KR20170140228A - 바이어스 항을 통한 딥 신경망들에서의 톱-다운 정보의 병합 - Google Patents
바이어스 항을 통한 딥 신경망들에서의 톱-다운 정보의 병합 Download PDFInfo
- Publication number
- KR20170140228A KR20170140228A KR1020177030865A KR20177030865A KR20170140228A KR 20170140228 A KR20170140228 A KR 20170140228A KR 1020177030865 A KR1020177030865 A KR 1020177030865A KR 20177030865 A KR20177030865 A KR 20177030865A KR 20170140228 A KR20170140228 A KR 20170140228A
- Authority
- KR
- South Korea
- Prior art keywords
- bias
- network
- adjusting
- input
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G06N3/0481—
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G06N7/005—
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- User Interface Of Digital Computer (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562154097P | 2015-04-28 | 2015-04-28 | |
| US62/154,097 | 2015-04-28 | ||
| US14/848,288 | 2015-09-08 | ||
| US14/848,288 US10325202B2 (en) | 2015-04-28 | 2015-09-08 | Incorporating top-down information in deep neural networks via the bias term |
| PCT/US2016/022158 WO2016175925A1 (en) | 2015-04-28 | 2016-03-11 | Incorporating top-down information in deep neural networks via the bias term |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| KR20170140228A true KR20170140228A (ko) | 2017-12-20 |
Family
ID=55586459
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020177030865A Withdrawn KR20170140228A (ko) | 2015-04-28 | 2016-03-11 | 바이어스 항을 통한 딥 신경망들에서의 톱-다운 정보의 병합 |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US10325202B2 (enExample) |
| EP (1) | EP3289527A1 (enExample) |
| JP (1) | JP2018518740A (enExample) |
| KR (1) | KR20170140228A (enExample) |
| CN (1) | CN107533665A (enExample) |
| AU (1) | AU2016256315A1 (enExample) |
| BR (1) | BR112017022983A2 (enExample) |
| WO (1) | WO2016175925A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020091259A1 (ko) * | 2018-10-29 | 2020-05-07 | 에스케이텔레콤 주식회사 | 비대칭 tanh 활성 함수를 이용한 예측 성능의 개선 |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR3044438A1 (fr) * | 2015-11-27 | 2017-06-02 | Thales Sa | Systeme et procede d'aide a la decision |
| WO2018035805A1 (en) * | 2016-08-25 | 2018-03-01 | Intel Corporation | Coupled multi-task fully convolutional networks using multi-scale contextual information and hierarchical hyper-features for semantic image segmentation |
| CA3051990C (en) * | 2017-02-23 | 2021-03-23 | Cerebras Systems Inc. | Accelerated deep learning |
| US11842280B2 (en) | 2017-05-05 | 2023-12-12 | Nvidia Corporation | Loss-scaling for deep neural network training with reduced precision |
| WO2018218651A1 (en) | 2017-06-02 | 2018-12-06 | Nokia Technologies Oy | Artificial neural network |
| US10108538B1 (en) | 2017-07-31 | 2018-10-23 | Google Llc | Accessing prologue and epilogue data |
| US11144815B2 (en) * | 2017-12-04 | 2021-10-12 | Optimum Semiconductor Technologies Inc. | System and architecture of neural network accelerator |
| KR102153791B1 (ko) * | 2017-12-20 | 2020-09-08 | 연세대학교 산학협력단 | 인공 신경망을 위한 디지털 뉴런, 인공 뉴런 및 이를 포함하는 추론 엔진 |
| US11531930B2 (en) * | 2018-03-12 | 2022-12-20 | Royal Bank Of Canada | System and method for monitoring machine learning models |
| CN108977897B (zh) * | 2018-06-07 | 2021-11-19 | 浙江天悟智能技术有限公司 | 基于局部内在可塑性回声状态网络的熔纺工艺控制方法 |
| US20210350236A1 (en) * | 2018-09-28 | 2021-11-11 | National Technology & Engineering Solutions Of Sandia, Llc | Neural network robustness via binary activation |
| US11481667B2 (en) * | 2019-01-24 | 2022-10-25 | International Business Machines Corporation | Classifier confidence as a means for identifying data drift |
| US20200242771A1 (en) * | 2019-01-25 | 2020-07-30 | Nvidia Corporation | Semantic image synthesis for generating substantially photorealistic images using neural networks |
| DE102019217444A1 (de) * | 2019-11-12 | 2021-05-12 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Klassifizierung digitaler Bilddaten |
| US10929748B1 (en) * | 2019-11-26 | 2021-02-23 | Mythic, Inc. | Systems and methods for implementing operational transformations for restricted computations of a mixed-signal integrated circuit |
| US12154032B2 (en) * | 2020-02-04 | 2024-11-26 | Dsp Group Ltd. | Post-training control of the bias of neural networks |
| KR20210158697A (ko) * | 2020-06-24 | 2021-12-31 | 삼성전자주식회사 | 뉴로모픽 장치 및 뉴로모픽 장치를 이용하여 뉴럴 네트워크를 구현하는 방법 |
| US12216740B2 (en) | 2021-01-08 | 2025-02-04 | Bank Of America Corporation | Data source evaluation platform for improved generation of supervised learning models |
| CN113473580B (zh) * | 2021-05-14 | 2024-04-26 | 南京信息工程大学滨江学院 | 异构网络中基于深度学习的用户关联联合功率分配方法 |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000112914A (ja) * | 1998-10-09 | 2000-04-21 | Toshiba Corp | 神経回路網の学習方法 |
| WO2008066731A2 (en) | 2006-11-22 | 2008-06-05 | Psigenics Corporation | Device and method responsive to influences of mind |
| WO2010030794A1 (en) | 2008-09-10 | 2010-03-18 | Digital Infuzion, Inc. | Machine learning methods and systems for identifying patterns in data |
| US8239336B2 (en) | 2009-03-09 | 2012-08-07 | Microsoft Corporation | Data processing using restricted boltzmann machines |
| US8754802B2 (en) | 2010-08-26 | 2014-06-17 | Lawrence Livermore National Security, Llc | Determining root correspondence between previously and newly detected objects |
| US20150019468A1 (en) | 2013-07-09 | 2015-01-15 | Knowmtech, Llc | Thermodynamic computing |
| CN103778414A (zh) * | 2014-01-17 | 2014-05-07 | 杭州电子科技大学 | 基于深度神经网络的实时人脸识别方法 |
| CN104200224A (zh) * | 2014-08-28 | 2014-12-10 | 西北工业大学 | 基于深度卷积神经网络的无价值图像去除方法 |
-
2015
- 2015-09-08 US US14/848,288 patent/US10325202B2/en active Active
-
2016
- 2016-03-11 EP EP16710653.3A patent/EP3289527A1/en not_active Withdrawn
- 2016-03-11 AU AU2016256315A patent/AU2016256315A1/en not_active Abandoned
- 2016-03-11 WO PCT/US2016/022158 patent/WO2016175925A1/en not_active Ceased
- 2016-03-11 CN CN201680024211.6A patent/CN107533665A/zh active Pending
- 2016-03-11 KR KR1020177030865A patent/KR20170140228A/ko not_active Withdrawn
- 2016-03-11 JP JP2017556147A patent/JP2018518740A/ja active Pending
- 2016-03-11 BR BR112017022983A patent/BR112017022983A2/pt not_active Application Discontinuation
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020091259A1 (ko) * | 2018-10-29 | 2020-05-07 | 에스케이텔레콤 주식회사 | 비대칭 tanh 활성 함수를 이용한 예측 성능의 개선 |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2016175925A1 (en) | 2016-11-03 |
| US10325202B2 (en) | 2019-06-18 |
| US20160321542A1 (en) | 2016-11-03 |
| JP2018518740A (ja) | 2018-07-12 |
| EP3289527A1 (en) | 2018-03-07 |
| AU2016256315A1 (en) | 2017-10-05 |
| BR112017022983A2 (pt) | 2018-07-24 |
| CN107533665A (zh) | 2018-01-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10325202B2 (en) | Incorporating top-down information in deep neural networks via the bias term | |
| KR102595399B1 (ko) | 미지의 클래스들의 검출 및 미지의 클래스들에 대한 분류기들의 초기화 | |
| KR102582194B1 (ko) | 선택적 역전파 | |
| US10275719B2 (en) | Hyper-parameter selection for deep convolutional networks | |
| CN107851191B (zh) | 用于图像中的对象检测的基于上下文的先验 | |
| KR102806514B1 (ko) | 뉴럴 네트워크들에서의 러닝을 트랜스퍼하기 위한 장치들 및 방법들 | |
| CN108431826B (zh) | 自动检测视频图像中的对象 | |
| CN107533669B (zh) | 滤波器特异性作为用于神经网络的训练准则 | |
| US9906704B2 (en) | Managing crowd sourced photography in a wireless network | |
| US11334789B2 (en) | Feature selection for retraining classifiers | |
| US20160283864A1 (en) | Sequential image sampling and storage of fine-tuned features | |
| CN107851198A (zh) | 媒体分类 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0105 | International application |
Patent event date: 20171025 Patent event code: PA01051R01D Comment text: International Patent Application |
|
| PG1501 | Laying open of application | ||
| PC1203 | Withdrawal of no request for examination |