KR20180001191A - Filament for 3D Printing And Composition of the same - Google Patents

Filament for 3D Printing And Composition of the same Download PDF

Info

Publication number
KR20180001191A
KR20180001191A KR1020160080011A KR20160080011A KR20180001191A KR 20180001191 A KR20180001191 A KR 20180001191A KR 1020160080011 A KR1020160080011 A KR 1020160080011A KR 20160080011 A KR20160080011 A KR 20160080011A KR 20180001191 A KR20180001191 A KR 20180001191A
Authority
KR
South Korea
Prior art keywords
filament
composition
dimensional printing
block copolymer
present
Prior art date
Application number
KR1020160080011A
Other languages
Korean (ko)
Inventor
오종회
Original Assignee
코오롱플라스틱 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱플라스틱 주식회사 filed Critical 코오롱플라스틱 주식회사
Priority to KR1020160080011A priority Critical patent/KR20180001191A/en
Publication of KR20180001191A publication Critical patent/KR20180001191A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Abstract

The present invention relates to a filament composition for three-dimensional printing and a filament for three-dimensional printing manufactured by extruding the filament composition for three-dimensional printing. The purpose of the present invention is to provide a filament composition for three-dimensional printing which has biocompatibility and is grafted onto three-dimensional printing such that a porous support suitable for the structure of a human body of each individual is capable of being manufactured. The filament composition of the present invention comprises one or more of biocompatible polymers selected from the group consisting of poly L-lacticacid (PLA), polyglycolic acid (PGA), poly D,L-lactide-co-glycolide (PLGA), polycaprolactone (PCL), polyvalerolactone (PVL), polyhydroxybutyrate (PHB), and polyhydroxyvalerate (PHV) to manufacture a three-dimensional molded object such as the porous support.

Description

3차원 프린팅용 필라멘트 및 그 조성물{Filament for 3D Printing And Composition of the same} FIELD OF THE INVENTION The present invention relates to filaments for three-dimensional printing,

본 발명은 3차원 프린팅용 필라멘트 및 그 조성물에 관한 것으로서, 보다 구체적으로는 다공성 지지체와 같은 3차원 조형물 제조를 위해 생분해성 고분자를 포함하는 3차원 프린팅용 필라멘트 조성물 및 이를 압출하여 제조한 3차원 프린팅용 필라멘트에 관한 것이다.The present invention relates to a filament for three-dimensional printing and a composition thereof. More specifically, the present invention relates to a filament composition for three-dimensional printing comprising a biodegradable polymer for producing a three-dimensional molding such as a porous support, Filament < / RTI >

일반적으로 연골은 한번 손상되면 자연적으로 재생되지 않는 조직이다. 연골이 손상되는 경우 혈관생성이 어렵고 조직이 재생된다 하여도 유리 연골이 아닌 섬유 연골이 형성되거나 또는 형성된 조직의 강도나 내구성이 부족하여 임상 적용에는 한계가 있다. 이에 따라 연골 재생의 효율을 높이기 위하여 자가 연골을 이식하거나, 연골재생을 유도할 수 있는 지지체를 이용하여 연골의 재생효율을 높이는 방법이 사용되고 있다.In general, cartilage is a tissue that does not naturally regenerate once it is damaged. When cartilage is damaged, it is difficult to produce blood vessels. Even if tissue is regenerated, fibrocartilage is formed instead of glassy cartilage, or the strength and durability of the formed tissue are insufficient. Accordingly, in order to increase the efficiency of cartilage regeneration, a method of transplanting autologous cartilage or increasing the regeneration efficiency of cartilage using a supporter capable of inducing cartilage regeneration has been used.

그러나 자가 연골을 이식하는 방법의 경우 세포의 원활한 공급이 매우 어려우며, 세포를 직접 주입하는 경우엔 오히려 손상 부위에 세포가 안정적으로 부착되어버려 증식에는 어려움이 있을 수 있다. 또한 자가 세포 이식이 아닌 경우에는 체내 면역 거부 반응이나 세포 감염의 위험을 가지고 있다. 이러한 문제를 해결하기 위해 최근에는 손상부위에 직접 인공 지지체를 적용하여 안정적으로 연골 재생을 유도하거나 세포를 체외에서 배양하여 연골조직을 재생하여 이식하는 방법이 개발되고 있다.However, in the case of autologous cartilage transplantation, it is very difficult to supply the cells smoothly. In case of directly injecting the cells, the cells may stably attach to the injured area, which may be difficult to proliferate. In the case of non-autologous transplantation, there is a risk of immune rejection or cell infection. In order to solve such a problem, recently, a method of inducing cartilage regeneration stably by applying a scaffold directly to a damaged area, or culturing the cells in vitro to regenerate and transplant cartilage tissue has been developed.

이식(移植)재의 연구 초기에는 주로 비분해성 고분자를 이용하여 지지체를 제조하였으나, 점차 생체내에서 물이나 효소에 의해 분해되는 고분자가 많이 연구되고 있다. 생체조직 재생을 위해 주로 사용되는 생분해성 고분자로는 폴리락트산(PolyL-lactic acid, PLA), 폴리글리콜산(Polyglycolic acid, PGA), 폴리락티드-코-글리콜라이드(PolyD,L-lactide-co-glycolide, PLGA) 등의 폴리에스테르와 폴리카프로락톤(Polycaprolactone, PCL), 폴리발레로락톤(Polyvalerolactione, PVL), 폴리하이드록시부티레이트(Polyhydroxybutyrate, PHB) 및 폴리하이드록시 발러레이트(Polyhydroxyvalerate, PHV) 등의 합성 고분자 또는 콜라겐 젤라틴, 히알루론산, 키틴 및 키토산 등의 천연 고분자 재료가 주로 사용되고 있다.In the early days of transplantation studies, mainly non-degradable polymers were used to prepare supports, but many polymers are being researched in vivo by water or enzymes. Biodegradable polymers mainly used for biomedical tissue regeneration include polylactic acid (PLA), polyglycolic acid (PGA), poly-L-lactide-co (PVA), polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV), and the like, such as polyvinylpyrrolidone, polyvinylpyrrolidone, polyvinylpyrrolidone, A natural polymer material such as a polymer or collagen gelatin, hyaluronic acid, chitin and chitosan is mainly used.

한편, 손상된 생체조직이나 장기를 재생하기 위해서 사용되는 지지체는 생체 분해성 및 생체 적합성 이외에도 높은 밀도의 세포점착을 가능하게 하는 큰 표면적과 생체내로의 이식 이후에 혈관의 형성 및 영양분, 성장인자, 호르몬 등의 물질 전달을 가능하게 하는 큰 공극의 크기와 공극들 사이의 높은 상호연결성 (interconnectivity)을 가지고 있어야 한다. 또한, 조직 세포의 유착과 증식이 잘 되어야 하고, 분화된 세포의 기능이 보전되어야 하며, 체내에 이식된 후에도 주위 조직과 잘 융화되어 염증 반응이 없고, 일정 기간이 지난 후 스스로 분해되어 이물질로 남지 않아야 한다.On the other hand, the scaffolds used for regenerating damaged biological tissues or organs are not only biodegradable and biocompatible, but also have a large surface area enabling high density of cell adhesion and the formation of blood vessels, nutrients, growth factors, hormones Lt; RTI ID = 0.0 > interconnectivity < / RTI > between the pores. In addition, the adhesion and proliferation of tissue cells must be well maintained, and the function of differentiated cells must be preserved. After transplantation into the body, the cells are well compatible with surrounding tissues and have no inflammatory reaction. After a certain period of time, Should not.

이에 생분해성 고분자를 이용하여 제조된 다공성 지지체에 대한 관심이 증가하고 있으며, 이를 제조하는 방법으로는 입자침출법(particulate leaching), 유화동결건조법(emulsion freeze-drying), 고압기체 팽창법(high pressure gas expansion) 및 상분리법(phase separation) 등이 적용되고 있다(한국공개특허 제2005-0040186호, 한국공개특허 제2001-0064182호, 한국공개특허 제2004-0058572호). 그러나, 상기 방법으로는 각 개인에 맞는 고분자 지지체를 제조하기에 한계가 존재한다.Therefore, there is a growing interest in a porous support prepared using a biodegradable polymer. Particulate leaching, emulsion freeze-drying, high pressure (high pressure) gas expansion and phase separation have been applied (Korean Patent Publication No. 2005-0040186, Korean Patent Laid-Open No. 2001-0064182, Korean Patent Publication No. 2004-0058572). However, there are limitations in manufacturing the polymer scaffold suitable for each individual.

이에 본 발명은 생분해성을 가지며 3차원 프린팅에 접목하여 각 개인의 인체 구조에 맞는 다공성 지지체를 만들 수 있는 3차원 프린팅용 필라멘트 조성물을 제공하고자 한다. Accordingly, it is an object of the present invention to provide a three-dimensional printing filament composition which is biodegradable and can be combined with three-dimensional printing to produce a porous support suitable for a human body structure of each individual.

상기 과제를 해결하기위한 본 발명의 바람직한 제 1 구현예는 폴리락트산(PolyL-lactic acid, PLA), 폴리글리콜산(Polyglycolic acid, PGA), 폴리락티드-코-글리콜라이드(PolyD,L-lactide-co-glycolide, PLGA), 폴리카프로락톤(Polycaprolactone, PCL), 폴리발레로락톤(Polyvalerolactione, PVL), 폴리하이드록시부티레이트(Polyhydroxybutyrate, PHB) 및 폴리하이드록시 발러레이트(Polyhydroxyvalerate, PHV)로 이루어진 그룹으로부터 선택된 1 종 또는 2 종 이상의 생분해성 고분자를 포함하며, 용융 피크 온도가 80 내지 190℃인 3차원 프린팅용 필라멘트 조성물이다.In order to solve the above problems, a first preferred embodiment of the present invention is a method for producing poly (lactic acid) (PLA), polyglycolic acid (PGA), poly-L-lactide (PLGA), polycaprolactone (PCL), polyvalerolactone (PVL), polyhydroxybutyrate (PHB), and polyhydroxyvalerate (PHV) And a melting peak temperature of 80 to 190 ° C. The three-dimensional printing filament composition according to any one of claims 1 to 6, wherein the biodegradable polymer has a melting peak temperature of 80 to 190 ° C.

상기 제 1 구현예에 따른 생분해성 고분자는 조성물 총 중량 대비 30 내지 70중량% 포함될 수 있다.The biodegradable polymer according to the first embodiment may be contained in an amount of 30 to 70% by weight based on the total weight of the composition.

상기 제 1 구현예의 3차원 프린팅용 필라멘트 조성물은 생분해성 고분자 이외 폴리에테르-에스테르 블록공중합체, 폴리에스테르-에스테르 블록공중합체, 폴리에스테르-카보네이트 블록공중합체, 폴리우레탄-폴리에테르 블록공중합체, 폴리우레탄-에스테르 블록공중합체, 폴리우레탄-카보네이트 블록공중합체, 폴리아미드-에테르 블록공중합체, 폴리아미드-에스테르 블록공중합체, 폴리아미드-카보네네이트 블록공중합체 및 이들의 혼합물 중 선택된 1 종 이상의 비분해성 고분자를 더 포함할 수 있으며, 이때, 상기 비분해성 고분자는 조성물 총 중량 대비 30 내지 70중량% 포함될 수 있다.The filament composition for three-dimensional printing of the first embodiment may be a polyether-ester block copolymer other than a biodegradable polymer, a polyester-ester block copolymer, a polyester-carbonate block copolymer, a polyurethane-polyether block copolymer, At least one selected from urethane-ester block copolymer, polyurethane-carbonate block copolymer, polyamide-ether block copolymer, polyamide-ester block copolymer, polyamide-carbonate block copolymer and mixtures thereof The non-degradable polymer may be contained in an amount of 30 to 70% by weight based on the total weight of the composition.

또한, 본 발명의 바람직한 제 2 구현예는 상기 제 1 구현예의 3차원 프린팅용 필라멘트 조성물을 직경 0.5 내지 3mm로 압출하여 제조한 3차원 프린팅용 필라멘트이며, 상기 제 2 구현예에 따른 필라멘트는 쇼어 경도(A)가 30 내지 90인 것일 수 있다.A second preferred embodiment of the present invention is a three-dimensional printing filament produced by extruding the filament composition for three-dimensional printing according to the first embodiment into a diameter of 0.5 to 3 mm. The filament according to the second embodiment has a Shore hardness (A) may be from 30 to 90.

본 발명에 따르면 생체 내 적용시 생분해성 고분자가 분해되어 형성된 다공성 홀에 의해 조직 성장이 용이한 한편, 비분해성 고분자에 의해서 지지체의 형상 유지가 가능한 다공성 지지체를 제공할 수 있음에 따라, 조직이 완전이 배양되지 않은 상태에서 지지체가 분해되어 발생하는 지지체의 변형 문제를 해결할 수 있다.According to the present invention, it is possible to provide a porous support capable of easily growing a tissue by a porous hole formed by decomposition of a biodegradable polymer when applied in vivo, while maintaining the shape of a support by a non-degradable polymer, It is possible to solve the problem of deformation of the support, which is caused by decomposition of the support in the state where it is not cultured.

또한 본 발명에 따르면 3D 프린팅에 적용하여 개인의 인체에 가장 적합한 형태로 다공성 지지체를 만들 수 있으므로 인체 적합성을 보다 향상시킬 수 있다.In addition, according to the present invention, since the porous support can be formed in a form most suitable for the human body by applying to 3D printing, the human body suitability can be further improved.

본 발명은 생분해성을 가지며 3차원 프린팅에 접목하여 각 개인의 인체 구조에 맞는 다공성 지지체를 만들 수 있는 3차원 프린팅용 필라멘트 조성물 및 이를 압출하여 제조한 3차원 프린팅용 필라멘트를 제공한다. 본 발명의 3차원 프린팅용 필라멘트는 FDM(Fused Deposition Modeling) 혹은 FFF(Fused Filament Fabrication) 방식의 3차원 프린팅에 적용될 수 있으며, 본 발명에서 설명하는 다공성 지지체는 생체 내에서 손상된 생체조직이나 장기를 재생하기위해 미세 구멍을 형성한 조형물 내지 성형물을 의미하는 것일 수 있다.The present invention provides a filament composition for three-dimensional printing capable of forming a porous support having biodegradability and being compatible with three-dimensional printing by a human body structure of each individual, and a filament for three-dimensional printing produced by extruding the same. The three-dimensional printing filament of the present invention can be applied to three-dimensional printing using FDM (Fused Deposition Modeling) or FFF (Fused Filament Fabrication) method. The porous support described in the present invention can be used for regenerating damaged biological tissue or organ Or a molded product or a molded product having fine holes formed therein.

종래 다공성 지지체를 제조하는 방법으로는 입자침출법(particulate leaching), 유화동결건조법(emulsion freeze-drying), 고압기체 팽창법(high pressure gas expansion) 및 상분리법(phase separation) 등이 적용되고 있으나, 개개인 마다 다른 인체 구조를 고려하여 지지체를 제조하기에는 한계가 따른다. 그러나 본 발명은 3차원 프린팅(3D Printing)에 적용이 가능함에 따라 다공성 지지체의 인체 적합성을 보다 향상시킬 수 있다. Conventional methods for preparing a porous support include particulate leaching, emulsion freeze-drying, high pressure gas expansion, and phase separation. However, There are limitations in manufacturing a support in consideration of different human body structures. However, since the present invention can be applied to 3D printing, it is possible to further improve the human conformity of the porous support.

본 발명의 3차원 프린팅용 필라멘트 조성물은 폴리락트산(PolyL-lactic acid, PLA), 폴리글리콜산(Polyglycolic acid, PGA), 폴리락티드-코-글리콜라이드(PolyD,L-lactide-co-glycolide, PLGA), 폴리카프로락톤(Polycaprolactone, PCL), 폴리발레로락톤(Polyvalerolactione, PVL), 폴리하이드록시부티레이트(Polyhydroxybutyrate, PHB) 및 폴리하이드록시 발러레이트(Polyhydroxyvalerate, PHV)로 이루어진 그룹으로부터 선택된 1 종 또는 2 종 이상의 생분해성 고분자를 포함하며, 용융 피크 온도가 80 내지 190℃이다.The filament composition for three-dimensional printing according to the present invention can be produced by a process comprising the steps of: preparing a polyolefin resin composition comprising a polylactic acid (PLA), a polyglycolic acid (PGA), a poly-L-lactide-co- One selected from the group consisting of PLGA, Polycaprolactone (PCL), Polyvalerolactone (PVL), Polyhydroxybutyrate (PHB) and Polyhydroxyvalerate (PHV) Two or more biodegradable polymers, and a melting peak temperature of 80 to 190 ° C.

상기 생분해성 고분자는 생체내에서 일정시간이 지나면 분해되어, 다공성 홀을 형성하는 것으로서, 형성된 다공성 홀에 의해 조직 재생이 원할하게 이루어질 수 있게된다. 다만 형성되는 다공성 홀의 밀도를 고려하여 생분해성 고분자는 조성물 총 중량 대비 30 내지 70중량% 포함되는 것이 바람직하며, 함량이 30 중량%에 미치지 못할 경우 비분해성 고분자 함량이 증가하여 체내에서 다공 생성이 용이하지 않을 수 있고, 함량이 70 중량%를 초과할 경우, 생분해성 고분자가 일정시간 후에 모두 분해되어 지지체 역할을 하지 못하는 한계가 나타날 수 있다.The biodegradable polymer is decomposed in a living body to form porous holes, and the biodegradable polymer can be easily regenerated by the formed porous holes. However, considering the density of the formed porous holes, the biodegradable polymer is preferably contained in an amount of 30 to 70% by weight based on the total weight of the composition. When the content is less than 30% by weight, the content of the non-degradable polymer increases, If the content exceeds 70% by weight, the biodegradable polymer may decompose after a certain period of time and may not function as a support.

또한, 본 발명의 조성물은 생분해성 고분자가 분해된 후 다공성 지지체의 형상을 유지할 수 있게 하기 위해 폴리에테르-에스테르 블록공중합체, 폴리에스테르-에스테르 블록공중합체, 폴리에스테르-카보네이트 블록공중합체, 폴리우레탄-폴리에테르 블록공중합체, 폴리우레탄-에스테르 블록공중합체, 폴리우레탄-카보네이트 블록공중합체, 폴리아미드-에테르 블록공중합체, 폴리아미드-에스테르 블록공중합체, 폴리아미드-카보네네이트 블록공중합체 및 이들의 혼합물 중 선택된 1 종 이상의 비분해성 고분자를 더 포함한다.In order to maintain the shape of the porous support after the degradation of the biodegradable polymer, the composition of the present invention is preferably a polyether-ester block copolymer, a polyester-ester block copolymer, a polyester-carbonate block copolymer, a polyurethane - polyether block copolymers, polyurethane-ester block copolymers, polyurethane-carbonate block copolymers, polyamide-ether block copolymers, polyamide-ester block copolymers, polyamide-carbonate block copolymers and the like And at least one non-degradable polymer selected from the group consisting of a mixture of two or more non-degradable polymers.

본 발명에서 상기 비분해성 고분자는 축합중합에 의해 제조된 블록 공중합체로서, 분자내에 강직쇄(Hard segment)와 유연쇄(Soft segment)를 가지고 있어 기본적으로 유연한 특성을 나타내는 것이 바람직하다. 이때, 상기 강직쇄로는 폴리우레탄, 폴리에스테르, 폴리아미드, 폴리아미드-에스테르, 폴리옥시메틸렌 등이 포함될 수 있으며 유연쇄로서는 폴리에틸렌글리콜(PEG), 폴리 프로필렌 글리콜(PPG), 폴리테트라메틸렌 글리콜(PTMEG) 및 이에 상응하는 지방족에테르로 구성된 고분자 디올이 포함될 수 있다. 이와 같은 비분해성 고분자로 형성된 다공성 지지체는 기본적으로 유연한 특성을 가질 수 있으며, 일정기간 후에도 분해되지 않아 지지체의 모양을 지지할 수 있게 된다.In the present invention, the non-degradable polymer is a block copolymer produced by condensation polymerization, and has a hard segment and a soft segment in the molecule, so that it is preferable that the non-degradable polymer is basically flexible. The rigid chain may include polyurethane, polyester, polyamide, polyamide-ester, polyoxymethylene, and the like. Examples of the chain include polyethylene glycol (PEG), polypropylene glycol (PPG), polytetramethylene glycol PTMEG) and the corresponding aliphatic ether. The porous support formed of such a non-degradable polymer can basically have flexible characteristics and can support the shape of the support without being decomposed after a certain period of time.

이때, 상기 비분해성 고분자는 조성물 총 중량 대비 30 내지 70중량% 포함되는 것이 바람직하며, 함량이 30 중량%에 미치지 못할 경우, 생분해성 함량이 증가하여 체내에서 일정시간 후 분해되어 지지체 역할을 할 수 없게 되고, 함량이 70 중량%를 초과하면 다공 생성이 잘되지 않는 한계가 나타날 수 있다.In this case, the non-degradable polymer is preferably contained in an amount of 30 to 70% by weight based on the total weight of the composition. If the content is less than 30% by weight, the biodegradable content increases, If the content exceeds 70% by weight, there may be a limit that porosity is not generated well.

본 발명의 3차원 프린팅용 필라멘트 조성물은 시차주사열량계(DSC) 열분석시 용융 피크 온도가 80 내지 190℃로서, 용융 피크 온도가 상기 80℃ 미만일 경우, 탄성체를 형성하는 소프트세그먼트의 함량이 높아져 용융 피크 온도가 낮아졌으며, 이로 인해 유연한 특성이 커기지 때문에 지지체로서의 역할을 수행하기 어려우며, 용융 피크 온도가 상기 190℃ 초과일 경우 3D 프린팅 시 압출이 어렵고 생산성이 높지 않다.The filament composition for three-dimensional printing according to the present invention has a melting peak temperature of 80 to 190 캜 when subjected to differential scanning calorimetry (DSC) thermal analysis, and when the melting peak temperature is lower than 80 캜, the content of the soft segment forming the elastic body is increased, It is difficult to perform the function as a support because the peak temperature is lowered due to the increase of the flexible characteristic. When the melting peak temperature is higher than 190 ° C, extrusion is difficult and productivity is not high in 3D printing.

한편, 본 발명의 상기 3D 프린팅용 조성물은 압출하여 필라멘트 상으로 제조할 수 있으며, 이렇게 제조된 본 발명의 3차원 프린터용 필라멘트는 경도가 Shore A 경도 30 내지 90일 수 있다. 경도가 Shore A 90를 초과할 경우, 체내에 삽입되는 지지체 특성상 딱딱한 성질로 인해 유연한 특성을 구현할 수 없어 체내에서 주변 세포의 손상이 있을 수 있고, 경도가 Shore A 30 미만이면 필라멘트가 인쇄 헤드 부분에서 눌리는 문제가 발행하여 조형물이 제대로 형성되지 못하는 문제가 발생한다.Meanwhile, the 3D printing composition of the present invention can be extruded into a filament, and the filament of the present invention can have a hardness of 30 to 90 in hardness. If the hardness exceeds the Shore A 90, it may not be possible to achieve a flexible characteristic due to the rigid nature of the support to be inserted into the body, so that the surrounding cells may be damaged in the body. If the hardness is less than the Shore A 30, There arises a problem that the problem of pushing is issued and the sculpture is not formed properly.

본 발명의 3D 프린팅용 필라멘트는 싱글 또는 트윈 스큐류 압출기를 통해 만들어질 수 있으며, 필라멘트 직경이 마이크로 미터 또는 버니어켈리퍼스 측정기준 0.5 내지 3mm 이다. 직경이 0.5mm 미만일 경우 3D 프린터에서 필라멘트를 밀어주는데 한계가 있어 다공성 지지체를 제조하는데 어려움이 있으며, 3mm 초과일 경우 정밀한 다공성 지지체를 제조하는데 여러가지 제약이 발생할 수 있다.The filament for 3D printing of the present invention can be made through a single or twin-screw extruder, and the filament diameter is 0.5 to 3 mm in micrometer or vernier caliper measurement standard. If the diameter is less than 0.5 mm, there is a limitation in pushing the filament in the 3D printer, which makes it difficult to manufacture the porous support, and when the diameter is more than 3 mm, various restrictions may be caused to manufacture the precise porous support.

Claims (6)

폴리락트산(PolyL-lactic acid, PLA), 폴리글리콜산(Polyglycolic acid, PGA), 폴리락티드-코-글리콜라이드(PolyD,L-lactide-co-glycolide, PLGA), 폴리카프로락톤(Polycaprolactone, PCL), 폴리발레로락톤(Polyvalerolactione, PVL), 폴리하이드록시부티레이트(Polyhydroxybutyrate, PHB) 및 폴리하이드록시 발러레이트(Polyhydroxyvalerate, PHV)로 이루어진 그룹으로부터 선택된 1 종 또는 2 종 이상의 생분해성 고분자를 포함하며,
융융 피크 온도가 80 내지 190℃인 3차원 프린팅용 필라멘트 조성물
Polylactic acid (PLA), polyglycolic acid (PGA), poly-lactide-co-glycolide (PLGA), polycaprolactone (PCL And at least one biodegradable polymer selected from the group consisting of polyvinyl alcohol (PVA), polyvalerolactone (PVL), polyhydroxybutyrate (PHB), and polyhydroxyvalerate (PHV)
A filament composition for three-dimensional printing having a melting peak temperature of 80 to 190 ° C
제 1 항에 있어서, 상기 생분해성 고분자는 조성물 총 중량 대비 30 내지 70 중량% 포함되는 것을 특징으로 하는 3차원 프린팅용 필라멘트 조성물.
The three-dimensional printing filament composition according to claim 1, wherein the biodegradable polymer is contained in an amount of 30 to 70 wt% based on the total weight of the composition.
제 1 항에 있어서 상기 조성물은 생분해성 고분자 이외 폴리에테르-에스테르 블록공중합체, 폴리에스테르-에스테르 블록공중합체, 폴리에스테르-카보네이트 블록공중합체, 폴리우레탄-폴리에테르 블록공중합체, 폴리우레탄-에스테르 블록공중합체, 폴리우레탄-카보네이트 블록공중합체, 폴리아미드-에테르 블록공중합체, 폴리아미드-에스테르 블록공중합체, 폴리아미드-카보네네이트 블록공중합체 및 이들의 혼합물 중 선택된 1 종 이상의 비분해성 고분자를 더 포함하는 것을 특징으로 하는 3차원 프린팅용 필라멘트 조성물.
The composition according to claim 1, wherein the composition is at least one selected from the group consisting of a polyether-ester block copolymer, a polyester-ester block copolymer, a polyester-carbonate block copolymer, a polyurethane-polyether block copolymer, a polyurethane- At least one non-decomposable polymer selected from a copolymer, a polyurethane-carbonate block copolymer, a polyamide-ether block copolymer, a polyamide-ester block copolymer, a polyamide-carbonate block copolymer and a mixture thereof The filament composition for three-dimensional printing according to claim 1,
제 3 항에 있어서, 상기 비분해성 고분자는 조성물 총 중량 대비 30 내지 70 중량% 포함되는 것을 특징으로 하는 3차원 프린팅용 필라멘트 조성물.
4. The three-dimensional printing filament composition according to claim 3, wherein the non-degradable polymer is contained in an amount of 30 to 70% by weight based on the total weight of the composition.
제 1 항 내지 제 4 항 중 어느 한 항의 조성물을 직경 0.5 내지 3mm 로 압출하여 제조한 3차원 프린팅용 필라멘트.
A filament for three-dimensional printing produced by extruding the composition of any one of claims 1 to 4 to a diameter of 0.5 to 3 mm.
제 5 항에 있어서, 상기 필라멘트는 쇼어 경도(A)가 30 내지 90인 것을 특징으로 하는 3차원 프린팅용 필라멘트.
6. The three-dimensional printing filament according to claim 5, wherein the filament has a Shore hardness (A) of 30 to 90.
KR1020160080011A 2016-06-27 2016-06-27 Filament for 3D Printing And Composition of the same KR20180001191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160080011A KR20180001191A (en) 2016-06-27 2016-06-27 Filament for 3D Printing And Composition of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160080011A KR20180001191A (en) 2016-06-27 2016-06-27 Filament for 3D Printing And Composition of the same

Publications (1)

Publication Number Publication Date
KR20180001191A true KR20180001191A (en) 2018-01-04

Family

ID=60997722

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160080011A KR20180001191A (en) 2016-06-27 2016-06-27 Filament for 3D Printing And Composition of the same

Country Status (1)

Country Link
KR (1) KR20180001191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034123A (en) 2017-09-22 2019-04-01 고려대학교 산학협력단 Non-solvent induced phase separation (NIPS)-based 3D plotting for porous scaffolds with core-shell structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034123A (en) 2017-09-22 2019-04-01 고려대학교 산학협력단 Non-solvent induced phase separation (NIPS)-based 3D plotting for porous scaffolds with core-shell structure

Similar Documents

Publication Publication Date Title
Hutmacher Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives
Xu et al. Rapid prototyping of polyurethane for the creation of vascular systems
Kundu et al. Biomaterials for biofabrication of 3D tissue scaffolds
Isogai et al. Tissue engineering of an auricular cartilage model utilizing cultured chondrocyte–poly (L-lactide-ε-caprolactone) scaffolds
CN111139213B (en) Multilayer structure stent and preparation method and application thereof
Seunarine et al. 3D polymer scaffolds for tissue engineering
Mi et al. Fabrication of thermoplastic polyurethane tissue engineering scaffold by combining microcellular injection molding and particle leaching
Kim et al. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system
KR101617434B1 (en) Method for manufacturing multilayered scaffold for cartilage using biodegradable biopolymers
JPH10234844A (en) Base material for regenerating cartilaginous tissue and regenerating method of cartilaginous tissue using the same
KR101694625B1 (en) 3d scaffold for tissue regeneration and manufacturing method thereof
Koyyada et al. Recent advancements and associated challenges of scaffold fabrication techniques in tissue engineering applications
CN104800896A (en) Human body-absorbable and enhancement-type bone fixation structure material 3D printed with FDM (fused deposition modeling) technology and preparation method thereof
KR20160032569A (en) Two-step phase separation-based 3D bioplotting for macro/nanoporous collagen scaffolds comprised of nanofibrous collagen filaments
US20160310640A1 (en) Injectable hierarchical scaffolds
Forgacs et al. Biofabrication: micro-and nano-fabrication, printing, patterning and assemblies
KR100979628B1 (en) Porous beads having uniform pore structure for tissue engineering and its manufacturing method
US8431623B2 (en) Process for forming a porous PVA scaffold using a pore-forming agent
Karabay et al. 3D printed polylactic acid scaffold For dermal tissue engineering application: The fibroblast proliferation in vitro
KR101541249B1 (en) Method for manufacturing cell-laden porous three-dimensional scaffold, and cell-laden porous three-dimensional scaffold manufactured by the method
CN101524556A (en) Porous tissue engineering scaffold and preparation method thereof
KR20180001191A (en) Filament for 3D Printing And Composition of the same
JP5320526B1 (en) Method for producing auricular cartilage tissue and auricular cartilage tissue
US11612677B2 (en) Scaffold materials manufactured via bio 3D printing technique, and preparation method of three-dimensional scaffolds using the materials
KR100499096B1 (en) Fabrication method of porous polymeric scaffolds for tissue engineering application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application