table 105 can be moved, tilted, and rotated while performing a CT scan.

엑스레이 생성부(112)는 고전압 생성부(HVG, high voltage generator)로부터 전압, 전류를 인가 받아 X선을 생성하고 방출한다.The X-ray generating unit 112 receives voltage and current from a high voltage generator (HVG) to generate and emit X-rays.

엑스레이 생성부(112)는 엑스레이 생성부(112) 및 엑스레이 검출부(113)가 각각 한 개씩 구비되는 단일 소스 방식, 각각 두 개씩 구비되는 듀얼 소스 방식 등으로 구현될 수 있다.The x-ray generating unit 112 may be implemented by a single source method in which one x-ray generating unit 112 and one x-ray detecting unit 113 are provided, or a dual source method in which two x-ray generating units 112 and x-

엑스레이 검출부(113)는 대상체를 통과한 방사선을 검출한다. 엑스레이 검출부(113)는 예를 들면, 신틸레이터(Scintillator), 포톤 카운팅 디텍터(photon counting detector) 등을 이용하여 방사선을 검출할 수 있다.The X-ray detector 113 detects the radiation that has passed through the object. The X-ray detector 113 can detect radiation using, for example, a scintillator, a photon counting detector, or the like.

엑스레이 생성부(112)와 엑스레이 검출부(113)의 구동 방식은 대상체에 대한 스캔 방식에 따라 달라질 수 있다. 상기 스캔 방식은 엑스레이 검출부(113)의 이동 경로에 따라 축상(axial) 스캔 방식, 나선형(helical) 스캔 방식 등을 포함한다. 또한 상기 스캔 방식은 X선이 조사되는 시간 구간에 따라 프로스펙티브(prospective) 모드, 레트로스펙티브(retrospective) 모드 등을 포함한다.The driving method of the X-ray generating unit 112 and the X-ray detecting unit 113 may vary according to the scanning method for the object. The scan method includes an axial scan method, a helical scan method, and the like according to the movement path of the X-ray detector 113. In addition, the scan method includes a prospective mode, a retrospective mode, and the like depending on a time period during which the X-ray is irradiated.

제어부(130)는 CT 시스템(100)의 각각의 구성요소들의 동작을 제어할 수 있다. 제어부(130)는 소정의 기능을 수행하기 위한 프로그램 코드 또는 데이터를 저장하는 메모리, 프로그램 코드 및 데이터를 처리하는 프로세서를 포함할 수 있다. 제어부(130)는 하나 이상의 메모리 및 하나 이상의 프로세서의 다양한 조합으로 구현 가능하다. 프로세서는 CT 시스템(100)의 동작 상태에 따라 프로그램 모듈을 생성하고 삭제할 수 있으며, 프로그램 모듈의 동작들을 처리할 수 있다.The control unit 130 may control the operation of each component of the CT system 100. [ The control unit 130 may include a memory for storing program codes or data for performing a predetermined function, a program code, and a processor for processing data. The control unit 130 may be implemented in various combinations of one or more memories and one or more processors. The processor can create and delete program modules according to the operating state of the CT system 100, and can process operations of the program module.

리드아웃부(115)는 엑스레이 검출부(113)에서 생성된 검출 신호를 입력 받아, 영상 처리부(150)로 출력한다. 리드아웃부(115)는 데이터 획득 회로(Data Acquisition System, 115-1) 및 데이터 송신부(115-2)를 포함할 수 있다. DAS(115-1)는 적어도 하나의 증폭 회로를 이용하여, 엑스레이 검출부(113)로부터 출력된 신호를 증폭하여, 데이터 송신부(115-2)로 출력한다. 데이터 송신부(115-2)는 멀티플렉서(MUX) 등의 회로를 이용하여, DAS(115-1)에서 증폭된 신호를 영상 처리부(150)로 출력한다. 슬라이스 두께(slice thickness)나 슬라이스 개수에 따라 엑스레이 검출부(113)로부터 수집된 일부 데이터만이 영상 처리부(150)로 제공되거나, 영상 처리부(150)가 일부 데이터만을 선택할 수 있다.The lead-out unit 115 receives the detection signal generated by the X-ray detector 113 and outputs the detection signal to the image processor 150. The lead-out unit 115 may include a data acquisition circuit (Data Acquisition System) 115-1 and a data transmission unit 115-2. The DAS 115-1 amplifies the signal output from the X-ray detecting unit 113 using at least one amplifying circuit, and outputs the amplified signal to the data transmitting unit 115-2. The data transmission unit 115-2 outputs a signal amplified by the DAS 115-1 to the image processing unit 150 using a circuit such as a multiplexer (MUX). Only a part of the data collected from the x-ray detector 113 may be provided to the image processor 150 or the image processor 150 may select only some data depending on the slice thickness or the number of slices.

영상 처리부(150)는 리드아웃부(115)로부터 획득된 신호(예컨대, 가공 전 순수(pure) 데이터)로부터 단층 데이터를 획득한다. 영상 처리부(150)는 획득된 신호에 대한 전처리, 단층 데이터로의 변환 처리, 상기 단층 데이터에 대한 후처리 등을 수행할 수 있다. 영상 처리부(150)는 본 개시에서 예시된 처리들 중 일부 또는 전부를 수행하며, 실시예에 따라 영상 처리부(150)에서 수행되는 처리의 종류 및 순서는 달라질 수 있다.The image processing unit 150 acquires the tomographic data from the signal obtained from the lead-out unit 115 (for example, pure data before machining). The image processing unit 150 may perform preprocessing on the obtained signal, conversion processing into single layer data, post-processing on the single layer data, and the like. The image processing unit 150 performs some or all of the processes exemplified in the present disclosure, and the type and order of processes performed in the image processing unit 150 may vary depending on the embodiment.

영상 처리부(150)는 리드아웃부(115)로부터 획득된 신호에 대해, 채널들 사이의 감도 불균일 정정 처리, 신호 세기의 급격한 감소 정정 처리, X선 흡수재로 인한 신호의 유실 정정 처리 등의 전처리를 수행할 수 있다.The image processing unit 150 preprocesses signals obtained from the lead-out unit 115, such as a process for correcting sensitivity nonuniformity among channels, a process for abruptly reducing and correcting signal intensity, and a process for correcting loss of signals due to an X- Can be performed.

영상 처리부(150)는 실시예들에 따라, 단층 영상으로의 재구성 처리 중 일부 또는 전부를 수행하여 상기 단층 데이터를 생성한다. 실시예에 따라, 상기 단층 데이터는 역투영(back-projection)된 데이터, 또는 단층 영상 등의 형태를 가질 수 있다. 실시예들에 따라, 단층 데이터에 대한 추가적인 처리가 서버, 의료 장치, 휴대용 장치 등의 외부 장치에 의해 수행될 수 있다.The image processing unit 150 performs some or all of the reconstruction processing to the tomographic image to generate the tomographic data according to the embodiments. According to an embodiment, the monolayer data may have the form of back-projected data, or a tomographic image. According to embodiments, additional processing for the tomographic data may be performed by an external device such as a server, a medical device, a handheld device, or the like.

로 데이터는 대상체를 통과한 X선 세기에 상응하는 데이터 값의 집합으로서, 프로젝션 데이터(projection data) 또는 사이노그램(sinogram)을 포함할 수 있다. 역투영된 데이터는, X선이 방사된 각도 정보를 이용하여 상기 로 데이터를 역투영한 데이터이다. 단층 영상은 상기 로 데이터를 역투영하는 단계를 포함하는 재구성 영상기법들을 적용하여 획득된 영상이다.Data may be a collection of data values corresponding to the X-ray intensity passed through the object and may include projection data or a sinogram. The data that is projected backward is the data that reversely traces the data by using the angle information of the X-ray. And the tomographic image is obtained by applying the reconstruction imaging techniques including the step of backprojecting the data.

저장부(140)는 제어 관련 데이터, 영상 데이터 등을 저장하는 저장매체로서, 휘발성 또는 비휘발성 저장매체를 포함할 수 있다.The storage unit 140 is a storage medium for storing control related data, image data, and the like, and may include a volatile or nonvolatile storage medium.

입력부(160)는 사용자로부터 제어 신호, 데이터 등을 수신한다. 디스플레이부(170)는 CT 시스템(100)의 동작 상태를 나타내는 정보, 의료 정보, 의료 영상 데이터 등을 표시할 수 있다.The input unit 160 receives a control signal, data, and the like from a user. The display unit 170 may display information indicating the operation state of the CT system 100, medical information, medical image data, and the like.

CT 시스템(100)은 통신부(180)를 포함하며, 통신부(180)를 통해 외부 장치(예를 들면, 서버, 의료 장치, 휴대 장치(스마트폰, 태블릿 PC, 웨어러블 기기 등))와 연결할 수 있다.The CT system 100 includes a communication unit 180 and can be connected to an external device (for example, a server, a medical device, a portable device (smart phone, tablet PC, wearable device, etc.) .

통신부(180)는 외부 장치와 통신을 가능하게 하는 하나 이상의 구성 요소를 포함할 수 있으며, 예를 들어 근거리 통신 모듈, 유선 통신 모듈 및 무선 통신 모듈 중 적어도 하나를 포함할 수 있다.The communication unit 180 may include at least one of a short-range communication module, a wired communication module, and a wireless communication module, for example, at least one component that enables communication with an external device.

통신부(180)가 외부 장치로부터 제어 신호 및 데이터를 수신하고, 수신된 제어 신호를 제어부(130)에 전달하여 제어부(130)로 하여금 수신된 제어 신호에 따라 CT 시스템(100)을 제어하도록 하는 것도 가능하다.The communication unit 180 may receive the control signal and data from the external device and transmit the received control signal to the control unit 130 so that the control unit 130 controls the CT system 100 according to the received control signal It is possible.

또는, 제어부(130)가 통신부(180)를 통해 외부 장치에 제어 신호를 송신함으로써, 외부 장치를 제어부의 제어 신호에 따라 제어하는 것도 가능하다.Alternatively, the control unit 130 may transmit a control signal to the external device via the communication unit 180, thereby controlling the external device in accordance with the control signal of the control unit.

예를 들어 외부 장치는 통신부를 통해 수신된 제어부의 제어 신호에 따라 외부 장치의 데이터를 처리할 수 있다.For example, an external device can process data of an external device according to a control signal of a control unit received through a communication unit.

외부 장치에는 CT 시스템(100)을 제어할 수 있는 프로그램이 설치될 수 있는바, 이 프로그램은 제어부(130)의 동작의 일부 또는 전부를 수행하는 명령어를 포함할 수 있다.The external device may be provided with a program capable of controlling the CT system 100, and the program may include an instruction to perform a part or all of the operation of the control unit 130. [

프로그램은 외부 장치에 미리 설치될 수도 있고, 외부 장치의 사용자가 어플리케이션을 제공하는 서버로부터 프로그램을 다운로드하여 설치하는 것도 가능하다. 어플리케이션을 제공하는 서버에는 해당 프로그램이 저장된 기록매체가 포함될 수 있다.The program may be installed in an external device in advance, or a user of the external device may download and install the program from a server that provides the application. The server providing the application may include a recording medium storing the program.

개시된 실시예들에 따른 CT 시스템(100)은 실시예에 따라 CT 촬영 시, 조영제를 이용하거나 이용하지 않을 수 있으며, 타 기기와 연계된 장치의 형태로 구현되는 것도 가능하다.The CT system 100 according to the disclosed embodiments may or may not use a contrast agent at the time of CT imaging according to an embodiment, or may be implemented in the form of a device associated with other devices.

개시된 실시예들에 따른 의료 영상 장치는, 대상체를 촬영한 로 데이터를 획득하여, 로 데이터로부터 재구성된 CT 영상을 생성하는 장치이다. 일 실시예에 따른 의료 영상 장치는 도 1의 CT 시스템(100)과 같이 구현될 수 있다.The medical imaging apparatus according to the disclosed embodiments is an apparatus that acquires data obtained by imaging a target object and generates a reconstructed CT image from the data. The medical imaging device according to one embodiment may be implemented with the CT system 100 of FIG.

X-ray CT로 움직이는 대상체, 예를 들면 빠르게 수축과 이완을 반복하는 심장을 촬영하는 경우, 심전도계 신호(ECG, electrocardiogram)와 동조를 통해 움직임 아티팩트가 저감된 CT 영상을 획득할 수 있다. 예를 들어, X-ray CT는 관상동맥 협착 평가, 관상동맥 우회로 수술 후 이식혈관 평가, 및 관상동맥 스텐트(stent) 시술 후의 재협착 평가에 사용될 수 있고, 응급실에서 급성 흉통의 감별에도 유용하게 사용될 수 있으며, 관상동맥 고위험군 환자에서 관상동맥 협착증의 선별검사로도 사용될 수 있다.When an object moving with X-ray CT, such as a heart that repeats rapid contraction and relaxation, is synchronized with an electrocardiogram (ECG), it is possible to obtain a CT image with reduced motion artifacts. For example, X-ray CT can be used for evaluation of coronary artery stenosis, evaluation of graft vessels after coronary artery bypass grafting, and evaluation of restenosis after coronary stenting, and is also useful for the differentiation of acute chest pain in the emergency room And can be used as a screening test for coronary artery stenosis in patients with high risk of coronary artery disease.

그러나 X-ray CT의 시간 분해능이 심장을 촬영 하기에는 여전히 부족하기 때문에 박동이 매우 빠른 경우나 부정맥 환자 등의 경우, 심장 영상 촬영 시 심장 움직임에 의한 영상 블러(blur) 혹은 움직임 아티팩트를 유발하고, 이로 인해 관상동맥의 모양 및 굵기를 제대로 판별할 수 없게 되어 오진을 일으킬 수 있다.However, since the time resolution of X-ray CT is still insufficient for imaging the heart, it causes image blur or motion artifacts caused by cardiac movements during cardiac imaging in cases of very rapid beating or arrhythmia, The coronary artery can not be distinguished from the shape and thickness of the coronary artery.

시간 분해능을 높이기 위한 하드웨어적 접근으로, 갠트리의 물리적 회전 속도를 높이는 방식, 듀얼 소스(dual-source)를 이용하는 방식 등이 이용될 수 있다. 듀얼 소스 시스템은 단일 소스 시스템에 비해 두 배에 해당하는 시간 분해능을 가질 수 있다. 하지만, 하드웨어적으로 회전 속도를 빠르게 하거나 시스템에 추가적인 설비를 설치하는 등의 방법은 개선의 물리적 한계가 존재하며 하드웨어 복잡도 상승으로 비용이 증가하는 단점이 있다.As a hardware approach to increase the time resolution, a method of increasing the physical rotation speed of the gantry, a method of using a dual-source, or the like can be used. A dual source system can have twice the time resolution of a single source system. However, there are disadvantages such as increasing the rotation speed of the hardware or installing additional facilities in the system, there is a physical limitation of the improvement, and the cost is increased due to the increase of the hardware complexity.

다른 방식으로서, 영상에서 움직임 정보를 추출하거나 사이노그램 등의 로 데이터로부터 움직임 정보를 추출하여 움직임을 보상할 수 있다. 본 개시의 실시예들은, PAR 영상들로부터 추출된 움직임 정보를 추출하여, 영상 재구성 과정에 움직임 모델을 포함시켜 영상 화질저하를 개선한다.Alternatively, motion information may be extracted from the image, or motion information may be extracted from data such as a cineogram to compensate for motion. Embodiments of the present disclosure extract motion information extracted from PAR images and include motion models in the image reconstruction process to improve image quality degradation.

개시된 실시예들은, 부분 각도 재구성(PAR; partial angle reconstruction) 영상 기반의 4D 심장 움직임 추정 및 보상 방법에서, 복수의 켤레 PAR 영상 쌍의 차이가 작아지도록 움직임을 추정하여 보상한다. 켤레 PAR 영상 쌍은, 서로 켤레각 관계를 갖는 각도 구간에서 획득된 로 데이터, 예를 들면 180도의 위상 차를 갖는 두 각도 구간에서 각각 획득된 로 데이터로부터 재구성된 PAR 영상 쌍을 의미한다. 나아가 개시된 실시예들은, 정보 포텐셜(information potential, IP)에 기반하여 움직임 모델을 추가로 보정하여, 인접한 시간의 움직임 관계를 보다 정확하게 나타낼 수 있는 단층 영상의 재구성 방법 및 장치를 개시한다.In the 4D cardio motion estimation and compensation method based on partial angle reconstruction (PAR) image, the disclosed embodiments estimate and compensate for motion so that the difference between a plurality of pairs of PAR image pairs is small. The pair of PAR image pairs means RO image data obtained from angular intervals having mutually conjugate relations, for example, PAR image pairs reconstructed from the RO data obtained respectively in two angular intervals having a phase difference of 180 degrees. Furthermore, the disclosed embodiments disclose a method and apparatus for reconstructing a tomographic image that can further correct the motion model based on the information potential (IP), thereby accurately indicating the motion relationship of adjacent times.

또한, 개시된 실시예들은 대상체를 스캔하는 피치를 증가시켜 짧은 시간에 영상을 획득할 수 있도록 한다. 움직이는 대상체, 예를 들면, 심장을 촬영하기 위하여 로우 피치 나선형 스캔(low pitch helical scan)을 하거나, 스텝 앤 슛(step and shoot) 방법을 사용할 수 있다. 그런데 로우 피치 스캔 또는 스텝 앤 슛 등의 방법에 의하면, 움직이는 대상체의 움직임 주기 등을 고려하기 위해, 스캔 시간 및 선량(dose)이 과도하게 커지는 단점이 있고, 멀티 사이클에 걸쳐 촬영을 하기 때문에 필연적으로 사이클간 움직임이 발생할 수 있다는 단점이 있다. 개시된 실시예들에 따르면, 스탠다드 피치의 나선형 스캔(standard pitch helical scan)의 상황에서 움직임 아티팩트가 저감된 3D영상을 획득할 수 있는 장치 및 방법이 제공된다. 개시된 실시예들에 따른 의료 영상 처리 장치는, 갠트리의 피치를 증가시킴으로써 짧은 시간에 로 데이터 및 재구성 영상을 획득할 수 있다. 또한, 개시된 실시예들에 따르면, 대상체 전체, 예를 들면, 심장을 로우 피치로 스캔하여 영상화 할 때 발생하는 사이클간 움직임 아티팩트의 발생을 막을 수 있는 효과가 있다. 또한 개시된 실시예들에 따르면, 스탠다드 피치 나선형 스캔 환경에서 영상 전체 영역에 대해서 움직임을 추정하여 보상할 수 있다.In addition, the disclosed embodiments increase the pitch at which the object is scanned so that the image can be acquired in a short time. You can use a low pitch helical scan or a step and shoot method to capture a moving object, for example, a heart. However, according to the low-pitch scan method or the step-and-shoot method, there is a disadvantage in that the scan time and the dose are excessively increased in consideration of the motion period of the moving object and the like. There is a disadvantage that inter-cycle movement can occur. According to the disclosed embodiments, there is provided an apparatus and method for obtaining a 3D image with reduced motion artifacts in the context of a standard pitch helical scan. The medical image processing apparatus according to the disclosed embodiments can acquire the data and the reconstructed image in a short time by increasing the pitch of the gantry. Also, according to the disclosed embodiments, it is possible to prevent the generation of motion artifacts between cycles that occurs when scanning the entire object, for example, the heart, at a low pitch and imaging. Also, according to the disclosed embodiments, movement can be estimated and compensated for the whole image region in a standard pitch spiral scan environment.

나아가, 개시된 실시예들은 하이 피치를 이용하는 경우, 단일 사이클의 로 데이터 만으로도 영상 재구성이 가능하기 때문에, 사이클간 심장의 움직임 위상이 맞지 않는 경우에도 심장의 움직임을 보상할 수 있고, 사이클간 동일 호흡 상태 유지 등에 신경 쓸 필요가 없는 장점이 있다. Furthermore, the disclosed embodiments can compensate for motion of the heart even when the motion phases of the heart are not matched, because the image reconstruction is possible with only a single cycle of raw data when high pitch is used, Maintenance and so on.

X-ray CT의 시간 분해능을 높이기 위한 접근으로 앞에서 설명한 ECG동조화 영상 재구성 방법이 있고, 이와 더불어 기본적인 하드웨어의 성능을 높이거나 소스의 개수를 추가하는 등의 방법이 있다. 하지만, 하드웨어의 개선은 물리적 한계가 존재하고 복잡도의 상승으로 비용의 증가 등의 단점이 존재하기 때문에, 개시된 실시예들은 알고리즘적으로 움직임 아티팩트를 감소시키는 장치 및 방법을 제공한다.As an approach to increase the time resolution of X-ray CT, there is a method of reconstructing an ECG synchronized image as described above. In addition, there is a method of increasing the performance of basic hardware or adding the number of sources. However, the disclosed embodiments provide an apparatus and a method for algorithmically reducing motion artifacts, since improvements in hardware have disadvantages such as physical limitations and increased cost due to increased complexity.

또한 본 개시의 일 실시예에 따르면, 영상에서 움직임 아티팩트의 정도를 측정하는 메트릭(metric)을 정의한 뒤, 움직임 보상 재구성 영상의 움직임 아티팩트가 작아지도록 최적화 방법에 기반하여 움직임 모델을 추정할 수 있다. 본 실시예는, 관상동맥, 심근, 판막 등 심장 내 움직임이 있는 관심 영역에 대해 움직임 모델을 추정하는데 유용하다.Also, according to one embodiment of the present disclosure, a motion metric can be estimated based on an optimization method such that a motion artifact of a motion compensated reconstruction image becomes small after defining a metric for measuring the degree of motion artifacts in the image. This embodiment is useful for estimating a motion model for a region of interest with intra-cardiac movements, such as coronary arteries, myocardial muscles, and valves.

움직임 보상의 일례로서, 사이노그램 등의 로 데이터를 이용하여 움직임을 추정 및 움직임 보상하는 것도 가능하다. 사이노그램은 한 순간에 획득한 투영(projection) 영상의 집합이기 때문에 일반적으로 재구성 영상보다 좋은 시간 분해능을 가진다. 따라서, 사이노그램에서 물체의 움직임을 추출한다면 움직임 아티팩트 등의 영향이 재구성 영상에 비해 상당히 줄어든 상태에서 움직임을 추정할 수 있다. 하지만, 사이노그램을 이용하는 알고리즘은 한쪽 방향으로 물체가 투영된 영상에 기반하여 움직임을 추정하기 때문에, 레이(ray)가 투영되는 방향의 움직임 정보는 선 적분 모델에서 전부 누적되면서 보이지 않게 되어 정확한 움직임 정보를 추정하기 힘들다. 듀얼 소스 시스템을 사용하여 추정한다면 약 90도만큼 떨어진 위치에서 두 개의 소스로부터 동시에 두 개의 투영 영상을 획득하기 때문에 두 영상에서 서로 보이지 않는 부분을 보완해줄 수 있다. 하지만, 일반적인 단일 소스 시스템에서는 레이 투영 방향이 레이 투영 방향의 수직 방향에 비해 추정된 움직임 정보의 정확도가 상대적으로 떨어질 수 있고, 모든 사이노그램으로부터 움직임 정보를 추출하는 최적화 기법을 사용하기 때문에 계산량이 많다는 단점이 있다.As an example of motion compensation, it is also possible to perform motion estimation and motion compensation using data such as a sinogram. Since the sinogram is a set of projection images acquired at a single moment, it generally has better temporal resolution than the reconstructed image. Therefore, if the motion of the object is extracted from the sinogram, the motion can be estimated with the motion artifacts and the like being significantly reduced compared with the reconstructed image. However, since the algorithm using the sinogram estimates the motion based on the image projected in one direction, the motion information in the direction in which the ray is projected accumulates in the linear integration model, It is difficult to estimate information. Using a dual source system, two projected images can be obtained simultaneously from two sources at a distance of about 90 degrees, so that they can complement each other in the two images. However, in a general single-source system, the accuracy of estimated motion information may be relatively lower than that of the ray projection direction in the vertical direction of the ray projection direction, and an optimization technique for extracting motion information from all the sinograms is used. There are many disadvantages.

개시된 실시예들에 따르면, 로우 피치 나선형 스캔 상황에서 심장의 4D 움직임을 추정 및 보상하는 방법 및 장치가 제공되고, 스탠다드 피치 나선형 스캔 상황에서 전체 심장의 움직임 아티팩트가 저감된 단일 3D 영상을 재구성하는 방법 및 장치가 제공된다.According to the disclosed embodiments there is provided a method and apparatus for estimating and compensating 4D movement of the heart in a low pitch spiral scan situation and a method for reconstructing a single 3D image with reduced overall heart motion artifacts in a standard pitch spiral scan situation And an apparatus are provided.

도 2는 일 실시예에 따른 의료 영상 장치(100a) 및 외부 장치들을 나타낸 도면이다.2 is a diagram illustrating a medical imaging apparatus 100a and external apparatuses according to an embodiment.

일 실시예에 따른 의료 영상 장치(100a)는 적어도 하나의 처리부(210)를 포함한다. The medical imaging device 100a according to one embodiment includes at least one processing unit 210. [

일 실시예에 따르면, 처리부(210)는 스캐너(220)로부터 대상체를 촬영하여 획득한 로 데이터를 획득할 수 있다. 스캐너(220)는 엑스레이 생성부(112), 엑스레이 검출부(113), 및 리드아웃부(115)를 포함할 수 있다. 스캐너(220)는 의료 영상 처리 장치(100a)의 처리부(210)와 별개의 제어부(130)에 의해 제어되거나, 의료 영상 처리 장치(100a)의 처리부(210)에 의해 제어되어 대상체를 스캔하고, 로 데이터를 획득할 수 있다. 일 실시예에 따르면, 스캐너(220)는 의료 영상 처리 장치(100a) 내에 구비된다. 다른 실시예에 따르면, 스캐너(220)는 의료 영상 처리 장치(100a)와 별개 장치로 구비되고, 유선 또는 무선의 I/O 디바이스 또는 통신 디바이스를 통해 처리부(210)로 로 데이터를 전송할 수 있다.According to one embodiment, the processing unit 210 may acquire the acquired data by photographing the object from the scanner 220. [ The scanner 220 may include an x-ray generating unit 112, an x-ray detecting unit 113, and a lead-out unit 115. The scanner 220 may be controlled by a control unit 130 separate from the processing unit 210 of the medical image processing apparatus 100a or may be controlled by the processing unit 210 of the medical image processing apparatus 100a to scan the object, As shown in FIG. According to one embodiment, the scanner 220 is provided in the medical image processing apparatus 100a. According to another embodiment, the scanner 220 is provided as a separate device from the medical image processing apparatus 100a, and can transmit data to the processing unit 210 through a wired or wireless I / O device or a communication device.

다른 실시예에 따르면, 처리부(210)는 네트워크(240)를 통해 연결된 외부 장치(230)로부터 로 데이터를 획득할 수 있다. 외부 장치(230)는 예를 들면, 의료 영상 데이터를 저장하는 서버, 다른 의료 영상 장치, 사용자 단말, 외부 저장 장치 등일 수 있다. 네트워크(230)는 다양한 종류의 유무선 네트워크를 포함하며, 예를 들면, 유무선 근거리 통신망(LAN), 이동 통신망, 인터넷 등을 포함한다.According to another embodiment, the processing unit 210 may obtain data from the external device 230 connected via the network 240. [ The external device 230 may be, for example, a server that stores medical image data, another medical imaging device, a user terminal, an external storage device, or the like. The network 230 includes various types of wired and wireless networks, including, for example, a wired and wireless local area network (LAN), a mobile communication network, the Internet, and the like.

로 데이터는 예를 들면, 위상 정보를 포함하는 사이노그램 또는 프로젝션 데이터이다.For example, is a sinogram or projection data including phase information.

도 3은 일 실시예에 따른 의료 영상 처리 방법을 나타낸 흐름도이다. 도 3의 흐름도를 참조하여, 처리부(210)의 동작을 설명한다. 본 개시의 의료 영상 처리 방법은 적어도 하나의 메모리와 적어도 하나의 처리부를 구비하는 다양한 전자 장치에 의해 수행될 수 있다. 본 개시에서는 도 2에 도시된 의료 영상 장치(100a)에 의해 의료 영상 처리 방법이 수행되는 실시예를 중심으로 설명한다.3 is a flowchart illustrating a medical image processing method according to an exemplary embodiment. The operation of the processing unit 210 will be described with reference to the flowchart of FIG. The medical image processing method of the present disclosure can be performed by various electronic devices including at least one memory and at least one processing unit. In the present disclosure, an embodiment in which a medical image processing method is performed by the medical imaging apparatus 100a shown in FIG. 2 will be described.

처리부(210)는 대상체를 스캔하여 획득된 로 데이터를 획득한다(S302). 로 데이터는 의료 영상 처리 장치(100a)의 스캐너로부터 획득되거나, 외부 장치로부터 수신되는 등 다양한 방식으로 획득될 수 있다. 처리부(210)는 제1 위상 구간의 로 데이터를 획득한다. 제1 위상 구간은 180도보다 큰 위상 구간으로서, 예를 들면, 360도, 720도 등으로 설정될 수 있다.The processing unit 210 scans the object and acquires the acquired data (S302). Data can be obtained in various manners such as being obtained from a scanner of the medical image processing apparatus 100a, received from an external apparatus, or the like. The processing unit 210 acquires the data of the first phase section. The first phase interval may be set to a phase interval larger than 180 degrees, for example, 360 degrees, 720 degrees, and the like.

다음으로, 처리부(210)는 로 데이터로부터 적어도 하나의 PAR(partial angle reconstruction) 영상 쌍을 재구성하고, 재구성된 2개의 PAR 영상을 이용하여 제1 움직임 정보를 생성한다(S304). 제1 움직임 정보는 예를 들면, MVF(motion vector field)로 나타낼 수 있다. 본 명세서에서는 움직임 정보를 MVF로 나타내는 실시예를 중심으로 설명하지만, 움직임 정보는 실시예에 따라 MVF 형태 이외의 다양한 형태로 나타내 낼 수 있다. PAR 영상 쌍은 0보다 크고 180도보다 작은 각도 구간의 로 데이터를 이용하여 재구성된 2개의 PAR 영상으로서, 서로 마주보는 2개의 각도 구간에 각각 대응하는 2개의 PAR 영상을 포함한다. 서로 마주보는 2개의 각도 구간은 예를 들면, 180도의 위상차를 갖는 각도 구간일 수 있다. 처리부(210)는 한 쌍의 PAR 영상을 이용하여 제1 MVF를 생성할 수 있으며, 복수의 PAR 영상 쌍을 이용하여 제1 MVF를 생성할 수도 있다.Next, the processing unit 210 reconstructs at least one partial angle reconstruction (PAR) image pair from the RO data, and generates first motion information using the reconstructed two PAR images (S304). The first motion information may be represented by, for example, a motion vector field (MVF). In the present specification, the motion information is represented by the MVF, but the motion information may be expressed in various forms other than the MVF format according to the embodiment. The PAR image pair includes two PAR images reconstructed using data of an angular section that is greater than 0 and smaller than 180 degrees and corresponding to two angular sections facing each other. The two angular intervals facing each other may be, for example, an angular interval having a phase difference of 180 degrees. The processing unit 210 may generate the first MVF using the pair of PAR images and may generate the first MVF using the plurality of PAR image pairs.

또한, 처리부(210)는 제1 MVF를 적용하여 재구성한 서로 다른 위상의 복수의 PAR 영상을 합산하여 합산 영상을 생성한다(S306). 일 실시예에 따르면, 처리부(210)는 로 데이터로부터 180도보다 큰 위상 구간을 커버하는 복수의 PAR 영상들을 포함하는 PAR 시퀀스(sequence)을 생성하고, PAR 시퀀스에 포함된 PAR 영상들을 이용하여, 제1 MVF를 생성하고, 합산 영상을 생성한다. 예를 들면, PAR 시퀀스는 360도의 위상 구간을 커버하거나, 360도 이상의 위상 구간을 커버할 수 있다.In addition, the processing unit 210 generates a summation image by summing a plurality of PAR images having different phases reconstructed by applying the first MVF (S306). According to one embodiment, the processing unit 210 generates a PAR sequence including a plurality of PAR images covering a phase interval greater than 180 degrees from the RO data, and generates a PAR sequence using the PAR images included in the PAR sequence, Generates a first MVF, and generates a sum image. For example, the PAR sequence may cover a phase section of 360 degrees or cover a phase section of 360 degrees or more.

다음으로, 처리부(210)는 합산 영상을 이용하여, 움직임 아티펙트를 나타내는 이미지 메트릭을 산출한다(S307). 예를 들면, 처리부(210)는 합산 영상의 히스토그램에 기초하여, 이미지 메트릭을 산출할 수 있다. 이미지 메트릭은 로 데이터의 움직임 아티팩트를 정량적으로 나타낸 값이다. 처리부(210)는 이미지 메트릭이 감소하도록, 제1 MVF를 업데이트하고, 업데이트된 제1 MVF로 합산 영상 및 이미지 메트릭을 산출하는 과정을 반복적으로(iteratively) 수행할 수 있다.Next, the processing unit 210 calculates an image metric representing the motion artifact using the sum image (S307). For example, the processing unit 210 may calculate the image metric based on the histogram of the sum image. The image metric is a value quantitatively representing motion artifacts of the data. The processing unit 210 may iteratively perform the process of updating the first MVF and calculating the summed image and the image metric with the updated first MVF so that the image metric is reduced.

다음으로, 처리부(210)는 제1 MVF가 수렴하면, 업데이트된 제1 MVF를 제2 MVF로 결정한다(S308). 여기서 제1 MVF가 수렴한다는 것은, 이미지 메트릭이 수렴한다는 것을 의미한다. Next, when the first MVF is converged, the processing unit 210 determines the updated first MVF as the second MVF (S308). Here, the convergence of the first MVF means that the image metric converges.

제2 MVF가 결정되면, 처리부(210)는 제2 움직임 정보, 즉, 제2 MVF를 사이노그램 또는 프로젝션 데이터 등의 로 데이터에 적용하여, 재구성 영상을 생성한다(S310). 예를 들면, 처리부(210)는 제2 MVF에 기초하여 재구성 과정에서 사이노그램의 레이(ray)를 와핑(warping)하여, 움직임 보상된 재구성 영상을 생성할 수 있다.When the second MVF is determined, the processing unit 210 applies the second motion information, i.e., the second MVF, to data such as a cineogram or projection data to generate a reconstructed image (S310). For example, the processing unit 210 may warp the ray of the sinogram in the reconstruction process based on the second MVF to generate a motion compensated reconstruction image.

일 실시예에 따르면, 제1 MVF와 제2 MVF는 3차원 MVF이다. 또한, 일 실시예에 따르면, 제1 MVF와 제2 MVF는 위상에 따른 모션 벡터 성분을 가질 수 있다.According to one embodiment, the first MVF and the second MVF are three-dimensional MVFs. Also, according to one embodiment, the first MVF and the second MVF may have phase-dependent motion vector components.

본 개시의 일 실시예에 따라, 로우 피치 나선형 스캔에 대한 4D 움직임 추정 및 보상 알고리즘을 설명한다.In accordance with one embodiment of the present disclosure, a 4D motion estimation and compensation algorithm for a low pitch spiral scan is described.

도 4는 일 실시예에 따라, 제1 MVF를 생성하는 과정을 나타낸 도면이다. 4 is a diagram illustrating a process of generating a first MVF according to an embodiment of the present invention.

일 실시예에 따른 4D 심장 움직임 추정 및 보상 알고리즘에 따르면, 처리부(210)는 움직임 추정하기에 앞서, 획득한 사이노그램과 ECG 신호를 참고하여 PAR 스택을 생성한다. 처리부(210)는 켤레 PAR 스택 사이의 에러를 최소화하는 것으로 초기 모션 추정(initial motion estimation)을 수행한다. 그 후, 처리부(210)는 제1 MVF에 기반하여 연속된 시점의 PAR 스택을 다 더했을 때, 온전한 영상이 되도록 보정 항(refining term)을 추정한다. 마지막으로, 처리부(210)는 제1 MVF를 업데이트하여 추정된 제2 MVF를 사용하여 움직임 보상 영상 재구성을 수행한다.According to the 4D cardiac motion estimation and compensation algorithm according to the embodiment, the processing unit 210 generates the PAR stack with reference to the acquired sinogram and the ECG signal prior to motion estimation. The processing unit 210 performs initial motion estimation by minimizing errors between the pair of PARs. Thereafter, the processing unit 210 estimates a refinement term so as to be a complete image when the PAR stack of consecutive viewpoints is added based on the first MVF. Finally, the processing unit 210 updates the first MVF and performs the motion-compensated image reconstruction using the estimated second MVF.

우선, PAR 영상의 생성 과정에 대해 설명한다.First, the process of generating a PAR image will be described.

처리부(210)는 움직임 추정을 위하여 짧은 스캔 구간의 프로젝션 데이터를 사용하여 도 4과 같이 PAR 시퀀스(sequence)를 생성한다. 예를 들면, 엑스레이 생성부(112)가 도 4의 401 내지 413 각도 구간을 순차적으로 지나가면서 회전하며 X 선을 대상체(410)에 조사하고, 엑스레이 검출부(113)에서 검출된 X 선으로부터 로 데이터가 생성된다. 일 실시예에 따르면, 스캔을 수행하는 각도 범위는 180도보다 크다. 예를 들면, 스캔을 수행하는 각도 범위는 360도 또는 그 이상일 수 있다. 처리부(210)는 로 데이터로부터 401 내지 413 각도 구간에 각각 대응하는 421 내지 433 PAR 영상을 생성한다. 401 내지 413 PAR 영상 중, 서로 180도의 위상차를 갖는 PAR 영상들은 켤레 PAR 영상 쌍이 된다. 예를 들면, 421 PAR 영상과 427 PAR 영상이 켤레 PAR 영상 쌍을 이루고, 422 PAR 영상과 428 PAR 영상이 켤레 PAR 영상 쌍을 이룰 수 있다.The processing unit 210 generates a PAR sequence as shown in FIG. 4 using the projection data of a short scan period for motion estimation. For example, the X-ray generating unit 112 rotates while sequentially passing through the angular sections 401 to 413 in FIG. 4, irradiates the X-ray to the object 410, and outputs data from the X-ray detected by the X- Is generated. According to one embodiment, the angle range for performing the scan is greater than 180 degrees. For example, the angle range for performing the scan may be 360 degrees or more. The processing unit 210 generates 421 to 433 PAR images corresponding to the 401 to 413 angular intervals from the raw data. Among 401 to 413 PAR images, PAR images having a phase difference of 180 degrees from each other become a pair of PAR images. For example, a 421 PAR image and a 427 PAR image can form a pair of PAR images, and a 422 PAR image and a 428 PAR image can form a pair of PAR images.

본 실시예에 따르면, 데이터 획득 조건이 로우 피치 나선형 스캔이기 때문에 동일한 위상에 대하여 여러 장의 PAR 영상이 생성된다. 처리부(210)는 계산의 효율 측면에서 동일한 위상에 속한 여러 장의 PAR 영상을 소스(예를 들면, 엑스레이 생성부(112))가 프로젝션하는 위치에 맞게 쌓아 하나의 영상으로, PAR 스택을 만든다. 각 PAR 스택은 해당하는 위상에서의 피사체의 움직임 정보를 높은 시 분해능으로 반영하는 반면, 피사체의 일부 구조만을 보여준다. 때문에, PAR 스택을 사용하여 인접한 위상과 직접 비교를 통한 움직임 추정은 어렵지만, PAR 스택과 180도에 대응되는 위상만큼 차이 나는 PAR 스택과는 직접 비교를 통해 움직임을 추정할 수 있다. According to the present embodiment, since the data acquisition condition is a low pitch spiral scan, a plurality of PAR images are generated for the same phase. The processing unit 210 creates a PAR stack by stacking the plurality of PAR images belonging to the same phase in accordance with the position where the source (for example, the X-ray generating unit 112) projects them in terms of efficiency of calculation. Each PAR stack reflects the motion information of the subject at the corresponding phase in high temporal resolution, but shows only a partial structure of the subject. Therefore, it is difficult to estimate the motion by directly comparing with the adjacent phase using the PAR stack, but it is possible to estimate the motion by directly comparing the PAR stack with the PAR stack which differs in phase by 180 degrees.

도 5는 개시된 실시예에 따라 움직임 정보를 획득하기 위한 방법을 설명하기 위한 도면이다.5 is a diagram for explaining a method for acquiring motion information according to the disclosed embodiment.

개시된 실시예에 따르면, 처리부(210)는 서로 마주보는 각도 구간인 켤레각(conjugate angle)에 대한 제1 PAR 영상 및 제2 PAR 영상을 포함하는 적어도 하나의 PAR 영상 쌍을 이용하여 움직임 정보, 즉, MVF를 획득한다. 일 실시예에 따르면, 상기 제1 PAR 영상 및 제2 PAR 영상은 엑스레이 생성부(112)의 회전 경로 상에서 180도의 각도 차를 갖는 영상이다. 또한 제1 PAR 영상 및 제2 PAR 영상은 상기 대상체의 오차 범위 내의 동일 z축 위치에 대응되는 슬라이스에 대한 단층 영상 일 수 있다. 제1 MVF를 생성하기 위해 이용되는 PAR 영상 쌍의 개수는 실시예에 따라 달라질 수 있다.According to the disclosed embodiment, the processing unit 210 generates motion information using at least one PAR image pair including a first PAR image and a second PAR image for a conjugate angle, Obtain MVF. According to one embodiment, the first PAR image and the second PAR image are images having an angle difference of 180 degrees on the rotation path of the X-ray generator 112. Also, the first PAR image and the second PAR image may be a tomographic image for a slice corresponding to a z-axis position within an error range of the object. The number of PAR image pairs used to generate the first MVF may vary depending on the embodiment.

도 5를 참조하면, 제1 각도 구간(520) 및 제2 각도 구간(522)은 서로 마주보는 각도인 켤레각(conjugate angle)의 관계를 가질 수 있다. 켤레각 관계에 있는 두 각도 구간의 각도 차이는 180도가 된다. 예를 들면, 도 4의 401 각도 구간이 제1 각도 구간(520)이 되고, 407 각도 구간이 제2 각도 구간(522)이 될 수 있다. 또한, 도 4의 402 각도 구간이 제1 각도 구간(520)이 되고, 408 각도 구간이 제2 각도 구간(522)이 될 수 있다. 엑스레이 생성부(112)는 소정의 속도로 대상체 주변을 회전하면서 이동하므로, 제1 각도 구간(520)과 제2 각도 구간(522)에 대해 각각 재구성된 제1 PAR 영상 및 제2 PAR 영상은, 180도의 각도 차이에 의해 시간차를 갖는다. Referring to FIG. 5, the first angle section 520 and the second angle section 522 may have a conjugate angle relationship, which is an angle between the first angle section 520 and the second angle section 522. The angular difference between the two angular sections in the conjugate relationship is 180 degrees. For example, the 401 angular section of FIG. 4 may be the first angular section 520, and the 407 angular section may be the second angular section 522. FIG. In addition, the 402 angular section of FIG. 4 may be the first angular section 520 and the 408 angular section may be the second angular section 522. Since the x-ray generating unit 112 moves while rotating around the subject at a predetermined speed, the first PAR image and the second PAR image reconstructed for the first angle interval 520 and the second angle interval 522, respectively, And has a time difference by an angle difference of 180 degrees.

제1 각도 구간(520) 및 제2 각도 구간(522)이 서로 켤레각의 관계를 가지면, 제1 각도 구간(520) 및 제2 각도 구간(522)에서의 뷰(view)가 동일하므로, 제1 각도 구간(520)에서 대상체(505)를 촬영할 때 감지되는 대상체(505)의 표면(surface)과 제2 각도 구간(522)에서 대상체(505)를 촬영할 때 감지되는 대상체(505)의 표면(surface)은 동일하다. 따라서 상기 제1 각도 구간(522)에 대한 제1 PAR 영상과 제2 각도 구간(522)에 대한 제2 PAR 영상은 동일한 대상체(505)의 표면의 서로 다른 시간에서의 상태를 표현하므로, 제1 PAR 영상과 제2 PAR 영상을 비교하여 180도 각도 차이(510)에 의한 시간차 동안에 발생한 대상체의 움직임 정보를 얻을 수 있다.If the first angle section 520 and the second angle section 522 have a mutually congruent relationship, the view in the first angular section 520 and the second angular section 522 is the same, The surface of the object 505 to be sensed when the object 505 is sensed when the object 505 is sensed in the second angle interval 522 and the surface of the object 505 sensed when the object 505 is sensed in the angle interval 520, ) Are the same. Accordingly, the first PAR image for the first angle section 522 and the second PAR image for the second angle section 522 represent states of the surface of the same object 505 at different times, The PAR image is compared with the second PAR image to obtain the motion information of the object during the time difference due to the 180 degree angle difference 510.

개시된 실시예에 따르면, 제1 각도 구간(520) 및 제2 각도 구간(522)은 0도보다 크고 180도 미만의 값을 가지며, 처리부(210)는 부분 각도 재구성(PAR: partial angle reconstruction) 기법을 이용하여, 제1 각도 구간(520) 및 제2 각도 구간(522)에 대해 획득된 로 데이터로부터 제1 PAR 영상 및 제2 PAR 영상을 재구성한다. 부분 각도 재구성 기법에 의하여 재구성된 PAR 영상은 전술한 불완전한 영상(incomplete image) 또는 부분 영상(partial image)이 될 수 있다. 본 실시예에 따르면, 절반 재구성 또는 전체 재구성에 비하여, 상대적으로 작은 각도 구간을 이용하여 영상을 재구성함으로써, 시간 해상도(temporal resolution)를 증가시키고 움직임 아티팩트를 최소화할 수 있다. 본 개시의 실시예에서는 부분 각도 영상인 제1 PAR 영상 및 제2 PAR 영상을 이용하여 대상체의 움직임 량을 측정함으로써, 더욱 정확하게 대상체의 움직임 량을 측정할 수 있다.According to the disclosed embodiment, the first angular interval 520 and the second angular interval 522 are greater than 0 degrees and less than 180 degrees, and the processing unit 210 performs a partial angle reconstruction (PAR) The first PAR image and the second PAR image are reconstructed from the RO data obtained for the first angle section 520 and the second angle section 522. [ The PAR image reconstructed by the partial angle reconstruction technique may be an incomplete image or a partial image described above. According to the present embodiment, the reconstruction of an image using a relatively small angular section, compared to half reconstruction or full reconstruction, can increase temporal resolution and minimize motion artifacts. In the embodiment of the present disclosure, the amount of motion of a target object can be more accurately measured by measuring the amount of motion of the target object using the first PAR image and the second PAR image, which are partial angle images.

도 6은 일 실시예에 따라 PAR 영상으로부터 MVF를 산출하는 과정을 나타낸 도면이다.FIG. 6 is a diagram illustrating a process of calculating an MVF from a PAR image according to an embodiment of the present invention.

일 실시예에 따르면, PAR영상을 사용하여 움직임을 추정하기 앞서, 영상의 특성이 움직임 추정에 적합하게 바뀌도록 밴드 패스 필터링(band-pass filtering, BPF)을 수행한다. 도 6에서 보이는 것과 같이, PAR 영상에서는 높은 대조비를 가지는 대상체 근처에서 투영되는 방향으로 쉐이딩(shading)이 나타나고, 이 쉐이딩이 근처의 다른 대상체의 세기(intensity)에 영향을 주게 되어 움직임 추정의 정확도를 떨어뜨린다. 쉐이딩은 기본적으로 저주파 성분이고 움직임 추정에서 사용되는 특징은 특정 고주파 성분이기 때문에, 본 실시예는 PAR 영상에 BPF를 수행함으로써 움직임 추정 정확도를 상승 시킨다. 밴드 패스 필터는 예를 들면 처리부(210)에 의해 구현될 수 있다.According to an embodiment, prior to motion estimation using a PAR image, band-pass filtering (BPF) is performed so that the characteristics of the image are appropriately changed for motion estimation. As shown in FIG. 6, in the PAR image, shading appears in a direction projected near an object having a high contrast ratio, and this shading affects the intensity of other nearby objects, Drop it. Since the shading is basically a low frequency component and the feature used in motion estimation is a specific high frequency component, the present embodiment increases the motion estimation accuracy by performing BPF on the PAR image. The bandpass filter may be implemented by the processing unit 210, for example.

또한, 본 개시의 일 실시예는, 움직임 추정의 강인성(robustness)을 향상 시키기 위해 멀티 해상도(multi-resolution) 기법을 사용하였다. 즉, 원본 PAR 스택을 블러 및 다운 샘플링하여 낮은 해상도의 영상을 만들어 움직임 추정을 한다. 이 때 추정된 움직임 벡터를 상위 해상도에서의 움직임을 추정할 때 초기값으로 사용하면, 움직임 추정의 정확도를 높이는데 도움이 된다. In addition, one embodiment of the present disclosure uses a multi-resolution technique to improve the robustness of motion estimation. That is, the original PAR stack is blurred and downsampled to produce a low-resolution image to perform motion estimation. In this case, when the estimated motion vector is used as an initial value in estimating the motion at the higher resolution, it helps to improve the accuracy of the motion estimation.

처리부(210)는 멀티 해상도의 제1 PAR 영상(602, 604, 606) 및 멀티 해상도의 제2 PAR 영상(612, 614, 616)를 비교하여, 기준 각도(0도)로부터 테스트 각도(180도)로의 MVF(620)를 생성할 수 있다. The processing unit 210 compares the first PAR images 602, 604 and 606 of the multi-resolution and the second PAR images 612, 614 and 616 of the multi-resolution, Gt; MVF 620 < / RTI >

다음으로, 모션 추정 과정에 대해 설명한다. 우선 초기 모션 추정에 대해 설명한다.Next, the motion estimation process will be described. First, the initial motion estimation will be described.

일 실시예에 따르면, 처리부(210)는 모션 모델로서, 시간 흐름에 따른 심장의 움직임을 표현하기 위하여 B-spline 기반 4D freeform deformation(FFD) 모델을 사용한다. 4D FFD 모델은, 4D 영상 시퀀스에 대하여, 특정 기준 시점 r의 기준 영상으로부터 각 시점의 영상과의 대응 관계를 나타낸다. 4D FFD 모델의 변환 함수(Transform function)는 수학식 1과 같다.According to one embodiment, the processing unit 210 uses a B-spline-based 4D freeform deformation (FFD) model to express the movement of the heart over time as a motion model. The 4D FFD model shows the correspondence relationship between the reference image of the specific reference time r and the image of each viewpoint, with respect to the 4D video sequence. The transform function of the 4D FFD model is shown in Equation (1).

Figure pat00001
Figure pat00001

수학식 1에서 β는 1D cubic B-spline 을 나타내고, B는 3D tensor product of 1D cubic B-spline을 나타낸다.

Figure pat00002
i시점의 PAR 영상의 중심 뷰 각도(center view angle)에 해당한다.
Figure pat00003
는 시간 도메인(temporal domain)에서의 콘트롤 포인트(control point) 간의 포인트 간의 간격을 나타내고,
Figure pat00004
는 공간 도메인(spatial domain)에서의 콘트롤 포인트간의 간격을 나타낸다.
Figure pat00005
t시점에 j위치의 콘트롤 포인트의 변위 벡터(displacement vector)를 나타낸다.
Figure pat00006
는 기준 시점 r에서 각 시점으로 움직임 관계를 나타내기 위한 4D 콘트롤 포인트 세트의 변위 벡터 세트를 나타낸다. 콘트롤 포인트는 모션을 추정하고자 하는 특정 샘플 포인트를 의미한다. 처리부(210)는 이들 특정 샘플 포인트에서 추정된 모션 벡터를 보간 함으로써, 임의의 복셀(x)에서의 모션 벡터를 추정하게 된다.In Equation (1), β represents 1D cubic B-spline and B represents 3D tensor product of 1D cubic B-spline.
Figure pat00002
Corresponds to the center view angle of the PAR image at time i .
Figure pat00003
Represents an interval between points between control points in a temporal domain,
Figure pat00004
Represents the spacing between the control points in the spatial domain.
Figure pat00005
Represents the displacement vector of the control point at position j at time t .
Figure pat00006
Represents a set of displacement vectors of a set of 4D control points for indicating a motion relationship from the reference point r to each point in time. A control point means a specific sample point for which motion is to be estimated. The processing unit 210 estimates the motion vector in an arbitrary voxel x by interpolating the estimated motion vector at these specific sample points.

다음으로, 처리부(210)는 각 켤레각 PAR 스택 사이의 차이를 산출한다.Next, the processing unit 210 calculates the difference between each pair of the PAR stacks.

일 실시예에 따르면, 처리부(210)는 각 켤레각 PAR 스택 사이의 차이가 작아지도록 4D의 움직임 모델의 파라미터를 정한다. 예를 들면, 처리부(210)는 401 PAR 영상과 407 PAR 영상의 차이가 작아지도록 4D 움직임 모델의 파라미터를 정의하고, 402 PAR 영상과 408 PAR 영상의 차이가 작아지도록 4D 움직임 모델의 파라미터를 정의한다. 움직임 추정에서 사용되는 두 PAR 스택은 동일한 모달리티이기 때문에, SSD(sum of squared differences)에 기반하여 다음의 비유사도(dissimilarity metric), D(

Figure pat00007
)를 정의하였다.According to one embodiment, the processing unit 210 determines the parameters of the 4D motion model such that the difference between each pair of the PAR stacks is small. For example, the processing unit 210 defines the parameters of the 4D motion model so that the difference between the 401 PAR image and the 407 PAR image becomes smaller, and defines the parameters of the 4D motion model so that the difference between the 402 PAR image and the 408 PAR image becomes smaller . Since the two PAR stacks used in the motion estimation are of the same modality, the following dissimilarity metric, D (
Figure pat00007
) Were defined.

Figure pat00008
Figure pat00008

여기서

Figure pat00009
Figure pat00010
의 스캔 범위 동안의 PAR 스택의 개수를 나타내고, r은 기준 위상의 인덱스를 나타내며, Pii번째 PAR영상을 나타낸다. Pi(x)는 i번째 PAR 영상이고, Pr(x)는 기준 위상의 PAR 영상을 의미한다. 처리부(210)는 모든 켤레 쌍의 PAR 스택들 간의 에러를 최소화 한다. here
Figure pat00009
The
Figure pat00010
R denotes the index of the reference phase, and P i denotes the i- th PAR image. Pi (x) is the i-th PAR image, and Pr (x) is the PAR image of the reference phase. The processing unit 210 minimizes errors between the PAR pairs of all pairs of pairs.

한편, 4D FFD 움직임 모델의 자유도(degree of freedom)가 높기 때문에 움직임 파라미터를 추정하는 문제는 해를 정하기 어려우므로(ill-posed), 개시된 일 실시예는, 정규화(regularization)로서 수학식 3과 같이 시공간적으로 인접한 콘트롤 포인트 간의 파라미터 값의 큰 차이를 감소시키는(penalize) 항목(term)을 사용하였다. On the other hand, since the problem of estimating motion parameters is ill-posed because the degree of freedom of the 4D FFD motion model is high, Similarly, a penalize term is used to reduce the large difference in parameter values between adjacent control points in time and space.

Figure pat00011
Figure pat00011

수학식 3에서 K j j번째 콘트롤 포인트의 공간상의 이웃 인덱스의 집합을 나타내고, Ktt시점의 콘트롤 포인트의 시간상의 이웃 인덱스의 집합을 나타낸다. In Equation (3), K j represents a set of neighbor indexes on the space of the jth control point, and K t represents a set of neighbor indexes in time of the control point at time t .

일 실시예에 따르면, 처리부(210)는 기준 위상에서 MVF가 0이 되도록 제1 MVF를 업데이트한다. 4D B-spline 보간(interpolation) 특성 상 기준 위상에서 MVF가 0이 되지 않을 수 있기 때문에, 개시된 일 실시예는 이를 보정하기 위한 두 번째 정규화 항목을 수학식 4와 같이 정의할 수 있다.According to one embodiment, the processing unit 210 updates the first MVF so that MVF is zero in the reference phase. Since the MVF may not be 0 in the reference phase due to the 4D B-spline interpolation characteristic, in the disclosed embodiment, a second normalization item for correcting it may be defined as Equation (4).

Figure pat00012
Figure pat00012

일 실시예에 따른 처리부(210)는 앞에서 정의한 데이터 항목(예를 들면, 수학식 2)과 두 개의 정규화 항목(예를 들면, 수학식 3 및 수학식 4)을 사용하여 최종 비용 함수(cost function)를 수학식 5 같이 정의하고 이를 최소화하는 움직임 모델 파라미터를 찾는다.The processing unit 210 according to an exemplary embodiment may use a data item defined above (e.g., Equation 2) and two normalized items (e.g., Equation 3 and Equation 4) to calculate a final cost function ) Is defined as Equation (5), and a motion model parameter that minimizes it is found.

Figure pat00013
Figure pat00013

여기서

Figure pat00014
Figure pat00015
는 정규화 파라미터이다.here
Figure pat00014
and
Figure pat00015
Is a normalization parameter.

앞에서 정의한 비용 함수를 최소화하는 움직임 파라미터를 찾기 위하여 개시된 일 실시예는 가우스-뉴턴(Gauss-Newton) 방법을 사용 하였다.One embodiment disclosed to find motion parameters that minimize the cost function defined above uses the Gauss-Newton method.

일 실시예에 따르면, 처리부(210)는 보다 정확한 움직임 모델을 얻기 위해, 제1 MVF에 대한 추가 업데이트를 수행한다.According to one embodiment, the processing unit 210 performs an additional update to the first MVF to obtain a more accurate motion model.

제1 MVF는 켤레 PAR 스택을 사용하여 추정하기 때문에 연속된 시간 흐름에 따른 움직임 관계를 정확하게 나타내지 못한다. 일 실시예에 따르면, 연속된 시간 흐름에 따른 움직임 관계를 보다 정확하게 나타내기 위해, 앞서 추정한 제1 MVF에 수학식 6과 같이 보정 항(refining term)을 추가함으로써 새로운 심장 움직임 모델을 정의한다.Since the first MVF is estimated using the conjugate PAR stack, it can not accurately represent the motion relationship over a continuous time flow. According to one embodiment, a new cardiac motion model is defined by adding a refining term to the previously estimated first MVF as shown in Equation (6) to more accurately represent the motion relationship over a continuous time flow.

Figure pat00016
Figure pat00016

수학식 6에서 β C(t)은 수학식 7과 같이 정의될 수 있다.In Equation (6) ,? C (t) can be defined as Equation (7).

Figure pat00017
Figure pat00017

여기서 Φ는 콘트롤 포인트의 변위 벡터(displacement vector)의,

Figure pat00018
, 집합이고, β Cβ를 180도 주기로 반복시킨 것으로 콘트롤 포인트를 180도마다 재사용하여 MVF를 만들게 한다. Where Φ is the displacement vector of the control point,
Figure pat00018
, And β C is a 180-degree repetition of β, which allows MVF to be created by reusing control points at 180 degrees.

다음으로, 처리부(210)는 에너지 함수를 이용하여 제1 MVF의 추가 업데이트를 수행한다. Next, the processing unit 210 performs an additional update of the first MVF using the energy function.

일 실시예에 따른 처리부(210)는 보정 항(Refining term)을 추정하기 위하여 정보 포텐셜(IP)을 사용한다. IP는 일 실시예에 따른 이미지 메트릭이다. IP는 Renyi's quadratic entropy에 Parzen's windowing 기법을 적용함으로써 유도 되고, 일반적인 Shannon's entropy처럼 영상 내에 존재하는 움직임 아티팩트를 정량화 할 수 있다. IP는 수학식 8과 같이 정의가 된다. The processing unit 210 according to an exemplary embodiment uses an information potential (IP) to estimate a refining term. IP is an image metric according to one embodiment. IP is derived by applying Parzen's windowing technique to Renyi's quadratic entropy, and can quantify motion artifacts present in the image, such as a general Shannon's entropy. IP is defined as shown in Equation (8).

Figure pat00019
Figure pat00019

여기서

Figure pat00020
Figure pat00021
의 표준편차를 가지는 가우시안(Gaussian) 분포를 나타내고 N은 IMC의 전체 voxel 수이다. IP는 shannon's entropy에 비해 수식적으로 단순한 형태를 가지고, bin size나 interval 등의 파라미터를 정할 필요가 없기 때문에 최적화 과정에서 이를 다루기 쉽다. here
Figure pat00020
The
Figure pat00021
And N is the total number of voxels of I MC . IP has a simpler form than the shannon's entropy, and it is easy to handle it in the optimization process because it does not need to specify parameters such as bin size or interval.

앞에서 설명한 것과 마찬가지로, 4D FFD 모델은 자유도가 높기 때문에 파라미터를 추정하는 문제가 ill-posed이다. 일 실시예에 따르면, 이러한 문제를 해결하기 위해 처리부(210)는 정규화 항으로서 공간적으로 인접한 콘트롤 포인트 간의 차이가 커지지 않도록 수학식 9를 사용할 수 있다.As described earlier, the 4D FFD model is ill-posed because of its high degrees of freedom, so the problem of estimating parameters is unknown. According to one embodiment, to solve this problem, the processor 210 may use Equation 9 so that the difference between the spatially adjacent control points as the normalization term does not increase.

Figure pat00022
Figure pat00022

한편, 본 실시예에서는 현재 추정한 MVF가 제1 MVF에서 크게 달라지는 것을 막고, 큰 MVF 변화로 인한 형태(shape) 변화를 막는 정규화 항을 사용하였다. 수학식 10과 같은 정규화 항은 보정 항을 0으로 만드는 것으로 나타낼 수 있다.Meanwhile, in this embodiment, the normalized term is used to prevent the currently estimated MVF from greatly varying from the first MVF, and to prevent the shape change due to the large MVF change. The normalization term such as Equation 10 can be expressed as making the correction term zero.

Figure pat00023
Figure pat00023

움직임 모델 추정을 위한 에너지 함수는, IP에서 두 정규화 항을 빼는 형태로 정의될 수 있다.The energy function for motion model estimation can be defined by subtracting two normalized terms from IP.

Figure pat00024
Figure pat00024

처리부(210)는 앞서 정의한 에너지 함수를 최대화하도록 개선 MVF를 구하여 제1 MVF와 결합하여 제2 MVF를 계산한다. The processing unit 210 obtains the improved MVF to maximize the energy function defined above and combines it with the first MVF to calculate the second MVF.

도 7은 일 실시예에 따라 움직임 보상된 재구성 영상을 생성하는 과정을 나타낸 도면이다.7 is a diagram illustrating a process of generating a motion compensated reconstructed image according to an embodiment.

개시된 일 실시예는, 추정한 4D 움직임 모델로 움직임 보상 영상을 얻기 위해, WFBP(Weighted Filtered Back Projection) 방법을 기본으로 Schafer's method를 참고하여 움직임 보상을 구현하였다. WFBP 방법은 Fan-beam으로 획득된 프로젝션 데이터를 parallel-beam으로 리비닝(rebinning)하고, cone angle 별로 웨이트를 다르게 적용하여 백프로젝션하는 방법이다. Schafer's method는 어떤 대상체에 모션이 있고, 모션 벡터가 주어졌을 때, 해당 object를 복원하기 위해 백프로젝션 과정에서 모션 벡터를 반영(ray를 와핑)하여 백프로젝션하는 방법이다. 처리부(210)는 목표 시점에서 각 뷰의 시점으로의 MVF를 생성한 뒤, 해당 뷰를 역투영(back-projection)할 때 MVF로 와핑(warping)함으로써 움직임 보상을 수행한다. 즉, 처리부(210)는 영상의 재구성 과정에서, 사이노그램의 레이(ray)를 와핑하여 움직임 보상을 수행한다. 처리부(210)는 4D 움직임 모델을 얻기 위해, 도 7에서와 같이 각 뷰 마다 4D B-spline 보간을 수행할 수 있다.In one embodiment, motion compensation is implemented by referring to Schafer's method based on Weighted Filtered Back Projection (WFBP) method to obtain a motion compensated image with an estimated 4D motion model. The WFBP method is a method of back projection by applying a different weight to the cone angle by rebinning the projection data acquired by the fan-beam into a parallel-beam. Schafer's method is a method of back projection by reflecting a motion vector (ray is warped) in back projection process in order to restore the object when there is motion in an object and motion vector is given. The processing unit 210 generates MVF to the viewpoint of each view at the target viewpoint and performs motion compensation by warping MVF when the view is back-projected. That is, the processing unit 210 performs motion compensation by waving a ray of a sinogram in an image reconstruction process. The processing unit 210 may perform 4D B-spline interpolation for each view as shown in FIG. 7 to obtain a 4D motion model.

다음으로 본 개시의 다른 실시예에 따라, 스탠다드 피치 나선형 스캔에 대한 3D 움직임 추정 및 보상 알고리즘을 설명한다.Next, in accordance with another embodiment of the present disclosure, a 3D motion estimation and compensation algorithm for a standard pitch spiral scan is described.

본 실시예에 따르면, 스탠다드 피치 나선형 스캔 환경에서 심장 전체에 대해 움직임 아티팩트가 저감된 3D 영상을 얻는다. 먼저 획득한 사이노그램을 사용하여 연속된 PAR 영상을 만든다. 그 후, 중간 주파수를 추출한 뒤 각 PAR 영상 쌍의 에러를 최소화하는 것으로 초기 모션 추정을 수행한다. 초기 MVF인 제1 MVF를 사용하여 모든 PAR영상들을 가상의 기준 시점으로 와핑함으로써, 180도 차이 나는 영상들끼리 동일한 가상의 위상에 모이도록 한다. 그 후, 생성된 PAR 스택에 대해서 로우 피치 나선형 스캔에 대한 실시예에서 설명한 IP 최대화를 수행하여 보정 항을 추정한 뒤, 추정한 MVF를 사용하여 움직임 보상 영상 재구성을 수행한다.According to the present embodiment, a 3D image is obtained in which movement artifacts are reduced with respect to the entire heart in a standard pitch spiral scan environment. First, consecutive PAR images are created using the obtained sinogram. Then, initial motion estimation is performed by extracting the intermediate frequency and minimizing the error of each PAR image pair. The first MVF, which is the initial MVF, is used to warp all the PAR images to the virtual reference time point so that the 180 degree difference images are collected in the same virtual phase. Thereafter, the correction term is estimated by performing the IP maximization described in the embodiment for the low-pitch spiral scan on the generated PAR stack, and then the MVF is reconstructed using the estimated MVF.

도 8는 일 실시예에 따른 PAR 시퀀스를 나타낸 도면이다.8 is a diagram illustrating a PAR sequence according to an embodiment.

일 실시예에 다르면, 처리부(210)는 움직임 추정을 위하여 짧은 스캔보다 작은 스캔 구간의 프로젝션 데이터를 사용하여 도 10과 같이 PAR sequence를 생성한다. 데이터 획득 조건이 스탠다드 피치 나선형 스캔(standard pitch helical scan)이기 때문에 z축으로 모두 커버하는 목표 위상이라는 것이 존재하지 못하고, 하나의 위상에 대해서는 하나의 PAR 영상만이 존재한다. 일 실시예에 따르면, 처리부(210)는 서로 마주보는 각도 구간에 대응하는 PAR 영상의 쌍으로부터 MVF를 산출할 수 있다. 예를 들면, 180도 차이 나는 PAR 영상들은, 겹치는 영역에 대응하여, 동일한 패턴의 제한된 뷰 각도 아티팩트(limited view angle artifacts)를 가지기 때문에, 움직임 추정에 사용할 수 있다. According to one embodiment, the processing unit 210 generates a PAR sequence as shown in FIG. 10 using projection data of a scan period shorter than a short scan for motion estimation. Since the data acquisition condition is a standard pitch helical scan, there is no target phase to cover all in the z axis, and only one PAR image exists for one phase. According to one embodiment, the processing unit 210 may calculate the MVF from a pair of PAR images corresponding to angular sections facing each other. For example, PAR images that differ by 180 degrees can be used for motion estimation because they have limited view angle artifacts of the same pattern, corresponding to overlapping regions.

다음으로, 초기 모션 추정에 대해 설명한다. 일 실시예에 따르면, 초기 모션 모델(initial motion model)을 추정하기 위해서, 시간 흐름에 따른 심장의 움직임을 B-spline 기반 4D freeform deformation (FFD) 모델에 기반하여 나타낸다. 변환 함수는 수학식 12와 같다.Next, the initial motion estimation will be described. According to one embodiment, to estimate an initial motion model, the movement of the heart over time is shown based on a B-spline-based 4D freeform deformation (FFD) model. The conversion function is as shown in Equation (12).

Figure pat00025
Figure pat00025

여기서 ai(z)는 z 슬라이스와 교차하는 소스 위치에 대응하는 위상에서, z 슬라이스 위치의 MVF를 0으로 만드는 가중치 함수(weight function)이다. 이는 z 슬라이스마다 기준 위상이 다르게 정의되도록 하며, 각 z 슬라이스 입장에서는 마치 켤레 PAR 영상을 사용하여 움직임을 추정하고 자신의 시간적 위치를 기준으로 하여 보상을 하는 것과 같은 효과를 가지도록 만든다. Where the a i (z) is a phase, (weight function) weighting function to create the MVF in the slice position z to zero at the position corresponding to the source intersects the z slices. This allows the reference phase to be defined differently for each z-slice. In each z-slice position, motion is estimated by using a pair of PAR images, and compensation is performed based on the temporal position of the z-slice.

움직임 추정과 관련하여 앞서 설명한 바와 같이 켤레 PAR 영상 간 매칭 정확도를 높이기 위해 BPF를 적용한다. 그 후 각 켤레 PAR 영상 쌍 간에 SSD가 작아지도록 움직임 모델 파라미터를 추정한다.As described above, the BPF is applied to improve the matching accuracy between the pairs of PAR images. Then, the motion model parameters are estimated so that the SSD becomes smaller between each pair of PAR images.

Figure pat00026
Figure pat00026

여기서

Figure pat00027
는 180도 동안의 PAR 영상 개수를 나타낸다. 또한 움직임 모델 파라미터를 추정하는 것은 ill-posed 문제이기 때문에 수학식 14와 같이, 시간 공간적으로 인접한 움직임 모델 파라미터 간의 값의 차이가 지나치게 커지는 것을 막는 정규화를 사용 하였다.here
Figure pat00027
Represents the number of PAR images for 180 degrees. Also, since the motion model parameter estimation is an ill-posed problem, normalization is used to prevent the difference in value between temporally and spatially adjacent motion model parameters from becoming too large as shown in Equation (14).

Figure pat00028
Figure pat00028

위의 두 수식에 대한 최적화 과정은 Gauss-Newton 방법과 최적화 변환(optimization transfer) 방법에 기반하여 앞서 설명한 바와 같이 동일하게 진행된다.The optimization procedure for the above two equations proceeds as described above based on the Gauss-Newton method and the optimization transfer method.

다음으로 초기 모션 추정 결과에 기반하여 IP 최대화(IP maximization)를 수행하기 앞서, PAR 영상을 스택 함으로써 처리 효율을 높일 수 있다. 본 실시예에 따르면, 앞서 동일한 위상 별로 모아서 처리 하였던 것과는 달리, 180 * n + 의 각도를 중심 뷰 각도로 가지는 PAR 영상들에 대해 제1 MVF로 와핑하여 스택한다. 스탠다드 피치 나선형 스캔 환경에서는 하나의 사이클 만을 활용하기 때문에 동일한 위상의 영상을 모을 수 없고, 그 대신 제1 MVF의 정보를 활용하여 180도 차이 나는 영상들을 와핑함으로써 가상으로 동일한 위상으로 만들어 스택을 한다.Next, the processing efficiency can be increased by stacking the PAR image before IP maximization based on the initial motion estimation result. According to the present embodiment, the PAR images having the angle of 180 * n + as the center view angle are waved and stacked with the first MVF, unlike the case of collecting the same phase in advance. In the standard pitch spiral scan environment, since only one cycle is used, images of the same phase can not be collected. Instead, the images are shifted 180 degrees by using the information of the first MVF so as to make a virtual phase.

스탠다드 피치 나선형 스캔의 실시예에서도, 앞서 설명한 바와 같이, 초기 모션 추정의 결과를 개선하기 위하여 수학식 15와 같이 보정 항(refining term)을 정의한다.In the embodiment of the standard pitch spiral scan, as described above, a refining term is defined as shown in Equation (15) to improve the initial motion estimation result.

Figure pat00029
Figure pat00029

다음으로, 처리부(210)는 에너지 함수를 이용하여, 움직임 보상 영상의 영상 품질을 정량화할 수 있는 수학식 16과 같은 local IP에 기반하여 움직임 추정을 수행한다.Next, the processing unit 210 performs motion estimation based on the local IP such as Equation (16) that can quantify the image quality of the motion compensation image using the energy function.

Figure pat00030
Figure pat00030

여기서, 합산 영상 IMC는 MVF를 PAR 스택에 적용하고 와핑하여 모두 더함으로써 생성한다. 이 때 최초로 적용되는 MVF는 제1MVF이고, 이후에는 반복(iteration)하면서 업데이트(개선)되는 MVF를 적용하여 합산 영상 IMC를 반복적으로 구한다. 또한, 합산 영상 IMC로부터 이미지 메트릭 H(Φ)를 반복적으로 산출하여, 이미지 메트릭 H(Φ)가 작아지도록 제1 MVF를 업데이트한다. 수학식 16에 따른 이미지 메트릭 H(Φ)은, 합산 영상 IMC의 히스토그램 분포에 기초하여 움직임 아티팩트를 정량적으로 나타낸 값이다. 최종 움직임 보상 영상은, 반복적으로 업데이트되어 생성된 최종 MVF인 제2 MVF를 로 데이터(프로젝션 데이터 또는 사이노그램)에 적용하여 획득된다.Here, the sum image I MC is generated by applying MVF to the PAR stack and adding all of them to the PAR stack. In this case, the first MVF applied is the first MVF, and then the MVF which is updated (iterated) while it is applied is applied to obtain the sum image I MC repeatedly. Further, the image metric H (?) Is repeatedly calculated from the sum image I MC to update the first MVF so that the image metric H (?) Becomes small. The image metric H (?) According to Equation (16) is a value quantitatively representing motion artifacts based on the histogram distribution of the sum image I MC . The final motion compensation image is obtained by applying the second MVF, which is the last MVF generated repeatedly and updated, to the data (projection data or a sinogram).

4D B-spline FFD 모델은 ill-posed이기 때문에 공간적으로 인접한 움직임 모델 파라미터의 값이 비슷해지도록 수학식 17과 같은 정규화 항을 사용한다.Since the 4D B-spline FFD model is ill-posed, the normalization term such as Equation 17 is used so that the values of the spatial model parameters adjacent to each other become similar.

Figure pat00031
Figure pat00031

또한, 일 실시예에 따른 처리부(210)는 IP maximization을 사용하기 때문에, 형태 보존(shape preserving)으로 수학식 18과 같이 임의 시점의 이상적인 영상을 현재 MVF로 와핑하였을 때 초기 모션 보상 영상과 비슷해져야 한다는 정규화를 추가로 사용하였다.In addition, since the processing unit 210 according to the embodiment uses IP maximization, it is similar to the initial motion compensated image when the ideal image at a certain time point is warped to the current MVF by shape preserving as in Equation (18) .

Figure pat00032
Figure pat00032

IP와 두 정규화를 사용하여 수학식 19와 같은 에너지 함수를 정의할 수 있다.IP and two normalizations can be used to define an energy function,

Figure pat00033
Figure pat00033

IP와 첫 번째 정규화는 로우 피치 나선형 스캔에서와 동일한 방법으로 Gauss-Newton 방법으로 최적값을 구한다.IP and the first normalization are obtained by the Gauss-Newton method in the same manner as in the low-pitch spiral scan.

로우 피치 나선형 스캔에서 설명한 것과 동일하게, 본 실시예에서는 WFBP 재구성 알고리즘에 기반하여 Schafer's method를 사용함으로써 움직임 보상 재구성을 구현하였다. 단, 로우 피치 나선형 스캔 알고리즘에서는 합산 방식이었던 것에 반해, 스탠다드 피치 나선형 스캔 알고리즘에서는 움직임 모델이 다음과 같이 케스케이드(cascading) 방식으로 적용 되어야 한다.Similar to the case of the low-pitch spiral scan, in this embodiment, the motion compensated reconstruction is implemented by using the Schafer's method based on the WFBP reconstruction algorithm. However, in the standard pitch spiral scan algorithm, the motion model should be applied in a cascading manner as in the case of the summation method in the low pitch spiral scan algorithm.

케스케이드 방식에서는, 최종 영상의 좌표로부터 고려하여 추정을 시작해야 한다. 먼저 정확한 모션 추정을 거쳐 최종 영상이 얻어지기 때문에 수학식 20과 같이 개선(refining) 움직임 모델을 고려한다. In the cascade method, estimation must be started considering the coordinates of the final image. First, since the final image is obtained through accurate motion estimation, a refining motion model is considered as shown in Equation (20).

Figure pat00034
Figure pat00034

여기서 x MC는 최종 움직임 보상된 영상의 좌표를 나타낸다. 그 후, 획득된 데이터로부터 움직임 보상 PAR 스택을 생성하는 다음의 좌표 변환을 수학식 21과 같이 고려한다.Where x MC represents the coordinates of the final motion compensated image. Then, the following coordinate transformation, which generates the motion compensated PAR stack from the obtained data, is considered as shown in equation (21).

Figure pat00035
Figure pat00035

본 실시예에서 최종적으로 움직임 보상을 하기 위하여 생성하는 움직임 보상량은 수학식 22와 같다.In this embodiment, the motion compensation amount to be finally generated for motion compensation is expressed by Equation (22).

Figure pat00036
Figure pat00036

처리부(210)는 산출된 움직임 보상량을 이용하여 움직임 보상을 앞서 설명한 바와 같이 와핑 방식 또는 미리 계산된 MVF 세트를 이용한 bi-linear interpolation을 통해 진행한다.The processing unit 210 performs motion compensation using the calculated motion compensation amount through bi-linear interpolation using a warping method or a pre-computed MVF set as described above.

본 개시에서는 X-ray CT를 이용하여 심장 영상 획득 시 발생하는 움직임에 의한 화질 저하를 보상하는 실시예들을 개시하였다. 본 개시는 심장에 대한 실시예를 중심으로 설명하였지만, 본원 특허의 권리범위는 대상체가 심장인 경우로 한정되지 않으며, 대상체는 다양한 신체 기관 또는 부분일 수 있다.In the present disclosure, embodiments are disclosed in which X-ray CT is used to compensate for image quality degradation due to movement occurring during cardiac image acquisition. Although the present disclosure has been described with reference to an embodiment of the heart, the scope of rights of the present patent is not limited to the case where the object is a heart, and the object may be various body organs or parts.

본 개시의 실시예들은, PAR 영상 기반 4D ME/MC 알고리즘에 기반하여, 새로운 움직임 추정 방법인 IP maximization 방법을 도입함으로써 개선된 화질의 영상을 얻을 수 있는 4D ME/MC 알고리즘을 제공하였다. IP maximization 방법은, 엔트로피 기반의 이미지 메트릭을 최적화하는 모션을 구해서 이를 영상 재구성에 적용하는 MAM optimization 방법과 달리, 영상 전 영역에 대하여 움직임 추정 및 보상이 가능하다는 장점과, ROI 추출을 위한 추가적인 처리를 하지 않아도 된다는 장점을 가진다. 또한 IP maximization 방법은, 수식적으로 Shannon entropy에 비해 IP가 단순하기 때문에 최적화 과정에서 다루기 더욱 쉽다는 장점을 가진다. Embodiments of the present disclosure provide a 4D ME / MC algorithm that can obtain improved image quality by introducing a new motion estimation method, IP maximization method, based on the PAR image based 4D ME / MC algorithm. Unlike the MAM optimization method that obtains motion that optimizes the entropy-based image metric and applies it to the image reconstruction, the IP maximization method has advantages of being able to perform motion estimation and compensation for the entire image region and further processing for ROI extraction It is advantageous that it is not necessary. The IP maximization method has the advantage that it is easier to handle in the optimization process because IP is simpler than the Shannon entropy.

또한 본 개시의 실시예들은, 스탠다드 피치 나선형 스캔 환경에서 움직임을 추정 및 보상하는 알고리즘을 제안 하였다. 본 개시의 실시예들은, 필터링된 PAR 영상을 사용하여 180도 차이 나는 켤레 PAR 영상끼리 에러가 작아지도록 초기 움직임 추정을 하고, 그 결과에 기반하여 IP maximization함으로써 최종 움직임 추정 결과를 획득한다. 앞서 설명한 바와 같이, 본 개시의 실시예들에 따르면, 영상 전체 영역에 대해서 움직임을 추정하여 보상할 수 있고, 추가적 처리를 필요로 하지 않는다. 또한, 본 개시의 실시예들은, 단일 사이클의 데이터만을 사용하기 때문에 사이클 사이의 심장의 움직임이 맞지 않거나 사이클 간 동일 호흡상태 유지 등을 신경 쓸 필요가 없다. 개시된 실시예들은 기존에 존재하지 않던 접근 방법으로 심장 진단을 위한 영상획득에 새로운 장을 열 수 있을 것으로 기대된다. Embodiments of the present disclosure also have proposed algorithms for estimating and compensating for motion in a standard pitch spiral scan environment. Embodiments of the present disclosure use the filtered PAR image to perform an initial motion estimate such that the error between the conjugate PAR images that differ by 180 degrees is smaller, and obtain the final motion estimation result by IP maximization based on the result. As described above, according to the embodiments of the present disclosure, the motion can be estimated and compensated for the entire image area, and no additional processing is required. In addition, the embodiments of the present disclosure use only a single cycle of data, so that there is no need to care about heart movement between cycles or maintenance of the same breathing state between cycles. The disclosed embodiments are expected to open a new chapter in image acquisition for cardiac diagnosis with an approach that has not previously existed.

한편, 개시된 실시예들은 컴퓨터에 의해 실행 가능한 명령어 및 데이터를 저장하는 컴퓨터로 읽을 수 있는 기록매체의 형태로 구현될 수 있다. 상기 명령어는 프로그램 코드의 형태로 저장될 수 있으며, 프로세서에 의해 실행되었을 때, 소정의 프로그램 모듈을 생성하여 소정의 동작을 수행할 수 있다. 또한, 상기 명령어는 프로세서에 의해 실행되었을 때, 개시된 실시예들의 소정의 동작들을 수행할 수 있다.Meanwhile, the disclosed embodiments may be embodied in the form of a computer-readable recording medium for storing instructions and data executable by a computer. The command may be stored in the form of program code, and when executed by the processor, may generate a predetermined program module to perform a predetermined operation. In addition, the instructions, when executed by a processor, may perform certain operations of the disclosed embodiments.

이상에서와 같이 첨부된 도면을 참조하여 개시된 실시예들을 설명하였다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고도, 개시된 실시예들과 다른 형태로 본 발명이 실시될 수 있음을 이해할 것이다. 개시된 실시예들은 예시적인 것이며, 한정적으로 해석되어서는 안 된다.The embodiments disclosed with reference to the accompanying drawings have been described above. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims. The disclosed embodiments are illustrative and should not be construed as limiting.

Claims (19)

제1 위상 구간에서 로 데이터(raw data)를 획득하고, 상기 제1 위상 구간 내의 서로 마주보는 2개의 위상 구간에서 각각 획득된 2개의 PAR(partial angle reconstruction) 영상을 포함하는 적어도 하나의 PAR 영상 쌍을 이용하여 제1 움직임 정보를 생성하고, 상기 제1 움직임 정보를 이용하여 상기 제1 위상 구간 내의 서로 다른 위상에서 획득된 복수의 PAR 영상을 합산하여 합산 영상을 생성하고, 상기 합산 영상으로부터 움직임 아티팩트를 나타내는 이미지 메트릭을 산출하였을 때, 상기 이미지 메트릭이 최소가 되도록, 상기 제1 움직임 정보를 업데이트하여, 제2 움직임 정보를 생성하고, 상기 제2 움직임 정보를 상기 로 데이터에 적용하여 재구성 영상을 생성하는 처리부를 포함하는 의료 영상 처리 장치.Acquiring raw data in a first phase interval and generating at least one PAR image pair including two PAR (partial angle reconstruction) images obtained respectively in two opposing phase intervals in the first phase interval, And generating a sum image by summing a plurality of PAR images obtained in different phases in the first phase section using the first motion information to generate a motion artifact from the sum image, , The first motion information is updated to generate the second motion information and the second motion information is applied to the raw data to generate a reconstructed image so that the image metric is minimized The medical image processing apparatus comprising: 제1항에 있어서,
상기 적어도 하나의 PAR 영상 쌍 각각은, 180도의 위상 차를 갖는 2개의 PAR 영상을 포함하는, 의료 영상 처리 장치.
The method according to claim 1,
Wherein each of the at least one PAR image pair comprises two PAR images having a phase difference of 180 degrees.
제1항에 있어서,
상기 처리부는, 공간적으로 인접한 콘트롤 포인트 사이의 움직임 정보의 차이가 작아지도록 상기 제1 움직임 정보를 업데이트하는, 의료 영상 처리 장치.
The method according to claim 1,
Wherein the processing unit updates the first motion information so that a difference of motion information between spatially adjacent control points becomes smaller.
제1항에 있어서,
상기 처리부는, 기준 위상에서 움직임 정보가 영(0)이 되도록 상기 제1 움직임 정보를 업데이트하는, 의료 영상 처리 장치.
The method according to claim 1,
Wherein the processor updates the first motion information so that the motion information is zero in the reference phase.
제1항에 있어서,
상기 처리부는, 상기 재구성 영상을 생성할 때, 상기 제2 움직임 정보에 기초하여 상기 로 데이터의 레이(ray)를 와핑(warping)하는, 의료 영상 처리 장치.
The method according to claim 1,
Wherein the processing unit warps a ray of the low-order data based on the second motion information when generating the reconstructed image.
제1항에 있어서,
상기 제1 위상 구간은, 180도보다 큰 위상 구간인, 의료 영상 처리 장치.
The method according to claim 1,
Wherein the first phase section is a phase section larger than 180 degrees.
제1항에 있어서,
상기 서로 마주보는 2개의 위상 구간은 0보다 크고 180도보다 작은 위상 구간인, 의료 영상 처리 장치.
The method according to claim 1,
Wherein the two phase sections opposed to each other are phase sections greater than 0 and smaller than 180 degrees.
제1항에 있어서,
상기 처리부는, 동일한 위상에 속한 복수의 PAR 영상을 소스가 프로젝션 하는 위치에 기초하여 합산하여 PAR 스택을 생성하고, 상기 제1 움직임 정보를 생성할 때, 상기 서로 마주보는 2개의 위상 구간의 PAR 스택 쌍을 이용하여 상기 제1 움직임 정보를 생성하는, 의료 영상 처리 장치.
The method according to claim 1,
Wherein the processing unit generates a PAR stack by summing a plurality of PAR images belonging to the same phase on the basis of a position at which the source projects the first PAR information and generates a PAR stack, And generates the first motion information using a pair.
제1항에 있어서,
상기 처리부는, 상기 합산 영상을 생성할 때, 상기 서로 다른 위상에서 획득된 복수의 PAR 영상에 상기 제1 움직임 정보를 적용하여 움직임을 보상하고, 움직임 보상된 상기 복수의 PAR 영상을 합산하여 상기 합산 영상을 생성하는, 의료 영상 처리 장치.
The method according to claim 1,
Wherein the processor applies the first motion information to a plurality of PAR images obtained in the different phases to generate a sum image, and compensates the motion by summing the plurality of motion compensated PAR images, A medical image processing apparatus for generating an image.
제1 위상 구간에서 로 데이터(raw data)를 획득하는 단계;
상기 제1 위상 구간 내의 서로 마주보는 2개의 위상 구간에서 각각 획득된 2개의 PAR(partial angle reconstruction) 영상을 포함하는 적어도 하나의 PAR 영상 쌍을 이용하여 제1 움직임 정보를 생성하는 단계;
상기 제1 위상 구간 내의 서로 다른 위상에서 획득된 복수의 PAR 영상을 합산하여 합산 영상을 생성하고, 상기 합산 영상으로부터 움직임 아티팩트를 나타내는 이미지 메트릭(metric)을 산출하였을 때, 상기 이미지 메트릭이 최소가 되도록, 상기 제1 움직임 정보를 업데이트하여, 제2 움직임 정보를 생성하는 단계; 및
상기 제2 움직임 정보를 상기 로 데이터에 적용하여 재구성 영상을 생성하는 단계를 포함하는 의료 영상 처리 방법.
Obtaining raw data in a first phase interval;
Generating first motion information using at least one PAR image pair including two PAR partial images obtained respectively in two opposed phase sections in the first phase section;
A plurality of PAR images obtained in different phases in the first phase section are summed to generate a summed image and an image metric representing a motion artifact is calculated from the summed image so that the image metric is minimized Updating the first motion information to generate second motion information; And
And applying the second motion information to the RO data to generate a reconstructed image.
제10항에 있어서,
상기 적어도 하나의 PAR 영상 쌍 각각은, 180도의 위상 차를 갖는 2개의 PAR 영상을 포함하는, 의료 영상 처리 방법.
11. The method of claim 10,
Wherein each of the at least one PAR image pair comprises two PAR images having a phase difference of 180 degrees.
제10항에 있어서,
공간적으로 인접한 콘트롤 포인트 사이의 움직임 정보의 차이가 작아지도록 상기 제1 움직임 정보를 업데이트하는 단계를 더 포함하는 의료 영상 처리 방법.
11. The method of claim 10,
Further comprising updating the first motion information so that the difference of motion information between spatially adjacent control points becomes smaller.
제10항에 있어서,
기준 위상에서 움직임 정보가 영(0)이 되도록 상기 제1 움직임 정보를 업데이트하는 단계를 더 포함하는 의료 영상 처리 방법.
11. The method of claim 10,
And updating the first motion information so that the motion information is zero in the reference phase.
제10항에 있어서,
상기 재구성 영상을 생성하는 단계는, 상기 제2 움직임 정보에 기초하여 상기 로 데이터의 레이(ray)를 와핑(warping)하는 단계를 포함하는, 의료 영상 처리 방법.
11. The method of claim 10,
Wherein generating the reconstructed image comprises warping a ray of the raw data based on the second motion information.
제10항에 있어서,
상기 제1 위상 구간은, 180도보다 큰 위상 구간인, 의료 영상 처리 방법.
11. The method of claim 10,
Wherein the first phase interval is a phase interval greater than 180 degrees.
제10항에 있어서,
상기 서로 마주보는 2개의 위상 구간은 0보다 크고 180도보다 작은 위상 구간인, 의료 영상 처리 방법.
11. The method of claim 10,
Wherein the two phase sections facing each other are phase sections greater than 0 and smaller than 180 degrees.
제10항에 있어서,
상기 의료 영상 처리 방법은, 동일한 위상에 속한 복수의 PAR 영상을 소스가 프로젝션 하는 위치에 기초하여 합산하여 PAR 스택을 생성하는 단계를 더 포함하고,
상기 제1 움직임 정보를 생성하는 단계는, 상기 서로 마주보는 2개의 위상 구간의 PAR 스택 쌍을 이용하여 상기 제1 움직임 정보를 생성하는 단계를 포함하는, 의료 영상 처리 방법.
11. The method of claim 10,
The medical image processing method further comprises generating a PAR stack by summing a plurality of PAR images belonging to the same phase based on positions at which the source projects them,
Wherein the generating of the first motion information comprises generating the first motion information using the PAR stack pair of the two phase sections opposed to each other.
제10항에 있어서,
상기 합산 영상을 생성할 때, 상기 서로 다른 위상에서 획득된 복수의 PAR 영상에 상기 제1 움직임 정보를 적용하여 움직임을 보상하고, 움직임 보상된 상기 복수의 PAR 영상을 합산하여 상기 합산 영상을 생성하는, 의료 영상 처리 방법.
11. The method of claim 10,
The motion compensated motion compensator applies the first motion information to a plurality of PAR images obtained in the different phases to generate motion compensated motion compensated PAR images, , Medical image processing method.
프로세서에 의해 판독되어 실행되었을 때, 의료 영상 처리 방법을 수행하는 컴퓨터 프로그램 코드들을 저장하는 컴퓨터 판독가능 기록매체에 있어서, 상기 의료 영상 처리 방법은,
제1 위상 구간에서 로 데이터(raw data)를 획득하는 단계;
상기 제1 위상 구간 내의 서로 마주보는 2개의 위상 구간에서 각각 획득된 2개의 PAR(partial angle reconstruction) 영상을 포함하는 적어도 하나의 PAR 영상 쌍을 이용하여 제1 움직임 정보를 생성하는 단계;
상기 제1 위상 구간 내의 서로 다른 위상에서 획득된 복수의 PAR 영상을 합산하여 합산 영상을 생성하고, 상기 합산 영상으로부터 움직임 아티팩트를 나타내는 이미지 메트릭을 산출하였을 때, 상기 이미지 메트릭이 최소가 되도록, 상기 제1 움직임 정보를 업데이트하여, 제2 움직임 정보를 생성하는 단계; 및
상기 제2 움직임 정보를 상기 로 데이터에 적용하여 재구성 영상을 생성하는 단계를 포함하는, 컴퓨터 판독가능 기록매체.
A computer readable recording medium storing computer program codes for performing a medical image processing method when read and executed by a processor,
Obtaining raw data in a first phase interval;
Generating first motion information using at least one PAR image pair including two PAR partial images obtained respectively in two opposed phase sections in the first phase section;
Wherein when the image metric representing motion artifacts is calculated from the summed image by summing a plurality of PAR images obtained in different phases within the first phase section to generate a summed image, 1 motion information to generate second motion information; And
And applying the second motion information to the RO data to generate a reconstructed image.
KR1020160174768A 2016-06-30 2016-12-20 Apparatus and method for processing medical image KR20180003400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/640,344 US10565744B2 (en) 2016-06-30 2017-06-30 Method and apparatus for processing a medical image to reduce motion artifacts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160082978 2016-06-30
KR20160082978 2016-06-30

Publications (1)

Publication Number Publication Date
KR20180003400A true KR20180003400A (en) 2018-01-09

Family

ID=61000742

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160174768A KR20180003400A (en) 2016-06-30 2016-12-20 Apparatus and method for processing medical image

Country Status (1)

Country Link
KR (1) KR20180003400A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853742A (en) * 2019-11-12 2020-02-28 上海联影医疗科技有限公司 Image reconstruction method, system, device and storage medium
US11763498B2 (en) 2019-11-12 2023-09-19 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for image reconstruction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853742A (en) * 2019-11-12 2020-02-28 上海联影医疗科技有限公司 Image reconstruction method, system, device and storage medium
US11763498B2 (en) 2019-11-12 2023-09-19 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for image reconstruction

Similar Documents

Publication Publication Date Title
US10748293B2 (en) Tomography apparatus and method for reconstructing tomography image thereof
US9576391B2 (en) Tomography apparatus and method of reconstructing a tomography image by the tomography apparatus
Isola et al. Fully automatic nonrigid registration‐based local motion estimation for motion‐corrected iterative cardiac CT reconstruction
US10565744B2 (en) Method and apparatus for processing a medical image to reduce motion artifacts
RU2655091C2 (en) Tomography apparatus and method for reconstructing tomography image thereof
EP3107457B1 (en) Tomography apparatus and method of reconstructing a tomography image by the tomography apparatus
EP3143935B1 (en) Tomography apparatus and method of reconstructing tomography images
KR101725891B1 (en) Tomography imaging apparatus and method for reconstructing a tomography image thereof
JP4855931B2 (en) Motion compensated reconstruction technique
CN110751702B (en) Image reconstruction method, system, device and storage medium
Rohkohl et al. Interventional 4D motion estimation and reconstruction of cardiac vasculature without motion periodicity assumption
Mory et al. Cardiac C‐arm computed tomography using a 3D+ time ROI reconstruction method with spatial and temporal regularization
CN102236903B (en) In CT shoots, temporal resolution is improved by the image reconstruction of iteration
CN103027705B (en) Produce the method and system of the CT image data set of motion compensation
CN110298447B (en) Method for processing parameters of machine learning method and reconstruction method
EP3084726B1 (en) Moving structure motion compensation in imaging
JP2016152916A (en) X-ray computer tomographic apparatus and medical image processing apparatus
CN106462987B (en) The improvement image reconstruction for volume based on data for projection collection
AU2019271915A1 (en) Method and system for motion correction in CT imaging
CN102232842B (en) For the multiple clips image reconstruction of the improvement of cardiac computed tomography shooting
CN109493393A (en) Reduce multiple motion pseudomorphisms in computed tomography images data
Kim et al. Cardiac motion correction for helical CT scan with an ordinary pitch
Li et al. 3D coronary artery reconstruction by 2D motion compensation based on mutual information
Kim et al. Cardiac image reconstruction via nonlinear motion correction based on partial angle reconstructed images
KR20180003400A (en) Apparatus and method for processing medical image