KR20170120908A - Method for manufacturing carbon carrior and carbon carrior manufactured by the method - Google Patents

Method for manufacturing carbon carrior and carbon carrior manufactured by the method Download PDF

Info

Publication number
KR20170120908A
KR20170120908A KR1020160049434A KR20160049434A KR20170120908A KR 20170120908 A KR20170120908 A KR 20170120908A KR 1020160049434 A KR1020160049434 A KR 1020160049434A KR 20160049434 A KR20160049434 A KR 20160049434A KR 20170120908 A KR20170120908 A KR 20170120908A
Authority
KR
South Korea
Prior art keywords
carbon
composite material
metal catalyst
carbon composite
hydrazine
Prior art date
Application number
KR1020160049434A
Other languages
Korean (ko)
Other versions
KR102052238B1 (en
Inventor
김광현
조준연
김상훈
황교현
최란
이원균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020160049434A priority Critical patent/KR102052238B1/en
Publication of KR20170120908A publication Critical patent/KR20170120908A/en
Application granted granted Critical
Publication of KR102052238B1 publication Critical patent/KR102052238B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J32/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a method of manufacturing a carbon carrier comprising the following steps: preparing a carbon composite material containing carbon and a polymer; forming a metal catalyst on the surface of the carbon composite material by using hydrazine; and growing carbon nanotubes on the carbon composite material. The present invention also relates to the carbon carrier manufactured by the method.

Description

탄소 담지체 제조방법 및 이에 의하여 제조된 탄소 담지체 {METHOD FOR MANUFACTURING CARBON CARRIOR AND CARBON CARRIOR MANUFACTURED BY THE METHOD}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a carbon carrier and a carbon carrier produced by the method,

본 출원은 탄소 담지체 제조 방법 및 이에 의하여 제조된 탄소 담지체에 관한 것이다.The present application relates to a method for producing a carbon carrier and a carbon carrier produced thereby.

촉매의 담지체로 카본 블랙(Carbon black)이 일반적으로 사용되고 있다. 하지만 카본 블랙을 담지체로 사용한 경우에는 탄소의 부식으로 인한 내구성의 문제가 있다.Carbon black is generally used as a catalyst carrier. However, when carbon black is used as a carrier, there is a problem of durability due to corrosion of carbon.

이러한 문제점을 개선하기 위하여, 부식 저항성이 강항 결정성 탄소인 카본나노튜브(Carbon nanotube, CNT), 카본나노파이버(Carbon nanofiber, CNF), 카본나노케이지(Carbon nanocage, CNC) 등에 대한 활발한 연구가 진행되고 있다. 그러나, 이러한 결정성 탄소는 표면 발수성이 강하여 극성 용매에서 분산이 잘 되지 않는 문제점이 있다. 이러한 이유로 금속을 탄소 담지체에 코팅하는 과정에서 금속이 고르게 분산되지 않고, 뭉치게 되는 문제점이 있다.In order to solve these problems, active research on carbon nanotubes (CNTs), carbon nanofibers (CNF), carbon nanocages (CNC) and the like, which are resistant to corrosion, . However, such a crystalline carbon has a problem in that it is difficult to disperse in a polar solvent because of its strong surface water repellency. For this reason, there is a problem that the metal is not uniformly dispersed in the process of coating the metal on the carbon support, and the metal is aggregated.

한국 특허 공개 제10-2011-0057976호Korean Patent Publication No. 10-2011-0057976

본 출원은 탄소 담지체의 제조방법 및 이에 의하여 제조된 탄소 담지체를 제공한다.The present application provides a method for producing a carbon carrier and a carbon carrier produced thereby.

본 출원의 일 실시상태는 탄소 및 고분자를 포함하는 탄소 복합체를 제조하는 단계, 상기 탄소 복합체 표면에 히드라진을 이용하여 금속 촉매를 형성하는 단계, 및 상기 탄소 복합체에 탄소나노튜브를 성장시키는 단계를 포함하는 탄소 담지체의 제조방법을 제공한다.One embodiment of the present application includes a step of preparing a carbon composite material containing carbon and a polymer, a step of forming a metal catalyst by using hydrazine on the surface of the carbon composite material, and a step of growing carbon nanotubes on the carbon composite material And a method for producing the carbon carrier.

본 출원의 또 하나의 실시상태는 상기 탄소 담지체의 제조방법을 이용하여 제조된 탄소 담지체를 제공한다.Another embodiment of the present application provides a carbon carrier produced using the method for producing a carbon carrier.

본 출원에 기재된 실시상태에 따르면, 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성함으로써 탄소 복합체의 표면에 균일한 크기의 금속 촉매를 형성하는 효과가 있다. According to the embodiment described in this application, there is an effect of forming a metal catalyst of a uniform size on the surface of the carbon composite by forming a metal catalyst using hydrazine on the surface of the carbon composite.

본 출원에 기재된 실시상태에 따르면 탄소나노튜브가 탄소 복합체에 고르게 성장된 탄소 담지체가 형성되는 효과가 있다.According to the embodiment described in the present application, there is an effect that a carbon support in which carbon nanotubes are uniformly grown on a carbon composite is formed.

도 1 (a)는 본 출원에 따라 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성한 탄소 복합체의 주사전자현미경(SEM) 이미지를 나타낸 것이다.
도 1 (b)는 도 1의 1 부분에서의 EDS(energy dispersive X-ray spectroscopy) 측정 결과를 나타낸 것이다.
도 1 (c)는 도 1의 2 부분에서의 EDS(energy dispersive X-ray spectroscopy) 측정 결과를 나타낸 것이다.
도 2는 본 출원에 따라 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 코팅한 탄소 복합체의 주사투과전자현미경(STEM) 이미지를 나타낸 것이다.
도 3은 본 출원에 따라 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 코팅한 탄소 복합체의 투과전자현미경(TEM) 이미지를 나타낸 것이다.
도 4는 본 출원의 비교예 1에 따른 투과전자현미경(TEM) 이미지를 나타낸 것이다.
도 5는 본 출원의 실시예 1에 따른 탄소 담지체의 투과전자현미경(TEM) 이미지를 나타낸 것이다.
도 6은 본 출원의 실시예 1에 따른 탄소 담지체의 주사전자현미경(SEM) 이미지를 나타낸 것이다.
도 7은 본 출원의 비교예 2에 따른 투과전자현미경(TEM) 이미지를 나타낸 것이다.
FIG. 1 (a) shows a scanning electron microscope (SEM) image of a carbon composite in which a metal catalyst is formed using hydrazine on the surface of the carbon composite according to the present application.
FIG. 1 (b) shows the result of energy dispersive X-ray spectroscopy (EDS) measurement in part 1 of FIG.
FIG. 1 (c) shows the result of energy dispersive X-ray spectroscopy (EDS) measurement in the portion 2 of FIG.
FIG. 2 is a scanning transmission electron microscope (STEM) image of a carbon composite obtained by coating a surface of a carbon composite with a metal catalyst using hydrazine according to the present application.
FIG. 3 is a transmission electron microscope (TEM) image of a carbon composite obtained by coating a surface of a carbon composite material with a metal catalyst using hydrazine according to the present application.
FIG. 4 shows a transmission electron microscope (TEM) image according to Comparative Example 1 of the present application.
5 shows a transmission electron microscope (TEM) image of the carbon carrier according to Example 1 of the present application.
6 is a scanning electron microscope (SEM) image of the carbon support according to Example 1 of the present application.
FIG. 7 shows a transmission electron microscope (TEM) image according to Comparative Example 2 of the present application.

본 명세서에서 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Whenever a component is referred to as " comprising ", it is to be understood that the component may include other components as well, without departing from the scope of the present invention.

이하에서 본 출원에 대하여 상세히 설명한다.Hereinafter, the present application will be described in detail.

본 명세서의 일 실시상태는 탄소 및 고분자를 포함하는 탄소 복합체를 제조하는 단계, 상기 탄소 복합체의 표면에 히드라진(hydrazine)을 이용하여 금속 촉매를 형성하는 단계, 및 상기 탄소 복합체에 탄소나노튜브를 성장시키는 단계를 포함하는 탄소 담지체의 제조방법을 특징으로 한다.An embodiment of the present invention relates to a method of manufacturing a carbon composite material, comprising the steps of: preparing a carbon composite material containing carbon and a polymer; forming a metal catalyst on the surface of the carbon composite material by using hydrazine; And a carbon-containing compound.

본 명세서에 있어서 상기 탄소 복합체의 30% 내지 90% 는 탄소로 이루어질 수 있다. In the present specification, 30% to 90% of the carbon composite material may be composed of carbon.

본 명세서의 일 실시상태에 따르면 상기 탄소는 카본 블랙, 탄소나노튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 활성탄, 다공성 탄소(Mesoporous Carbon), 탄소섬유(Carbon fiber) 및 탄소 나노 와이어(Carbon nano wire) 중 적어도 1종일 수 있다. 구체적으로, 상기 탄소는 카본 블랙일 수 있다.According to an embodiment of the present invention, the carbon may be carbon black, carbon nanotube (CNT), graphite, graphene, activated carbon, mesoporous carbon, carbon fiber, And a wire (carbon nano wire). Specifically, the carbon may be carbon black.

본 명세서의 일 실시상태에 따르면 상기 고분자는 폴리에틸렌이민일 수 있다. 상기 폴리에틸렌이민의 중량평균분자량은 700g/mol 내지 26,000g/mol일 수 있다. According to one embodiment of the present disclosure, the polymer may be a polyethyleneimine. The weight average molecular weight of the polyethyleneimine may be from 700 g / mol to 26,000 g / mol.

본 명세서의 일 실시상태에 따르면 상기 탄소 복합체는 폴리에틸렌이민이 코팅된 카본 블랙일 수 있다.According to one embodiment of the present invention, the carbon composite material may be carbon black coated with polyethyleneimine.

본 명세서에 있어서, 상기 탄소 복합체의 표면에 히드라진을 이용하여 형성된 금속 촉매는 금속 촉매가 입자형태로 존재한다.In the present specification, a metal catalyst formed by using hydrazine on the surface of the carbon composite has a metal catalyst in the form of particles.

본 명세서의 일 실시상태에 따르면 상기 금속 촉매는 니켈(Ni), 백금(Pt), 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 금(Au), 세륨(Ce), 은(Ag) 및 구리(Cu) 중 적어도 1종일 수 있다. 구체적으로, 상기 금속 촉매는 니켈(Ni)일 수 있다.According to an embodiment of the present invention, the metal catalyst may be at least one selected from the group consisting of Ni, Pt, Ru, Rh, Mo, Os, Ir, (Pd), vanadium (V), tungsten (W), cobalt (Co), iron (Fe), selenium (Se), bismuth (Bi), tin ), Gold (Au), cerium (Ce), silver (Ag), and copper (Cu). Specifically, the metal catalyst may be nickel (Ni).

본 명세서에 있어서 상기 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성하는 단계는 상기 탄소 복합체를 제조하는 단계 후에 금속 촉매 전구체 용액에 탄소 복합체를 담지하는 단계를 포함한다. In this specification, the step of forming a metal catalyst using hydrazine on the surface of the carbon composite material includes a step of supporting the carbon composite material on the metal catalyst precursor solution after the step of preparing the carbon composite material.

상기 금속촉매 전구체 용액의 금속촉매 함량은 5wt% 내지 25wt%일 수 있다. 금속촉매의 함량이 상기 범위를 만족할 경우, 금속촉매가 탄소 복합체 표면에 고르게 분포되며, 이후 탄소나노튜브 성장단계에서 탄소나노튜브의 성장이 균일하게 되는 효과가 있다. The metal catalyst content of the metal catalyst precursor solution may be 5 wt% to 25 wt%. When the content of the metal catalyst is in the above range, the metal catalyst is uniformly distributed on the surface of the carbon composite material, and the carbon nanotubes are uniformly grown in the carbon nanotube growth step.

본 명세서에 있어서 상기 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성하는 단계는 상기 금속 촉매 전구체 용액에 탄소 복합체를 담지하는 단계 후에 히드라진을 첨가하는 단계를 포함한다. In this specification, the step of forming a metal catalyst using hydrazine on the surface of the carbon composite material includes the step of adding hydrazine after the step of supporting the carbon composite material on the metal catalyst precursor solution.

상기 히드라진은 상기 용액 25ml를 기준으로, 0.5ml 내지 1.5ml 첨가되는 것이 바람직하다. The hydrazine is preferably added in an amount of 0.5 ml to 1.5 ml based on 25 ml of the solution.

본 명세서에 있어서 상기 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성하는 경우, 금속 촉매의 뭉침 현상을 완화하여, 탄소 복합체의 표면에 균일한 크기의 금속 촉매를 형성하는 효과가 있다.In the present specification, when a metal catalyst is formed using hydrazine on the surface of the carbon composite material, there is an effect of alleviating the aggregation phenomenon of the metal catalyst and forming a metal catalyst of a uniform size on the surface of the carbon composite.

본 명세서에 있어서 상기 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성하는 단계는 상기 히드라진이 첨가된 용액의 교반, 원심분리 및 건조를 통하여 얻어진 파우더를 수소 및 아르곤 분위기 하에서 열처리를 함으로써 수소 환원 반응을 통해 탄소 복합체 표면에 금속 촉매를 형성하는 단계를 포함한다. 상기 열처리는 60℃ 내지 80℃에서 이루어질 수 있다.In the present specification, the step of forming a metal catalyst using hydrazine on the surface of the carbon composite material includes a step of subjecting the powder obtained through stirring, centrifugation and drying of the hydrazine-added solution to heat treatment under hydrogen and argon atmosphere, To form a metal catalyst on the carbon composite surface. The heat treatment may be performed at 60 ° C to 80 ° C.

본 명세서에 있어서 상기 탄소 복합체의 표면에 형성된 금속 촉매의 평균 크기는 3nm 내지 5nm일 수 있다. 본 명세서에 있어서 상기 금속 촉매의 크기는 금속 촉매 입자의 평균 입경을 의미한다. In this specification, the average size of the metal catalyst formed on the surface of the carbon composite material may be 3 nm to 5 nm. In this specification, the size of the metal catalyst means an average particle diameter of the metal catalyst particles.

본 명세서에 있어서, 상기 탄소 복합체에 탄소나노튜브를 성장시키는 단계는 화학기상증착법(CVD), 플라즈마 화학기상증착법(PECVD), 열 화학기상증착법(TCVD) 등이 사용될 수 있다. 구체적으로 화학기상증착법이 사용될 수 있다.In this specification, the step of growing the carbon nanotubes in the carbon composite material may be a chemical vapor deposition (CVD), a plasma chemical vapor deposition (PECVD), a thermal chemical vapor deposition (TCVD), or the like. Specifically, a chemical vapor deposition method can be used.

본 명세서의 일 실시상태에 따르면 상기 탄소 복합체에 탄소나노튜브를 성장시키는 단계는 600℃ 내지 900℃에서 이루어진다. According to one embodiment of the present invention, the step of growing carbon nanotubes in the carbon composite material is performed at a temperature of 600 to 900 ° C.

본 명세서에 있어서 상기 탄소 복합체 상에 성장된 탄소나노튜브의 직경은 10nm 내지 50nm이다.In this specification, the diameter of the carbon nanotubes grown on the carbon composite material is 10 nm to 50 nm.

본 명세서의 일 실시상태는 상기의 방법에 따라 제조된 탄소 담지체를 제공한다.One embodiment of the present invention provides a carbon carrier produced according to the above method.

본 명세서의 일 실시상태에 따르면 상기의 방법에 따라 제조된 탄소 담지체는 전극으로 사용될 때 포어(pore) 형성이 용이하고, 내구성 및 전기전도도가 우수한 특징이 있다. According to one embodiment of the present invention, the carbon carrier prepared according to the above method is easy to form pores when used as an electrode, and has excellent durability and electrical conductivity.

본 명세서의 일 실시상태에 따르면, 상기 탄소 담지체는 슈퍼커패시터(super capacitor), 연료전지(fuel cell), 이차전지 등 다양한 분야에서 사용될 수 있다. According to one embodiment of the present invention, the carbon carrier may be used in various fields such as a super capacitor, a fuel cell, and a secondary battery.

이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail by way of examples with reference to the drawings. However, the embodiments according to the present disclosure can be modified in various other forms, and the scope of the present specification is not construed as being limited to the embodiments described below. Embodiments of the present disclosure are provided to more fully describe the present disclosure to those of ordinary skill in the art.

실시예 1Example 1

제1 단계: 탄소 복합체의 제조Step 1: Preparation of Carbon Composite

폴리에틸렌이민(Polyethyleneimine, Mw=1,800) 1g을 물 300ml에 용해시킨 뒤, 카본 블랙 300mg과 질산칼륨(KNO3) 1g을 넣고 24시간 교반하였다. 그 후 증류수로 세척 및 건조하여 폴리에틸렌이민이 코팅된 카본 블랙을 제조하였다. After dissolving 1 g of polyethyleneimine (Mw = 1,800) in 300 ml of water, 300 mg of carbon black and 1 g of potassium nitrate (KNO 3 ) were added and stirred for 24 hours. Thereafter, it was washed with distilled water and dried to prepare carbon black coated with polyethyleneimine.

제2 단계: 탄소 복합체 표면에 히드라진을 이용하여 금속 촉매 형성Step 2: Formation of metal catalyst using hydrazine on carbon composite surface

5wt% 농도의 니켈(Ⅱ) 아세테이트(Ni(Ⅱ) acetate) 수용액에 0.1g의 폴리에틸렌이민이 코팅된 카본 블랙 넣은 후 교반하였다. 그 후 하이드라진(hydrazine) 1ml를 넣고 교반 후, 감압필터하고, 수소 및 아르곤 분위기하에서 300℃로 열처리 하여 니켈(Ni)이 탄소 표면에 고르게 담지된 시료를 제조하였다. Carbon black coated with 0.1 g of polyethyleneimine was added to an aqueous solution of nickel (Ⅱ) acetate (Ni (Ⅱ) acetate) having a concentration of 5 wt%, followed by stirring. Thereafter, 1 ml of hydrazine was added thereto, stirred, and subjected to a reduced-pressure filtration. The mixture was heat-treated at 300 ° C under hydrogen and argon to prepare nickel (Ni) particles uniformly supported on the surface of carbon.

제2 단계 이후, 즉 본 발명에 따라 탄소 복합체의 표면에 히드라진을 이용하여 금속 촉매를 형성한 탄소 복합체의 주사전자현미경(SEM) 이미지를 도 1(a)에, 주사투과전자현미경(STEM) 이미지를 도 2에, 투과전자현미경(TEM) 이미지를 도 3에 나타내었다. (SEM) image of the carbon composite material after the second step, that is, the carbon composite formed by using the hydrazine on the surface of the carbon composite material according to the present invention, is shown in FIG. 1 (a), the transmission electron microscope FIG. 2 shows a transmission electron microscope (TEM) image of FIG.

도 1의 1 부분에서의 EDS(energy dispersive X-ray spectroscopy) 측정 결과를 도 1(b)에 나타내었다. FIG. 1 (b) shows the result of energy dispersive X-ray spectroscopy (EDS) measurement in part 1 of FIG.

도 1의 2 부분에서의 EDS(energy dispersive X-ray spectroscopy) 측정 결과를 도 1(c)에 나타내었다. 이를 통하여, 탄소 복합체의 표면에 니켈이 입자 형태로 형성됨을 확인할 수 있었다.FIG. 1 (c) shows the result of energy dispersive X-ray spectroscopy (EDS) measurement in the two portions of FIG. As a result, it was confirmed that nickel was formed in the form of particles on the surface of the carbon composite.

제3 단계: 탄소 복합체에 탄소나노튜브 성장Step 3: Carbon nanotube growth on carbon composites

상기 니켈이 탄소 표면에 고르게 담지된 시료 0.1g을 에틸렌 및 수소 분위기 하에서 700℃로 열처리 하였다. 상기 에틸렌 가스 및 수소 가스는 1:4의 비율로 흘려주었다. 0.1 g of the sample, in which the nickel was uniformly supported on the carbon surface, was heat-treated at 700 캜 under an atmosphere of ethylene and hydrogen. The ethylene gas and the hydrogen gas were flowed at a ratio of 1: 4.

비교예 1Comparative Example 1

폴리에틸렌이민(Polyethyleneimine, Mw=1,800) 1g을 물 300ml에 용해시킨 뒤, 카본 블랙 300mg과 질산칼륨(KNO3) 1g을 넣고 24시간 교반하였다. 그 후 증류수로 세척 및 건조하여 폴리에틸렌이민이 코팅된 카본 블랙을 제조하였다. 5wt% 농도의 니켈(II) 아세테이트(Ni(II) acetate) 수용액에 0.1g의 상기 폴리에틸렌이민이 코팅된 카본 블랙 넣은 후 교반하였다. 그 후 수소 및 아르곤 분위기하에서 300℃로 열처리 하였다.After dissolving 1 g of polyethyleneimine (Mw = 1,800) in 300 ml of water, 300 mg of carbon black and 1 g of potassium nitrate (KNO 3 ) were added and stirred for 24 hours. Thereafter, it was washed with distilled water and dried to prepare carbon black coated with polyethyleneimine. 0.1 g of the carbon black coated with the polyethyleneimine was added to an aqueous solution of nickel (II) acetate (Ni (II) acetate) having a concentration of 5 wt%, and then the mixture was stirred. Thereafter, it was heat-treated at 300 캜 under hydrogen and argon atmosphere.

비교예 2Comparative Example 2

폴리에틸렌이민(Polyethyleneimine, Mw=1,800) 1g을 물 300ml에 용해시킨 뒤, 카본 블랙 300mg과 질산칼륨(KNO3) 1g을 넣고 24시간 교반하였다. 그 후 증류수로 세척 및 건조하여 폴리에틸렌이민이 코팅된 카본 블랙을 제조하였다. 5wt% 농도의 니켈(II) 아세테이트(Ni(II) acetate) 수용액에 0.1g의 상기 폴리에틸렌이민이 코팅된 카본 블랙 넣은 후 교반하였다. 그 후 히드라진(hydrazine) 1ml를 넣고 교반 후, 감압필터하고, 수소 및 아르곤 분위기하에서 300℃로 열처리 하여 니켈(Ni)이 탄소 표면에 고르게 담지된 시료를 제조하였다. 상기 니켈이 탄소 표면에 고르게 담지된 시료 0.1g을 에틸렌 및 수소 분위기 하에서 500℃로 열처리 하였다 상기 에틸렌 가스 및 수소 가스는 1:4의 비율로 흘려주었다.After dissolving 1 g of polyethyleneimine (Mw = 1,800) in 300 ml of water, 300 mg of carbon black and 1 g of potassium nitrate (KNO 3 ) were added and stirred for 24 hours. Thereafter, it was washed with distilled water and dried to prepare carbon black coated with polyethyleneimine. 0.1 g of the carbon black coated with the polyethyleneimine was added to an aqueous solution of nickel (II) acetate (Ni (II) acetate) having a concentration of 5 wt%, and then the mixture was stirred. Thereafter, 1 ml of hydrazine was added and stirred. The mixture was subjected to a reduced pressure filtration and heat treated at 300 ° C under a hydrogen and argon atmosphere to prepare a sample having nickel (Ni) supported evenly on the surface of carbon. 0.1 g of the sample, in which the nickel was uniformly supported on the carbon surface, was heat-treated at 500 캜 under an ethylene and hydrogen atmosphere. The ethylene gas and the hydrogen gas were flowed at a ratio of 1: 4.

본 출원의 비교예 1에 따른 투과전자현미경(TEM) 이미지를 도 4에 나타내었다. A transmission electron microscope (TEM) image according to Comparative Example 1 of the present application is shown in FIG.

도 3과 도 4를 비교했을 때, 탄소 복합체 표면에 금속 촉매를 형성하는 과정에서 히드라진을 사용한 경우, 히드라진을 사용하지 않은 경우에 비하여 탄소 복합체의 표면에 니켈이 고르게 분포되어 형성된 것을 확인할 수 있다.Comparing FIGS. 3 and 4, it can be seen that when hydrazine is used in the process of forming a metal catalyst on the surface of the carbon composite, nickel is uniformly distributed on the surface of the carbon composite, compared to the case where hydrazine is not used.

본 출원의 실시예 1에 따른 탄소 담지체의 투과전자현미경(TEM) 이미지를 도 5에, 주사전자현미경(SEM) 이미지를 도 6에 나타내었다.A transmission electron microscope (TEM) image of the carbon carrier according to Example 1 of the present application is shown in Fig. 5, and a scanning electron microscope (SEM) image is shown in Fig.

본 출원의 비교예 2에 따른 투과전자현미경(TEM) 이미지를 도 7에 나타내었다.A transmission electron microscope (TEM) image according to Comparative Example 2 of the present application is shown in Fig.

도 5와 도 7을 비교했을 때, 본 출원의 실시예 1이 비교예 2에 비하여 탄소나노튜브의 성장이 잘 이루어졌음을 확인할 수 있다.Comparing FIG. 5 and FIG. 7, it can be confirmed that the carbon nanotube growth of Example 1 of the present application was better than that of Comparative Example 2.

Claims (7)

탄소 및 고분자를 포함하는 탄소 복합체를 제조하는 단계;
상기 탄소 복합체 표면에 히드라진을 이용하여 금속 촉매를 형성하는 단계; 및
상기 탄소 복합체에 탄소나노튜브를 성장시키는 단계를 포함하는 탄소 담지체의 제조방법.
Preparing a carbon composite comprising carbon and a polymer;
Forming a metal catalyst on the surface of the carbon composite using hydrazine; And
And growing carbon nanotubes on the carbon composite material.
청구항 1에 있어서,
상기 탄소는 카본 블랙, 탄소나노튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 활성탄, 다공성 탄소(Mesoporous Carbon), 탄소섬유(Carbon fiber) 및 탄소 나노 와이어(Carbon nano wire) 중 적어도 1종을 포함하는 것을 특징으로 하는 탄소 담지체의 제조방법.
The method according to claim 1,
The carbon may be at least one of carbon black, carbon nanotube (CNT), graphite, graphene, activated carbon, mesoporous carbon, carbon fiber, and carbon nano wire Wherein the carbon-containing carrier comprises one kind of carbon black.
청구항 1에 있어서,
상기 고분자는 폴리에틸렌이민인 것을 특징으로 하는 탄소 담지체의 제조방법.
The method according to claim 1,
Wherein the polymer is a polyethyleneimine.
청구항 1에 있어서,
상기 탄소 복합체는 폴리에틸렌이민이 코팅된 카본 블랙인 것을 특징으로 하는 탄소 담지체의 제조방법.
The method according to claim 1,
Wherein the carbon composite material is a carbon black coated with polyethyleneimine.
청구항 1에 있어서,
상기 금속 촉매는 니켈(Ni), 백금(Pt), 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 금(Au), 세륨(Ce), 은(Ag) 및 구리(Cu) 중 적어도 1종을 포함하는 것을 특징으로 하는 탄소 담지체의 제조방법.
The method according to claim 1,
The metal catalyst may be selected from the group consisting of Ni, Pt, Ru, Rh, Os, Ir, Re, Pd, (Si), tin (Sn), chromium (Cr), titanium (Ti), gold (Au), cerium (Co), tin (W), cobalt (Ce), silver (Ag), and copper (Cu).
청구항 1에 있어서,
상기 탄소 복합체에 탄소 나노튜브를 성장시키는 단계는 600℃ 내지 900℃인 것을 특징으로 하는 탄소 담지체의 제조방법.
The method according to claim 1,
Wherein the step of growing the carbon nanotubes in the carbon composite material has a temperature of 600 ° C to 900 ° C.
청구항 1 내지 6 중 어느 한 항의 탄소 담지체 제조 방법에 따라 제조된 탄소 담지체. A carbon carrier produced by the method for producing a carbon carrier according to any one of claims 1 to 6.
KR1020160049434A 2016-04-22 2016-04-22 Method for manufacturing carbon carrior and carbon carrior manufactured by the method KR102052238B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160049434A KR102052238B1 (en) 2016-04-22 2016-04-22 Method for manufacturing carbon carrior and carbon carrior manufactured by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160049434A KR102052238B1 (en) 2016-04-22 2016-04-22 Method for manufacturing carbon carrior and carbon carrior manufactured by the method

Publications (2)

Publication Number Publication Date
KR20170120908A true KR20170120908A (en) 2017-11-01
KR102052238B1 KR102052238B1 (en) 2019-12-04

Family

ID=60382838

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160049434A KR102052238B1 (en) 2016-04-22 2016-04-22 Method for manufacturing carbon carrior and carbon carrior manufactured by the method

Country Status (1)

Country Link
KR (1) KR102052238B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102501792B1 (en) * 2021-11-17 2023-02-22 신광화학공업(주) Manufacturing method of activated carbon for air purifier filter with surface modification treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070055119A (en) * 2005-11-25 2007-05-30 주식회사 진우엔지니어링 Catalyst for fuel cell electrode and method of preparing the same
KR20110057976A (en) 2009-11-25 2011-06-01 현대자동차주식회사 Synthesis methods of nano-sized nickel or palladium on a carbon support
KR20130001876A (en) * 2011-06-28 2013-01-07 (주) 디에이치홀딩스 Method for manufacturing catalyst for fuel cell
JP2013232409A (en) * 2012-04-30 2013-11-14 Samsung Sdi Co Ltd Carrier for electrode catalyst and method for producing the same, and fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070055119A (en) * 2005-11-25 2007-05-30 주식회사 진우엔지니어링 Catalyst for fuel cell electrode and method of preparing the same
KR20110057976A (en) 2009-11-25 2011-06-01 현대자동차주식회사 Synthesis methods of nano-sized nickel or palladium on a carbon support
KR20130001876A (en) * 2011-06-28 2013-01-07 (주) 디에이치홀딩스 Method for manufacturing catalyst for fuel cell
JP2013232409A (en) * 2012-04-30 2013-11-14 Samsung Sdi Co Ltd Carrier for electrode catalyst and method for producing the same, and fuel cell

Also Published As

Publication number Publication date
KR102052238B1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
US11801494B2 (en) Method for preparing single-atom catalyst supported on carbon support
Shirazi et al. Effects of different carbon precursors on synthesis of multiwall carbon nanotubes: Purification and Functionalization
Prati et al. Gold on carbon: one billion catalysts under a single label
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
KR101287891B1 (en) Method for manufacturing catalyst for fuel cell
Liu et al. Thermal and chemical durability of nitrogen-doped carbon nanotubes
JP2009525841A (en) Method for producing a composition of nanoparticles on a solid surface
JP5403284B2 (en) Nanotube / nanohorn complex and method for producing the same
US11643328B2 (en) Method of producing surface-treated carbon nanostructures
JP2013514164A (en) Nitrogen-doped carbon nanotubes with metal nanoparticles
Li et al. Heteroatom doped carbon nanofibers synthesized by chemical vapor deposition as platinum electrocatalyst supports for polymer electrolyte membrane fuel cells
Iyer et al. Near‐quantitative solid‐state synthesis of carbon nanotubes from homogeneous diphenylethynecobalt and–Nickel complexes
KR20100010798A (en) Method of fabricating carbon material, carbon material prepared by the method, cell material and apparatus using the same
JP5412848B2 (en) Manufacturing method of microstructure material
Miniach et al. Growth of carbon nanofibers from methane on a hydroxyapatite-supported nickel catalyst
JPH11116218A (en) Production of single layered nanotube
Hong et al. Controlled synthesis of N-type single-walled carbon nanotubes with 100% of quaternary nitrogen
Ma et al. Formation of gold nanoparticles supported on carbon nanotubes by using an electroless plating method
Akbarzadeh et al. Intensified electrochemical hydrogen storage capacity of multi-walled carbon nanotubes supported with Ni nanoparticles
US7556788B2 (en) Process for preparing boron carbon nanorods
KR102052238B1 (en) Method for manufacturing carbon carrior and carbon carrior manufactured by the method
Gergeroglu et al. Investigation of the effect of catalyst type, concentration, and growth time on carbon nanotube morphology and structure
Tripathi Role of Nanocatalysts in Synthesis of Carbon Nanofiber
Kariim et al. Studies on the suitability of alumina as bimetallic catalyst support for MWCNTs growth in a CVD reactor
KR20110033652A (en) Manufacturing method of highly electrically conductive carbon nanotube-metal composite

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant