KR20170140228A - 바이어스 항을 통한 딥 신경망들에서의 톱-다운 정보의 병합 - Google Patents

바이어스 항을 통한 딥 신경망들에서의 톱-다운 정보의 병합 Download PDF

Info

Publication number
KR20170140228A
KR20170140228A KR1020177030865A KR20177030865A KR20170140228A KR 20170140228 A KR20170140228 A KR 20170140228A KR 1020177030865 A KR1020177030865 A KR 1020177030865A KR 20177030865 A KR20177030865 A KR 20177030865A KR 20170140228 A KR20170140228 A KR 20170140228A
Authority
KR
South Korea
Prior art keywords
bias
network
adjusting
input
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
KR1020177030865A
Other languages
English (en)
Korean (ko)
Inventor
레건 블라이스 토월
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20170140228A publication Critical patent/KR20170140228A/ko
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • G06N3/0481
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • G06N7/005
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • User Interface Of Digital Computer (AREA)
KR1020177030865A 2015-04-28 2016-03-11 바이어스 항을 통한 딥 신경망들에서의 톱-다운 정보의 병합 Withdrawn KR20170140228A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562154097P 2015-04-28 2015-04-28
US62/154,097 2015-04-28
US14/848,288 2015-09-08
US14/848,288 US10325202B2 (en) 2015-04-28 2015-09-08 Incorporating top-down information in deep neural networks via the bias term
PCT/US2016/022158 WO2016175925A1 (en) 2015-04-28 2016-03-11 Incorporating top-down information in deep neural networks via the bias term

Publications (1)

Publication Number Publication Date
KR20170140228A true KR20170140228A (ko) 2017-12-20

Family

ID=55586459

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177030865A Withdrawn KR20170140228A (ko) 2015-04-28 2016-03-11 바이어스 항을 통한 딥 신경망들에서의 톱-다운 정보의 병합

Country Status (8)

Country Link
US (1) US10325202B2 (enExample)
EP (1) EP3289527A1 (enExample)
JP (1) JP2018518740A (enExample)
KR (1) KR20170140228A (enExample)
CN (1) CN107533665A (enExample)
AU (1) AU2016256315A1 (enExample)
BR (1) BR112017022983A2 (enExample)
WO (1) WO2016175925A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091259A1 (ko) * 2018-10-29 2020-05-07 에스케이텔레콤 주식회사 비대칭 tanh 활성 함수를 이용한 예측 성능의 개선

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3044438A1 (fr) * 2015-11-27 2017-06-02 Thales Sa Systeme et procede d'aide a la decision
WO2018035805A1 (en) * 2016-08-25 2018-03-01 Intel Corporation Coupled multi-task fully convolutional networks using multi-scale contextual information and hierarchical hyper-features for semantic image segmentation
CA3051990C (en) * 2017-02-23 2021-03-23 Cerebras Systems Inc. Accelerated deep learning
US11842280B2 (en) 2017-05-05 2023-12-12 Nvidia Corporation Loss-scaling for deep neural network training with reduced precision
WO2018218651A1 (en) 2017-06-02 2018-12-06 Nokia Technologies Oy Artificial neural network
US10108538B1 (en) 2017-07-31 2018-10-23 Google Llc Accessing prologue and epilogue data
US11144815B2 (en) * 2017-12-04 2021-10-12 Optimum Semiconductor Technologies Inc. System and architecture of neural network accelerator
KR102153791B1 (ko) * 2017-12-20 2020-09-08 연세대학교 산학협력단 인공 신경망을 위한 디지털 뉴런, 인공 뉴런 및 이를 포함하는 추론 엔진
US11531930B2 (en) * 2018-03-12 2022-12-20 Royal Bank Of Canada System and method for monitoring machine learning models
CN108977897B (zh) * 2018-06-07 2021-11-19 浙江天悟智能技术有限公司 基于局部内在可塑性回声状态网络的熔纺工艺控制方法
US20210350236A1 (en) * 2018-09-28 2021-11-11 National Technology & Engineering Solutions Of Sandia, Llc Neural network robustness via binary activation
US11481667B2 (en) * 2019-01-24 2022-10-25 International Business Machines Corporation Classifier confidence as a means for identifying data drift
US20200242771A1 (en) * 2019-01-25 2020-07-30 Nvidia Corporation Semantic image synthesis for generating substantially photorealistic images using neural networks
DE102019217444A1 (de) * 2019-11-12 2021-05-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Klassifizierung digitaler Bilddaten
US10929748B1 (en) * 2019-11-26 2021-02-23 Mythic, Inc. Systems and methods for implementing operational transformations for restricted computations of a mixed-signal integrated circuit
US12154032B2 (en) * 2020-02-04 2024-11-26 Dsp Group Ltd. Post-training control of the bias of neural networks
KR20210158697A (ko) * 2020-06-24 2021-12-31 삼성전자주식회사 뉴로모픽 장치 및 뉴로모픽 장치를 이용하여 뉴럴 네트워크를 구현하는 방법
US12216740B2 (en) 2021-01-08 2025-02-04 Bank Of America Corporation Data source evaluation platform for improved generation of supervised learning models
CN113473580B (zh) * 2021-05-14 2024-04-26 南京信息工程大学滨江学院 异构网络中基于深度学习的用户关联联合功率分配方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000112914A (ja) * 1998-10-09 2000-04-21 Toshiba Corp 神経回路網の学習方法
WO2008066731A2 (en) 2006-11-22 2008-06-05 Psigenics Corporation Device and method responsive to influences of mind
WO2010030794A1 (en) 2008-09-10 2010-03-18 Digital Infuzion, Inc. Machine learning methods and systems for identifying patterns in data
US8239336B2 (en) 2009-03-09 2012-08-07 Microsoft Corporation Data processing using restricted boltzmann machines
US8754802B2 (en) 2010-08-26 2014-06-17 Lawrence Livermore National Security, Llc Determining root correspondence between previously and newly detected objects
US20150019468A1 (en) 2013-07-09 2015-01-15 Knowmtech, Llc Thermodynamic computing
CN103778414A (zh) * 2014-01-17 2014-05-07 杭州电子科技大学 基于深度神经网络的实时人脸识别方法
CN104200224A (zh) * 2014-08-28 2014-12-10 西北工业大学 基于深度卷积神经网络的无价值图像去除方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091259A1 (ko) * 2018-10-29 2020-05-07 에스케이텔레콤 주식회사 비대칭 tanh 활성 함수를 이용한 예측 성능의 개선

Also Published As

Publication number Publication date
WO2016175925A1 (en) 2016-11-03
US10325202B2 (en) 2019-06-18
US20160321542A1 (en) 2016-11-03
JP2018518740A (ja) 2018-07-12
EP3289527A1 (en) 2018-03-07
AU2016256315A1 (en) 2017-10-05
BR112017022983A2 (pt) 2018-07-24
CN107533665A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
US10325202B2 (en) Incorporating top-down information in deep neural networks via the bias term
KR102595399B1 (ko) 미지의 클래스들의 검출 및 미지의 클래스들에 대한 분류기들의 초기화
KR102582194B1 (ko) 선택적 역전파
US10275719B2 (en) Hyper-parameter selection for deep convolutional networks
CN107851191B (zh) 用于图像中的对象检测的基于上下文的先验
KR102806514B1 (ko) 뉴럴 네트워크들에서의 러닝을 트랜스퍼하기 위한 장치들 및 방법들
CN108431826B (zh) 自动检测视频图像中的对象
CN107533669B (zh) 滤波器特异性作为用于神经网络的训练准则
US9906704B2 (en) Managing crowd sourced photography in a wireless network
US11334789B2 (en) Feature selection for retraining classifiers
US20160283864A1 (en) Sequential image sampling and storage of fine-tuned features
CN107851198A (zh) 媒体分类

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20171025

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination