KR20170108514A - BKCa 채널 활성화용 조성물 - Google Patents

BKCa 채널 활성화용 조성물 Download PDF

Info

Publication number
KR20170108514A
KR20170108514A KR1020160032564A KR20160032564A KR20170108514A KR 20170108514 A KR20170108514 A KR 20170108514A KR 1020160032564 A KR1020160032564 A KR 1020160032564A KR 20160032564 A KR20160032564 A KR 20160032564A KR 20170108514 A KR20170108514 A KR 20170108514A
Authority
KR
South Korea
Prior art keywords
channel
extract
clarinone
composition
disease
Prior art date
Application number
KR1020160032564A
Other languages
English (en)
Other versions
KR102248831B1 (ko
Inventor
박철승
이소정
최재수
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020160032564A priority Critical patent/KR102248831B1/ko
Priority to PCT/KR2017/002951 priority patent/WO2017160128A1/ko
Publication of KR20170108514A publication Critical patent/KR20170108514A/ko
Application granted granted Critical
Publication of KR102248831B1 publication Critical patent/KR102248831B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/14Extraction

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Botany (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

본 발명은 고삼(Sophora flavescens) 추출물을 유효 성분으로 포함하는 BKCa 채널을 활성화 시킬 수 있는 조성물에 관한 것이다. 본 발명의 조성물을 이용하면, BKCa 채널을 효과적으로 활성화 시킬 수 있고, BKCa 채널 비 활성화 또는 활성 저하에 따라 발생하는 다양한 질병의 예방 또는 치료에 이용할 수 있다.

Description

BKCa 채널 활성화용 조성물{Composition for Enhancing BKCa Channel}
본 발명은 고삼(Sophora flavescens) 추출물을 유효 성분으로 포함하는 BKCa 채널을 활성화 시킬 수 있는 조성물에 관한 것이다.
큰 전도도 Ca2+-활동성 K+채널(BKCa 채널)은 막 분극 및/또는 세포내 Ca2+에 의해 활성화 되고, K+ 이온을 세포 막을 가로질러 통과시킨다(Cui et al. 2009; Yang et al. 2015). BKCa 채널은 다양한 타입의 흥분성 세포(excitable cell) 및 비흥분성 세포(nonexcitable cell)에서 널리 발현되며, 신경전달물질 방출(Raffaelli et al. 2006), 평활근의 수축(Brenner et al. 2000; Herrera et al. 2000), 및 주기성 행동 리듬(Meredith et al. 2006)을 포함하는 몇몇 중요한 생리학적 과정의 조절에 관계된다. BKCa 채널의 기능장애는 간질(epilepsy)(Lorenz et al. 2007; Du et al. 2005), 발기 부전(erectile dysfunction)(Werner et al. 2005) 및 과민성 방광(overactive bladder; OAB)(Meredith et al. 2004)과 같은 몇몇 질병의 원인으로 알려져 있다.
OAB는 일반적으로 증가된 낮 또는 밤 시간 빈도를 갖는 요의절박(urinary urgency)의 존재에 의해 특징지워진다(Cerruto et al. 2012). OAB는 약 17%의 서방 세계 인구, 남성 및 여성 모두에 영향을 미치며, 연령과 함께 증가한다(Coyne et al. 2013). 항 무스카린제, 혼합-작용 약물(mixed-action drug) 및 β-아드레날린 수용체 작용제를 포함하는, 방광 내의 다른 리셉터를 타겟팅하는 OAB에 대한 약물들의 몇몇 클래스가 있다(Abraham et al. 2015). 비록 OAB 치료의 중심이 항무스카린 약리학이지만, 부작용 및 감소하는 효능이 장기간 순응 문제(long-term compliance problem)의 원인이 된다(Jayarajan et al. 2013). 그러므로 직접적으로 방광 평활근(urinary bladder smooth muscle; UBSM)를 타겟팅하고 부작용이 적은 OAB에 대한 신규 치료학적 처치가 크게 요구된다. OAB에 대하여 부상중인 치료학적 타겟 중에서, 방광 K+ 채널은 전임상 실험에서 큰 가능성을 보였다. 그러나 지금까지는 임상적으로 연구된 K+ 채널의 활성자 또는 개시자는 실망스러운 결과들은 얻었다(Andersson et al. 2013).
BKCa 채널은 가장 생리학적으로 중요한 K+ 채널 중의 하나이고, 건강 및 질병에서의 UBSM 기능을 조절한다(Petkov et al. 2014). BKCa 채널은 UBSM에서 고 발현된다(Hristov et al. 2011). 막 분극 및 세포 내 Ca2+ 모두에 의해 독특하게 활성화된 것에 의해, BKCa 채널 활성화는 안정막 전위의 유지 및 UBSM 상동성 수축(phasic contraction)을 촉발하는 자발적 활동 전위의 최초 재분극 단계의 기저가 된다. 더욱이 일련의 연구들은 BKCa 채널이 콜린성 및 퓨린성-유도된 수축성(contractility) 감소에 대해 중요한 역할을 한다는 것을 보고하였고, BKCa 채널 발현 또는 기능의 변경이 OAB 발생에 기여할 수 있다는 것을 보여주었다(Werner ME et al 2007). 그러므로, 내인성 BKCa 채널의 화학적 활성화에 의한 UBSM 완화 유도가 가능하다. 사실 BKCa 채널의 몇몇 활성자 화합물이 그들의 방광 이완 효과에 대하여 보고되어 왔고(dela Pena et al. 2009; Layne et al. 2010; Ahn et al. 2011;La Fuente et al;Park et al. 2014), 더욱이 OAB 신드롬에 대한 치료 타겟으로서 그 가능성이 제시되었다. 그러나 BKCa 채널 활성자의 효능 및 특이도(specificity)는 그들의 임상적 이용에 대한 문제로서 남아 있었다(Nardi et al. 2006; Bentzen et al. 2014). 그러므로 높은 특이도를 갖고 더 나은 효능을 갖는 신규한 BKCa 채널 활성자를 발굴할 필요가 있다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 천연 추출물 성분을 포함하는 BKCa 채널 활성화용 조성물을 발굴하고자 예의 연구 노력하였다. 그 결과 고삼 추출물이 BKCa 채널 활성화능을 갖는 것을 규명함으로써, 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 고삼추출물을 유효성분으로 포함하는 BKCa 채널 활성 저하-관련 상태, 질환 또는 질병의 예방 또는 치료용 약제학적 조성물을 제공하는데 있다.
본 발명의 다른 목적은 요실금(incontinence), 과민성 방광(bladder overactivity) 및 발기 부전(erectile dysfunction) 증상 개선용 기능성 식품 조성물을 제공하는데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 고삼추출물을 유효성분으로 포함하는 BKCa 채널 활성 저하-관련 상태, 질환 또는 질병의 예방 또는 치료용 약제학적 조성물을 제공한다.
본 발명자들은 천연 추출물 성분을 포함하는 BKCa 채널 활성화용 조성물을 발굴하고자 예의 연구 노력하였다. 그 결과 고삼 추출물이 BKCa 채널 활성화능을 갖는 것을 규명하였다.
본 발명자들은 BKCa 채널의 신규한 천연 활성자를 새롭게 개발된 세포-기반 분석을 이용하여 탐색하였다. 본 분석에서 이용된 돌연변이 BKCa 채널이 매우 크게 향상된 Ca2+ 민감도를 나타내므로, 채널 활성화를 위해 추가적으로 세포내 Ca2+를 증가시키는 것은 필요치 않았다(Lee et al. 2013). 그러므로, 본 발명자들은 전압 활동성 K+ 채널에 대해 상업적으로 이용가능한 탈륨(Tl+)-기반 형광 분석을 이용할 수 있었다. 천연 추출 성분들을 탐색함으로써, 본 발명자들은 고삼 추출물을 포함하는 신규 BKCa 채널 활성자를 발굴할 수 있었다.
본 발명의 "고삼(Sophora flavescens)"은 콩과에 속하는 여러해살이 풀로서, 특별히 제한되지는 않지만, 건조된 형태의 것을 이용할 수 있다.
본 명세서 상의 용어 고삼 추출물은 다양한 추출 용매, 예를 들어 (a) 물, (b) 탄소수 1-4의 무수 또는 함수 저급 알코올 (메탄올, 에탄올, 프로판올, 부탄올 등), (c) 상기 저급 알코올과 물과의 혼합용매, (d) 아세톤, (e) 에틸아세테이트, (f) 클로로포름, (g) 1,3-부틸렌글리콜, (h) 부틸 아세테이트를 추출 용매로 하여 얻을 수 있다. 바람직하게는, 본 발명의 추출물은 물 및/또는 에탄올을 추출 용매로 하여 얻어진 것이고, 구체적인 일례로서 70% 에탄올을 추출 용매로 하여 얻을 수 있다. 한편, 본 발명의 추출물은 상기 추출 용매뿐만 아니라, 다른 추출 용매를 이용하여도 실질적으로 동일한 효과를 나타내는 추출물이 얻어질 수 있다는 것은 당업자에게 자명한 것이다.
본 발명의 일 구체예에 있어서, 본 발명의 고삼 추출물은 극성 유기 용매 추출물이다.
본 발명의 일 구체예에 있어서, 본 발명의 극성 유기 용매는 (a) 물, (b) 탄소수 1-4의 무수 또는 함수 저급 알코올, 또는 이들의 혼합물이다.
본 명세서 상의 용어 "추출물"은 상술한 바와 같이 당업계에서 조추출물(crude extract)로 통용되는 의미를 갖지만, 광의적으로는 추출물을 추가적으로 분획(fractionation)한 분획물도 포함한다. 즉 본 발명의 고삼 추출물은 상술한 추출용매를 이용하여 얻은 것뿐만 아니라, 여기에 정제과정을 추가적으로 적용하여 얻은 것도 포함한다. 예컨대, 상기 추출물을 일정한 분자량 컷-오프 값을 갖는 한외 여과막을 통과시켜 얻은 분획, 다양한 크로마토그래피(크기, 전하, 소수성 또는 친화성에 따른 분리를 위해 제작된 것)에 의한 분리 등, 추가적으로 실시된 다양한 정제 방법을 통해 얻어진 분획도 본 발명의 추출물에 포함되는 것이다. 또한 본 발명의 추출물은 감압 증류 및 동결 건조 또는 분무 건조 등과 같은 추가적인 과정에 의해 분말 상태로 제조된 것을 포함한다.
본 명세서 상의 용어 "BKCa 채널 활성 저하-관련 상태, 질환 또는 질병"이란 BKCa 채널의 활성이 정상 수준에 비해 저하되어 있거나, 실질적으로 불활성화되어 있고, 이에 따라 BKCa 채널 활성에 의해 제어되는 채널 신경세포의 흥분도(neuronal excitability), 신경전달물질 분비, 평활근세포의 수축 및 유모세포의 주파수 조정(frequency tuning) 등의 중요한 생리학적 기능이 저하된 상태, 이에 따라 발생되는 질환 또는 질병을 의미한다.
본 발명의 일 구현예에 있어서, 본 발명의 BKCa 채널 활성 저하-관련 상태, 질환 또는 질병은 심혈관질환(cardiovascular disease), 폐쇄 또는 염증 기도 질환, 하부 요로 질환(lower urinary tract disorders), 발기부전, 불안 및 불안-관련 상태, 간질 또는 동통을 포함한다.
막 탈분극(membrane depolarization)과 세포내 Ca2+ 농도의 증가는 BK 또는 Maxi-K 채널로 알려진 큰 전도성을 가진 칼슘-활성화된 포타슘 채널(large-conductance calcium-activated potassium(BKCa) channels)을 활성화시킨다(Salkoff, et al., 2006; Cui, et al., 2009). 상술한 채널들은 신경세포의 흥분도(neuronal excitability), 신경전달물질 분비, 평활근세포의 수축 및 유모세포의 주파수 조정(frequency tuning)에서 중요한 생리학적 기능들을 수행함이 알려져 있다(Brenner, et al., 2000; Nelson, et al., 1995; Fettiplace and Fuchs, 1999). BKCa 채널들은 동공-형성(pore-forming) α-서브유니트와 조절성 β-서브유니트로 구성된다. BKCa 채널의 α-서브유니트는 7개의 막통과 도메인들로 구성되며(Catterall, 1995) C-말단은 K+ 전도성(K+ conductance domain; RCK) 도메인을 조절하는 2개의 조절인자를 포함하는 데, 이들은 세포내 Ca2+ 농도에 반응하는 게이트 링(gating ring)을 형성한다(Jiang, et al., 2001). BKCa 채널은 고혈압, 관상 동맥 경련(coronary artery spasm), 요실금(urinary incontinence) 및 많은 신경학적 질환들과 밀접한 관련성을 갖는 치료 타겟임이 알려져 있다(Ghatta, et al., 2006). BKCa 채널이 결핍된 마우스는 요실금(incontinence), 과민성 방광(bladder overactivity) 및 발기 부전(erectile dysfunction) 같은 증상들을 나타내는 것이 알려져 있으며(Meredith, et al., 2004; Werner, et al., 2005)이를 회복시키거나 활성화 시킴으로서 상기 질환들을 예방 또는 치료할 수 있음이 알려져 있다. 또한, BKCa 채널의 기능 장애는 소뇌성 운동 실조증(cerebellar ataxia) 및 발작성 이상운동질환(paroxysmal movement disorders)을 초래할 수 있다는 것이 알려져 있으며, 상기 질환 들의 치료학적 타겟이 될 수 있다(Lee and Cui, 2010). BKCa 채널의 활성화는 K+ 유출을 증가시키고 과다분극을 야기함으로써 세포를 안정화시킨다. 따라서, BKCa 채널의 활성을 개방 또는 강화시키는 물질은 세포내 흥분성(excitability)을 감소시키고 평활근세포들의 긴장을 완화시키는 치료학적 이점들을 부여할 수 있다.
본 명세서의 용어 "심혈관질환(cardiovascular disease)"은 심장, 심장 판막, 혈액 및 몸의 혈관구조(vasculature)에 영향을 미치는 수많은 상태를 분류하는데 이용되는 일반적인 용어로, 심장 또는 혈관에 영향을 미치는 질병들을 포함한다.
본 발명의 심혈관질환은 죽상경화증, 죽상혈전증, 아테롬성 동맥경화증, 관상동맥질환, 허혈, 재관류 손상, 고혈압, 재협착증, 동맥 염증, 심근 허혈 또는 허혈성 심장 질환, 안정 및 불안정 협심증, 뇌졸중, 울혈성 심부전, 대동맥 협착증 또는 대동맥류 같은 대동맥질환 및 말초혈관질환을 포함한다. 본 명세서의 용어 "말초혈관질환(peripheral vascular disease, PVD)"은 종종 사지 혈관의 협착시에 직면하는 심장 및 중추신경계 외측 혈관의 질환을 의미하며, 예를 들어 혈관에는 결함이 없지만 감기, 스트레스 또는 흡연과 같은 자극으로부터 발생하는 기능적 질환, 및 죽상경화증 병변, 국소 염증 또는 외상성 손상과 같은 혈관계의 구조적 결함으로부터 발생되는 기질적 질환으로 구분될 수 있다.
본 발명의 폐쇄 또는 염증 기도 질환은 기도 과다반응, 진폐증, 알루미늄증, 탄분증, 석면증, 석폐증, 첩모탈락증(ptilosis), 철침착증(siderosis), 규폐증, 연초 중독증, 면폐증(byssinosis), 사르코이드증(sarcoidosis), 베릴륨증, 폐기종, 급성 호흡 곤란 증후군(acute respiratory distress syndrome; ARDS), 급성 폐 손상(acute lung injury; ALI), 급성 또는 만성 감염성 폐질환, 만성 폐쇄성 폐질환(chronic obstructive pulmonary disease; COPD), 기관지염, 만성 기관지염, 색색거리는(wheezy) 기관지염, 기도 과다반응 또는 낭섬유증 악화, 또는 만성 기침을 포함하는 기침, 기도 과다반응의 악화, 폐 섬유증, 폐 고혈압, 염증성 폐질환, 및 급성 또는 만성 호흡 감염 질환을 포함한다.
본 명세서의 용어 "하부 요로 질환"은 실뇨, 빈뇨, 급뇨, 및 야간뇨를 갖거나 또는 갖지 않는 과민성 방광에 의해서 특징되는 모든 하부 요로 질환을 포함한다. 따라서, 본 발명의 하부 요로 질환은 과민성 방광(overactive bladder), 과민성 배뇨근, 불안정성 방광(unstable bladder), 배뇨근과반사(detrusor hyperreflexia), 감각성 급뇨(sensory urgency) 및 배뇨근 과활동성의 증상 같은 과민성 방광(urinary bladder), 요실금 또는 긴박성 요실금(urge urinary incontinence), 스트레스성 요실금(urinary stress incontinence), 느린 배뇨, 배뇨 말기 적하(dribbling), 무뇨증 및/또는 허용 가능한 비율로 배뇨를 위한 압력을 가해야하는 필요와 같은 폐쇄성 배뇨 현상을 포함하는 하부 요로 질환 증상, 그리고 빈뇨 및/또는 급뇨와 같은 증상을 포함한다. 또한, 하부 요로 질환은 뇌졸증, 파킨슨 병(Parkinson's disease), 당뇨병, 다발성 경화증, 말초 신경병증, 또는 척수 손상을 포함하나, 이에 한정되지 않는 신경학적 손상의 결과로 발생되는 신경인성 방광을 포함할 수 있다. 또한, 하부 요로 질환은 전립선염, 간질성 방광염, 전립선 비대증, 및 척수 손상 환자의 경련성 방광(spastic bladder)을 포함할 수 있다. 본 발명의 어떤 구현예에 따르면, 본 발명의 하부 요로 질환은 과민성 방광, 불안정성 방광, 과민성 배뇨근, 배뇨근불안정(detrusor instability), 배뇨근과반사, 감각성 급뇨, 요실금, 긴박성 요실금, 스트레스성 요실금, 신경인성 요실금(relfex urinary incontinence), 느린 배뇨, 배뇨 말기 적하, 배뇨 장애(dysuria) 및 경련성 방광(spastic bladder)을 포함하지만, 이에 한정되는 것은 아니다.
본 명세서의 용어 "발기 부전(erectile dysfunction)"은 성교 수행에 충분한 발기를 획득하거나 유지하는데 있어서 지속적인 불능 상태로, 이는 내피세포의 기능 이상(endothelial cell dysfunctions)과 밀접하게 연관되어 있다.
본 발명의 BKCa 채널의 조절과 관련된 질환, 장애 또는 상태는 통증 장애(pain disorders); 범불안장애, 불안공황, 강박장애, 사회 공포증, 수행 불안(performance anxiety), 외상 후 스트레스 장애(posttraumatic stress disorder), 급성 스트레스 반응, 적응 장애(adjustment disorder), 건강염려성장애(hypochondriacal disorder), 분리 불안 장애, 광장공포증 및 특정 공포증(phobia) 같은 불안 및 불안-관련 상태; 및 단순 부분 발작, 복합체 부분 발작, 이차 전신 발작(secondary generalised seizure), 결신 발작(absence seizure), 근간대 발작(myoclonic seizure), 간대 발작(clonic seizure), 강직 발작(tonic seizure), 강직 간대 발작(tonic clonicseizure) 및 무동성 발작(atonic seizure)을 포함하는 전신 발작(generalised seizure) 같은 간질을 포함하지만, 이에 한정되는 것은 아니다.
또한, 특정 공포증과 관련된 불안은 동물, 곤충, 폭풍우, 운전, 비행, 높이 또는 다리 건너기, 폐쇄 또는 좁은 공간, 물, 혈액 또는 상처뿐만 아니라, 주사 또는 외과적인 의료 및 치과 과정을 포함하지만, 이에 한정되는 것은 아니다.
또한, 통증장애는 고통을 동반하는 장애로, 예를 들어 골격통증(musculoskeletal pain), 수술 후 통증(post operative pain) 및 수술 통증(surgical pain)과 같은 급성 통증; 만성 염증성 통증(예컨대, 류마티스 관절염 및 골관절염), 신경병증성 통증(예컨대, 대상포진 후 신경통(post herpetic neuralgia), 삼차신경병증(trigeminal neuralgia) 및 교감신경 유지 통증(sympathetically maintained pain)) 및 암과 연관된 통증 및 섬유근육통증(fibromyalgia)과 같은 만성 통증; 편두통과 연관된 통증; (만성 및 급성 모두) 통증, 및/또는 류머트즘열(rheumatic fever)과 같은 상태의 열 및/또는 감염; 인플루엔자(influenza) 또는 일반적인 감기와 같은 다른 바이러스 감염과 연관된 증상; 하부요통 및 경부통; 두통; 치통; 염좌(sprains) 및 좌성(strains); 근염(myositis); 신경통(neuralgia); 건막염(synovitis); 류마티스 관절염을 포함하는 관절염 ; 골관절염을 포함하는 퇴행성 관절증 (degenerative joint diseases) ; 통풍(gout) 및 강직성 척추염(ankylosing spondylitis); 건염(tendinitis); 윤활낭염(bursitis); 건선(psoriasis), 습진(eczema), 화상 및 피부염(dermatitis)과 같은 피부 관련 상태; 운동 손상(sports injuries); 및 수술 및 치과 과정으로 야기되는 손상과 같은 손상들을 포함하지만, 이에 한정되는 것은 아니다.
본 발명의 약제학적 조성물은 유효성분 이외에 약제학적으로 허용되는 담체를 포함한다. 본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 한편, 본 발명의 약제학적 조성물의 투여량은 바람직하게는 1일 당 0.001-1000 mg/kg(체중)이다.
본 발명의 약제학적 조성물은 경구 또는 비경구로 투여할 수 있고, 비경구로 투여되는 경우, 피부에 국소적으로 도포, 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 경피 투여 등으로 투여할 수 있다.
본 발명의 약제학적 조성물은 경구 투여할 수 있고, 경구투여를 위한 고형 제제에는 정제, 환제, 산제, 과립제, 캡슐제, 트로키제 등이 포함되며, 이러한 고형 제제는 하나 이상의 본 발명의 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로스(sucrose) 또는 락토오스(lactose) 또는 젤라틴 등을 섞어 조제된다. 또한, 단순한 부형제 외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용된다. 경구 투여 를 위한 액상 제제로는 현탁제, 내용 액제, 유제 또는 시럽제 등이 해당되는데, 흔히 사용되는 단순 희석제 인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.
경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁용제, 유제, 동결건조제 제, 좌제 등이 포함된다. 비수성용제, 현탁 용제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝 솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세롤, 젤라틴 등이 사용될 수 있다.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기내에 내입시켜 제조될 수 있다. 통상적인 제형이라 함은 예를 들면 경구(정제, 캡슐제, 분말제), 구강 내, 혀 밑, 직장 내, 질 내, 비강 내, 국소 또는 비경구(정맥 내, 해면체 내, 근육 내, 피하 및 관 내를 포함) 투여 제형을 일컫는다. 예를 들면, 본 발명에 따른 화합물은 전분 또는 락토오즈를 함유하는 정제 형태로, 또는 단독 또는 부형제를 함유하는 캡슐 형태로, 또는 맛을 내거나 색을 띄게 하는 화학 약품을 함유하는 엘릭시르 또는 현탁제 형태로 경구, 구강 내 또는 혀 밑 투여될 수 있다. 액체 제제는 현탁제(예를 들면, 메틸셀룰로오즈, 위텝솔(witepsol)과 같은 반합성 글리세라이드 또는 행인유(apricot kernel oil)와 PEG-6 에스테르의 혼합물 또는 PEG-8과 카프릴릭/카프릭 글리세라이드의 혼합물과 같은 글리세라이드 혼합물)와 같은 약제학적으로 허용 가능한 첨가제와 함께 제조된다. 또한, 비경구적으로 예를 들면, 정맥 내, 해면체 내, 근육 내, 피하 및 관내를 통하여 주사되는 경우 무균의 수용액 형태로서 사용하는 것이 가장 바람직하며, 이때 상기 용액은 혈액과의 등장성을 갖기 위하여 다른 물질들(예를 들면 염(salt) 또는 만니톨, 글루코오스와 같은 단당류)를 함유할 수도 있다.
본 발명의 일 구현예에 있어서, 본 발명의 조성물은 BKCa 채널의 전도도-전압(G-V) 상관관계를 음적 전압(negative voltage) 방향으로 이동시킨다. 전도도-전압 상관관계를 음적 전압 방향으로 이동시킨다는 것은 채널의 개방 형태를 안정화 시킴으로써 BKCa 채널을 활성화 시킨다는 것을 나타낸다.
본 발명의 다른 일 양태에 따르면, 본 발명은 고삼추출물을 유효성분으로 포함하는 요실금(incontinence), 과민성 방광(bladder overactivity) 및 발기 부전(erectile dysfunction) 증상 개선용 기능성 식품 조성물을 제공한다.
본 발명의 기능성 식품 조성물은 식품 제조 시에 통상적으로 첨가되는 성분을 포함하며, 예를 들어, 단백질, 탄수화물, 지방, 영양소 및 조미제를 포함한다. 예컨대, 드링크제로 제조되는 경우에는 유효성분 이외에 향미제 또는 천연 탄수화물을 추가 성분으로서 포함시킬 수 있다. 예를 들어, 천연 탄수화물은 모노사카라이드(예컨대, 글루코오스, 프럭토오스 등); 디사카라이드(예컨대, 말토스, 수크로오스 등); 올리고당; 폴리사카라이드(예컨대, 덱스트린, 시클로덱스트린 등); 및 당알코올(예컨대, 자일리톨, 소르비톨, 에리쓰리톨 등)을 포함한다. 향미제로서 천연 향미제(예컨대, 타우마틴, 스테비아 추출물 등) 및 합성 향미제(예컨대, 사카린, 아스파르탐 등)을 이용할 수 있다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 고삼추출물을 유효성분으로 포함하는 BKCa 채널 활성 저하-관련 상태, 질환 또는 질병의 예방 또는 치료용 약제학적 조성물을 제공한다.
(b) 본 발명은 요실금(incontinence), 과민성 방광(bladder overactivity) 및 발기 부전(erectile dysfunction) 증상 개선용 기능성 식품 조성물을 제공한다.
(c) 본 발명의 조성물을 이용하면, BKCa 채널을 효과적으로 활성화 시킬 수 있고, BKCa 채널 비 활성화 또는 활성 저하에 따라 발생하는 다양한 증상의 개선, 또는 다양한 질병의 예방 또는 치료에 이용할 수 있다.
도 1은 세포-기반 형광 분석을 이용하여 70% 에탄올로 추출한 고삼의 추출물의 BKCa 채널 활성화 효과를 나타낸다. 고삼 추출물의 BKCa 채널 활성화 여부는 과활성 돌연변이 BKCa 채널(G803D/N806K)을 안정적으로 발현하는 AD293 세포를 Tl+-기반 형광(FluxORTM)분석에 이용하여 확인하였다. 10-1000 μg/mL의 고삼 추출물 처리시 형광 변화를 상대적 형광 유닛(relative fluorescence unit, RFU)으로서 나타내었다. 각농도의 추출물을 실험 전에 5 μM 최종 농도로 각각의 테스트-웰로 운반하였고, 자극 버퍼(stimulus buffer)를 120초에 추가하였다. DMSO(1%, 비히클)과 BKCa 채널 활성물질인 CTBIC를 비교물질로 사용하였다.
도 2는 고삼 추출물의 유효 성분인 쿠라리논의 처리 후의 형광 신호의 농도-의존 증가를 나타낸다. 안정적으로 돌연변이 BKCa 채널을 발현하는 AD293 세포를 다른 농도의 쿠라리논으로 처리하였다. 도 3의 A는 대표 형광 트레이스를 나타낸다. 20초 동안 기준 선을 얻은 후에, Tl+-함유 자극 버퍼를 처리하였다. 세포들을 비히클로서의 1% DMSO(□) 또는 다른 농도의 쿠라리논(■: 3 μM, ●: 5 μM, ▲: 10 μM, ▼: 30 μM)의 존재하에서 배양시켰다. 세포들을 또한 쿠라리논(5 μM)과 함께 BKCa 채널 차단제인 팍실린(paxilline) 1 μM 로 배양시켰다(◆). 도 3의 B는 다른 농도의 쿠라리논에서의 최초 RFU 증가를 나타낸다. 에러 바(S.E.M.)를 나타내었다. 삽입도는 쿠라리논의 화학구조를 나타낸다.
도 3은 고삼 추출물과 쿠라리논 단일화합물의 활성을 비교한 결과를 나타낸다. 50 μg/mL과 100 μg/mL의 70% 에탄올 추출물 및 10 μM 쿠라리논을 각각 FluxORTM 분석하고 형광증가를 비교하였다. 10 μM 쿠라리논과 비슷한 형광증가를 나타내는 고삼 추출물의 농도를 확인하였다.
도 4는 거시적 BKCa 채널 전류의 쿠라리논에 의한 가역적 강화를 나타낸다. BKCa 채널에 의해 유발된 테일 전류의 대표 다이어리-플랏을 연속 기록으로서 나타내었다. 이온 전류를 -100 mV의 보유(holding) 전압으로부터 100 mV의 50-ms 스텝-펄스로 매초마다 기록하였다. 전류를 특정의 포인트(100 mV 전압 펄스 후 0.8 ms)에서 얻었다. 각각의 대표 전류 트레이스(a-d)는 화살표로 표시한 포인트에서의 전류를 나타낸다.
도 5는 거시적 BKCa 채널 전류의 전류-전압 및 전도도-전압 관계 상의 쿠라리논의 효과를 나타낸다. 도 5의 A는 다른 쿠라리논 농도에서의 3 μM[Ca2+]i에서의 BKCa 채널 전류의 대표 트레이스를 나타낸다. 이온 전류를 100-ms 전압 스텝-펄스로 유발시켰다. 전류를 -80 mV에서 200 mV까지 10 mV 증분으로 기록하였다. 보유 전압은 -100 mV였다. 도 5의 B는 전도도-전압(G-V) 관계 상의 쿠라리논의 효과를 나타낸다. 전도도는 피크-테일 전류로부터 얻었다. 전류는 비히클 트레이스의 최대 전류에 의해 정규화시켰다. 각각의 기호들은 다른 쿠라리논 농도에서의 전도도를 나타낸다: 비히클(■, n=12), 3 μM(●, n=8), 5 μM(▲, n=12), 10 μM(▼, n=8) 및 20 μM(◆, n=4). 도 5의 C는 절반-최대 전압(V 1/2 ) 상의 쿠라리논의 효과를 나타낸다. 그래프 상의 각각의 기호들은 V1/2의 S.E.M 및 평균을 나타낸다. 결과값들은 모든 독립 데이터 세트를 볼츠만 함수(Boltzmann function)(P0=[1/(1+exp{(V1/2-V)/k}])를 이용하여 피팅함으로써 얻었다.
도 6은 거시적 BKCa 전류의 활성화 및 비활성화 상의 쿠라리논의 효과를 나타낸다. 도 6의 A 및 B는 비히클(검정) 또는 20 μM의 쿠라리논(회색)으로 처리하였을 때 활성화(A) 및 비활성화(B)의 대표 트레이스를 나타낸다. 100 mV에서 얻은 전류 트레이스를 비교하였다. 도 6의 C 및 D는 다른 농도의 쿠라리논에서의 활성화 및 비활성화 시간-상수 값(τ)을 나타낸다. 기호들은 비히클 (□, n=12), 3 μM(■, n=8), 5 μM (●, n=12), 10 μM (▲, n=8) 및 20 μM (◆, n=4)을 나타낸다. 시간-상수 값은 Clampfit 프로그램을 이용한 지수 표준 함수(y(t)=A1exp(-t/τ1)+C)를 이용하여 모든 독립 데이터 세트를 피팅하는 것으로부터 얻었다.
도 7은 단일 BKCa 채널 상의 쿠라리논의 효과를 나타낸다. 도 7의 A의 각각의 그래프는 다른 막 전압에서의 BKCa 채널의 전형적인 단일-채널 전류 기록을 나타낸다. 세포 내부 Ca2+의 농도(피펫 Ca2+ 농도)를 10 μM로 고정시켰다. 전류를 다른 전압에서 쿠라리논의 부재하에 최초로 기록하였고, 이어서 쿠라리논(5 μM)의 존재하에서 기록하였다. 쿠라리논 용액을 세포외부 측 상에 살포하였다. 실선은 단일 BKCa 채널의 닫힌 수준을 나타내고, 점선은 열린 수준을 나타낸다. 도 7의 B는 단일-채널 전도도 상의 쿠라리논의 효과를 나타낸다. 채널의 뇨(urinary) 전류-진폭을 10 μM 세포 내 Ca2+ 용액에서 측정하였다. 쿠라리논(○)의 부재 하에서 채널 전류를 최초로 기록한 뒤, 5 μM의 쿠라리논(●)을 살포하였다. 막 전압은 각각 75 mV(n=4), 50 mV(n=5), 25 mV(n=5), -25 mV(n=3), 및 -50 mV(n=2)였다. 그래프 상에 프리셋팅된 각 데이터를 가우시안 함수(Gaussian function)를 이용하여 피팅된 모든 포인트 진폭 히스토그램으로부터 얻었다. 단일 채널의 전도도를 선형 함수로 피팅된 슬로프를 이용하여 추측하였다. 도 7의 C는 단일 BKCa 채널의 전압-의존 개방-가능성(P 0 ) 상의 쿠라리논의 효과를 나타낸다. 개방 가능성을 도 7의 B에서와 같은 트레이스를 이용하여 측정하였다. 단일 BKCa 채널의 세포막 의존적 개방확률의 증가를 쿠라리논이 없는 상태(○)와 5 μM 쿠라리논을 처리한 상태에서 (●) 측정하고, 그 데이터 포인트를 볼츠만 함수(Boltzmann function)(P 0 =[1/(1+exp{(V 1/2-V)/k}])에 의해 피팅시켰다. 도 7의 D는 50 mV에서의 5 μM 쿠라리논의 부존재(상단 트레이스) 및 존재(하단 트레이스)상의 BKCa 채널의 대표 단일-채널 전류를 나타낸다. 도 7의 E는 50 mV에서의 5 μM 쿠라리논의 부존재(빈 막대) 및 존재(채워진 막대) 상에서의 단일 BKCa 채널의 평균 개방-시간 및 평균 폐쇄-시간 상의 쿠라리논의 효과를 나타낸다. 각각의 막대 그래프는 평균±SEM(n=5)를 나타낸다.
도 8은 분리한 래트 방광 스트립에 있어서의 ACh에 의해 유도된 수축에 대한 쿠라리논의 효과를 나타낸다. 도 8의 A는 쿠라리논의 예비 배양(preincubation) 유무에 따른 ACh에 의하여 유도된 대표 수축 트레이스를 나타낸다. 도 8의 B는 ACh-유도된 수축 상의 쿠라리논에 의해 유도된 이완 퍼센트 비율을 나타낸다. 각각의 막대 그래프는 6회 실험의 평균±SEM을 나타낸다. 검정은 대조구, 흰색은 쿠라리논 처리 실험을 나타낸다.
도 9는 래트의 배뇨 행동 상의 쿠라리논의 효과를 나타낸다. 도 9의 A는 쿠라리논(0.5 및 5 mg/kg)의 복강 내 주입 후의 WKY 및 SHR의 배뇨 빈도 상의 쿠라리논의 효과를 나타낸다. 배뇨 빈도를 3시간 동안 관찰하였다. 도 9의 B는 배뇨 총 횟수를 나타낸다. 각각의 기호 또는 막대는 5(WKY) 또는 7(SHR) 동물의 평균±SEM을 나타낸다(***P<0.001).
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실시예 1: 실험재료
건조된 고삼(Sophora flavescens) 200 g씩에 대하여 물 또는 70% 에탄올을 가한 후 환류 냉각기가 부착된 플라스크에 담아 수욕상에서 90℃, 3시간 추출하였다. 추출물은 여과지를 이용해 필터링하여 진공회전농축기(rotary vacuum evaporator)를 사용하여 농축하였다. 위와 같은 방법으로 다시 2회 더 반복하였으며 용매를 충분히 제거 한 뒤 동결 건조하여 고삼 물 추출물 20 g과 70% EtOH 추출물 24 g을 얻었다.
고삼 추출물의 유효 성분인 쿠라리논 및 이의 유도체는 Sophora Flavescens의 건조된 뿌리인 고삼(Kushen)으로부터 정제하였다(Jung et al. 2008). 쿠라리논 및 다른 화합물들은 스톡 용액으로서의 DMSO(dimethyl sulfoxide)(Sigma-Aldrich)에 용해시켰다. 4-클로로-7-(트리플루오로메틸)-10H-벤조퓨로[3,2-b]인돌-1-카복실산(CTBIC) 또한 DMSO 내에 용해시켰다.
실시예 2: 세포 배양
돌연변이 BKCa 채널을 발현하는, 개질된 HEK293 세포인 AD-293 세포(Lee et al., 2013)를 10% 태아소혈청 및 항생제인 1 mg/ml 게네티신(Gibco)이 보충된 DMEM(Dulbecco's Modified Eagle's medium)에 두었다. 37℃, 5% CO2의 가습 조건에서 세포들을 배양하였다.
실시예 3: 형광 분석 및 데이터 분석
돌연변이 BKCa 채널(G803D/N806K)을 안정적으로 발현하는 AD-293 세포를 세포-기반 분석에 이용하였다(Lee et al., 2013). 대략 20000 세포/웰을 96-웰 클리어-바텀(clear-bottom)인, 폴리-D-라이신(Sigma-Aldrich)으로 코팅된 블랙-월 분석 플레이트(black-wall assay plate)(Corning Incorporated) 상에 접종하였다. 고삼 추출물 및 고삼 추출물의 유효 성분인 쿠라리논의 효능 분석에 FluxORTM 칼슘 채널 분석(Invitrogen)을 이용하였다. 제조자의 다음 지침에 따라 실험들을 수행하였다: 성장 배지는 FluxORTM 형광 염료를 함유하는 로딩 버퍼 80 μl/웰로 교체하였고, 빛이 없는 조건에서 1시간 동안 배양하였다. 배양 후, 로딩 버퍼를 다양한 농도의 관심있는 화합물들을 함유하는 분석 버퍼(assay buffer) 100 μl/웰로 치환한 후 20분에서 30분 동안 배양하였다. 고삼의 70% 에탄올 추출물 100 mg을 1 ml의 DMSO에 100 mg/ml의 농도가 되도록 용해시켰다. 상기 용액을 DMSO에 추가적으로 희석시켜 사용하였으며, 최종 버퍼에 처리 시 DMSO의 비율이 최종 버퍼의 1%가 넘지 않도록 하였다. 예를 들어 1000 μg/ml의 시료의 경우, 100 mg/ml 추출물 용액을 최종 버퍼 400 μl에 4 μl 첨가함으로써 1/100 희석하여 이용하였고, 100 μg/ml 시료의 경우 100 mg/ml 추출물 용액을 DMSO를 추가로 넣어 1/10 희석한 10 mg/ml 추출물 용액을 최종 버퍼 400 μl에 4 μl 첨가함으로써 1/100 희석하여 이용하였다. DMSO(1%)는 비히클이며, 이를 모든 테스트 화합물에 이용하였다. BKCa 채널의 활성자로서 종래 확인된 CTBIC(Cormemis et al. 2005; Lee et al. 2012)를 양성 대조구로서 이용하였다. 형광 측정을 위해, 최초 스크리닝에 시너지 TM H1 하이브리드 멀티-모드 마이크로플레이트 리더(BioTek Instrument Inc., Winnoski, VT) 및 Cen5 소프트웨어를 이용하였고, 추가적인 분석에 Flexstation 3 멀티-모드 마이크로플레이트 리더(Molecular Devices) 및 SoftMax®Pro 소프트웨어를 각각 이용하였다. 형광 시그널을 485 nm의 여기 파장 및 528 nm의 방출 파장에서 얻었다. 탈륨 이온을 함유하는 자극 버퍼(stimulus buffer)에 의해 막 분극화가 발생하였다. 형광 시그널을 두 상태에서 측정하였다: 자극 버퍼를 처리하기 전 2분 동안 매 10초 및 그 후 시너지 H1에 대한 자극 버퍼를 추가 후 3분간 매 10초마다, 그리고 자극 버퍼 처리 전 20초 간 매 2초 및 그 후 FlexStation 3에 대한 자극 버퍼를 추가 후 160초 동안 매 2초마다.
형광 시그널의 변화를 상대 형광 단위(relative fluorescence unit)(RFU 또는 F/F0, 여기서 F0는 각 형광 트레이스의 최소 형광 값이다)로 나타내었다. 쿠라리논 및 이의 유도체의 BKCa 채널 활성화 효과를 정량적으로 비교하기 위해, 최초 형광 증가를 자극 버퍼로 처리 후의 첫 세 포인트를 이용하여 계산하였고, 선형 슬로프를 OriginPro 9.1(OriginLab Corp., Northampton, MA)을 이용하여 예측하였다.
실시예 4: 고삼 추출물과 유효 성분 쿠라리논 단일 추출물과의 FluxOR TM 분석 결과 비교
고삼 추출물과 유효 성분인 쿠라리논 단일 추출물의 효능을 비교하기 위해 10 μM 쿠라리논과 비슷한 형광증가를 나타내는 고삼 추출물의 농도를 확인하였다. 50 μg/mL과 100 μg/mL의 70% 에탄올 추출물 및 10 μM 쿠라리논을 각각 FluxORTM 분석하고 형광증가를 비교하였다.
실시예 4: Xenopus 난모 세포 내에서의 복제된 BK Ca 채널의 기능성 발현
BKCa 채널 α-서브유닛(Slo1)을 이종 발현하는(heterologously expressing) Xenopus laevis 난모 세포를 전기 생리(electrophysiological) 기록에 이용하였다. 난모세포 발현 벡터 pNBC1.0을 이용한 래트(rat) BKCa 채널 α-서브유닛의 서브클로닝 및 기능성 발현은 종래 보고되었다(Ha et al., 2000). 본 발명에서 이용된 Slo1의 서열 정보는 GenBank에 발현 번호 AF135265로 공개되어 있다. 플라스미드 DNA는 NotI 제한 효소를 이용하여 선형화시켰고 상보적인 RNA(cRNA)를 mMessage Machine(Ambion)을 이용하여 DNA의 선형 형태로부터 뉴클레오시드 삼인산 및 캡 아날로그 m7G(5')ppp(5')G의 존재하에서 T7 RNA 중합효소를 이용하여 합성하였다.
마취시킨 X. laevis(Xenopus I, Dexter, MI)의 난소 부엽(ovarian lobes)으로부터 스테이지 V 내지 VI의 난모세포를 외과적으로 제거하였다. 제거한 난모세포를 Ca2+-프리 난모세포 링거(oocyte Ringer's)(OR) 배양 배지(86 mM NaCl, 1.5 mM KCl, 2 mM MgCl2 및 10 mM HEPES, pH 7.6)로 이동시켰다. 난모세포를 3 mg/ml 콜라겐 분해효소(Worthington Biochemicals)를 함유하는 Ca2+-프리 OR 배지 내에서 1시간 30분 내지 2시간 동안 배양하는 것에 의해 난모세포의 난포 세포(follicular cell) 층을 베거하였다. 그런 뒤 난모세포를 Ca2+-프리 OR 배지 및 ND-96 배지(96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM HEPES, 및 50 g/ml 겐타마이신, pH 7.6)로 광범위하게 세척하였다. 세척한 난모세포를 ND-96 배지에서 18℃로 보관하였다. 난모세포를 사용 전 적어도 하루동안 안정화(stabilization) 시켰다. 안정화 후, 각각의 난모세포에 대해, 거시적 전류 기록을 위한 50 nl 뉴클레아제-프리 물 내의 합성된 cRNA 대략 50 ng 및 마이크로디스펜서(Drummond Scientific, Broomall, PA)를 이용한 단일-채널 기록을 위한 1 ng(50 nl 뉴클레아제-프리 물 내에서의)을 주입하였다. cRNA 주입된 난모세포를 18℃에서 1 내지 3일간 ND-96 배지에서 배양시켰다. 패치-클램프 실험 직전에, 난모세포의 난황막(vitelline membrane)을 미세-겸자(fine forceps)로 수동으로 제거하였다.
실시예 5: 전기생리학적 기록 및 데이터 분석
종래 알려진대로(Ha et al., 2000) 아웃사이드-아웃 배열 내에서 기가옴-씰 패치-클램프(gigaohm-seal patch-clamp) 방법을 이용하여 모든 거시적 전류 기록 및 단일-채널 기록을 수행하였다. 패치 피펫들을 붕규산염(borosilicate) 유리(WPI, Sarasota, FL)로부터 제조하였고, 패치 기록을 위해 2 내지 4 MΩ의 저항으로 불-광택 처리(fire-polished)하였다. 단일-채널 기록을 위해, 패치 피펫들을 또한 4 내지 8 MΩ 저항으로 불-광택 처리하였고, 전기적 노이즈를 감소시키기 위해 밀랍(beeswax)으로 코팅하였다. Axopatch 200B 증폭기(Axon Instruments)를 이용하여 채널 전류를 증폭시켰고, 4-극 베셀 필터(four-pole Bessel filter)를 이용하여 1 kHz에서 저주파-통과 필터링시켰으며(low-pass filtered), Digidata 1200A(Axon Instruments)를 이용하여 10 포인트/ms 비율로 디지털화시켰다.
고농도의 세포 내 Ca2+에서, 100 mV로 간단히 전달된 막 전위에 의해, 단일 BKCa 채널을 용이하게 활성화시켰다. 단일-채널 분석을 위해, 폐쇄 및 개방 상태 사이의 전환을, 절반의 단일 전류 진폭(unitary current amplitude)에서의 역가를 세팅하는 것에 의해 결정하였다. 발현된 채널의 단일-채널 전도도를 결정하기 위해, 가우스 분포(Gaussian distributions)로 피팅된 히스토그램으로부터 채널 전류의 평균 진폭을 얻었고, 막통과 전압에 대해 평균 전류를 도시하였다. 슬로프-전도도 값을 선형 회귀로부터 얻었다. 발현된 BKCa 채널의 거시적 전류를 -100 mV의 보유 전위(holding petential)로부터 전달된 전압-클램프 펄스에 의해 10 mV 증분(increment)으로 대개 -80 내지 200 mV 범위의 막 전위까지 활성화시켰다. 단일 BKCa 채널에 대해 기록된 개방 및 폐쇄 이벤트의 드웰-타임(dwell-time)은 선형 히스토그램 방법을 이용하여 분석하였다. 상기 드웰-타임 분포는 심플렉스-리스트-스퀘어 피팅 방법(simplex-least-squares fitting methods)(Clampfit, Axon Instruments)을 이용하여 단일 지수로 피팅시켰다. 드웰-타임 분포에서의 피크는 지수 성분의 시간-상수에 위치하였다.
내인성 칼슘-활성화 클로라이드 채널의 활성화를 방지하기 위해, 단일 및 거시적 채널 기록을 위한 용액들은 비삼투성(nenpermeant) 음이온으로서 글루코네이트를 함유하였다. 세포내 및 세포외 용액들은 달리 명시하지 않는 한 다음의 성분들을 함유하였다: 120 mM 칼슘 글루코네이트, 10 mM MHEPES, 4 mM KCl, 및 5 mM MEGTA, pH 7.2. 요구되는 프리 [Ca2+]i를 제공하기 위해, 세포 내 용액으로 첨가할 적절한 양의 총 Ca2+는 프로그램 MaxChelator(Patton et al., 2004; http://maxchelator.stanford.edu/)를 이용하여 계산하였다. 채널 특성들을 정확하게 비교하기 위해, 세포 내 용액의 동일한 세트를 전체 실험들에 걸쳐 이용하였다. 상업적인 소프트웨어 패키지, 예컨대 Clampex 8.0 또는 8.1(Axon Instruments) 및 Origin 9.1(OriginLab Corp., Northampton, MA)를 단일-채널 및 거시적 기록 데이터 양쪽을 얻고 분석하는데 이용하였다. 데이터를 평균±SE(n=독립 기록의 수)로서 요약하였고, 짝지어진 스튜던트 t-검정(paired Student's t-test)를 이용하여 비교하였다. 0.05이하의 p-값은 통계적으로 유의한 것으로 간주하였다.
실시예 6: 방광 평활근의 등척성 장력(isometric tension) 기록
UBSM 실험의 등척성 장력 기록을 종래 알려진 방법으로 수행하였다(dela Peㆁa et al. 2009; Kullmann et al. 2014). 요컨대, 수컷 Sprague-Dawley 래트(300-350 g)를 CO2 질식으로 안락사시켰다. 그런 뒤, 방광을 절제하고, 네 개의 스트립으로 길이 방향으로 분할하였다(대략 2×8 mm). 분리된 스트립을 정적 마운트 및 힘-변위 변환기(force-displacement transducer) 사이에 클리핑시켰고, 10 ml의 크랩 용액(Krebs solution)((mM): 118.4 NaCl, 4.7 KCl, 1.2 KH2PO4, 1.2 MgSO4, 25.0 NaHCO3, 2.5 CaCl2, 및 12.2 글루코오스; pH 7.35-7.40)을 함유하는 온도-제어된(37℃) 장기(organ) 배스(bath) 내에 현탁시켰다. 상기 장기 배스를 혼합물 95% O2 및 5% CO2의 혼합물을 이용하여 지속적으로 거품발생시켰다. 각각의 UBSM 스트립을 1.0 g의 최적의 등척성 장력까지 신장시켰고, 60분간 평형(equilibration)시켰다. 평형 동안, 조직을 신선한 크랩 용액(Krebs solution)으로 매 15분마다 세척하였고, 기저 장력을 1.0 g까지 조정하였다. 평형 후 스트립을 지속적인 반응이 기록될 때까지 아세틸클로린(1 μM)의 반복된 적용에 의해 안정화시켰다. 고삼 추출물의 유효 성분인 쿠라리논의 완화 효과를 조사하기위해, 아세틸콜린의 첨가에 앞서 쿠라리논으로 조직을 30분간 전-배양시켰고(pre-incubated), 그런 뒤 쿠라리논의 존재하에서 아세틸콜린-유도의 수축 반응이 반복되었다. 아세틸콜린-유도의 수축으로부터 기인한 장력에 있어서의 퍼센트 감소로서 이완(relaxation)을 표현하였다. 각 시리즈에서의 하나의 스트립을 시간 대조구로서 할당하였다. 등척성 장력에서의 변화를 Lab Chart Software(Version 7, AD Instruments)로 인스톨시킨 컴퓨터에 결부된 Power Lab Data Acquisition System(ADInstruments)을 이용하여 기록하였다. 데이터를 평균±SE(n=DSM 스트립의 수)로서 요약하였고, 짝지은 스튜던트 t-검정을 이용하여 비교하였다. 0.05 이하의 p-값을 통계적으로 유의한 것으로 간주하였다.
결과
1. 탈륨-형광 분석을 이용한 고사추출물의 BK Ca 채널 활성 확인
고삼 추출물에 의한 BKCa 채널 활성여부는 Tl+ 형광을 채용한 세포-기반 분석을 이용하여 확인하였다. FluxORTM 분석결과를 도 1에 나타내었다. 도 1의 DMSO 1%는 전체 버퍼의 1%의 DMSO 대조군이고, CTBIC는 이미 기존에 알려진 채널 활성화 물질로 양성 대조군으로 이용하였다. 50 μg/ml 최종 농도에서, Tl+ 형광이 증가가 확인되기 시작하여, 1000 μg/ml까지 농도 의존적으로 증가하는 Tl+ 형광을 확인하였다(참조: 도 1).
고산 추출물에 포함된 단일 성분들 중 가장 강한 형광 증가는 쿠라리논의 처리로부터 얻었다(참조: 도 2). 쿠라리논은 용량-의존 방식으로 Tl+ 형광이 증가되었고(참조: 도 2A), 형광 증가는 선택적인 BKCa 채널 억제자인 1 μM 팍실린의 공동-처리에 의해 완전히 차단되었다. 다른 농도의 쿠라리논에 의해 유발된 최초의 RFU 증가를 도 2B(n=4)에서 정량하였다.
2. 고삼 추출물과 고삼 추출물에 포함된 단일 성분 쿠라리논의 BK Ca 채널 활성화 양상 확인
고삼 추출물의 유효 성분들에 대한 BKCa 채널 활성 확인을 통해 100 μg/ml의 고삼 추출물의 BKCa 채널 활성화 효과가 고삼 추출물에 다량 함유된 플라바논 화합물인 쿠라리논 10 μM의 BKCa 채널 활성화 양상과 거의 일치함을 확인하였으며(참조: 도 3), 고삼 추출물의 Tl+ 형광의 증가는 쿠라리논에 의한 것으로 예측하였고, 쿠라리논에 의해 후속 실험을 진행하였다.
3. BK Ca 채널의 거시적 전류 상의 고삼 추출물의 효과
세포-기반의 Tl+-형광 분석이 고속-처리 스크리닝(high-throughput screening)에 적합화 되었고, 최초의 BKCa 채널 활성자 후보들을 제공하였지만, 야생형 BKCa 채널을 이용한 전기 생리 각각의 화합물들의 활성을 입증하고 특성화할 필요가 있었다. 그러므로 Xenopus 난모 세포 상에 이종적으로 발현된 래트 BKCa 채널(rSlo1)의 α 서브유닛 상의 쿠라리논의 효과를 특성화하였다. 거시적 채널 전류 상의 시간-의존적 효과를, 3 μM 세포내 Ca2+의 존재하에서 아웃사이드-아웃 배열에 있어서의 절제된(excised) 막 패치들을 이용하여 조사하였다(참조: 도 4). 소 테일 전류(small tail current)가 각각의 시험 펄스에 의해 유발되는 반면에(참조: 도 4의 a), 세포외부 면에 대한 5 μg/ml의 쿠라리논의 처리는 테일-전류를 시간-의존 방식으로 대단히 강화시킨다(참조: 도 4의 b 및 c). 쿠라리논의 제거 상에, 채널 전류는 기저 수준에 대해 점진적으로 탈-강화(de-potentiation)되었다(참조: 도 4의 d). 쿠라리논에 의한 BKCa 채널의 강화 및 탈-강화 모두가 두 상(two phases)을 보인다는 것을 주목할만하다: 몇 초 사이의 최초의 급속 증가, 및 몇분에 걸친 느리고 완만한 증가. 이중-지수 함수로 피팅될 때, 결합 시간-상수(assocation time-constant) 값은 고속 상(fast phase)(τfast)에 대해 1.47±0.34초, 저속 상(τslow)에 대해 64.9±8.8초로 각각 예상되었다. 비록 두 다른 상들이 명백하지만, BKCa 채널의 탈-강화는, 2.78±0.95 초 및 90.06±12.21 초로 각각 측정된 해리 시간-상수를 갖는 강화보다 더욱 길었다. 절제된 인사이드-아웃 패치 기록을 이용하여 쿠라리논을 세포 안쪽으로부터 처리하였을 때, BKCa 채널 전류의 유의한 변화가 관찰되지 않았다. 그러므로 이러한 결과들은 쿠라리논이 BKCa 채널의 활성을 세포 밖으로부터 직접적으로 및 가역적으로 강화시킬 수 있다는 것을 나타낸다.
4. BK Ca 채널의 거시적 전류 상의 고삼 추출물의 농도 의존 효과
다음으로 BKCa 채널의 고삼 추출물-유도의 강화의 메카니즘을 연구하였다. 전압 펄스의 시리즈에 의해 BKCa 채널은 활성화 되었고, 활성화된 세포 외 쿠라리논의 증가된 농도 하에서 거시적 전류를 기록하였다. 쿠라리논 농도가 증가함에 따라, 채널 전류는 더 낮은 전압에서 활성화되고, 더욱 천천히 비활성화된다는 것이 명백하다(참조: 도 5A). 도 4B에서, 거시적 BKCa 채널 전류의 전압-의존 활성화는 전도도-전압(G-V) 관계로서 나타내었다. 쿠라리논은 점진적으로 G-V 커브를 좌측으로 이동시키고, 최대 전도도(Gmax)를 용량-의존 방식으로 증가시킨다. G-V 관계에서의 쿠라리논-의존 이동은 추가적으로 정량화시켰고, 도 5C에서 도시화 시켰다. 20 μM 쿠라리논의 존재하에서, 절반-활성 전압(V1/2)은 107.4±2.2 mV로부터 27.7±3.0 mV까지 음의 방향으로 대략 80 mV 이동된다. 쿠라리논은 또한 점진적으로 채널의 최대 전도도(G/Gmax)를 증가시켰다. G/Gmax는 20 μM 쿠라리논에서 1.35로 예측되었고, 비히클 대조구에 비해 약 1.8배 더 높은 것이다. 그러므로 이러한 결과들은 쿠라리논이 더욱 음성인 막 전압에서 채널을 활성화 시킴으로써 BKCa 채널을 강화시키고, 채널의 최대 개방 가능성을 증가시킨다는 것을 보여준다.
5. 활성화 및 비활성화 동역학 BK Ca 채널 상의 고삼 추출물의 효과
도 5A의 거시적 전류 트레이스에 나타낸 바와 같이, BKCa 채널의 비활성화는 본 발명의 고삼 추출물에 의해 크게 영향을 받는 것으로 나타났다. 그러므로 BKCa 채널의 개폐 운동 상의 고삼 추출물의 유효 성분인 쿠라리논의 효과를 조사하였다. 도 6에서, BKCa 채널의 활성화(또는 개방) 및 비활성화(또는 폐쇄) 절차를 분석하였다. 20 μM의 존재 하에서 전류 레벨이 증가하는 반면에, 활성화율은 고려할만큼 달라되지 않았다(참조: 도 6A). 쿠라리논의 네 증가된 농도(0, 5, 10, 20 μM)에서 활성화 시간-상수(τactivation)는 유의하게 증가되지 않았다(참조: 도 6C). 반면에, 비활성화율은 쿠라리논에 의해 극적으로 감소하였다. 흥미롭게도, 채널이 더 높은 양의 전압에 의해 활성화되어져 왔을 때, 쿠라리논이 BKCa 채널의 폐쇄를 더욱 눈에 띄게 느리게 만든다는 점에서, 쿠라리논에 의한 비활성화의 감속(slowing)은 전압-의존적이었다. 종합적으로 이러한 결과들은 쿠라리논이 BKCa 채널의 개방 형태를 안정화 시키고, 쿠라리논의 결합친화도가 더 높은 전압에서의 채널 형태를 가지고 더욱 강해질 수 있다는 것을 보여준다.
6. BK Ca 채널의 단일-채널 전류 상의 고삼 추출물의 효과
고삼 추출물 작용의 메카니즘을 더 이해하기 위해, 그 효과를 단일-채널 레벨에서 조사하였다. 단일 BKCa 채널을 10 μM 세포 내 Ca2+의 존재 하에서 아웃스탠드-아웃 패치에서 기록하였다. BKCa 채널을 활성화 시키기위해, 막 전압을 80 mV 보다 더 높아질 때까지 최초로 탈분극시켰고, 패치 막 내의 채널의 수를 계수하였다. 오직 단일 채널을 함유하는 패치들만을 후속 실험들에 이용하였다. 5 μM의 쿠라리논의 부재 또는 존재 하에서의 단일 채널의 대표 트레이스를 도 7A에 나타내었다. 채널의 개방은 예상대로 막 전압에 대해 크게 의존하였다. 그러나 개폐 행동은 세포 외측에 대한 5 μM 쿠라리논의 적용에 의해 극적으로 변경되었다. BKCa 채널이 -25 mV 상의 대조구 용액에서 거의 개방되지 않는 반면, 채널의 더 잦은 개방이 명백하였다. 50 mV에서, 채널은 쿠라리논의 존재 하에서 연장된 기간동안 개방을 유지하였다. 채널 전도도 상의 쿠라리논의 효과를 시험하기 위해, 각 BKCa 채널의 단일 전류 진폭(unitary current amplitude)을 화합물의 존재 또는 부존재 상에서 다양한 막 전압에서 측정하였고, 단일-채널 전류-전압(I-V) 관계들을 도시하였다(참조: 도 7B). 단일-채널 전도도는 대조구에서 221.1±16.4, 쿠라리논에서 238.3±8.7 pS로 각각 예상되었고, 화합물이 채널의 단일-채널 전도도를 유의하게 수정하지 못한다는 것을 나타낸다. 이후 단일 채널의 P0 상의 쿠라리논의 효과를 분석하였다. P0는 쿠라리논의 존재 및 부존재 상에서 몇몇 다른 전압으로 측정되었고, 볼츠만 함수(Boltzmann function)로 피팅시켰다(참조: 도 7C). 최대 개방의 절반이 요구되는 전압인 V1/2은 절반-활성화 전압(V1/2)은 대조구에서 68.7±3.7 mV, 5 μM 쿠라리논의 존재하에서 43.7±2.1 mV이었다(참조: 도 7D). 이러한 결과들은, 거시적 채널 전류에 있어서 이미 언급된 발견들과 잘 일치하여 단일 채널 전도도에 영향을 줌 없이, 쿠라리논이 채널의 개방 가능성을 증가시키는 것에 의해 BKCa 채널을 강화시킬 수 있다는 것을 나타낸다. 그 후 쿠라리논의 존재 상의 단일 BKCa 채널들의 개폐 행동을 분석하였다. 쿠라리논이 다일 BKCa 채널의 P0를 매우 극적으로 증가시키기 때문에, 본 발명의 분석들을, 개방-폐쇄 전환이 합리적인 시간-스케일에서 비교될 수 있는 50 mV에서의 단일-채널 기록들로 제한하였다(참조: 도 7D). 평균 폐쇄-시간이 쿠라리논의 부존재 시 3.69±0.80 ms이고 5 μM의 쿠라리논의 존재 시 3.60±4.1 ms로 측정되는 반면에, 평균 개방-시간은 각각 2.98±0.34 ms 및 5.77±0.90 ms으로 측정되었다(참조: 도 7E). 이러한 결과들은 쿠라리논의 결합이 개방 형태를 안정화시키고, 그럼으로써 채널의 폐쇄 비율을 채널의 개방 전환에 영향을 줌 없이 감소시킨다는 것을 나타내고, 나아가 거시적 전류 기록의 결과를 확증한다.
7. 래트 방광 조직에 대한 고삼 추출물의 효과
고삼 추출물이 이형 시스템(heterologous system) 상에 발현된 복제 BKCa 채널을 강력하게 강화시키기 때문에, 고삼 추출물이 또한 방광 평활근을 in vivo에서 이완시킬 수 있는지 확인코자 하였다. 아세틸콜린(ACh)-유발의 UBSM의 수축에 대한 고삼 추출물의 유효 성분인 쿠라리논의 효능을 확인하기 위해, 래트 배뇨근 스트립의 등척성 장력을 기록하였다. 1 μM ACh이 피크 장력 및 이에 따른 상대적으로 안정적인 안정 레벨(plateau levles) 감소를 유발하는 반면에(참조: 도 8A), 쿠라리논을 이용한 조직의 전처리는 유의하게 ACh-유발의 수축을 억제하였다. 이완 효과는 비히클 처리에 비하여 100 μM 쿠라리논에서 58.2±6.2%였다(p<0.05, n=6)(참조: 도 8B). 대조적으로 비히클 처리된 시간 매칭된 대조구 조직에서의 수축 반응에서는 유의한 변화가 없었다.
8. WKY 및 SHR의 배뇨 행동 상의 고삼 추출물의 효과
방광 이완 및 배뇨 활성 상의 고삼 추출물의 효과를 추가적으로 입증하기 위해, 위스타 교토 래트(Wistar Kyoto rat, WKY) 및 자발성 고혈압 래트(spontaneous hypertensive rat, SHR)의 배뇨 행동을 조사하였다. 누적 배뇨 빈도를 고삼 추출물의 유효 성분인 쿠라리논을 경구 투여한 WKY 및 SHR에 대하여 도 9A에 나타내었다. 쿠라리논의 투여에 의해, 배뇨 빈도에서의 뚜렷한 차이점은 WKY 및 SHR 사이에서 명백하였다. 대조구 WKY의 배뇨 빈도가 5 mg/kg 용량 이상의 쿠라리논에 의해 영향을 받지 않은 반면, 화합물은 SHR에 대한 배뇨 빈도를 용량-의존 방식으로 감소시켰다. 3 시간 동안의 총 배뇨 빈도는 도 9B에 도시하였다. 5 mg/kg의 쿠라리논이 투여될 때, 배뇨 빈도에서의 유의한 감소가 SHR에서 관찰되었다(비히클에 대해 10.9±1.4 및 쿠라리논에 대해 6.9±0.8). WKY 대조구 래트에서는 상기와 같은 배뇨 빈도의 감소가 관찰되지 않았다. ex vivo 등척성 장력 기록과 함께, 상기 결과들은 쿠라리논 및 이를 포함하는 고삼 추출물이 추가적으로 배뇨근 근육 BKCa 채널을 강화하는 것에 의해 방광 이완 활성을 갖고, OAB 신드롬을 개선시키는 유효한 후보 화합물임을 보여준다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
참고 문헌
1. Abraham N, Goldman HB (2015) An update on the pharmacotherapy for lower urinary tract dysfunction. Expert Opin Pharmacother 16(1):79-93
2. Ahn HS, dela Peㆁa I, Kim YC, Cheong JH (2011) 4-Chloro-7-trifluoromethyl-10H- benzo[4,5]furo[3,2-b]indole-1 carboxylic acid (TBIC), a putative BKCa channel opener with uterine relaxant activities. Pharmacology, 87(5-6):331-40
3. Andersson KE (2004) Antimuscarinics for treatment of overactive bladder. Lancel Neruol3(1):46-53
4. Andersson KE (1997) The overactive bladder: pharmacologic basis of drug treatment. Urol 50(6A suppl):74-84
5. Andersson KE, Chapple CR, Cardozo L, Cruz F, Hashim H, Michel MC, et al. (2013) Pharmacological treatment of urinary incontinence. In: Abrams P, Cardozo L, Khoury S, Wein AJ, editors. Incontinence, 5 th International Consultation on Incontinence. [Paris]: ICUD-EAU; pp. 623-728
6. Brading AF (1997)A myogenic basis for the overactive bladder. Urol 50(suppl6A):57-67
7. Bentzen BH, Olesen SP, Rㆈnn LC, Grunnet M (2014) BK channel activators and their therapeutic perspectives. Front Physiol 5:389
8. Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT and Aldrich RW (2000) Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature 407, 870-876.
9. Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muㆁiz P (2010) Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study.J Sci Food Agric 90(7):1238-44.
10. Cerruto MA, Asimakopoulos AD, Artibani W, Del Popolo G, La Martina M, Carone R, Finazzi-Agrㆂ E (2012) Insight into new potential targets for the treatment of overactive bladder and detrusor overactivity. Urol Int. 89(1):1-8.
11. Coyne KS, Sexton CC, Bell JA, Thompson CL, Dmochowski R, Bavendam T, et al. (2013) The prevalence of lower urinary tract symptoms (LUTS) and overactive bladder (OAB) by racial/ethnic group and age: results from OAB-POLL. Neurourol Urodyn. 32:230-237.
12. Cui J, Yang H and Lee US(2009) Molecular mechanisms of BK channel activation. Cell Mol Life Sci 66, 852-75.
13. De Groat WC(1997) A neurologic basis for the overactive bladder, Urol, 50(6A Suppl):36-52
14. De Naeyer A, Vanden Berghe W, Pocock V, Milligan S, Haegeman G, De Keukeleire D (2004) Estrogenic and anticarcinogenic properties of kurarinone, a lavandulyl flavanone from the roots of Sophora flavescens. J Nat Prod. 67(11):1829-32.
15. dela Peㆁa IC, Yoon SY, Kim SM, Lee GS, Ryu JH, Park CS, Kim YC, Cheong JH (2009) Bladder-relaxant properties of the novel benzofuroindole analogue LDD175. Pharmacology 83(6):367-78
16. Du G, Jin L, Han X, Song Z, Zhang H, Liang W (2009) Naringenin: a potential immunomodulator for inhibiting lung fibrosis and metastasis. Cancer Res69(7):3205-12.
17. Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Lㆌders HO, Shi J, Cui J, Richerson GB and Wang QK(2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37, 733-738.
18. Ghatta S, Nimmagadda D, Xu X and O'Rourke ST(2006) Large-conductance, calcium activated potassium channels: structural and functional implications. Pharmacol Ther 110, 103-16.
19. Gormemis AE, Ha TS, Im I, Jung KY, Lee JY, Park CS, and Kim YC, 2005. Benzofuroindole analogues as potent BKCa channel openers. Chembiochem6, 1745-1748.
20. Heppner TJ, Bonev AD, Nelson MT(1997) Ca2+-activated K+ channels regulate action potential repolarization in urinary bladder smooth muscle. Am J Physiol Cell Physiol 273: C110-C117
21. Herrera GM, Heppner TJ and Nelson MT(2000) Regulation of urinary bladder smooth muscle contractions by ryanodine receptors and BK and SK channels. Am. J. Physiol Regul. Integr. Comp Physiol 279:R60-R68
22. Herrera GM, Etherton B, Nausch B, Nelson MT(2005) Negative feedback regulation of nerve-mediated contractions by KCa channels in mouse urinary bladder smooth muscle. Am J Physiol Regul Integr Comp Physiol 289: R402-R409
23. Hristov KL, Chen M, Kellett WF, Rovner ES, Petkov GV (2011) Large-conductance voltage- and Ca2+-activated K+ channels regulate human detrusor smooth muscle function. Am J Physiol Cell Physiol 301: C903-C912
24. Jayarajan J, Radomski SB (2013) Pharmacotherapy of overactive bladder in adults: a review of efficacy, tolerability, and quality of life. Res Rep Urol.6:1-16
25. Jensen, BS (2002) BMS-204352: a potassium channel opener developed for the treatment of stroke. CNS Drug Rev 8(4), 353-360.
26. Jin JH, Kim JS, Kang SS, Son KH, Chang HW, Kim HP (2010) Anti-inflammatory and anti-arthritic activity of total flavonoids of the roots of Sophora flavescens. J Ethnopharmacol 127(3):589-95.
27. Jung HA,Jeong DM, Chung HY, Lim HA, Kim JY, Yoon NY, Choi JS (2008) Re-evaluation of the antioxidant prenylated flavonoids from the roots of Sophora flavescens. Biol Pharm Bull 31(5):908-15
28. Kim BH, Na KM, Oh I, Song IH, Lee YS, Shin J, Kim TY(2013) Kurarinone regulates immune responses through regulation of the JAK/STAT and TCR-mediated signaling pathways. Biochem Pharmacol85(8):1134-44.
29. Knaus HG, McManus OB, Lee SH, Schmalhofer WA, Garcia-Calvo M, Helms LM, Sanchez M, Giangiacomo K, Reuben JP, Smith AB 3rd, et al.(1994)Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels. Biochemistry 33(19), 5819-5828.
30. Kullmann FA, Daugherty SL, de Groat WC, Birder LA (2014) Bladder smooth muscle strip contractility as a method to evaluate lower urinary tract pharmacology. J Vis Exp18;(90):e51807.
31. Layne JJ, Nausch B, Olesen SP, Nelson MT(2011) BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle.Am J Physiol Regul Integr Comp Physiol 298(2):R378-84
32. Lee BC, Lim HH, Kim S, Youn HS, Lee Y, Kim YC, Eom SH, Lee KW, Park CS (2012) Localization of a site of action for benzofuroindole-induced potentiation of BKCa channels. Mol Pharmacol82(2):143-55
33. Lee BC, Kim HJ, Park SH, Phuong TT, Kang TM and Park CS (2013)Development of cell based assay system that utilizes a hyperactive channel mutant for high-throughput screening of BKCa channel modulators. J Biotechol 167(1), 41-46
34. Lee SW, Lee HS, Nam JY, Kwon OE, Baek JA, Chang JS, Rho MC, and Kim YK (2005) Kurarinone isolated from Sophora flavescens Ait inhibited MCP-1-induced chemotaxis.J Ethnopharmacol 97(3):515-9.
35. Lorenz S, Heils A, Kasper JM, and Sander T(2007) Allelic association of a truncation mutation of the KCNMB3 gene with idiopathic generalized epilepsy. Am J Med Genet B Neuropsychiatr Genet 144B, 10-13.
36. Marty A(1981) Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature 291, 497-500.
37. Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, Takahashi S, Taketo M (2000) Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad SciUSA97: 9579-9584.
38. McMurry G, Casey JH, Naylor AM (2006) Animal models in urological disease and sexual dysfunction. Br J Pharmacol 147:S62-S79.
39. McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, and Leonard RJ (1995) Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14, 645-650.
40. Meredith AL, Thorneloe KS, Werner ME, Nelson MT, and Aldrich RW(2004) Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+channel. J Biol Chem 279, 36746-52.
41. Meredith AL, Wiler SW, Miller BH, Takahashi JS, Fodor AA, Ruby NF and Aldrich RW (2006) BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat Neurosci 9, 1041-1049.
42. Nardi VC and Olesen SP (2006) Potassium channel openers: the case of BK channel activators. Lett Drug Des Discov 3: 210-218
43. Park S, Regmi SC, Park SY, Lee EK, Chang JH, Ku SK, Kim DH, Kim JA (2014) Protective effect of 7-O-succinyl macrolactin A against intestinal inflammation is mediated through PI3-kinase/Akt/mTOR and NF-kappaB signaling pathways. Eur J Pharmacol 735C: 184-192
44. Petkov GV (2014) Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology.Am J Physiology 307(6):R571-R584
45. Raffaelli G, Saviane C, Mohajerani MH, Pedarzani P and Cherubini E(2004) BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus.J Gen Physiol 557, 147-157.
46. Sanchez M, McManus OB(1996)Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel. Neuropharmacology 35(7), 963-968
47. Seo OW, Kim JH, Lee KS, Lee KS, Kim JH, Won MH, Ha KS, Kwon YG, Kim YM(2012) Kurarinone promotes TRAIL-induced apoptosis by inhibiting NF-κB-dependent cFLIP expression in HeLa cells. Exp Mol Med44(11):653-64
48. Shieh CC, Coghlan M, Sullivan JP, GopalakrishnanM (2000) Potassium channels: moleculardefects, diseases and therapeutic opportunities. Pharmacol Rev 52: 557-594.
49. Sun, M., Han J, Duan J, Cui Y, Wang T, Zhang W, Liu W, Hong J, Yao M, Xiong S and Yan X. 2007, Novel antitumor activities of Kushen flavonoids in vitro and in vivo. Phytother. Res. 21(3):269-277
50. Tang W, Eisenbrand G(1992)Chinese Drugs of Plant Origin. Springer- Verkag , pp. 931-943.
51. Werner ME, Zvara P, Meredith AL, Aldrich RW and Nelson MT (2005) Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel. J Physiol 567, 545-56.
52. Yang H, Zhang G, Cui J(2015) BK channels: multiple sensors, one activation gate, Front. Physiol. 6:29.
53. Yilma AN, Singh SR, Morici L, Dennis VA (2013) Flavonoid naringenin: a potential immunomodulator for Chlamydia trachomatis inflammation. Mediators Inflamm.2013:102457.
54. Zhou H, Lutterodt H, Cheng Z, Yu LL(2009) Anti-Inflammatory and antiproliferative activities of trifolirhizin, a flavonoid from Sophora flavescens roots.J Agric Food Chem. 57(11):4580-5.

Claims (6)

  1. 고삼 추출물을 유효성분으로 포함하는 BKCa 채널 활성 저하-관련 상태, 질환 또는 질병의 예방 또는 치료용 약제학적 조성물.
  2. 제 1 항에 있어서, 상기 고삼 추출물은 극성 유기 용매 추출물인 것을 특징으로 하는 조성물.
  3. 제 1 항에 있어서, 상기 극성 유기 용매는 (a) 물, (b) 탄소수 1-4의 무수 또는 함수 저급 알코올, 또는 이들의 혼합물인 것을 특징으로 하는 조성물.
  4. 제 1 항에 있어서, 상기 BKCa 채널 활성 저하-관련 상태, 질환 또는 질병은 심혈관질환(cardiovascular disease), 폐쇄 또는 염증 기도 질환, 하부 요로 질환(lower urinary tract disorders), 발기부전, 불안 및 불안-관련 상태, 간질 또는 동통인 것을 특징으로 하는 조성물.
  5. 제 1 항에 있어서, 상기 조성물은 BKCa 채널의 전도도-전압(G-V) 상관관계를 음적 전압(negative voltage) 방향으로 이동시키는 것을 특징으로 하는 조성물.
  6. 고삼추출물을 유효성분으로 포함하는 요실금(incontinence), 과민성 방광(bladder overactivity) 및 발기 부전(erectile dysfunction) 증상 개선용 기능성 식품 조성물.
KR1020160032564A 2016-03-18 2016-03-18 BKCa 채널 활성화용 조성물 KR102248831B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160032564A KR102248831B1 (ko) 2016-03-18 2016-03-18 BKCa 채널 활성화용 조성물
PCT/KR2017/002951 WO2017160128A1 (ko) 2016-03-18 2017-03-17 Bkca 채널 활성화용 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160032564A KR102248831B1 (ko) 2016-03-18 2016-03-18 BKCa 채널 활성화용 조성물

Publications (2)

Publication Number Publication Date
KR20170108514A true KR20170108514A (ko) 2017-09-27
KR102248831B1 KR102248831B1 (ko) 2021-05-06

Family

ID=59850272

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160032564A KR102248831B1 (ko) 2016-03-18 2016-03-18 BKCa 채널 활성화용 조성물

Country Status (2)

Country Link
KR (1) KR102248831B1 (ko)
WO (1) WO2017160128A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075780A1 (ko) * 2020-10-07 2022-04-14 광주과학기술원 과민성 방광의 예방 또는 치료용 약학적 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060110477A1 (en) * 2004-11-22 2006-05-25 Mccleary Edward L Composition and method for supporting and promoting healthy sexual function and prevention and treatment of sexual dysfunction
KR20090010504A (ko) * 2007-07-23 2009-01-30 한국생명공학연구원 고삼 추출물, 이의 가용추출물, 이의 분획물 또는 이로부터분리한 플라보노이드계 화합물을 유효성분으로 함유하는심장순환계 질환의 예방 및 치료용 조성물
KR101751486B1 (ko) * 2016-03-02 2017-06-28 광주과학기술원 BKCa 채널 활성화용 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060110477A1 (en) * 2004-11-22 2006-05-25 Mccleary Edward L Composition and method for supporting and promoting healthy sexual function and prevention and treatment of sexual dysfunction
KR20090010504A (ko) * 2007-07-23 2009-01-30 한국생명공학연구원 고삼 추출물, 이의 가용추출물, 이의 분획물 또는 이로부터분리한 플라보노이드계 화합물을 유효성분으로 함유하는심장순환계 질환의 예방 및 치료용 조성물
KR101751486B1 (ko) * 2016-03-02 2017-06-28 광주과학기술원 BKCa 채널 활성화용 조성물

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075780A1 (ko) * 2020-10-07 2022-04-14 광주과학기술원 과민성 방광의 예방 또는 치료용 약학적 조성물
KR20220046505A (ko) * 2020-10-07 2022-04-14 광주과학기술원 과민성 방광의 예방 또는 치료용 약학적 조성물

Also Published As

Publication number Publication date
KR102248831B1 (ko) 2021-05-06
WO2017160128A1 (ko) 2017-09-21

Similar Documents

Publication Publication Date Title
Zhang et al. Zanthoxylum bungeanum pericarp extract prevents dextran sulfate sodium-induced experimental colitis in mice via the regulation of TLR4 and TLR4-related signaling pathways
Zeng et al. Schisandrin B exerts anti-neuroinflammatory activity by inhibiting the Toll-like receptor 4-dependent MyD88/IKK/NF-κB signaling pathway in lipopolysaccharide-induced microglia
Simões-Wüst et al. Juice of Bryophyllum pinnatum (Lam.) inhibits oxytocin-induced increase of the intracellular calcium concentration in human myometrial cells
KR102114017B1 (ko) 신경줄기세포의 분화 촉진 및 보호용 조성물 및 이를 이용하여 신경재생을 유도하는 방법
EP2025335A1 (en) Extracts with liver-X-receptor modulators, compounds and their use in weight control and treatment of disorders of lipid metabolism
Ban et al. 3, 4-Dihydroxybenzoic acid from Smilacis chinae rhizome protects amyloid β protein (25–35)-induced neurotoxicity in cultured rat cortical neurons
Fu et al. In vitro inhibitory effects of terpenoids from Chloranthus multistachys on epithelial–mesenchymal transition via down-regulation of Runx2 activation in human breast cancer
Park et al. Effects of the amide alkaloid piperyline on apoptosis, autophagy, and differentiation of pre-osteoblasts
Lee et al. Anti-adipogenic diarylheptanoids from Alnus hirsuta f. sibirica on 3T3-L1 cells
Nguyen et al. Anthraquinones from Morinda longissima and their insulin mimetic activities via AMP-activated protein kinase (AMPK) activation
US20100297760A1 (en) Pharmaceutical composition and a method for treatment of prostate cancer
KR102248831B1 (ko) BKCa 채널 활성화용 조성물
KR101751486B1 (ko) BKCa 채널 활성화용 조성물
Nyasse et al. Trypanocidal activity of bergenin, the major constituent of Flueggea virosa, on Trypanosoma brucei
Ma et al. Novel coumarin glycoside and phenethyl vanillate from Notopterygium forbesii and their binding affinities for opioid and dopamine receptors
US8580847B2 (en) Antrocin containing pharmaceutical compositions for inhibiting cancer cells
Park et al. Composition for BK Ca channel activation
KR102566433B1 (ko) 커피 실버스킨 추출물, 이의 분획물 또는 이로부터 분리된 화합물을 포함하는 근육질환의 예방 또는 치료용 조성물
KR100456089B1 (ko) 항암 활성을 갖는 산삼 추출정제액을 정제하는 방법 및이를 함유하는 조성물
Leung et al. Arylnaphthalene lignans from Taiwania cryptomerioides as novel blockers of voltage-gated K+ channels
KR101303693B1 (ko) 지방 대사 질환, 폐경기 질환 또는 심혈관질환 개선용 조성물
KR20130048363A (ko) 야국 추출물을 유효성분으로 포함하는 암의 예방 또는 치료용 조성물
Yao et al. Dihydromyricetin Prevents Inflammation and Oxidative Stress in Human Osteoarthritis Chondrocytes.
KR100961688B1 (ko) 다중약물내성 암세포에 유용한 항암제
KR20080107922A (ko) 베타아밀로이드에 의한 세포 독성 및 기억력 손상 억제용 약학적 조성물, 및 건강기능식품

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant