KR20170119585A - PM 2.5 Dust Counter Using Tyndall Effect and Conductivity In Gas and Solution - Google Patents
PM 2.5 Dust Counter Using Tyndall Effect and Conductivity In Gas and Solution Download PDFInfo
- Publication number
- KR20170119585A KR20170119585A KR1020160047828A KR20160047828A KR20170119585A KR 20170119585 A KR20170119585 A KR 20170119585A KR 1020160047828 A KR1020160047828 A KR 1020160047828A KR 20160047828 A KR20160047828 A KR 20160047828A KR 20170119585 A KR20170119585 A KR 20170119585A
- Authority
- KR
- South Korea
- Prior art keywords
- light
- solution
- scattering
- size
- particle
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/94—Investigating contamination, e.g. dust
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/045—Circuits
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
광산란은 빛의 산란을 이용하여 고분자 혹은 콜로이드 입자의 분자량, 크기, 모양 등을 분석하는 방법으로, 용액 중에는 용질 브라운 운동에 의하여 굴절률의 변화가 생기며, 입사광은 산란된다. 보통의 현미경으로는 볼 수 없는 미립자라도 Tyndall 현상을 이용하여 빛의 통로 옆 방향에서 관찰하면 반짝이는 점으로서 그 위치를 알 수 있음을 영국의 물리학자인 J. Tyndall에 의해 발견되었다. 빛이 산란되는 정도가 입자가 클수록 심해지는 것을 이용하여 미립자의 크기를 구할 수 있다. 맑은 하늘 담배연기가 푸르게 보이는 것이나 금 콜로이드 용액이 여러 가지 색으로 나타나는 것도 Tyndall 현상에 의한 산란광의 세기가 파장에 따라 다르기 때문이다. Light scattering is a method of analyzing the molecular weight, size and shape of polymer or colloidal particles by using scattering of light. In the solution, the refractive index is changed by solute Brownian motion, and the incident light is scattered. It was discovered by J. Tyndall, a British physicist, that even a particle that can not be seen by an ordinary microscope can be spotted as a sparkling spot when viewed from the side of the light passage using the Tyndall phenomenon. The size of the particles can be obtained by using the degree of scattering of light as the particle size increases. It is because the smoke of the clear sky appears to be green, and the colloidal solution of gold appears in various colors because the intensity of the scattered light by the Tyndall phenomenon differs depending on the wavelength.
Description
미세먼지, 조도 센서, PM2.5Fine dust, light sensor, PM2.5
광산란Light scattering 방식 system
입자가 광학챔버에 들어오면 레이져와 만나는데 이때 산란광이 만들어지는데, 입자의 반짝거리는 크기를 가지고 입자 사이즈를 결정하며 반짝거리는 개수를 해아려 입자의 사이즈별 갯수를 측정하게 된다.When the particle enters the optical chamber, it meets the laser. At this time, scattered light is produced. The particle size is determined by the size of the particle, and the number of particles is determined by measuring the number of the particles.
장점 :Advantages :
1)실시간 미세입자측정이 가능하다.1) Real-time fine particle measurement is possible.
2)여러 사이즈 미세먼지 측정이 가능하다.2) It is possible to measure various size fine dust.
3)다른 실시간 측정방법에 비해 측정기 단가 가저렴하다.3) Compared to other real-time measurement methods, the cost of measuring instrument is low.
단점:Disadvantages:
1)입자에 에 대한 비중이 고려되지않았다1) The specific gravity to particles was not considered
2) 레이져 광원에 대한오차가 발생한다.2) An error occurs in the laser light source.
3) 정확한 입자 사이즈 분리가어렵다.3) Precise particle size separation is difficult.
*광산란 방식의 미세먼지측정원리* Light scattering type fine dust measurement principle
위 광산란 방식 의 원리로미세입자를측정한후각사이즈에 대한무게 정량화작업을 해주므로(ug/m3)의미세먼지의 질량을 표시한다.Principle of the above light scattering method Since it performs the weight quantification work for the olfactory size measuring the Romen tenant (ug / m3), it means the mass of the meaningful dust.
컴퓨터 냉각팬사이에 구멍을 뚫어 미세먼지 필터에 공기를 통과 시킨 후 필터의 오염된 상태에 빛을 투과 시키는 실험을 진행 해보았다. 반대편에 빛 센서를 세운다음 전류계와 연결하여 빛을 통과시킬 경우 파랑색 레이저에서 가장 전류의 변화가 컸고 초록색 빨간색 순으로 전류의 변화가 나타났다. I have tried to make a hole between the computer cooling fan to pass the air through the fine dust filter and to transmit the light to the polluted condition of the filter. When the light sensor was connected to the ammeter after the light sensor was installed on the opposite side, the change of the electric current was highest in the blue laser and in the order of green and red.
LogLog II 00 // II tt = = εε CLCL ···비어의 법칙· · · Beer's Law
여기서 I 0는 입사하는 빛의 강도이고, I t 는 통과한 빛의 강도, ε는 흡광계수이다. ε는 입사광의 파장이나 화합물 특유의 상수이다 이러한 법칙을 화학에서 용액상의 농도의 진한 정도를 정량화하는데 많이 사용 되는데 이컴퓨터 팬에 묻은 필터에서도 빛을 투과시켜 이 투과한양을 조도센서로 사용되는 CdS광소자 센서나 태양열 전지에서도 빛의 조도에 따라 전류나 전압의 변화로 검출 할 수가 있게 된다
here I 0 is the intensity of the incident light, I t is the intensity of the transmitted light, and ε is the extinction coefficient. ε is the wavelength of the incident light or the specific constants of the compound. This law is often used to quantify the degree of concentration in the solution phase in chemistry. Even in the filter attached to the computer fan, the transmitted light is transmitted through the CdS light It can be detected by the change of current or voltage according to the illuminance of light even in an element sensor or a solar battery
본 발명에서는 환경부에서 실시하는 총중량법이나 베타선법 같은 방법은 측정기구의 복잡성과 고가의 장비이므로 일반 가정에서는 사용하기에 부적합한 면이 있으므로 미세먼지의 특성에 맞는 물리 화학적 특성을 고려한 측정법을 소개해 보겠다.In the present invention, the methods such as the gross weight method and the beta method, which are carried out by the Ministry of Environment, are complicated and expensive equipment for measurement, and therefore, they are not suitable for use in general households. Therefore, a measurement method considering physicochemical characteristics according to the characteristics of fine dusts will be introduced.
일반적으로 미세먼지를 측정하기 위해 여과장치를 통과하여 2.5마이크론이하의 먼지를 포집하는 시간이 오래 걸리고 이것의 무게를 재서 세제곱 평방 미터당의 중량으로 나타내는 방법이 현재 기준되는 방법이다.In general, it takes a long time to collect dust of less than 2.5 microns through a filtration device to measure fine dust, and the method of presenting the weight of this dust by weight per cubic meter is the current standard method.
초미세먼지(PM2.5)에 대한 여러 가지 물리 화학적 특성을 바탕으로 미세먼지의 농도를 측정할 수 있는 과학적이고 경제적인 방법을 찾아보고 미세먼지의 화학적 조성 중 양이온과 음이온의 종류는 어떠한 것이 있으며 어떠한 경로로 이러한 미세먼지로 형성 되었는가를 여러 가지 실험을 토대로 미세먼지 형성 메카니즘을 이론적으로 알아보았다. 본 발명에서는 광산란을 미세먼지를 용액에서 분석하고 기체상에서의 차이를 통해 복합적인 미세먼지의 용해성과 입도 분포에 대한 정보를 알아보고자 하였다. Based on various physico-chemical properties of ultrafine dust (PM2.5), we looked for a scientific and economical way to measure the concentration of fine dust. What kind of cation and anion are in the chemical composition of fine dust The mechanism of fine dust formation was theoretically investigated based on various experiments on how the fine dust was formed by the path. In the present invention, the light scattering is analyzed in the solution and the information on the solubility and the particle size distribution of the complex fine dusts through the difference in the gas phase is investigated.
중량 포집법은 임펙터 또는 사이크론방식을 이용하여 미세 입자 (PM10 10마이크로 이하입자)를 분리한 후 2마이크로 까지를 분리한 후 포집 총유량 무게값을 계산하여 산출한다 음 무게와 부피(유량체적)ug/m3으로 표시입방 메타 에몇 마이크로그램이 있는지 계산한 값이다. 광산란 방식은 입자가 광학 챔버에 들어오면 레이져와 만나는데 이때 산란광이 만들어지는데, 입자의 반짝거리는 크기를 가지고 입자 사이즈를 결정하며 반짝거리는 개수를 헤아려 입자의 사이즈별 갯수를 측정하게 된다. The weight is calculated by dividing the fine particles (PM10 10 micro-particles or less) using an impactor or a cyclone method, separating up to 2 microns, and calculating the total weight of the collected water. The weight and volume ) ug / m3 Calculates the number of micrograms in the cubic meter. In the light scattering method, when a particle enters the optical chamber, it meets with a laser. At this time, scattered light is produced. The particle size is determined by the size of the particle, and the number of the particle is determined by counting the number of the particle.
도면.1 은 본발명의 실시예1 shows an embodiment of the present invention
미세먼지는 50 마이크로미터 크기의 아주 작은 입자로, 중금속 성분, 탄소 성분, 이온 성분 등 다양한 물질들이 섞여 이루어져있다. 이는 매우 작은 크기를 가지고 있어 호흡기를 통해 여과되지 않고 폐로 직접 침투하기 때문에, 호흡기 질환을 일으킨다. 뿐만 아니라, 중금속과 같은 물질들은 체외로 배출되지 못하고 축적되어 만성 질환을 일으키기도 한다. Fine dust is a very small particle with a size of 50 micrometers. It consists of various materials such as heavy metal, carbon, and ion. It has a very small size and does not filter through the respiratory tract and penetrates directly into the lungs, causing respiratory illness. In addition, substances such as heavy metals can not be discharged out of the body and accumulate to cause chronic diseases.
이와 같은 미세먼지에 의한 피해를 미리 대처하기 위해서, 가정에서 쉽게 미세먼지를 측정하여 미세먼지의 정도를 파악하여 대처 할 수 있는 간편하고 효과적인 장치를 만들게 되었다. 이 장치는 베란다나 실내공간에 설치되어, 미세먼지에 따라 미세먼지 제거장치를 작동 시키게 하도록 가능한 한 편리한 측정방식을 취하도록 하였다.In order to cope with the damage caused by such fine dust, it is possible to easily and finely measure the fine dust at home, and to provide a simple and effective device capable of coping with the degree of fine dust. The device is installed in a veranda or an interior space so that it is as convenient as possible to make the fine dust removal device operate according to fine dust.
생략skip
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160047828A KR20170119585A (en) | 2016-04-19 | 2016-04-19 | PM 2.5 Dust Counter Using Tyndall Effect and Conductivity In Gas and Solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160047828A KR20170119585A (en) | 2016-04-19 | 2016-04-19 | PM 2.5 Dust Counter Using Tyndall Effect and Conductivity In Gas and Solution |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20170119585A true KR20170119585A (en) | 2017-10-27 |
Family
ID=60300353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160047828A KR20170119585A (en) | 2016-04-19 | 2016-04-19 | PM 2.5 Dust Counter Using Tyndall Effect and Conductivity In Gas and Solution |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20170119585A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111727365A (en) * | 2017-12-15 | 2020-09-29 | ams 国际有限公司 | Integrated particulate matter sensor system |
-
2016
- 2016-04-19 KR KR1020160047828A patent/KR20170119585A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111727365A (en) * | 2017-12-15 | 2020-09-29 | ams 国际有限公司 | Integrated particulate matter sensor system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing | |
US6923848B2 (en) | Collecting apparatus of floating dusts in atmosphere | |
CN104764680B (en) | The real-time particulate droplet measurement device of dual wavelength optical | |
Furuuchi et al. | Development and performance evaluation of air sampler with inertial filter for nanoparticle sampling | |
JP4690789B2 (en) | Atmospheric particulate measuring device | |
US9945768B2 (en) | Method and apparatus for a portable PM2.5 monitoring device | |
Luo et al. | Measurement and characterization of engineered titanium dioxide nanoparticles in the environment | |
CN106979909A (en) | Particulate matter classification and concentration detection sensor and method based on luminous flux ratio | |
CN103454194A (en) | PM2.5 (Particulate Matter 2.5) detection device and manufacturing method thereof | |
Liu et al. | Water-based condensation particle counters for environmental monitoring of ultrafine particles | |
KR20170119585A (en) | PM 2.5 Dust Counter Using Tyndall Effect and Conductivity In Gas and Solution | |
CN1475790A (en) | Method and its device for collecting yellow sand and its measuring method and device | |
CN104792676B (en) | The method that air nano-scale particle concentration is measured using ionization method | |
JP5326120B2 (en) | Apparatus and method for measuring particle mass concentration in fluid, and apparatus and method for measuring particle density in fluid | |
KR20180015520A (en) | Fine dust measuring devices utilizing the Tyndall effect and conductivity | |
KR102077692B1 (en) | Light scattering based dust sensor | |
KR20160023504A (en) | PM2.5 Monitoring Device Using Light Sensor By Micro-filter Contamination | |
CN108663349A (en) | A kind of capture of aerosol droplets and Surface enhanced Raman spectroscopy detection device and method | |
CN207816769U (en) | Photometer sensor device | |
Gómez et al. | Deposition of aerosol particles below 10 nm on a mixed screen-type diffusion battery | |
JP4655896B2 (en) | Aerosol measurement device using gas ion monitor device | |
Nagy et al. | Real-time determination of absorptivity of ambient particles in urban aerosol in Budapest, Hungary | |
Wohlleben et al. | 3 Classification Strategies | |
KR20160095588A (en) | PM2.5 Monitoring Device Using Light Sensor By Micro-filter Contamination | |
KR20160095586A (en) | PM2.5 Monitoring Device Using Light Sensor By Micro-filter Contamination |