KR20170120806A - 접착력이 향상된 나노섬유 웹, 이를 이용한 분리막 및 이의 제조방법 - Google Patents

접착력이 향상된 나노섬유 웹, 이를 이용한 분리막 및 이의 제조방법 Download PDF

Info

Publication number
KR20170120806A
KR20170120806A KR1020160049149A KR20160049149A KR20170120806A KR 20170120806 A KR20170120806 A KR 20170120806A KR 1020160049149 A KR1020160049149 A KR 1020160049149A KR 20160049149 A KR20160049149 A KR 20160049149A KR 20170120806 A KR20170120806 A KR 20170120806A
Authority
KR
South Korea
Prior art keywords
electrospinning
spinning solution
nanofibers
nanofiber
polymer
Prior art date
Application number
KR1020160049149A
Other languages
English (en)
Other versions
KR101834400B1 (ko
Inventor
박종철
Original Assignee
(주)에프티이앤이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에프티이앤이 filed Critical (주)에프티이앤이
Priority to KR1020160049149A priority Critical patent/KR101834400B1/ko
Publication of KR20170120806A publication Critical patent/KR20170120806A/ko
Application granted granted Critical
Publication of KR101834400B1 publication Critical patent/KR101834400B1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4358Polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

본 발명은 제1 열가소성 폴리우레탄 기재; 상기 제1 열가소성 폴리우레탄 기재 상에 제1 고분자 방사용액을 전기방사하여 적층형성되고, 평량이 0.1~2g/m2인 제1 나노섬유; 상기 제1 나노섬유 상에 제2 고분자 방사용액을 전기방사하여 적층형성되고, 평량이 0.1~2g/m2인 제2 나노섬유; 및 상기 제2 나노섬유 상에 적층형성되는 제2 열가소성 폴리우레탄 기재를 포함하는 것을 특징으로 하는 접착력이 향상된 나노섬유 필터를 제공한다.
본 발명에 따른 나노섬유 필터는 열가소성 폴리우레탄 부직포를 기재로 사용함으로써, 열가소성의 특징을 통해 고온의 라미네이팅 환경에서 부분적으로 용융될 수 있어서 별도의 접착제 없이 접착 역할을 하는 것이 가능한 이점이 있다. 또한, 기재 상에 나노섬유를 적층형성함으로써, 내열성이 더욱 향상되고 필터의 여과효율이 우수한 효과가 있다. 아울러, 나노섬유를 방사하는 전기방사장치는 다 수개의 블록을 구비하고 있어 나노섬유의 대량생산이 가능하다.

Description

접착력이 향상된 나노섬유 웹, 이를 이용한 분리막 및 이의 제조방법{Nanofiber web with excellent adhesion, a separator using it and its method}
본 발명은 접착력이 향상된 나노섬유 웹, 이를 이용한 분리막 및 이의 제조방법에 관한 것으로, 상세하게는 열가소성 폴리우레탄 기재 사이에 2층 이상의 나노섬유를 형성하여 접착력을 향상시킨 나노섬유 웹 및 이의 제조방법에 관한 것이다.
일반적으로 화력발전소에서 사용하는 가스터빈은 외부로부터 정화된 공기를 흡입하여 압축한 뒤, 압축된 공기를 연료와 함께 연소기 내로 분사하여 혼합하고, 혼합된 공기와 연료를 연소시켜 고온, 고압의 연소가스를 얻은 다음, 이 고온, 고압의 연소가스를 터빈의 베인에 분사하여 회전력을 얻는 회전식 내연기관의 일종이다.
이러한 가스터빈은 매우 정밀한 부품으로 구성되어 있기 때문에 주기적인 계획 예방정비를 실시하며, 이때 압축기로 유입되는 대기중의 공기를 정화시켜 주기위한 전처리용으로 에어필터를 사용한다.
에어필터는 가스터빈으로 흡입되는 연소용 공기를 대기 중에서 취할 때 대기 중에 포함된 먼지, 분진 등의 이물질을 제거하여 깨끗이 정화시킨 다음 가스터빈에 공급하는 역할을 하는 것으로, 현재 가스터빈에 사용되는 필터는 높은 온도에 약하며, 이물질이 잘 제거되지 않는 문제점이 있다.
또한, 통상적으로 제조되고 있는 대부분의 마이크로 섬유는 용융방사, 건식방사, 습식방사 등과 같은 방사방식, 요컨대 그 고분자 용액을 기계적인 힘으로 미세구멍으로 강제압출 방사시킴으로써 제조되어진다. 하지만, 이러한 방식으로 제조되는 부직포의 직경은 대략 5~500㎛범위를 가지며, 1㎛ 이하의 나노급 섬유를 제조하는 것에는 곤란함이 있다. 그러므로 이러한 직경이 큰섬유로 구성된 필터로는 직경이 큰 오염입자를 필터링할 수 있지만, 나노사이즈의 미세 오염입자를 필터링하는 것은 사실상 불가능하다.
상기한 문제점을 해결하기 위하여 나노사이즈의 섬유(부직포)를 제조하기 위한 다양한 방식들이 개발되고 사용되고 있으며, 그 중 유기 나노 부직포를 형성하는 방법은 블록 세그먼트에 의한 나노구조 물질 형성, 자기조립에 의한 나노구조 물질형성, 실리카 촉매 하에 중합에 의한 나노 부직포 형성, 용융방사 후 탄화공정에 의한 나노 부직포 형성, 고분자 용액 또는 용융체의 전기방사에 의한 나노 부직포형성 등이 있다.
이와 같이 제조되는 나노 부직포를 이용하여 나노 부직포 필터를 구현할 경우, 직경이 큰 나노 부직포 필터에 비해서 그 비표적이 매우 크고, 표면 작용기에 대한 유연성도 좋으며, 나노급 기공사이즈를 갖으므로 유해한 입자나 가스 등을 효율적으로 제거할 수 있다.
하지만, 나노 부직포를 이용한 필터 구현은 생산비용이 매우 높으며, 생산을 위한 여러가지 조건 등을 조절하기가 쉽지 않으므로 나노 부직포를 이용한 필터를 상대적으로 낮은 단가로 생산보급하지 못하는 실정이다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 열가소성 폴리우레탄 기재 사이에 2층 이상의 나노섬유를 형성함으로써, 접착력이 향상된 웹을 제조하는데 목적이 있다.
상기와 같은 목적을 달성하기 위하여, 본 발명은 제1 열가소성 폴리우레탄 기재; 상기 제1 열가소성 폴리우레탄 기재 상에 제1 고분자 방사용액을 전기방사하여 적층형성되고, 평량이 0.1~2g/m2인 제1 나노섬유; 상기 제1 나노섬유 상에 제2 고분자 방사용액을 전기방사하여 적층형성되고, 평량이 0.1~2g/m2인 제2 나노섬유; 및 상기 제2 나노섬유 상에 적층형성되는 제2 열가소성 폴리우레탄 기재를 포함하는 것을 특징으로 하는 접착력이 향상된 나노섬유 웹을 제공한다.
이때, 상기 제1 고분자 방사용액 및 제2 고분자 방사용액은 서로 상이하며, 각각 폴리프로필렌(PP), 폴리에틸렌텔레프탈레이트(PET), 폴리비닐리덴 플루오라이드, 나일론, 폴리비닐아세테이트, 폴리메틸메타아크릴레이트, 폴리아크릴로니트릴(PAN), 폴리우레탄(PUR), 폴리부틸렌텔레프탈레이트(PBT), 폴리비닐부틸랄, 폴리비닐클로라이드, 폴리에틸렌이민, 폴리올레핀, 폴리유산(PLA), 폴리초산비닐(PVAc), 폴리에틸렌나프탈레이트(PEN), 폴리아미드(PA), 폴리비닐알콜(PVA), 폴리에틸렌이미드(PEI), 폴리카프로락톤(PCL), 폴리유산글리롤산(PLGA), 실크, 셀룰로오스 및 키토산으로 이루어진 군에서 선택되는 군에서 선택된 1종을 포함하는 것이 바람직하며, 상기 제1 고분자 방사용액은 폴리우레탄이며, 제2 고분자 방사용액은 폴리비닐리덴플루오라이드 또는 폴리아미드를 포함하는 것이 보다 바람직하다.
또한, 상기 제1 나노섬유 및 제2 나노섬유는 섬유굵기가 굵은 나노섬유 층과 섬유굵기가 가는 나노섬유 층을 포함하는 것이 바람직하다.
또한, 상기 제1 나노섬유 및 제2 나노섬유는 횡방향 또는 종방향으로 평량이 상이하게 형성되는 것이 바람직하다.
여기서, 상기 나노섬유 웹은 필터용인 것이 바람직하며, 보다 바람직하게는 액체 필터용일 수 있다.
아울러, 본 발명은 제1 고분자 방사용액을 전기방사장치의 전단부 블록의 노즐에 공급하고, 제2 고분자 방사용액을 전기방사장치의 후단부 블록의 노즐에 공급하는 단계; 상기 전단부 블록의 노즐에서는 제1 고분자 방사용액을 제1 열가소성 폴리우레탄 기재 상에 전기방사하여 평량이 0.1~2g/m2인 제1 나노섬유를 적층형성하는 단계; 상기 후단부 블록의 노즐에서는 제2 고분자 방사용액을 상기 제1 나노섬유 상에 연속으로 전기방사하여 평량이 0.1~2g/m2인 제2 나노섬유를 적층형성하는 단계; 및 상기 제2 나노섬유 상에 제2 열가소성 폴리우레탄 기재를 적층형성하는 단계를 포함하는 접착력이 향상된 나노섬유 웹의 제조방법도 제공한다.
여기서, 상기 나노섬유를 적층형성하는 단계에서 전기방사는 상향식 전기방사법을 사용하는 것이 바람직하다.
보다 바람직하게는, 상기 전기방사장치는 2개 이상의 전기방사장치로 구성되고, 상향식과 하향식 전기방사장치가 교대로 배치되거나, 또는 하향식과 상향식 전기방사장치가 교대로 배치되며, 각 전기방사장치 사이에는 부직포를 180도 회전시키는 플립장치가 구비될 수 있다.
또한, 상기 전기방사장치는 온도조절장치를 이용하여 고분자 방사용액이 노즐을 통해 45 내지 120 ℃인 고온에서 전기방사되는 것이 바람직하며, 상기 고분자 방사용액은 전술한 바와 동일하다.
본 발명의 구성을 따르면 앞서서 기재한 본 발명의 목적을 달성 할 수 있는데, 본 발명의 구성에 따른 구체적인 효과는 다음과 같다.
본 발명에 따른 필터는 열가소성 폴리우레탄 부직포를 기재로 사용함으로써, 열가소성의 특징을 통해 고온의 라미네이팅 환경에서 부분적으로 용융될 수 있어서 별도의 접착제 없이 접착 역할을 하는 것이 가능한 이점이 있다. 또한, 기재 사이에 나노섬유를 적층형성함으로써, 내열성이 더욱 향상되고 필터의 여과효율이 우수한 효과가 있다. 아울러, 나노섬유를 방사하는 전기방사장치는 다 수개의 블록을 구비하고 있어 나노섬유의 대량생산이 가능하다.
또한 본 발명의 나노섬유 및 필터는 분리막으로 활용이 가능하며 바람직하다. 이는 전기방사를 통해 제조된 나노섬유로 이루어짐에 따라 다공성을 지니므로 이로부터 제조된 분리막은 전지 성능이 우수한 효과가 있는 점에서 분리막으로 활용하는 것이 바람직하며, 기재와 나노섬유 사이에 탈리가 발생하지 않으므로 안정적인 분리막 이용이 가능한 효과가 있다.
도 1은 본 발명에 의해 제조된 필터의 모식도이다.
도 2는 본 발명에 이용되는 전기방사장치를 나타내는 도면이다.
도 3은 본 발명에 이용되는 전기방사장치의 블록에 관한 도면이다.
도 4는 본 발명에 이용되는 전기방사장치의 노즐블럭 및 노즐에 관한 도면이다.
도 5는 본 발명에 사용되는 오버플로우 시스템과 점도조절 시스템을 구비한 전기방사장치에 관한 도면이다.
도 6은 본 발명에 사용되는 온도조절장치를 구비한 전기방사장치에 있어서, 코일 형태의 열선을 장착한 관체를 도시한 정단면도이다.
도 7은 상기 도 6의 A-A'선 측단면도이다.
도 8은 본 발명에 따른 온도조절장치를 구비한 전기방사장치에 있어서, 선형 형태의 열선을 장착한 관체를 도시한 정단면도이다.
도 9는 상기 도 8의 B-B'선 측단면도이다.
도 10은 본 발명에 사용되는 온도조절장치를 구비한 전기방사장치에 있어서, U자 형태의 파이프를 장착한 관체를 도시한 정단면도이다.
도 11은 상기 도 10의 C-C'선 측단면도이다.
도 12는 본 발명의 방사용액 유닛내의 노즐이 CD방향으로 ON-OFF되는 상태를 나타내는 평면도이다.
도 13은 도 12와 같은 방사용액 유닛내의 노즐의 작동에 따른 CD방향으로 고분자의 평량이 상이하게 전기방사되는 작업과정을 나타내는 평면도이다.
도 14는 본 발명의 방사용액 유닛내의 노즐이 MD방향으로 ON-OFF되는 상태를 나타내는 평면도이다.
도 15는 본 발명의 일 실시예에 따른 상향식 전기방사징치 및 하향식 전기방사장치를 포함하는 전기방사장치를 개략적으로 나타내는 모식도이다.
이하, 본 발명에 의한 바람직한 실시예를 첨부된 도면을 참조하면서 상세하게 설명한다. 또한, 본 실시예에서는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시한 것이며, 그 기술적인 요지를 이탈하지 않는 범위 내에서 다양한 변경이 가능하다.
먼저, 본 발명에 이용되는 전기방사장치를 도면과 함께 설명한다.
이때, 본 발명의 일 실시예에 따른 필터를 제조하는 방법에 대해 설명하나, 본 발명이 이에 한정되는 것은 아니다.
도 1은 본 발명에 의해 제조된 필터의 모식도이고, 도 2는 본 발명에 이용되는 전기방사장치를 나타내는 도면이며, 도 3은 본 발명에 이용되는 전기방사장치의 블록에 관한 도면이고, 도 4는 본 발명에 이용되는 전기방사장치의 노즐블럭 및 노즐에 관한 도면이다.
도면에서 도시하고 있는 바와 같이 본 발명의 전기방사장치(10)는 방사용액이 내부에 충진되는 방사용액 주탱크(미도시)와 상기 방사용액 주탱크 내에 충진된 고분자 방사용액의 정량 공급을 위한 계량 펌프(도번 미도시)와 상기 방사용액 주탱크 내의 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐(2)이 다수 개 배열되는 노즐블록(3)과 상기 노즐의 하단에 위치하여 분사되는 고분자 방사용액을 집적하기 위하여 노즐(2)에서 일정간격 이격되는 컬렉터(4) 및 상기 컬렉터에 전압을 발생시키는 전압 발생장치(1)를 그 내부에 수용하는 블록(20) 및 블록(20) 내의 전도체 또는 부전도체로 이루어져 있는 케이스(8)를 포함하여 구성된다.
본 발명에서는 방사용액 주탱크(미도시)가 1개로 구성되어 있으나, 방사용액이 2가지 이상으로 구성되는 경우에는, 방사용액 주탱크를 2개 이상으로 구비하거나, 하나의 방사용액 주탱크 내부가 2개 이상의 공간으로 구획되고 각 구획된 공간에 2개 이상의 고분자 방사용액이 충진되어 공급하는 경우도 가능하다.
여기서, 본 발명에서는 상기 전기방사장치(10)가 방사용액을 상방향으로 분사하는 상향식 전기방사장치를 사용한다.
한편, 본 발명의 일 실시예에서는 전기방사장치로 방사용액을 상방향으로 분사하는 상향식 전기방사장치를 사용하나, 방사용액을 하방향으로 분사하는 하향식 전기방사장치도 사용될 수 있으며, 상향식과 하향식 전기방사장치가 함께 사용되는 복합식 전기방사장치도 사용될 수 있다.
상기한 바와 같은 구조에 의하여, 상기 전기방사장치(10)는 상기 블록(20)내의 방사용액 주탱크에 충진되는 방사용액이 계량 펌프를 통하여 높은 전압이 부여되는 다수의 노즐(2) 내에 연속적으로 정량 공급되고, 상기 노즐(2)로 공급되는 고분자의 방사용액은 노즐(2)를 통해 높은 전압이 걸려 있는 컬렉터(13) 상에 방사 및 집속되어 나노섬유(미도시)를 형성하며, 형성된 나노섬유를 라미네이팅하여 필터로 제조한다.
그리고 전기방사장치(10) 전단에는 각 블록(20)에서 고분자 방사용액이 분사되어 나노섬유가 적층형성되는 장척시트를 공급하는 공급롤러(11)가 구비되고, 후단에는 나노섬유가 적층형성되는 장척시트를 권취하기 위한 권취롤러(12)가 구비된다.
상기 장척시트는 나노섬유의 처짐 방지 및 이송을 위하여 구비된다. 상기 장척시트는 전기방사장치(10)의 선단에 구비되는 공급롤러(11) 및 후단에 구비되는 권취롤러(12)에 그 일측과 타측이 권취된다.
한편, 각 블록(20)의 전기방사장치(10)는 컬렉터(4)를 기준으로 장척시트의 진행방향(a)으로 설치된다. 또한, 상기 컬렉터(4)와 장척시트 사이에 보조벨트(6)가 각각 구비되고, 각 보조벨트(6)를 통하여 각 컬렉터(4)에 집적되어 나노섬유가 적층형성되는 장척시트가 수평방향으로 이송된다. 즉, 상기 보조벨트(6)는 장척시트의 이송속도에 동기하여 회전하고, 보조벨트(6)를 구동하기 위한 보조벨트용 롤러(7)를 갖는다. 상기 보조벨트용 롤러(7)는 2개 이상의 마찰력이 극히 적은 자동 롤러이다. 상기 컬렉터(4)와 장척시트의 사이에 보조벨트(6)가 구비되기 때문에, 장척시트는 고전압이 인가되어 있는 컬렉터(4)에 끌어 당겨지는 일이 없이 부드럽게 이송되도록 이루어진다.
상기한 바와 같은 구조에 의하여, 상기 전기방사장치(10)의 블록(20) 내의 방사용액 주탱크 내에 충진된 방사용액이 노즐(2)을 통하여 컬렉터(4) 상에 위치한 장척시트상에 분사되고, 상기 장척시트 상에 분사된 방사용액이 집적되면서 나노섬유를 적층형성한다. 그리고 상기 컬렉터(4)의 양측에 구비되는 보조벨트용 롤러(7)의 회전에 의해 보조벨트(6)가 구동되어 장척시트가 이송되면서 전기방사장치(10) 후단에 있는 블록(20) 내에 위치되어 상기한 공정을 반복적으로 수행한다.
한편, 노즐블록(3)은 도 4에서 나타내는 바와 같이 방사용액을 토출구로부터 상향 배치되는 복수의 노즐(2), 노즐(2)이 일렬로 구성되는 관체(43), 방사용액 저장탱크(44) 및 방사용액 유통 파이프(45)로 구성된다.
먼저, 방사용액 주탱크와 연결되어 방사용액을 공급받아 저장하는 방사용액 저장탱크(44)는 용액의 토출량을 상기 계량 펌프(미도시)에 의해 방사용액 유통 파이프(45)를 통하여 노즐(2)에 방사용액을 공급하여 방사가 진행된다. 여기서, 복수의 노즐(2)이 일렬로 구성되는 관체(43)는 상기 방사용액 저장탱크(44)로부터 동일한 방사용액을 공급받지만, 방사용액 주탱크가 복수로 구비되고 각각에 서로 다른 종류의 고분자를 공급받아 관체(43)마다 서로 종류가 다른 방사용액이 공급되어 방사되는 것도 가능하다.
상기 복수의 노즐(2)의 토출구로부터 방사될 때, 방사되지 못하고 오버플로우된 용액은 오버플로우 용액 저장탱크(41)에 이동된다. 상기 오버플로우 용액 저장탱크(41)는 방사용액 주탱크에 연결되어 있어 오버플로우 용액은 방사에 재이용될 수 있다.
한편, 도 2에 도시된 바와 같이 본 발명의 주제어장치(30)는 방사 전반의 과정에서 방사조건을 조절하는 장치로서, 노즐블록(3)에 공급되는 방사용액의 양을 제어하고, 각 블록(20)마다 전압발생장치(1)의 전압을 조절하며, 두께측정장치(9)에 의해 측정된 나노섬유 및 장척시트 기재의 두께에 따라서 각 블록(20)의 이송속도를 제어한다.
그리고, 상기 두께측정장치(9)는 블록(20)의 전단부 및 후단부에 위치하고 나노섬유가 적층형성된 장척시트를 사이에 두고 마주보게 설치되어 있다. 상기 두께측정장치(9)는 전기방사장치(10)의 방사조건을 조절하는 주제어장치(30)에 연결되어있어, 상기 두께측정장치(9)가 나노섬유 및 장척시트의 두께를 측정한 값을 기초로 하여 주제어장치(30)에서는 각 블록(20)의 이송속도를 제어하도록 한다. 예를 들면, 전기방사에 있어서, 전단부에 위치한 블록(20)에 토출된 나노섬유의 두께가 편차량이 얇게 측정이 되면, 후단부에 위치한 블록(20)의 이송속도를 감소시켜 나노섬유의 두께를 일정하게 조절한다. 또한 상기 주제어장치(30)가 노즐블록(3)의 토출양을 증가시키고 전압발생장치(1)의 전압의 세기를 조절하여 단위 면적당의 나노섬유의 토출량을 증대시켜 나노섬유의 두께를 균일하게 조절하는 것이 가능하다.
상기 두께측정장치(9)는 초음파 측정방식에 의해 상기 나노섬유가 적층 형성된 나노섬유 및 장척시트까지의 거리를 측정하는 한 쌍의 초음파 종파와 횡파의 측정방식으로 이루어지는 두께측정부를 구비하고, 상기 한 쌍의 초음파 측정장치에 의해 측정된 거리를 기초로 하여 상기 나노섬유 및 장척시트의 두께를 산출하는 것이다. 보다 상세하게는, 나노섬유가 적층된 장척시트에 초음파 종파와 횡파를 함께 투사하여 종파와 횡파의 각 초음파 신호가 상기 나노섬유가 적층된 장척시트에서 왕복 이동하는 시간, 즉 종파와 횡파의 각 전파시간을 측정한 뒤, 상기 측정된 종파와 횡파의 전파시간과 나노섬유가 적층된 장척시트의 기준온도에서 종파와 횡파의 전파속도 및 전파속도의 온도상수를 이용하는 소정의 연산식으로부터 피검사체의 두께를 계산하는 두께측정장치이다.
본 발명에 이용되는 전기방사장치(10)는 나노섬유의 두께 편차량이 소정의 값 미만인 경우에는 이송속도를 초기 값으로부터 변화시키지 않고, 상기 편차량이 소정값 이상인 경우에는 이송속도를 초기 값으로부터 변화시키도록 제어하는 것도 가능하기 때문에, 이송속도 제어장치에 의한 이송속도의 제어를 단순화하는 것이 가능해진다. 또한, 이송속도의 제어 외에도 노즐블록(3)의 토출양과 전압의 세기도 조절할 수 있어서, 두께 편차량이 소정의 값 미만인 경우에는 노즐블록(3) 토출양과 전압의 세기를 초기 값으로부터 변화시키지 않고, 상기 편차량이 소정의 값 이상인 경우에는 노즐블록(3)의 토출양과 전압의 세기를 초기 값으로부터 변화시키도록 제어하는 것이 가능하기 때문에, 노즐블록(3) 토출양과 전압의 세기의 제어를 단순화하는 것이 가능해진다.
한편, 전기방사장치(10)의 블록(20)은 방사위치에 따라 전단부에 위치한 전단부 블록(20)과 후단부에 위치한 후단부 블록(20)으로 구분된다. 본 발명의 일 실시예에서는 블록의 개수를 2개로 한정하고 있으나, 2개 이상 혹은 1개로 구성되는 것도 가능하다.
또한, 본 발명에서는 각 블록(20)에서 종류가 같은 고분자 방사용액을 방사하고 있으나, 어느 한 블록 내에서 2가지 이상의 다른 고분자 방사용액이 방사되는 것도 가능하며, 각 블록(20)마다 동일한 종류의 고분자 방사용액을 각각 방사하는 경우도 가능하다.
또한, 본 발명에서는 각 블록(20a, 20b)에서 같은 고분자 방사용액을 방사하고 있으나, 각 블록마다 서로 다른 종류의 고분자 방사용액을 각각 방사하는 경우도 가능하며, 어느 한 블록 내에서 2가지 이상의 다른 고분자 방사용액이 방사되는 것도 가능하다. 각 블록(20)마다 적어도 2종 이상의 서로 다른 종류의 방사용액을 각각 공급하여 방사하는 경우에는 서로 다른 종류의 고분자 나노섬유가 연속적으로 적층형성되는 것이 가능하다.
이외에도, 사용되는 방사용액의 고분자 종류를 2가지 이상으로 구성하여 하이브리드 나노섬유를 제조하는 것도 가능할 것이다.
또한, 각 블록(20)마다 부여하는 전압의 세기를 달리하여 섬유굵기가 서로 다른 나노섬유가 연속적으로 적층형성되는 것도 가능하며, 한 블록(20) 내에서도 노즐블록(3)의 위치하는 노즐(2)마다 서로 다른 고분자 방사용액을 공급하여 2가지 이상의 고분자가 함께 전기방사되어 적층형성되는 하이브리드 나노섬유를 형성하는 것도 가능할 것이다.
그리고, 상기 전기방사장치(10)에서는 종류가 같은 동일한 고분자를 각 블록(20)에서 전기방사할 때, 전단부에 위치한 블록(20)에서 토출된 나노섬유와 후단부에 위치한 블록(20)에서 토출된 나노섬유의 섬유굵기를 다르게 하여 방사하는 것이 가능하다. 예를 들면, 섬유굵기의 차이를 두기위하여 각 블록(20)마다 부여하는 전압의 세기를 달리하거나, 노즐(2)과 컬렉터(4) 사이의 간격을 조절하여도 굵기가 다른 나노섬유를 형성할 수 있는데, 방사용액이 동일하고 공급전압이 동일한 경우, 방사거리가 가까울수록 섬유직경은 굵어지고, 방사거리가 멀수록 섬유직경이 가늘어지는 원리에 따라 섬유직경이 다른 나노섬유가 형성되는 것도 가능하다. 그리고, 방사용액의 농도를 조절하거나, 장척시트의 이송속도를 조절함으로써 섬유굵기의 차이를 둘 수 있다.
한편, 본 발명의 전기방사장치(10)의 후단부에서는 라미네이팅 장치(19)가 설치되어 있다. 상기 나노섬유가 퇴적된 열가소성 폴리우레탄 기재(5)는 가열장치(19)를 통해 나노섬유의 제조가 마무리되며, 가열온도는 열가소성 폴리우레탄 기재가 나노섬유의 종류에 따라 각각 다르게 설정될 수 있으며, 또한, 본 발명에서 폴리이미드를 제조할 시 이미드화(Imidization)를 위하여 150 내지 350℃로 가열한다. 이와 같이 상기 라미네이팅 장치(19)는 열과 압력을 부여하며 이를 통하여 나노섬유가 적층형성된 필터 기재, 즉 나노섬유 필터는 권취롤러(12)에 권취되어 나노섬유 필터가 형성된다.
상기 전기방사장치(10)는 포집면적을 넓혀 나노섬유의 집적 밀도를 균일하게 할 수 있으며, 드롭렛(Droplet) 현상을 효과적으로 방지하여 나노섬유의 품질을 향상시킬 수 있고, 전기력에 의한 섬유형성 효과가 높아져 나노섬유 및 그의 나노섬유를 대량 생산할 수 있다. 아울러 다수개의 핀으로 구성되는 노즐(2)이 구비된 블록(20)에서 전기방사함에 있어서 소재 및 전기방사 조건을 다르게 조절할 수 있으므로 부직포 및 필라멘트의 폭 및 두께를 자유롭게 변경 및 조절할 수 있다.
또한, 상기와 같이 고분자를 방사하는 경우 고분자 물질에 따라 상이하나 온도 허용범위는 30 내지 40℃ , 습도는 40 내지 70%의 환경조건에서 방사를 하는 것이 가장 바람직하다.
본 발명에서 나노섬유의 직경은 30 내지 1000nm인 것이 바람직하며 더욱 바람직하게는 50 내지 500nm이다.
한편, 도 4에 도시된 바와 같이 본 발명의 전기방사장치는 전기방사에 적합한 섬유점도를 유지하기 위하여 점도를 조절하기 위한 온도조절 제어장치(60)를 포함할 수 있다.
상기 온도조절 제어장치(60)로는 오버플로우를 통해 재사용되는 높은 점도의 폴리머 용액의 점도를 낮게 유지할 수 있는 가열장치와 상대적으로 낮은 점도의 폴리머 용액의 점도를 높게 유지할 수 있는 냉각장치 모두 또는 어느 하나를 구비할 수 있다.
전기방사 영역에서의 온도에 있어서, 전기방사가 일어나는 영역(이하, '방사영역'이라 한다)의 온도는 방사용액의 점도를 변화시킴으로써 방사 용액의 표면장력을 변화시키므로, 결국 방사된 나노섬유의 직경에 영향을 미치게 된다.
즉, 방사영역의 온도가 상대적으로 높아서 용액의 점도가 낮으면 섬유직경이 상대적으로 가는 나노섬유가 만들어지고, 온도가 상대적으로 낮아서 용액의 점도가 높으면 섬유직경이 상대적으로 굵은 나노섬유가 만들어진다.
농도를 측정하기 위한 농도측정장치는 용액에 직접 접촉하는 접촉식과 비접촉식이 있으며, 접촉식으로는 캐필리러식 농도측정장치, 디스크(DISC)식 농도측정장치 등이 사용될 수 있으며, 비접촉식으로는 자외선을 이용한 농도측정장치 또는 적외선을 이용한 농도측정장치 등을 사용할 수 있다.
본 발명의 가열장치는 전열히터, 온수순환장치 또는 온풍 순환 장치 등으로 이루어 질 수 있으며, 이외에 상기 장치들과 균등한 범위에서 온도를 높일 수 있는 장치들을 차용할 수 있다.
가열장치의 일예로 전열히터는 열선형태로 사용될 수 있으며, 노즐블록(110)의 관체(43)내부에 코일형태의 열선(62a, 62b)을 장착할 수 있으며, 이는 자킷형태로도 변형가능하다(도 5 내지 도 11 참고).
또한, 선형형태의 열선(62a, 62b) 및 U자 형태의 파이프(63)의 구성을 지닌 것도 가능하다.
도 5에 도시된 바와 같이 상기와 같은 가열장치는 폴리머 용액이 방사되는 노즐블록(110), 폴리머 용액이 저장되는 탱크(주저장 탱크, 중간탱크 또는 재생탱크) 및 오버플로우 시스템(200 : 특히 회수부로부터 재생탱크로 이송되는 이송배관)중 어느 하나 이상에 구비될 수 있다.
본 발명의 냉각장치는 칠링장치를 포함한 냉각수단등이 사용될 수 있으며, 폴리머 용액의 일정점도를 유지하기 위한 수단은 통상적으로 적용이 가능하다. 냉각장치는 가열장치와 동일하게 노즐블록(110), 탱크 및 오버플로우 시스템(200) 중 어느 하나 이상에 구비될 수 있으며, 폴리머 용액의 일정점도를 유지하기 위해 사용된다.
또한, 본 발명의 온도조절 제어장치(60)는 농도를 측정하는 센서와 이에 따라 온도를 제어하는 온도조절 제어부(미도시)를 포함한다.
상기 센서는 주저장 탱크(210), 중간탱크(220), 재생탱크(230), 노즐블록(110) 또는 오버플로우 시스템(200) 등에 설치되어 방사용액의 농도를 실시간으로 측정하여 이를 온도조절 제어장치(60)에서 점도가 일정하게 유지되도록 가열장치 및/또는 냉각장치를 작동한다.
본 발명의 오버플로우 시스템(200)을 통해 재공급 되는 폴리머 용액의 농도는 20 내지 40%이며, 이는 통상적인 전기방사에서 사용되는 폴리머 용액의 농도인 10 내지 18%에 비해 고농도의 용액이다.
또한, 본 발명의 재공급 되는 폴리머 용액의 점도를 일정하게 하기 위해, 폴리머 용액의 농도에 따른 폴리머 용액의 온도는 상온이 아닌, 45 내지 120 ℃로 조절되는 것을 특징으로 한다.
한편, 본 발명의 폴리머 용액은 점도는 1,000 내지 5,000 cps가 바람직하며, 더욱 바람직하게는 1,000 내지 3,000 cps 의 점도가 좋다. 점도가 1,000 cps 이하일 경우 전기방사되어 적층되는 나노섬유의 품질이 불량하며, 점도가 3,000 cps 이상일 경우 전기방사시 노즐(42)로부터 폴리머 용액의 토출이 용이하게 되지 않아 생산속도가 느려진다.
또한, 본 발명은 전기방사를 진행할수록 폴리머용액의 점도는 일정하여 전기방사시의 방사용이성이 우수함과 동시에 폴리머용액의 농도가 증가하여 콜렉터에 집적되는 나노섬유 중 용매를 제외한 고형분 양의 증가로 생산성이 증대되는 효과가 있다.
이에 더해, 전기방사를 이용한 나노섬유의 잔존 용매량이 기존의 전기방사를 이용한 경우 보다 적어 우수한 품질의 나노섬유를 제조할 수 있다.
또한, 본 발명의 온도조절 제어장치(60)는 오프라인 상으로 작업자가 중간탱크(220)의 농도를 측정하여 노즐블록(110)이나 주저장탱크(210)의 온도조절을 통해 폴리머 용액의 점도를 제어할 수 있는 수동식이 가능함과 동시에, 온라인상으로 자동제어 시스템을 통해 농도측정에 따라 해당 용액의 온도를 조절할 수 있는 자동식인 것을 포함한다.
이하, 본 발명에 사용되는 열가소성 폴리우레탄 기재에 대하여 설명한다.
먼저 폴리우레탄은 폴리이소시아네이트(Polyisocyanate)와 폴리알콜(Polyalcohol)의 반응에 의해 만들어지는 우레탄 결합의 폴리머이다. 폴리우레탄은 탄성, 내마모성, 가공성이 우수하여 산업 및 소비재, 부품 등에 다양하게 사용되는데, 폴리우레탄의 종류에 따라 그 물성의 차이가 있으므로 용도에 맞는 제품의 선택이 중요하다.
폴리우레탄은 크게 2가지로 구분되는데, 열가소성 폴리우레탄과 열경화성 폴리우레탄으로 나뉘는데, 여기서 열가소성 폴리우레탄의 경우 강도, 성형성, 내화학성, 내유성, 내마모도 등이 우수한 특징이 있다. 열가소성 폴리우레탄(이하 "TPU"라 칭함)로 이루어진 신축성 부직포는, 그들의 높은 탄성, 낮은 잔류왜곡 및 우수한 통기성에 의해 의류, 위생재료 및 스포츠용품용 재료를 포함한 용도에 이용되어 왔다. 이른바 멜트 블로우 방사 방법(melt-blow spinning method)으로 제조되는 열가소성 폴리우레탄 부직포는 뛰어난 신축성과 유연성 및 통기성을 가지고 있어서, 종래부터 종이 기저귀의 사이드 밴드, 구급 반창고의 기포(base fabric), 1회용 장갑 등과 같은 비교적 인체의 움직임에 대한 순응이 요망되는 분야, 혹은 스포츠 의류·신축성 면 패드(cotton pad) 등의 겉옷 분야 등 비교적 소프트한 신축성이 요망되는 분야에 사용되고 있다.
상기 열가소성 폴리우레탄의 제조방법은 잘 알려져 있다. 즉, 폴리에스테르폴리올 또는 폴리에테르폴리올과 같은 하이드록시 말단기를 함유하는 선형 폴리올과, 양 말단에 이소시아네이트기를 함유하는 디이소시아네이트 화합물을 반응시켜 제조되며, 필요에 따라 사슬연장제, 모노아민 화합물 등의 말단정지제, 기타 첨가제를 첨가하여 제조된다.
폴리올로는 선형상의 호모 또는 공중합체로 이루어지는 각종 디올, 예를 들어 폴리에스테르디올, 폴리에테르디올, 폴리에스테르아미드디올, 폴리아크릴디올, 폴리티오에스테르디올, 폴리티오에테르디올, 폴리카보네이트디올, 또는 이들의 혼합물 또는 공중합체가 사용될 수 있다. 보다 구체적인 예로는 폴리옥시에틸렌글리콜, 폴리옥시프로필렌글리콜, 폴리테트라메틸렌에테르글리콜, 테트라메틸렌기와 3-메틸테트라케틸렌기로 이루어진 공중합 폴리에테르글리콜 등의 폴리알킬렌에테르글리콜을 예시할 수 있다.
하드 세그먼트 역할을 하는 디이소시아네이트 화합물로는 방향족, 지방족 또는 지환족 디이소시아네이트가 사용되는데, 예를 들러 4,4'디페닐케탄디이소시아네이트, 1,3- 및 1,4-시클로헥실렌디이소시아네이트, 1,6-헥사메틸렌디이소시아네이트, 트리메틸렌디이소시아네이트, 테트라메틸렌디이소시아네이트, 이소포론디이소시아네이트 등을 들 수 있으나 이에 한정되는 것은 아니다.
사슬연장제로는 디아민 화합물 또는 디올 화합물을 들 수 있으며, 예를 들어 메틸렌디아민, 에탄올디아민, 1,2-프로필렌디아민 등의 디아민 화합물과, 에틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 네오펜틸 글리콜 등의 디올 화합물이 있으나, 이에 한정되는 것은 아니다.
말단정지제로는 모노에탄올아민, 디에탄올아민, 디이소프로필아민과 같은 모노아민계 화합물을 들 수 있다.
한편, 열가소성 폴리우레탄의 수평균 분자량은 1,000∼100,000인 것이 바람직하다.
본 발명에서는 기재로서 이러한 열가소성 폴리우레탄을 부직포 기재로 사용하는 것에 특징이 있는데, 먼저, 부직포는 웹(섬유를 거듭해 맞춘 상태)를 제작하여 섬유끼리 물리적화학적으로 포장에 얽히게 할 수 있어 제조한다.
일반적인 부직포의 제조공정은 웹 형성과 웹 결합공정을 거치게 된다. 일반적인 공정은 단섬유 부직포에만 사용되며, 장섬유 부직포는 방사에 의한 필라멘트를 사용하므로 이 공정은 필요치 않다. 부직포의 경우 압축된 베일(Bale) 상태로 입고되므로 부직포를 만들기 위해서는 압축된 섬유들의 과정을 거쳐야한다. 웹의 형성공정은 부직포를 만들기 위해서 반드시 필요한 공정으로, 건식 부직포는 웹의 형성을 대기 중에서 행하는데 반하여 습식 부직포는, 섬유를 분산시켜 이것을 떠올림으로써 웹을 얻는다. 따라서 건식부직포는 섬유의 배열이 방향성을 갖는 것이 대부분이나, 습식부직포는 섬유가 랜덤한 불규칙 배열을 이룬다. 그러나 건식부직포에도 랜덤 카드기의 개발로 용도에 따라 방향성이 없는 웹을 얻을 수 있다.
웹을 형성하는 방법으로서 원료 펠렛(pellet)으로부터 용해 방사를 제작한 장섬유를 사용하는 스펀본드법, 단섬유를 카드기 등에서 일정 방향으로 늘어놓아 웹을 형성하는 건식법, 분산제등을 사용 해 수중에 균일 분산해, 망상에 흘려 탈수해 웹을 형성하는 습식법등이 있다.
또한 섬유끼리를 얽히게 할 수 있는 방법에는, 웹에 열용해성 섬유를 혼합해 , 열롤로 압착하는 서멀 본드법, 바인더(접착수지방)으로 결합시키는 케미컬 본드법, 니들(바늘)의 바브(미소한 돌기)로 섬유끼리를 얽히게 할 수 있는 니들펀치법, 섬유를 제조할 때 고압의 공기로 필라멘트에 충격을 주어 랜덤하게 웹을 형성시키며 0.5 내지 30미크론 직경의 웹을 제조할 수 있는 멜트블로운법 등이 있다.
이 중 본 발명에 사용되는 열가소성 폴리우레탄 기재는 상기 방법 중 멜트블로운법, 스펀본드 법 및 니들펀치법에 의해 제조되는 것이 바람직하다. 멜트블로운(Meltblown)법의 원리는 열가소성 수지에 의한 용융방사법으로서 방사 노즐의 출구에 고온 및 고압의 공기류를 유입하여 섬유를 연신 및 개섬한 다음 포집 콘베이어 상에 집적시키는 방식이다. 이 방법에 의한 부직포는 유연성, 비투과성, 절연성이 우수한 이점이 있다. 일반적으로 열가소성 폴리우레탄 부직포는 멜트 블로운 방사방법에 의해서 제조되는데 멜트블로운 방사의 일반적인 방법을 후술하면 이하와 같다. 즉 용융한 열가소성 중합체를 1열로 배치한 노즐구멍에 공급하고, 그 노즐구멍에서 연속적으로 용융 중합체를 압출하고, 그 노즐구멍군의 양측에 배치한 슬릿으로부터 고온 기체를 고속으로 분사하여, 그 기체 에너지로 노즐구멍에서 압출한 중합체를 세선화, 냉각하여 연속 필라멘트를 형성시킨 다음, 그 연속 필라멘트 군을 이동하는 컨베이어 네트 위 등에 집적, 적층하여 필라멘트 자체가 갖는 자기 접착성에 의해서 필라멘트를 서로 접착시키는 것이다.
한편 스판본드(Spunbond)법은 원료를 방사하여 열에 의해 자체 접착하여 부직포를 형성하는 방식이다. 주로 폴리프로필렌이나 폴리에틸렌 테레프탈레이트를 방사하여 열에 의하여 자체 접착하여 웹을 형성하는 기술로서, 원단 설계가 용이한 이점이 있다.
또한 니들펀치법의 경우는 섬유를 특수바늘을 이용하여 물리적으로 웹을 결합시켜 제조하며 바늘의 펀칭 회수나 바늘의 밀도에 의하여 제품의 두께 등을 다양화하는 것이 가능한 이점이 있다.
이와 같은 부직포 제조방법에 의해 제조된 열가소성 폴리우레탄 부직포는 본 발명에 사용되는 기재로 사용하는 것이 바람직하다. 열가소성 폴리우레탄 부직포 기재는 기본적인 신축 특성이 우수한 것은 물론이고 그 면밀도가 매우 낮고 매우 얇고 부드럽고 소프트하고 또한 통기성이 있음에도 불구하고 기공이 작고 균일하게 분산하여 분포하고 있는 구조를 취하고 있다. 또한 얇은 부직포로 구성될 수 있는 점에서 다른 부재와 복합할 때도 더욱 얇은, 부드럽고 소프트한 복합소재를 부착하는 것이 가능하다. 상기 열가소성 폴리우레탄은 융점이 80 내지 200℃인 것이 특징이다. 따라서 열 접착성이 양호하고 열처리 이후 열 접착 용도로 사용하는 것이 가능한 이점이 있다. 한편, 기재의 평량으로는 10 내지 150g/m2인 것이 바람직한데, 평량이 10g/m2 미만이면 기재로서의 물성이 떨어지며, 평량이 150g/m2를 초과하면 강성도(stiffness)가 높아 가공성이 떨어지는 문제점이 있었다.
또한, 열가소성 폴리우레탄 부직포는 소수성 또는 친수성의 성질을 띠는 것이 가능하고, 색 도입도 가능하며, 열가소성의 특징을 통해 고온의 라미네이팅 환경에서 부분적으로 용융될 수 있어서 별도의 접착제 없이 접착 역할을 하는 것이 가능한 이점이 있다.
이하, 본 발명에 사용되는 방사용액의 고분자에 대해 설명한다.
여기서, 상기 제1 고분자 방사용액 및 제2 고분자 방사용액으로는 별도로 제한받지 아니하나, 예를 들면 폴리프로필렌(PP), 폴리에틸렌텔레프탈레이트(PET), 폴리비닐리덴플루라이드, 나일론, 폴리비닐아세테이트, 폴리메틸메타아크릴레이트, 폴리아크릴로니트릴(PAN), 폴리우레탄(PUR), 폴리부틸렌텔레프탈레이트(PBT), 폴리비닐부틸랄, 폴리비닐클로라이드, 폴리에틸렌이민, 폴리올레핀, 폴리유산(PLA), 폴리초산비닐(PVAc), 폴리에틸렌나프탈레이트(PEN), 폴리아미드(PA), 폴리비닐알콜(PVA), 폴리에틸렌이미드(PEI), 폴리카프로락톤(PCL), 폴리유산글리롤산(PLGA), 실크, 셀룰로오스, 키토산 등이 있으며, 그 중 폴리프로필렌(PP)재질의 소재와 내열성 고분자 물질인 폴리아마이드, 폴리이미드, 폴리아마이드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 폴리설폰, 폴리에테르케톤, 폴리에테르이미드, 폴리에틸렌텔레프탈레이트, 폴리트리메틸렌텔레프탈레이트, 폴리에틸렌 나프탈레이트 등과 같은 방향족 폴리에스터, 폴리테트라플루오로에틸렌, 폴리디페녹시포스파젠, 폴리 비스[2-(2-메톡시에톡시)포스파젠]과 같은 폴리포스파젠류, 폴리우레탄 및 폴리에테르우레탄을 포함하는 폴리우레탄 공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트 등의 폴리머로 이루어진 군이 상용적으로 사용되는 것이 바람직하다. 더욱 바람직하게는 폴리우레탄, 폴리비닐리덴 플루오라이드 및 폴리아미드로 구성된 군에서 선택된 1종 또는 2종 이상을 이용하는 것이 바람직하다.
또한, 상기 고분자 방사용액은 전기방사가 가능한 합성수지 재질인 고분자를 적당한 용매에 용해시킨 용액으로서, 용매의 종류 또한 폴리머를 용해시킬 수 있는 것이라면 제한되지 않는다. 예를 들면, 페놀, 포름산, 황산, m-크레솔, 티플루오르아세트앤하이드라이드/다이클로로메테인, 물, N-메틸모폴린 N-옥시드, 클로로폼, 테트라히드로푸란과 지방족 케톤군인 메틸이소부틸케톤, 메틸에틸케톤, 지방족 수산기 군인 m-부틸알콜, 이소부틸알콜, 이소프로필알콜, 메틸알콜, 에탄올, 지방족 화합물인 헥산, 테트라클로로에틸렌, 아세톤, 글리콜군으로서 프로필렌글리콜, 디에틸렌글리콜, 에틸렌글리콜, 할로겐 화합물군으로 트리크롤로에틸렌, 다이클로로메테인, 방향족 화합물 군인 톨루엔, 자일렌, 지방족 고리 화합물군으로서 사이클로헥사논, 시클로헥산과 에스테르군으로 n-부틸초산염, 초산에틸, 지방족에테르군으로 부틸셀로살브, 아세트산2-에톡시에탄올, 2-에톡시에탄올, 아미드로 디메틸포름아미드, 디메틸아세트아미드 등을 사용할 수 있으며, 복수 종류의 용매를 혼합하여 이용할 수 있다. 고분자 방사용액에는 도전성 향상제 등의 첨가제를 함유하는 것이 바람직하나, 이에 한정하지 아니한다.
또한, 본 발명에서 사용되는 고분자 중 하나인 폴리우레탄은 공지된 폴리우레탄 반응기술을 사용하여 제조할 수 있다. 예컨대, 폴리알킬렌에테르글리콜에 과잉 몰의 유기디이소시아네이트를 아미드계 극성용매 중에서 반응시켜 말단에 이소시아네이트기를 갖는 중간중합체를 조제하고, 이어서, 이러한 중간중합체를 아미드계 극성용매에 용해하고 사슬연장제와 말단정지제를 반응시킴으로써 폴리우레탄 중합체를 얻을 수 있다.
친수성 폴리우레탄 프레폴리머의 제조에 있어서는 바람직하게는 이소시아네이트 1~3몰에 대해 폴리에테르폴리올류 0.15~0.95 몰비로 합성하여 제조한다.
이소시아네이트로는 이소포론 디이소시아네이트, 2,4-톨루엔디이소시아네이트 및 그 이성질체, 디페닐메탄디이소시아네이트, 헥사메틸렌디이소시아네이트, 라이신디이소시아네이트, 트리메틸헥사메틸렌디이소시아네이트, 비스(2-이소시아네이트에텔)-퓨마레이트, 3,3'-디메틸-4,4'-디페닐메탄디이소시아네이트, 1,6-헥산디이소시아네이트, 4,4'-바이페닐렌디이소시아네이트, 3,3'-디메틸페닐렌디이소시아네이트, p-페닐렌디이소시아네이트, m-페닐렌디이소시아네이트, 1,5-나프탈렌디이소시아네이트, 1,4-자일렌디이소시아네이트, 1,3-자일렌디이소시아네이트 등을 사용할 수 있으며, 바람직하게는 디페닐메탄디이소시아네이트, 2,4-톨루엔디이소시아네이트 및 그 이성질체, p-페닐렌디이소시아네이트, 이소포론디이소시아네이트, 헥사메틸렌디이소시아네디트를 사용하는 편이 좋다.
폴리에트레폴리올류는 분자내에 3개 이상의 수산기를 갖고 분자량이 3,000~6,000이며 에틸렌옥사이드 함량이 50~80%인 에틸렌옥사이드/프로필렌옥사이드 랜덤공중합체와 분자내에 2개 이상의 수산기를 갖고 분자량이 1,000~4,000인 폴리프로필렌글리콜 중량 대비 30:70으로 혼합하여 사용할 수 있으며, 바람직하게는 분자내에 3개의 수산기를 갖고 분자량이 3,000~6,000이며 에틸렌옥사이드 함량이 50~80%인 에틸렌옥사이드/프로필렌옥사이드 랜덤 공중합체를 단독으로 사용하는 편이 좋다. 그러나 물성조절을 위하여 상기에서 언급하지 않은 타 이소시아네이트화합물과 폴리올류를 혼합 사용할 수 있다.
한편, 본 발명에서 사용되는 소수성 폴리우레탄은 소성기가 분지된 구조를 갖는데, 이들은 폴리알킬렌 옥시드를 다관능성 물질, 디이소시아네이트 및 물과 반응시키고, 얻어진 생성물을 소수성 일관능 활성 수소 함유 화합물 또는 모노 이소시아네이트로 말단 캡핑시킴으로써 제조될 수 있다. 소수성기는 독립적으로 알킬, 아릴, 아릴알킬, 알케닐, 아릴알케닐, 지환족, 퍼플루오로알킬, 카르보실릴, 폴리시클릴 및 복합 수지상기로 이루어지는 군으로부터 선택될 수 있으며, 여기서 알킬, 알케닐, 퍼플루오로알킬 및 카르보실릴 소수성 기는 1 내지 40개의 탄소원자를 포함하고 아릴, 아릴알킬, 아릴알케닐, 지환족 및 폴리시클릴 소수성 기는 3 내지 40개의 탄소원자를 포함한다.
한편, 본 발명에서 사용되는 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVDF; 이하 PVDF라 칭한다)는 플루오로계열의 고분자 중 하나로, 플루오로 수지는 플루오린을 함유하여 열적, 화학적 성질이 뛰어나다.
[반응식 1]
Figure pat00001
PVDF는 상기 반응식 1과 같은 과정으로 제조되며, 다른 플루오로 수지에 비해 녹는점(177)과 밀도(1.78)가 낮고, 단가가 싸며, 화학적으로 매우 안정하여, 전기줄의 절연에 이용되며, 건물의 외벽을 바르는 고급 페인트로도 쓰인다.
또한, PVDF는 압전성을 나타내는 대표적인 유기물질로 1960년대부터 많은 연구가 진행되어 왔다. PVDF 고분자 내에는 4가지 종류의 결정이 혼재하는데, 이것은 결정형태에 따라 α,β,γ 그리고 δ형의 최소 4가지의 형태로 구분 할 수 있다. 그 중 PVDF의 β형 결정은 트랜스형 분자쇄가 평행으로 충진된 것으로 모노머가 갖는 영구쌍극자가 모두 한 방향으로 배열되어 큰 자발 분극을 나타낸다. 이는 연신을 통하여 PVDF 분자를 규칙적으로 배열하여 집합상태에 이방성을 부여함으로써 압전성을 가질 수 있다는 것을 의미한다. 이러한 압전 특성을 향상시키기 위하여, PVDF 섬유 내 β형 결정을 증가시키는 다양한 방법들이 연구되고 있다.
또한, 본 발명에서 사용되는 고분자 중 하나인 폴리아미드는(Polyamide)는 아미드 결합(-CONH-)으로 연결된 중합체의 총칭을 의미하며, 디아민과 2가 산의 축합 중합으로 얻을 수 있다. 폴리아미드는 분자 구조 내의 아미드 결합에 의하여 특징이 달라지며, 아미드기의 비율에 따라 물성이 다르게 변한다. 예를 들면, 분자 내의 아미드기의 비율이 높아지면 비중, 융점, 흡수성, 강성 등이 올라가는 특성이 있다.
또한, 폴리아미드는 내부식성, 내마모성, 내화학성 및 절연성이 우수한 특성으로 인해 의류용, 타이어코드, 카핏, 로프, 컴퓨터 리본, 낙하산, 플라스틱, 접착제 등의 광범위한 분야에서 응용되고 있는 소재이다.
일반적으로 폴리아미드는 방향족 폴리아미드와 지방족 폴리아미드로 구분이 되는데, 대표적인 지방족 폴리아미드로는 나일론(Nylon)이 있다. 나일론은 본래 미국 듀폰 사의 상표명이지만 현재는 일반명으로 사용되고 있다.
나일론은 흡습성 고분자이며, 온도에 민감하게 반응한다. 대표적인 나일론으로는 나일론 6, 나일론 66 및 나일론 46 등이 있다.
먼저, 나일론 6은 내열성, 성형성 및 내약품성이 우수한 특성이 있으며, 이를 제조하기 위해서는 ε-카프로락탐(Caprolactam)의 개환 중합으로 제조된다. 나일론 6이라고 하는 것은 카프로락탐의 탄소수가 6개이기 때문이다.
[반응식 2]
Figure pat00002
한편, 나일론 66은 나일론 6과 전반적으로 그 특성이 비슷하지만, 나일론 6에 비하여 내열성이 매우 우수하고 자기소화성 및 내마모성이 우수한 고분자이다. 나일론 66은 헥사메틸렌디아민과 아디프산의 탈수축합 중합반응으로 제조된다.
[반응식 3]
Figure pat00003
또한, 나일론 46은 내열성, 기계적 특성 및 내충격성이 우수하며, 가공온도가 높은 장점이 있다. 나일론 46은 테트라메틸렌디아민과 아디프산의 중축합으로 제조된다. 원료인 디아미노부탄(Diaminobutane, DAB)을 아크릴로니트릴과 시안화수소와의 반응으로부터 제조하고, 중합조작에서는 첫 단계로 디아미노부탄과 아디프산으로부터 염을 만든 다음, 적당한 압력 하에서 중합반응을 거쳐 프리폴리머(Prepolymer)로 전환하고, 상기 프리폴리머(Prepolymer)의 고체는 질소와 수증기의 존재 하에서 약 250℃로 처리하면 고상에서 고분자화가 되어 제조된다.
특히 나일론 46은 높은 아미드 농도와, 메틸렌기와 아미드기 사이의 규칙 정연한 배열로 우수한 특징을 나타낸다. 나일론 46의 녹는점은 약 295℃로서, 다른 종류의 나일론보다 높으며, 상기와 같은 특성으로 인해 내열성이 우수한 수지로서 주목받고 있다.
이하, 상기 전기방사장치(10)를 이용하여 열가소성 폴리우레탄 기재 상에 고분자 방사용액을 전기방사하여 제조한 접착력이 향상된 나노섬유 필터의 제조방법을 설명한다.
이때, 본 발명에서는 방사용액의 고분자로는 전술한 바와 같은 고분자를 사용하고, 장척시트로 열가소성 폴리우레탄 기재(100)를 사용한다.
상기 제1 고분자 방사용액 및 제2 고분자 방사용액은 서로 상이하며, 각각 폴리프로필렌(PP), 폴리에틸렌텔레프탈레이트(PET), 폴리비닐리덴 플루오라이드, 나일론, 폴리비닐아세테이트, 폴리메틸메타아크릴레이트, 폴리아크릴로니트릴(PAN), 폴리우레탄(PUR), 폴리부틸렌텔레프탈레이트(PBT), 폴리비닐부틸랄, 폴리비닐클로라이드, 폴리에틸렌이민, 폴리올레핀, 폴리유산(PLA), 폴리초산비닐(PVAc), 폴리에틸렌나프탈레이트(PEN), 폴리아미드(PA), 폴리비닐알콜(PVA), 폴리에틸렌이미드(PEI), 폴리카프로락톤(PCL), 폴리유산글리롤산(PLGA), 실크, 셀룰로오스 및 키토산으로 이루어진 군에서 선택되는 군에서 선택된 1종을 포함하는 것이 바람직하며, 보다 바람직하게는 상기 제1 고분자 방사용액은 폴리우레탄이며, 제2 고분자 방사용액은 폴리비닐리덴플루오라이드 또는 폴리아미드를 포함할 수 있다.
먼저, 도 1을 참고하여 설명하면, 제1 고분자와 제2 고분자를 유기 용매에 녹여 제1 고분자 방사용액, 제2 고분자 방사용액을 제조한다. 제1 고분자 방사용액과 제2 고분자 방사용액을 전기방사장치(10)의 각각 방사용액 주탱크에 공급하고, 제1 고분자 방사용액과 제2 고분자 방사용액은 계량 펌프를 통하여 높은 전압이 부여되는 노즐블럭(3)의 다수의 노즐(2) 내에 연속적으로 정량 공급된다.
상기 각 노즐(2) 공급되는 고분자 방사용액은 노즐(2)을 통해 높은 전압이 걸려있는 컬렉터(4)상에 방사 및 집속되면서 열가소성 폴리우레탄 기재(5)에 분사되어 고분자 나노섬유를 형성한다. 여기서 상기 전기방사 장치(10)의 전단부 블록(20a) 내에서 제1 고분자 나노섬유가 적층되는 기내는 모터(미도시)의 구동에 의해 동작되는 공급 롤러(11) 및 상기 공급롤러(11)의 회전에 의해 구동하는 보조벨트(6)의 회전에 의해 전단부 블록(20a)에서 후단부 블록(20b) 내로 이송된다.
후단부 블록(20b)에서 제2 고분자 방사용액이 주입되어 있는 주탱크에 공급되는 제2 고분자 방사용액은 계량 펌프를 통하여 높은 전압이 부여되는 노즐블럭(3)의 다수의 노즐(2) 내에 연속적으로 정량 공급된다.
이때, 전단부 블록(20a)는 제1 공급장치라고 하며, 후단부 블록(20b)은 제2 공급장치라고 한다.
더욱더 상세하게는, 본 발명의 전기 방사의 방사용액을 보관하는 제1주탱크에는 제1 고분자 방사용액을 제2주탱크에는 제2 고분자 방사용액을 각각 보관하며, 상기 제1 및 2 공급장치는 전체적으로 밀폐된 원통의 형상을 갖도록 설계되어 방사액 주탱크로부터 연속적으로 주입되는 방사용액을 구간 별로 각각 공급하는 역할을 한다. 노즐블록을 2개구간으로 구획하고 각각의 구간에 제1및 2 공급장치를 구비하여 방사액은 각각 제1공급장치에는 제1내열성 고분자 방사액을, 제2공급장치에는 제2내열성 고분자 방사액을 사용한다.
본 발명에서는 전기방사장치(10)의 전단부 블록(20a)의 전압을 낮게 부여하여 섬유굵기가 굵은 나노섬유를 기재 상에 적층형성시키고, 후단부 블록(20b)의 전압은 높게 부여하여 섬유굵기가 가는 나노섬유를 상기 섬유굵기가 굵은 나노섬유 상에 적층형성함으로 나노섬유 필터를 형성한다. 그러나, 전압의 세기를 달리하여 섬유굵기가 가는 나노섬유가 전단부 블록(20a)에서 방사되고 섬유굵기가 굵은 나노섬유가 후단부 블록(20b)에서 방사되는 경우도 가능하다.
상기 노즐블럭에서 구획된 구간의 길이는 필터 여재을 구성하는 각각의 층의 두께에 따라 조절이 가능하다.
또한, 접지된 콜렉터는 일방향으로 이동되도록 제어한 후 연속적인 나노섬유층을 형성하는 연속 공정이 가능하게 하는데, 본 발명은 이러한 공정을 통하여 양면 필터여재의 제조 공정이 단순해지며 생산 속도가 증가하는 효과가 있다.
그리고 고분자 막의 두께, 섬유의 직경, 섬유의 형상의 기계적 특성 등은 인가되는 전압의 세기, 고분자 용액의 종류, 고분자 용액의 점도, 토출 유량 등과 같은 전기방사 공정 조건을 제어하는 것을 통하여 임의로 조절할 수 있다.
상기, 제조된 기재 상의 나노섬유는 라미네이팅 장치(19)에서 기존의 기재와 다른 재질의 기재가 커버로 덮어져 기재와 기재사이의 나노섬유층이 형성된다.
바람직한 전기 방사 공정 조건은 방사용액 공급관으로 이송된 방사용액은 다중관상노즐을 통해 컬렉터로 토출되어 섬유를 형성할 때, 다중관상노즐로부터 전기방사되는 나노섬유는 공기공급용 노즐에서 분사되는 공기에 의해 넓게 퍼지면서 컬렉터상에 포집되어 포집면적이 넓어지고 집적밀도가 균일해진다. 다중관상노즐에서 섬유화되지 못한 과잉 방사용액은 오버플로 제거용 노즐에서 수집된 후, 오버플로액의 임시저장판을 거쳐 방사용액 공급판으로 다시 이동하게 된다.
나노섬유를 제조하고자 할 경우에는 공기공급용 노즐에서 공기의 속도는 0.05m 내지 50m/초, 보다 바람직하기로는 1 내지 30m/초인 것이 좋다. 공기의 속도가 0.05m/초 미만인 경우에는 컬렉터에 포집된 나노섬유 퍼짐성이 낮아서 포집면적이 크게 향상되지 않고, 공기의 속도가 50m/초를 초과하는 경우에는 공기의 속도가 너무 빨라 나노섬유가 컬렉터에 집속되는 면적이 오히려 감소되어, 더욱 심각한 문제는 나노섬유가 아니라 굵은 실타래 형태로 컬렉터에 부착되어 나노섬유의 형성이 현저하게 저하된다는 심각한 문제가 발생된다.
아울러, 노즐블록 최상부에 과잉 공급된 방사용액은 방사용액 배출장치에 의해 방사용액 주탱크로 강제 이송된다.
이때, 전기력에 의한 섬유형성을 촉진하기 위하여 노즐블록 하단부에 설치된 도전체판과 컬렉터에는 전압발생장치에서 발생된 1kV 이상, 더욱 좋기로는 20kV 이상의 전압을 걸어준다. 상기 컬렉터로는 앤드레스(Endless) 벨트를 사용하는 것이 생산성 측면에서 더욱 유리하다. 상기 컬렉터는 나노섬유의 밀도를 균일하게 하기 위하여 좌우로 일정거리를 왕복운동하는 것이 바람직하다.
이와 같이 컬렉터 상에 형성된 나노섬유는 웹 지지로울러를 거쳐서 권취로울러에 권취되면 나노섬유의 제조공정이 완료된다.
전술한 바와 같이 제조된 나노섬유 필터는 액체 필터용으로 적용하기는 것이 바람직하나, 이에 한정되는 것은 아니다.
한편, 본 발명에 제조되는 나노섬유는 폭방향 즉 CD방향 또는 횡방향으로 평량이 상이하거나 길이방향 즉 MD방향으로 평량이 상이하게 전기방사되어 적층될 수 있다. 이때, CD방향은 Cross Direction로서 MD방향(Machine Direction)의 직각 방향을 의미하는데, MD방향은 길이방향/종방향을, CD방향은 폭방향/횡방향을 지칭하기도 한다. 또한, 평량(Basis Weight or Grammage)은 단위 면적당 질량, 즉 바람직한 단위로서 제곱미터당 그램(g/㎡)으로 정의된다.
도 12는 본 발명의 방사용액 유닛내의 노즐이 CD방향으로 ON-OFF되는 상태를 나타내는 평면도이고 도 13은 도 12와 같은 방사용액 유닛내의 노즐의 작동에 따른 CD방향으로 고분자의 평량이 상이하게 전기방사되는 작업과정을 나타내는 평면도인데, 전술한 바와 같이 방사용액 유닛내의 노즐의 작동을 전기적으로 ON-OFF 조절하여 CD방향으로 평량이 상이한 나노섬유를 형성할 수 있다. 도 14는 본 발명의 방사용액 유닛내의 노즐이 MD방향으로 ON-OFF되는 상태를 나타내는 평면도인데, 전술한 바와 같이 방사용액 유닛내의 노즐의 작동을 전기적으로 ON-OFF 조절하여 MD방향으로 평량이 상이한 나노섬유를 형성할 수 있다.
또한, 본 발명에 따른 필터는 도 15와 같이 상향식 전기방사장치(10) 및 하향식 전기방사장치(30)를 포함하여 구성된 전기방사장치(1)를 이용하여 제조될 수 있다.
이때, 상향식 전기방사장치와 하향식 전기방사장치가 일정간격 이격되어 배열설치되어 있으며, 상향식 전기방사장치를 전단에, 하향식 전기방사장치를 후단에 위치시키는 것이 바람직하나, 순서가 반대가 되는 것도 바람직하다.
또한, 바람직하게는 전기방사장치가 3개 이상의 전기방사장치로 구성되고, 상향식 전기방사장치와 하향식 전기방사장치가 교대로 배치되며 각 전기방사장치 사이에는 플립장치(20)를 구비하고 있는 것도 바람직하다.
그리고, 3개 이상의 전기방사장치가 교대로 배치되는 경우 상향식 전기방사장치를 먼저 전단에 두고 교대로 배치하는 것이 가능하나, 하향식 전기방사장치를 먼저 전단에 두고 이후 교대로 배치하는 것도 가능하다.
한편, 본 발명에서의 상향식 전기방사장치와 하향식 전기방사장치 사이에는 플립장치가 구비되는 것을 특징으로 하는데, 플립장치는 각 전기방사장치 사이에 위치하여 지지체를 180도 회전시켜 지지체의 상부면을 하부면으로, 하부면은 상부면으로 회전시키는 역할을 한다.
상기한 바와 같은 구조에 의하여 본 발명에 사용되는 전기방사장치는 상기 상향식 전기방사장치의 방사용액 주탱크 내에 충진된 고분자 방사용액이 노즐을 통하여 컬렉터 상의 지지체 상에 분사되고, 상기 컬렉터의 지지체 상에 분사된 제1 고분자 방사용액이 집적되면서 제1 나노섬유를 형성한 후, 나노섬유 적층형성된 지지체는 플립장치에 의하여 제1 나노섬유가 적층형성된 지지체의 하부면이 상부면으로 180도 회전된다.
그 이후, 하향식 전기방사장치의 컬렉터 상으로 이송되고, 하향식 전기방사장치의 컬렉터 상으로 이송된 제1 나노섬유가 적층된 지지체에 하향식 전기방사장치의 방사용액 주탱크 내에 충진된 제2 고분자 방사용액이 노즐을 통하여 전기방사되어 제1 나노섬유 상에 제2 나노섬유가 적층된다.
이후, 상기 상향식 및 하향식 전기방사장치를 통하여 제작되는 나노섬유 웹과 지지체(기재)를 라미네이팅하기 위한 라미네이팅 장치(40)에 의해 후공정을 수행한다.
본 발명에서는 상향식 및 하향식 전기방사장치 사이에 플립장치를 구비함으로서 각 전기방사장치의 배치를 수평방향에 대하여 일직선에 평행하게 배치되거나, 각 전기방사장치가 층별로 위치되는 수직방향으로 배치되거나, 동일한 층 내에 각 전기방사장치를 U자 방향으로 배치되는 것이 가능하게 하며, 상향식 전기방사장치를 이용함으로서 품질이 개선되고 하향식 전기방사장치를 이용함으로서 생산성이 높아지며, 플립장치를 이용함으로서 기재의 일면에 연속적인 나노섬유 웹의 적층이 가능해지는 이점이 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예들은 여러가지 다른 형태로 변형 될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.
실시예 1
폴리우레탄(DOW 사(USA)의 Pellethane 2363-80AE) 13중량%를 N-N-디메틸아세트아마이드(DMAc) 용매 87중량%를 사용하여 용해시켜 농도가 13%인 고분자 방사용액을 제조하여 전단부 블록과 연결된 방사용액 주탱크에 투입하였다.
또한, 중량평균 분자량(Mw)이 50,000인 폴리비닐리덴 플루오라이드를 디메틸아세트아미드(N,N-Dimethylacetamide, DMAc)에 용해시켜 제조한 농도가 15중량%인 방사용액을 후단부 블록과 연결된 방사용액 주탱크에 투입하였다.
이후 각 방사용액 주탱크에서 각 블록내의 노즐로 방사용액이 공급되어 전기방사가 실시되었다. 이때, 전단부 블록에서 수행되는 전기방사에 의해 평량이 30gsm인 열가소성 폴리우레탄 기재 상에 평량이 0.5gsm이 되도록 폴리우레탄 나노섬유를 적층형성하고, 후단부 블록에서 수행되는 전기방사에 의해 폴리우레탄 나노섬유 상에 평량이 0.5gsm이 되도록 폴리비닐리덴 플루오라이드 나노섬유를 적층형성한 후, 폴리우레탄 나노섬유 상에 평량이 30gsm인 열가소성 폴리우레탄 기재를 올려 라미네이팅을 하여 기재와 기재 상이에 나노섬유가 형성된 필터를 형성하였다. 이때 전극과 컬렉터 간의 거리를 40cm, 인가 전압 20kV, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%인 전기방사조건으로 전기방사를 실시하였다.
실시예 2
폴리우레탄(DOW 사(USA)의 Pellethane 2363-80AE) 13중량%를 N-N-디메틸아세트아마이드(DMAc) 용매 87중량%를 사용하여 용해시켜 농도가 13%인 고분자 방사용액을 제조하여 전단부 블록과 연결된 방사용액 주탱크에 투입하였다. 또한, 나일론6를 포름산에 용해시켜 제조한 농도가 15중량%인 방사용액을 후단부 블록과 연결된 방사용액 주탱크에 투입하였다.
이후 각 방사용액 주탱크에서 각 블록내의 노즐로 방사용액이 공급되어 전기방사가 실시되었다. 이때, 전단부 블록에서 수행되는 전기방사에 의해 평량이 30gsm인 열가소성 폴리우레탄 기재 상에 평량이 0.5gsm가 되도록 폴리우레탄 나노섬유를 적층형성하고, 후단부 블록에서 수행되는 전기방사에 의해 폴리우레탄 나노섬유 상에 평량이 0.5gsm가 되도록 폴리아미드 나노섬유를 적층형성한 후, 폴리우레탄 나노섬유 상에 평량이 30gsm인 열가소성 폴리우레탄 기재를 올려 라미네이팅을 하여 기재와 기재 상이에 나노섬유가 형성된 필터를 형성하였다. 전기방사 공정에서는 전극과 컬렉터 간의 거리를 40cm, 인가 전압 20kV, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%인 전기방사조건으로 전기방사를 실시하였다.
비교예 1
점도 50,000cps, 고형분 20중량%의 메타아라미드를 디메틸아세트아미드(Dimethylacetamide, DMAc)에 녹여 메타아라미드 도프를 제조한다. 전극과 컬렉터 간의 거리를 40Cm, 인가 전압 15kV, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%인 전기방사조건에서 6㎛ 두께의 메타아라미드 나노섬유를 평량이 30gsm인 셀룰로오스 기재 위에 적층하여 필터여재를 형성한다.
- 기재와 나노섬유 사이의 접착력 평가
실시예 1 및 2, 비교예 1에서 각각 제조한 필터를 5회 세탁 후, 기재와 나노섬유의 탈리 여부를 확인하였다.
- 열 수축율 평가
5cm X 2.5cm 의 크기의 나노섬유 필터를 두 장의 슬라이드 글라스 사이에 넣고 클립으로 조인 후, 150℃에서 30분 간 방치한 후 수축율을 측정하였다.
- 여과효율 측정
상기 제조된 나노섬유 필터의 효율을 측정하기 위해 DOP 시험방법을 이용하였다. DOP 시험방법은 티에스아이 인코퍼레이티드(TSI Incorporated)의 TSI 3160의 자동화 필터 분석기(AFT)로 디옥틸프탈레이트(DOP) 효율을 측정하는 것으로서, 필터 미디어 소재의 필터 효율을 측정할 수 있다.
상기 자동화 분석기는 DOP를 원하는 크기의 입자를 만들어 필터 시트 위에 투과하여 공기의 속도, DOP 여과 효율, 공기 투과도(통기성) 등을 계수법으로 자동으로 측정하는 장치이며 고효율 필터에 아주 중요한 기기이다.
DOP % 효율은 다음과 같이 정의된다:
DOP % 효율 = 1 - 100 (DOP농도 하류/DOP 농도 상류)
여기에서는 0.35㎛ 입자 크기의 DOP를 이용하여 실시예 및 비교예의 여과효율을 측정하였다.
실시예1 실시예2 비교예1
접착력 평가 X X O
열 수축율(%) 2 2 5
0.35㎛ DOP 여과효율(%) 85 89 84
표 1에서 알 수 있는 바와 같이, 열가소성 폴리우레탄 기재를 사용한 실시예의 경우 비해 접착력, 열 수축율 및 여과 효율이 향상된 것을 알 수 있다.
이와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
1: 전압발생장치, 2: 노즐,
3: 노즐블록, 4: 컬렉터,
5: 기재, 6 : 보조벨트,
7: 보조벨트용 롤러,
8: 케이스, 9: 두께측정장치,
10: 전기방사장치, 11: 공급롤러,
12: 권취롤러, 19: 라미네이팅 장치,
20: 블록, 30: 주제어장치,
41: 오버플로우 용액 저장탱크, 43: 관체,
44: 방사용액 저장탱크, 45: 방사용액 유통 파이프,
300: 나노섬유.

Claims (13)

  1. 제1 열가소성 폴리우레탄 기재;
    상기 제1 열가소성 폴리우레탄 기재 상에 제1 고분자 방사용액을 전기방사하여 적층형성되고, 평량이 0.1~2g/m2인 제1 나노섬유;
    상기 제1 나노섬유 상에 제2 고분자 방사용액을 전기방사하여 적층형성되고, 평량이 0.1~2g/m2인 제2 나노섬유; 및
    상기 제2 나노섬유 상에 적층형성되는 제2 열가소성 폴리우레탄 기재를 포함하는 것을 특징으로 하는 접착력이 향상된 나노섬유 웹.
  2. 제 1항에 있어서,
    상기 제1 고분자 방사용액 및 제2 고분자 방사용액은 서로 상이하며, 각각 폴리프로필렌(PP), 폴리에틸렌텔레프탈레이트(PET), 폴리비닐리덴 플루오라이드, 나일론, 폴리비닐아세테이트, 폴리메틸메타아크릴레이트, 폴리아크릴로니트릴(PAN), 폴리우레탄(PUR), 폴리부틸렌텔레프탈레이트(PBT), 폴리비닐부틸랄, 폴리비닐클로라이드, 폴리에틸렌이민, 폴리올레핀, 폴리유산(PLA), 폴리초산비닐(PVAc), 폴리에틸렌나프탈레이트(PEN), 폴리아미드(PA), 폴리비닐알콜(PVA), 폴리에틸렌이미드(PEI), 폴리카프로락톤(PCL), 폴리유산글리롤산(PLGA), 실크, 셀룰로오스 및 키토산으로 이루어진 군에서 선택되는 군에서 선택된 1종을 포함하는 것을 특징으로 하는 접착력이 향상된 나노섬유 웹.
  3. 제 1항에 있어서,
    상기 제1 고분자 방사용액은 폴리우레탄이며, 제2 고분자 방사용액은 폴리비닐리덴플루오라이드 또는 폴리아미드를 포함하는 것을 특징으로 하는 접착력이 향상된 나노섬유 웹.
  4. 제 1항에 있어서,
    상기 제1 나노섬유 및 제2 나노섬유는 각각 섬유굵기가 굵은 나노섬유 층과 섬유굵기가 가는 나노섬유 층을 포함하는 것을 특징으로 하는 접착력이 향상된 나노섬유 웹.
  5. 제 1항에 있어서,
    상기 제1 나노섬유 및 제2 나노섬유는 각각 횡방향 또는 종방향으로 평량이 상이하게 형성되는 것을 특징으로 하는 접착력이 향상된 나노섬유 웹.
  6. 제 1항에 있어서,
    상기 나노섬유 웹은 필터용인 것을 특징으로 하는 접착력이 향상된 나노섬유 웹.
  7. 제1 고분자 방사용액을 전기방사장치의 전단부 블록의 노즐에 공급하고, 제2 고분자 방사용액을 전기방사장치의 후단부 블록의 노즐에 공급하는 단계;
    상기 전단부 블록의 노즐에서는 제1 고분자 방사용액을 제1 열가소성 폴리우레탄 기재 상에 전기방사하여 평량이 0.1~2g/m2인 제1 나노섬유를 적층형성하는 단계;
    상기 후단부 블록의 노즐에서는 제2 고분자 방사용액을 상기 제1 나노섬유 상에 연속으로 전기방사하여 평량이 0.1~2g/m2인 제2 나노섬유를 적층형성하는 단계; 및
    상기 제2 나노섬유 상에 제2 열가소성 폴리우레탄 기재를 적층형성하는 단계를 포함하는 접착력이 향상된 나노섬유 웹의 제조방법.
  8. 제 7항에 있어서,
    상기 제1 나노섬유 및 제2 나노섬유를 적층형성하는 단계에서 전기방사는 상향식 전기방사법을 사용하는 것을 특징으로 하는 접착력이 향상된 나노섬유 웹의 제조방법.
  9. 제 7항에 있어서,
    상기 전기방사장치는 2개 이상의 전기방사장치로 구성되고, 상향식과 하향식 전기방사장치가 교대로 배치되거나, 또는 하향식과 상향식 전기방사장치가 교대로 배치되며, 각 전기방사장치 사이에는 부직포를 180도 회전시키는 플립장치가 구비되어 있는 것을 특징으로 하는 접착력이 향상된 나노섬유 웹의 제조방법.
  10. 제 7항에 있어서,
    상기 전기방사장치는 온도조절장치를 이용하여 고분자 방사용액이 노즐을 통해 45 내지 120 ℃인 고온에서 전기방사되는 것을 특징으로 하는 접착력이 향상된 나노섬유 웹의 제조방법.
  11. 제 7항에 있어서,
    상기 제1 고분자 방사용액 및 제2 고분자 방사용액은 서로 상이하며, 각각 폴리프로필렌(PP), 폴리에틸렌텔레프탈레이트(PET), 폴리비닐리덴 플루오라이드, 나일론, 폴리비닐아세테이트, 폴리메틸메타아크릴레이트, 폴리아크릴로니트릴(PAN), 폴리우레탄(PUR), 폴리부틸렌텔레프탈레이트(PBT), 폴리비닐부틸랄, 폴리비닐클로라이드, 폴리에틸렌이민, 폴리올레핀, 폴리유산(PLA), 폴리초산비닐(PVAc), 폴리에틸렌나프탈레이트(PEN), 폴리아미드(PA), 폴리비닐알콜(PVA), 폴리에틸렌이미드(PEI), 폴리카프로락톤(PCL), 폴리유산글리롤산(PLGA), 실크, 셀룰로오스 및 키토산으로 이루어진 군에서 선택되는 군에서 선택된 1종을 포함하는 것을 특징으로 하는 접착력이 향상된 나노섬유 웹의 제조방법.
  12. 제 7항에 있어서,
    상기 제1 고분자 방사용액은 폴리우레탄이며, 제2 고분자 방사용액은 폴리비닐리덴플루오라이드 또는 폴리아미드를 포함하는 것을 특징으로 하는 접착력이 향상된 나노섬유 웹의 제조방법.
  13. 제 7항에 있어서,
    상기 나노섬유 웹은 필터용인 것을 특징으로 하는 접착력이 향상된 나노섬유 웹의 제조방법.
KR1020160049149A 2016-04-22 2016-04-22 접착력이 향상된 나노섬유 웹, 이를 이용한 분리막 및 이의 제조방법 KR101834400B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160049149A KR101834400B1 (ko) 2016-04-22 2016-04-22 접착력이 향상된 나노섬유 웹, 이를 이용한 분리막 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160049149A KR101834400B1 (ko) 2016-04-22 2016-04-22 접착력이 향상된 나노섬유 웹, 이를 이용한 분리막 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20170120806A true KR20170120806A (ko) 2017-11-01
KR101834400B1 KR101834400B1 (ko) 2018-03-05

Family

ID=60383065

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160049149A KR101834400B1 (ko) 2016-04-22 2016-04-22 접착력이 향상된 나노섬유 웹, 이를 이용한 분리막 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR101834400B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109610042A (zh) * 2018-12-13 2019-04-12 晋江市达亿经编织造有限公司 一种热塑性可定型的tpu丝及其制备方法与用途

Also Published As

Publication number Publication date
KR101834400B1 (ko) 2018-03-05

Similar Documents

Publication Publication Date Title
CA2748248A1 (en) Filter materials and filter cartridges
KR101834404B1 (ko) 접착력이 향상된 기재 양면 나노섬유 웹, 이를 이용한 분리막 및 이의 제조방법
KR101834413B1 (ko) 기재섬유와 나노섬유 부직포 간의 부착력이 향상된 나노섬유 적층 복합섬유 및 이를 포함하는 분리막
KR101479753B1 (ko) 폴리아미드 나노섬유 필터 및 이의 제조방법
KR20180037682A (ko) 접착력이 향상된 다층 나노섬유 웹 및 이의 제조방법
KR101834400B1 (ko) 접착력이 향상된 나노섬유 웹, 이를 이용한 분리막 및 이의 제조방법
KR101834399B1 (ko) 접착력이 향상된 나노섬유 웹, 이를 이용한 분리막 및 이의 제조방법
KR101834414B1 (ko) 기재섬유와 나노섬유 부직포 간의 부착력이 향상된 나노섬유 적층 복합섬유 및 이를 포함하는 분리막
KR101834405B1 (ko) 접착력이 향상된 기재 양면 나노섬유 웹, 이를 이용한 분리막 및 이의 제조방법
KR20180037788A (ko) 항균기능을 갖는 나노섬유 원단 및 이의 제조방법
KR101811651B1 (ko) 침구류 나노섬유 원단 제조방법
KR101834398B1 (ko) 침구용 나노섬유 원단 및 이의 제조방법
KR101811653B1 (ko) 침구류 나노섬유 원단 제조방법
KR101527498B1 (ko) 나일론 나노섬유와 이성분 기재를 포함하는 필터 및 이의 제조방법
KR101479760B1 (ko) 내열성이 향상된 다층 필터여재 및 이의 제조방법
KR20180007821A (ko) 나노섬유 웹을 포함하는 다층 미세먼지 차단용 필터 및 이의 제조방법
KR101851324B1 (ko) 고온방사에 의한 침구류용 나노섬유 원단 및 이의 제조방법
KR101834406B1 (ko) 기재섬유와 나노섬유 부직포 간의 부착력이 향상된 나노섬유 적층 복합섬유 및 이를 포함하는 분리막
KR101834407B1 (ko) 기재섬유와 나노섬유 부직포 간의 부착력이 향상된 나노섬유 적층 복합섬유 및 이를 포함하는 분리막
KR101866343B1 (ko) 생산성이 향상된 나노섬유 창상피복재 및 그 제조방법
KR101834408B1 (ko) 기재섬유와 나노섬유 부직포 간의 부착력이 향상된 나노섬유 적층 복합섬유 및 이를 포함하는 분리막
KR101811652B1 (ko) 침구류 나노섬유 원단 제조방법
KR20200091150A (ko) 나노섬유층을 포함하는 전자기 차폐용 멤브레인의 제조방법
KR101416614B1 (ko) 내열성이 향상된 폴리이미드 나노섬유 필터 및 이의 제조방법
KR101834409B1 (ko) 기재섬유와 나노섬유 부직포 간의 부착력이 향상된 나노섬유 적층 복합섬유 및 이를 포함하는 분리막

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant