KR20170124689A - Nanoparticle for improving intestinal permeability and thereof production method - Google Patents

Nanoparticle for improving intestinal permeability and thereof production method Download PDF

Info

Publication number
KR20170124689A
KR20170124689A KR1020160054296A KR20160054296A KR20170124689A KR 20170124689 A KR20170124689 A KR 20170124689A KR 1020160054296 A KR1020160054296 A KR 1020160054296A KR 20160054296 A KR20160054296 A KR 20160054296A KR 20170124689 A KR20170124689 A KR 20170124689A
Authority
KR
South Korea
Prior art keywords
nanoparticles
solution
coq10
coenzyme
chitosan
Prior art date
Application number
KR1020160054296A
Other languages
Korean (ko)
Other versions
KR101830893B1 (en
Inventor
이현규
이지수
김은서
서지운
제현정
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020160054296A priority Critical patent/KR101830893B1/en
Publication of KR20170124689A publication Critical patent/KR20170124689A/en
Application granted granted Critical
Publication of KR101830893B1 publication Critical patent/KR101830893B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/15Vitamins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • A23P20/10Coating with edible coatings, e.g. with oils or fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/20Ingredients acting on or related to the structure
    • A23V2200/224Encapsulating agent
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/30Other Organic compounds
    • A23V2250/314Ubiquinone, coenzyme Qn

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physiology (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention relates to intestinal permeable nanoparticles manufactured by mixing chitosan and dextran sulfate at a weight ratio of 1 : 0.2-1, and to a production method thereof. The chitosan/dextran sulfate nanoparticles manufactured by the present invention shows excellent enterocyte adsorption abilities and collects an object to be collected (target material) which has low solubility, is unstable and has low internal resorption rates such as coenzyme Q10, thereby significantly increasing absorption of the object to be collected to enterocyte and increasing internal resorption rates of the object to be collected.

Description

장 투과성 나노입자 및 그의 제조방법 {Nanoparticle for improving intestinal permeability and thereof production method}[0001] Nanoparticle for improving intestinal permeability and their production method [0002]

본 발명은 장 투과성 나노캡슐 및 그의 제조방법에 관한 것으로, 더욱 구체적으로는 키토산 및 덱스트란 설페이트를 이용하여 제조된 장 투과성이 증진된 나노캡슐 및 그의 제조방법에 관한 것이다.The present invention relates to intestinal permeable nanocapsules and a process for producing the same, and more particularly to a nanocapsule having enhanced permeability and produced by using chitosan and dextran sulfate, and a process for producing the same.

기능성 식품(functional food)에 대한 관심이 증가하면서 기능성 물질(functional ingredient)의 효율적인 이용에 대한 기술들이 주목받고 있다. 천연 추출물, 약물, 비타민, 항산화물질, 향료, 색소 등의 기능성 물질들은 빛, 산소, 수분, 온도 등의 외부 요인으로부터 영향을 받아 손상되기 쉬우며, 가공 및 유통과정 동안 안정성이 저하되어 활성이 감소하게 된다. 또한, 기능성 물질의 직접 섭취 시 낮은 투과성을 비롯하여 위장 내의 산성 조건, 효소, 그 밖의 영향 요인에 의하여 안정성이 감소하게 되어, 이들이 보유한 생리활성에 제한을 주게 된다. 이에 따라, 대부분의 기능성 물질은 외부 환경으로부터 보호하고 안정성을 유지하기 위하여 입자(particle) 및 캡슐(capsule) 등의 전달체(delivery system)와 결합되어 이용되고 있다.With increasing interest in functional foods, techniques for efficient use of functional ingredients are drawing attention. Functional substances such as natural extracts, drugs, vitamins, antioxidants, perfumes and colorants are susceptible to damage from external factors such as light, oxygen, moisture, and temperature, and their stability is lowered during processing and distribution, . In addition, when the functional substance is directly ingested, stability is lowered due to low permeability, acidic conditions in the stomach, enzymes, and other influencing factors, thereby limiting the physiological activity that they possess. Accordingly, most of functional materials are used in combination with delivery systems such as particles and capsules in order to protect from external environment and maintain stability.

전달체는 기능성 물질의 섭취 후 생체 내에서 이용될 때까지 활성을 유지하도록 도움을 주는 보호막 기능을 제공한다. 전달체 역할을 하는 입자 및 캡슐의 원료로서 합성고분자물질(synthetic polymer) 및 생체고분자물질(biopolymer)들을 많이 이용하고 있는데, 식품에 이용을 위해서는 자연친화적이고 안전한 물질로 만드는 것이 적합하다. 생체적합성(biocompatibility) 및 생체분해성(biodegradability) 특성이 있는 식품 소재물질들 중 알긴산, 키토산, 전분 등의 탄수화물소재들과 알부민, 유청단백질, 콩단백질 등의 단백질소재들이 입자 및 캡슐을 제조하는데 주로 이용되고 있다 (고상훈, 식품 소재물질을 이용한 나노현탁액 및 나노입자 제조, 식품과학과산업, v.41 no.1, 2008년, pp.25-32).The carrier provides a protective membrane function that helps maintain activity until ingestion of the functional material in vivo. Synthetic polymers and biopolymers are widely used as raw materials for the particles and capsules serving as carriers. For use in foods, it is suitable to make them naturally friendly and safe. Carbohydrate materials such as alginic acid, chitosan, and starch and protein materials such as albumin, whey protein, and soy protein are mainly used for manufacturing particles and capsules, which are biocompatibility and biodegradability characteristics. (Ko Sang-hoon, Manufacturing of nanoparticles and nanoparticles using food materials, Food Science and Industry, v.41 no.1, 2008, pp.25-32).

한편, 나노입자의 피복성분 중 키토산(chitosan)은 게, 가재, 새우 껍데기 등의 갑각류에 함유되어 있는 키틴(chitin)으로부터 가공된 물질이며, 아미노당으로 이루어진 다당류로 N-아세틸-D-글루코사민(N-acetyl-D-glucosamine)이 beta 1-4 결합으로 중합된 키틴을 탈아세틸화하여 얻어낸 물질을 말한다. 키토산은 중성이나 염기성 pH에서 불용성이나 초산과 같은 산성용액에 용해시켰을 때 아미노 그룹이 양전하를 띄게 되어 TPP(tripolyphosphate)와 같은 음전하 물질과 결합할 수 있게 된다. 키토산은 생체 내 소화효소에 의해 분해되지 않고 리소좀(lysozyme)과 같은 특정 효소에 의해 선택적으로 가수분해되는 특성이 있으므로 약물의 선택적 방출에 효과적이라 볼 수 있다 (Agnihotri et al., 2004; Jang & Lee, 2008; Sinha & Kumria, 2001). 또한, 키토산은 무독성이고 생체적합성이 우수하며 생체분해적 특성을 나타내기 때문에 다양한 약물 및 생리활성 물질의 캡슐화를 위한 피복물질로 널리 활용되고 있다. On the other hand, among the coating components of nanoparticles, chitosan is a substance processed from chitin contained in crustaceans such as crabs, lobster and shrimp shell, and is a polysaccharide composed of amino sugars, and N-acetyl-D-glucosamine N-acetyl-D-glucosamine) is obtained by deacetylation of chitin polymerized with beta-1-4 linkage. Chitosan is insoluble at neutral or basic pH, but when dissolved in an acidic solution such as acetic acid, the amino group becomes positively charged and becomes able to bind to negative charge substances such as TPP (tripolyphosphate). Since chitosan is not hydrolyzed by in vivo digestive enzymes and is hydrolyzed selectively by a specific enzyme such as lysozyme, chitosan is effective for selective release of drugs (Agnihotri et al., 2004; Jang & Lee , 2008; Sinha & Kumria, 2001). Since chitosan is non-toxic, biocompatible, and biodegradable, it is widely used as a coating material for encapsulating various drugs and physiologically active substances.

다만, 키토산을 이용하여 기능성 물질의 용해도와 안정성을 증진시키려는 연구는 다수 보고되었으나, 아직까지는 체내 대사를 위한 흡수과정에서 점막에 효과적으로 부착되고 흡수되는 연구는 구체적으로 수행된 바 없다. However, there have been a number of studies to improve the solubility and stability of functional materials using chitosan, but studies have not yet been conducted to effectively adsorb and adsorb to the mucosa during the absorption process for metabolism in the body.

대한민국 등록특허 제10-1199251호 (등록일자: 2012.11.02)에는, (ⅰ) 젖산 수용액에 키토산을 1.0%(w/v)의 농도로 가한 용액에, 디클로로메탄에 s-알릴시스테인(s-allylcysteine)이 용해된 용액을 10%(w/v)의 비율로 가하고, 15,000 rpm으로 2분간 교반하면서 균질화하여 수중유(oil in water, o/w) 에멀젼을 형성하는 단계; 및 (ⅱ) 상기 형성된 수중유 에멀젼과 가교제인 TPP(tripolyphosphate)를 5:3(w/v)의 비율로 혼합하고, 3,000 rpm으로 30분간 교반하여 반응시키고, 디클로로메탄을 제거하는 단계를 포함하는 키토산-TPP 나노입자의 제조방법에 대한 내용이 기재되어 있다.Korean Registered Patent No. 10-1199251 (Registration Date: 2012.02.02) describes a method for producing chitosan by adding s-allyl cysteine (s-1) to dichloromethane to a solution of chitosan in a concentration of 1.0% (w / v) allylcysteine in a ratio of 10% (w / v) and homogenizing at 15,000 rpm for 2 minutes to form an oil in water (o / w) emulsion; And (ii) mixing the formed oil-in-water emulsion with TPP (tripolyphosphate) as a crosslinking agent at a ratio of 5: 3 (w / v), stirring the mixture at 3,000 rpm for 30 minutes, and removing dichloromethane The contents of the production method of chitosan-TPP nanoparticles are described. 대한민국 등록특허 제10-1066197호 (등록일자: 2011.09.14)에는, 1) 코엔자임Q10을 수혼화성 유기용매 중에 용해시켜 코엔자임Q10이 용해된 혼합용액을 제조하는 단계; 2) 단계 1)의 혼합용액을 아미노산 및 단백질로 구성된 군으로부터 선택되는 하나 또는 둘 이상의 성분을 포함하는 수용액에 가하고 교반하여 상기 아미노산 및 단백질로 구성된 군으로부터 선택되는 하나 또는 둘 이상의 성분이 결합된 코엔자임Q10의 나노입자를 생성하는 단계; 및 3) 상기 수혼화성 유기용매를 제거하는 단계를 포함하는 가용화된 코엔자임Q10 나노입자의 제조방법에 대한 내용이 기재되어 있다.Korean Patent No. 10-1066197 (Registration Date: 2011.09.14) discloses a method for producing Coenzyme Q10, comprising the steps of: 1) dissolving coenzyme Q10 in a water-miscible organic solvent to prepare a mixed solution of coenzyme Q10 dissolved therein; 2) a mixed solution of step 1) is added to an aqueous solution containing one or two or more components selected from the group consisting of amino acids and proteins, and the mixture is stirred to prepare a coenzyme having one or more components selected from the group consisting of amino acids and proteins Generating nanoparticles of Q10; And 3) removing the water-miscible organic solvent. The present invention also relates to a method for producing solubilized coenzyme Q10 nanoparticles.

본 발명은 키토산 및 덱스트란 설페이트를 피복소재로 선택하여 포집대상물질(목적물질)을 나노캡슐화한 장 투과성이 증진된 나노 입자를 개발하여 제공하고자 한다.In the present invention, chitosan and dextran sulfate are selected as coating materials to develop nanoparticles having nanoparticles of a target substance (target substance) and enhanced permeability.

상기 목적을 달성하기 위하여, 본 발명은 제1형태로 키토산 및 덱스트란 설페이트를 1 : 0.2 ~ 1 중량비로 혼합하여 제조된 것을 특징으로 하는 장 투과성 나노입자를 제공한다. To achieve the above object, the present invention provides a first aspect of the present invention, wherein the intestinal permeable nanoparticles are prepared by mixing chitosan and dextran sulfate in a weight ratio of 1: 0.2 to 1: 1.

본 발명의 제1형태에 있어서, 상기 나노입자는, 바람직하게 내부에 포집대상물질을 함유하고 있을 수 있다.In the first aspect of the present invention, the nanoparticles preferably contain a substance to be trapped therein.

상기 포집대상물질은, 바람직하게 코엔자임Q10(CoenzymeQ10), 카테킨(catechin), 레스베라트롤(resveratrol), 안토시아닌(anthocyanin), 베타-카로틴(β-carotene), 이소플라본(isoflavones), 감마-오라자놀(γ-orazanol), 비타민(vitamins), 미네랄(minerals), 폴리페놀류(polyphenol) 및 진세노사이드류(ginsenoside)로 이루어진 군에서 선택되는 어느 하나인 것이 좋다.The target substance is preferably selected from the group consisting of Coenzyme Q10, catechin, resveratrol, anthocyanin, beta-carotene, it may be any one selected from the group consisting of vitamins, minerals, polyphenols, and ginsenosides.

한편, 본 발명은 제2형태로 키토산을 함유하는 용액에 덱스트란 설페이트를 함유하는 용액을 첨가하여 교반하되, 상기 키토산과 덱스트란 설페이트는 1 : 0.2 ~ 1 중량비로 혼합되는 것을 특징으로 하는 장 투과성 증진용 나노입자의 제조방법을 제공한다.The present invention also relates to a second aspect of the present invention, wherein a solution containing dextran sulfate is added to a solution containing chitosan and stirred, wherein the chitosan and dextran sulfate are mixed at a weight ratio of 1: 0.2 to 1: The present invention provides a method for producing nanoparticles for enhancing nanoparticles.

본 발명의 제2형태에 있어서, 상기 키토산을 함유하는 용액에는 바람직하게 포집대상물질을 함유하고 있을 수 있다.In the second aspect of the present invention, the solution containing the chitosan may preferably contain a substance to be trapped.

상기 포집대상물질은, 바람직하게 코엔자임Q10(CoenzymeQ10), 카테킨(catechin), 레스베라트롤(resveratrol), 안토시아닌(anthocyanin), 베타-카로틴(β-carotene), 이소플라본(isoflavones), 감마-오라자놀(γ-orazanol), 비타민(vitamins), 미네랄(minerals), 폴리페놀류(polyphenol) 및 진세노사이드류(ginsenoside)로 이루어진 군에서 선택되는 어느 하나인 것이 좋다.The target substance is preferably selected from the group consisting of Coenzyme Q10, catechin, resveratrol, anthocyanin, beta-carotene, it may be any one selected from the group consisting of vitamins, minerals, polyphenols, and ginsenosides.

한편, 본 발명은 제3형태로 키토산 및 덱스트란 설페이트를 1 : 0.2 ~ 1 중량비로 혼합하여 제조한 나노입자에 포집대상물질을 탑재하는 것을 특징으로 하는 포집대상물질의 장 투과성 증진방법을 제공한다.Meanwhile, the third aspect of the present invention provides a method for enhancing intestinal permeability of a substance to be trapped, characterized in that the substance to be trapped is loaded on nanoparticles prepared by mixing chitosan and dextran sulfate in a weight ratio of 1: 0.2 to 1 .

본 발명의 제3형태에 있어서, 상기 포집대상물질은, 바람직하게 코엔자임Q10(CoenzymeQ10), 카테킨(catechin), 레스베라트롤(resveratrol), 안토시아닌(anthocyanin), 베타-카로틴(β-carotene), 이소플라본(isoflavones), 감마-오라자놀(γ-orazanol), 비타민(vitamins), 미네랄(minerals), 폴리페놀류(polyphenol) 및 진세노사이드류(ginsenoside)로 이루어진 군에서 선택되는 어느 하나인 것이 좋다.In a third aspect of the present invention, the substance to be trapped is preferably Coenzyme Q10 (Coenzyme Q10), catechin, resveratrol, anthocyanin, beta-carotene, isoflavone isoflavones, gamma-orazanol, vitamins, minerals, polyphenols, and ginsenosides. The term " ginsenoside "

종래의 나노캡슐화 연구는 나노입자화에 의한 표면적 증가에 따른 용해도 증진 및 체내 흡수력 증진을 목적 및 효과로 하고 있으나, 본 발명은 장 점막 부착성과 장 세포 내로의 투과를 증진시킴으로써 실질적인 체내 흡수를 증진시키고자 하는 발명이다. Conventional nanocapsulization studies have been aimed at increasing solubility and enhancing absorption capacity in response to an increase in surface area due to nanoparticle formation. However, the present invention promotes intimal absorption by enhancing intestinal mucosal adhesion and penetration into intestinal cells It is an invention to be desired.

본 발명은 피복소재로서 키토산 및 덱스트란 설페이트를 선택하였는데, 키토산 및 덱스트란 설페이트의 혼합 중량비가 1 : 0.2 ~ 1인 것이 중요하다. 상기 범위에서 나노입자의 물리적 특성이 가장 우수하고, 점막 부착능, 세포 투과능, 세포 흡수능이 우수하다.In the present invention, chitosan and dextran sulfate were selected as coating materials, and it is important that the mixing weight ratio of chitosan and dextran sulfate is 1: 0.2-1. In this range, the physical properties of the nanoparticles are the most excellent, and the mucoadhesive ability, the cell permeability, and the cell absorption ability are excellent.

본 발명의 키토산과 덱스트란 설페이트를 1 : 0.2 ~ 1 중량비로 혼합하여 제조된 장 투과성 나노입자는, 200~300 nm의 나노입자 크기를 가지고, 포집효율이 우수하며, 점막 부착능 및 세포 투과성이 우수하다. The intestinal permeable nanoparticles prepared by mixing the chitosan of the present invention with dextran sulfate at a weight ratio of 1: 0.2 to 1 have a nanoparticle size of 200 to 300 nm, have excellent collection efficiency, have mucoadhesive ability and cell permeability great.

본 발명에 있어서, 상기 폴리페놀류는 대추 추출물, 포도 추출물 등 폴리페놀을 함유하는 천연 생리활성 소재 모두를 의미하고, 상기 진세노사이드류는 홍삼 추출물, 인삼 추출물 등 진세노사이드를 함유하는 천연 생리활성 소재 추출물 모두를 의미한다.In the present invention, the polyphenols refer to all natural physiologically active materials containing polyphenols, such as jujube extract and grape extract, and the Jinsen-no-sae is a natural physiologically active material containing ginsenoside, such as red ginseng extract and ginseng extract Means all of the extracts.

하기 본 발명에서는, 상기 포집대상물질 중, 용해도가 낮아 활용에 제약이 있고, 낮은 열, 광 안정성으로 저장 및 활성 보존에 취약하며, 체내 흡수율이 낮은 코엔자임Q10을 선택하여 본 발명에 의해 제조된 키토산/덱스트란 설페이트 나노입자의 특성을 확인하였다. 확인결과, 키토산/덱스트란 설페이트로 나노캡슐화된 코엔자임Q10이 유리 코엔자임Q10보다 용해도 증가, 열, 광에 대한 안정성 증가, 대장세포 Caco-2 세포 내로의 투과율 증가 및 체외로의 배출을 억제함을 확인하였다. 이러한 결과에서 확인되듯이, 본 발명의 키토산/덱스트란 설페이트 나노입자는 용해도, 열 및 광에 대한 안정성이 낮고, 체내 흡수율이 낮은 포집대상물질(목적물질)을 나노캡슐화함으로써, 상기와 같은 문제점을 해결할 수 있다.In the present invention, Coenzyme Q10, which is low in solubility and low in absorption rate, is limited in utilization, is poor in storage and activity preservation with low heat and light stability, and has low absorption coefficient in the body. Thus, chitosan / Dextran sulfate nanoparticles. As a result, it was confirmed that coenzyme Q10 nano-encapsulated with chitosan / dextran sulfate exhibited increased solubility, increased stability to heat and light, increased permeability into colonic cell Caco-2 cells, Respectively. As can be seen from these results, the chitosan / dextran sulfate nanoparticles of the present invention have a low stability against solubility, heat and light, and nanocapsulate the target substance (target substance) having a low water absorption rate. Can be solved.

본 발명의 의해 제조된 나노입자는 기능성 소재로서, 다양한 식품 제형에 적용 가능하다. 제형의 예로는, 곡류, 카페인 음료, 일반 음료, 유제품, 초콜릿, 빵류, 스낵류, 과자류, 차, 피자, 젤리, 면류, 껌류, 아이스크림류, 알코올성 음료, 술, 비타민 복합체 및 그 밖의 건강보조식품류 중 선택되는 어느 하나인 것일 수 있는데, 반드시 이에 한정되는 것은 아니다.The nanoparticles produced by the present invention are functional materials and are applicable to various food formulations. Examples of formulations are cereals, caffeinated beverages, regular beverages, dairy products, chocolate, bread, snacks, confectionery, tea, pizza, jelly, noodles, gums, ice creams, alcoholic beverages, alcoholic drinks, vitamin complexes, But it is not necessarily limited thereto.

본 발명에 의해 제조된 키토산/덱스트란 설페이트 나노입자는 우수한 장 세포 흡착능을 발휘하는데, 코엔자임Q10과 같이 용해도가 낮고, 불안정하며 체내 흡수율이 낮은 포집대상물(목적물질)을 포집함으로써, 포집대상물질의 장 세포로의 흡수를 현저히 향상시켜, 이들 포집대상물질의 체내 흡수율을 증진시킬 수 있다.The chitosan / dextran sulfate nanoparticles produced by the present invention exert excellent intestinal cell adsorbing ability. By capturing a target (target substance) having low solubility, unstability and low absorption rate in the body, like Coenzyme Q10, The absorption into the intestinal cells can be remarkably improved and the absorption rate of these substances to be captured can be increased.

도 1은 CS/DS 나노입자의 덱스트란 설페이트(DS) 용액 농도에 따른 나노입자의 물리적 특성을 확인한 것으로, (a)는 나노입자의 입자크기, 다분산지수(PDI)를 측정한 결과이고, (b)는 점막부착능을 측정한 결과이다.
도 2는 TEM을 이용하여 촬영한 CS/DS 나노입자의 이미지이다.
도 3은 캡슐화하지 않은 코엔자임Q10 (Free CoQ10), CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 점막부착능을 확인한 결과이다.
도 4는 CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 포집효율을 확인한 결과이다.
도 5는 캡슐화하지 않은 코엔자임Q10 (Free CoQ10), CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 용해성을 확인한 결과이다.
도 6은 캡슐화하지 않은 코엔자임Q10 (Free CoQ10), CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 열에 대한 안정성을 확인한 결과이다.
도 7은 캡슐화하지 않은 코엔자임Q10 (Free CoQ10), CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 광에 대한 안정성을 확인한 결과이다.
도 8은 캡슐화하지 않은 코엔자임Q10 (Free CoQ10), CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 대장세포 Caco-2 투과능을 확인한 결과이다.
도 9는 콘포칼 현미경을 이용하여 CS/DS 나노입자의 Caco-2 세포 투과능을 확인한 결과이다. (a)는 캡슐화하지 않은 쿠마린 6(coumarin 6), (b)는 CS/DS 캡슐에 포집된 쿠마린 6(coumarin 6)의 이미지이다.
도 10은 캡슐화하지 않은 코엔자임Q10 (Free CoQ10), CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 대장세포 Caco-2 세포 흡수율을 확인한 결과이다.
도 11은 나노캡슐화에 따른 코엔자임Q10의 항산화 활성을 확인한 결과로, (a)는 DPPH 라디칼 소거능, (b)는 HePg2 세포를 이용한 세포항산화 결과이다.
FIG. 1 shows the physical properties of nanoparticles according to the concentration of dextran sulfate (DS) solution of CS / DS nanoparticles. (A) shows the results of measuring the particle size and polydispersity index (PDI) (b) is the result of measurement of mucoadhesive ability.
Figure 2 is an image of CS / DS nanoparticles photographed using TEM.
FIG. 3 is a graph showing the results of the measurement of CoQ10-loaded CS / TPP nanoparticles (CS / TPP NP), CoQ10-loaded CS / DS nanoparticles (CS / DS NP1, CS / DS NP2, NP3).
Fig. 4 shows the results of the collection efficiency of CoQ10-loaded CS / TPP nanoparticles (CS / TPP NP) and CoQ10-loaded CS / DS nanoparticles (CS / DS NP1, CS / DS NP2 and CS / DS NP3).
FIG. 5 is a graph showing the results of the determination of CoQ10-loaded CS / TPP nanoparticles (CS / TPP NP), CoQ10-loaded CS / DS nanoparticles (CS / DS NP1, CS / DS NP2, NP3). ≪ / RTI >
FIG. 6 is a graph showing the results of the determination of CoQ10-loaded CS / TPP nanoparticles (CS / TPP NP), CoQ10-loaded CS / DS nanoparticles (CS / DS NP1, CS / DS NP2, NP3) was confirmed to be stable against heat.
FIG. 7 is a graph showing the distribution of CoQ10-loaded CS / TPP nanoparticles (CS / TPP NP), CoQ10-loaded CS / DS nanoparticles (CS / DS NP1, CS / DS NP2, NP3) was confirmed to be stable to light.
Figure 8 is a graph showing the results of the determination of CoQ10-loaded CS / TPP nanoparticles (CS / TPP NP), CoQ10-loaded CS / DS nanoparticles (CS / DS NP1, CS / DS NP2, NP3) in the colon cell Caco-2.
FIG. 9 shows the results of confirming the Caco-2 cell permeability of CS / DS nanoparticles using a confocal microscope. (a) is an unencapsulated coumarin 6, and (b) is an image of coumarin 6 captured in CS / DS capsules.
FIG. 10 is a graph showing the distribution of CoQ10-loaded CS / TPP nanoparticles (CS / DS NP1, CS / DS NP2, CS / DS) NP3) in the colonic cell Caco-2 cells.
Fig. 11 shows the antioxidative activity of coenzyme Q10 according to nano-encapsulation. Fig. 11 (a) shows DPPH radical scavenging activity and Fig. 11 (b) shows cell antioxidation results using HePg2 cells.

이하, 본 발명의 내용을 하기 실시예를 들어 더욱 구체적으로 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다.Hereinafter, the present invention will be described more specifically with reference to the following examples. However, the scope of the present invention is not limited to the following embodiments, and includes modifications of equivalent technical ideas.

<재료의 준비><Preparation of materials>

코엔자임Q10(CoQ10)은 'Tokyo Chemical Industry (Tokyo, Japan)'에서 구입하였고, 키토산(water soluble, 24 cps, 95% deacetylated)은 'Kittolife Co. (Seoul, Korea)'으로부터 얻었다. 또한, 덱스트란 설페이트(Dextran sulfate, MW: 15,000), 소디움 트리포스페이트 펜타베이직(sodium triphosphate pentabasic, TPP), 쿠마린 6(coumarin 6, C6), 뮤신(mucin, extracted from porcine stomach, type III)은 'Sigma-Aldrich Co. (St Louis, MO, USA)'에서 구입하였다.Coenzyme Q10 (CoQ10) was purchased from Tokyo Chemical Industry (Tokyo, Japan) and chitosan (water soluble, 24 cps, 95% deacetylated) was purchased from Kittolife Co. (Seoul, Korea). Dextran sulfate (MW: 15,000), sodium triphosphate pentabasic (TPP), coumarin 6, C6, and mucin (extracted from porcine stomach, type III) Sigma-Aldrich Co. (St Louis, MO, USA).

또한, Caco-2(Colon carcinoma)와 HepG2(cell lines human hepatocellular carcinoma)은 각각 'American Type Culture Collection (ATCC, Rockville, MD, USA)'와 'Korean Cell Line Bank (Seoul, Korea)'에서 구입하였다. DMEM(Dulbecco's Modified Eagle's culture medium), NEAA(non-essential amino acid), FBS(fetal bovine serum), HBSS(Hank's balanced salt solution), 0.25% trypsin-EDTA는 'Gibco Invitrogen Co. (Grand Island, NY, USA)'에서 구입하였다.In addition, Caco-2 (Colon carcinoma) and HepG2 (cell line human hepatocellular carcinoma) were purchased from the American Type Culture Collection (ATCC, Rockville, MD, USA) and Korean Cell Line Bank . DMEM (Dulbecco's Modified Eagle's culture medium), NEAA (non-essential amino acid), FBS (fetal bovine serum), HBSS (Hank's balanced salt solution) and 0.25% trypsin-EDTA were purchased from Gibco Invitrogen Co. (Grand Island, NY, USA).

<통계 처리><Statistics Processing>

모든 결과 값은 트리플리케이트(triplicate)로 mean±standard deviation (SD)로 표현하였고, 통계분석은 ANOVA를 이용하여 실행하였다. P-values는 0.05 이하 일 때 통계적으로 유의하다고 하였고, SPSS Version 2.10 statistical package (SPSS Inc., Chicago, IL, USA)를 이용하여 통계분석하였다.All results were expressed as mean ± standard deviation (SD) in triplicate and statistical analysis was performed using ANOVA. Statistical analysis was performed using SPSS Version 2.10 statistical package (SPSS Inc., Chicago, IL, USA).

[[ 실시예Example 1:  One: 코엔자임Q10이Coenzyme Q10 탑재된 나노입자 제조] Manufacture of mounted nanoparticles]

본 실시예에서는 코엔자임Q10(CoQ10)이 탑재된(CoQ10-로드) 나노입자를 제조하고자 하였다.In this example, CoQ10-loaded nanoparticles with coenzyme Q10 (CoQ10) were prepared.

나노입자는 키토산(Chitosan, CS), 덱스트란 설페이트(Dextran sulfate, DS), 소디움 트리포스페이트 펜타베이직(sodium triphosphate pentabasic, TPP)을 이용하고, 'ionic gelation' 방법을 통해 키토산/덱스트란 설페이트(CS/DS) 나노입자와 키토산/소디움 트리포스페이트 펜타베이직(CS/TPP) 나노입자로 각각 제조하였다 (Cho, Y., Shi, R., & Borgens, R. B. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. Journal of Biological Engineering 4: 2 (2010)).The nanoparticles were prepared by using chitosan (CS), dextran sulfate (DS), sodium triphosphate pentabasic (TPP), and chitosan / dextran sulfate (CS / DS) nanoparticles and chitosan / sodium triphosphate penta-basic (CS / TPP) nanoparticles, respectively (Cho, Y., Shi, R., & Borgens, RB Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein -induced cell injury. Journal of Biological Engineering 4: 2 (2010)).

구체적인 방법은 다음과 같았다. 키토산(CS)은 증류수에 용해시켜 0.5 mg/mL 농도의 키토산 용액으로 제조하였고, CoQ10은 에탄올에 용해시켜 2.0 mg/mL 농도의 CoQ10 용액으로 제조하였다. 그 후, 증류수 0.75 mL, CoQ10 용액 0.75 mL, CS 용액 3 mL를 혼합하여 CS/CoQ10 혼합물을 제조하였다.The concrete method was as follows. Chitosan (CS) was dissolved in distilled water to prepare a chitosan solution at a concentration of 0.5 mg / mL. CoQ10 was dissolved in ethanol to prepare a CoQ10 solution at a concentration of 2.0 mg / mL. Then, 0.75 mL of distilled water, 0.75 mL of CoQ10 solution and 3 mL of CS solution were mixed to prepare a CS / CoQ10 mixture.

한편, CS/DS 나노입자는 증류수에 용해시킨 3 mL의 덱스트란 설페이트 용액 (0.1, 0.3, 0.5 mg/mL)을 CS/CoQ10 혼합물 4.5 mL에 추가하여 10분 동안 교반 (1,000 rpm) 하여 CoQ10-로드 CS/DS 나노입자를 제조하였다. The CS / DS nanoparticles were prepared by adding 3 mL of dextran sulfate solution (0.1, 0.3, 0.5 mg / mL) dissolved in distilled water to 4.5 mL of the CS / CoQ10 mixture and stirring for 10 minutes (1,000 rpm) Rod CS / DS nanoparticles were prepared.

한편, CS/TPP 나노입자는 상기 CS/CoQ10 혼합물 4.5 mL에 증류수에 용해시킨 3 mL의 TPP 용액 (0.05 mg/mL)을 첨가하고 1,000 rpm으로 교반 및 혼합하여 CoQ10-로드 CS/TPP 나노입자를 제조하였다. The CS / TPP nanoparticles were prepared by adding 3 mL of TPP solution (0.05 mg / mL) dissolved in distilled water to 4.5 mL of the above CS / CoQ10 mixture and stirring and mixing at 1,000 rpm to prepare CoQ10-rod CS / TPP nanoparticles .

[[ 실험예Experimental Example 1: 키토산/덱스트란  1: chitosan / dextran 설페이트Sulfate (CS/(CS / DSDS ) 나노입자의 피복소재 농도 확인]) Confirmation of coating material concentration of nanoparticles]

본 실험예에서는 CS/DS 나노입자의 피복소재 농도를 선택하고자, 포집대상물질을 탑재하지 않고, CS 용액 농도가 0.5 mg/mL 일 때, DS 용액 농도 (0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1 mg/mL)에 따른 나노입자의 크기, 다분산지수(PDI), 점막 흡착성(뮤신 흡착능) 및 나노입자의 형태를 확인하였다.In this experiment, DS solution concentrations (0.1, 0.2, 0.3, 0.4, 0.5, 0.5, and 0.5) were measured when the concentration of CS solution was 0.5 mg / Nanoparticle size, polydispersity index (PDI), mucoadhesive ability (mucin adsorption capacity) and morphology of nanoparticles were determined according to the concentration of the nanoparticles.

나노입자의 제조는 상기 실시예 1과 동일하였다. 구체적으로는 0.5 mg/mL의 CS 용액 3 mL와 증류수 1.5 mL를 혼합한 것 4.5 mL에 덱스트란 설페이트 용액 (0.1, 0.3, 0.5 mg/mL) 3 mL를 추가하여 10분 동안 교반 (1,000 rpm) 하여 CS/DS 나노입자를 제조하였다. The preparation of nanoparticles was the same as in Example 1 above. Specifically, 3 mL of dextran sulfate solution (0.1, 0.3, 0.5 mg / mL) was added to 4.5 mL of a mixture of 3 mL of 0.5 mg / mL CS solution and 1.5 mL of distilled water, and the mixture was stirred at 1,000 rpm for 10 minutes. To prepare CS / DS nanoparticles.

나노입자의 입자 크기와 다분산지수(PDI) 측정은, 'Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, Worcestrshire, UK)'를 이용하여 측정하였다. 측정은 25±1℃에서 'multiple narrow modes'로 실행하였다.The particle size and polydispersity index (PDI) of the nanoparticles were measured using a Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, Worcestershire, UK). Measurements were performed at 25 ± 1 ° C with 'multiple narrow modes'.

점막 흡착성(뮤신 흡착능)의 측정은, 이전에 보고된 방법을 수정하여 적용하였다 (Shao, Y., Yang, L., & Han, H. K. TPGS-chitosome as an effective oral delivery system for improving the bioavailability of coenzyme Q10. European Journal of Pharmaceutics and Biopharmaceutics 89: 339-346 (2015)). Measurement of mucosal adsorption (mucin adsorption) was performed by modifying the previously reported method (Shao, Y., Yang, L., & Han, HK TPGS-chitosome as an effective oral delivery system for improving bioavailability of coenzyme Q10, European Journal of Pharmaceutics and Biopharmaceutics 89: 339-346 (2015)).

구체적으로는, 0.6 mL의 뮤신 용액 (0.5 mg/mL)을 0.6 mL의 나노입자 현탁액(나노입자 분산액)과 혼합하고, 37℃의 진탕항온수조(shaking water bath)에서 1시간 동안 배양하였다. 그 후, 10,000 rpm에서 5분 동안 원심분리한 후, 상층액을 분리하여 '브래드포드 프로테인 어세이(Bradford protein assay)'를 통해 프리(free) 뮤신의 양을 측정하였다.Specifically, 0.6 mL of mucin solution (0.5 mg / mL) was mixed with 0.6 mL of nanoparticle suspension (nanoparticle dispersion) and cultured in a shaking water bath at 37 DEG C for 1 hour. Then, after centrifugation at 10,000 rpm for 5 minutes, the supernatant was separated and the amount of free mucin was measured through a 'Bradford protein assay'.

상층액은 브래드포드 리간트(Bradford reagent)와 함께 5분 동안 배양하였고, 595 nm에서 스펙트로포토미터(spectrophotometer, Biomate 3S, Thermo scientific, Waltham, Massachusetts, USA)를 사용하여 흡광도를 측정하였다. 뮤신을 흡수한 나노입자의 양은 첨가한 뮤신의 양과 상층액에 남아있는 뮤신의 양 간의 차이로 계산하였으며, 뮤신 농도는 표준 곡선을 통해 계산되었다 (Pengpong, T., Sangvanich, P., Sirilertmukul, K., & Muangsin, N. Design, synthesis and in vitro evaluation of mucoadhesive p-coumarate-thiolated-chitosan as a hydrophobic drug carriers. European Journal of Pharmaceutics and Biopharmaceutics 86: 487-497 (2014)).The supernatant was incubated with Bradford reagent for 5 minutes and absorbance was measured at 595 nm using a spectrophotometer (Biomate 3S, Thermo scientific, Waltham, Massachusetts, USA). The amount of mucin-absorbing nanoparticles was calculated as the difference between the amount of mucin added and the amount of mucin remaining in the supernatant, and the mucin concentration was calculated from the standard curve (Pengpong, T., Sangvanich, P., Sirilertmukul, K , & Muangsin, N. Design, Synthesis and in vitro evaluation of mucoadhesive p-coumarate-thiolated-chitosan as a hydrophobic drug carriers. European Journal of Pharmaceutics and Biopharmaceutics 86: 487-497 (2014)).

나노입자의 입자 크기와 PDI 측정결과, DS 용액의 농도가 증가함에 따라 나노입자의 입자크기와 PDI가 모두 증가하는 경향을 나타냄을 확인할 수 있었다. 특히, DS 용액 농도가 0.7 ㎎/mL 이상이면, 입자 크기는 500 nm 이상으로 증가되었다. 또한, PDI 역시 0.5 이상으로 입자분포가 균일하지 않음을 확인할 수 있었다 (도 1 (a)).As a result of the particle size and PDI measurement of the nanoparticles, it was confirmed that the particle size and the PDI of the nanoparticles were both increased as the concentration of the DS solution increased. Particularly, when the DS solution concentration was 0.7 mg / mL or more, the particle size was increased to 500 nm or more. Also, it was confirmed that the PDI was 0.5 or more, and the particle distribution was not uniform (Fig. 1 (a)).

나노입자의 점막부착능 측정결과, 흡착된 뮤신의 양은 DS 농도 0.5 mg/mL 까지는 점막부착능이 농도의존적으로 증가하였으나, 0.5 mg/mL를 초과하면 점막부착능이 더이상 증가하지 않음을 확인할 수 있었다 (도 1(b)).As a result of measurement of the mucoadhesion ability of the nanoparticles, the adsorbed mucin content increased in a concentration-dependent manner at a DS concentration of 0.5 mg / mL, but it was found that when the concentration exceeded 0.5 mg / mL, the mucosal adhesion was no longer increased 1 (b)).

한편, 나노입자의 형태는, 0.5 mg/mL의 CS 용액, 0.3 mg/mL의 DS 용액을 이용하여 제조된 나노입자의 형태를 TEM(Transmission electron microscopy, JEM 2100F, JEOL, Tokyo, Japan)을 이용하여 관찰하였다 (Muthu, M. S., Kulkarni, S. A., Raju, A., & Feng, S.-S. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials 33: 3494-3501 (2012)). TEM으로 분석할 샘플은 200-mesh 카본으로 코팅된 구리 그리드(carbon-coated copper grid)에 놓고 2% 포스포텅스텐산 용액(phosphotungstic acid solution, Sigma-Aldrich Co.)을 사용하여 30분 동안 염색하였다. 염색이 끝난 후, 샘플을 현미경에 올려놓기 전에 37℃에서 대기 건조(air-dried)시켰다.On the other hand, the morphology of the nanoparticles was determined by TEM (transmission electron microscopy, JEM 2100F, JEOL, Tokyo, Japan) using a 0.5 mg / mL CS solution and a 0.3 mg / mL DS solution (Muthu, MS, Kulkarni, SA, Raju, A., & Feng, S.-S. Theranostic liposomes of TPGS coatings for targeted co- delivery of docetaxel and quantum dots. Biomaterials 33: 3494-3501 ). Samples to be analyzed by TEM were placed on a carbon-coated copper grid coated with 200-mesh carbon and dyed for 30 minutes using 2% phosphotungstic acid solution (Sigma-Aldrich Co.) . After dyeing, the samples were air-dried at 37 [deg.] C before being placed on the microscope.

관찰결과, 구면 형태, 낮은 PDI, 200~300 nm의 평균 크기를 갖는 입자임을 확인할 수 있었다 (도 2).As a result of the observation, it was confirmed that the particles have a spherical shape, a low PDI, and an average size of 200 to 300 nm (FIG. 2).

상기와 같은 결과로부터, 나노입자를 제조하기 위한 덱스트란 설페이트(DS) 용액의 농도는 0.1~0.5 mg/mL가 적당함을 확인할 수 있었다. From the above results, it was confirmed that the concentration of dextran sulfate (DS) solution for preparing nanoparticles was suitably from 0.1 to 0.5 mg / mL.

도 1은 CS/DS 나노입자의 덱스트란 설페이트(DS) 용액 농도에 따른 나노입자의 물리적 특성을 확인한 것으로, (a)는 나노입자의 입자크기, 다분산지수(PDI)를 측정한 결과이고, (b)는 점막부착능을 측정한 결과이다. 도 2는 TEM을 이용하여 촬영한 CS/DS 나노입자의 이미지이다.FIG. 1 shows the physical properties of nanoparticles according to the concentration of dextran sulfate (DS) solution of CS / DS nanoparticles. (A) shows the results of measuring the particle size and polydispersity index (PDI) (b) is the result of measurement of mucoadhesive ability. Figure 2 is an image of CS / DS nanoparticles photographed using TEM.

[[ 실험예Experimental Example 2:  2: 코엔자임Q10이Coenzyme Q10 탑재된 키토산/덱스트란  Mounted chitosan / dextran 설페이트Sulfate (CS/(CS / DSDS ) 나노입자의 물리적 특성 확인]) Identification of physical properties of nanoparticles]

본 실험예에서는 상기 실험예 1을 통해 선택된 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CoQ10-로드 CS/DS 나노입자의 물리적 특성을 확인하고자, 입자 크기(Particle size), 다분산지수(Polydispersity index), 분산율(Derived count rate), 나노입자의 형태를 확인하였다.In order to examine the physical properties of the CoQ10-loaded CS / DS nanoparticles prepared according to the concentration of the dextran sulfate (DS) solution selected in Experimental Example 1, the particle size, the polydispersity index Polydispersity index, Derived count rate, and morphology of nanoparticles.

제조된 CoQ10-로드 나노입자의 입자 크기, 다분산지수, 분산율은 하기 표 1과 같았다.The particle size, polydispersity index, and dispersion ratio of the prepared CoQ10-rod nanoparticles were as shown in Table 1 below.

입자 크기, 다분산지수, 분산율은 'Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, Worcestrshire, UK)'를 이용하여 측정하였다. The particle size, polydispersity index, and dispersion were measured using a Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, Worcestershire, UK).

폴리머Polymer 나노입자Nanoparticle 키토산 용액
(mg/mL)
Chitosan solution
(mg / mL)
덱스트란 설페이트 용액
(mg/mL)
Dextran sulfate solution
(mg / mL)
소디움 트리포스페이트 용액
(mg/mL)
Sodium triphosphate solution
(mg / mL)
입자크기 (nm)Particle Size (nm) 다분산지수Polydispersity index 분산율
(kcps)
Dispersion ratio
(kcps)
CS/DSCS / DS 0.50.5 0.10.1 -- 402.4±38.0ab 402.4 ± 38.0 ab 0.2±0.0b 0.2 ± 0.0 b 169,224±31,495b 169, 224 ± 31,495 b 0.30.3 329.1±22.9b 329.1 ± 22.9 b 0.2±0.0b 0.2 ± 0.0 b 229,567±50,154a 229,567 ± 50,154 a 0.50.5 447.1±68.3a 447.1 ± 68.3 a 0.3±0.2a 0.3 ± 0.2 a 219,438±22,513ab 219,438 ± 22,513 ab CS/TPPCS / TPP -- 0.050.05 358.4±50.7b 358.4 ± 50.7 b 0.2±0.0b 0.2 ± 0.0 b 188,267±16,319ab 188,267 ± 16,319 ab a-b Means with different letters are significantly different at p<0.05. ab Means with different letters are significantly different at p <0.05.

입자 크기를 측정한 결과, CoQ10-로드 CS/DS 나노입자, CoQ10-로드-CS/TPP 나노입자의 입자 사이즈는 329~447 nm 였고, CoQ10-로드 CS/DS 나노입자들의 입자크기는 DS 용액의 농도와 관련되지 않음을 확인할 수 있었다.As a result of the particle size measurement, the particle size of CoQ10-rod CS / DS nanoparticles and CoQ10-rod-CS / TPP nanoparticles was 329 to 447 nm, And it was not related to the concentration.

다분산지수(PDI)를 측정한 결과, CoQ10-로드 나노입자들의 PDI는 0.2에서 0.3으로, 본 발명의 나노 입자는 입자 인구의 동질성을 가지고 있다고 판단할 수 있었다 (Gaumet, M., Vargas, A., Gurny, R., & Delie, F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics 69: 1-9 (2008)). As a result of measuring the polydispersion index (PDI), the PDI of the CoQ10-rod nanoparticles was 0.2 to 0.3, and it was judged that the nanoparticles of the present invention had the homogeneity of the particle population (Gaumet, M., Vargas, A. Gurny, R., & Delie, F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics 69: 1-9 (2008)).

분산율(DCR)은 입자의 존재하에서 광 산란의 강도를 나타내며, 입자의 수와 크기에 영향을 받을 수 있는데, 입자의 수나 크기가 증가할수록, DCR이 증가하는 것으로 알려져 있다(Piest, M., & Engbersen, J. F. Role of boronic acid moieties in poly(amido amine)s for gene delivery. Journal of Controlled Release 155: 331-340 (2011)). 따라서, DS 용액의 농도가 0.3 mg/mL 일 때, 크기가 작은 나노입자가 제조되었음을 확인할 수 있었다.Dispersion ratio (DCR) represents the intensity of light scattering in the presence of particles, which can be affected by the number and size of particles. As the number or size of particles increases, DCR increases (Piest, M. & Engbersen, JF Role of boronic acid moieties in poly (amido amine) s for gene delivery. Journal of Controlled Release 155: 331-340 (2011)). Therefore, it was confirmed that when the DS solution concentration was 0.3 mg / mL, small-sized nanoparticles were produced.

[[ 실험예Experimental Example 3:  3: 코엔자임Q10이Coenzyme Q10 탑재된 키토산/덱스트란  Mounted chitosan / dextran 설페이트Sulfate (CS/(CS / DSDS ) 나노입자의 점막 부착 특성 확인]) Confirmation of mucoadhesion properties of nanoparticles]

본 실험예에서는 상기 실험예 1을 통해 선택된 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CoQ10-로드 CS/DS 나노입자의 점막 부착 특성을 확인하고자 하였다.In this Experimental Example, the mucoadhesion characteristics of the CoQ10-loaded CS / DS nanoparticles prepared according to the concentration of the dextran sulfate (DS) solution selected through Experimental Example 1 were examined.

코엔자임Q10을 탑재하고 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CS/DS 나노입자를, 'CS/DS NP1'(CS 용액 0.5 mg/mL, DS 용액 0.1 mg/mL로 제조), 'CS/DS NP2'(CS 용액 0.5 mg/mL, DS 용액 0.3 mg/mL로 제조), 'CS/DS NP3'(CS 용액 0.5 mg/mL, DS 용액 0.5 mg/mL로 제조)로 지칭하였고, 코팅되지 않은 코엔자임Q10은 'Free CoQ10', CoQ10-로드 CS/TPP 나노입자는 'CS/TPP NP'로 지칭한 후, 샘플로 사용하였다.CS / DS NP1 '(0.5 mg / mL of CS solution, 0.1 mg / mL of DS solution) prepared according to the concentration of dextran sulfate (DS) solution loaded with coenzyme Q10, CS / DS NP3 '(prepared from CS solution 0.5 mg / mL, DS solution 0.3 mg / mL) and CS / DS NP3 (CS solution 0.5 mg / mL, DS solution 0.5 mg / mL) Uncoated coenzyme Q10 was referred to as 'Free CoQ10' and CoQ10-loaded CS / TPP nanoparticles as 'CS / TPP NP' and then used as a sample.

실험방법은 상기 실험예 1에 기재된 방법과 동일하였다.The experimental method was the same as that described in Experimental Example 1 above.

실험결과, DS 용액의 농도가 증가함에 따라, 나노입자들에 흡착된 뮤신의 양이 증가함을 확인할 수 있었다. 게다가, DS 용액 0.3 mg/mL, 0.5 mg/mL로 제조된 CoQ10-로드CS/DS 나노입자들에 부착된 뮤신의 양은 각 약 0.24 mg/mL, 약 0.51 mg/mL로 CoQ10-로드 CS/TPP 나노입자보다(약 0.01 mg/mL) 약 24배, 50배 정도의 뮤신이 흡착됨을 확인할 수 있었다 (도 3).As a result of the experiment, it was confirmed that the amount of mucin adsorbed on the nanoparticles increases with increasing concentration of the DS solution. In addition, the amount of mucin attached to CoQ10-loaded CS / DS nanoparticles prepared with DS solution 0.3 mg / mL and 0.5 mg / mL was about 0.24 mg / mL, about 0.51 mg / mL, It was confirmed that mucins were adsorbed about 24 times and 50 times more than the nanoparticles (about 0.01 mg / mL) (FIG. 3).

도 3은 캡슐화하지 않은 코엔자임Q10 (Free CoQ10), CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 점막부착능을 확인한 결과이다.FIG. 3 is a graph showing the results of the measurement of CoQ10-loaded CS / TPP nanoparticles (CS / TPP NP), CoQ10-loaded CS / DS nanoparticles (CS / DS NP1, CS / DS NP2, NP3).

상기와 같은 결과로부터, 본 발명의 키토산/덱스트란 설페이트 나노입자는 점막 부착능이 우수함을 확인할 수 있었다.From the above results, it was confirmed that the chitosan / dextran sulfate nanoparticles of the present invention had excellent mucoadhesive ability.

[[ 실험예Experimental Example 4:  4: 코엔자임Q10이Coenzyme Q10 탑재된 키토산/ Mounted chitosan / 덱스트란Dextran 설페이트Sulfate (CS/(CS / DSDS ) 나노입자의 ) Of nanoparticles 포집효율Collection efficiency 확인] Confirm]

본 실험예에서는 상기 실험예 1을 통해 선택된 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CoQ10-로드 CS/DS 나노입자의 포집효율(entrapment efficiency, EE)을 확인하고자 하였다.In this Experimental Example, the entrapment efficiency (EE) of CoQ10-loaded CS / DS nanoparticles prepared according to the concentration of the dextran sulfate (DS) solution selected in Experimental Example 1 was examined.

코엔자임Q10을 탑재하고 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CS/DS 나노입자를, 'CS/DS NP1'(CS 용액 0.5 mg/mL, DS 용액 0.1 mg/mL로 제조), 'CS/DS NP2'(CS 용액 0.5 mg/mL, DS 용액 0.3 mg/mL로 제조), 'CS/DS NP3'(CS 용액 0.5 mg/mL, DS 용액 0.5 mg/mL로 제조)로 지칭하였고, CoQ10-로드 CS/TPP 나노입자는 'CS/TPP NP'로 지칭한 후, 샘플로 사용하였다.CS / DS NP1 '(0.5 mg / mL of CS solution, 0.1 mg / mL of DS solution) prepared according to the concentration of dextran sulfate (DS) solution loaded with coenzyme Q10, CS / DS NP3 '(prepared from CS solution 0.5 mg / mL, DS solution 0.3 mg / mL) and CS / DS NP3 (CS solution 0.5 mg / mL, DS solution 0.5 mg / mL) CoQ10-loaded CS / TPP nanoparticles were referred to as 'CS / TPP NP' and were used as samples.

CoQ10-로드 CS/DS 나노입자, CoQ10-로드 CS/TPP 나노입자의 포집효율은 HPLC(validated high performance liquid chromatography)를 이용해 측정하였다 (Ankola, D. D., Viswanad, B., Bhardwaj, V., Ramarao, P., & Kumar, M. N. V. R. Development of potent oral nanoparticulate formulation of coenzyme Q10 for treatment of hypertension: Can the simple nutritional supplements be used as first line therapeutic agents for prophylaxis/therapy? European Journal of Pharmaceutics and Biopharmaceutics 67: 361-369 (2007)).The collection efficiency of CoQ10-loaded CS / DS nanoparticles, CoQ10-loaded CS / TPP nanoparticles was measured using HPLC (validated high performance liquid chromatography) (Ankola, DD, Viswanad, B., Bhardwaj, V., Ramarao, P., & Kumar, MNVR Development of potent oral nanoparticulate formulation of coenzyme Q10 for treatment of hypertension: Can the simple nutritional supplements be used as first line therapeutic agents for prophylaxis / therapy? European Journal of Pharmaceutics and Biopharmaceutics 67: 361-369 2007).

구체적으로는, CoQ10-로드 나노입자를 30,000×g에서 30분 동안 초원심분리(Optima TL ultracentrifuge, Beckman, Fullerton, CA, USA) 하여 얻어진 상층액의 free CoQ10의 양을 분석함으로써 측정하였다. 포집효율은 하기 수학식 1을 이용하여 계산하였다. Specifically, CoQ10-rod nanoparticles were determined by analyzing the amount of free CoQ10 in the supernatant obtained by ultracentrifugation (Optima TL ultracentrifuge, Beckman, Fullerton, Calif., USA) at 30,000 × g for 30 minutes. The collection efficiency was calculated using the following equation (1).

CoQ10을 정량하기 위하여, 역상HPLC(HPLC, Waters 486 Tunable Absorbance Detector, Waters Corporation, Milford, MA, USA)를 사용하였다. HPLC 시스템은 'Waters 515 pump'와 'Waters 486 tunable absorbance detector'로 구성되어있으며, 'A CAPCELL PAK C18 column (250×4.6 mm, 5 μm)'이 사용되었고, 이동상은 에탄올과 메탄올 (90:10% v/v)을 유속 1.0 mL/분으로 하여 275 nm에서 UV 검출(detection)하였다 (Sakchareonkeat, P., Huang, T. C., Suwannaporn, P., Hsuan Chiang, Y., Liang Hsu, J., & Han Hong, Y. Encapsulation efficiency of coenzyme Q10- liposomes in alginate. Nutrition & Food Science 43: 150-160 (2013)).To quantify CoQ10, reverse phase HPLC (HPLC, Waters 486 Tunable Absorbance Detector, Waters Corporation, Milford, MA, USA) was used. The HPLC system consisted of 'Waters 515 pump' and 'Waters 486 tunable absorbance detector'. 'A CAPCELL PAK C18 column (250 × 4.6 mm, 5 μm)' was used and the mobile phase consisted of ethanol and methanol %) was UV detected at 275 nm at a flow rate of 1.0 mL / min (Sakchareonkeat, P., Huang, TC, Suwannaporn, P., Hsuan Chiang, Y., Liang Hsu, Han Hong, Y. Encapsulation efficiency of coenzyme Q10- liposomes in alginate. Nutrition & Food Science 43: 150-160 (2013)).

Figure pat00001
Figure pat00001

실험결과, CS/DS NP1의 포집효율은 약 65%, CS/DS NP2, 3의 포집효율은 약 95%로 DS 용액의 농도가 증가할수록 포집효율이 증가함을 확인할 수 있었다. 반면, CS/TPP NP는 약 59%의 포집효율을 나타내어 CS/DS NP2, 3에 비하여 낮은 포집효율을 나타냄을 확인할 수 있었다 (도 4). As a result, the collection efficiency of CS / DS NP1 was about 65% and the collection efficiency of CS / DS NP2, 3 was about 95%. As the concentration of DS solution increased, the collection efficiency was increased. On the other hand, the CS / TPP NP showed a collection efficiency of about 59%, indicating a lower collection efficiency than the CS / DS NP2, 3 (FIG. 4).

도 4는 CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 포집효율을 확인한 결과이다.Fig. 4 shows the results of the collection efficiency of CoQ10-loaded CS / TPP nanoparticles (CS / TPP NP) and CoQ10-loaded CS / DS nanoparticles (CS / DS NP1, CS / DS NP2 and CS / DS NP3).

상기와 같은 결과로부터, 본 발명의 키토산/덱스트란 설페이트 나노입자는 포집효율이 우수하여 코엔자임Q10을 포함하는 기능성 물질을 운반하는 운반체로서의 사용이 적합함을 알 수 있었다.From the above results, it was found that the chitosan / dextran sulfate nanoparticles of the present invention are excellent in the collection efficiency, and thus are suitable for use as a carrier for carrying a functional substance containing coenzyme Q10.

[[ 실험예Experimental Example 5:  5: 코엔자임Q10이Coenzyme Q10 탑재된 키토산/ Mounted chitosan / 덱스트란Dextran 설페이트Sulfate (CS/(CS / DSDS ) 나노입자의 용해성 확인]) Determination of solubility of nanoparticles]

본 실험예에서는 상기 실험예 1을 통해 선택된 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CoQ10-로드 CS/DS 나노입자의 용해성을 확인하고자 하였다.In this Example, the solubility of CoQ10-loaded CS / DS nanoparticles prepared according to the concentration of the dextran sulfate (DS) solution selected through Experimental Example 1 was examined.

코엔자임Q10을 탑재하고 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CS/DS 나노입자를, 'CS/DS NP1'(CS 용액 0.5 mg/mL, DS 용액 0.1 mg/mL로 제조), 'CS/DS NP2'(CS 용액 0.5 mg/mL, DS 용액 0.3 mg/mL로 제조), 'CS/DS NP3'(CS 용액 0.5 mg/mL, DS 용액 0.5 mg/mL로 제조)로 지칭하였고, 코팅되지 않은 코엔자임Q10은 'Free CoQ10', CoQ10-로드 CS/TPP 나노입자는 'CS/TPP NP'로 지칭한 후, 샘플로 사용하였다.CS / DS NP1 '(0.5 mg / mL of CS solution, 0.1 mg / mL of DS solution) prepared according to the concentration of dextran sulfate (DS) solution loaded with coenzyme Q10, CS / DS NP3 '(prepared from CS solution 0.5 mg / mL, DS solution 0.3 mg / mL) and CS / DS NP3 (CS solution 0.5 mg / mL, DS solution 0.5 mg / mL) Uncoated coenzyme Q10 was referred to as 'Free CoQ10' and CoQ10-loaded CS / TPP nanoparticles as 'CS / TPP NP' and then used as a sample.

Free CoQ10와 CoQ10-로드 나노입자의 용해도는 Sun et al. (2012)의 방법을 수정하여 측정하였다 (Sun, J., Wang, F., Sui, Y., She, Z., Zhai, W., Wang, C., & Deng, Y. Effect of particle size on solubility, dissolution rate, and oral bioavailability: Evaluation using coenzyme Q10 as naked nanocrystals. International Journal of Nanomedicine 7: 5733-5744 (2012)).The solubilities of Free CoQ10 and CoQ10-rod nanoparticles are described in Sun et al. (Wang, W., Wang, W., & Deng, Y. Effect of particle size on the particle size on solubility, dissolution rate, and oral bioavailability: Evaluation using coenzyme Q10 as naked nanocrystals. International Journal of Nanomedicine 7: 5733-5744 (2012)).

구체적인 실험방법은 다음과 같았다. 용해된 CoQ10을 정량하기 위해, free CoQ10와 CoQ10-로드 나노입자 현탁액의 추출을 진행하였다. 먼저, 200 μL의 메탄올과 600 μL의 헥산을 100 μL의 샘플에 첨가하고 3분간 볼텍싱(voltexing)하여 잘 섞어 주었다. 그 후, 혼합물을 10,000 rpm에서 10분 동안 원심분리(Combi-408, Hanil Science Ins., Incheon, Korea) 하여 500 μL의 상층액을 제거하였다. 이 추출 과정을 2회 반복으로 진행하였고 600 μL의 상층액을 제거하였다. 총 상층액을 모아 'speed vacuum concentrator (Ecospin 3180C, BioTron, Daejeon, Korea)'로 건조하였다. 잔여물은 300 μL의 에탄올 (10%)을 부어 원상태로 만들었고 현탁액을 0.45 μm 포어 사이즈(pore size)의 PTFE 멤브레인 필터(polytetrafluoroethylene membrane filter, Xiboshil, Tianjin Fuji Tech Co., Tianjin, China)를 사용하여 걸러냈다. 걸러진 용액에 존재하는 CoQ10은 HPLC로 측정하였다.Specific experimental methods were as follows. To quantify dissolved CoQ10, extraction of free CoQ10 and CoQ10-rod nanoparticle suspensions was carried out. First, 200 μL of methanol and 600 μL of hexane were added to 100 μL of the sample, followed by vortexing for 3 minutes. Then, the mixture was centrifuged at 10,000 rpm for 10 minutes (Combi-408, Hanil Science Inc., Incheon, Korea) to remove 500 μL of supernatant. This extraction procedure was repeated twice and 600 μL of supernatant was removed. Total supernatant was collected and dried with 'speed vacuum concentrator (Ecospin 3180C, BioTron, Daejeon, Korea). The residue was reconstituted by pouring 300 μL of ethanol (10%) and the suspension was filtered through a 0.45 μm pore size polytetrafluoroethylene membrane filter (Xiboshil, Tianjin Fuji Tech Co., Tianjin, China) I filtered it. The CoQ10 present in the filtered solution was determined by HPLC.

실험결과, DS 용액의 농도에 따라 용해성이 증가함을 확인할 수 있었다. CS/DS NP의 용해성은 140~164 ㎍/mL로, Free CoQ10의 용해성 (약 128 ㎍/mL), CS/TPP NP의 용해성 (약 132 ㎍/mL)에 비해 높은 값을 나타내었다 (도 5). As a result, it was confirmed that the solubility was increased according to the concentration of DS solution. Solubility of CS / DS NP was 140 ~ 164 ㎍ / mL, which was higher than solubility (about 128 ㎍ / mL) of Free CoQ10 and solubility (about 132 ㎍ / mL) of CS / TPP NP ) .

도 5는 캡슐화하지 않은 코엔자임Q10 (Free CoQ10), CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 용해성을 확인한 결과이다.FIG. 5 is a graph showing the results of the determination of CoQ10-loaded CS / TPP nanoparticles (CS / TPP NP), CoQ10-loaded CS / DS nanoparticles (CS / DS NP1, CS / DS NP2, NP3). &Lt; / RTI &gt;

상기와 같은 결과로부터, 본 발명의 키토산/덱스트란 설페이트 나노입자는 코엔자임Q10을 포함하는 기능성 물질을 캡슐화함으로써, 기능성 물질의 용해성을 증가시킴을 알 수 있었다.From the above results, it was found that the chitosan / dextran sulfate nanoparticles of the present invention increase the solubility of the functional material by encapsulating the functional material containing coenzyme Q10.

[[ 실험예Experimental Example 6:  6: 코엔자임Q10이Coenzyme Q10 탑재된 키토산/덱스트란  Mounted chitosan / dextran 설페이트Sulfate (CS/(CS / DSDS ) 나노입자의 열 및 광에 대한 안정성 확인]) Confirmation of stability of nanoparticles against heat and light]

본 실험예에서는 코엔자임Q10의 열 및 광 안정성에 CS/DS 나노캡슐화가 미치는 영향을 확인하고자 하였다.In this experimental example, the effect of CS / DS nanocapsulation on the thermal and light stability of coenzyme Q10 was examined.

코엔자임Q10을 탑재하고 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CS/DS 나노입자를, 'CS/DS NP1'(CS 용액 0.5 mg/mL, DS 용액 0.1 mg/mL로 제조), 'CS/DS NP2'(CS 용액 0.5 mg/mL, DS 용액 0.3 mg/mL로 제조), 'CS/DS NP3'(CS 용액 0.5 mg/mL, DS 용액 0.5 mg/mL로 제조)로 지칭하였고, 코팅되지 않은 코엔자임Q10은 'Free CoQ10', CoQ10-로드 CS/TPP 나노입자는 'CS/TPP NP'로 지칭한 후, 샘플로 사용하였다.CS / DS NP1 '(0.5 mg / mL of CS solution, 0.1 mg / mL of DS solution) prepared according to the concentration of dextran sulfate (DS) solution loaded with coenzyme Q10, CS / DS NP3 '(prepared from CS solution 0.5 mg / mL, DS solution 0.3 mg / mL) and CS / DS NP3 (CS solution 0.5 mg / mL, DS solution 0.5 mg / mL) Uncoated coenzyme Q10 was referred to as 'Free CoQ10' and CoQ10-loaded CS / TPP nanoparticles as 'CS / TPP NP' and then used as a sample.

(1) 열에 대한 안정성 확인(1) Confirmation of thermal stability

열에 대한 안정성을 평가하기 위해 CoQ10-로드 CS/DS 나노입자, CoQ10-로드 CS/TPP 나노입자, free CoQ10을 60℃의 워터배스(water bath)에 준비하였다. 각 샘플의 코엔자임Q10의 양은 상기 실험예 5와 동일한 추출 과정을 거친 후 24시간 간격으로 4일 동안 HPLC로 평가하였다.CoQ10-rod CS / DS nanoparticles, CoQ10-rod CS / TPP nanoparticles, and free CoQ10 were prepared in a water bath at 60 DEG C to evaluate heat stability. The amount of coenzyme Q10 in each sample was evaluated by HPLC for 4 days at intervals of 24 hours after the same extraction procedure as in Experimental Example 5 above.

확인결과, Free CoQ10은 3일 이후, 높은 분해(약 70%)를 보여, 코엔자임Q10 잔여량이 약 38%인 반면, 나노캡슐화된 코엔자임Q10은 4일 후에도, 코엔자임Q10의 잔여량이 67~81%로 열 안정성이 현저히 향상됨을 확인할 수 있었다 (도 6).As a result, free CoQ10 showed high degradation (about 70%) after 3 days, and the remaining amount of coenzyme Q10 was about 38%, while that of nano-encapsulated coenzyme Q10 remained in the range of 67 to 81% And the thermal stability was remarkably improved (FIG. 6).

도 6은 캡슐화하지 않은 코엔자임Q10 (Free CoQ10), CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 열에 대한 안정성을 확인한 결과이다.FIG. 6 is a graph showing the results of the determination of CoQ10-loaded CS / TPP nanoparticles (CS / TPP NP), CoQ10-loaded CS / DS nanoparticles (CS / DS NP1, CS / DS NP2, NP3) was confirmed to be stable against heat.

상기와 같은 결과로부터, 본 발명의 키토산/덱스트란 설페이트 나노입자는 코엔자임Q10을 포함하여 열에 불안정한 기능성 물질을 열로부터 안정화시키는 효율적인 운반체로 사용될 수 있음을 확인할 수 있었다.From the above results, it was confirmed that the chitosan / dextran sulfate nanoparticles of the present invention can be used as an efficient carrier for stabilizing heat-labile functional materials including coenzyme Q10 from heat.

(2) 광에 대한 안정성 확인(2) Confirmation of stability against light

광에 대한 안정성을 확인하기 위해, CoQ10-로드 CS/DS 나노입자와 CoQ10-로드 CS/TPP 나노입자, free CoQ10를, 8시간 동안 25℃에서 UV 램프 (Vilber Lourmat, Torcy, France)를 이용하여 254 nm의 광을 조사시켰다. 샘플과 UV 광원과의 거리는 15 cm 였고, 샘플은 상기 실험예 5에 기재된 동일한 추출 과정을 거친 후 1시간 간격으로 HPLC를 이용하여 코엔자임Q10의 양을 측정하였다 (Fir, M. M., Milivojevic, L., Prosek, M., & Smidovnik, A. Property studies of coenzyme Q10-cyclodextrins complexes. Acta Chimica Slovenica 56: 885-891 (2009a), Fir, M. M., Smidovnik, A., Milivojevic, L., Zmitek, J., & Prosek, M. Studies of CoQ10 and cyclodextrin complexes: Solubility, thermo-and photo-stability. Journal of Inclusion Phenomena and Macrocyclic Chemistry 64: 225-232 (2009b)).To confirm the stability to light, CoQ10-loaded CS / DS nanoparticles and CoQ10-loaded CS / TPP nanoparticles, free CoQ10, were incubated for 8 hours at 25 ° C using a UV lamp (Vilber Lourmat, Torcy, France) And light of 254 nm was irradiated. The distance between the sample and the UV light source was 15 cm, and the amount of coenzyme Q10 was measured using HPLC at 1 hour intervals after the same extraction process as described in Experimental Example 5 (Fir, MM, Milivojevic, L., Smidovnik, A., Milivojevic, L., Zmitek, J., Fir, MM, Smirnov, A., Prosek, M., & Smidovnik, A. Property studies of coenzyme Q10-cyclodextrins complexes. Acta Chimica Slovenica 56: 885-891 (2009a) & Prosek, M. Studies of CoQ10 and cyclodextrin complexes: Solubility, thermo-and photo-stability. Journal of Inclusion Phenomena and Macrocyclic Chemistry 64: 225-232 (2009b)).

확인결과, 광 조사 8시간 후, 나노캡슐화된 코엔자임Q10의 잔여량은 약 47~50%임에 반해, 나노캡슐화를 하지 않은 코엔자임Q10의 잔여량은 약 28%임을 확인할 수 있었다 (도 7).As a result, it was confirmed that the remaining amount of coenzyme Q10 after nano-encapsulation was about 47% to 50% after 8 hours of light irradiation, while the remaining amount of coenzyme Q10 without nano-encapsulation was about 28% (FIG.

도 7은 캡슐화하지 않은 코엔자임Q10 (Free CoQ10), CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 광에 대한 안정성을 확인한 결과이다.FIG. 7 is a graph showing the distribution of CoQ10-loaded CS / TPP nanoparticles (CS / TPP NP), CoQ10-loaded CS / DS nanoparticles (CS / DS NP1, CS / DS NP2, NP3) was confirmed to be stable to light.

상기와 같은 결과로부터, 본 발명의 키토산/덱스트란 설페이트는 코엔자임Q10을 포함하여 광에 불안정한 기능성 물질을 광으로부터 안정화시키는 효율적인 운반체로 사용될 수 있음을 확인할 수 있었다.From the above results, it was confirmed that the chitosan / dextran sulfate of the present invention can be used as an efficient carrier for stabilizing a light-unstable functional substance from light, including coenzyme Q10.

[[ 실험예Experimental Example 7:  7: 코엔자임Q10이Coenzyme Q10 탑재된 키토산/덱스트란  Mounted chitosan / dextran 설페이트Sulfate (CS/(CS / DSDS ) 나노입자의 Caco-2 세포 ) Nanoparticles of Caco-2 cells 단층막Monolayer 조직  group 투과능Permeability 확인]  Confirm]

본 실험예에서는 상기 실험예 1을 통해 선택된 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CoQ10-로드 나노입자의 대장세포 Caco-2 단층막 조직(장점막 표면을 구성하는 장세포층)의 투과능을 확인하고자 하였다.In this Experimental Example, the permeability of the CoQ10-rod nanoparticles prepared according to the concentration of the dextran sulfate (DS) solution selected in Experimental Example 1 to the colonic Caco-2 monolayer tissue (intestinal cell layer constituting the surface of the intestinal membrane) Respectively.

코엔자임Q10을 탑재하고 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CS/DS 나노입자를, 'CS/DS NP1'(CS 용액 0.5 mg/mL, DS 용액 0.1 mg/mL로 제조), 'CS/DS NP2'(CS 용액 0.5 mg/mL, DS 용액 0.3 mg/mL로 제조), 'CS/DS NP3'(CS 용액 0.5 mg/mL, DS 용액 0.5 mg/mL로 제조)로 지칭하였고, 코팅되지 않은 코엔자임Q10은 'Free CoQ10', CoQ10-로드 CS/TPP 나노입자는 'CS/TPP NP'로 지칭한 후, 샘플로 사용하였다.CS / DS NP1 '(0.5 mg / mL of CS solution, 0.1 mg / mL of DS solution) prepared according to the concentration of dextran sulfate (DS) solution loaded with coenzyme Q10, CS / DS NP3 '(prepared from CS solution 0.5 mg / mL, DS solution 0.3 mg / mL) and CS / DS NP3 (CS solution 0.5 mg / mL, DS solution 0.5 mg / mL) Uncoated coenzyme Q10 was referred to as 'Free CoQ10' and CoQ10-loaded CS / TPP nanoparticles as 'CS / TPP NP' and then used as a sample.

단층막 조직을 12-웰 트렌스웰(well transwell)에 옮겨 배양하였고, 트랜스포트(transport) 실험 전까지 이틀마다 배지를 교체하였다. TEER(Transepithelial electrical resistance)은 투과실험에 적용가능한 단분자층 셀(monolayer cell)을 판단하기 위해 측정하였다. 이때 세포의 단분자층(cell monolayer)이 400 Ω cm2 이상일 때 투과실험에 적용 가능하다고 판단하였다.The monolayer tissue was transferred to a 12-well transwell and the medium was replaced every two days before the transport experiment. TEER (Transepithelial electrical resistance) was measured to determine the monolayer cell applicable for the transmission experiment. When the cell monolayer of the cell was 400 Ω cm 2 or more, it was considered to be applicable to the permeation experiment.

HBSS-HEPES 버퍼는 세포투과 실험을 위한 세포 배양에 사용하였고, 단분자층(monolayer)의 꼭지면(apical side)과 기저측면(basolateral side)부터 배지를 제거한 후 세포(cell)를 HBSS-HEPES 버퍼 (12-well; 1.5 ml of basolateral and 0.5 mL of apical)와 함께 37℃에서 10분 동안 배양하였다. 배양한 배지를 제거한 후에 바깥쪽에는 코엔자임Q10을 함유한 배지를 넣어 주었다.The HBSS-HEPES buffer was used for cell culture for cell permeation experiments. After removing the medium from the apical side and basolateral side of the monolayer, the cells were suspended in HBSS-HEPES buffer (12 1.5 mL of basolateral and 0.5 mL of apical) for 10 min at 37 ° C. After the cultured medium was removed, a medium containing coenzyme Q10 was added to the outside.

유출 실험(efflux experiment)에서는, 안쪽에 나노입자 분산액 (나노입자)을 함유한 배지를 넣어주고 단분자층(monolayer)을 120분 동안 배양하였다. 투과 측정을 위하여 배양액의 소분액을 지정된 시간에 세포의 꼭지면(apical side)에 방출시키고, 샘플을 즉시 분석하기 위해 다시 수집하였다. Papp(apparent permeability coefficient)는 하기 수학식 2를 이용하여 계산하였다.In the efflux experiment, the medium containing the nanoparticle dispersion (nanoparticle) was placed on the inside and a monolayer was incubated for 120 minutes. For permeation measurement, a small aliquot of the culture was released to the apical side of the cell at a designated time and the sample was collected again for immediate analysis. Papp (apparent permeability coefficient) was calculated using the following equation (2).

Figure pat00002
Figure pat00002

dQ/dt: receiver solution 질량의 linear appearance ratedQ / dt: linear appearance rate of receiver solution mass

A: 세포 단측막(cell monolayer)의 면적(1.13 cm2)A: area of cell monolayer (1.13 cm 2 )

Co: 초기 기질농도 Co: initial substrate concentration

실험결과, 나노입자로 포집한 코엔자임Q10은 캡슐화하지 않은 코엔자임Q10 에 비해 기저측면(basolateral)에서 꼭지면(apical)으로의 유출이 50% 정도 감소함을 확인할 수 있었다 (도 8)As a result, it was confirmed that the coenzyme Q10 captured by the nanoparticles decreased by about 50% from the basolateral to the apical side compared to the unencapsulated coenzyme Q10 (FIG. 8)

도 8은 캡슐화하지 않은 코엔자임Q10 (Free CoQ10), CoQ10-로드 CS/TPP 나노입자(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 대장세포 Caco-2 투과능을 확인한 결과이다.Figure 8 is a graph showing the results of the determination of CoQ10-loaded CS / TPP nanoparticles (CS / TPP NP), CoQ10-loaded CS / DS nanoparticles (CS / DS NP1, CS / DS NP2, NP3) in the colon cell Caco-2.

상기와 같은 결과로부터, 본 발명의 키토산/덱스트란 설페이트 나노입자는 코엔자임Q10과 같은 기능성 물질의 체외 배출을 억제시킴을 확인할 수 있었다.From the above results, it was confirmed that the chitosan / dextran sulfate nanoparticles of the present invention inhibit the excretion of functional substances such as Coenzyme Q10 in vitro.

[[ 실험예Experimental Example 9: 키토산/덱스트란  9: chitosan / dextran 설페이트Sulfate 나노입자의  Of nanoparticles 대장세포Colonic cell  of mine 흡수능Absorption capacity 확인] Confirm]

본 실험예에서는 상기 실험예 1을 통해 선택된 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CS/DS 나노입자의 대장세포 내 흡수능을 확인하고자 하였다.In this Experimental Example, CS / DS nanoparticles prepared according to the concentration of the dextran sulfate (DS) solution selected in Experimental Example 1 were tested for their ability to absorb in the colon.

(1) 정성적 실험(Confocal laser scanning microscopy)(1) Confocal laser scanning microscopy

CLSM(Confocal laser scanning microscopy)를 이용하여 나노캡슐화에 따른 쿠마린 6(coumarin 6)의 Caco-2 세포 흡수능을 확인함으로써 CS/DS 나노입자의 세포 흡수능을 확인하고자 하였다. To confirm the ability of CS / DS nanoparticles to absorb Caco-2 cells by confirming the ability of coumarin 6 to undergo nanocapsulization using CLSM (Confocal laser scanning microscopy).

Caco-2 세포(cells) (4×105 cells/well)를 글래스-바텀 디쉬(glass-bottom dish)에 주입하여 37℃에서 50~70%가 부착할 때까지 배양하였다. 그 후, 세포를 free 쿠마린 6(Coumarin 6)와 쿠마린 6(Coumarin 6)-로드 CS/DS 나노입자 (0.5 mg/mL CS 용액, 0.5 mg/mL DS 용액으로 제조된 CS/DS 나노입자 이용)에 노출시켜 (equivalent to 1 ㎍/mL) 2시간 동안 배양하였다. 배양 후, 세포 배양 배지를 흡인하고 차가운 PBS(phosphate buffered saline)로 세척하였다. 그 후, 세포를 PBS(pH 7.4)에서 70% 에탄올로 15분간 상온에서 고정시켰다. 그 후, PBS로 2회 세척하고 핵을 PI(propidium iodide)로 30분간 염색하였다. 그 후, 코버 글래시스(cover glasses)에서 세포를 조심히 떼어 내어 슬라이드 글래시스(slide glasses)에 부착시켰다. Caco-2 cells (4 × 10 5 cells / well) were injected into a glass-bottom dish and cultured at 37 ° C. until 50-70% of the cells were attached. Cells were then seeded with free Coumarin 6 and Coumarin 6-loaded CS / DS nanoparticles (CS / DS nanoparticles prepared with 0.5 mg / mL CS solution, 0.5 mg / mL DS solution) (Equivalent to 1 [mu] g / mL) for 2 hours. After incubation, the cell culture medium was aspirated and washed with cold PBS (phosphate buffered saline). The cells were then fixed with 70% ethanol in PBS (pH 7.4) for 15 minutes at room temperature. Then, the cells were washed twice with PBS, and the nuclei were stained with PI (propidium iodide) for 30 minutes. The cells were then carefully removed from the cover glasses and attached to slide glasses.

나노입자의 셀룰러 업테이크(cellular uptake)는 CLSM(Confocal laser scanning microscopy) (TCS SP5, Leica Co., Ltd, Wetzlar, Germany) (emission at 505 nm, excitation at 420 nm)을 이용하여 측정하였다. 또한, 샘플의 형광강도는 'Leica confocal software (Leica Microsystems, Heidelberg, Germany)'와 'the ImageJ software system (NIH, Bethesda, MD, USA)'를 이용하여 콘포칼 이미지(confocal image)를 분석하였다.The cellular uptake of the nanoparticles was measured using confocal laser scanning microscopy (TCS SP5, Leica Co., Ltd., Wetzlar, Germany) (emission at 505 nm, excitation at 420 nm). The fluorescence intensity of the sample was analyzed by confocal images using Leica confocal software (Leica Microsystems, Heidelberg, Germany) and the ImageJ software system (NIH, Bethesda, MD, USA)

분석결과, 형광(FITC) 채널에서는 Coumarin 6-로드 CS/DS 나노입자의 흡수된 정도가 녹색으로 발광된 것을 볼 수 있으며, PI 채널에서는 PI로 염색된 장 세포의 핵이 적색으로 나타난 것을 볼 수 있다. FITC와 PI를 종합해보았을 때, 핵 주변 세포질을 녹색 형광이 둘러싸고 있으므로 CS/DS 나노입자가 Caco-2 장 세포 내로 유입되었음을 알 수 있었다 (도 9).In the fluorescence (FITC) channel, the absorbance of Coumarin 6-rod CS / DS nanoparticles was shown to be green. In the PI channel, the nucleus of PI-stained intestinal cells was red have. When FITC and PI were combined, it was found that the CS / DS nanoparticles were introduced into the Caco-2 cells because green fluorescence surrounds the cytoplasm of nuclear periplasm (FIG. 9).

도 9는 콘포칼 현미경을 이용하여 측정한 CS/DS 나노입자의 Caco-2 세포 투과능을 확인한 결과이다. (a)는 캡슐화하지 않은 쿠마린 6(coumarin 6), (b)는 CS/DS 캡슐에 포집된 쿠마린 6(coumarin 6)의 이미지이다.FIG. 9 shows the results of confirming Caco-2 cell permeability of CS / DS nanoparticles measured using a confocal microscope. (a) is an unencapsulated coumarin 6, and (b) is an image of coumarin 6 captured in CS / DS capsules.

한편, 쿠마린 6와 캡슐화한 쿠마린 6의 형광세기는 ImageJ로 측정하였으며, 평균 픽셀 강도는 23.9 및 27.8로 나타났다.On the other hand, the fluorescence intensity of coumarin 6 and encapsulated coumarin 6 was measured by ImageJ, and the average pixel intensities were 23.9 and 27.8.

상기와 같은 결과로부터, 본 발명의 키토산/덱스트란 설페이트 나노입자가 장 세포로 우수하게 흡수됨을 확인할 수 있었다.From the above results, it was confirmed that the chitosan / dextran sulfate nanoparticle of the present invention was excellently absorbed into intestinal cells.

(2)(2) 정량적 실험Quantitative Experiment

선행된 연구 (Russell-Jones et al., 1999; Saito et al., 2005)를 변형하여 적용하였다 (Russell-Jones, G., Arthur, L., & Walker, H. Vitamin B12-mediated transport of nanoparticles across Caco-2 cells. International Journal of Pharmaceutics 179:247-255 (1999), Saito, Y., Itagaki, S., Otsuka, Y., Kobayashi, Y., Okumura, H., Kobayashi, M., Hirano, T., & Iseki, K. Substrate specificity of the nateglinide/H+ cotransport system for phenolic Acids. Journal of Agricultural and Food Chemistry 53: 6100-6104 (2005)).(Russell-Jones, G., Arthur, L., & Walker, H.) Vitamin B12-mediated transport of nanoparticles (Russell-Jones et al., 1999; Saito et al., 2005) Cobata, Y., Okumura, H., Kobayashi, M., Hirano (1999), Saito, Y., Itagaki, S., Otsuka, Y., Kobayashi, Y. , T., & Iseki, K. Substrate specificity of the nateglinide / H + cotransport system for phenolic acids. Journal of Agricultural and Food Chemistry 53: 6100-6104 (2005)).

코엔자임Q10을 탑재하고 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CS/DS 나노입자를, 'CS/DS NP1'(CS 용액 0.5 mg/mL, DS 용액 0.1 mg/mL로 제조), 'CS/DS NP2'(CS 용액 0.5 mg/mL, DS 용액 0.3 mg/mL로 제조), 'CS/DS NP3'(CS 용액 0.5 mg/mL, DS 용액 0.5 mg/mL로 제조)로 지칭하였고, 코팅되지 않은 코엔자임Q10은 'Free CoQ10', CoQ10-로드 CS/TPP 나노입자는 'CS/TPP NP'로 지칭한 후, 샘플로 사용하였다.CS / DS NP1 '(0.5 mg / mL of CS solution, 0.1 mg / mL of DS solution) prepared according to the concentration of dextran sulfate (DS) solution loaded with coenzyme Q10, CS / DS NP3 '(prepared from CS solution 0.5 mg / mL, DS solution 0.3 mg / mL) and CS / DS NP3 (CS solution 0.5 mg / mL, DS solution 0.5 mg / mL) Uncoated coenzyme Q10 was referred to as 'Free CoQ10' and CoQ10-loaded CS / TPP nanoparticles as 'CS / TPP NP' and then used as a sample.

구체적인 실험방법은 다음과 같았다. 코엔자임Q10의 흡수율은 24-웰 트랜스웰(well transwell)에서의 단층막 조직(monolayer cultures)의 성장을 측정하였다. 세포 단분자층(Cell monolayers)은 트랜스포트(transport) 실험 전까지 이틀마다 배지를 교체 하였다. 이때 TEER을 사용하여 조직이 350 Ω cm2 이상일 때 실험에 적용 가능하다고 판단하였다.Specific experimental methods were as follows. The absorption of coenzyme Q10 measured the growth of monolayer cultures in a 24-well transwell. Cell monolayers were replaced every two days until transport experiments. At this time, it was judged that TEER was applicable to the experiment when the tissue was 350 Ω cm 2 or more.

배지를 세포꼭지면(apical side)과 기초실(basal chamber)로부터 제거한 후 0.6 mL 배지를 기저측면(basolateral side)에 넣어 주고 37℃에서 10분간 예비배양 해주었다. 배지를 제거한 후, 0.2 mL의 코엔자임Q10 나노입자를 세포 꼭지면에 주입하여 120분 동안 37℃에서 배양하였다. 그 후, 세포 단분자층(cell monolayer)을 신속하게 냉각한 배양 배지 1 mL로 세척하였다. 추출을 위해 세포는 메탄올(methanol) 1 mL에 분산시키고, 세포 인테그리티(cell integrity)를 방지하기 위해 소니케이션(sonication)해주었다. 추출용액은 CoQ10의 흡수율을 측정하기 위해 10,000 rpm에서 5분간 원심분리 해주었다.After removing the medium from apical side and basal chamber, 0.6 mL medium was placed on the basolateral side and preliminarily cultured at 37 ° C for 10 minutes. After removing the medium, 0.2 mL of coenzyme Q10 nanoparticles were injected into the cell membrane and cultured at 37 ° C for 120 minutes. The cell monolayer was then washed with 1 mL of the rapidly cooled culture medium. For extraction, the cells were dispersed in 1 mL of methanol and subjected to sonication to prevent cell integrity. The extraction solution was centrifuged at 10,000 rpm for 5 minutes to measure the absorption rate of CoQ10.

실험결과, CS/DS NP3가 free 코엔자임Q10 보다 Caco-2 흡수능이 3배 이상 증가함을 확인할 수 있었다. CS/TPP 나노입자는 free 코엔자임Q10과 비슷한 Caco-2 세포 흡수율을 나타내었다 (도 10).As a result, it was confirmed that CS / DS NP3 increased more than 3-fold in Caco-2 uptake ability than free coenzyme Q10. CS / TPP nanoparticles showed similar Caco-2 cell uptake as free coenzyme Q10 (FIG. 10).

도 10은 캡슐화하지 않은 코엔자임Q10 (Free CoQ10), CoQ10-로드 CS/TPP 나노캡슐(CS/TPP NP), CoQ10-로드 CS/DS 나노입자(CS/DS NP1, CS/DS NP2, CS/DS NP3)의 대장세포 Caco-2 세포 흡수율을 확인한 결과이다.FIG. 10 is a graph showing the results of the measurement of CoQ10-load CS / TPP nanocapsules (CS / TPP NP), CoQ10-load CS / DS nanoparticles (CS / DS NP1, CS / DS NP2, CS / DS) NP3) in the colonic cell Caco-2 cells.

[[ 실험예Experimental Example 10: 키토산/덱스트란  10: chitosan / dextran 설페이트Sulfate 나노입자의 항산화 활성 확인] Identification of Antioxidant Activity of Nanoparticles]

본 실험예에서는 키토산/덱스트란 설페이트(CS/DS) 나노캡슐화에 따른 코엔자임Q10의 항산화 활성을 확인하고자 하였다.In this experiment, the antioxidant activity of Coenzyme Q10 was examined by chitosan / dextran sulfate (CS / DS) nanocapsulation.

코엔자임Q10을 탑재하고 덱스트란 설페이트(DS) 용액의 농도에 따라 제조된 CS/DS 나노입자를, 'CS/DS NP1'(CS 용액 0.5 mg/mL, DS 용액 0.1 mg/mL로 제조), 'CS/DS NP2'(CS 용액 0.5 mg/mL, DS 용액 0.3 mg/mL로 제조), 'CS/DS NP3'(CS 용액 0.5 mg/mL, DS 용액 0.5 mg/mL로 제조)로 지칭하였고, 코팅되지 않은 코엔자임Q10은 'Free CoQ10', CoQ10-로드 CS/TPP 나노입자는 'CS/TPP NP'로 지칭한 후, 샘플로 사용하였다.CS / DS NP1 '(0.5 mg / mL of CS solution, 0.1 mg / mL of DS solution) prepared according to the concentration of dextran sulfate (DS) solution loaded with coenzyme Q10, CS / DS NP3 '(prepared from CS solution 0.5 mg / mL, DS solution 0.3 mg / mL) and CS / DS NP3 (CS solution 0.5 mg / mL, DS solution 0.5 mg / mL) Uncoated coenzyme Q10 was referred to as 'Free CoQ10' and CoQ10-loaded CS / TPP nanoparticles as 'CS / TPP NP' and then used as a sample.

(1) (One) DPPHDPPH 라디칼  Radical 소거능Scatters 어세이Assay (( DiphenylDiphenyl -1--One- picrylhydrazylpicrylhydrazyl ( ( DPPHDPPH ) radical scavenging assay)) radical scavenging assay)

DPPH 라디칼 소거능은 브랜드-윌리암스(Brand-Wiliams) 방법을 변형하여 실험하였다 (Brand-Williams, W., Cuvelier, M. E., & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28: 25-30 (1995)). The DPPH radical scavenging activity was tested by modifying the Brand-Wiliams method (Brand-Williams, W., Cuvelier, ME, & Berset, C. Use of a free radical method to evaluate antioxidant activity. and Technology 28: 25-30 (1995)).

구체적인 실험방법은 다음과 같다. DPPH 용액은 무수 에탄올 (100 μL, 0.5 mM)에 용해시켜 샘플 100 μL와 반응시켰다. 상기 반응물을 차광하여 25℃에서, 30분간 반응시키고 라디칼 소거능을 517 nm에서 'Synergy HT Multi-microplate reader (BioTek Instruments, Winooski, VT, USA)'를 이용하여 흡광도를 측정하였다. 라디칼 소거능(Radical scavenging effect)은 하기 수학식 3을 이용하여 계산하였다.Specific experimental methods are as follows. The DPPH solution was dissolved in anhydrous ethanol (100 μL, 0.5 mM) and reacted with 100 μL of the sample. The reactants were shaded, reacted at 25 ° C for 30 minutes, and the absorbance was measured at 517 nm using Synergy HT Multi-microplate reader (BioTek Instruments, Winooski, VT, USA). The radical scavenging effect was calculated using the following equation (3).

Figure pat00003
Figure pat00003

Ac: 대조군(control)의 흡광도Ac: absorbance of control (control)

As: 샘플(sample)의 흡광도As: the absorbance of the sample

Ab: 블랭크(blank)의 흡광도Ab: absorbance of blank

실험결과, DPPH 실험에서는 샘플 간의 유의적 차이가 없음을 확인할 수 있었다 (도 11 (a)). 이러한 결과는, 나노캡슐화가 코엔자임Q10의 항산화 활성 측정에 영향을 미치지 않음을 의미한다.As a result of the experiment, it was confirmed that there is no significant difference between the samples in the DPPH experiment (Fig. 11 (a)). These results indicate that the nanocapsule does not affect the antioxidant activity measurement of coenzyme Q10.

도 11 (a)는 DPPH 라디칼 소거능을 이용하여 나노캡슐화에 따른 코엔자임Q10의 항산화 활성을 확인한 결과이다.11 (a) shows the result of confirming the antioxidant activity of Coenzyme Q10 according to nano-encapsulation using the DPPH radical scavenging ability.

(2) 세포 항산화활성 ((2) Cell Antioxidant Activity CAACAA ))

HepG2 세포는 96-웰 플레이트(well plate)에 세포의 밀도를 6×104로 하여 심어 주고 24시간 배양한 후, 배양 배지를 제거하고 PBS로 세척하였다. 트리플리케이트 웰(Triplicate wells)에 코엔자임Q10 용액 또는 코엔자임Q10 나노입자를 100 μL 배지에 용해시킨 25 μM DCFH-DA(dichloro-dihydro-fluorescein diacetate)를 가해 1시간 동안 처리하였다. 1시간 동안 배양한 후 웰(well)을 100 μL PBS로 세척하고, HBSS 100 μL의 세포에 600 μM ABAP(2,2'-Azobis dihydrochloride)를 처리하였다. 96-웰 마이크로플레이트(well microplate)를 Synergy HT Multi-microplate reader (BioTek Instruments, Winooski, VT, USA)를 이용하여 배출(Emission)은 538 nm에서 여기(excitation)는 485nm에서 한시간 동안 5분 간격으로 측정하였다. 각각의 플레이트(plate)는 트리플리케이트 컨트롤(triplicate control)(containing cells treated with DCFH-DA and HBSS with ABAP)과 블랭크(blank)(containing cells treated with DCFH-DA and HBSS without ABAP) 웰을 포함하였다. CAA 값은 하기 수학식 4를 이용하여 계산하였다 (Hu, B., Ting, Y., Zeng, X., & Huang, Q. Bioactive peptides/chitosan nanoparticles enhance cellular antioxidant activity of (-)-epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry 61: 875-881 (2013)).HepG2 cells were seeded in a 96-well plate at a density of 6 × 10 4 , cultured for 24 hours, and then the culture medium was removed and washed with PBS. To the triplicate wells were added 25 μM DCFH-DA (dichloro-dihydro-fluorescein diacetate) dissolved in 100 μL of the coenzyme Q10 solution or coenzyme Q10 nanoparticles for 1 hour. After incubation for 1 hour, the wells were washed with 100 μL PBS and 100 μL of HBSS was treated with 600 μM ABAP (2,2'-Azobis dihydrochloride). Using a Synergy HT Multi-microplate reader (BioTek Instruments, Winooski, VT, USA), 96-well microplates were excited at 538 nm for 5 minutes at 485 nm Respectively. Each plate contained a triplicate control (containing cells treated with DCFH-DA and HBSS with ABAP) and a blank (containing cells treated with DCFH-DA and HBSS without ABAP) . The CAA values were calculated using the following equation (4): Hu, B., Ting, Y., Zeng, X., & Huang, Q. Bioactive peptides / chitosan nanoparticles enhanced cellular antioxidant activity of (-) - epigallocatechin- -gallate. Journal of Agricultural and Food Chemistry 61: 875-881 (2013)).

[수학식 4]&Quot; (4) &quot;

CAA value = 100 - (∫▒SA)/(∫▒CA) × 100CAA value = 100 - (?? S A) / (?? C A) × 100

∫▒SA : 샘플(sample)의 fluorescence versus time curve의 적분 면적∫ ▒ ▒ SA: Integral area of fluorescence versus time curve of sample

∫▒CA : 대조군(control)의 적분면적∫▒CA: Integral area of control (control)

실험결과, CoQ10-로드 CS/DS 나노입자의 CAA value가 CoQ10-로드 CS/TPP 나노입자 및 free CoQ10의 값보다 높게 나타남을 확인할 수 있었다 (도 11 (b)).As a result, it was confirmed that the CAA value of CoQ10-loaded CS / DS nanoparticles was higher than that of CoQ10-loaded CS / TPP nanoparticles and free CoQ10 (FIG. 11 (b)).

도 11 (b)는 HePg2 세포를 이용하여 나노캡슐화에 따른 코엔자임Q10의 세포항산화 활성을 확인한 결과이다.11 (b) shows the result of confirming the cell antioxidant activity of Coenzyme Q10 according to nano-encapsulation using HePg2 cells.

상기와 같은 결과로부터, 본 발명의 키토산/덱스트란 설페이트 나노입자는 코엔자임Q10과 같은 기능성 물질을 효과적으로 전달할 수 있는 약물 전달 시스템인 것을 알 수 있었다.From the above results, it was found that the chitosan / dextran sulfate nanoparticle of the present invention is a drug delivery system capable of effectively delivering a functional substance such as Coenzyme Q10.

Claims (8)

키토산 및 덱스트란 설페이트를 1 : 0.2 ~ 1 중량비로 혼합하여 제조된 것을 특징으로 하는 장 투과성 나노입자.
Chitosan and dextran sulfate in a weight ratio of 1: 0.2 to 1: 1.
제1항에 있어서,
상기 나노입자는,
내부에 포집대상물질을 함유하고 있는 것을 특징으로 하는 장 투과성 나노입자.
The method according to claim 1,
The nano-
Permeable nanoparticle characterized by containing a substance to be trapped therein.
제2항에 있어서,
상기 포집대상물질은,
코엔자임Q10(CoenzymeQ10), 카테킨(catechin), 레스베라트롤(resveratrol), 안토시아닌(anthocyanin), 베타-카로틴(β-carotene), 이소플라본(isoflavones), 감마-오라자놀(γ-orazanol), 비타민(vitamins), 미네랄(minerals), 폴리페놀류(polyphenol) 및 진세노사이드류(ginsenoside)로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 장 투과성 나노입자.
3. The method of claim 2,
The above-
Coenzyme Q10, catechin, resveratrol, anthocyanin, beta-carotene, isoflavones, gamma-orazanol, vitamins, Wherein the nanoparticles are any one selected from the group consisting of minerals, polyphenols, and ginsenosides.
키토산을 함유하는 용액에 덱스트란 설페이트를 함유하는 용액을 첨가하여 교반하되,
상기 키토산과 덱스트란 설페이트는 1 : 0.2 ~ 1 중량비로 혼합되는 것을 특징으로 하는 장 투과성 나노입자의 제조방법.
A solution containing dextran sulfate is added to a solution containing chitosan and stirred,
Wherein the chitosan and dextran sulfate are mixed at a weight ratio of 1: 0.2 to 1: 1.
제4항에 있어서,
상기 키토산을 함유하는 용액에는 포집대상물질이 함유되어 있는 것을 특징으로 하는 장 투과성 나노입자의 제조방법.
5. The method of claim 4,
Wherein the solution containing the chitosan contains a substance to be trapped.
제5항에 있어서,
상기 포집대상물질은,
코엔자임Q10(CoenzymeQ10), 카테킨(catechin), 레스베라트롤(resveratrol), 안토시아닌(anthocyanin), 베타-카로틴(β-carotene), 이소플라본(isoflavones), 감마-오라자놀(γ-orazanol), 비타민(vitamins), 미네랄(minerals), 폴리페놀류(polyphenol) 및 진세노사이드류(ginsenoside)로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 장 투과성 나노입자의 제조방법.
6. The method of claim 5,
The above-
Coenzyme Q10, catechin, resveratrol, anthocyanin, beta-carotene, isoflavones, gamma-orazanol, vitamins, Wherein the nanoparticles are any one selected from the group consisting of minerals, polyphenols, and ginsenosides.
키토산 및 덱스트란 설페이트를 1 : 0.2 ~ 1 중량비로 혼합하여 제조한 나노입자에 포집대상물질을 탑재하는 것을 특징으로 하는 포집대상물질의 장 투과성 증진방법.
Wherein the nanoparticles are prepared by mixing chitosan and dextran sulfate at a weight ratio of 1: 0.2 to 1: 1.
제7항에 있어서,
상기 포집대상물질은,
코엔자임Q10(CoenzymeQ10), 카테킨(catechin), 레스베라트롤(resveratrol), 안토시아닌(anthocyanin), 베타-카로틴(β-carotene), 이소플라본(isoflavones), 감마-오라자놀(γ-orazanol), 비타민(vitamins), 미네랄(minerals), 폴리페놀류(polyphenol) 및 진세노사이드류(ginsenoside)로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 포집대상물질의 장 투과성 증진방법.
8. The method of claim 7,
The above-
Coenzyme Q10, catechin, resveratrol, anthocyanin, beta-carotene, isoflavones, gamma-orazanol, vitamins, Wherein the target substance is any one selected from the group consisting of minerals, polyphenols, and ginsenosides.
KR1020160054296A 2016-05-02 2016-05-02 Nanoparticle for improving intestinal permeability and thereof production method KR101830893B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160054296A KR101830893B1 (en) 2016-05-02 2016-05-02 Nanoparticle for improving intestinal permeability and thereof production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160054296A KR101830893B1 (en) 2016-05-02 2016-05-02 Nanoparticle for improving intestinal permeability and thereof production method

Publications (2)

Publication Number Publication Date
KR20170124689A true KR20170124689A (en) 2017-11-13
KR101830893B1 KR101830893B1 (en) 2018-02-21

Family

ID=60385950

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160054296A KR101830893B1 (en) 2016-05-02 2016-05-02 Nanoparticle for improving intestinal permeability and thereof production method

Country Status (1)

Country Link
KR (1) KR101830893B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028754A (en) * 2022-06-30 2022-09-09 上海市农业科学院 Sulfated hericium erinaceus sporophore beta-glucan, sulfated beta-glucan-chitosan nanoparticle and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013070324A1 (en) 2011-11-07 2013-05-16 University Of Louisville Research Foundation, Inc. Edible plant-derived microvesicle compositions for diagnosis and treatment of disease

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028754A (en) * 2022-06-30 2022-09-09 上海市农业科学院 Sulfated hericium erinaceus sporophore beta-glucan, sulfated beta-glucan-chitosan nanoparticle and preparation method and application thereof
CN115028754B (en) * 2022-06-30 2023-08-11 上海市农业科学院 Sulfated hericium erinaceus fruiting body beta-glucan, sulfated beta-glucan-chitosan nanoparticle and preparation method and application thereof

Also Published As

Publication number Publication date
KR101830893B1 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
Munagala et al. Exosomal formulation of anthocyanidins against multiple cancer types
Pauluk et al. Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characterization, stability, mucoadhesive properties and antioxidant activity
Helal et al. Nutraceuticals’ novel formulations: the good, the bad, the unknown and patents involved
Yang et al. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols
Rivas et al. Nanoprecipitation process: From encapsulation to drug delivery
Chi et al. Preparation of nanoliposomal carriers to improve the stability of anthocyanins
Tavano et al. Co-encapsulation of antioxidants into niosomal carriers: gastrointestinal release studies for nutraceutical applications
Zeng et al. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy
Liao et al. Enhanced antibacterial activity of curcumin by combination with metal ions
Iannone et al. Characterization and in vitro anticancer properties of chitosan-microencapsulated flavan-3-ols-rich grape seed extracts
Zhu et al. Glycyrrhetinic acid-modified TPGS polymeric micelles for hepatocellular carcinoma-targeted therapy
Zhang et al. Delivery of curcumin by fucoidan-coated mesoporous silica nanoparticles: Fabrication, characterization, and in vitro release performance
Kim et al. Quercetin delivery characteristics of chitosan nanoparticles prepared with different molecular weight polyanion cross-linkers
Tsirigotis-Maniecka et al. Microencapsulation of hesperidin in polyelectrolyte complex microbeads: Physico-chemical evaluation and release behavior
Liu et al. Chitosan-coated nanoliposomes for efficient delivery of betanin with enhanced stability and bioavailability
Liu et al. Enhancing the antitumor activity of tea polyphenols encapsulated in biodegradable nanogels by macromolecular self-assembly
Dundar et al. Characterization of pomegranate peel extract loaded nanophytosomes and the enhancement of bio-accessibility and storage stability
Carrasco-Sandoval et al. Impact of molecular weight and deacetylation degree of chitosan on the bioaccessibility of quercetin encapsulated in alginate/chitosan-coated zein nanoparticles
Zeng et al. Targeting transportation of curcumin by soybean lipophilic protein nano emulsion: Improving its bioaccessibility and regulating intestinal microorganisms in mice
Abadi et al. Capping agents for selenium nanoparticles in biomedical applications
Liu et al. Nanoparticles prepared by polysaccharides extracted from Biyang floral mushroom loaded with resveratrol: Characterization, bioactivity and release behavior under in vitro digestion
Murugesan et al. Niosomal formulation of Quercetin and Resveratrol and in-vitro release studies
Rashwan et al. Physicochemical and antioxidant properties of set-type yogurt supplemented by lyophilized water-soluble Melastoma dodecandrum extract-bearded chitosan-coated nutriosomes
Magne et al. Nano-nutraceuticals for health: principles and applications
Fu et al. Recent development of carrier materials in anthocyanins encapsulation applications: A comprehensive literature review

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant